/usr/include/bm/bmblocks.h is in bmagic 3.7.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 | #ifndef BM_BLOCKS__H__INCLUDED__
#define BM_BLOCKS__H__INCLUDED__
/*
Copyright(c) 2002-2010 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information please visit: http://bmagic.sourceforge.net
*/
#include "bmfwd.h"
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable : 4100)
#endif
namespace bm
{
/*!
@brief bitvector blocks manager
Embedded class managing bit-blocks on very low level.
Includes number of functor classes used in different bitset algorithms.
@ingroup bvector
@internal
*/
template<class Alloc/*, class MS*/>
class blocks_manager
{
public:
typedef Alloc allocator_type;
/** Base functor class (block visitor)*/
class bm_func_base
{
public:
bm_func_base(blocks_manager& bman) : bm_(bman) {}
void on_empty_top(unsigned /* top_block_idx*/ ) {}
void on_empty_block(unsigned /* block_idx*/ ) {}
private:
bm_func_base(const bm_func_base&);
bm_func_base& operator=(const bm_func_base&);
protected:
blocks_manager& bm_;
};
/** Base functor class connected for "constant" functors*/
class bm_func_base_const
{
public:
bm_func_base_const(const blocks_manager& bman) : bm_(bman) {}
void on_empty_top(unsigned /* top_block_idx*/ ) {}
void on_empty_block(unsigned /* block_idx*/ ) {}
private:
bm_func_base_const(const bm_func_base_const&);
bm_func_base_const& operator=(const bm_func_base_const&);
protected:
const blocks_manager& bm_;
};
/** Base class for bitcounting functors */
class block_count_base : public bm_func_base_const
{
protected:
block_count_base(const blocks_manager& bm)
: bm_func_base_const(bm) {}
bm::id_t block_count(const bm::word_t* block) const
{
return this->bm_.block_bitcount(block);
}
};
/** Bitcounting functor */
class block_count_func : public block_count_base
{
public:
block_count_func(const blocks_manager& bm)
: block_count_base(bm), count_(0) {}
bm::id_t count() const { return count_; }
void operator()(const bm::word_t* block)
{
count_ += this->block_count(block);
}
private:
bm::id_t count_;
};
/** Bitcounting functor filling the block counts array*/
class block_count_arr_func : public block_count_base
{
public:
block_count_arr_func(const blocks_manager& bm, unsigned* arr)
: block_count_base(bm), arr_(arr), last_idx_(0)
{
arr_[0] = 0;
}
void operator()(const bm::word_t* block, unsigned idx)
{
while (++last_idx_ < idx)
{
arr_[last_idx_] = 0;
}
arr_[idx] = this->block_count(block);
last_idx_ = idx;
}
unsigned last_block() const { return last_idx_; }
private:
unsigned* arr_;
unsigned last_idx_;
};
/** bit value change counting functor */
class block_count_change_func : public bm_func_base_const
{
public:
block_count_change_func(const blocks_manager& bm)
: bm_func_base_const(bm),
count_(0),
prev_block_border_bit_(0)
{}
bm::id_t block_count(const bm::word_t* block, unsigned idx)
{
bm::id_t count = 0;
bm::id_t first_bit;
if (IS_FULL_BLOCK(block) || (block == 0))
{
count = 1;
if (idx)
{
first_bit = block ? 1 : 0;
count -= !(prev_block_border_bit_ ^ first_bit);
}
prev_block_border_bit_ = block ? 1 : 0;
}
else
{
if (BM_IS_GAP(block))
{
gap_word_t* gap_block = BMGAP_PTR(block);
count = gap_length(gap_block) - 1;
if (idx)
{
first_bit = gap_test(gap_block, 0);
count -= !(prev_block_border_bit_ ^ first_bit);
}
prev_block_border_bit_ =
gap_test(gap_block, gap_max_bits-1);
}
else // bitset
{
unsigned bit_count;
count = bit_block_calc_count_change(block,
block + bm::set_block_size,
&bit_count);
if (idx)
{
first_bit = block[0] & 1;
count -= !(prev_block_border_bit_ ^ first_bit);
}
prev_block_border_bit_ =
block[set_block_size-1] >> ((sizeof(block[0]) * 8) - 1);
}
}
return count;
}
bm::id_t count() const { return count_; }
void operator()(const bm::word_t* block, unsigned idx)
{
count_ += block_count(block, idx);
}
private:
bm::id_t count_;
bm::id_t prev_block_border_bit_;
};
/** Functor detects if any bit set*/
class block_any_func : public bm_func_base_const
