This file is indexed.

/usr/share/bluefish/bflang/chuck.bflang2 is in bluefish-data 2.2.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
<?xml version="1.0"?>
<!--
		Bluefish HTML Editor
		ChucK.bflang2 $Revision: 8559 $

		Copyright (C) 2013 Olivier Sessink

	    This program is free software: you can redistribute it and/or modify
		it under the terms of the GNU General Public License as published by
		the Free Software Foundation, either version 3 of the License, or
		(at your option) any later version.

		This program is distributed in the hope that it will be useful,
		but WITHOUT ANY WARRANTY; without even the implied warranty of
		MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
		GNU General Public License for more details.

		You should have received a copy of the GNU General Public License
		along with this program.  If not, see <http://www.gnu.org/licenses/>.
-->

<bflang name="Chuck" version="3" contexts="8" matches="419">
<header>
	<mime type="text/x-Chuck"/>
	<mime type="text/plain?ck"/>
	<option name="load_reference" default="1"/>
	<option name="load_completion" default="1"/>
	<option name="show_in_menu" default="0"/>
	<option name="Parentheses block_foldable" default="0" description="Allow folding of Parentheses block"/>
	<highlight name="keyword" style="keyword" />
	<highlight name="ck-keyword" style="special-keyword" />
	<highlight name="ck-function" style="function" />
	<highlight name="ck-variable" style="variable" />
	<highlight name="error" style="warning" />
	<highlight name="brackets" style="brackets" />
	<highlight name="ck-type" style="type" />
	<highlight name="ck-operator" style="operator" />
	<highlight name="comment" style="comment" />
	<highlight name="string" style="string" />
	<highlight name="value" style="value" />
	<highlight name="ck-attribute" style="attribute" />
	<highlight name="unit" style="special-value" />
</header>
<properties>
	<comment type="block" start="/*" end="*/" />
	<comment type="line" start="//" />
	<comment type="line" start="#" />
	<smartindent characters="{" />
	<smartoutdent characters="}" />
</properties>

<definition>
<context symbols=". ;(){}[]:\&#34;\\',&gt;&lt;*&amp;^%!+=-|/?#&#9;&#10;&#13;">

<group name="basic UAna objects" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="UAna">
	<reference>Unit Analyzer base class
    Base class from which all unit analyzers (UAnae) inherit;
    UAnae (note plural form) can be interconnected via =&gt;
    (standard chuck operator) or via =^ (upchuck operator),
    specify the the types of and when data is passed between
    UAnae and UGens.  When .upchuck() is invoked on a given
    UAna, the UAna-chain (UAnae connected via =^) is traversed
    backwards from the upchucked UAna, and analysis is performed
    at each UAna along the chain; the updated analysis results
    are stored in UAnaBlobs.  Please see UAna documentation
    in the language specification.
<i>Members (control parameters):</i>
UAnaBlob <b>.upchuck()</b> - initiate analysis at the UAna; returns result.
	</reference>
</element>
<element pattern="UAnaBlob">
	<reference>Unit Analyzer blob for contain of data
    This object contains results associated with UAna analysis.
    There is a UAnaBlob associated with every UAna.  As a UAna
    is upchucked, the result is stored in the UAnaBlob's floating
    point vector and/or complex vector.  The intended interpretation
    of the results depends on the specific UAna.
<i>Members (control parameters):</i>
float <b>.fval( </b>int index<b> )</b> - get blob's float value at index
complex <b>.cval( </b>int index<b> )</b> - get blob's complex value at index
float[] <b>.fvals()</b> - get blob's float array
complex[] <b>.cvals()</b> - get blob's complex array
time <b>.when()</b> - get the time when blob was last upchucked
	</reference>
</element>
<element pattern="Windowing">
	<reference>Helper class for generating transform windows
    This class contains static methods for generating common
    transform windows for use with FFT/IFFT.  The windows are
    returned in a static array associated with the Windowing
    class (note: do not use the returned array for anything
    other than reading/setting windows in FFT/IFFT).
<i>Members (control parameters):</i>
float[] <b>.rectangle( </b>int lenght<b> )</b> - generate a rectangular window
float[] <b>.triangle( </b>int lenght<b> )</b> - generate a triangular (or Barlett) window
float[] <b>.hann( </b>int lenght<b> )</b> - generate a Hann window
float[] <b>.hamming( </b>int lenght<b> )</b> - generate a Hamming window
float[] <b>.blackmanHarris( </b>int lenght<b> )</b> - generate a blackmanHarris window
	</reference>
</element>
</group>
<group name="domain transformations" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="FFT">
	<reference>Fast Fourier Transform
    This UAna computes the Fast Fourier Transform on incoming
    audio samples, and outputs the result via its UAnaBlob as
    both the complex spectrum and the magnitude spectrum.  A
    buffering mechanism maintains the previous FFTsize # of
    samples, allowing FFT's to be taken at any point in time,
    on demand (via .upchuck() or by upchucking a downstream UAna.
    The window size (along with an arbitry window shape) is
    controlled via the .window method. The hop size is complete
    dynamic, and is throttled by how time is advanced.
extends UAna
<i>Members (control parameters):</i>
  <b>.size</b> - ( float, READ/WRITE ) - get/set the FFT size
  <b>.window</b>() - ( float[], READ/WRITE ) - get/set the transform window/size (also see AAA Windowing)
  <b>.windowSize</b> - ( int, READ only ) - get the current window size
  <b>.transform</b> - ( float[], WRITE only ) - <b>manually</b> take FFT (as opposed to using .upchuck() / upchuck operator)
  <b>.spectrum</b> - ( complex[], READ only ) - <b>manually</b> retrieve the results of a transform <i>(UAna input/output)</i>
	<b>input</b>: audio samples from an incoming UGen
	<b>output</b>: spectrum in complex array; magnitude spectrum in float array
	</reference>
</element>
<element pattern="IFFT">
	<reference>Inverse Fast Fourier Transform
    This UAna computes the inverse Fast Fourier Transform on
    incoming spectral frames (on demand), and overlap-adds the
    results into its internal buffer, ready to be sent to
    other UGen's connected via =&gt;.  The window size
    (along with an arbitry window shape) is controlled via the
    .window method.
extends UAna
<i>Members (control parameters):</i>
  <b>.size</b> - ( float, READ/WRITE ) - get/set the IFFT size
  <b>.window</b>() - ( float[], READ/WRITE ) - get/set the transform window/size (also see AAA Windowing)
  <b>.windowSize</b> - ( int, READ only ) - get the current window size
  <b>.transform</b> - ( complex[], WRITE only ) - <b>manually</b> take IFFT (as opposed to using .upchuck() / upchuck operator)
  <b>.samples</b> - ( float[], READ only ) - <b>manually</b> retrieve the result of the previous IFFT <i>(UAna input/output)</i>
	<b>input</b>: complex spectral frames (either via UAnae connected via =^, or manullay via .transform())
	<b>output</b>: audio samples (overlap-added and streamed out to UGens connected via =&gt;)
	</reference>
</element>
<element pattern="DCT">
	<reference>Discrete Cosine Transform
    This UAna computes the Discrete Cosine Transform on incoming
    audio samples, and outputs the result via its UAnaBlob as
    real values in the D.C. spectrum.  A
    buffering mechanism maintains the previous DCT size # of
    samples, allowing DCT to be taken at any point in time,
    on demand (via .upchuck() or by upchucking a downstream UAna.
    The window size (along with an arbitry window shape) is
    controlled via the .window method. The hop size is complete
    dynamic, and is throttled by how time is advanced.
extends UAna
<i>Members (control parameters):</i>
  <b>.size</b> - ( float, READ/WRITE ) - get/set the DCT size
  <b>.window</b>() - ( float[], READ/WRITE ) - get/set the transform window/size (also see AAA Windowing)
  <b>.windowSize</b> - ( int, READ only ) - get the current window size
  <b>.transform</b> - ( float[], WRITE ) - <b>manually</b> take DCT (as opposed to using .upchuck() / upchuck operator)
  <b>.spectrum</b> - ( float[], READ only ) - <b>manually</b> retrieve the results of a transform <i>(UAna input/output)</i>
	<b>input</b>: audio samples (either via UAnae connected via =^, or manullay via .transform())
	<b>output</b>: discrete cosine spectrum
	</reference>
</element>
<element pattern="IDCT">
	<reference>Inverse Discrete Cosine Transform
    This UAna computes the inverse Discrete Cosine Transform on
    incoming spectral frames (on demand), and overlap-adds the
    results into its internal buffer, ready to be sent to
    other UGen's connected via =&gt;.  The window size
    (along with an arbitry window shape) is controlled via the
    .window method.
extends UAna
<i>Members (control parameters):</i>
  <b>.size</b> - ( float, READ/WRITE ) - get/set the IDCT size
  <b>.window</b>() - ( float[], READ/WRITE ) - get/set the transform window/size (also see AAA Windowing)
  <b>.windowSize</b> - ( int, READ only ) - get the current window size
  <b>.transform</b> - ( float[], WRITE ) - <b>manually</b> take IDCT (as opposed to using .upchuck() / upchuck operator)
  <b>.samples</b> - ( float[], WRITE ) - <b>manually</b> get result of previous IDCT <i>(UAna input/output)</i>
	<b>input</b>: real-valued spectral frames (either via UAnae connected via =^, or manullay via .transform())
	<b>output</b>: audio samples (overlap-added and streamed out to UGens connected via =&gt;)
	</reference>
</element>
</group>
<group name="feature extractors" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Centroid">
	<reference>Spectral Centroid
    This UAna computes the spectral centroid from a magnitude
    spectrum (either from incoming UAna or manually given),
    and outputs one value in its blob.
extends UAna
<i>Members (control parameters):</i>
float <b>.compute( </b>float[]<b> )</b> - <b>manually</b> computes the centroid from a float array <i>(UAna input/output)</i>
	<b>input</b>: complex spectral frames (e.g., via UAnae connected via =^)
	<b>output</b>: the computed Centroid value is stored in the blob's floating point vector, accessible via .fval(0).  This is a normalized value in the range [0,1), mapped to the frequency range 0Hz to Nyquist
	</reference>
</element>
<element pattern="Flux">
	<reference>Spectral Flux
    This UAna computes the spectral flux between successive
    magnitude spectra (via incoming UAna, or given manually),
    and outputs one value in its blob.
extends UAna
<i>Members (control parameters):</i>
void <b>.reset( )</b> - reset the extractor
float <b>.compute( </b>float[] f1, float[] f2<b> )</b> - <b>manually</b> computes the flux between two frames
float <b>.compute( </b>float[] f1, float[] f2, float[] diff<b> )</b> - <b>manually</b> computes the flux between two
frames, and stores the difference in a third array <i>(UAna input/output)</i>
	<b>input</b>: complex spectral frames (e.g., via UAnae connected via =^)
	<b>output</b>: the computed Flux value is stored in the blob's floating point vector, accessible via .fval(0)
	</reference>
</element>
<element pattern="RMS">
	<reference>Spectral RMS
    This UAna computes the RMS power mean from a magnitude
    spectrum (either from an incoming UAna, or given manually),
    and outputs one value in its blob.
extends UAna
<i>Members (control parameters):</i>
float <b>.compute( </b>float[]<b> )</b> - <b>manually</b> computes the RMS from a float array <i>(UAna input/output)</i>
	<b>input</b>: complex spectral frames (e.g., via UAnae connected via =^)
	<b>output</b>: the computed RMS value is stored in the blob's floating point vector, accessible via .fval(0)
	</reference>
</element>
<element pattern="RollOff">
	<reference>Spectral RollOff
    This UAna computes the spectral rolloff from a magnitude
    spectrum (either from incoming UAna, or given manually),
    and outputs one value in its blob.
extends UAna
<i>Members (control parameters):</i>
float <b>.percent( </b>float val<b>)</b> - set the percentage for computing rolloff
float <b>.percent( )</b> - get the percentage specified for the rolloff
float <b>.compute( </b>float[]<b> )</b> - <b>manually</b> computes the rolloff from a float array <i>(UAna input/output)</i>
	<b>input</b>: complex spectral frames (e.g., via UAnae connected via =^)
	<b>output</b>: the computed rolloff value is stored in the blob's floating point vector, accessible via .fval(0). This is a normalized
value in the range [0,1), mapped to the frequency range 0 to nyquist frequency.
