/usr/share/bluefish/bflang/chuck.bflang2 is in bluefish-data 2.2.10-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 | <?xml version="1.0"?>
<!--
Bluefish HTML Editor
ChucK.bflang2 $Revision: 8559 $
Copyright (C) 2013 Olivier Sessink
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
-->
<bflang name="Chuck" version="3" contexts="8" matches="419">
<header>
<mime type="text/x-Chuck"/>
<mime type="text/plain?ck"/>
<option name="load_reference" default="1"/>
<option name="load_completion" default="1"/>
<option name="show_in_menu" default="0"/>
<option name="Parentheses block_foldable" default="0" description="Allow folding of Parentheses block"/>
<highlight name="keyword" style="keyword" />
<highlight name="ck-keyword" style="special-keyword" />
<highlight name="ck-function" style="function" />
<highlight name="ck-variable" style="variable" />
<highlight name="error" style="warning" />
<highlight name="brackets" style="brackets" />
<highlight name="ck-type" style="type" />
<highlight name="ck-operator" style="operator" />
<highlight name="comment" style="comment" />
<highlight name="string" style="string" />
<highlight name="value" style="value" />
<highlight name="ck-attribute" style="attribute" />
<highlight name="unit" style="special-value" />
</header>
<properties>
<comment type="block" start="/*" end="*/" />
<comment type="line" start="//" />
<comment type="line" start="#" />
<smartindent characters="{" />
<smartoutdent characters="}" />
</properties>
<definition>
<context symbols=". ;(){}[]:\"\\',><*&^%!+=-|/?#	 ">
<group name="basic UAna objects" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="UAna">
<reference>Unit Analyzer base class
Base class from which all unit analyzers (UAnae) inherit;
UAnae (note plural form) can be interconnected via =>
(standard chuck operator) or via =^ (upchuck operator),
specify the the types of and when data is passed between
UAnae and UGens. When .upchuck() is invoked on a given
UAna, the UAna-chain (UAnae connected via =^) is traversed
backwards from the upchucked UAna, and analysis is performed
at each UAna along the chain; the updated analysis results
are stored in UAnaBlobs. Please see UAna documentation
in the language specification.
<i>Members (control parameters):</i>
UAnaBlob <b>.upchuck()</b> - initiate analysis at the UAna; returns result.
</reference>
</element>
<element pattern="UAnaBlob">
<reference>Unit Analyzer blob for contain of data
This object contains results associated with UAna analysis.
There is a UAnaBlob associated with every UAna. As a UAna
is upchucked, the result is stored in the UAnaBlob's floating
point vector and/or complex vector. The intended interpretation
of the results depends on the specific UAna.
<i>Members (control parameters):</i>
float <b>.fval( </b>int index<b> )</b> - get blob's float value at index
complex <b>.cval( </b>int index<b> )</b> - get blob's complex value at index
float[] <b>.fvals()</b> - get blob's float array
complex[] <b>.cvals()</b> - get blob's complex array
time <b>.when()</b> - get the time when blob was last upchucked
</reference>
</element>
<element pattern="Windowing">
<reference>Helper class for generating transform windows
This class contains static methods for generating common
transform windows for use with FFT/IFFT. The windows are
returned in a static array associated with the Windowing
class (note: do not use the returned array for anything
other than reading/setting windows in FFT/IFFT).
<i>Members (control parameters):</i>
float[] <b>.rectangle( </b>int lenght<b> )</b> - generate a rectangular window
float[] <b>.triangle( </b>int lenght<b> )</b> - generate a triangular (or Barlett) window
float[] <b>.hann( </b>int lenght<b> )</b> - generate a Hann window
float[] <b>.hamming( </b>int lenght<b> )</b> - generate a Hamming window
float[] <b>.blackmanHarris( </b>int lenght<b> )</b> - generate a blackmanHarris window
</reference>
</element>
</group>
<group name="domain transformations" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="FFT">
<reference>Fast Fourier Transform
This UAna computes the Fast Fourier Transform on incoming
audio samples, and outputs the result via its UAnaBlob as
both the complex spectrum and the magnitude spectrum. A
buffering mechanism maintains the previous FFTsize # of
samples, allowing FFT's to be taken at any point in time,
on demand (via .upchuck() or by upchucking a downstream UAna.
The window size (along with an arbitry window shape) is
controlled via the .window method. The hop size is complete
dynamic, and is throttled by how time is advanced.
extends UAna
<i>Members (control parameters):</i>
<b>.size</b> - ( float, READ/WRITE ) - get/set the FFT size
<b>.window</b>() - ( float[], READ/WRITE ) - get/set the transform window/size (also see AAA Windowing)
<b>.windowSize</b> - ( int, READ only ) - get the current window size
<b>.transform</b> - ( float[], WRITE only ) - <b>manually</b> take FFT (as opposed to using .upchuck() / upchuck operator)
<b>.spectrum</b> - ( complex[], READ only ) - <b>manually</b> retrieve the results of a transform <i>(UAna input/output)</i>
<b>input</b>: audio samples from an incoming UGen
<b>output</b>: spectrum in complex array; magnitude spectrum in float array
</reference>
</element>
<element pattern="IFFT">
<reference>Inverse Fast Fourier Transform
This UAna computes the inverse Fast Fourier Transform on
incoming spectral frames (on demand), and overlap-adds the
results into its internal buffer, ready to be sent to
other UGen's connected via =>. The window size
(along with an arbitry window shape) is controlled via the
.window method.
extends UAna
<i>Members (control parameters):</i>
<b>.size</b> - ( float, READ/WRITE ) - get/set the IFFT size
<b>.window</b>() - ( float[], READ/WRITE ) - get/set the transform window/size (also see AAA Windowing)
<b>.windowSize</b> - ( int, READ only ) - get the current window size
<b>.transform</b> - ( complex[], WRITE only ) - <b>manually</b> take IFFT (as opposed to using .upchuck() / upchuck operator)
<b>.samples</b> - ( float[], READ only ) - <b>manually</b> retrieve the result of the previous IFFT <i>(UAna input/output)</i>
<b>input</b>: complex spectral frames (either via UAnae connected via =^, or manullay via .transform())
<b>output</b>: audio samples (overlap-added and streamed out to UGens connected via =>)
</reference>
</element>
<element pattern="DCT">
<reference>Discrete Cosine Transform
This UAna computes the Discrete Cosine Transform on incoming
audio samples, and outputs the result via its UAnaBlob as
real values in the D.C. spectrum. A
buffering mechanism maintains the previous DCT size # of
samples, allowing DCT to be taken at any point in time,
on demand (via .upchuck() or by upchucking a downstream UAna.
The window size (along with an arbitry window shape) is
controlled via the .window method. The hop size is complete
dynamic, and is throttled by how time is advanced.
extends UAna
<i>Members (control parameters):</i>
<b>.size</b> - ( float, READ/WRITE ) - get/set the DCT size
<b>.window</b>() - ( float[], READ/WRITE ) - get/set the transform window/size (also see AAA Windowing)
<b>.windowSize</b> - ( int, READ only ) - get the current window size
<b>.transform</b> - ( float[], WRITE ) - <b>manually</b> take DCT (as opposed to using .upchuck() / upchuck operator)
<b>.spectrum</b> - ( float[], READ only ) - <b>manually</b> retrieve the results of a transform <i>(UAna input/output)</i>
<b>input</b>: audio samples (either via UAnae connected via =^, or manullay via .transform())
<b>output</b>: discrete cosine spectrum
</reference>
</element>
<element pattern="IDCT">
<reference>Inverse Discrete Cosine Transform
This UAna computes the inverse Discrete Cosine Transform on
incoming spectral frames (on demand), and overlap-adds the
results into its internal buffer, ready to be sent to
other UGen's connected via =>. The window size
(along with an arbitry window shape) is controlled via the
.window method.
extends UAna
<i>Members (control parameters):</i>
<b>.size</b> - ( float, READ/WRITE ) - get/set the IDCT size
<b>.window</b>() - ( float[], READ/WRITE ) - get/set the transform window/size (also see AAA Windowing)
<b>.windowSize</b> - ( int, READ only ) - get the current window size
<b>.transform</b> - ( float[], WRITE ) - <b>manually</b> take IDCT (as opposed to using .upchuck() / upchuck operator)
<b>.samples</b> - ( float[], WRITE ) - <b>manually</b> get result of previous IDCT <i>(UAna input/output)</i>
<b>input</b>: real-valued spectral frames (either via UAnae connected via =^, or manullay via .transform())
<b>output</b>: audio samples (overlap-added and streamed out to UGens connected via =>)
</reference>
</element>
</group>
<group name="feature extractors" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Centroid">
<reference>Spectral Centroid
This UAna computes the spectral centroid from a magnitude
spectrum (either from incoming UAna or manually given),
and outputs one value in its blob.
extends UAna
<i>Members (control parameters):</i>
float <b>.compute( </b>float[]<b> )</b> - <b>manually</b> computes the centroid from a float array <i>(UAna input/output)</i>
<b>input</b>: complex spectral frames (e.g., via UAnae connected via =^)
<b>output</b>: the computed Centroid value is stored in the blob's floating point vector, accessible via .fval(0). This is a normalized value in the range [0,1), mapped to the frequency range 0Hz to Nyquist
</reference>
</element>
<element pattern="Flux">
<reference>Spectral Flux
This UAna computes the spectral flux between successive
magnitude spectra (via incoming UAna, or given manually),
and outputs one value in its blob.
extends UAna
<i>Members (control parameters):</i>
void <b>.reset( )</b> - reset the extractor
float <b>.compute( </b>float[] f1, float[] f2<b> )</b> - <b>manually</b> computes the flux between two frames
float <b>.compute( </b>float[] f1, float[] f2, float[] diff<b> )</b> - <b>manually</b> computes the flux between two
frames, and stores the difference in a third array <i>(UAna input/output)</i>
<b>input</b>: complex spectral frames (e.g., via UAnae connected via =^)
<b>output</b>: the computed Flux value is stored in the blob's floating point vector, accessible via .fval(0)
</reference>
</element>
<element pattern="RMS">
<reference>Spectral RMS
This UAna computes the RMS power mean from a magnitude
spectrum (either from an incoming UAna, or given manually),
and outputs one value in its blob.
extends UAna
<i>Members (control parameters):</i>
float <b>.compute( </b>float[]<b> )</b> - <b>manually</b> computes the RMS from a float array <i>(UAna input/output)</i>
<b>input</b>: complex spectral frames (e.g., via UAnae connected via =^)
<b>output</b>: the computed RMS value is stored in the blob's floating point vector, accessible via .fval(0)
</reference>
</element>
<element pattern="RollOff">
<reference>Spectral RollOff
This UAna computes the spectral rolloff from a magnitude
spectrum (either from incoming UAna, or given manually),
and outputs one value in its blob.
extends UAna
<i>Members (control parameters):</i>
float <b>.percent( </b>float val<b>)</b> - set the percentage for computing rolloff
float <b>.percent( )</b> - get the percentage specified for the rolloff
float <b>.compute( </b>float[]<b> )</b> - <b>manually</b> computes the rolloff from a float array <i>(UAna input/output)</i>
<b>input</b>: complex spectral frames (e.g., via UAnae connected via =^)
<b>output</b>: the computed rolloff value is stored in the blob's floating point vector, accessible via .fval(0). This is a normalized
value in the range [0,1), mapped to the frequency range 0 to nyquist frequency.