{
public:
block_any_func(const blocks_manager& bm)
: bm_func_base_const(bm)
{}
bool operator()(const bm::word_t* block, unsigned /* idx */)
{
if (IS_FULL_BLOCK(block)) return true;
if (BM_IS_GAP(block)) // gap block
{
if (!gap_is_all_zero(BMGAP_PTR(block), bm::gap_max_bits))
{
return true;
}
}
else // bitset
{
bm::wordop_t* blk1 = (wordop_t*)block;
bm::wordop_t* blk2 =
(wordop_t*)(block + bm::set_block_size);
if (!bit_is_all_zero(blk1, blk2))
{
return true;
}
}
return false;
}
};
/*! Change GAP level lengths functor */
class gap_level_func : public bm_func_base
{
public:
gap_level_func(blocks_manager& bm, const gap_word_t* glevel_len)
: bm_func_base(bm),
glevel_len_(glevel_len)
{
BM_ASSERT(glevel_len);
}
void operator()(bm::word_t* block, unsigned idx)
{
blocks_manager& bman = this->bm_;
if (!BM_IS_GAP(block))
return;
gap_word_t* gap_blk = BMGAP_PTR(block);
// TODO: Use the same code as in the optimize functor
if (gap_is_all_zero(gap_blk, bm::gap_max_bits))
{
bman.set_block_ptr(idx, 0);
goto free_block;
}
else
if (gap_is_all_one(gap_blk, bm::gap_max_bits))
{
bman.set_block_ptr(idx, FULL_BLOCK_ADDR);
free_block:
bman.get_allocator().free_gap_block(gap_blk,
bman.glen());
bman.set_block_bit(idx);
return;
}
unsigned len = gap_length(gap_blk);
int level = gap_calc_level(len, glevel_len_);
if (level == -1)
{
bm::word_t* blk =
bman.get_allocator().alloc_bit_block();
bman.set_block_ptr(idx, blk);
bman.set_block_bit(idx);
gap_convert_to_bitset(blk, gap_blk);
}
else
{
gap_word_t* gap_blk_new =
bman.allocate_gap_block(level, gap_blk, glevel_len_);
bm::word_t* p = (bm::word_t*) gap_blk_new;
BMSET_PTRGAP(p);
bman.set_block_ptr(idx, p);
}
bman.get_allocator().free_gap_block(gap_blk, bman.glen());
}
private:
const gap_word_t* glevel_len_;
};
/*! Bitblock optimization functor */
class block_opt_func : public bm_func_base
{
public:
block_opt_func(blocks_manager& bm,
bm::word_t* temp_block,
int opt_mode,
bv_statistics* bv_stat=0)
: bm_func_base(bm),
temp_block_(temp_block),
opt_mode_(opt_mode),
stat_(bv_stat),
empty_(0)
{
BM_ASSERT(temp_block);
}
void on_empty_top(unsigned i)
{
bm::word_t*** blk_root = this->bm_.get_rootblock();
bm::word_t** blk_blk = blk_root[i];
if (blk_blk)
{
this->bm_.get_allocator().free_ptr(blk_blk);
blk_root[i] = 0;
}
if (stat_)
{
stat_->max_serialize_mem += sizeof(unsigned) + 1;
}
}
void on_empty_block(unsigned /* block_idx*/ ) { ++empty_; }
void operator()(bm::word_t* block, unsigned idx)
{
blocks_manager& bman = this->bm_;
if (IS_FULL_BLOCK(block))
{
++empty_;
return;
}
if (stat_)
{
stat_->max_serialize_mem += empty_ << 2;
empty_ = 0;
}
gap_word_t* gap_blk;
if (BM_IS_GAP(block)) // gap block
{
gap_blk = BMGAP_PTR(block);
// check if block is empty (or all 1)
if (gap_is_all_zero(gap_blk, bm::gap_max_bits))
{
bman.set_block_ptr(idx, 0);
this->free_block(gap_blk, idx);
++empty_;
}
else
if (gap_is_all_one(gap_blk, bm::gap_max_bits))
{
bman.set_block_ptr(idx, FULL_BLOCK_ADDR);
this->free_block(gap_blk, idx);
++empty_;
}
else
{
// regular gap block - compute statistics
if (stat_)
{
stat_->add_gap_block(
bm::gap_capacity(gap_blk, bman.glen()),
bm::gap_length(gap_blk));
}
}
}
else // bit block
{
if (opt_mode_ < 3) // free_01 optimization
{
bm::wordop_t* blk1 = (wordop_t*)block;
bm::wordop_t* blk2 =
(wordop_t*)(block + bm::set_block_size);
bool b = bit_is_all_zero(blk1, blk2);
if (b)
{
bman.get_allocator().free_bit_block(block);
bman.set_block_ptr(idx, 0);
++empty_;
}
else
if (opt_mode_ == 2) // check if it is all 1 block
{
b = is_bits_one(blk1, blk2);
if (b)
{
bman.get_allocator().free_bit_block(block);
bman.set_block_ptr(idx, FULL_BLOCK_ADDR);
++empty_;
}
}
if (!b && stat_)
stat_->add_bit_block();
return;
}
// try to compress
gap_word_t* tmp_gap_blk = (gap_word_t*)temp_block_;
*tmp_gap_blk = bm::gap_max_level << 1;
unsigned threashold = bman.glen(bm::gap_max_level)-4;
unsigned len = bit_convert_to_gap(tmp_gap_blk,
block,
bm::gap_max_bits,
threashold);