	</reference>
</element>
</group>
<group name="audio output" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="dac">
	<reference>digital/analog converter
 abstraction for underlying audio output device
<i>Members (control parameters):</i>
  <b>.left</b> - ( UGen ) - input to left channel
  <b>.right</b> - ( UGen ) - input to right channel
  <b>.chan( int n )</b> - ( UGen ) - returns nth channel (all UGens have this function)
	</reference>
</element>
<element pattern="adc">
	<reference>analog/digital converter
 abstraction for underlying audio input device
<i>Members (control parameters):</i>
  <b>.left</b> - ( UGen ) - output of left channel
  <b>.right</b> - ( UGen ) - output of right channel
  <b>.chan( int n )</b> - ( UGen ) - returns nth channel (all UGens have this function)
	</reference>
</element>
<element pattern="blackhole">
	<reference>sample rate sample sucker
 ( like dac, ticks ugens, but no more )
	</reference>
</element>
<element pattern="Gain">
	<reference>gain control
 (NOTE - all unit generators can themselves change their gain)
 (this is a way to add N outputs together and scale them)
<i>Members (control parameters):</i>
  <b>.gain</b> - ( float , READ/WRITE ) - set gain ( all ugen's have this )
 Noise n => Gain g => dac;
 SinOsc s => g;
 .3 => g.gain;
 while( true ) { 100::ms => now; }
	</reference>
</element>
</group>
<group name="wave forms" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Noise">
	<reference>white noise generator
	</reference>
</element>
<element pattern="Impulse">
	<reference>pulse generator - can set the value of the current sample
 default for each sample is 0 if not set
<i>Members (control parameters):</i>
  <b>.next</b> - ( float , READ/WRITE ) - set
value of next sample to be generated.  (note: if you are using
the <b>UGen.last</b> method to read the output of the impulse, the
value set by <b>Impulse.next</b> does not appear as the output until
after the next sample boundary. In this case, there is a
consistent 1::samp offset between setting .next and reading
that value using .last)
 Impulse i => dac;
 while( true ) {
    1.0 => i.next;
    100::ms => now;
 }
	</reference>
</element>
<element pattern="Step">
	<reference>step generator - like Impulse, but once a value is set,
 it is held for all following samples, until value is set again
<i>Members (control parameters):</i>
  <b>.next</b> - ( float , READ/WRITE ) - set the step value
 Step s => dac;
 -1.0 => float amp;
 // square wave using Step
 while( true ) {
     -amp => amp => s.next;
     800::samp => now;
 }
	</reference>
</element>
</group>
<group name="basic signal processing" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="HalfRect">
	<reference>half wave rectifier
 for half-wave rectification.
	</reference>
</element>
<element pattern="FullRect">
	<reference>full wave rectifier
	</reference>
</element>
<element pattern="ZeroX">
	<reference>zero crossing detector
 emits a single pulse at the the zero crossing in the direction of the zero crossing.
	</reference>
</element>
</group>
<group name="filters" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="BiQuad">
	<reference>STK biquad (two-pole, two-zero) filter class.
    This protected Filter subclass implements a two-pole, two-zero digital filter.  A method is provided for creating a resonance in the frequency response while maintaining a constant filter gain.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.b2</b> - ( float , READ/WRITE ) - b2 coefficient
  <b>.b1</b> - ( float , READ/WRITE ) - b1 coefficient
  <b>.b0</b> - ( float , READ/WRITE ) - b0 coefficient
  <b>.a2</b> - ( float , READ/WRITE ) - a2 coefficient
  <b>.a1</b> - ( float , READ/WRITE ) - a1 coefficient
  <b>.a0</b> - ( float , READ only ) - a0 coefficient
  <b>.pfreq</b> - ( float , READ/WRITE) - set resonance frequency (poles)
  <b>.prad</b> - ( float , READ/WRITE ) - pole radius (less than 1 to be stable)
  <b>.zfreq</b> - ( float , READ/WRITE ) - notch frequency
  <b>.zrad</b> - ( float , READ/WRITE ) - zero radius
  <b>.norm</b> - ( float , READ/WRITE ) - normalization
  <b>.eqzs</b> - ( float , READ/WRITE ) - equal gain zeroes
	</reference>
</element>
<element pattern="Filter">
	<reference>STK filter class.
    This class implements a generic structure which can be used to create a wide range of filters.
    It can function independently or be subclassed to provide more specific controls based on a particular filter type.
    In particular, this class implements the standard difference equation:
    a[0]*y[n] = b[0]*x[n] + ... + b[nb]*x[n-nb] -  a[1]*y[n-1] - ... - a[na]*y[n-na]
    If a[0] is not equal to 1, the filter coeffcients are normalized by a[0].
    The \e gain parameter is applied at the filter input and does not affect the coefficient values.
    The default gain value is 1.0.  This structure results in one extra multiply per computed sample, but allows easy control of the overall filter gain.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.coefs</b> - ( string , WRITE only ) -
	</reference>
</element>
<element pattern="OnePole">
	<reference>STK one-pole filter class.
    This protected Filter subclass implements a one-pole digital filter.  A method is provided for setting the pole position along the real axis of the z-plane while maintaining a constant peak filter gain.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.a1</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.pole</b> - ( float , READ/WRITE ) - set pole position along real axis of z-plane
	</reference>
</element>
<element pattern="TwoPole">
	<reference>STK two-pole filter class.
    This protected Filter subclass implements a two-pole digital filter.  A method is provided for creating a resonance in the frequency response while maintaining a nearly constant filter gain.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.a1</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.a2</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.freq</b> - ( float , READ/WRITE ) - filter resonance frequency
  <b>.radius</b> - ( float , READ/WRITE ) - filter resonance radius
  <b>.norm</b> - ( int , READ/WRITE ) - toggle filter normalization
	</reference>
</element>
<element pattern="OneZero">
	<reference>STK one-zero filter class.
    This protected Filter subclass implements a one-zero digital filter.  A method is provided for setting the zero position along the real axis of the z-plane while maintaining a constant filter gain.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.zero</b> - ( float , READ/WRITE ) - set zero position
  <b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.b1</b> - ( float , READ/WRITE ) - filter coefficient
	</reference>
</element>
<element pattern="TwoZero">
	<reference>STK two-zero filter class.
    This protected Filter subclass implements a two-zero digital filter.  A method is provided for creating a "notch" in the frequency response while maintaining a constant filter gain.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.b1</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.b2</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.freq</b> - ( float , READ/WRITE ) - filter notch frequency
  <b>.radius</b> - ( float , READ/WRITE ) - filter notch radius
	</reference>
</element>
<element pattern="PoleZero">
	<reference>STK one-pole, one-zero filter class.
    This protected Filter subclass implements a one-pole, one-zero digital filter.  A method is provided for creating an allpass filter with a given coefficient.  Another method is provided to create a DC blocking filter.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.a1</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.b0</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.b1</b> - ( float , READ/WRITE ) - filter coefficient
  <b>.blockZero</b> - ( float , READ/WRITE ) - DC blocking filter with given pole position
  <b>.allpass</b> - ( float , READ/WRITE ) - allpass filter with given coefficient
	</reference>
</element>
<element pattern="LPF">
	<reference>resonant low pass filter.
    Resonant low pass filter.  2nd order Butterworth.
    (In the future, this class may be expanded so that order and type of filter can be set).
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - cutoff frequency
  <b>.Q</b> - ( float , READ/WRITE ) - resonance (default is 1)
  <b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
	</reference>
</element>
<element pattern="HPF">
	<reference>resonant high pass filter.
    Resonant high pass filter.  2nd order Butterworth.
    (In the future, this class may be expanded so that order and type of filter can be set).
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - cutoff frequency
  <b>.Q</b> - ( float , READ/WRITE ) - resonance (default is 1)
  <b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
	</reference>
</element>
<element pattern="BPF">
	<reference>band pass filter.
    Band pass filter.  2nd order Butterworth.
    (In the future, this class may be expanded so that order and type of filter can be set).
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - center frequency
  <b>.Q</b> - ( float , READ/WRITE ) - Q (quality)
  <b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
	</reference>
</element>
<element pattern="BRF">
	<reference>band reject filter.
    Band reject filter.  2nd order Butterworth.
    (In the future, this class may be expanded so that order and type of filter can be set).
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - center frequency
  <b>.Q</b> - ( float , READ/WRITE ) - Q (quality)
  <b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
	</reference>
</element>
<element pattern="ResonZ">
	<reference>resonance filter
    Resonance filter.  BiQuad with equal-gain zeros.
    keeps gain under control independent of frequency.
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - center frequency
  <b>.Q</b> - ( float , READ/WRITE ) - Q (quality)
  <b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
	</reference>
</element>
<element pattern="FilterBasic">
	<reference>filter basic base class
    Filter basic base class, with .freq, .Q, .set.
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - frequency
  <b>.Q</b> - ( float , READ/WRITE ) - Q
  <b>.set</b> - ( float, float, WRITE only ) - set freq and Q at once
	</reference>
</element>
<element pattern="Dyno">
	<reference>dynamics processor
includes limiter, compressor, expander, noise gate, and ducker (presets)
    default limiter values:   slopeAbove = 0.1   slopeBelow = 1.0   thresh = 0.5   attackTime = 5 ms   releaseTime = 300 ms   externalSideInput = 0 (false)
    default compressor values:   slopeAbove = 0.5   slopeBelow = 1.0   thresh = 0.5   attackTime = 5 ms   releaseTime = 300 ms   externalSideInput = 0 (false)
    default expander values:   slopeAbove = 2.0   slopeBelow = 1.0   thresh = 0.5   attackTime = 20 ms   releaseTime = 400 ms   externalSideInput = 0 (false)
    default noise gate values:   slopeAbove = 1.0   slopeBelow = 10000000   thresh = 0.1   attackTime = 11 ms   releaseTime = 100 ms   externalSideInput = 0 (false)
    default ducker values:   slopeAbove = 0.5   slopeBelow = 1.0   thresh = 0.1   attackTime = 100 ms   releaseTime = 1000 ms   externalSideInput = 1 (true)
    Note that the input to sideInput determines the level of gain, not the direct signal input to Dyno.
<i>Members (control parameters):</i>
  <b>.limit</b> - () - set parameters to default limiter values
  <b>.compress</b> - () - set parameters to default compressor values
  <b>.expand</b> - () - set parameters to default expander values
  <b>.gate</b> - () - set parameters to default noise gate values
  <b>.duck</b> - () - set parameters to default ducker values
  <b>.thresh</b> - ( float, READ/WRITE ) - the point above which to stop using slopeBelow and start using slopeAbove to determine output gain vs input gain
  <b>.attackTime</b> - ( dur, READ/WRITE ) - duration for the envelope to move linearly from current value to the absolute value of the signal's amplitude
  <b>.releaseTime</b> - ( dur, READ/WRITE ) - duration for the envelope to decay down to around 1/10 of its current amplitude, if not brought back up by the signal
  <b>.ratio</b> - ( float, READ/WRITE ) - alternate way of setting slopeAbove and slopeBelow; sets slopeBelow to 1.0 and slopeAbove to 1.0 / ratio
  <b>.slopeBelow</b> - ( float, READ/WRITE ) - determines the slope of the output gain vs the input envelope's level in dB when the envelope is below thresh.  For example, if slopeBelow were 0.5, thresh were 0.1, and the envelope's value were 0.05, the envelope's amplitude would be about 6 dB below thresh, so a gain of 3 dB would be applied to bring the output signal's amplitude up to only 3 dB below thresh.  in general, setting slopeBelow to be lower than slopeAbove results in expansion of dynamic range.
  <b>.slopeAbove</b> - ( float, READ/WRITE ) - determines the slope of the output gain vs the input envelope's level in dB when the envelope is above thresh.  For example, if slopeAbove were 0.5, thresh were 0.1, and the envelope's value were 0.2, the envelope's amplitude would be about 6 dB above thresh, so a gain of -3 dB would be applied to bring the output signal's amplitude up to only 3 dB above thresh.  in general, setting slopeAbove to be lower than slopeBelow results in compression of dynamic range
  <b>.sideInput</b> - ( float, READ/WRITE ) - if externalSideInput is set to true, replaces the signal being processed as the input to the amplitude envelope. see dynoduck.ck for an example of using an external side chain.
  <b>.externalSideInput</b> - ( int, READ/WRITE ) - set to true to cue the amplitude envelope off of sideInput instead of the input signal. note that this means you will need to manually set sideInput every so often. if false, the amplitude envelope represents the amplitude of the input signal whose dynamics are being processed. see dynoduck.ck for an example of using an external side chain.
	</reference>
</element>
</group>
<group name="sound files" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="SndBuf">
	<reference>sound buffer ( now interpolating )
 reads from a variety of file formats
<i>Members (control parameters):</i>
  <b>.read</b> - ( string , WRITE only ) - loads file for reading
  <b>.chunks</b> - ( int, READ/WRITE ) - size of chunk (# of frames) to read on-demand; 0 implies entire file, default; must be set before reading to take effect.