</reference>
</element>
</group>
<group name="audio output" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="dac">
<reference>digital/analog converter
abstraction for underlying audio output device
<i>Members (control parameters):</i>
<b>.left</b> - ( UGen ) - input to left channel
<b>.right</b> - ( UGen ) - input to right channel
<b>.chan( int n )</b> - ( UGen ) - returns nth channel (all UGens have this function)
</reference>
</element>
<element pattern="adc">
<reference>analog/digital converter
abstraction for underlying audio input device
<i>Members (control parameters):</i>
<b>.left</b> - ( UGen ) - output of left channel
<b>.right</b> - ( UGen ) - output of right channel
<b>.chan( int n )</b> - ( UGen ) - returns nth channel (all UGens have this function)
</reference>
</element>
<element pattern="blackhole">
<reference>sample rate sample sucker
( like dac, ticks ugens, but no more )
</reference>
</element>
<element pattern="Gain">
<reference>gain control
(NOTE - all unit generators can themselves change their gain)
(this is a way to add N outputs together and scale them)
<i>Members (control parameters):</i>
<b>.gain</b> - ( float , READ/WRITE ) - set gain ( all ugen's have this )
Noise n => Gain g => dac;
SinOsc s => g;
.3 => g.gain;
while( true ) { 100::ms => now; }
</reference>
</element>
</group>
<group name="wave forms" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Noise">
<reference>white noise generator
</reference>
</element>
<element pattern="Impulse">
<reference>pulse generator - can set the value of the current sample
default for each sample is 0 if not set
<i>Members (control parameters):</i>
<b>.next</b> - ( float , READ/WRITE ) - set
value of next sample to be generated. (note: if you are using
the <b>UGen.last</b> method to read the output of the impulse, the
value set by <b>Impulse.next</b> does not appear as the output until
after the next sample boundary. In this case, there is a
consistent 1::samp offset between setting .next and reading
that value using .last)
Impulse i => dac;
while( true ) {
1.0 => i.next;
100::ms => now;
}
</reference>
</element>
<element pattern="Step">
<reference>step generator - like Impulse, but once a value is set,
it is held for all following samples, until value is set again
<i>Members (control parameters):</i>
<b>.next</b> - ( float , READ/WRITE ) - set the step value
Step s => dac;
-1.0 => float amp;
// square wave using Step
while( true ) {
-amp => amp => s.next;
800::samp => now;
}
</reference>
</element>
</group>
<group name="basic signal processing" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="HalfRect">
<reference>half wave rectifier
for half-wave rectification.
</reference>
</element>
<element pattern="FullRect">
<reference>full wave rectifier
</reference>
</element>
<element pattern="ZeroX">
<reference>zero crossing detector
emits a single pulse at the the zero crossing in the direction of the zero crossing.
</reference>
</element>
</group>
<group name="filters" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="BiQuad">
<reference>STK biquad (two-pole, two-zero) filter class.
This protected Filter subclass implements a two-pole, two-zero digital filter. A method is provided for creating a resonance in the frequency response while maintaining a constant filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.b2</b> - ( float , READ/WRITE ) - b2 coefficient
<b>.b1</b> - ( float , READ/WRITE ) - b1 coefficient
<b>.b0</b> - ( float , READ/WRITE ) - b0 coefficient
<b>.a2</b> - ( float , READ/WRITE ) - a2 coefficient
<b>.a1</b> - ( float , READ/WRITE ) - a1 coefficient
<b>.a0</b> - ( float , READ only ) - a0 coefficient
<b>.pfreq</b> - ( float , READ/WRITE) - set resonance frequency (poles)
<b>.prad</b> - ( float , READ/WRITE ) - pole radius (less than 1 to be stable)
<b>.zfreq</b> - ( float , READ/WRITE ) - notch frequency
<b>.zrad</b> - ( float , READ/WRITE ) - zero radius
<b>.norm</b> - ( float , READ/WRITE ) - normalization
<b>.eqzs</b> - ( float , READ/WRITE ) - equal gain zeroes
</reference>
</element>
<element pattern="Filter">
<reference>STK filter class.
This class implements a generic structure which can be used to create a wide range of filters.
It can function independently or be subclassed to provide more specific controls based on a particular filter type.
In particular, this class implements the standard difference equation:
a[0]*y[n] = b[0]*x[n] + ... + b[nb]*x[n-nb] - a[1]*y[n-1] - ... - a[na]*y[n-na]
If a[0] is not equal to 1, the filter coeffcients are normalized by a[0].
The \e gain parameter is applied at the filter input and does not affect the coefficient values.
The default gain value is 1.0. This structure results in one extra multiply per computed sample, but allows easy control of the overall filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.coefs</b> - ( string , WRITE only ) -
</reference>
</element>
<element pattern="OnePole">
<reference>STK one-pole filter class.
This protected Filter subclass implements a one-pole digital filter. A method is provided for setting the pole position along the real axis of the z-plane while maintaining a constant peak filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.a1</b> - ( float , READ/WRITE ) - filter coefficient
<b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
<b>.pole</b> - ( float , READ/WRITE ) - set pole position along real axis of z-plane
</reference>
</element>
<element pattern="TwoPole">
<reference>STK two-pole filter class.
This protected Filter subclass implements a two-pole digital filter. A method is provided for creating a resonance in the frequency response while maintaining a nearly constant filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.a1</b> - ( float , READ/WRITE ) - filter coefficient
<b>.a2</b> - ( float , READ/WRITE ) - filter coefficient
<b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
<b>.freq</b> - ( float , READ/WRITE ) - filter resonance frequency
<b>.radius</b> - ( float , READ/WRITE ) - filter resonance radius
<b>.norm</b> - ( int , READ/WRITE ) - toggle filter normalization
</reference>
</element>
<element pattern="OneZero">
<reference>STK one-zero filter class.
This protected Filter subclass implements a one-zero digital filter. A method is provided for setting the zero position along the real axis of the z-plane while maintaining a constant filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.zero</b> - ( float , READ/WRITE ) - set zero position
<b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
<b>.b1</b> - ( float , READ/WRITE ) - filter coefficient
</reference>
</element>
<element pattern="TwoZero">
<reference>STK two-zero filter class.
This protected Filter subclass implements a two-zero digital filter. A method is provided for creating a "notch" in the frequency response while maintaining a constant filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
<b>.b1</b> - ( float , READ/WRITE ) - filter coefficient
<b>.b2</b> - ( float , READ/WRITE ) - filter coefficient
<b>.freq</b> - ( float , READ/WRITE ) - filter notch frequency
<b>.radius</b> - ( float , READ/WRITE ) - filter notch radius
</reference>
</element>
<element pattern="PoleZero">
<reference>STK one-pole, one-zero filter class.
This protected Filter subclass implements a one-pole, one-zero digital filter. A method is provided for creating an allpass filter with a given coefficient. Another method is provided to create a DC blocking filter.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.a1</b> - ( float , READ/WRITE ) - filter coefficient
<b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
<b>.b1</b> - ( float , READ/WRITE ) - filter coefficient
<b>.blockZero</b> - ( float , READ/WRITE ) - DC blocking filter with given pole position
<b>.allpass</b> - ( float , READ/WRITE ) - allpass filter with given coefficient
</reference>
</element>
<element pattern="LPF">
<reference>resonant low pass filter.
Resonant low pass filter. 2nd order Butterworth.
(In the future, this class may be expanded so that order and type of filter can be set).
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - cutoff frequency
<b>.Q</b> - ( float , READ/WRITE ) - resonance (default is 1)
<b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
</reference>
</element>
<element pattern="HPF">
<reference>resonant high pass filter.
Resonant high pass filter. 2nd order Butterworth.
(In the future, this class may be expanded so that order and type of filter can be set).
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - cutoff frequency
<b>.Q</b> - ( float , READ/WRITE ) - resonance (default is 1)
<b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
</reference>
</element>
<element pattern="BPF">
<reference>band pass filter.
Band pass filter. 2nd order Butterworth.
(In the future, this class may be expanded so that order and type of filter can be set).
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - center frequency
<b>.Q</b> - ( float , READ/WRITE ) - Q (quality)
<b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
</reference>
</element>
<element pattern="BRF">
<reference>band reject filter.
Band reject filter. 2nd order Butterworth.
(In the future, this class may be expanded so that order and type of filter can be set).
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - center frequency
<b>.Q</b> - ( float , READ/WRITE ) - Q (quality)
<b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
</reference>
</element>
<element pattern="ResonZ">
<reference>resonance filter
Resonance filter. BiQuad with equal-gain zeros.
keeps gain under control independent of frequency.
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - center frequency
<b>.Q</b> - ( float , READ/WRITE ) - Q (quality)
<b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
</reference>
</element>
<element pattern="FilterBasic">
<reference>filter basic base class
Filter basic base class, with .freq, .Q, .set.
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - frequency
<b>.Q</b> - ( float , READ/WRITE ) - Q
<b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
</reference>
</element>
<element pattern="Dyno">
<reference>dynamics processor
includes limiter, compressor, expander, noise gate, and ducker (presets)
default limiter values: slopeAbove = 0.1 slopeBelow = 1.0 thresh = 0.5 attackTime = 5 ms releaseTime = 300 ms externalSideInput = 0 (false)
default compressor values: slopeAbove = 0.5 slopeBelow = 1.0 thresh = 0.5 attackTime = 5 ms releaseTime = 300 ms externalSideInput = 0 (false)
default expander values: slopeAbove = 2.0 slopeBelow = 1.0 thresh = 0.5 attackTime = 20 ms releaseTime = 400 ms externalSideInput = 0 (false)
default noise gate values: slopeAbove = 1.0 slopeBelow = 10000000 thresh = 0.1 attackTime = 11 ms releaseTime = 100 ms externalSideInput = 0 (false)
default ducker values: slopeAbove = 0.5 slopeBelow = 1.0 thresh = 0.1 attackTime = 100 ms releaseTime = 1000 ms externalSideInput = 1 (true)
Note that the input to sideInput determines the level of gain, not the direct signal input to Dyno.
<i>Members (control parameters):</i>
<b>.limit</b> - () - set parameters to default limiter values
<b>.compress</b> - () - set parameters to default compressor values
<b>.expand</b> - () - set parameters to default expander values
<b>.gate</b> - () - set parameters to default noise gate values
<b>.duck</b> - () - set parameters to default ducker values
<b>.thresh</b> - ( float, READ/WRITE ) - the point above which to stop using slopeBelow and start using slopeAbove to determine output gain vs input gain
<b>.attackTime</b> - ( dur, READ/WRITE ) - duration for the envelope to move linearly from current value to the absolute value of the signal's amplitude
<b>.releaseTime</b> - ( dur, READ/WRITE ) - duration for the envelope to decay down to around 1/10 of its current amplitude, if not brought back up by the signal
<b>.ratio</b> - ( float, READ/WRITE ) - alternate way of setting slopeAbove and slopeBelow; sets slopeBelow to 1.0 and slopeAbove to 1.0 / ratio
<b>.slopeBelow</b> - ( float, READ/WRITE ) - determines the slope of the output gain vs the input envelope's level in dB when the envelope is below thresh. For example, if slopeBelow were 0.5, thresh were 0.1, and the envelope's value were 0.05, the envelope's amplitude would be about 6 dB below thresh, so a gain of 3 dB would be applied to bring the output signal's amplitude up to only 3 dB below thresh. in general, setting slopeBelow to be lower than slopeAbove results in expansion of dynamic range.
<b>.slopeAbove</b> - ( float, READ/WRITE ) - determines the slope of the output gain vs the input envelope's level in dB when the envelope is above thresh. For example, if slopeAbove were 0.5, thresh were 0.1, and the envelope's value were 0.2, the envelope's amplitude would be about 6 dB above thresh, so a gain of -3 dB would be applied to bring the output signal's amplitude up to only 3 dB above thresh. in general, setting slopeAbove to be lower than slopeBelow results in compression of dynamic range
<b>.sideInput</b> - ( float, READ/WRITE ) - if externalSideInput is set to true, replaces the signal being processed as the input to the amplitude envelope. see dynoduck.ck for an example of using an external side chain.
<b>.externalSideInput</b> - ( int, READ/WRITE ) - set to true to cue the amplitude envelope off of sideInput instead of the input signal. note that this means you will need to manually set sideInput every so often. if false, the amplitude envelope represents the amplitude of the input signal whose dynamics are being processed. see dynoduck.ck for an example of using an external side chain.