if (len) // compression successful
{
bman.get_allocator().free_bit_block(block);
// check if new gap block can be eliminated
if (gap_is_all_zero(tmp_gap_blk, bm::gap_max_bits))
{
bman.set_block_ptr(idx, 0);
++empty_;
}
else if (gap_is_all_one(tmp_gap_blk, bm::gap_max_bits))
{
bman.set_block_ptr(idx, FULL_BLOCK_ADDR);
++empty_;
}
else
{
int level = bm::gap_calc_level(len, bman.glen());
gap_blk =
bman.allocate_gap_block(level, tmp_gap_blk);
bman.set_block_ptr(idx, (bm::word_t*)gap_blk);
bman.set_block_gap(idx);
if (stat_)
{
stat_->add_gap_block(
bm::gap_capacity(gap_blk, bman.glen()),
bm::gap_length(gap_blk));
}
}
}
else // non-compressable bit-block
{
if (stat_)
stat_->add_bit_block();
}
}
}
private:
void free_block(gap_word_t* gap_blk, unsigned idx)
{
this->bm_.get_allocator().free_gap_block(gap_blk,
this->bm_.glen());
this->bm_.set_block_bit(idx);
}
private:
bm::word_t* temp_block_;
int opt_mode_;
bv_statistics* stat_;
unsigned empty_;
};
/** Bitblock invert functor */
class block_invert_func : public bm_func_base
{
public:
block_invert_func(blocks_manager& bm)
: bm_func_base(bm) {}
void operator()(bm::word_t* block, unsigned idx)
{
if (!block)
{
this->bm_.set_block(idx, FULL_BLOCK_ADDR);
}
else
if (IS_FULL_BLOCK(block))
{
this->bm_.set_block_ptr(idx, 0);
}
else
{
if (BM_IS_GAP(block)) // gap block
{
gap_invert(BMGAP_PTR(block));
}
else // bit block
{
bm::wordop_t* wrd_ptr = (wordop_t*) block;
bm::wordop_t* wrd_end =
(wordop_t*) (block + bm::set_block_size);
bit_invert(wrd_ptr, wrd_end);
}
}
}
};
/** Set block zero functor */
class block_zero_func : public bm_func_base
{
public:
block_zero_func(blocks_manager& bm)
: bm_func_base(bm)
{}
void operator()(bm::word_t* block, unsigned idx)
{
if (BM_IS_GAP(block))
gap_set_all(BMGAP_PTR(block), bm::gap_max_bits, 0);
else // BIT block
{
if (IS_FULL_BLOCK(block))
this->bm_.set_block_ptr(idx, 0);
else
bit_block_set(block, 0);
}
}
};
/** Fill block with all-one bits functor */
class block_one_func : public bm_func_base
{
public:
block_one_func(blocks_manager& bm) : bm_func_base(bm) {}
void operator()(bm::word_t* block, unsigned idx)
{
if (!IS_FULL_BLOCK(block))
{
this->bm_.set_block_all_set(idx);
}
}
};
/** Block deallocation functor */
class block_free_func : public bm_func_base
{
public:
block_free_func(blocks_manager& bm) : bm_func_base(bm) {}
void operator()(bm::word_t* block)//, unsigned idx)
{
blocks_manager& bman = this->bm_;
if (BM_IS_GAP(block)) // gap block
{
bman.get_allocator().free_gap_block(BMGAP_PTR(block),
bman.glen());
}
else
{
bman.get_allocator().free_bit_block(block);
}
}
};
/** Block copy functor */
class block_copy_func : public bm_func_base
{
public:
block_copy_func(blocks_manager& bm_target,
const blocks_manager& bm_src)
: bm_func_base(bm_target),
bm_src_(bm_src)
{}
void operator()(bm::word_t* block, unsigned idx)
{
bm::word_t* new_blk;
blocks_manager& bman = this->bm_;
bool is_gap = BM_IS_GAP(block);
if (is_gap)
{
bm::gap_word_t* gap_block = BMGAP_PTR(block);
unsigned level = gap_level(gap_block);
new_blk = (bm::word_t*)
bman.get_allocator().alloc_gap_block(level,
bman.glen());
int len = gap_length(BMGAP_PTR(block));
::memcpy(new_blk, gap_block, len * sizeof(gap_word_t));
}
else
{
new_blk = block;
if (!IS_FULL_BLOCK(block))
{
new_blk = bman.get_allocator().alloc_bit_block();
bit_block_copy(new_blk, block);
}
}
bman.set_block(idx, new_blk, is_gap);
}
private:
block_copy_func(const block_copy_func&);
block_copy_func& operator=(const block_copy_func&);
private:
const blocks_manager& bm_src_;
};
public:
blocks_manager(const gap_word_t* glevel_len,
bm::id_t max_bits,
const Alloc& alloc = Alloc())
: temp_block_(0),
alloc_(alloc)
{
::memcpy(glevel_len_, glevel_len, sizeof(glevel_len_));
blocks_ = 0;
top_block_size_ = effective_top_block_size_ = 0;
if (max_bits)
{
top_block_size_ = compute_top_block_size(max_bits);
init_tree();
}
volatile const char* vp = _copyright<true>::_p;
char c = *vp;
c = 0;
}