  <b>.samples</b> - ( int , READ only ) - get number of samples
  <b>.length</b> - ( dur, READ only ) - get length as duration
  <b>.channels</b> - ( int , READ only ) - get number of channels
  <b>.pos</b> - ( int , READ/WRITE ) - set position ( 0 &lt; p &lt; .samples )
  <b>.rate</b> - ( float , READ/WRITE ) - set/get playback rate ( relative to file's natural speed )
  <b>.interp</b> - ( int , READ/WRITE ) - set/get interpolation ( 0=drop, 1=linear, 2=sinc )
  <b>.loop</b> - ( int , READ/WRITE ) - toggle looping
  <b>.freq</b> - ( float , READ/WRITE ) - set/get loop rate ( file loops / second )
  <b>.phase</b> - ( float , READ/WRITE ) - set/get phase position ( 0-1 )
  <b>.channel</b> - ( int , READ/WRITE ) - sel/get channel ( 0 &lt; p &lt; .channels )
  <b>.phaseOffset</b> - ( float , READ/WRITE ) - set/get a phase offset
  <b>.write</b> - ( string , WRITE only ) - loads a file for writing ( or not )
	</reference>
</element>
<!-- ugen_osc.html oscillators-->
<element pattern="Phasor">
	<reference>phasor - simple ramp generator ( 0 to 1 )
 can be used as a phase control.
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
  <b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
  <b>.phase</b> - ( float , READ/WRITE ) - current phase
  <b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
  <b>.width</b> - ( float , READ/WRITE ) - set duration of the ramp in each cycle. ( default 1.0)
	</reference>
</element>
<element pattern="SinOsc">
	<reference>sine oscillator
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
  <b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
  <b>.phase</b> - ( float , READ/WRITE ) - current phase
  <b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
	</reference>
</element>
<element pattern="PulseOsc">
	<reference>pulse oscillators
 a pulse wave oscillator with variable width.
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
  <b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
  <b>.phase</b> - ( float , READ/WRITE ) - current phase
  <b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
  <b>.width</b> - ( float , READ/WRITE ) - length of duty cycle ( 0-1 )
	</reference>
</element>
<element pattern="SqrOsc">
	<reference>square wave oscillator ( pulse with fixed width of 0.5 )
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
  <b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
  <b>.phase</b> - ( float , READ/WRITE ) - current phase
  <b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
  <b>.width</b> - ( int , READ/WRITE ) - length of duty cycle ( 0 to 1 )
	</reference>
</element>
<element pattern="TriOsc">
	<reference>triangle wave oscillator
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
  <b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
  <b>.phase</b> - ( float , READ/WRITE ) - current phase
  <b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
  <b>.width</b> - ( float , READ/WRITE ) - control midpoint of triangle ( 0 to 1 )
	</reference>
</element>
<element pattern="SawOsc">
	<reference>sawtooth wave oscillator ( triangle, width forced to 0.0 or 1.0 )
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz), phase-matched
  <b>.sfreq</b> - ( float , READ/WRITE ) - oscillator frequency (Hz)
  <b>.phase</b> - ( float , READ/WRITE ) - current phase
  <b>.sync</b> - ( int , READ/WRITE ) - (0) sync frequency to input, (1) sync phase to input, (2) fm synth
  <b>.width</b> - ( float , READ/WRITE ) - increasing ( w &gt; 0.5 ) or decreasing ( w &lt; 0.5 )
	</reference>
</element>
<element pattern="GenX">
	<reference>base class for classic MusicN lookup table unit generators
Ported from rtcmix.Lookup can either be done using the lookup() function, or by driving the table with an input UGen, typically a Phasor.  For an input signal between [ -1, 1 ], using the absolute value for [ -1, 0 ), GenX will output the table value indexed by the current input.
<i>Members (control parameters):</i>
  <b>.lookup( float i )</b> - ( float , READ ONLY ) - returns lookup table value at index i [ -1, 1 ]; absolute value is used in the range [ -1, 0 )
  <b>.coefs</b> - ( float [ ] , WRITE ONLY ) - set lookup table coefficients; meaning is dependent on subclass
	</reference>
</element>
<element pattern="Gen5">
	<reference>exponential line segment lookup table table generator
Constructs a lookup table composed of sequential exponential curves.  For a table with N curves, starting value of y', and value y<sub>n</sub> for lookup index x<sub>n</sub>, set the coefficients to [ y', y<sub>0</sub>, x<sub>0</sub>, ..., y<sub>N-1</sub>, x<sub>N-1</sub> ].  Note that there must be an odd number of coefficients.  If an even number of coefficients is specified, behavior is undefined.  The sum of x<sub>n</sub> for 0 &lt; n &lt; N must be 1.  y<sub>n</sub> = 0 is approximated as 0.000001 to avoid strange results arising from the nature of exponential curves.
	</reference>
</element>
<element pattern="Gen7">
	<reference>line segment lookup table table generator
Constructs a lookup table composed of sequential line segments.  For a table with N lines, starting value of y', and value y<sub>n</sub> for lookup index x<sub>n</sub>, set the coefficients to [ y', y<sub>0</sub>, x<sub>0</sub>, ..., y<sub>N-1</sub>, x<sub>N-1</sub> ].  Note that there must be an odd number of coefficients.  If an even number of coefficients is specified, behavior is undefined.  The sum of x<sub>n</sub> for 0 &lt; n &lt; N must be 1.
	</reference>
</element>
<element pattern="Gen9">
	<reference>sinusoidal lookup table with harmonic ratio, amplitude, and phase control
Constructs a lookup table of partials with specified amplitudes, phases, and harmonic ratios to the fundamental.  Coefficients are specified in triplets of [ ratio, amplitude, phase ] arranged in a single linear array.
	</reference>
</element>
<element pattern="Gen10">
	<reference>sinusoidal lookup table with partial amplitude control
Constructs a lookup table of harmonic partials with specified amplitudes.  The amplitude of partial n is specified by the n<sup>th</sup> element of the coefficients. For example, setting coefs to [ 1 ] will produce a sine wave.
	</reference>
</element>
<element pattern="Gen17">
	<reference>chebyshev polynomial lookup table
Constructs a Chebyshev polynomial wavetable with harmonic partials of specified weights.  The weight of partial n is specified by the n<sup>th</sup> element of the coefficients.
Primarily used for waveshaping, driven by a SinOsc instead of a Phasor.	</reference>
</element>
<element pattern="CurveTable">
	<reference>flexible curve/line segment table generator
Constructs a wavetable composed of segments of variable times, values, and curvatures. Coefficients are specified as a single linear array of triplets of [ time, value, curvature ] followed by a final duple of [ time, value ] to specify the final value of the table. time values are expressed in unitless, ascending values.  For curvature equal to 0, the segment is a line; for curvature less than 0, the segment is a convex curve; for curvature greater than 0, the segment is a concave curve.
	</reference>
</element>
<element pattern="WarpTable">
	<reference>end-constrained mapping table
    useful for control signal conditioning
	</reference>
</element>
</group>
<group name="live sampling " highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="LiSa">
	<reference>live sampling utility.
  LiSa provides basic live sampling functionality.
An internal buffer stores samples chucked to LiSa's input.
Segments of this buffer can be played back, with ramping and speed/direction control.
Multiple voice facility is built in, allowing for a single LiSa object to serve as a source for sample layering and granular textures.
by Dan Trueman (2007)
<i>Members (control parameters):</i>
  <b>.duration</b> - ( dur , READ/WRITE ) - sets buffer size; required to allocate memory, also resets all parameter values to default
  <b>.record</b> - ( int , READ/WRITE ) - turns recording on and off
  <b>.getVoice</b> - (  READ ) - returns the voice number of the next available voice
  <b>.maxVoices</b> - ( int , READ/WRITE ) - sets the maximum number of voices allowable; 10 by default (200 is the current hardwired internal limit)
  <b>.play</b> - ( int, WRITE ) - turn on/off sample playback <i>(voice 0) </i>
  <b>.play</b> - ( int voice, int, WRITE) - for particular voice (arg 1), turn on/off sample playback
  <b>.rampUp</b> - ( dur, WRITE ) - turn on sample playback, with ramp <i>(voice 0) </i>
  <b>.rampUp</b> - ( int voice dur, WRITE ) - for particular voice (arg 1), turn on sample playback, with ramp
  <b>.rampDown</b> - ( dur, WRITE ) - turn off sample playback, with ramp <i>(voice 0) </i>
  <b>.rampDown</b> - ( int voice, dur, WRITE ) - for particular voice (arg 1), turn off sample playback, with ramp
  <b>.rate</b> - ( float, WRITE ) - <i>set playback rate (voice 0). Note that the int/float type for this method will determine whether the rate is being set (float, for voice 0) or read (int, for voice number)</i>
  <b>.rate</b> - ( int voice, float, WRITE ) - for particular voice (arg 1),<i> set playback rate</i>
  <b>.rate</b> - ( READ ) - <i>get playback rate (voice 0) </i>
  <b>.rate</b> - ( int voice, READ ) - for particular voice (arg 1), <i>get playback rate. Note that the int/float type for this method will determine whether the rate is being set (float, for voice 0) or read (int, for voice number)</i>
  <b>.playPos</b> - ( READ ) - <i>get playback position (voice 0) </i>
  <b>.playPos</b> - ( int voice, READ ) -<i> for particular voice (arg 1), get playback position</i>
  <b>.playPos</b> - ( dur, WRITE ) - <i>set playback position (voice 0) </i>
  <b>.playPos</b> - ( int voice, dur, WRITE ) - <i>for particular voice (arg 1), set playback position</i>
  <b>.recPos</b> - ( dur, READ/WRITE ) - <i>get/set record position </i>
  <b>.recRamp</b> - ( dur , READ/WRITE ) - set ramping when recording (from 0 to loopEndRec)
  <b>.loopRec</b> - ( int, READ/WRITE ) - <i>turn on/off loop recording </i>
  <b>.loopEndRec</b> - ( dur, READ/WRITE ) - <i>set end point in buffer for loop recording </i>
  <b>.loopStart</b> - ( dur , READ/WRITE ) - set loop starting point for playback (voice 0). only applicable when 1 =&gt; loop.
  <b>.loopStart</b> - ( int voice, dur , WRITE ) - <i>for particular voice (arg 1), set loop starting point for playback. only applicable when .loop(voice, 1).</i>
  <b>.loopEnd</b> - ( dur , READ/WRITE ) - set loop ending point for playback (voice 0). only applicable when 1 =&gt; loop.
  <b>.loopEnd</b> - ( int voice, dur , WRITE ) - <i>for particular voice (arg 1), set loop ending point for playback. only applicable when .loop(voice, 1).</i>
  <b>.loop</b> - ( int , READ/WRITE ) - turn on/off looping  (voice 0)
  <b>.loop</b> - ( int voice, int, READ/WRITE ) - <i>for particular voice (arg 1), turn on/off looping</i>
  <b>.bi</b> - ( int , READ/WRITE ) - turn on/off bidirectional playback (voice 0)
  <b>.bi</b> - ( int voice, int , WRITE ) - <i>for particular voice (arg 1), turn on/off bidirectional playback</i>
  <b>.voiceGain</b> - ( float , READ/WRITE ) - set playback gain  (voice 0)
  <b>.voiceGain</b> - ( int voice, float , WRITE ) - <i> for particular voice (arg 1), set gain </i>
  <b>.feedback</b> - ( float , READ/WRITE ) - get/set feedback amount when overdubbing (loop recording; how much to retain)
  <b>.valueAt </b>- ( dur, READ ) - <i>get value directly from record buffer </i>
  <b>.valueAt </b>- ( sample, dur, WRITE ) - <i>set value directly in record buffer </i>
  <b>.sync</b> - (int, READ/WRITE) - <i>set input mode; (0) input is recorded to internal buffer, (1) input sets playback position [0,1] (phase value between loopStart and loopEnd for all active voices), (2) input sets playback position, interpreted as a time value in samples (only works with voice 0) </i>
  <b>.track</b> - (int, READ/WRITE) - <i>identical to sync </i>
  <b>.clear </b> - <i>clear recording buffer </i>
	</reference>
</element>
<element pattern="netout">
	<reference>UDP-based network audio transmitter
<i>Members (control parameters):</i>
  <b>.addr</b> - ( string , READ/WRITE ) - target address
  <b>.port</b> - ( int , READ/WRITE ) - target port
  <b>.size</b> - ( int , READ/WRITE ) - packet size
  <b>.name</b> - ( string , READ/WRITE ) - name?
	</reference>
</element>
<element pattern="netin">
	<reference>UDP-based network audio receiver
<i>Members (control parameters):</i>
  <b>.port</b> - ( int , READ/WRITE ) - set port to receive
  <b>.name</b> - ( string , READ/WRITE ) - name?
	</reference>
</element>
<element pattern="Pan2">
	<reference>spread mono signal to stereo
<i>Members (control parameters):</i>
  <b>.left</b> - ( UGen ) - left (mono) channel out
  <b>.right</b> - ( UGen ) - right (mono) channel out
  <b>.pan</b> - ( float , READ/WRITE ) - pan location value ( -1 to 1 )
	</reference>
</element>
<element pattern="Mix2">
	<reference>mix stereo input down to mono channel
<i>Members (control parameters):</i>
  <b>.left</b> - ( UGen ) - left (mono) channel in
  <b>.right</b> - ( UGen ) - right (mono) channel in
  <b>.pan</b> - ( float , READ/WRITE ) - mix parameter value ( 0 to 1 )
	</reference>
</element>
</group>
<!-- ulib_stk.html STK-->
<group name="stk - instruments" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="StkInstrument">
	<reference>Super-class for STK instruments.