</reference>
</element>
</group>
<group name="sound files" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="SndBuf">
<reference>sound buffer ( now interpolating )
reads from a variety of file formats
<i>Members (control parameters):</i>
<b>.read</b> - ( string , WRITE only ) - loads file for reading
<b>.chunks</b> - ( int, READ/WRITE ) - size of chunk (# of frames) to read on-demand; 0 implies entire file, default; must be set before reading to take effect.
<b>.samples</b> - ( int , READ only ) - get number of samples
<b>.length</b> - ( dur, READ only ) - get length as duration
<b>.channels</b> - ( int , READ only ) - get number of channels
<b>.pos</b> - ( int , READ/WRITE ) - set position ( 0 < p < .samples )
<b>.rate</b> - ( float , READ/WRITE ) - set/get playback rate ( relative to file's natural speed )
<b>.interp</b> - ( int , READ/WRITE ) - set/get interpolation ( 0=drop, 1=linear, 2=sinc )
<b>.loop</b> - ( int , READ/WRITE ) - toggle looping
<b>.freq</b> - ( float , READ/WRITE ) - set/get loop rate ( file loops / second )
<b>.phase</b> - ( float , READ/WRITE ) - set/get phase position ( 0-1 )
<b>.channel</b> - ( int , READ/WRITE ) - sel/get channel ( 0 < p < .channels )
<b>.phaseOffset</b> - ( float , READ/WRITE ) - set/get a phase offset
<b>.write</b> - ( string , WRITE only ) - loads a file for writing ( or not )
</reference>
</element>
<!-- ugen_osc.html oscillators-->
<element pattern="Phasor">
<reference>phasor - simple ramp generator ( 0 to 1 )
can be used as a phase control.
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
<b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
<b>.phase</b> - ( float , READ/WRITE ) - current phase
<b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
<b>.width</b> - ( float , READ/WRITE ) - set duration of the ramp in each cycle. ( default 1.0)
</reference>
</element>
<element pattern="SinOsc">
<reference>sine oscillator
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
<b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
<b>.phase</b> - ( float , READ/WRITE ) - current phase
<b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
</reference>
</element>
<element pattern="PulseOsc">
<reference>pulse oscillators
a pulse wave oscillator with variable width.
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
<b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
<b>.phase</b> - ( float , READ/WRITE ) - current phase
<b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
<b>.width</b> - ( float , READ/WRITE ) - length of duty cycle ( 0-1 )
</reference>
</element>
<element pattern="SqrOsc">
<reference>square wave oscillator ( pulse with fixed width of 0.5 )
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
<b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
<b>.phase</b> - ( float , READ/WRITE ) - current phase
<b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
<b>.width</b> - ( int , READ/WRITE ) - length of duty cycle ( 0 to 1 )
</reference>
</element>
<element pattern="TriOsc">
<reference>triangle wave oscillator
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
<b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
<b>.phase</b> - ( float , READ/WRITE ) - current phase
<b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
<b>.width</b> - ( float , READ/WRITE ) - control midpoint of triangle ( 0 to 1 )
</reference>
</element>
<element pattern="SawOsc">
<reference>sawtooth wave oscillator ( triangle, width forced to 0.0 or 1.0 )
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
<b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
<b>.phase</b> - ( float , READ/WRITE ) - current phase
<b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
<b>.width</b> - ( float , READ/WRITE ) - increasing ( w > 0.5 ) or decreasing ( w < 0.5 )
</reference>
</element>
<element pattern="GenX">
<reference>base class for classic MusicN lookup table unit generators
Ported from rtcmix.Lookup can either be done using the lookup() function, or by driving the table with an input UGen, typically a Phasor. For an input signal between [ -1, 1 ], using the absolute value for [ -1, 0 ), GenX will output the table value indexed by the current input.
<i>Members (control parameters):</i>
<b>.lookup( float i )</b> - ( float , READ ONLY ) - returns lookup table value at index i [ -1, 1 ]; absolute value is used in the range [ -1, 0 )
<b>.coefs</b> - ( float [ ] , WRITE ONLY ) - set lookup table coefficients; meaning is dependent on subclass
</reference>
</element>
<element pattern="Gen5">
<reference>exponential line segment lookup table table generator
Constructs a lookup table composed of sequential exponential curves. For a table with N curves, starting value of y', and value y<sub>n</sub> for lookup index x<sub>n</sub>, set the coefficients to [ y', y<sub>0</sub>, x<sub>0</sub>, ..., y<sub>N-1</sub>, x<sub>N-1</sub> ]. Note that there must be an odd number of coefficients. If an even number of coefficients is specified, behavior is undefined. The sum of x<sub>n</sub> for 0 < n < N must be 1. y<sub>n</sub> = 0 is approximated as 0.000001 to avoid strange results arising from the nature of exponential curves.
</reference>
</element>
<element pattern="Gen7">
<reference>line segment lookup table table generator
Constructs a lookup table composed of sequential line segments. For a table with N lines, starting value of y', and value y<sub>n</sub> for lookup index x<sub>n</sub>, set the coefficients to [ y', y<sub>0</sub>, x<sub>0</sub>, ..., y<sub>N-1</sub>, x<sub>N-1</sub> ]. Note that there must be an odd number of coefficients. If an even number of coefficients is specified, behavior is undefined. The sum of x<sub>n</sub> for 0 < n < N must be 1.
</reference>
</element>
<element pattern="Gen9">
<reference>sinusoidal lookup table with harmonic ratio, amplitude, and phase control
Constructs a lookup table of partials with specified amplitudes, phases, and harmonic ratios to the fundamental. Coefficients are specified in triplets of [ ratio, amplitude, phase ] arranged in a single linear array.
</reference>
</element>
<element pattern="Gen10">
<reference>sinusoidal lookup table with partial amplitude control
Constructs a lookup table of harmonic partials with specified amplitudes. The amplitude of partial n is specified by the n<sup>th</sup> element of the coefficients. For example, setting coefs to [ 1 ] will produce a sine wave.
</reference>
</element>
<element pattern="Gen17">
<reference>chebyshev polynomial lookup table
Constructs a Chebyshev polynomial wavetable with harmonic partials of specified weights. The weight of partial n is specified by the n<sup>th</sup> element of the coefficients.
Primarily used for waveshaping, driven by a SinOsc instead of a Phasor. </reference>
</element>
<element pattern="CurveTable">
<reference>flexible curve/line segment table generator
Constructs a wavetable composed of segments of variable times, values, and curvatures. Coefficients are specified as a single linear array of triplets of [ time, value, curvature ] followed by a final duple of [ time, value ] to specify the final value of the table. time values are expressed in unitless, ascending values. For curvature equal to 0, the segment is a line; for curvature less than 0, the segment is a convex curve; for curvature greater than 0, the segment is a concave curve.
</reference>
</element>
<element pattern="WarpTable">
<reference>end-constrained mapping table
useful for control signal conditioning
</reference>
</element>
</group>
<group name="live sampling " highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="LiSa">
<reference>live sampling utility.
LiSa provides basic live sampling functionality.
An internal buffer stores samples chucked to LiSa's input.
Segments of this buffer can be played back, with ramping and speed/direction control.
Multiple voice facility is built in, allowing for a single LiSa object to serve as a source for sample layering and granular textures.
by Dan Trueman (2007)
<i>Members (control parameters):</i>
<b>.duration</b> - ( dur , READ/WRITE ) - sets buffer size; required to allocate memory, also resets all parameter values to default
<b>.record</b> - ( int , READ/WRITE ) - turns recording on and off
<b>.getVoice</b> - ( READ ) - returns the voice number of the next available voice
<b>.maxVoices</b> - ( int , READ/WRITE ) - sets the maximum number of voices allowable; 10 by default (200 is the current hardwired internal limit)
<b>.play</b> - ( int, WRITE ) - turn on/off sample playback <i>(voice 0) </i>
<b>.play</b> - ( int voice, int, WRITE) - for particular voice (arg 1), turn on/off sample playback
<b>.rampUp</b> - ( dur, WRITE ) - turn on sample playback, with ramp <i>(voice 0) </i>
<b>.rampUp</b> - ( int voice dur, WRITE ) - for particular voice (arg 1), turn on sample playback, with ramp
<b>.rampDown</b> - ( dur, WRITE ) - turn off sample playback, with ramp <i>(voice 0) </i>
<b>.rampDown</b> - ( int voice, dur, WRITE ) - for particular voice (arg 1), turn off sample playback, with ramp
<b>.rate</b> - ( float, WRITE ) - <i>set playback rate (voice 0). Note that the int/float type for this method will determine whether the rate is being set (float, for voice 0) or read (int, for voice number)</i>
<b>.rate</b> - ( int voice, float, WRITE ) - for particular voice (arg 1),<i> set playback rate</i>
<b>.rate</b> - ( READ ) - <i>get playback rate (voice 0) </i>
<b>.rate</b> - ( int voice, READ ) - for particular voice (arg 1), <i>get playback rate. Note that the int/float type for this method will determine whether the rate is being set (float, for voice 0) or read (int, for voice number)</i>
<b>.playPos</b> - ( READ ) - <i>get playback position (voice 0) </i>
<b>.playPos</b> - ( int voice, READ ) -<i> for particular voice (arg 1), get playback position</i>
<b>.playPos</b> - ( dur, WRITE ) - <i>set playback position (voice 0) </i>
<b>.playPos</b> - ( int voice, dur, WRITE ) - <i>for particular voice (arg 1), set playback position</i>
<b>.recPos</b> - ( dur, READ/WRITE ) - <i>get/set record position </i>
<b>.recRamp</b> - ( dur , READ/WRITE ) - set ramping when recording (from 0 to loopEndRec)
<b>.loopRec</b> - ( int, READ/WRITE ) - <i>turn on/off loop recording </i>
<b>.loopEndRec</b> - ( dur, READ/WRITE ) - <i>set end point in buffer for loop recording </i>
<b>.loopStart</b> - ( dur , READ/WRITE ) - set loop starting point for playback (voice 0). only applicable when 1 => loop.
<b>.loopStart</b> - ( int voice, dur , WRITE ) - <i>for particular voice (arg 1), set loop starting point for playback. only applicable when .loop(voice, 1).</i>
<b>.loopEnd</b> - ( dur , READ/WRITE ) - set loop ending point for playback (voice 0). only applicable when 1 => loop.
<b>.loopEnd</b> - ( int voice, dur , WRITE ) - <i>for particular voice (arg 1), set loop ending point for playback. only applicable when .loop(voice, 1).</i>
<b>.loop</b> - ( int , READ/WRITE ) - turn on/off looping (voice 0)
<b>.loop</b> - ( int voice, int, READ/WRITE ) - <i>for particular voice (arg 1), turn on/off looping</i>
<b>.bi</b> - ( int , READ/WRITE ) - turn on/off bidirectional playback (voice 0)
<b>.bi</b> - ( int voice, int , WRITE ) - <i>for particular voice (arg 1), turn on/off bidirectional playback</i>
<b>.voiceGain</b> - ( float , READ/WRITE ) - set playback gain (voice 0)
<b>.voiceGain</b> - ( int voice, float , WRITE ) - <i> for particular voice (arg 1), set gain </i>
<b>.feedback</b> - ( float , READ/WRITE ) - get/set feedback amount when overdubbing (loop recording; how much to retain)
<b>.valueAt </b>- ( dur, READ ) - <i>get value directly from record buffer </i>
<b>.valueAt </b>- ( sample, dur, WRITE ) - <i>set value directly in record buffer </i>
<b>.sync</b> - (int, READ/WRITE) - <i>set input mode; (0) input is recorded to internal buffer, (1) input sets playback position [0,1] (phase value between loopStart and loopEnd for all active voices), (2) input sets playback position, interpreted as a time value in samples (only works with voice 0) </i>
<b>.track</b> - (int, READ/WRITE) - <i>identical to sync </i>
<b>.clear </b> - <i>clear recording buffer </i>
</reference>
</element>
<element pattern="netout">
<reference>UDP-based network audio transmitter
<i>Members (control parameters):</i>
<b>.addr</b> - ( string , READ/WRITE ) - target address
<b>.port</b> - ( int , READ/WRITE ) - target port
<b>.size</b> - ( int , READ/WRITE ) - packet size
<b>.name</b> - ( string , READ/WRITE ) - name?
