/usr/share/axiom-20170501/input/ruleset.input is in axiom-test 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | )set break resume
)spool ruleset.output
)set message test on
)set message auto off
)clear all
--S 1 of 9
TrigLinearRules := rule
sin(x) * sin(y) == cos(x-y)/2 - cos(x+y)/2
cos(x) * cos(y) == cos(x+y)/2 + cos(x-y)/2
sin(x) * cos(y) == sin(x+y)/2 + sin(x-y)/2
sin(x)^(n | integer? n and n > 0) == (1-cos(2*x))/2 * sin(x)^(n-2)
cos(x)^(n | integer? n and n > 0) == (1+cos(2*x))/2 * cos(x)^(n-2)
--R
--R
--R (1)
--R - %B cos(y + x) + %B cos(y - x)
--R {%B sin(x)sin(y) == -------------------------------,
--R 2
--R %C cos(y + x) + %C cos(y - x)
--R %C cos(x)cos(y) == -----------------------------,
--R 2
--R %D sin(y + x) - %D sin(y - x)
--R %D cos(y)sin(x) == -----------------------------,
--R 2
--R n - 2 n - 2
--R n (- cos(2x) + 1)sin(x) n (cos(2x) + 1)cos(x)
--R sin(x) == --------------------------, cos(x) == ------------------------}
--R 2 2
--R Type: Ruleset(Integer,Integer,Expression(Integer))
--E 1
--S 2 of 9
sin(a)*cos(b) + sin(a)*cos(a) + cos(2*a)*cos(3*a)
--R
--R
--R (2) (cos(b) + cos(a))sin(a) + cos(2a)cos(3a)
--R Type: Expression(Integer)
--E 2
--S 3 of 9
TrigLinearRules %
--R
--R
--R sin(b + a) - sin(b - a) + sin(2a) + cos(5a) + cos(a)
--R (3) ----------------------------------------------------
--R 2
--R Type: Expression(Integer)
--E 3
--S 4 of 9
sin(a) * sin(2*a) * sin(3*a) * sin(4*a)
--R
--R
--R (4) sin(a)sin(2a)sin(3a)sin(4a)
--R Type: Expression(Integer)
--E 4
--S 5 of 9
TrigLinearRules %
--R
--R
--R cos(10a) - cos(8a) - cos(6a) + 1
--R (5) --------------------------------
--R 8
--R Type: Expression(Integer)
--E 5
--S 6 of 9
f := operator 'f
--R
--R
--R (6) f
--R Type: BasicOperator
--E 6
--S 7 of 9
FLinearRules := rule
f(a + b, x) == f(a, x) + f(b, x)
f(c * a, x | freeOf?(c, x)) == c * f(a, x)
--R
--R
--R (7) {f(b + a,x) == 'f(b,x) + 'f(a,x),f(a c,x) == c'f(a,x)}
--R Type: Ruleset(Integer,Integer,Expression(Integer))
--E 7
--S 8 of 9
f(2*x + a * log(x) + x * log(x), x)
--R
--R
--R (8) f((x + a)log(x) + 2x,x)
--R Type: Expression(Integer)
--E 8
--S 9 of 9
FLinearRules %
--R
--R
--R (9) (f(x,x) + f(a,x))log(x) + 2f(x,x)
--R Type: Expression(Integer)
--E 9
)spool
)lisp (bye)
|