    The following UGens subclass StkInstrument:
       - BandedWG
       - BlowBotl
       - BlowHole
       - Bowed
       - Brass
       - Clarinet
       - Flute
       - FM (and all its subclasses: BeeThree, FMVoices, HevyMetl, PercFlut, Rhodey, TubeBell, Wurley)
       - Mandolin
       - ModalBar
       - Moog
       - Saxofony
       - Shakers
       - Sitar
       - StifKarp
       - VoicForm
<i>Members (control parameters):</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change - numbers are instrument specific, value range: [0.0 - 128.0]
	</reference>
</element>
<element pattern="BandedWG">
	<reference>Banded waveguide modeling class.
    This class uses banded waveguide techniques to model a variety of sounds, including bowed bars, glasses, and bowls.
    Control Change Numbers:
       - Bow Pressure = 2
       - Bow Motion = 4
       - Strike Position = 8 (not implemented)
       - Vibrato Frequency = 11
       - Gain = 1
       - Bow Velocity = 128
       - Set Striking = 64
       - Instrument Presets = 16
         - Uniform Bar = 0
         - Tuned Bar = 1
         - Glass Harmonica = 2
         - Tibetan Bowl = 3
    by Georg Essl, 1999 - 2002. Modified for Stk 4.0 by Gary Scavone.
<i>Members (control parameters):</i>
  <b>.bowPressure</b> - ( float , READ/WRITE ) - bow pressure [0.0 - 1.0]
  <b>.bowMotion</b> - ( float , READ/WRITE ) - bow motion [0.0 - 1.0]
  <b>.bowRate</b> - ( float , READ/WRITE ) - bow attack rate (sec)
  <b>.strikePosition</b> - ( float , READ/WRITE ) - strike Position [0.0 - 1.0]
  <b>.integrationConstant</b> - ( float , READ/WRITE ) - ?? [0.0 - 1.0]
  <b>.modesGain</b> - ( float , READ/WRITE ) - amplitude for modes [0.0 - 1.0]
  <b>.preset</b> - ( int , READ/WRITE ) - instrument presets (0 - 3, see above)
  <b>.pluck</b> - ( float , WRITE only ) - pluck instrument [0.0 - 1.0]
  <b>.startBowing</b> - ( float , WRITE only ) - start bowing [0.0 - 1.0]
  <b>.stopBowing</b> - ( float , WRITE only ) - stop bowing [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="BlowBotl">
	<reference>STK blown bottle instrument class.
    This class implements a helmholtz resonator (biquad filter) with a polynomial jet excitation (a la Cook).
    Control Change Numbers:
       - Noise Gain = 4
       - Vibrato Frequency = 11
       - Vibrato Gain = 1
       - Volume = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.volume</b> - ( float , READ/WRITE ) - yet another volume knob [0.0 - 1.0]
  <b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
  <b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
  <b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="BlowHole">
	<reference>STK clarinet physical model with one register hole and one tonehole.
    This class is based on the clarinet model, with the addition of a two-port register hole and a three-port dynamic tonehole implementation, as discussed by Scavone and Cook (1998).
    In this implementation, the distances between the reed/register hole and tonehole/bell are fixed.  As a result, both the tonehole and register hole will have variable influence on the playing frequency, which is dependent on the length of the air column.  In addition, the highest playing freqeuency is limited by these fixed lengths.
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
    Control Change Numbers:
       - Reed Stiffness = 2
       - Noise Gain = 4
       - Tonehole State = 11
       - Register State = 1
       - Breath Pressure = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.reed</b> - ( float , READ/WRITE ) - reed stiffness [0.0 - 1.0]
  <b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain  [0.0 - 1.0]
  <b>.tonehole</b> - ( float , READ/WRITE ) - tonehole size  [0.0 - 1.0]
  <b>.vent</b> - ( float , READ/WRITE ) - vent frequency [0.0 - 1.0]
  <b>.pressure</b> - ( float , READ/WRITE ) - pressure  [0.0 - 1.0]
  <b>.startBlowing</b> - ( float , WRITE only ) - start blowing  [0.0 - 1.0]
  <b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing  [0.0 - 1.0]
  <b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Bowed">
	<reference>STK bowed string instrument class.
    This class implements a bowed string model, a la Smith (1986), after McIntyre, Schumacher, Woodhouse (1983).
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
    Control Change Numbers:
       - Bow Pressure = 2
       - Bow Position = 4
       - Vibrato Frequency = 11
       - Vibrato Gain = 1
       - Volume = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.bowPressure</b> - ( float , READ/WRITE ) - bow pressure [0.0 - 1.0]
  <b>.bowPosition</b> - ( float , READ/WRITE ) - bow position [0.0 - 1.0]
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.volume</b> - ( float , READ/WRITE ) - volume [0.0 - 1.0]
  <b>.startBowing</b> - ( float , WRITE only ) - start bowing [0.0 - 1.0]
  <b>.stopBowing</b> - ( float , WRITE only ) - stop bowing [0.0 - 1.0]
  <b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Brass">
	<reference>STK simple brass instrument class.
    This class implements a simple brass instrument waveguide model, a la Cook (TBone, HosePlayer).
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
    Control Change Numbers:
       - Lip Tension = 2
       - Slide Length = 4
       - Vibrato Frequency = 11
       - Vibrato Gain = 1
       - Volume = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.lip</b> - ( float , READ/WRITE ) - lip tension [0.0 - 1.0]
  <b>.slide</b> - ( float , READ/WRITE ) - slide length [0.0 - 1.0]
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.volume</b> - ( float , READ/WRITE ) - volume [0.0 - 1.0]
  <b>.clear</b> - ( float , WRITE only ) - clear instrument
  <b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
  <b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
  <b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Clarinet">
	<reference>STK clarinet physical model class.
    This class implements a simple clarinet physical model, as discussed by Smith (1986), McIntyre, Schumacher, Woodhouse (1983), and others.
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
    Control Change Numbers:
       - Reed Stiffness = 2
       - Noise Gain = 4
       - Vibrato Frequency = 11
       - Vibrato Gain = 1
       - Breath Pressure = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.reed</b> - ( float , READ/WRITE ) - reed stiffness [0.0 - 1.0]
  <b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
  <b>.clear</b> - ( ) - clear instrument
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.pressure</b> - ( float , READ/WRITE ) - pressure/volume [0.0 - 1.0]
  <b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
  <b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
  <b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Flute">
	<reference>STK flute physical model class.
    This class implements a simple flute physical model, as discussed by Karjalainen, Smith, Waryznyk, etc.  The jet model uses a polynomial, a la Cook.
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
    Control Change Numbers:
       - Jet Delay = 2
       - Noise Gain = 4
       - Vibrato Frequency = 11
       - Vibrato Gain = 1
       - Breath Pressure = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.jetDelay</b> - ( float , READ/WRITE ) - jet delay [...]
  <b>.jetReflection</b> - ( float , READ/WRITE ) - jet reflection [...]
  <b>.endReflection</b> - ( float , READ/WRITE ) - end delay [...]
  <b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.pressure</b> - ( float , READ/WRITE ) - pressure/volume [0.0 - 1.0]
  <b>.clear</b> - ( ) - clear instrument
  <b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
  <b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
  <b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Mandolin">
	<reference>STK mandolin instrument model class.
    This class inherits from PluckTwo and uses "commuted synthesis" techniques to model a mandolin instrument.
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others. Commuted Synthesis, in particular, is covered by patents, granted, pending, and/or applied-for.  All are assigned to the Board of Trustees, Stanford University.  For information, contact the Office of Technology Licensing, Stanford University.
    Control Change Numbers:
       - Body Size = 2
       - Pluck Position = 4
       - String Sustain = 11
       - String Detuning = 1
       - Microphone Position = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.bodySize</b> - ( float , READ/WRITE ) - body size (percentage)
  <b>.pluckPos</b> - ( float , READ/WRITE ) - pluck position [0.0 - 1.0]
  <b>.stringDamping</b> - ( float , READ/WRITE ) - string damping [0.0 - 1.0]
  <b>.stringDetune</b> - ( float , READ/WRITE ) - detuning of string pair [0.0 - 1.0]
  <b>.afterTouch</b> - ( float , WRITE only ) - aftertouch (currently unsupported)
  <b>.pluck</b> - ( float , WRITE only ) - pluck instrument [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="ModalBar">
	<reference>STK resonant bar instrument class.
    This class implements a number of different struck bar instruments.  It inherits from the Modal class.
    Control Change Numbers:
       - Stick Hardness = 2
       - Stick Position = 4
       - Vibrato Gain = 11
       - Vibrato Frequency = 7
       - Direct Stick Mix = 1
       - Volume = 128
       - Modal Presets = 16
         - Marimba = 0
         - Vibraphone = 1
         - Agogo = 2
         - Wood1 = 3
         - Reso = 4
         - Wood2 = 5
         - Beats = 6
         - Two Fixed = 7
         - Clump = 8
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.stickHardness</b> - ( float , READ/WRITE ) - stick hardness [0.0 - 1.0]
  <b>.strikePosition</b> - ( float , READ/WRITE ) - strike position [0.0 - 1.0]
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.directGain</b> - ( float , READ/WRITE ) - direct gain [0.0 - 1.0]
  <b>.masterGain</b> - ( float , READ/WRITE ) - master gain [0.0 - 1.0]
  <b>.volume</b> - ( float , READ/WRITE ) - volume [0.0 - 1.0]
  <b>.preset</b> - ( int , READ/WRITE ) - choose preset (see above)
  <b>.strike</b> - ( float , WRITE only ) - strike bar [0.0 - 1.0]
  <b>.damp</b> - ( float , WRITE only ) - damp bar [0.0 - 1.0]
  <b>.clear</b> - ( ) - reset [none]
  <b>.mode</b> - ( int , READ/WRITE ) - select mode [0.0 - 1.0]
  <b>.modeRatio</b> - ( float , READ/WRITE ) - edit selected mode ratio [...]
  <b>.modeRadius</b> - ( float , READ/WRITE ) - edit selected mode radius [0.0 - 1.0]
  <b>.modeGain</b> - ( float , READ/WRITE ) - edit selected mode gain [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Moog">
	<reference>STK moog-like swept filter sampling synthesis class.
    This instrument uses one attack wave, one looped wave, and an ADSR envelope (inherited from the Sampler class) and adds two sweepable formant (FormSwep) filters.
    Control Change Numbers:
       - Filter Q = 2
       - Filter Sweep Rate = 4
       - Vibrato Frequency = 11
       - Vibrato Gain = 1
       - Gain = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.filterQ</b> - ( float , READ/WRITE ) - filter Q value [0.0 - 1.0]
  <b>.filterSweepRate</b> - ( float , READ/WRITE ) - filter sweep rate [0.0 - 1.0]
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.afterTouch</b> - ( float , WRITE only ) - aftertouch [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Saxofony">
	<reference>STK faux conical bore reed instrument class.
    This class implements a "hybrid" digital waveguide instrument that can generate a variety of wind-like sounds.  It has also been referred to as the "blowed string" model.  The waveguide section is essentially that of a string, with one rigid and one lossy termination.  The non-linear function is a reed table.  The string can be "blown" at any point between the terminations, though just as with strings, it is impossible to excite the system at either end.  If the excitation is placed at the string mid-point, the sound is that of a clarinet.  At points closer to the "bridge", the sound is closer to that of a saxophone.  See Scavone (2002) for more details.
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
    Control Change Numbers:
       - Reed Stiffness = 2
       - Reed Aperture = 26
       - Noise Gain = 4
       - Blow Position = 11
       - Vibrato Frequency = 29
       - Vibrato Gain = 1
       - Breath Pressure = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.stiffness</b> - ( float , READ/WRITE ) - reed stiffness [0.0 - 1.0]
  <b>.aperture</b> - ( float , READ/WRITE ) - reed aperture [0.0 - 1.0]
  <b>.pressure</b> - ( float , READ/WRITE ) - pressure/volume [0.0 - 1.0]
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.noiseGain</b> - ( float , READ/WRITE ) - noise component gain [0.0 - 1.0]
  <b>.blowPosition</b> - ( float , READ/WRITE ) - lip stiffness [0.0 - 1.0]
  <b>.clear</b> - ( ) - clear instrument
  <b>.startBlowing</b> - ( float , WRITE only ) - start blowing [0.0 - 1.0]
  <b>.stopBlowing</b> - ( float , WRITE only ) - stop blowing [0.0 - 1.0]
  <b>.rate</b> - ( float , READ/WRITE ) - rate of attack (sec)
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Shakers">
	<reference>PhISEM and PhOLIES class.