</reference>
</element>
<element pattern="netin">
<reference>UDP-based network audio receiver
<i>Members (control parameters):</i>
<b>.port</b> - ( int , READ/WRITE ) - set port to receive
<b>.name</b> - ( string , READ/WRITE ) - name?
</reference>
</element>
<element pattern="Pan2">
<reference>spread mono signal to stereo
<i>Members (control parameters):</i>
<b>.left</b> - ( UGen ) - left (mono) channel out
<b>.right</b> - ( UGen ) - right (mono) channel out
<b>.pan</b> - ( float , READ/WRITE ) - pan location value ( -1 to 1 )
</reference>
</element>
<element pattern="Mix2">
<reference>mix stereo input down to mono channel
<i>Members (control parameters):</i>
<b>.left</b> - ( UGen ) - left (mono) channel in
<b>.right</b> - ( UGen ) - right (mono) channel in
<b>.pan</b> - ( float , READ/WRITE ) - mix parameter value ( 0 to 1 )
</reference>
</element>
</group>
<!-- ulib_stk.html STK-->
<group name="stk - instruments" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="StkInstrument">
<reference>Super-class for STK instruments.
The following UGens subclass StkInstrument:
- BandedWG
- BlowBotl
- BlowHole
- Bowed
- Brass
- Clarinet
- Flute
- FM (and all its subclasses: BeeThree, FMVoices, HevyMetl, PercFlut, Rhodey, TubeBell, Wurley)
- Mandolin
- ModalBar
- Moog
- Saxofony
- Shakers
- Sitar
- StifKarp
- VoicForm
<i>Members (control parameters):</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change - numbers are instrument specific, value range: [0.0 - 128.0]
</reference>
</element>
<element pattern="BandedWG">
<reference>Banded waveguide modeling class.
This class uses banded waveguide techniques to model a variety of sounds, including bowed bars, glasses, and bowls.
Control Change Numbers:
- Bow Pressure = 2
- Bow Motion = 4
- Strike Position = 8 (not implemented)
- Vibrato Frequency = 11
- Gain = 1
- Bow Velocity = 128
- Set Striking = 64
- Instrument Presets = 16
- Uniform Bar = 0
- Tuned Bar = 1
- Glass Harmonica = 2
- Tibetan Bowl = 3
by Georg Essl, 1999 - 2002. Modified for Stk 4.0 by Gary Scavone.
<i>Members (control parameters):</i>
<b>.bowPressure</b> - ( float , READ/WRITE ) - bow pressure [0.0 - 1.0]
<b>.bowMotion</b> - ( float , READ/WRITE ) - bow motion [0.0 - 1.0]
<b>.bowRate</b> - ( float , READ/WRITE ) - bow attack rate (sec)
<b>.strikePosition</b> - ( float , READ/WRITE ) - strike Position [0.0 - 1.0]
<b>.integrationConstant</b> - ( float , READ/WRITE ) - ?? [0.0 - 1.0]
<b>.modesGain</b> - ( float , READ/WRITE ) - amplitude for modes [0.0 - 1.0]
<b>.preset</b> - ( int , READ/WRITE ) - instrument presets (0 - 3, see above)
<b>.pluck</b> - ( float , WRITE only ) - pluck instrument [0.0 - 1.0]
<b>.startBowing</b> - ( float , WRITE only ) - start bowing [0.0 - 1.0]
<b>.stopBowing</b> - ( float , WRITE only ) - stop bowing [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="BlowBotl">
<reference>STK blown bottle instrument class.
This class implements a helmholtz resonator (biquad filter) with a polynomial jet excitation (a la Cook).
Control Change Numbers:
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Volume = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.volume</b> - ( float , READ/WRITE ) - yet another volume knob [0.0 - 1.0]
<b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
<b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="BlowHole">
<reference>STK clarinet physical model with one register hole and one tonehole.
This class is based on the clarinet model, with the addition of a two-port register hole and a three-port dynamic tonehole implementation, as discussed by Scavone and Cook (1998).
In this implementation, the distances between the reed/register hole and tonehole/bell are fixed. As a result, both the tonehole and register hole will have variable influence on the playing frequency, which is dependent on the length of the air column. In addition, the highest playing freqeuency is limited by these fixed lengths.
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
Control Change Numbers:
- Reed Stiffness = 2
- Noise Gain = 4
- Tonehole State = 11
- Register State = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.reed</b> - ( float , READ/WRITE ) - reed stiffness [0.0 - 1.0]
<b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
<b>.tonehole</b> - ( float , READ/WRITE ) - tonehole size [0.0 - 1.0]
<b>.vent</b> - ( float , READ/WRITE ) - vent frequency [0.0 - 1.0]
<b>.pressure</b> - ( float , READ/WRITE ) - pressure [0.0 - 1.0]
<b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
<b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
<b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Bowed">
<reference>STK bowed string instrument class.
This class implements a bowed string model, a la Smith (1986), after McIntyre, Schumacher, Woodhouse (1983).
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
Control Change Numbers:
- Bow Pressure = 2
- Bow Position = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Volume = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.bowPressure</b> - ( float , READ/WRITE ) - bow pressure [0.0 - 1.0]
<b>.bowPosition</b> - ( float , READ/WRITE ) - bow position [0.0 - 1.0]
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.volume</b> - ( float , READ/WRITE ) - volume [0.0 - 1.0]
<b>.startBowing</b> - ( float , WRITE only ) - start bowing [0.0 - 1.0]
<b>.stopBowing</b> - ( float , WRITE only ) - stop bowing [0.0 - 1.0]
<b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Brass">
<reference>STK simple brass instrument class.
This class implements a simple brass instrument waveguide model, a la Cook (TBone, HosePlayer).
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
Control Change Numbers:
- Lip Tension = 2
- Slide Length = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Volume = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.lip</b> - ( float , READ/WRITE ) - lip tension [0.0 - 1.0]
<b>.slide</b> - ( float , READ/WRITE ) - slide length [0.0 - 1.0]
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.volume</b> - ( float , READ/WRITE ) - volume [0.0 - 1.0]
<b>.clear</b> - ( float , WRITE only ) - clear instrument
<b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
<b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
<b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Clarinet">
<reference>STK clarinet physical model class.
This class implements a simple clarinet physical model, as discussed by Smith (1986), McIntyre, Schumacher, Woodhouse (1983), and others.
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
Control Change Numbers:
- Reed Stiffness = 2
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.reed</b> - ( float , READ/WRITE ) - reed stiffness [0.0 - 1.0]
<b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
<b>.clear</b> - ( ) - clear instrument
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.pressure</b> - ( float , READ/WRITE ) - pressure/volume [0.0 - 1.0]
<b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
<b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
<b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Flute">
<reference>STK flute physical model class.
This class implements a simple flute physical model, as discussed by Karjalainen, Smith, Waryznyk, etc. The jet model uses a polynomial, a la Cook.
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
Control Change Numbers:
- Jet Delay = 2
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.jetDelay</b> - ( float , READ/WRITE ) - jet delay [...]
<b>.jetReflection</b> - ( float , READ/WRITE ) - jet reflection [...]
<b>.endReflection</b> - ( float , READ/WRITE ) - end delay [...]
<b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.pressure</b> - ( float , READ/WRITE ) - pressure/volume [0.0 - 1.0]
<b>.clear</b> - ( ) - clear instrument
<b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
<b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
<b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Mandolin">
<reference>STK mandolin instrument model class.
This class inherits from PluckTwo and uses "commuted synthesis" techniques to model a mandolin instrument.
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others. Commuted Synthesis, in particular, is covered by patents, granted, pending, and/or applied-for. All are assigned to the Board of Trustees, Stanford University. For information, contact the Office of Technology Licensing, Stanford University.
Control Change Numbers:
- Body Size = 2
- Pluck Position = 4
- String Sustain = 11
- String Detuning = 1
- Microphone Position = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.bodySize</b> - ( float , READ/WRITE ) - body size (percentage)
<b>.pluckPos</b> - ( float , READ/WRITE ) - pluck position [0.0 - 1.0]
<b>.stringDamping</b> - ( float , READ/WRITE ) - string damping [0.0 - 1.0]
<b>.stringDetune</b> - ( float , READ/WRITE ) - detuning of string pair [0.0 - 1.0]
<b>.afterTouch</b> - ( float , WRITE only ) - aftertouch (currently unsupported)
<b>.pluck</b> - ( float , WRITE only ) - pluck instrument [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="ModalBar">
<reference>STK resonant bar instrument class.
This class implements a number of different struck bar instruments. It inherits from the Modal class.
Control Change Numbers:
- Stick Hardness = 2
- Stick Position = 4
- Vibrato Gain = 11
- Vibrato Frequency = 7
- Direct Stick Mix = 1
- Volume = 128
- Modal Presets = 16
- Marimba = 0
- Vibraphone = 1
- Agogo = 2
- Wood1 = 3
- Reso = 4
- Wood2 = 5
- Beats = 6
- Two Fixed = 7
- Clump = 8
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.stickHardness</b> - ( float , READ/WRITE ) - stick hardness [0.0 - 1.0]
<b>.strikePosition</b> - ( float , READ/WRITE ) - strike position [0.0 - 1.0]
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.directGain</b> - ( float , READ/WRITE ) - direct gain [0.0 - 1.0]
<b>.masterGain</b> - ( float , READ/WRITE ) - master gain [0.0 - 1.0]
<b>.volume</b> - ( float , READ/WRITE ) - volume [0.0 - 1.0]
<b>.preset</b> - ( int , READ/WRITE ) - choose preset (see above)
<b>.strike</b> - ( float , WRITE only ) - strike bar [0.0 - 1.0]
<b>.damp</b> - ( float , WRITE only ) - damp bar [0.0 - 1.0]
<b>.clear</b> - ( ) - reset [none]
<b>.mode</b> - ( int , READ/WRITE ) - select mode [0.0 - 1.0]
<b>.modeRatio</b> - ( float , READ/WRITE ) - edit selected mode ratio [...]
<b>.modeRadius</b> - ( float , READ/WRITE ) - edit selected mode radius [0.0 - 1.0]
<b>.modeGain</b> - ( float , READ/WRITE ) - edit selected mode gain [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Moog">
<reference>STK moog-like swept filter sampling synthesis class.
This instrument uses one attack wave, one looped wave, and an ADSR envelope (inherited from the Sampler class) and adds two sweepable formant (FormSwep) filters.
Control Change Numbers:
- Filter Q = 2
- Filter Sweep Rate = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Gain = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.filterQ</b> - ( float , READ/WRITE ) - filter Q value [0.0 - 1.0]
<b>.filterSweepRate</b> - ( float , READ/WRITE ) - filter sweep rate [0.0 - 1.0]
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.afterTouch</b> - ( float , WRITE only ) - aftertouch [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Saxofony">
<reference>STK faux conical bore reed instrument class.
This class implements a "hybrid" digital waveguide instrument that can generate a variety of wind-like sounds. It has also been referred to as the "blowed string" model. The waveguide section is essentially that of a string, with one rigid and one lossy termination. The non-linear function is a reed table. The string can be "blown" at any point between the terminations, though just as with strings, it is impossible to excite the system at either end. If the excitation is placed at the string mid-point, the sound is that of a clarinet. At points closer to the "bridge", the sound is closer to that of a saxophone. See Scavone (2002) for more details.