blocks_manager(const blocks_manager& blockman)
: blocks_(0),
top_block_size_(blockman.top_block_size_),
effective_top_block_size_(blockman.effective_top_block_size_),
#ifdef BM_DISBALE_BIT_IN_PTR
gap_flags_(blockman.gap_flags_),
#endif
temp_block_(0),
alloc_(blockman.alloc_)
{
::memcpy(glevel_len_, blockman.glevel_len_, sizeof(glevel_len_));
init_tree();
blocks_manager* bm =
const_cast<blocks_manager*>(&blockman);
word_t*** blk_root = bm->blocks_root();
block_copy_func copy_func(*this, blockman);
for_each_nzblock(blk_root, top_block_size_, copy_func);
}
~blocks_manager()
{
alloc_.free_bit_block(temp_block_);
deinit_tree();
}
void free_ptr(bm::word_t** ptr)
{
if (ptr) alloc_.free_ptr(ptr);
}
/**
\brief Compute size of the block array needed to store bits
\param bits_to_store - supposed capacity (number of bits)
\return size of the top level block
*/
unsigned compute_top_block_size(bm::id_t bits_to_store)
{
if (bits_to_store == bm::id_max) // working in full-range mode
{
return bm::set_array_size;
}
unsigned top_block_size =
bits_to_store / (bm::set_block_size * sizeof(bm::word_t) *
bm::set_array_size * 8);
return top_block_size + (top_block_size < bm::set_array_size);
}
/**
Returns current capacity (bits)
*/
bm::id_t capacity() const
{
// arithmetic overflow protection...
return top_block_size_ == bm::set_array_size ? bm::id_max :
top_block_size_ * bm::set_array_size * bm::bits_in_block;
}
/**
\brief Finds block in 2-level blocks array
\param nb - Index of block (logical linear number)
\return block adress or NULL if not yet allocated
*/
bm::word_t* get_block(unsigned nb) const
{
unsigned block_idx = nb >> bm::set_array_shift;
if (block_idx >= top_block_size_)
{
return 0;
}
bm::word_t** blk_blk = blocks_[block_idx];
return blk_blk ? blk_blk[nb & bm::set_array_mask] : 0;
}
/**
\brief Finds block in 2-level blocks array
Specilized version of get_block(unsigned), returns an additional
condition when there are no more blocks
\param nb - Index of block (logical linear number)
\param no_more_blocks - 1 if there are no more blocks at all
\return block adress or NULL if not yet allocated
*/
bm::word_t* get_block(unsigned nb, int* no_more_blocks) const
{
unsigned block_idx = nb >> bm::set_array_shift;
if (block_idx >= top_block_size_)
{
*no_more_blocks = 1;
return 0;
}
*no_more_blocks = 0;
bm::word_t** blk_blk = blocks_[block_idx];
return blk_blk ? blk_blk[nb & bm::set_array_mask] : 0;
}
/**
Recalculate absolute block address into coordinates
*/
void get_block_coord(unsigned nb, unsigned* i, unsigned* j) const
{
BM_ASSERT(i);
BM_ASSERT(j);
*i = nb >> bm::set_array_shift; // top block address
*j = nb & bm::set_array_mask; // address in sub-block
}
/**
Find the next non-zero block starting from nb
\param nb - block index
\param deep_scan - flag to perform detailed bit-block analysis
@return bm::set_total_blocks - no more blocks
*/
unsigned find_next_nz_block(unsigned nb, bool deep_scan = true) const
{
unsigned i,j;
get_block_coord(nb, &i, &j);
for (;i < effective_top_block_size_; ++i)
{
bm::word_t** blk_blk = blocks_[i];
if (blk_blk)
{
unsigned r = i * bm::set_array_size;
do
{
if (blk_blk[j] && !is_block_zero(r + j, blk_blk[j], deep_scan))
return r + j;
++j;
} while (j < bm::set_array_size);
}
j = 0;
} // for i
return bm::set_total_blocks;
}
/**
\brief Finds block in 2-level blocks array
\param i - top level block index
\param j - second level block index
\return block adress or NULL if not yet allocated
*/
const bm::word_t* get_block(unsigned i, unsigned j) const
{
if (i >= top_block_size_) return 0;
const bm::word_t* const* blk_blk = blocks_[i];
return (blk_blk == 0) ? 0 : blk_blk[j];
}
/**
\brief Function returns top-level block in 2-level blocks array
\param i - top level block index
\return block adress or NULL if not yet allocated
*/
const bm::word_t* const * get_topblock(unsigned i) const
{
return (i >= top_block_size_) ? 0 : blocks_[i];
}
/**
\brief Returns root block in the tree.