    PhISEM (Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of multiple independent sound producing objects.  This class is a meta-model that can simulate a Maraca, Sekere, Cabasa, Bamboo Wind Chimes, Water Drops, Tambourine, Sleighbells, and a Guiro. PhOLIES (Physically-Oriented Library of Imitated Environmental Sounds) is a similar approach for the synthesis of environmental sounds.  This class implements simulations of breaking sticks, crunchy snow (or not), a wrench, sandpaper, and more.
    Control Change Numbers:
       - Shake Energy = 2
       - System Decay = 4
       - Number Of Objects = 11
       - Resonance Frequency = 1
       - Shake Energy = 128
       - Instrument Selection = 1071
        - Maraca = 0
        - Cabasa = 1
        - Sekere = 2
        - Guiro = 3
        - Water Drops = 4
        - Bamboo Chimes = 5
        - Tambourine = 6
        - Sleigh Bells = 7
        - Sticks = 8
        - Crunch = 9
        - Wrench = 10
        - Sand Paper = 11
        - Coke Can = 12
        - Next Mug = 13
        - Penny + Mug = 14
        - Nickle + Mug = 15
        - Dime + Mug = 16
        - Quarter + Mug = 17
        - Franc + Mug = 18
        - Peso + Mug = 19
        - Big Rocks = 20
        - Little Rocks = 21
        - Tuned Bamboo Chimes = 22
    by Perry R. Cook, 1996 - 1999.
<i>Members (control parameters):</i>
  <b>.preset</b> - ( int , READ/WRITE ) - select instrument (0 - 22; see above)
  <b>.energy</b> - ( float , READ/WRITE ) - shake energy [0.0 - 1.0]
  <b>.decay</b> - ( float , READ/WRITE ) - system decay [0.0 - 1.0]
  <b>.objects</b> - ( float , READ/WRITE ) - number of objects [0.0 - 128.0]
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="Sitar">
	<reference>STK sitar string model class.
    This class implements a sitar plucked string physical model based on the Karplus-Strong algorithm.
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others. There exist at least two patents, assigned to Stanford, bearing the names of Karplus and/or Strong.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.pluck</b> - ( float , WRITE only ) - pluck string [0.0 - 1.0]
  <b>.clear</b> - ( ) - reset
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="StifKarp">
	<reference>STK plucked stiff string instrument.
    This class implements a simple plucked string algorithm (Karplus Strong) with enhancements (Jaffe-Smith, Smith, and others), including string stiffness and pluck position controls.
    The stiffness is modeled with allpass filters.
    This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others.
    Control Change Numbers:
       - Pickup Position = 4
       - String Sustain = 11
       - String Stretch = 1
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.pickupPosition</b> - ( float , READ/WRITE ) - pickup position [0.0 - 1.0]
  <b>.sustain</b> - ( float , READ/WRITE ) - string sustain [0.0 - 1.0]
  <b>.stretch</b> - ( float , READ/WRITE ) - string stretch [0.0 - 1.0]
  <b>.pluck</b> - ( float , WRITE only ) - pluck string [0.0 - 1.0]
  <b>.baseLoopGain</b> - ( float , READ/WRITE ) - ?? [0.0 - 1.0]
  <b>.clear</b> - ( ) - reset instrument
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="VoicForm">
	<reference>Four formant synthesis instrument.
    This instrument contains an excitation singing wavetable (looping wave with random and periodic vibrato, smoothing on frequency, etc.), excitation noise, and four sweepable complex resonances.
    Measured formant data is included, and enough data is there to support either parallel or cascade synthesis.  In the floating point case cascade synthesis is the most natural so that's what you'll find here.
    Control Change Numbers:
       - Voiced/Unvoiced Mix = 2
       - Vowel/Phoneme Selection = 4
       - Vibrato Frequency = 11
       - Vibrato Gain = 1
       - Loudness (Spectral Tilt) = 128
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
    Phoneme Names:
    "eee"  "ihh"  "ehh"  "aaa"
    "ahh"  "aww"  "ohh"  "uhh"
    "uuu"  "ooo"  "rrr"  "lll"
    "mmm"  "nnn"  "nng"  "ngg"
    "fff"  "sss"  "thh"  "shh"
    "xxx"  "hee"  "hoo"  "hah"
    "bbb"  "ddd"  "jjj"  "ggg"
    "vvv"  "zzz"  "thz"  "zhh"
<i>Members (control parameters):</i>
  <b>.phoneme</b> - ( string , READ/WRITE ) - select phoneme ( see above )
  <b>.phonemeNum</b> - ( int , READ/WRITE ) - select phoneme by number [0.0 - 128.0]
  <b>.speak</b> - ( float , WRITE only ) - start singing [0.0 - 1.0]
  <b>.quiet</b> - ( float , WRITE only ) - stop singing [0.0 - 1.0]
  <b>.voiced</b> - ( float , READ/WRITE ) - set mix for voiced component [0.0 - 1.0]
  <b>.unVoiced</b> - ( float , READ/WRITE ) - set mix for unvoiced component [0.0 - 1.0]
  <b>.pitchSweepRate</b> - ( float , READ/WRITE ) - pitch sweep [0.0 - 1.0]
  <b>.voiceMix</b> - ( float , READ/WRITE ) - voiced/unvoiced mix [0.0 - 1.0]
  <b>.vibratoFreq</b> - ( float , READ/WRITE ) - vibrato frequency (Hz)
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - vibrato gain [0.0 - 1.0]
  <b>.loudness</b> - ( float , READ/WRITE ) - 'loudness' of voice [0.0 - 1.0]
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="FM">
	<reference>STK abstract FM synthesis base class.
    This class controls an arbitrary number of waves and envelopes, determined via a constructor argument.
    Control Change Numbers:
       - Control One = 2
       - Control Two = 4
       - LFO Speed = 11
       - LFO Depth = 1
       - ADSR 2 &amp; 4 Target = 128
    The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha.  If you are of the type who should worry about this (making money) worry away.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.lfoSpeed</b> - ( float , READ/WRITE ) - modulation Speed (Hz)
  <b>.lfoDepth</b> - ( float , READ/WRITE ) - modulation Depth [0.0 - 1.0]
  <b>.afterTouch</b> - ( float , READ/WRITE ) - aftertouch [0.0 - 1.0]
  <b>.controlOne</b> - ( float , READ/WRITE ) - control one [instrument specific]
  <b>.controlTwo</b> - ( float , READ/WRITE ) - control two [instrument specific]
<i>(inherited from StkInstrument)</i>
  <b>.noteOn</b> - ( float velocity ) - trigger note on
  <b>.noteOff</b> - ( float velocity ) - trigger note off
  <b>.freq</b> - ( float frequency ) - set/get frequency (Hz)
  <b>.controlChange</b> - ( int number, float value ) - assert control change
	</reference>
</element>
<element pattern="BeeThree">
	<reference>STK Hammond-oid organ FM synthesis instrument.
    This class implements a simple 4 operator topology, also referred to as algorithm 8 of the TX81Z.
    \code
    Algorithm 8 is :
                     1 --.
                     2 -\|
                         +-> Out
                     3 -/|
                     4 --
    \endcode
    Control Change Numbers:
       - Operator 4 (feedback) Gain = 2 (.controlOne)
       - Operator 3 Gain = 4 (.controlTwo)
       - LFO Speed = 11
       - LFO Depth = 1
       - ADSR 2 &amp; 4 Target = 128
    The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha.  If you are of the type who should worry about this (making money) worry away.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
	</reference>
</element>
<element pattern="FMVoices">
	<reference>STK singing FM synthesis instrument.
    This class implements 3 carriers and a common modulator, also referred to as algorithm 6 of the TX81Z.
    \code
    Algorithm 6 is :
                        /->1 -\
                     4-|-->2 - +-> Out
                        \->3 -/
    \endcode
    Control Change Numbers:
       - Vowel = 2 (.controlOne)
       - Spectral Tilt = 4 (.controlTwo)
       - LFO Speed = 11
       - LFO Depth = 1
       - ADSR 2 &amp; 4 Target = 128
    The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha.  If you are of the type who should worry about this (making money) worry away.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.vowel</b> - ( float , WRITE only ) - select vowel [0.0 - 1.0]
  <b>.spectralTilt</b> - ( float , WRITE only ) - spectral tilt [0.0 - 1.0]
  <b>.adsrTarget</b> - ( float , WRITE only ) - adsr targets [0.0 - 1.0]
	</reference>
</element>
<element pattern="HevyMetl">
	<reference>STK heavy metal FM synthesis instrument.
    This class implements 3 cascade operators with feedback modulation, also referred to as algorithm 3 of the TX81Z.
    Algorithm 3 is :     4--\
                    3-->2-- + -->1-->Out
    Control Change Numbers:
       - Total Modulator Index = 2 (.controlOne)
       - Modulator Crossfade = 4 (.controlTwo)
       - LFO Speed = 11
       - LFO Depth = 1
       - ADSR 2 &amp; 4 Target = 128
    The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha.  If you are of the type who should worry about this (making money) worry away.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
	</reference>
</element>
<element pattern="PercFlut">
	<reference>STK percussive flute FM synthesis instrument.
    This class implements algorithm 4 of the TX81Z.
    \code
    Algorithm 4 is :   4->3--\
                          2-- + -->1-->Out
    \endcode
    Control Change Numbers:
       - Total Modulator Index = 2 (.controlOne)
       - Modulator Crossfade = 4 (.controlTwo)
       - LFO Speed = 11
       - LFO Depth = 1
       - ADSR 2 &amp; 4 Target = 128
    The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha.  If you are of the type who should worry about this (making money) worry away.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
	</reference>
</element>
<element pattern="Rhodey">
	<reference>STK Fender Rhodes-like electric piano FM synthesis instrument.
    This class implements two simple FM Pairs summed together, also referred to as algorithm 5 of the TX81Z.
    \code
    Algorithm 5 is :  4->3--\
                             + --> Out
                      2->1--/
    \endcode
    Control Change Numbers:
       - Modulator Index One = 2 (.controlOne)
       - Crossfade of Outputs = 4 (.controlTwo)
       - LFO Speed = 11
       - LFO Depth = 1
       - ADSR 2 &amp; 4 Target = 128
    The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha.  If you are of the type who should worry about this (making money) worry away.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
	</reference>
</element>
<element pattern="TubeBell">
	<reference>STK tubular bell (orchestral chime) FM synthesis instrument.
    This class implements two simple FM Pairs summed together, also referred to as algorithm 5 of the TX81Z.
    \code
    Algorithm 5 is :  4->3--\
                             + --> Out
                      2->1--/
    \endcode
    Control Change Numbers:
       - Modulator Index One = 2 (.controlOne)
       - Crossfade of Outputs = 4 (.controlTwo)
       - LFO Speed = 11
       - LFO Depth = 1
       - ADSR 2 &amp; 4 Target = 128
    The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha.  If you are of the type who should worry about this (making money) worry away.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
	</reference>
</element>
<element pattern="Wurley">
	<reference>STK Wurlitzer electric piano FM synthesis instrument.
    This class implements two simple FM Pairs summed together, also referred to as algorithm 5 of the TX81Z.
    \code
    Algorithm 5 is :  4->3--\
                             + --> Out
                      2->1--/
    \endcode
    Control Change Numbers:
       - Modulator Index One = 2 (.controlOne)
       - Crossfade of Outputs = 4 (.controlTwo)
       - LFO Speed = 11
       - LFO Depth = 1
       - ADSR 2 &amp; 4 Target = 128
    The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha.  If you are of the type who should worry about this (making money) worry away.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
<b>( see super classes )</b>
	</reference>
</element>
</group>
<group name="stk - delay" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Delay">
	<reference>STK non-interpolating delay line class.
    This protected Filter subclass implements a non-interpolating digital delay-line.
    A fixed maximum length of 4095 and a delay of zero is set using the default constructor.
    Alternatively, the delay and maximum length can be set during instantiation with an overloaded constructor.
    A non-interpolating delay line is typically used in fixed delay-length applications, such as for reverberation.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.delay</b> - ( dur , READ/WRITE ) - length of delay
  <b>.max</b> - ( dur , READ/WRITE ) - max delay (buffer size)
	</reference>
</element>
<element pattern="DelayA">
	<reference>STK allpass interpolating delay line class.
    This Delay subclass implements a fractional- length digital delay-line using a first-order allpass filter.  A fixed maximum length of 4095 and a delay of 0.5 is set using the default constructor.  Alternatively, the delay and maximum length can be set during instantiation with an overloaded constructor.