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
Control Change Numbers:
- Reed Stiffness = 2
- Reed Aperture = 26
- Noise Gain = 4
- Blow Position = 11
- Vibrato Frequency = 29
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.stiffness</b> - ( float , READ/WRITE ) - reed stiffness [0.0 - 1.0]
<b>.aperture</b> - ( float , READ/WRITE ) - reed aperture [0.0 - 1.0]
<b>.pressure</b> - ( float , READ/WRITE ) - pressure/volume [0.0 - 1.0]
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
<b>.blowPosition</b> - ( float , READ/WRITE ) - lip stiffness [0.0 - 1.0]
<b>.clear</b> - ( ) - clear instrument
<b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
<b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
<b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Shakers">
<reference>PhISEM and PhOLIES class.
PhISEM (Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of multiple independent sound producing objects. This class is a meta-model that can simulate a Maraca, Sekere, Cabasa, Bamboo Wind Chimes, Water Drops, Tambourine, Sleighbells, and a Guiro. PhOLIES (Physically-Oriented Library of Imitated Environmental Sounds) is a similar approach for the synthesis of environmental sounds. This class implements simulations of breaking sticks, crunchy snow (or not), a wrench, sandpaper, and more.
Control Change Numbers:
- Shake Energy = 2
- System Decay = 4
- Number Of Objects = 11
- Resonance Frequency = 1
- Shake Energy = 128
- Instrument Selection = 1071
- Maraca = 0
- Cabasa = 1
- Sekere = 2
- Guiro = 3
- Water Drops = 4
- Bamboo Chimes = 5
- Tambourine = 6
- Sleigh Bells = 7
- Sticks = 8
- Crunch = 9
- Wrench = 10
- Sand Paper = 11
- Coke Can = 12
- Next Mug = 13
- Penny + Mug = 14
- Nickle + Mug = 15
- Dime + Mug = 16
- Quarter + Mug = 17
- Franc + Mug = 18
- Peso + Mug = 19
- Big Rocks = 20
- Little Rocks = 21
- Tuned Bamboo Chimes = 22
by Perry R. Cook, 1996 - 1999.
<i>Members (control parameters):</i>
<b>.preset</b> - ( int , READ/WRITE ) - select instrument (0 - 22; see above)
<b>.energy</b> - ( float , READ/WRITE ) - shake energy [0.0 - 1.0]
<b>.decay</b> - ( float , READ/WRITE ) - system decay [0.0 - 1.0]
<b>.objects</b> - ( float , READ/WRITE ) - number of objects [0.0 - 128.0]
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="Sitar">
<reference>STK sitar string model class.
This class implements a sitar plucked string physical model based on the Karplus-Strong algorithm.
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others. There exist at least two patents, assigned to Stanford, bearing the names of Karplus and/or Strong.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.pluck</b> - ( float , WRITE only ) - pluck string [0.0 - 1.0]
<b>.clear</b> - ( ) - reset
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="StifKarp">
<reference>STK plucked stiff string instrument.
This class implements a simple plucked string algorithm (Karplus Strong) with enhancements (Jaffe-Smith, Smith, and others), including string stiffness and pluck position controls.
The stiffness is modeled with allpass filters.
This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
Control Change Numbers:
- Pickup Position = 4
- String Sustain = 11
- String Stretch = 1
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.pickupPosition</b> - ( float , READ/WRITE ) - pickup position [0.0 - 1.0]
<b>.sustain</b> - ( float , READ/WRITE ) - string sustain [0.0 - 1.0]
<b>.stretch</b> - ( float , READ/WRITE ) - string stretch [0.0 - 1.0]
<b>.pluck</b> - ( float , WRITE only ) - pluck string [0.0 - 1.0]
<b>.baseLoopGain</b> - ( float , READ/WRITE ) - ?? [0.0 - 1.0]
<b>.clear</b> - ( ) - reset instrument
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="VoicForm">
<reference>Four formant synthesis instrument.
This instrument contains an excitation singing wavetable (looping wave with random and periodic vibrato, smoothing on frequency, etc.), excitation noise, and four sweepable complex resonances.
Measured formant data is included, and enough data is there to support either parallel or cascade synthesis. In the floating point case cascade synthesis is the most natural so that's what you'll find here.
Control Change Numbers:
- Voiced/Unvoiced Mix = 2
- Vowel/Phoneme Selection = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Loudness (Spectral Tilt) = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
Phoneme Names:
"eee" "ihh" "ehh" "aaa"
"ahh" "aww" "ohh" "uhh"
"uuu" "ooo" "rrr" "lll"
"mmm" "nnn" "nng" "ngg"
"fff" "sss" "thh" "shh"
"xxx" "hee" "hoo" "hah"
"bbb" "ddd" "jjj" "ggg"
"vvv" "zzz" "thz" "zhh"
<i>Members (control parameters):</i>
<b>.phoneme</b> - ( string , READ/WRITE ) - select phoneme ( see above )
<b>.phonemeNum</b> - ( int , READ/WRITE ) - select phoneme by number [0.0 - 128.0]
<b>.speak</b> - ( float , WRITE only ) - start singing [0.0 - 1.0]
<b>.quiet</b> - ( float , WRITE only ) - stop singing [0.0 - 1.0]
<b>.voiced</b> - ( float , READ/WRITE ) - set mix for voiced component [0.0 - 1.0]
<b>.unVoiced</b> - ( float , READ/WRITE ) - set mix for unvoiced component [0.0 - 1.0]
<b>.pitchSweepRate</b> - ( float , READ/WRITE ) - pitch sweep [0.0 - 1.0]
<b>.voiceMix</b> - ( float , READ/WRITE ) - voiced/unvoiced mix [0.0 - 1.0]
<b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
<b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
<b>.loudness</b> - ( float , READ/WRITE ) - 'loudness' of voice [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="FM">
<reference>STK abstract FM synthesis base class.
This class controls an arbitrary number of waves and envelopes, determined via a constructor argument.
Control Change Numbers:
- Control One = 2
- Control Two = 4
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128
The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.lfoSpeed</b> - ( float , READ/WRITE ) - modulation Speed (Hz)
<b>.lfoDepth</b> - ( float , READ/WRITE ) - modulation Depth [0.0 - 1.0]
<b>.afterTouch</b> - ( float , READ/WRITE ) - aftertouch [0.0 - 1.0]
<b>.controlOne</b> - ( float , READ/WRITE ) - control one [instrument specific]
<b>.controlTwo</b> - ( float , READ/WRITE ) - control two [instrument specific]
<i>(inherited from StkInstrument)</i>
<b>.noteOn</b> - ( float velocity ) - trigger note on
<b>.noteOff</b> - ( float velocity ) - trigger note off
<b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
<b>.controlChange</b> - ( int number, float value ) - assert control change
</reference>
</element>
<element pattern="BeeThree">
<reference>STK Hammond-oid organ FM synthesis instrument.
This class implements a simple 4 operator topology, also referred to as algorithm 8 of the TX81Z.
\code
Algorithm 8 is :
1 --.
2 -\|
+-> Out
3 -/|
4 --
\endcode
Control Change Numbers:
- Operator 4 (feedback) Gain = 2 (.controlOne)
- Operator 3 Gain = 4 (.controlTwo)
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128
The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
</reference>
</element>
<element pattern="FMVoices">
<reference>STK singing FM synthesis instrument.
This class implements 3 carriers and a common modulator, also referred to as algorithm 6 of the TX81Z.
\code
Algorithm 6 is :
/->1 -\
4-|-->2 - +-> Out
\->3 -/
\endcode
Control Change Numbers:
- Vowel = 2 (.controlOne)
- Spectral Tilt = 4 (.controlTwo)
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128
The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.vowel</b> - ( float , WRITE only ) - select vowel [0.0 - 1.0]
<b>.spectralTilt</b> - ( float , WRITE only ) - spectral tilt [0.0 - 1.0]
<b>.adsrTarget</b> - ( float , WRITE only ) - adsr targets [0.0 - 1.0]
</reference>
</element>
<element pattern="HevyMetl">
<reference>STK heavy metal FM synthesis instrument.
This class implements 3 cascade operators with feedback modulation, also referred to as algorithm 3 of the TX81Z.
Algorithm 3 is : 4--\
3-->2-- + -->1-->Out
Control Change Numbers:
- Total Modulator Index = 2 (.controlOne)
- Modulator Crossfade = 4 (.controlTwo)
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128
The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
</reference>
</element>
<element pattern="PercFlut">
<reference>STK percussive flute FM synthesis instrument.
This class implements algorithm 4 of the TX81Z.
\code
Algorithm 4 is : 4->3--\
2-- + -->1-->Out
\endcode
Control Change Numbers:
- Total Modulator Index = 2 (.controlOne)
- Modulator Crossfade = 4 (.controlTwo)
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128
The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
</reference>
</element>
<element pattern="Rhodey">
<reference>STK Fender Rhodes-like electric piano FM synthesis instrument.
This class implements two simple FM Pairs summed together, also referred to as algorithm 5 of the TX81Z.
\code
Algorithm 5 is : 4->3--\
+ --> Out
2->1--/
\endcode
Control Change Numbers:
- Modulator Index One = 2 (.controlOne)
- Crossfade of Outputs = 4 (.controlTwo)
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128
The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
</reference>
</element>
<element pattern="TubeBell">
<reference>STK tubular bell (orchestral chime) FM synthesis instrument.
This class implements two simple FM Pairs summed together, also referred to as algorithm 5 of the TX81Z.
\code
Algorithm 5 is : 4->3--\
+ --> Out
2->1--/
\endcode
Control Change Numbers:
- Modulator Index One = 2 (.controlOne)
- Crossfade of Outputs = 4 (.controlTwo)
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128
The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
</reference>
</element>
<element pattern="Wurley">
<reference>STK Wurlitzer electric piano FM synthesis instrument.
This class implements two simple FM Pairs summed together, also referred to as algorithm 5 of the TX81Z.
\code
Algorithm 5 is : 4->3--\
+ --> Out
2->1--/
\endcode
Control Change Numbers:
- Modulator Index One = 2 (.controlOne)
- Crossfade of Outputs = 4 (.controlTwo)
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128
The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
</reference>
</element>
</group>
<group name="stk - delay" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Delay">
<reference>STK non-interpolating delay line class.
This protected Filter subclass implements a non-interpolating digital delay-line.
A fixed maximum length of 4095 and a delay of zero is set using the default constructor.
Alternatively, the delay and maximum length can be set during instantiation with an overloaded constructor.
A non-interpolating delay line is typically used in fixed delay-length applications, such as for reverberation.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.delay</b> - ( dur , READ/WRITE ) - length of delay
<b>.max</b> - ( dur , READ/WRITE ) - max delay (buffer size)
</reference>
</element>
<element pattern="DelayA">
<reference>STK allpass interpolating delay line class.
This Delay subclass implements a fractional- length digital delay-line using a first-order allpass filter. A fixed maximum length of 4095 and a delay of 0.5 is set using the default constructor. Alternatively, the delay and maximum length can be set during instantiation with an overloaded constructor.
An allpass filter has unity magnitude gain but variable phase delay properties, making it useful in achieving fractional delays without affecting a signal's frequency magnitude response. In order to achieve a maximally flat phase delay response, the minimum delay possible in this implementation is limited to a value of 0.5.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.delay</b> - ( dur , READ/WRITE ) - length of delay
<b>.max</b> - ( dur , READ/WRITE ) - max delay ( buffer size )
</reference>
</element>
<element pattern="DelayL">
<reference>STK linear interpolating delay line class.
This Delay subclass implements a fractional- length digital delay-line using first-order linear interpolation. A fixed maximum length of 4095 and a delay of zero is set using the default constructor. Alternatively, the delay and maximum length can be set during instantiation with an overloaded constructor.
Linear interpolation is an efficient technique for achieving fractional delay lengths, though it does introduce high-frequency signal attenuation to varying degrees depending on the fractional delay setting. The use of higher order Lagrange interpolators can typically improve (minimize) this attenuation characteristic.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.delay</b> - ( dur , READ/WRITE ) - length of delay
<b>.max</b> - ( dur , READ/WRITE ) - max delay ( buffer size )
</reference>
</element>
<element pattern="Echo">
<reference>STK echo effect class.