*/
bm::word_t*** get_rootblock() const
{
blocks_manager* bm =
const_cast<blocks_manager*>(this);
return bm->blocks_root();
}
void free_block(bm::word_t* block)
{
if (BM_IS_GAP(block))
{
alloc_.free_gap_block(BMGAP_PTR(block), glevel_len_);
}
else
{
alloc_.free_bit_block(block);
}
}
void set_block_all_set(unsigned nb)
{
bm::word_t* block =
set_block(nb, const_cast<bm::word_t*>(FULL_BLOCK_ADDR));
free_block(block);
}
/**
Create(allocate) bit block. Old block (if exists) gets deleted.
*/
bm::word_t* alloc_bit_block(unsigned nb)
{
bm::word_t* block = this->get_allocator().alloc_bit_block();
bm::word_t* old_block = set_block(nb, block);
if (IS_VALID_ADDR(old_block))
{
free_block(old_block);
}
return block;
}
/**
Create all-zeros bit block. Old block (if exists) gets deleted.
*/
bm::word_t* make_bit_block(unsigned nb)
{
bm::word_t* block = this->alloc_bit_block(nb);
bit_block_set(block, 0);
return block;
}
/**
Create bit block as a copy of source block (bit or gap).
Old block (if exists) gets deleted.
*/
bm::word_t* copy_bit_block(unsigned nb,
const bm::word_t* block_src, int is_src_gap)
{
if (block_src == 0)
{
zero_block(nb);
return 0;
}
bm::word_t* block = alloc_bit_block(nb);
if (is_src_gap)
{
gap_word_t* gap_block = BMGAP_PTR(block_src);
gap_convert_to_bitset(block, gap_block);
}
else
{
bit_block_copy(block, block_src);
}
return block;
}
/**
Copy block from another vector.
Note:Target block is always replaced through re-allocation.
*/
bm::word_t* copy_block(unsigned idx, const blocks_manager& bm_src)
{
const bm::word_t* block = bm_src.get_block(idx);
if (block == 0)
{
zero_block(idx);
return 0;
}
bm::word_t* new_blk = 0;
bool is_gap = BM_IS_GAP(block);
if (is_gap)
{
bm::gap_word_t* gap_block = BMGAP_PTR(block);
unsigned level = gap_level(gap_block);
new_blk = (bm::word_t*)
get_allocator().alloc_gap_block(level, glen());
int len = gap_length(BMGAP_PTR(block));
::memcpy(new_blk, gap_block, len * sizeof(gap_word_t));
set_gap_level(new_blk, level);
}
else
{
if (IS_FULL_BLOCK(block))
{
new_blk = FULL_BLOCK_ADDR;
}
else
{
new_blk = get_allocator().alloc_bit_block();
bit_block_copy(new_blk, block);
}
}
set_block(idx, new_blk, is_gap);
return new_blk;
}
/**
Function checks if block is not yet allocated, allocates it and sets to
all-zero or all-one bits.
If content_flag == 1 (ALLSET block) requested and taken block is already ALLSET,
function will return NULL
initial_block_type and actual_block_type : 0 - bitset, 1 - gap
*/
bm::word_t* check_allocate_block(unsigned nb,
unsigned content_flag,
int initial_block_type,
int* actual_block_type,
bool allow_null_ret=true)
{
bm::word_t* block = this->get_block(nb);
if (!IS_VALID_ADDR(block)) // NULL block or ALLSET
{
// if we wanted ALLSET and requested block is ALLSET return NULL
unsigned block_flag = IS_FULL_BLOCK(block);
*actual_block_type = initial_block_type;
if (block_flag == content_flag && allow_null_ret)
{
return 0; // it means nothing to do for the caller
}
if (initial_block_type == 0) // bitset requested
{
block = alloc_.alloc_bit_block();
// initialize block depending on its previous status
bit_block_set(block, block_flag ? 0xFF : 0);
set_block(nb, block, false /*bit*/);
}
else // gap block requested
{
bm::gap_word_t* gap_block = allocate_gap_block(0);
gap_set_all(gap_block, bm::gap_max_bits, block_flag);
set_block(nb, (bm::word_t*)gap_block, true/*gap*/);
return (bm::word_t*)gap_block;
}
}
else // block already exists
{
*actual_block_type = BM_IS_GAP(block);
}
return block;
}
/*! @brief Fills all blocks with 0.
@param free_mem - if true function frees the resources
*/
void set_all_zero(bool free_mem)
{
if (free_mem)
{
// TODO: optimization of top-level realloc
deinit_tree();
init_tree();
}
else
{
block_zero_func zero_func(*this);
unsigned top_size = this->effective_top_block_size();
for_each_nzblock(blocks_, top_size, zero_func);
}
}
/*! Replaces all blocks with ALL_ONE block.
*/
void set_all_one()
{
block_one_func func(*this);
for_each_block(blocks_, top_block_size_,
bm::set_array_size, func);
}
/**
Places new block into descriptors table, returns old block's address.
NOTE:Old block is not deleted.