    An allpass filter has unity magnitude gain but variable phase delay properties, making it useful in achieving fractional delays without affecting a signal's frequency magnitude response.  In order to achieve a maximally flat phase delay response, the minimum delay possible in this implementation is limited to a value of 0.5.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.delay</b> - ( dur , READ/WRITE ) - length of delay
  <b>.max</b> - ( dur , READ/WRITE ) - max delay ( buffer size )
	</reference>
</element>
<element pattern="DelayL">
	<reference>STK linear interpolating delay line class.
    This Delay subclass implements a fractional- length digital delay-line using first-order linear interpolation.  A fixed maximum length of 4095 and a delay of zero is set using the default constructor.  Alternatively, the delay and maximum length can be set during instantiation with an overloaded constructor.
    Linear interpolation is an efficient technique for achieving fractional delay lengths, though it does introduce high-frequency signal attenuation to varying degrees depending on the fractional delay setting.  The use of higher order Lagrange interpolators can typically improve (minimize) this attenuation characteristic.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.delay</b> - ( dur , READ/WRITE ) - length of delay
  <b>.max</b> - ( dur , READ/WRITE ) - max delay ( buffer size )
	</reference>
</element>
<element pattern="Echo">
	<reference>STK echo effect class.
    This class implements a echo effect.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.delay</b> - ( dur , READ/WRITE ) - length of echo
  <b>.max</b> - ( dur , READ/WRITE ) - max delay
  <b>.mix</b> - ( float , READ/WRITE ) - mix level ( wet/dry )
	</reference>
</element>
</group>
<group name="stk - envelopes" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Envelope">
	<reference>STK envelope base class.
    This class implements a simple envelope generator which is capable of ramping to a target value by a specified \e rate.
    It also responds to simple \e keyOn and \e keyOff messages, ramping to 1.0 on keyOn and to 0.0 on keyOff.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.keyOn</b> - ( int , WRITE only ) - ramp to 1.0
  <b>.keyOff</b> - ( int , WRITE only ) - ramp to 0.0
  <b>.target</b> - ( float , READ/WRITE ) - ramp to arbitrary value.
  <b>.time</b> - ( float , READ/WRITE ) - time to reach target (in seconds)
  <b>.duration</b> - ( dur , READ/WRITE ) - duration to reach target
  <b>.rate</b> - ( float , READ/WRITE ) - rate of change
  <b>.value</b> - ( float , READ/WRITE ) - set immediate value
	</reference>
</element>
<element pattern="ADSR">
	<reference>STK ADSR envelope class.
    This Envelope subclass implements a traditional ADSR (Attack, Decay, Sustain, Release) envelope.  It responds to simple keyOn and keyOff messages, keeping track of its state.
    The \e state = ADSR::DONE after the envelope value reaches 0.0 in the ADSR::RELEASE state.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.keyOn</b> - ( int , WRITE only ) - start the attack for non-zero values
  <b>.keyOff</b> - ( int , WRITE only ) - start release for non-zero values
  <b>.attackTime</b> - ( dur , READ/WRITE ) - attack time
  <b>.attackRate</b> - ( float , READ/WRITE ) - attack rate
  <b>.decayTime</b> - ( dur , READ/WRITE ) - decay time
  <b>.decayRate</b> - ( float , READ/WRITE ) - decay rate
  <b>.sustainLevel</b> - ( float , READ/WRITE ) - sustain level
  <b>.releaseTime</b> - ( dur , READ/WRITE ) - release time
  <b>.releaseRate</b> - ( float , READ/WRITE ) - release rate
  <b>.state</b> - ( int , READ only ) - attack=0, decay=1 , sustain=2, release=3, done=4
  <b>.set</b> - ( dur, dur, float, dur ) - set A, D, S, and R all at once
	</reference>
</element>
</group>
<group name="stk-reverbs" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="JCRev">
	<reference>John Chowning's reverberator class.
    This class is derived from the CLM JCRev function, which is based on the use of networks of simple allpass and comb delay filters.  This class implements three series allpass units, followed by four parallel comb filters, and two decorrelation delay lines in parallel at the output.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.mix</b> - ( float , READ/WRITE ) - mix level
	</reference>
</element>
<element pattern="NRev">
	<reference>CCRMA's NRev reverberator class.
    This class is derived from the CLM NRev function, which is based on the use of networks of simple allpass and comb delay filters.  This particular arrangement consists of 6 comb filters in parallel, followed by 3 allpass filters, a lowpass filter, and another allpass in series, followed by two allpass filters in parallel with corresponding right and left outputs.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.mix</b> - ( float , READ/WRITE ) -
	</reference>
</element>
<element pattern="PRCRev">
	<reference>Perry's simple reverberator class.
    This class is based on some of the famous Stanford/CCRMA reverbs (NRev, KipRev), which were based on the Chowning/Moorer/Schroeder reverberators using networks of simple allpass and comb delay filters.  This class implements two series allpass units and two parallel comb filters.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.mix</b> - ( float , READ/WRITE ) - mix level
	</reference>
</element>
</group>
<group name="stk - components" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="Chorus">
	<reference>STK chorus effect class.
    This class implements a chorus effect.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.modFreq</b> - ( float , READ/WRITE ) - modulation frequency
  <b>.modDepth</b> - ( float , READ/WRITE ) - modulation depth
  <b>.mix</b> - ( float , READ/WRITE ) - effect mix
	</reference>
</element>
<element pattern="Modulate">
	<reference>STK periodic/random modulator.
    This class combines random and periodic modulations to give a nice, natural human modulation function.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.vibratoRate</b> - ( float , READ/WRITE ) - set rate of vibrato
  <b>.vibratoGain</b> - ( float , READ/WRITE ) - gain for vibrato
  <b>.randomGain</b> - ( float , READ/WRITE ) - gain for random contribution
	</reference>
</element>
<element pattern="PitShift">
	<reference>STK simple pitch shifter effect class.
    This class implements a simple pitch shifter using delay lines.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.mix</b> - ( float , READ/WRITE ) - effect dry/web mix level
  <b>.shift</b> - ( float , READ/WRITE ) - degree of pitch shifting
	</reference>
</element>
<element pattern="SubNoise">
	<reference>STK sub-sampled noise generator.
    Generates a new random number every "rate" ticks using the C rand() function.  The quality of the rand() function varies from one OS to another.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.rate</b> - ( int , READ/WRITE ) - subsampling rate
	</reference>
</element>
<element pattern="Blit">
	<reference>Blit (STK Import)
 STK band-limited impulse train.
    This class generates a band-limited impulse train using a closed-form algorithm reported by Stilson and Smith in "Alias-Free Digital Synthesis of Classic Analog Waveforms", 1996. The user can specify both the fundamental frequency of the impulse train and the number of harmonics contained in the resulting signal.
    The signal is normalized so that the peak value is +/-1.0.
    If nHarmonics is 0, then the signal will contain all harmonics up to half the sample rate. Note, however, that this setting may produce aliasing in the signal when the frequency is changing (no automatic modification of the number of harmonics is performed by the setFrequency() function).
    Original code by Robin Davies, 2005. Revisions by Gary Scavone for STK, 2005.
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - base frequency (hz)
  <b>.harmonics</b> - ( int , READ/WRITE ) - number of harmonics in pass band
  <b>.phase</b> - ( float , READ/WRITE ) - phase of the the signal
	</reference>
</element>
<element pattern="BlitSaw">
	<reference>BlitSaw (STK Import)
 STK band-limited sawtooth wave.
    This class generates a band-limited sawtooth waveform using a closed-form algorithm reported by Stilson and Smith in "Alias-Free Digital Synthesis of Classic Analog Waveforms", 1996. The user can specify both the fundamental frequency of the sawtooth and the number of harmonics contained in the resulting signal.
    If nHarmonics is 0, then the signal will contain all harmonics up to half the sample rate. Note, however, that this setting may produce aliasing in the signal when the frequency is changing (no automatic modification of the number of harmonics is performed by the setFrequency() function).
    Based on initial code of Robin Davies, 2005.
    Modified algorithm code by Gary Scavone, 2005.
 Members: <i>(control
parameters)</i>
  <b>.freq</b> - ( float , READ/WRITE ) - base frequency (hz)
  <b>.harmonics</b> - ( int , READ/WRITE ) - number of harmonics in pass band
  <b>.phase</b> - ( float , READ/WRITE ) - phase of the the signal
	</reference>
</element>
<element pattern="BlitSquare">
	<reference>BlitSquare (STK Import)
 STK band-limited square wave.
    This class generates a band-limited square wave signal. It is derived in part from the approach reported by Stilson and Smith in "Alias-Free Digital Synthesis of Classic Analog Waveforms", 1996. The algorithm implemented in this class uses a SincM function with an even M value to achieve a bipolar bandlimited impulse train. This signal is then integrated to achieve a square waveform. The integration process has an associated DC offset but that is subtracted off the output signal.
    The user can specify both the fundamental frequency of the waveform and the number of harmonics contained in the resulting signal.
    If nHarmonics is 0, then the signal will contain all harmonics up to half the sample rate. Note, however, that this setting may produce aliasing in the signal when the frequency is changing (no automatic modification of the number of harmonics is performed by the setFrequency() function).
    Based on initial code of Robin Davies, 2005. Modified algorithm code by Gary Scavone, 2005.
 Members: <i>(control
parameters)</i>
  <b>.freq</b> - ( float , READ/WRITE ) - base frequency (hz)
  <b>.harmonics</b> - ( int , READ/WRITE ) - number of harmonics in pass band
  <b>.phase</b> - ( float , READ/WRITE ) - phase of the the signal
	</reference>
</element>
</group>
<group name="stk - file i/o" highlight="ck-keyword">
<autocomplete enable="1" />
<element pattern="WvIn">
	<reference>STK audio data input base class.
    This class provides input support for various audio file formats.  It also serves as a base class for "realtime" streaming subclasses. WvIn loads the contents of an audio file for subsequent output.  Linear interpolation is used for fractional "read rates".
    WvIn supports multi-channel data in interleaved format.  It is important to distinguish the tick() methods, which return samples produced by averaging across sample frames, from the tickFrame() methods, which return pointers to multi-channel sample frames.  For single-channel data, these methods return equivalent values. Small files are completely read into local memory during instantiation.  Large files are read incrementally from disk.  The file size threshold and the increment size values are defined in WvIn.h.
<i>Members (control parameters):</i>
  <b>.rate</b> - ( float , READ/WRITE ) - playback rate
  <b>.path</b> - ( string , READ/WRITE ) - specifies file to be played
	</reference>
</element>
<element pattern="WaveLoop">
	<reference>STK waveform oscillator class.
    This class inherits from WvIn and provides audio file looping functionality. WaveLoop supports multi-channel data in interleaved format.  It is important to distinguish the tick() methods, which return samples produced by averaging across sample frames, from the tickFrame() methods, which return pointers to multi-channel sample frames. For single-channel data, these methods return equivalent values.
    by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<i>Members (control parameters):</i>
  <b>.freq</b> - ( float , READ/WRITE ) - set frequency of playback ( loops / second )
  <b>.addPhase</b> - ( float , READ/WRITE ) - offset by phase
  <b>.addPhaseOffset</b> - ( float , READ/WRITE ) - set phase offset
	</reference>
</element>
<element pattern="WvOut">
	<reference>STK audio data output base class.
    This class provides output support for various audio file formats.  It also serves as a base class for "realtime" streaming subclasses.
    WvOut writes samples to an audio file.  It supports multi-channel data in interleaved format.  It is important to distinguish the tick() methods, which output single samples to all channels in a sample frame, from the tickFrame() method, which takes a pointer to multi-channel sample frame data.  Currently, WvOut is non-interpolating and the output rate is always Stk::sampleRate().
<i>Members (control parameters):</i>
  <b>.matFilename</b> - ( string , WRITE only ) - open matlab file for writing
  <b>.sndFilename</b> - ( string , WRITE only ) - open snd file for writing
  <b>.wavFilename</b> - ( string , WRITE only ) - open WAVE file for writing
  <b>.rawFilename</b> - ( string , WRITE only ) - open raw file for writing
  <b>.aifFilename</b> - ( string , WRITE only ) - open AIFF file for writing
  <b>.closeFile</b> - ( string , WRITE only ) - close file properly
	</reference>
</element>
</group>
<element pattern="spork ~" highlight="ck-function" >
	<autocomplete enable="1" />
	<reference>Spork dynamically sporks shred from a function call.
	Sporking a functions returns reference to the new shred.