This class implements a echo effect.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.delay</b> - ( dur , READ/WRITE ) - length of echo
<b>.max</b> - ( dur , READ/WRITE ) - max delay
<b>.mix</b> - ( float , READ/WRITE ) - mix level ( wet/dry )
</reference>
</element>
</group>
<group name="stk - envelopes" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Envelope">
<reference>STK envelope base class.
This class implements a simple envelope generator which is capable of ramping to a target value by a specified \e rate.
It also responds to simple \e keyOn and \e keyOff messages, ramping to 1.0 on keyOn and to 0.0 on keyOff.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.keyOn</b> - ( int , WRITE only ) - ramp to 1.0
<b>.keyOff</b> - ( int , WRITE only ) - ramp to 0.0
<b>.target</b> - ( float , READ/WRITE ) - ramp to arbitrary value.
<b>.time</b> - ( float , READ/WRITE ) - time to reach target (in seconds)
<b>.duration</b> - ( dur , READ/WRITE ) - duration to reach target
<b>.rate</b> - ( float , READ/WRITE ) - rate of change
<b>.value</b> - ( float , READ/WRITE ) - set immediate value
</reference>
</element>
<element pattern="ADSR">
<reference>STK ADSR envelope class.
This Envelope subclass implements a traditional ADSR (Attack, Decay, Sustain, Release) envelope. It responds to simple keyOn and keyOff messages, keeping track of its state.
The \e state = ADSR::DONE after the envelope value reaches 0.0 in the ADSR::RELEASE state.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.keyOn</b> - ( int , WRITE only ) - start the attack for non-zero values
<b>.keyOff</b> - ( int , WRITE only ) - start release for non-zero values
<b>.attackTime</b> - ( dur , READ/WRITE ) - attack time
<b>.attackRate</b> - ( float , READ/WRITE ) - attack rate
<b>.decayTime</b> - ( dur , READ/WRITE ) - decay time
<b>.decayRate</b> - ( float , READ/WRITE ) - decay rate
<b>.sustainLevel</b> - ( float , READ/WRITE ) - sustain level
<b>.releaseTime</b> - ( dur , READ/WRITE ) - release time
<b>.releaseRate</b> - ( float , READ/WRITE ) - release rate
<b>.state</b> - ( int , READ only ) - attack=0, decay=1 , sustain=2, release=3, done=4
<b>.set</b> - ( dur, dur, float, dur ) - set A, D, S, and R all at once
</reference>
</element>
</group>
<group name="stk-reverbs" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="JCRev">
<reference>John Chowning's reverberator class.
This class is derived from the CLM JCRev function, which is based on the use of networks of simple allpass and comb delay filters. This class implements three series allpass units, followed by four parallel comb filters, and two decorrelation delay lines in parallel at the output.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.mix</b> - ( float , READ/WRITE ) - mix level
</reference>
</element>
<element pattern="NRev">
<reference>CCRMA's NRev reverberator class.
This class is derived from the CLM NRev function, which is based on the use of networks of simple allpass and comb delay filters. This particular arrangement consists of 6 comb filters in parallel, followed by 3 allpass filters, a lowpass filter, and another allpass in series, followed by two allpass filters in parallel with corresponding right and left outputs.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.mix</b> - ( float , READ/WRITE ) -
</reference>
</element>
<element pattern="PRCRev">
<reference>Perry's simple reverberator class.
This class is based on some of the famous Stanford/CCRMA reverbs (NRev, KipRev), which were based on the Chowning/Moorer/Schroeder reverberators using networks of simple allpass and comb delay filters. This class implements two series allpass units and two parallel comb filters.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.mix</b> - ( float , READ/WRITE ) - mix level
</reference>
</element>
</group>
<group name="stk - components" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Chorus">
<reference>STK chorus effect class.
This class implements a chorus effect.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.modFreq</b> - ( float , READ/WRITE ) - modulation frequency
<b>.modDepth</b> - ( float , READ/WRITE ) - modulation depth
<b>.mix</b> - ( float , READ/WRITE ) - effect mix
</reference>
</element>
<element pattern="Modulate">
<reference>STK periodic/random modulator.
This class combines random and periodic modulations to give a nice, natural human modulation function.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.vibratoRate</b> - ( float , READ/WRITE ) - set rate of vibrato
<b>.vibratoGain</b> - ( float , READ/WRITE ) - gain for vibrato
<b>.randomGain</b> - ( float , READ/WRITE ) - gain for random contribution
</reference>
</element>
<element pattern="PitShift">
<reference>STK simple pitch shifter effect class.
This class implements a simple pitch shifter using delay lines.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.mix</b> - ( float , READ/WRITE ) - effect dry/web mix level
<b>.shift</b> - ( float , READ/WRITE ) - degree of pitch shifting
</reference>
</element>
<element pattern="SubNoise">
<reference>STK sub-sampled noise generator.
Generates a new random number every "rate" ticks using the C rand() function. The quality of the rand() function varies from one OS to another.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.rate</b> - ( int , READ/WRITE ) - subsampling rate
</reference>
</element>
<element pattern="Blit">
<reference>Blit (STK Import)
STK band-limited impulse train.
This class generates a band-limited impulse train using a closed-form algorithm reported by Stilson and Smith in "Alias-Free Digital Synthesis of Classic Analog Waveforms", 1996. The user can specify both the fundamental frequency of the impulse train and the number of harmonics contained in the resulting signal.
The signal is normalized so that the peak value is +/-1.0.
If nHarmonics is 0, then the signal will contain all harmonics up to half the sample rate. Note, however, that this setting may produce aliasing in the signal when the frequency is changing (no automatic modification of the number of harmonics is performed by the setFrequency() function).
Original code by Robin Davies, 2005. Revisions by Gary Scavone for STK, 2005.
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - base frequency (hz)
<b>.harmonics</b> - ( int , READ/WRITE ) - number of harmonics in pass band
<b>.phase</b> - ( float , READ/WRITE ) - phase of the the signal
</reference>
</element>
<element pattern="BlitSaw">
<reference>BlitSaw (STK Import)
STK band-limited sawtooth wave.
This class generates a band-limited sawtooth waveform using a closed-form algorithm reported by Stilson and Smith in "Alias-Free Digital Synthesis of Classic Analog Waveforms", 1996. The user can specify both the fundamental frequency of the sawtooth and the number of harmonics contained in the resulting signal.
If nHarmonics is 0, then the signal will contain all harmonics up to half the sample rate. Note, however, that this setting may produce aliasing in the signal when the frequency is changing (no automatic modification of the number of harmonics is performed by the setFrequency() function).
Based on initial code of Robin Davies, 2005.
Modified algorithm code by Gary Scavone, 2005.
Members: <i>(control
parameters)</i>
<b>.freq</b> - ( float , READ/WRITE ) - base frequency (hz)
<b>.harmonics</b> - ( int , READ/WRITE ) - number of harmonics in pass band
<b>.phase</b> - ( float , READ/WRITE ) - phase of the the signal
</reference>
</element>
<element pattern="BlitSquare">
<reference>BlitSquare (STK Import)
STK band-limited square wave.
This class generates a band-limited square wave signal. It is derived in part from the approach reported by Stilson and Smith in "Alias-Free Digital Synthesis of Classic Analog Waveforms", 1996. The algorithm implemented in this class uses a SincM function with an even M value to achieve a bipolar bandlimited impulse train. This signal is then integrated to achieve a square waveform. The integration process has an associated DC offset but that is subtracted off the output signal.
The user can specify both the fundamental frequency of the waveform and the number of harmonics contained in the resulting signal.
If nHarmonics is 0, then the signal will contain all harmonics up to half the sample rate. Note, however, that this setting may produce aliasing in the signal when the frequency is changing (no automatic modification of the number of harmonics is performed by the setFrequency() function).
Based on initial code of Robin Davies, 2005. Modified algorithm code by Gary Scavone, 2005.
Members: <i>(control
parameters)</i>
<b>.freq</b> - ( float , READ/WRITE ) - base frequency (hz)
<b>.harmonics</b> - ( int , READ/WRITE ) - number of harmonics in pass band
<b>.phase</b> - ( float , READ/WRITE ) - phase of the the signal
</reference>
</element>
</group>
<group name="stk - file i/o" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="WvIn">
<reference>STK audio data input base class.
This class provides input support for various audio file formats. It also serves as a base class for "realtime" streaming subclasses. WvIn loads the contents of an audio file for subsequent output. Linear interpolation is used for fractional "read rates".
WvIn supports multi-channel data in interleaved format. It is important to distinguish the tick() methods, which return samples produced by averaging across sample frames, from the tickFrame() methods, which return pointers to multi-channel sample frames. For single-channel data, these methods return equivalent values. Small files are completely read into local memory during instantiation. Large files are read incrementally from disk. The file size threshold and the increment size values are defined in WvIn.h.
<i>Members (control parameters):</i>
<b>.rate</b> - ( float , READ/WRITE ) - playback rate
<b>.path</b> - ( string , READ/WRITE ) - specifies file to be played
</reference>
</element>
<element pattern="WaveLoop">
<reference>STK waveform oscillator class.
This class inherits from WvIn and provides audio file looping functionality. WaveLoop supports multi-channel data in interleaved format. It is important to distinguish the tick() methods, which return samples produced by averaging across sample frames, from the tickFrame() methods, which return pointers to multi-channel sample frames. For single-channel data, these methods return equivalent values.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>.freq</b> - ( float , READ/WRITE ) - set frequency of playback ( loops / second )
<b>.addPhase</b> - ( float , READ/WRITE ) - offset by phase
<b>.addPhaseOffset</b> - ( float , READ/WRITE ) - set phase offset
</reference>
</element>
<element pattern="WvOut">
<reference>STK audio data output base class.
This class provides output support for various audio file formats. It also serves as a base class for "realtime" streaming subclasses.
WvOut writes samples to an audio file. It supports multi-channel data in interleaved format. It is important to distinguish the tick() methods, which output single samples to all channels in a sample frame, from the tickFrame() method, which takes a pointer to multi-channel sample frame data. Currently, WvOut is non-interpolating and the output rate is always Stk::sampleRate().
<i>Members (control parameters):</i>
<b>.matFilename</b> - ( string , WRITE only ) - open matlab file for writing
<b>.sndFilename</b> - ( string , WRITE only ) - open snd file for writing
<b>.wavFilename</b> - ( string , WRITE only ) - open WAVE file for writing
<b>.rawFilename</b> - ( string , WRITE only ) - open raw file for writing
<b>.aifFilename</b> - ( string , WRITE only ) - open AIFF file for writing
<b>.closeFile</b> - ( string , WRITE only ) - close file properly
</reference>
</element>
</group>
<element pattern="spork ~" highlight="ck-function" >
<autocomplete enable="1" />
<reference>Spork dynamically sporks shred from a function call.
Sporking a functions returns reference to the new shred.