*/
bm::word_t* set_block(unsigned nb, bm::word_t* block)
{
register unsigned nblk_blk = nb >> bm::set_array_shift;
// auto-resize the top block array
if (nblk_blk >= top_block_size_)
reserve_top_blocks(nblk_blk + 1);
if (nblk_blk >= effective_top_block_size_)
effective_top_block_size_ = nblk_blk + 1;
// If first level array not yet allocated, allocate it and
// assign block to it
if (blocks_[nblk_blk] == 0)
{
blocks_[nblk_blk] = (bm::word_t**)alloc_.alloc_ptr();
::memset(blocks_[nblk_blk], 0,
bm::set_array_size * sizeof(bm::word_t*));
}
// NOTE: block will be replaced without freeing
unsigned j = nb & bm::set_array_mask;
bm::word_t* old_block = blocks_[nblk_blk][j];
blocks_[nblk_blk][j] = block;
return old_block;
}
/**
Allocate an place new GAP block (copy of provided block)
*/
bm::word_t* set_gap_block(unsigned nb,
const gap_word_t* gap_block_src,
int level)
{
if (level == -1)
{
bm::word_t* blk = get_allocator().alloc_bit_block();
set_block(nb, blk);
gap_convert_to_bitset(blk, gap_block_src);
return blk;
}
else
{
gap_word_t* gap_blk = get_allocator().alloc_gap_block(
level, this->glen());
gap_word_t* gap_blk_ptr = BMGAP_PTR(gap_blk);
::memcpy(gap_blk_ptr, gap_block_src,
gap_length(gap_block_src) * sizeof(gap_word_t));
set_gap_level(gap_blk_ptr, level);
set_block(nb, (bm::word_t*)gap_blk, true /*GAP*/);
return (bm::word_t*)gap_blk;
}
}
/**
Places new block into descriptors table, returns old block's address.
Old block is not deleted.
*/
bm::word_t* set_block(unsigned nb, bm::word_t* block, bool gap)
{
if (block)
{
block =
(bm::word_t*) (gap ? BMPTR_SETBIT0(block) : BMPTR_CLEARBIT0(block));
}
// top block index
register unsigned nblk_blk = nb >> bm::set_array_shift;
// auto-resize the top block array
if (nblk_blk >= top_block_size_)
reserve_top_blocks(nblk_blk + 1);
if (nblk_blk >= effective_top_block_size_)
effective_top_block_size_ = nblk_blk + 1;
// If first level array not yet allocated, allocate it and
// assign block to it
if (blocks_[nblk_blk] == 0)
{
blocks_[nblk_blk] = (bm::word_t**)alloc_.alloc_ptr();
::memset(blocks_[nblk_blk], 0,
bm::set_array_size * sizeof(bm::word_t*));
}
// NOTE: block will be replaced without freeing
unsigned j = nb & bm::set_array_mask;
bm::word_t* old_block = blocks_[nblk_blk][j];
blocks_[nblk_blk][j] = block;
return old_block;
}
/**
Places new block into blocks table.
*/
void set_block_ptr(unsigned nb, bm::word_t* block)
{
BM_ASSERT((nb >> bm::set_array_shift) < effective_top_block_size_);
blocks_[nb >> bm::set_array_shift][nb & bm::set_array_mask] = block;
}
/**
\brief Converts block from type gap to conventional bitset block.
\param nb - Block's index.
\param gap_block - Pointer to the gap block,
if NULL block nb will be taken
\param gap_len - GAP block length (optional)
\return new bit block's memory
*/
bm::word_t* convert_gap2bitset(unsigned nb,
const gap_word_t* gap_block=0,
unsigned gap_len=0)
{
bm::word_t* block = this->get_block(nb);
if (gap_block == 0)
{
gap_block = BMGAP_PTR(block);
}
BM_ASSERT(IS_VALID_ADDR((bm::word_t*)gap_block));
bm::word_t* new_block = alloc_.alloc_bit_block();
gap_convert_to_bitset_l(new_block, gap_block, gap_len);
// new block will replace the old one(no deletion)
//set_block_ptr(nb, new_block);
if (block)
{
set_block_ptr(nb, new_block);
alloc_.free_gap_block(BMGAP_PTR(block), glen());
}
else
{
set_block(nb, new_block);
}
return new_block;
}
/**
Make sure block turns into true bit-block if it is GAP or a full block
*/
bm::word_t* deoptimize_block(unsigned nb)
{
bm::word_t* block = this->get_block(nb);
if (BM_IS_GAP(block))
{
return convert_gap2bitset(nb);
}
if (IS_FULL_BLOCK(block))
{
bm::word_t* new_block = get_allocator().alloc_bit_block();
bit_block_copy(new_block, block);
set_block(nb, new_block);
return new_block;
}
return block;
}
/**
Free block, make it zero pointer in the tree
*/
bm::word_t* zero_block(unsigned nb)
{
bm::word_t* block = this->get_block(nb);
if (!block) return block;
free_block(block);
set_block(nb, 0);
return 0;
}
/**
Free block, make it zero pointer in the tree
*/
bm::word_t* zero_block(unsigned i, unsigned j)
{
bm::word_t** blk_blk = blocks_[i];
bm::word_t* block = blk_blk[j];
blk_blk[j] = 0;
free_block(block);
return 0;
}
/**
Count number of bits ON in the block
*/
bm::id_t block_bitcount(const bm::word_t* block) const
{
if (!block) return 0;
id_t count;
if (BM_IS_GAP(block))
{
count = gap_bit_count(BMGAP_PTR(block));
}
else // bitset
{
count = (IS_FULL_BLOCK(block)) ? bm::bits_in_block
: bit_block_calc_count(block, block + bm::set_block_size);
}
return count;
}
/**
\brief Extends GAP block to the next level or converts it to bit block.