	</reference>
</element>
<group  highlight="ck-function" >
	<autocomplete append="()" backup_cursor="1"  class="autocomplete_with_parentheses" />
<group name="std">
<element pattern="Std.abs">
	<reference>int <b>abs</b> ( int <b>value</b> );
		returns absolute value of integer</reference>
</element>
<element pattern="Std.fabs">
	<reference>float <b>fabs</b> ( float <b>value</b> );
		returns absolute value of floating point number</reference>
</element>
<element pattern="Std.rand">
	<reference>int <b>rand</b> (  ); // soon-to-be-deprecated; use Math.random()
		generates random integer</reference>
</element>
<element pattern="Std.rand2">
	<reference>int <b>rand2</b> ( int <b>min</b>, int <b>max</b> ); // soon-to-be-deprecated; use Math.random2()
		generates random integer in the range [min, max]</reference>
</element>
<element pattern="Std.randf">
	<reference>float <b>randf</b> (  ); // soon-to-be-deprecated; use Math.randomf()
		generates random floating point number in the range [-1, 1]</reference>
</element>
<element pattern="Std.rand2f">
	<reference>float <b>rand2f</b> ( float <b>min</b>, float <b>max</b> ); // soon-to-be-deprecated; use
Math.random2f()
		generates random floating point number in the range [min, max]</reference>
</element>
<element pattern="Std.sgn">
	<reference>float <b>sgn</b> ( float <b>value</b> );
		computes the sign of the input as -1.0 (negative), 0 (zero), or
1.0 (positive)</reference>
</element>
<element pattern="Std.system">
	<reference>int <b>system</b> ( string <b>cmd</b> );
		pass a command to be executed in the shell</reference>
</element>
<element pattern="Std.atoi">
	<reference>int <b>atoi</b> ( string <b>value</b> );
		converts ascii (string) to integer (int)</reference>
</element>
<element pattern="Std.atof">
	<reference>float <b>atof</b> ( string <b>value</b> );
		converts ascii (string) to floating point value (float)</reference>
</element>
<element pattern="Std.getenv">
	<reference>string <b>getenv</b> ( string <b>key</b> );
		returns the value of an environment variable, such as of "PATH"</reference>
</element>
<element pattern="Std.setenv">
	<reference>int <b>setenv</b> ( string <b>key</b>, string <b>value</b> );
		sets environment variable named 'key' to 'value'</reference>
</element>
<element pattern="Std.mtof">
	<reference>float <b>mtof</b> ( float <b>value</b> );
		converts a MIDI note number to frequency (Hz)
		note the input value is of type 'float' (supports fractional note number)</reference>
</element>
<element pattern="Std.ftom">
	<reference>float <b>ftom</b> ( float <b>value</b> );
		converts frequency (Hz) to MIDI note number space</reference>
</element>
<element pattern="Std.powtodb">
	<reference>float <b>powtodb</b> ( float <b>value</b> );
		converts signal power ratio to decibels (dB)</reference>
</element>
<element pattern="Std.rmstodb">
	<reference>float <b>rmstodb</b> ( float <b>value</b> );
		converts linear amplitude to decibels (dB)</reference>
</element>
<element pattern="Std.dbtopow">
	<reference>float <b>dbtopow</b> ( float <b>value</b> );
		converts decibels (dB) to signal power ratio</reference>
</element>
<element pattern="Std.dbtorms">
	<reference>float <b>dbtorms</b> ( float <b>value</b> );
		converts decibles (dB) to linear amplitude</reference>
</element>
</group>
<group name="machine">
<element pattern="machine.add">
	<reference>int <b>add</b> ( string <b>path</b> );
		 compile and spork a new shred from file at 'path' into the VM now returns the shred ID</reference>
</element>
<element pattern="machine.spork">
	<reference>int <b>spork</b> ( string <b>path</b> );
		 same as add</reference>
</element>
<element pattern="machine.remove">
	<reference>int <b>remove</b> ( int <b>id</b> );
		 remove shred from VM by shred ID (returned by add/spork)</reference>
</element>
<element pattern="machine.replace">
	<reference>int <b>replace</b> ( int <b>id</b>, string <b>path</b> );
		 replace shred with new shred from file returns shred ID , or 0 on error	</reference>
</element>
<element pattern="machine.status">
	<reference>int <b>status</b> (  );
		 display current status of VM (see example/status.ck)</reference>
</element>
<element pattern="machine.crash">
	<reference>void <b>crash</b> (  );
		literally causes the VM to crash.  the very last resort; use with care.  Thanks.</reference>
</element>
</group>

<group name="math">
<element pattern="Math.sin">
	<reference>float <b>sin</b> ( float <b>x</b> );
		computes the sine of <b>x</b></reference>
</element>
<element pattern="Math.cos">
	<reference>float <b>cos</b> ( float <b>x</b> );
		computes the cosine of <b>x</b></reference>
</element>
<element pattern="Math.tan">
	<reference>float <b>tan</b> ( float <b>x</b> );
		computes the tangent of <b>x</b></reference>
</element>
<element pattern="Math.asin">
	<reference>float <b>asin</b> ( float <b>x</b> );
		computes the arc sine of <b>x</b></reference>
</element>
<element pattern="Math.acos">
	<reference>float <b>acos</b> ( float <b>x</b> );
		computes the arc cosine of <b>x</b></reference>
</element>
<element pattern="Math.atan">
	<reference>float <b>atan</b> ( float <b>x</b> );
		computes the arc tangent of <b>x</b></reference>
</element>
<element pattern="Math.atan2">
	<reference>float <b>atan2</b> ( float <b>y</b>, float <b>x</b> );
		computes the principal value of the arc tangent of
<b>y</b>/<b>x</b>, using the signs of both arguments to determine the quadrant of the
return value
	</reference>
</element>
<element pattern="Math.sinh">
	<reference>float <b>sinh</b> ( float <b>x</b> );
		computes the hyperbolic sine of <b>x</b></reference>
</element>
<element pattern="Math.cosh">
	<reference>float <b>cosh</b> ( float <b>x</b> );
		computes the hyperbolic cosine of <b>x</b></reference>
</element>
<element pattern="Math.tanh">
	<reference>float <b>tanh</b> ( float <b>x</b> );
		computes the hyperbolic tangent of <b>x</b></reference>
</element>
<element pattern="Math.hypot">
	<reference>float <b>hypot</b> ( float <b>x</b>, float <b>y</b> );
		computes the euclidean distance of the orthogonal vectors (<b>x</b>,0)
and (0,<b>y</b>)</reference>
</element>
<element pattern="Math.pow">
	<reference>float <b>pow</b> ( float <b>x</b>, float <b>y</b> );
		computes <b>x</b> taken to the <b>y</b>-th power</reference>
</element>
<element pattern="Math.ensurePow2">
	<reference>int Math.ensurePow2( int x ) - returns the next largest integer power of 2.</reference>
</element>
<element pattern="Math.sqrt">
	<reference>float <b>sqrt</b> ( float <b>x</b> );
		computes the nonnegative square root of <b>x</b>  (x must
be >= 0)</reference>
</element>
<element pattern="Math.exp">
	<reference>float <b>exp</b> ( float <b>x</b> );
		computes e^<b>x</b>, the base-e exponential of <b>x</b></reference>
</element>
<element pattern="Math.log">
	<reference>float <b>log</b> ( float <b>x</b> );
		computes the natural logarithm of <b>x</b></reference>
</element>
<element pattern="Math.log2">
	<reference>float <b>log2</b> ( float <b>x</b> );
		computes the logarithm of <b>x</b> to base 2</reference>
</element>
<element pattern="Math.log10">
	<reference>float <b>log10</b> ( float <b>x</b> );
		computes the logarithm of <b>x</b> to base 10</reference>
</element>
<element pattern="Math.random">
	<reference>int <b>random</b> (  );
		generates random integer between 0 and Math.RANDOM_MAX>(NOTE: Math.random*() functions use a different,
superior random number generator than the Std.rand*() functions)</reference>
</element>
<element pattern="Math.random2">
	<reference>int <b>random2</b> ( int <b>min</b>, int <b>max</b> );
		generates random integer in the range [min, max]</reference>
</element>
<element pattern="Math.randomf">
	<reference>float <b>randomf</b> (  );
		generates random floating point number in the range [0, 1]
(NOTE: this is different semantics than Std.randf(), which has the range [-1,1])</reference>
</element>
<element pattern="Math.random2f">
	<reference>float <b>random2f</b> ( float <b>min</b>, float <b>max</b> );
		generates random floating point number in the range [min, max]</reference>
</element>
<element pattern="Math.floor">
	<reference>float <b>floor</b> ( float <b>x</b> );
		round to largest integral value (returned as float) not greater
than <b>x</b></reference>
</element>
<element pattern="Math.ceil">
	<reference>float <b>ceil</b> ( float <b>x</b> );
		round to smallest integral value (returned as float) not less
than <b>x</b></reference>
</element>
<element pattern="Math.round">
	<reference>float <b>round</b> ( float <b>x</b> );
		round to nearest integral value (returned as float)</reference>
</element>
<element pattern="Math.trunc">
	<reference>float <b>trunc</b> ( float <b>x</b> );
		round to largest integral value (returned as float) no greater in
magnitude than <b>x</b></reference>
</element>
<element pattern="Math.fmod">
	<reference>float <b>fmod</b> ( float <b>x</b>, float <b>y</b> );
		computes the floating point remainder of <b>x</b> / <b>y</b></reference>
</element>
<element pattern="Math.remainder">
	<reference>float <b>remainder</b> ( float <b>x</b>, float <b>y</b> );
		computes the value r such that r = <b>x</b> - n * <b>y</b>, where n is the integer nearest the exact value of <b>x</b> / <b>y</b>.  If there are two integers closest to <b>x</b> / <b>y</b>, n shall be the even one. If r is zero, it is given the same sign as <b>x</b></reference>
</element>
<element pattern="Math.min">
	<reference>float <b>min</b> ( float <b>x</b>, float <b>y</b> );
		choose lesser of two values</reference>
</element>
<element pattern="Math.max">
	<reference>float <b>max</b> ( float <b>x</b>, float <b>y</b> );
		choose greater of two values</reference>
</element>
<element pattern="Math.nextpow2">
	<reference>int <b>nextpow2</b> ( int <b>x</b> );
		computes the integeral (returned as int) smallest power of 2 greater than the value of <b>x</b></reference>
</element>
<element pattern="Math.isinf">
	<reference>float <b>isinf</b> ( float <b>x</b> );
		tests if <b>x</b> is infinity</reference>
</element>
<element pattern="Math.isnan">
	<reference>float <b>isnan</b> ( float <b>x</b> );
		tests if <b>x</b> "is not a number"</reference>
</element>
</group>
</group>
<group  highlight="ck-variable">
<element pattern="now">
	<reference>The keyword now is the key to reasoning about and controlling time in ChucK.
Some properties of now include:
    now is a special variable of type time.
    now holds the current ChucK time (when read).
    modifying now has the side effects of:
        advancing time;
        suspending the current process (called shred) until the desired time is reached - allowing other shreds and audio synthesis to compute;
    the value of now only changes when it is explicitly modified.	</reference>
</element>

</group>
<group  highlight="ck-type">
<element pattern="int">
	<reference>integer (signed)</reference>
</element>
<element pattern="float">
	<reference>floating point number (in ChucK, a float is by default double-precision)</reference>
</element>
<element pattern="time">
	<reference>ChucKian time</reference>
</element>
<element pattern="dur">
	<reference>ChucKian duration</reference>
</element>
<element pattern="void">
	<reference>(no type)</reference>
</element>
<element pattern="complex">
	<reference>complex number in rectangular form a + bi
	The (floating point) real and imaginary parts of a complex number can be accessed with the .re and .im components of a complex number:
	#(2.0,3.5) => complex cmp;
	cmp.re => float x; // x is 2.0
	cmp.im => float y; //y is 3.5</reference>
</element>
<element pattern="polar">
	<reference>complex number in polar form
	The polar type offers an equivalent, alternative representation of complex numbers in terms of a magnitude and phase value.
	A polar representation of a complex number can be declared as:
	%(2, .5*pi) => polar pol; // pol is 2∠.5π
The magnitude and phase values can be accessed via .mag and .phase:
	%(2, .5*pi) => polar pol;
	pol.mag => float m; // m is 2
	pol.phase => float p; //p is .5π</reference>
</element>
<element pattern="string">
	<reference>string (of characters)</reference>
</element>
<element pattern="Object">
	<reference></reference>
</element>
<element pattern="Event">
	<reference></reference>
</element>
<element pattern="array">
	<reference>N-dimensional ordered set of data (of the same type)</reference>
</element>
<element pattern="UGen">
	<reference>extendable unit generator base class</reference>
</element>
<element pattern="Shred">
	<reference>
 // spork a new shred to start running from go(),
 // store reference to new shred in offspring
    spork ~ go() => Shred @ offspring;</reference>
</element>
</group>
<group name="constant" highlight="special-value">
<autocomplete enable="1" />
<element pattern="Math.PI">
	<reference>float <b>PI</b>;
	constant PI; use as: Math.PI</reference>
</element>
<element pattern="Math.TWO_PI">
	<reference>float <b>TWO_PI</b>;
	constant PI*2; example usage: Math.TWO_PI</reference>
</element>
<element pattern="Math.e">
	<reference>float <b>e</b>; // same as: E
	Euler's constant, base of natural logarithm; same as Math.exp(1); use as: Math.e or Math.E</reference>
</element>
<element pattern="Math.j">
	<reference>complex <b>i</b>; // same as: j, I, or J
	the imaginary number 'i' as a complex value; use as: Math.i or Math.j or Math.I or Math.J</reference>
</element>
<element pattern="Math.RANDOM_MAX">
	<reference>int <b>RANDOM_MAX</b>;
	max value returned by Math.random()
	(NOTE: not to be confused with Std.rand*)</reference>
</element>
<element pattern="Math.INFINITY">
	<reference>float Math.INFINITY  -constant representing infinity
	</reference>
</element>
<element pattern="Math.FLOAT_MAX">
	<reference>float Math.FLOAT_MAX -constant set to the largest possible value a float can have.