</reference>
</element>
<group highlight="ck-function" >
<autocomplete append="()" backup_cursor="1" class="autocomplete_with_parentheses" />
<group name="std">
<element pattern="Std.abs">
<reference>int <b>abs</b> ( int <b>value</b> );
returns absolute value of integer</reference>
</element>
<element pattern="Std.fabs">
<reference>float <b>fabs</b> ( float <b>value</b> );
returns absolute value of floating point number</reference>
</element>
<element pattern="Std.rand">
<reference>int <b>rand</b> ( ); // soon-to-be-deprecated; use Math.random()
generates random integer</reference>
</element>
<element pattern="Std.rand2">
<reference>int <b>rand2</b> ( int <b>min</b>, int <b>max</b> ); // soon-to-be-deprecated; use Math.random2()
generates random integer in the range [min, max]</reference>
</element>
<element pattern="Std.randf">
<reference>float <b>randf</b> ( ); // soon-to-be-deprecated; use Math.randomf()
generates random floating point number in the range [-1, 1]</reference>
</element>
<element pattern="Std.rand2f">
<reference>float <b>rand2f</b> ( float <b>min</b>, float <b>max</b> ); // soon-to-be-deprecated; use
Math.random2f()
generates random floating point number in the range [min, max]</reference>
</element>
<element pattern="Std.sgn">
<reference>float <b>sgn</b> ( float <b>value</b> );
computes the sign of the input as -1.0 (negative), 0 (zero), or
1.0 (positive)</reference>
</element>
<element pattern="Std.system">
<reference>int <b>system</b> ( string <b>cmd</b> );
pass a command to be executed in the shell</reference>
</element>
<element pattern="Std.atoi">
<reference>int <b>atoi</b> ( string <b>value</b> );
converts ascii (string) to integer (int)</reference>
</element>
<element pattern="Std.atof">
<reference>float <b>atof</b> ( string <b>value</b> );
converts ascii (string) to floating point value (float)</reference>
</element>
<element pattern="Std.getenv">
<reference>string <b>getenv</b> ( string <b>key</b> );
returns the value of an environment variable, such as of "PATH"</reference>
</element>
<element pattern="Std.setenv">
<reference>int <b>setenv</b> ( string <b>key</b>, string <b>value</b> );
sets environment variable named 'key' to 'value'</reference>
</element>
<element pattern="Std.mtof">
<reference>float <b>mtof</b> ( float <b>value</b> );
converts a MIDI note number to frequency (Hz)
note the input value is of type 'float' (supports fractional note number)</reference>
</element>
<element pattern="Std.ftom">
<reference>float <b>ftom</b> ( float <b>value</b> );
converts frequency (Hz) to MIDI note number space</reference>
</element>
<element pattern="Std.powtodb">
<reference>float <b>powtodb</b> ( float <b>value</b> );
converts signal power ratio to decibels (dB)</reference>
</element>
<element pattern="Std.rmstodb">
<reference>float <b>rmstodb</b> ( float <b>value</b> );
converts linear amplitude to decibels (dB)</reference>
</element>
<element pattern="Std.dbtopow">
<reference>float <b>dbtopow</b> ( float <b>value</b> );
converts decibels (dB) to signal power ratio</reference>
</element>
<element pattern="Std.dbtorms">
<reference>float <b>dbtorms</b> ( float <b>value</b> );
converts decibles (dB) to linear amplitude</reference>
</element>
</group>
<group name="machine">
<element pattern="machine.add">
<reference>int <b>add</b> ( string <b>path</b> );
compile and spork a new shred from file at 'path' into the VM now returns the shred ID</reference>
</element>
<element pattern="machine.spork">
<reference>int <b>spork</b> ( string <b>path</b> );
same as add</reference>
</element>
<element pattern="machine.remove">
<reference>int <b>remove</b> ( int <b>id</b> );
remove shred from VM by shred ID (returned by add/spork)</reference>
</element>
<element pattern="machine.replace">
<reference>int <b>replace</b> ( int <b>id</b>, string <b>path</b> );
replace shred with new shred from file returns shred ID , or 0 on error </reference>
</element>
<element pattern="machine.status">
<reference>int <b>status</b> ( );
display current status of VM (see example/status.ck)</reference>
</element>
<element pattern="machine.crash">
<reference>void <b>crash</b> ( );
literally causes the VM to crash. the very last resort; use with care. Thanks.</reference>
</element>
</group>
<group name="math">
<element pattern="Math.sin">
<reference>float <b>sin</b> ( float <b>x</b> );
computes the sine of <b>x</b></reference>
</element>
<element pattern="Math.cos">
<reference>float <b>cos</b> ( float <b>x</b> );
computes the cosine of <b>x</b></reference>
</element>
<element pattern="Math.tan">
<reference>float <b>tan</b> ( float <b>x</b> );
computes the tangent of <b>x</b></reference>
</element>
<element pattern="Math.asin">
<reference>float <b>asin</b> ( float <b>x</b> );
computes the arc sine of <b>x</b></reference>
</element>
<element pattern="Math.acos">
<reference>float <b>acos</b> ( float <b>x</b> );
computes the arc cosine of <b>x</b></reference>
</element>
<element pattern="Math.atan">
<reference>float <b>atan</b> ( float <b>x</b> );
computes the arc tangent of <b>x</b></reference>
</element>
<element pattern="Math.atan2">
<reference>float <b>atan2</b> ( float <b>y</b>, float <b>x</b> );
computes the principal value of the arc tangent of
<b>y</b>/<b>x</b>, using the signs of both arguments to determine the quadrant of the
return value
</reference>
</element>
<element pattern="Math.sinh">
<reference>float <b>sinh</b> ( float <b>x</b> );
computes the hyperbolic sine of <b>x</b></reference>
</element>
<element pattern="Math.cosh">
<reference>float <b>cosh</b> ( float <b>x</b> );
computes the hyperbolic cosine of <b>x</b></reference>
</element>
<element pattern="Math.tanh">
<reference>float <b>tanh</b> ( float <b>x</b> );
computes the hyperbolic tangent of <b>x</b></reference>
</element>
<element pattern="Math.hypot">
<reference>float <b>hypot</b> ( float <b>x</b>, float <b>y</b> );
computes the euclidean distance of the orthogonal vectors (<b>x</b>,0)
and (0,<b>y</b>)</reference>
</element>
<element pattern="Math.pow">
<reference>float <b>pow</b> ( float <b>x</b>, float <b>y</b> );
computes <b>x</b> taken to the <b>y</b>-th power</reference>
</element>
<element pattern="Math.ensurePow2">
<reference>int Math.ensurePow2( int x ) - returns the next largest integer power of 2.</reference>
</element>
<element pattern="Math.sqrt">
<reference>float <b>sqrt</b> ( float <b>x</b> );
computes the nonnegative square root of <b>x</b> (x must
be >= 0)</reference>
</element>
<element pattern="Math.exp">
<reference>float <b>exp</b> ( float <b>x</b> );
computes e^<b>x</b>, the base-e exponential of <b>x</b></reference>
</element>
<element pattern="Math.log">
<reference>float <b>log</b> ( float <b>x</b> );
computes the natural logarithm of <b>x</b></reference>
</element>
<element pattern="Math.log2">
<reference>float <b>log2</b> ( float <b>x</b> );
computes the logarithm of <b>x</b> to base 2</reference>
</element>
<element pattern="Math.log10">
<reference>float <b>log10</b> ( float <b>x</b> );
computes the logarithm of <b>x</b> to base 10</reference>
</element>
<element pattern="Math.random">
<reference>int <b>random</b> ( );
generates random integer between 0 and Math.RANDOM_MAX>(NOTE: Math.random*() functions use a different,
superior random number generator than the Std.rand*() functions)</reference>
</element>
<element pattern="Math.random2">
<reference>int <b>random2</b> ( int <b>min</b>, int <b>max</b> );
generates random integer in the range [min, max]</reference>
</element>
<element pattern="Math.randomf">
<reference>float <b>randomf</b> ( );
generates random floating point number in the range [0, 1]
(NOTE: this is different semantics than Std.randf(), which has the range [-1,1])</reference>
</element>
<element pattern="Math.random2f">
<reference>float <b>random2f</b> ( float <b>min</b>, float <b>max</b> );
generates random floating point number in the range [min, max]</reference>
</element>
<element pattern="Math.floor">
<reference>float <b>floor</b> ( float <b>x</b> );
round to largest integral value (returned as float) not greater
than <b>x</b></reference>
</element>
<element pattern="Math.ceil">
<reference>float <b>ceil</b> ( float <b>x</b> );
round to smallest integral value (returned as float) not less
than <b>x</b></reference>
</element>
<element pattern="Math.round">
<reference>float <b>round</b> ( float <b>x</b> );
round to nearest integral value (returned as float)</reference>
</element>
<element pattern="Math.trunc">
<reference>float <b>trunc</b> ( float <b>x</b> );
round to largest integral value (returned as float) no greater in
magnitude than <b>x</b></reference>
</element>
<element pattern="Math.fmod">
<reference>float <b>fmod</b> ( float <b>x</b>, float <b>y</b> );
computes the floating point remainder of <b>x</b> / <b>y</b></reference>
</element>
<element pattern="Math.remainder">
<reference>float <b>remainder</b> ( float <b>x</b>, float <b>y</b> );
computes the value r such that r = <b>x</b> - n * <b>y</b>, where n is the integer nearest the exact value of <b>x</b> / <b>y</b>. If there are two integers closest to <b>x</b> / <b>y</b>, n shall be the even one. If r is zero, it is given the same sign as <b>x</b></reference>
</element>
<element pattern="Math.min">
<reference>float <b>min</b> ( float <b>x</b>, float <b>y</b> );
choose lesser of two values</reference>
</element>
<element pattern="Math.max">
<reference>float <b>max</b> ( float <b>x</b>, float <b>y</b> );
choose greater of two values</reference>
</element>
<element pattern="Math.nextpow2">
<reference>int <b>nextpow2</b> ( int <b>x</b> );
computes the integeral (returned as int) smallest power of 2 greater than the value of <b>x</b></reference>
</element>
<element pattern="Math.isinf">
<reference>float <b>isinf</b> ( float <b>x</b> );
tests if <b>x</b> is infinity</reference>
</element>
<element pattern="Math.isnan">
<reference>float <b>isnan</b> ( float <b>x</b> );
tests if <b>x</b> "is not a number"</reference>
</element>
</group>
</group>
<group highlight="ck-variable">
<element pattern="now">
<reference>The keyword now is the key to reasoning about and controlling time in ChucK.
Some properties of now include:
now is a special variable of type time.
now holds the current ChucK time (when read).
modifying now has the side effects of:
advancing time;
suspending the current process (called shred) until the desired time is reached - allowing other shreds and audio synthesis to compute;
the value of now only changes when it is explicitly modified. </reference>
</element>
</group>
<group highlight="ck-type">
<element pattern="int">
<reference>integer (signed)</reference>
</element>
<element pattern="float">
<reference>floating point number (in ChucK, a float is by default double-precision)</reference>
</element>
<element pattern="time">
<reference>ChucKian time</reference>
</element>
<element pattern="dur">
<reference>ChucKian duration</reference>
</element>
<element pattern="void">
<reference>(no type)</reference>
</element>
<element pattern="complex">
<reference>complex number in rectangular form a + bi
The (floating point) real and imaginary parts of a complex number can be accessed with the .re and .im components of a complex number:
#(2.0,3.5) => complex cmp;
cmp.re => float x; // x is 2.0
cmp.im => float y; //y is 3.5</reference>
</element>
<element pattern="polar">
<reference>complex number in polar form
The polar type offers an equivalent, alternative representation of complex numbers in terms of a magnitude and phase value.
A polar representation of a complex number can be declared as:
%(2, .5*pi) => polar pol; // pol is 2∠.5π
The magnitude and phase values can be accessed via .mag and .phase:
%(2, .5*pi) => polar pol;
pol.mag => float m; // m is 2
pol.phase => float p; //p is .5π</reference>
</element>
<element pattern="string">
<reference>string (of characters)</reference>
</element>
<element pattern="Object">
<reference></reference>
</element>
<element pattern="Event">
<reference></reference>
</element>
<element pattern="array">
<reference>N-dimensional ordered set of data (of the same type)</reference>
</element>
<element pattern="UGen">
<reference>extendable unit generator base class</reference>
</element>
<element pattern="Shred">
<reference>
// spork a new shred to start running from go(),
// store reference to new shred in offspring
spork ~ go() => Shred @ offspring;</reference>
</element>
</group>
<group name="constant" highlight="special-value">
<autocomplete enable="1" />
<element pattern="Math.PI">
<reference>float <b>PI</b>;
constant PI; use as: Math.PI</reference>
</element>
<element pattern="Math.TWO_PI">
<reference>float <b>TWO_PI</b>;
constant PI*2; example usage: Math.TWO_PI</reference>
</element>
<element pattern="Math.e">
<reference>float <b>e</b>; // same as: E
Euler's constant, base of natural logarithm; same as Math.exp(1); use as: Math.e or Math.E</reference>
</element>
<element pattern="Math.j">
<reference>complex <b>i</b>; // same as: j, I, or J
the imaginary number 'i' as a complex value; use as: Math.i or Math.j or Math.I or Math.J</reference>
</element>
<element pattern="Math.RANDOM_MAX">
<reference>int <b>RANDOM_MAX</b>;
max value returned by Math.random()
(NOTE: not to be confused with Std.rand*)</reference>
</element>
<element pattern="Math.INFINITY">
<reference>float Math.INFINITY -constant representing infinity
</reference>
</element>
<element pattern="Math.FLOAT_MAX">
<reference>float Math.FLOAT_MAX -constant set to the largest possible value a float can have.