\param nb - Block's linear index.
\param blk - Blocks's pointer
\return new GAP block pointer or NULL if block type mutated
*/
bm::gap_word_t* extend_gap_block(unsigned nb, gap_word_t* blk)
{
unsigned level = bm::gap_level(blk);
unsigned len = bm::gap_length(blk);
if (level == bm::gap_max_level || len >= gap_max_buff_len)
{
convert_gap2bitset(nb);
}
else
{
bm::gap_word_t* new_gap_blk = allocate_gap_block(++level, blk);
bm::word_t* new_blk = (bm::word_t*)new_gap_blk;
BMSET_PTRGAP(new_blk);
set_block_ptr(nb, new_blk);
alloc_.free_gap_block(blk, glen());
return new_gap_blk;
}
return 0;
}
bool is_block_gap(unsigned nb) const
{
bm::word_t* block = get_block(nb);
return BMPTR_TESTBIT0(block) != 0;
}
void set_block_bit(unsigned nb)
{
bm::word_t* block = get_block(nb);
block = (bm::word_t*) BMPTR_CLEARBIT0(block);
set_block_ptr(nb, block);
}
void set_block_gap(unsigned nb)
{
bm::word_t* block = get_block(nb);
block = (bm::word_t*)BMPTR_SETBIT0(block);
set_block_ptr(nb, block);
}
/**
\fn bool bm::bvector::blocks_manager::is_block_zero(unsigned nb, bm::word_t* blk)
\brief Checks all conditions and returns true if block consists of only 0 bits
\param nb - Block's linear index.
\param blk - Blocks's pointer
\param deep_scan - flag to do full bit block verification (scan)
when deep scan is not requested result can be approximate
\returns true if all bits are in the block are 0.
*/
bool is_block_zero(unsigned nb,
const bm::word_t* blk,
bool deep_scan = true) const
{
if (blk == 0) return true;
if (BM_IS_GAP(blk))
{
gap_word_t* b = BMGAP_PTR(blk);
return gap_is_all_zero(b, bm::gap_max_bits);
}
if (!deep_scan)
return false; // block exists - presume it has bits
// BIT
for (unsigned i = 0; i < bm::set_block_size; ++i)
{
if (blk[i] != 0)
return false;
}
return true;
}
/**
\brief Checks if block has only 1 bits
\param nb - Index of the block.
\param blk - Block's pointer
\param deep_scan - flag to do full bit block verification (scan)
when deep scan is not requested result can be approximate
\return true if block consists of 1 bits.
*/
bool is_block_one(unsigned nb,
const bm::word_t* blk,
bool deep_scan = true) const
{
if (blk == 0) return false;
if (BM_IS_GAP(blk))
{
gap_word_t* b = BMGAP_PTR(blk);
return gap_is_all_one(b, bm::gap_max_bits);
}
// BIT block
if (IS_FULL_BLOCK(blk))
{
return true;
}
if (!deep_scan)
return false; // block exists - presume it has 0 bits
return is_bits_one((wordop_t*)blk,
(wordop_t*)(blk + bm::set_block_size));
}
/*! Returns temporary block, allocates if needed. */
bm::word_t* check_allocate_tempblock()
{
return temp_block_ ? temp_block_
: (temp_block_ = alloc_.alloc_bit_block());
}
/*! Assigns new GAP lengths vector */
void set_glen(const gap_word_t* glevel_len)
{
::memcpy(glevel_len_, glevel_len, sizeof(glevel_len_));
}
bm::gap_word_t* allocate_gap_block(unsigned level,
const gap_word_t* src = 0,
const gap_word_t* glevel_len = 0)
{
if (!glevel_len)
glevel_len = glevel_len_;
gap_word_t* ptr = alloc_.alloc_gap_block(level, glevel_len);
if (src)
{
unsigned len = gap_length(src);
::memcpy(ptr, src, len * sizeof(gap_word_t));
// Reconstruct the mask word using the new level code.
*ptr = (gap_word_t)(((len-1) << 3) | (level << 1) | (*src & 1));
}
else
{
*ptr = (gap_word_t)(level << 1);
}
return ptr;
}
unsigned mem_used() const
{
unsigned mem_used = sizeof(*this);
mem_used += temp_block_ ? sizeof(word_t) * bm::set_block_size : 0;
mem_used += sizeof(bm::word_t**) * top_block_size_;
for (unsigned i = 0; i < top_block_size_; ++i)
{
mem_used += blocks_[i] ? sizeof(void*) * bm::set_array_size : 0;
}
return mem_used;
}
/** Returns true if second level block pointer is 0.