	</reference>
</element>
<element pattern="Math.FLOAT_MIN_MAG">
	<reference>float Math.FLOAT_MIN_MAG - constant set to the smallest positive value a float can have
	</reference>
</element>
<element pattern="Math.INT_MAX">
	<reference>int Math.INT_MAX -constant set to the largest value a integer can have
	</reference>
</element>
</group>
<group  highlight="keyword">
	<autocomplete enable="1" />
<element pattern="if"/>
<element pattern="else"/>
<element pattern="while"/>
<element pattern="do"/>
<element pattern="until"/>
<element pattern="for"/>
<element pattern="break"/>
<element pattern="function" />
<element pattern="fun" />
<element pattern="me">
	<reference>The me keyword (type Shred) refers the current shred.
Sometimes it is useful to suspend the current shred without advancing time, and give other shreds shreduled for the current time a chance to execute. me.yield() does exactly that. This is often useful immediately after sporking a new shred, when you would like for the new shred to have a chance to run but you do not want to advance time yet for yourself.</reference>
</element>
<element pattern="new" />
</group>
<group  highlight="ck-operator">
<element pattern="=>">
	<reference>foundational ChucK operator
		=> connects two unit generators:
			SinOsc b => Gain g => BiQuad f => dac;
		=> does assignment on primitive types (int, float, dur, time):
			4 + foo => int bar;
		=> chuck values to a function == function call
			( 30, 1000 ) => Math.rand2f;
	</reference>
</element>
<element pattern="@=>">
	<reference>explicit assignment ChucK operator
		@=> can be used for reference assignments of objects,classes,arrays.
		reference assign moe to larry, such that both moe and larry reference the same object:
			Object moe @=> Object @ larry;
		array initialization:
			[ 1, 2 ] @=> int ar[];
		using new:
			new Object @=> moe;
	</reference>
</element>
<element pattern="+=>">
	<reference>add 4 to foo and assign result to foo
    4 +=> foo;</reference>
</element>
<element pattern="-=>">
	<reference>subtract 10 from foo and assign result to foo
    remember this is (foo-10), not (10-foo)
    10 -=> foo;</reference>
</element>
<element pattern="*=>">
	<reference>2 times foo assign result to foo
    2 *=> foo;</reference>
</element>
<element pattern="/=>">
	<reference>divide 4 into foo and assign result to foo
    again remember this is (foo/4), not (4/foo)
    4 /=> foo;</reference>
</element>
<element pattern="%=>">
	<reference>mod foo by T and assign result to foo
    T %=> foo;</reference>
</element>
<element pattern="&amp;=>">
	<reference>bitwise AND 0xff and bar and assign result to bar
    0xff &amp;=> bar;</reference>
</element>
<element pattern="|=>">
	<reference>bitwise OR 0xff and bar and assign result to bar
    0xff |=> bar;</reference>
</element>
</group>
<group highlight="unit">
	<autocomplete enable="1" />
<element pattern="samp">
	<reference>duration of 1 sample in ChucK time</reference>
</element>
<element pattern="ms">
	<reference>duration of 1 millisecond</reference>
</element>
<element pattern="second">
	<reference>duration of 1 second</reference>
</element>
<element pattern="minute">
	<reference>duration of 1 minute</reference>
</element>
<element pattern="hour">
	<reference>duration of 1 hour</reference>
</element>
<element pattern="day">
	<reference>duration of 1 day</reference>
</element>
<element pattern="week">
	<reference>duration of 1 week</reference>
</element>
</group>

<group name="control parameters" highlight="ck-attribute">
	<autocomplete enable="1" />
	<element pattern=".a" />
	<element pattern=".addPhase" />
	<element pattern=".addPhaseOffset" />
	<element pattern=".addr" />
	<element pattern=".adsrTarget" />
	<element pattern=".afterTouch" />
	<element pattern=".aifFilename" />
	<element pattern=".allpass" />
	<element pattern=".aperture" />
	<element pattern=".attackRate" />
	<element pattern=".attackTime" />
	<element pattern=".b" />
	<element pattern=".baseLoopGain" />
	<element pattern=".bi" />
	<element pattern=".blackmanHarris" />
	<element pattern=".blockZero" />
	<element pattern=".blowPosition" />
	<element pattern=".bodySize" />
	<element pattern=".bowMotion" />
	<element pattern=".bowPosition" />
	<element pattern=".bowPressure" />
	<element pattern=".bowRate" />
	<element pattern=".chan" />
	<element pattern=".channel" />
	<element pattern=".channels" />
	<element pattern=".chunks" />
	<element pattern=".clear" />
	<element pattern=".closeFile" />
	<element pattern=".coefs" />
	<element pattern=".compress" />
	<element pattern=".compute" />
	<element pattern=".controlChange" />
	<element pattern=".controlOne" />
	<element pattern=".controlTwo" />
	<element pattern=".cval" />
	<element pattern=".cvals" />
	<element pattern=".damp" />
	<element pattern=".decay" />
	<element pattern=".decayRate" />
	<element pattern=".decayTime" />
	<element pattern=".delay" />
	<element pattern=".directGain" />
	<element pattern=".duck" />
	<element pattern=".duration" />
	<element pattern=".endReflection" />
	<element pattern=".energy" />
	<element pattern=".eqzs" />
	<element pattern=".expand" />
	<element pattern=".externalSideInput" />
	<element pattern=".feedback" />
	<element pattern=".filterQ" />
	<element pattern=".filterSweepRate" />
	<element pattern=".freq" />
	<element pattern=".fval" />
	<element pattern=".fvals" />
	<element pattern=".gain" />
	<element pattern=".gate" />
	<element pattern=".getVoice" />
	<element pattern=".hamming" />
	<element pattern=".hann" />
	<element pattern=".harmonics" />
	<element pattern=".integrationConstant" />
	<element pattern=".interp" />
	<element pattern=".jetDelay" />
	<element pattern=".jetReflection" />
	<element pattern=".keyOff" />
	<element pattern=".keyOn" />
	<element pattern=".left" />
	<element pattern=".length" />
	<element pattern=".lfoDepth" />
	<element pattern=".lfoSpeed" />
	<element pattern=".limit" />
	<element pattern=".lip" />
	<element pattern=".lookup" />
	<element pattern=".loop" />
	<element pattern=".loopEnd" />
	<element pattern=".loopEndRec" />
	<element pattern=".loopRec" />
	<element pattern=".loopStart" />
	<element pattern=".loudness" />
	<element pattern=".masterGain" />
	<element pattern=".matFilename" />
	<element pattern=".max" />
	<element pattern=".maxVoices" />
	<element pattern=".mix" />
	<element pattern=".modDepth" />
	<element pattern=".mode" />
	<element pattern=".modeGain" />
	<element pattern=".modeRadius" />
	<element pattern=".modeRatio" />
	<element pattern=".modesGain" />
	<element pattern=".modFreq" />
	<element pattern=".name" />
	<element pattern=".next" />
	<element pattern=".noiseGain" />
	<element pattern=".norm" />
	<element pattern=".noteOff" />
	<element pattern=".noteOn" />
	<element pattern=".objects" />
	<element pattern=".pan" />
	<element pattern=".path" />
	<element pattern=".percent" />
	<element pattern=".pfreq" />
	<element pattern=".phase" />
	<element pattern=".phaseOffset" />
	<element pattern=".phoneme" />
	<element pattern=".phonemeNum" />
	<element pattern=".pickupPosition" />
	<element pattern=".pitchSweepRate" />
	<element pattern=".play" />
	<element pattern=".playPos" />
	<element pattern=".pluck" />
	<element pattern=".pluckPos" />
	<element pattern=".pole" />
	<element pattern=".port" />
	<element pattern=".pos" />
	<element pattern=".prad" />
	<element pattern=".preset" />
	<element pattern=".pressure" />
	<element pattern=".Q" />
	<element pattern=".quiet" />
	<element pattern=".radius" />
	<element pattern=".rampDown" />
	<element pattern=".rampUp" />
	<element pattern=".randomGain" />
	<element pattern=".rate" />
	<element pattern=".ratio" />
	<element pattern=".rawFilename" />
	<element pattern=".read" />
	<element pattern=".record" />
	<element pattern=".recPos" />
	<element pattern=".recRamp" />
	<element pattern=".rectangle" />
	<element pattern=".reed" />
	<element pattern=".releaseRate" />
	<element pattern=".releaseTime" />
	<element pattern=".reset" />
	<element pattern=".right" />
	<element pattern=".samples" />
	<element pattern=".set" />
	<element pattern=".sfreq" />
	<element pattern=".shift" />
	<element pattern=".sideInput" />
	<element pattern=".size" />
	<element pattern=".slide" />
	<element pattern=".slopeAbove" />
	<element pattern=".slopeBelow" />
	<element pattern=".sndFilename" />
	<element pattern=".speak" />
	<element pattern=".spectralTilt" />
	<element pattern=".spectrum" />
	<element pattern=".startBlowing" />
	<element pattern=".startBowing" />
	<element pattern=".state" />
	<element pattern=".stickHardness" />
	<element pattern=".stiffness" />
	<element pattern=".stopBlowing" />
	<element pattern=".stopBowing" />
	<element pattern=".stretch" />
	<element pattern=".strike" />
	<element pattern=".strikePosition" />
	<element pattern=".stringDamping" />
	<element pattern=".stringDetune" />
	<element pattern=".sustain" />
	<element pattern=".sustainLevel" />
	<element pattern=".sync" />
	<element pattern=".target" />
	<element pattern=".thresh" />
	<element pattern=".time" />
	<element pattern=".tonehole" />
	<element pattern=".track" />
	<element pattern=".transform" />
	<element pattern=".triangle" />
	<element pattern=".unVoiced" />
	<element pattern=".upchuck" />
	<element pattern=".value" />
	<element pattern=".valueAt" />
	<element pattern=".vent" />
	<element pattern=".vibratoFreq" />
	<element pattern=".vibratoGain" />
	<element pattern=".vibratoRate" />
	<element pattern=".voiced" />
	<element pattern=".voiceGain" />
	<element pattern=".voiceMix" />
	<element pattern=".volume" />
	<element pattern=".vowel" />
	<element pattern=".wavFilename" />
	<element pattern=".when" />
	<element pattern=".width" />
	<element pattern=".window" />
	<element pattern=".windowSize" />
	<element pattern=".write" />
	<element pattern=".zero" />
	<element pattern=".zfreq" />
	<element pattern=".zrad" />
</group>

<element pattern="&#60;&#60;&#60;" highlight="keyword">
	<context symbols="\>&#13;&#10;" highlight="string">
		<element pattern="\\." is_regex="1" highlight="string"/>
		<element pattern="(&#10;|&#13;|&#13;&#10;|>>>)" is_regex="1" highlight="keyword" ends_context="1" />
	</context>
</element>

<element pattern="&#34;" highlight="string">
	<context symbols="\&#34;" highlight="string">
		<element pattern="\\." is_regex="1" highlight="string"/>
		<element pattern="&#34;" highlight="string" ends_context="1" />
	</context>
</element>
<element pattern="'" highlight="string">
	<context symbols="\'" highlight="string">
		<element pattern="\\." is_regex="1" highlight="string"/>
		<element pattern="'" highlight="string" ends_context="1" />
	</context>
</element>
<element pattern="[0-9.]+" is_regex="1" highlight="value"/>
<element id="e.lcomment" pattern="/*" starts_block="1" highlight="comment" block_name="C style comment">
	<context symbols="*/&#9;&#10;&#13;" highlight="comment" >
		<element pattern="/*" highlight="error"/>
		<element pattern="*/" ends_block="1" blockstartelement="e.lcomment" highlight="comment" ends_context="1" />
	</context>
</element>
<element pattern="//" highlight="comment">
	<context symbols="&#10;&#13;" highlight="comment">
		<element pattern="(&#10;|&#13;|&#13;&#10;)" is_regex="1" ends_context="1" />
	</context>
</element>
<element pattern="#" highlight="comment">
	<context symbols="&#10;&#13;" highlight="comment">
		<element pattern="(&#10;|&#13;|&#13;&#10;)" is_regex="1" ends_context="1" />
	</context>
</element>
</context>
</definition>
</bflang>