</reference>
</element>
<element pattern="Math.FLOAT_MIN_MAG">
<reference>float Math.FLOAT_MIN_MAG - constant set to the smallest positive value a float can have
</reference>
</element>
<element pattern="Math.INT_MAX">
<reference>int Math.INT_MAX -constant set to the largest value a integer can have
</reference>
</element>
</group>
<group highlight="keyword">
<autocomplete enable="1" />
<element pattern="if"/>
<element pattern="else"/>
<element pattern="while"/>
<element pattern="do"/>
<element pattern="until"/>
<element pattern="for"/>
<element pattern="break"/>
<element pattern="function" />
<element pattern="fun" />
<element pattern="me">
<reference>The me keyword (type Shred) refers the current shred.
Sometimes it is useful to suspend the current shred without advancing time, and give other shreds shreduled for the current time a chance to execute. me.yield() does exactly that. This is often useful immediately after sporking a new shred, when you would like for the new shred to have a chance to run but you do not want to advance time yet for yourself.</reference>
</element>
<element pattern="new" />
</group>
<group highlight="ck-operator">
<element pattern="=>">
<reference>foundational ChucK operator
=> connects two unit generators:
SinOsc b => Gain g => BiQuad f => dac;
=> does assignment on primitive types (int, float, dur, time):
4 + foo => int bar;
=> chuck values to a function == function call
( 30, 1000 ) => Math.rand2f;
</reference>
</element>
<element pattern="@=>">
<reference>explicit assignment ChucK operator
@=> can be used for reference assignments of objects,classes,arrays.
reference assign moe to larry, such that both moe and larry reference the same object:
Object moe @=> Object @ larry;
array initialization:
[ 1, 2 ] @=> int ar[];
using new:
new Object @=> moe;
</reference>
</element>
<element pattern="+=>">
<reference>add 4 to foo and assign result to foo
4 +=> foo;</reference>
</element>
<element pattern="-=>">
<reference>subtract 10 from foo and assign result to foo
remember this is (foo-10), not (10-foo)
10 -=> foo;</reference>
</element>
<element pattern="*=>">
<reference>2 times foo assign result to foo
2 *=> foo;</reference>
</element>
<element pattern="/=>">
<reference>divide 4 into foo and assign result to foo
again remember this is (foo/4), not (4/foo)
4 /=> foo;</reference>
</element>
<element pattern="%=>">
<reference>mod foo by T and assign result to foo
T %=> foo;</reference>
</element>
<element pattern="&=>">
<reference>bitwise AND 0xff and bar and assign result to bar
0xff &=> bar;</reference>
</element>
<element pattern="|=>">
<reference>bitwise OR 0xff and bar and assign result to bar
0xff |=> bar;</reference>
</element>
</group>
<group highlight="unit">
<autocomplete enable="1" />
<element pattern="samp">
<reference>duration of 1 sample in ChucK time</reference>
</element>
<element pattern="ms">
<reference>duration of 1 millisecond</reference>
</element>
<element pattern="second">
<reference>duration of 1 second</reference>
</element>
<element pattern="minute">
<reference>duration of 1 minute</reference>
</element>
<element pattern="hour">
<reference>duration of 1 hour</reference>
</element>
<element pattern="day">
<reference>duration of 1 day</reference>
</element>
<element pattern="week">
<reference>duration of 1 week</reference>
</element>
</group>
<group name="control parameters" highlight="ck-attribute">
<autocomplete enable="1" />
<element pattern=".a" />
<element pattern=".addPhase" />
<element pattern=".addPhaseOffset" />
<element pattern=".addr" />
<element pattern=".adsrTarget" />
<element pattern=".afterTouch" />
<element pattern=".aifFilename" />
<element pattern=".allpass" />
<element pattern=".aperture" />
<element pattern=".attackRate" />
<element pattern=".attackTime" />
<element pattern=".b" />
<element pattern=".baseLoopGain" />
<element pattern=".bi" />
<element pattern=".blackmanHarris" />
<element pattern=".blockZero" />
<element pattern=".blowPosition" />
<element pattern=".bodySize" />
<element pattern=".bowMotion" />
<element pattern=".bowPosition" />
<element pattern=".bowPressure" />
<element pattern=".bowRate" />
<element pattern=".chan" />
<element pattern=".channel" />
<element pattern=".channels" />
<element pattern=".chunks" />
<element pattern=".clear" />
<element pattern=".closeFile" />
<element pattern=".coefs" />
<element pattern=".compress" />
<element pattern=".compute" />
<element pattern=".controlChange" />
<element pattern=".controlOne" />
<element pattern=".controlTwo" />
<element pattern=".cval" />
<element pattern=".cvals" />
<element pattern=".damp" />
<element pattern=".decay" />
<element pattern=".decayRate" />
<element pattern=".decayTime" />
<element pattern=".delay" />
<element pattern=".directGain" />
<element pattern=".duck" />
<element pattern=".duration" />
<element pattern=".endReflection" />
<element pattern=".energy" />
<element pattern=".eqzs" />
<element pattern=".expand" />
<element pattern=".externalSideInput" />
<element pattern=".feedback" />
<element pattern=".filterQ" />
<element pattern=".filterSweepRate" />
<element pattern=".freq" />
<element pattern=".fval" />
<element pattern=".fvals" />
<element pattern=".gain" />
<element pattern=".gate" />
<element pattern=".getVoice" />
<element pattern=".hamming" />
<element pattern=".hann" />
<element pattern=".harmonics" />
<element pattern=".integrationConstant" />
<element pattern=".interp" />
<element pattern=".jetDelay" />
<element pattern=".jetReflection" />
<element pattern=".keyOff" />
<element pattern=".keyOn" />
<element pattern=".left" />
<element pattern=".length" />
<element pattern=".lfoDepth" />
<element pattern=".lfoSpeed" />
<element pattern=".limit" />
<element pattern=".lip" />
<element pattern=".lookup" />
<element pattern=".loop" />
<element pattern=".loopEnd" />
<element pattern=".loopEndRec" />
<element pattern=".loopRec" />
<element pattern=".loopStart" />
<element pattern=".loudness" />
<element pattern=".masterGain" />
<element pattern=".matFilename" />
<element pattern=".max" />
<element pattern=".maxVoices" />
<element pattern=".mix" />
<element pattern=".modDepth" />
<element pattern=".mode" />
<element pattern=".modeGain" />
<element pattern=".modeRadius" />
<element pattern=".modeRatio" />
<element pattern=".modesGain" />
<element pattern=".modFreq" />
<element pattern=".name" />
<element pattern=".next" />
<element pattern=".noiseGain" />
<element pattern=".norm" />
<element pattern=".noteOff" />
<element pattern=".noteOn" />
<element pattern=".objects" />
<element pattern=".pan" />
<element pattern=".path" />
<element pattern=".percent" />
<element pattern=".pfreq" />
<element pattern=".phase" />
<element pattern=".phaseOffset" />
<element pattern=".phoneme" />
<element pattern=".phonemeNum" />
<element pattern=".pickupPosition" />
<element pattern=".pitchSweepRate" />
<element pattern=".play" />
<element pattern=".playPos" />
<element pattern=".pluck" />
<element pattern=".pluckPos" />
<element pattern=".pole" />
<element pattern=".port" />
<element pattern=".pos" />
<element pattern=".prad" />
<element pattern=".preset" />
<element pattern=".pressure" />
<element pattern=".Q" />
<element pattern=".quiet" />
<element pattern=".radius" />
<element pattern=".rampDown" />
<element pattern=".rampUp" />
<element pattern=".randomGain" />
<element pattern=".rate" />
<element pattern=".ratio" />
<element pattern=".rawFilename" />
<element pattern=".read" />
<element pattern=".record" />
<element pattern=".recPos" />
<element pattern=".recRamp" />
<element pattern=".rectangle" />
<element pattern=".reed" />
<element pattern=".releaseRate" />
<element pattern=".releaseTime" />
<element pattern=".reset" />
<element pattern=".right" />
<element pattern=".samples" />
<element pattern=".set" />
<element pattern=".sfreq" />
<element pattern=".shift" />
<element pattern=".sideInput" />
<element pattern=".size" />
<element pattern=".slide" />
<element pattern=".slopeAbove" />
<element pattern=".slopeBelow" />
<element pattern=".sndFilename" />
<element pattern=".speak" />
<element pattern=".spectralTilt" />
<element pattern=".spectrum" />
<element pattern=".startBlowing" />
<element pattern=".startBowing" />
<element pattern=".state" />
<element pattern=".stickHardness" />
<element pattern=".stiffness" />
<element pattern=".stopBlowing" />
<element pattern=".stopBowing" />
<element pattern=".stretch" />
<element pattern=".strike" />
<element pattern=".strikePosition" />
<element pattern=".stringDamping" />
<element pattern=".stringDetune" />
<element pattern=".sustain" />
<element pattern=".sustainLevel" />
<element pattern=".sync" />
<element pattern=".target" />
<element pattern=".thresh" />
<element pattern=".time" />
<element pattern=".tonehole" />
<element pattern=".track" />
<element pattern=".transform" />
<element pattern=".triangle" />
<element pattern=".unVoiced" />
<element pattern=".upchuck" />
<element pattern=".value" />
<element pattern=".valueAt" />
<element pattern=".vent" />
<element pattern=".vibratoFreq" />
<element pattern=".vibratoGain" />
<element pattern=".vibratoRate" />
<element pattern=".voiced" />
<element pattern=".voiceGain" />
<element pattern=".voiceMix" />
<element pattern=".volume" />
<element pattern=".vowel" />
<element pattern=".wavFilename" />
<element pattern=".when" />
<element pattern=".width" />
<element pattern=".window" />
<element pattern=".windowSize" />
<element pattern=".write" />
<element pattern=".zero" />
<element pattern=".zfreq" />
<element pattern=".zrad" />
</group>
<element pattern="<<<" highlight="keyword">
<context symbols="\> " highlight="string">
<element pattern="\\." is_regex="1" highlight="string"/>
<element pattern="( | | |>>>)" is_regex="1" highlight="keyword" ends_context="1" />
</context>
</element>
<element pattern=""" highlight="string">
<context symbols="\"" highlight="string">
<element pattern="\\." is_regex="1" highlight="string"/>
<element pattern=""" highlight="string" ends_context="1" />
</context>
</element>
<element pattern="'" highlight="string">
<context symbols="\'" highlight="string">
<element pattern="\\." is_regex="1" highlight="string"/>
<element pattern="'" highlight="string" ends_context="1" />
</context>
</element>
<element pattern="[0-9.]+" is_regex="1" highlight="value"/>
<element id="e.lcomment" pattern="/*" starts_block="1" highlight="comment" block_name="C style comment">
<context symbols="*/	 " highlight="comment" >
<element pattern="/*" highlight="error"/>
<element pattern="*/" ends_block="1" blockstartelement="e.lcomment" highlight="comment" ends_context="1" />
</context>
</element>
<element pattern="//" highlight="comment">
<context symbols=" " highlight="comment">
<element pattern="( | | )" is_regex="1" ends_context="1" />
</context>
</element>
<element pattern="#" highlight="comment">
<context symbols=" " highlight="comment">
<element pattern="( | | )" is_regex="1" ends_context="1" />
</context>
</element>
</context>
</definition>
</bflang>
|