*/
bool is_subblock_null(unsigned nsub) const
{
return blocks_[nsub] == NULL;
}
bm::word_t*** blocks_root()
{
return blocks_;
}
/*! \brief Returns current GAP level vector
*/
const gap_word_t* glen() const
{
return glevel_len_;
}
/*! \brief Returns GAP level length for specified level
\param level - level number
*/
unsigned glen(unsigned level) const
{
return glevel_len_[level];
}
/*! \brief Swaps content
\param bm another blocks manager
*/
void swap(blocks_manager& bm)
{
BM_ASSERT(this != &bm);
word_t*** btmp = blocks_;
blocks_ = bm.blocks_;
bm.blocks_ = btmp;
xor_swap(this->top_block_size_, bm.top_block_size_);
xor_swap(this->effective_top_block_size_, bm.effective_top_block_size_);
BM_ASSERT(sizeof(glevel_len_) / sizeof(glevel_len_[0])
== bm::gap_levels); // paranoiya check
for (unsigned i = 0; i < bm::gap_levels; ++i)
{
xor_swap(glevel_len_[i], bm.glevel_len_[i]);
}
}
/*! \brief Returns size of the top block array in the tree
*/
unsigned top_block_size() const
{
return top_block_size_;
}
/*! \brief Returns effective size of the top block array in the tree
Effective size excludes NULL pointers at the top descriptor end
*/
unsigned effective_top_block_size() const
{
return effective_top_block_size_;
}
/**
\brief reserve capacity for specified number of bits
*/
void reserve(unsigned max_bits)
{
if (max_bits)
{
unsigned b = compute_top_block_size(max_bits);
reserve_top_blocks(b);
}
}
/*!
\brief Make sure blocks manager has enough blocks capacity
*/
void reserve_top_blocks(unsigned top_blocks)
{
BM_ASSERT(top_blocks <= bm::set_array_size);
if (top_blocks <= top_block_size_) return; // nothing to do
bm::word_t*** new_blocks =
(bm::word_t***)alloc_.alloc_ptr(top_blocks);
for (unsigned i = 0; i < top_block_size_; ++i)
{
new_blocks[i] = blocks_[i];
}
for (unsigned j = top_block_size_; j < top_blocks; ++j)
{
new_blocks[j] = 0;
}
alloc_.free_ptr(blocks_, top_block_size_);
blocks_ = new_blocks;
top_block_size_ = top_blocks;
}
/** \brief Returns reference on the allocator
*/
allocator_type& get_allocator() { return alloc_; }
/** \brief Returns allocator
*/
allocator_type get_allocator() const { return alloc_; }
private:
void operator =(const blocks_manager&);
void deinit_tree()
{
if (blocks_ == 0) return;
unsigned top_size = this->effective_top_block_size();
block_free_func free_func(*this);
for_each_nzblock2(blocks_, top_size, free_func);
free_top_block();
alloc_.free_ptr(blocks_, top_block_size_);
blocks_ = 0;
}
void free_top_block()
{
for(unsigned i = 0; i < top_block_size_; ++i)
{
bm::word_t** blk_blk = blocks_[i];
if (blk_blk)
{
alloc_.free_ptr(blk_blk); blocks_[i] = 0;
}
}
}
/// allocate first level of descr. of blocks
void init_tree()
{
if (top_block_size_)
{
blocks_ = (bm::word_t***) alloc_.alloc_ptr(top_block_size_);
::memset(blocks_, 0, top_block_size_ * sizeof(bm::word_t**));
}
else
{
blocks_ = 0;
}
effective_top_block_size_ = 1;
}
private:
/// Tree of blocks.
bm::word_t*** blocks_;
/// Size of the top level block array in blocks_ tree
unsigned top_block_size_;
/// Effective size of the top level block array in blocks_ tree
unsigned effective_top_block_size_;
/// Temp block.
bm::word_t* temp_block_;
/// vector defines gap block lengths for different levels
gap_word_t glevel_len_[bm::gap_levels];
/// allocator
allocator_type alloc_;
};
/**
Bit block buffer guard
\internal
*/
template<class BlocksManager>
class bit_block_guard
{
public:
bit_block_guard(BlocksManager& bman, bm::word_t* blk=0)
: bman_(bman),
block_(blk)
{}
~bit_block_guard()
{
bman_.get_allocator().free_bit_block(block_, 3);
}
void attach(bm::word_t* blk)
{
bman_.get_allocator().free_bit_block(block_);
block_ = blk;
}
bm::word_t* allocate()
{
attach(bman_.get_allocator().alloc_bit_block(3));
return block_;
}
bm::word_t* get() { return block_; }
private:
bit_block_guard(const bit_block_guard&);
bit_block_guard& operator=(const bit_block_guard&);
private:
BlocksManager& bman_;
bm::word_t* block_;
};
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif
#endif
|