This file is indexed.

/usr/share/cain/gui/PlotStatistics.py is in cain 1.10+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""Implements plotting of time series statistics."""

# If we are running the unit tests.
import sys
if __name__ == '__main__':
    sys.path.insert(1, '..')

import wx
import numpy
from PlotTimeSeriesGrid import PlotTimeSeriesGrid
from PlotOptions import PlotOptions

from pylab import errorbar, figure, plot, draw

class Configuration(wx.Panel):
    """Pick the species or reactions to plot."""
    
    def __init__(self, parent, state, figureNumber):
        wx.Panel.__init__(self, parent, -1)
        self.state = state
        self.figureNumber = figureNumber
        self.outputKeys = []

        sizer = wx.BoxSizer(wx.VERTICAL)

        # Output choice.
        self.outputChoice = wx.Choice(self, size=(400,-1), choices=[])
        self.Bind(wx.EVT_CHOICE, self.onOutput, self.outputChoice)
        sizer.Add(self.outputChoice, 0, wx.EXPAND, 5)

        # Mean or standard deviation.
        horizontal = wx.BoxSizer(wx.HORIZONTAL)
        # Mean.
        self.mean = wx.RadioButton(self, -1, 'Mean')
        self.mean.SetValue(True)
        self.Bind(wx.EVT_RADIOBUTTON, self.onMean, self.mean)
        horizontal.Add(self.mean, 0, wx.ALL, 5)
        # Standard deviation.
        self.stdDev = wx.RadioButton(self, -1, 'Std. Dev.')
        self.Bind(wx.EVT_RADIOBUTTON, self.onStdDev, self.stdDev)
        horizontal.Add(self.stdDev, 0, wx.ALL, 5)
        sizer.Add(horizontal, 0, wx.ALL, 5)

        # The grid of species.
        sizer.Add(wx.StaticText(self, -1,
                                'Left or right click on the column labels to '\
                                'manipulate all cells in the column.'))
        self.grid = PlotTimeSeriesGrid(self)
        sizer.Add(self.grid, 1, wx.EXPAND)
        sizer.Add(wx.StaticLine(self), 0, wx.EXPAND|wx.ALL, 5)

        # The plot options.
        self.options = PlotOptions(self)
        sizer.Add(self.options, 0, wx.EXPAND)

        # Plot buttons.
        buttons = wx.BoxSizer(wx.HORIZONTAL)
        b = wx.Button(self, -1, 'Plot')
        self.Bind(wx.EVT_BUTTON, self.onPlot, b)
        buttons.Add(b, 0, wx.ALIGN_RIGHT, 5)
        b = wx.Button(self, -1, 'New plot')
        self.Bind(wx.EVT_BUTTON, self.onNewPlot, b)
        buttons.Add(b, 0, wx.ALIGN_RIGHT, 5)
        sizer.Add(buttons, 0, wx.ALIGN_RIGHT | wx.ALIGN_TOP, 5)

        self.SetSizer(sizer)
        self.refresh()
        self.Fit()

    def onOutput(self, event):
        self.update()
        event.Skip()

    def onMean(self, event):
        self.grid.showStdDev()
        event.Skip()

    def onStdDev(self, event):
        self.grid.hideStdDev()
        event.Skip()

    def update(self):
        """Update the window for a new output selection. This is called when
        the user selects a new output. It is also called through refresh() 
        when the list of outputs changes."""
        index = self.outputChoice.GetSelection()
        if index == wx.NOT_FOUND:
            # Clear the grid.
            self.grid.setIdentifiers([])
            return
        # Check that the simulation output has not disappeared.
        if not self.outputKeys[index] in self.state.output:
            self.refresh()
            return

        # Update the grid.
        modelId = self.outputKeys[index][0]
        model = self.state.models[modelId]
        output = self.state.output[self.outputKeys[index]]
        identifiers = [model.speciesIdentifiers[_i]
                       for _i in output.recordedSpecies]
        self.grid.setIdentifiers(identifiers)

        # Show or hide the standard deviation field.
        if self.mean.GetValue():
            self.grid.showStdDev()
        else:
            self.grid.hideStdDev()

    def refresh(self):
        """This is called when the list of outputs changes in the
        application."""
        # Get the time series outputs.
        self.outputKeys = []
        for key in self.state.output:
            if self.state.output[key].__class__.__name__ == 'StatisticsFrames':
                self.outputKeys.append(key)
        outputChoices = [x[0] + ', ' + x[1] for x in self.outputKeys]
        selection = self.outputChoice.GetSelection()
        self.outputChoice.Clear()
        for choice in outputChoices:
            self.outputChoice.Append(choice)
        # Set the selection.
        if selection != wx.NOT_FOUND and\
                selection < self.outputChoice.GetCount():
            self.outputChoice.SetSelection(selection)
        else:
            self.outputChoice.SetSelection(0)
        # Updated the species and frame for this output.
        self.update()

    def onPlot(self, event):
        size = self.options.getCustomFigureSize()
        figure(num=self.figureNumber(), figsize=size)
        # Draw the plot.
        self.plot()

    def onNewPlot(self, event):
        # Start a new figure.
        self.figureNumber += 1
        size = self.options.getCustomFigureSize()
        figure(self.figureNumber(), figsize=size)
        # Draw the plot.
        self.plot()

    def _showLegendAndLabels(self, indices):
        # Legend.
        if self.options.legend.IsChecked():
            # Make empty plots to register the labels for the legend.
            for index in indices:
                if self.grid.useMarkers(index):
                    plot([], [], label=self.grid.getLegendLabel(index),
                         **self.grid.getLineAndMarkerStyles(index))
                else:
                    plot([], [], label=self.grid.getLegendLabel(index),
                         **self.grid.getLineStyles(index))
        self.options.showLegendAndLabels()

    def plot(self):
        index = self.outputChoice.GetSelection()
        if index == wx.NOT_FOUND:
            wx.MessageBox('There is no selected simulation output.',
                          'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
            return
        # Save any values being edited in the grid.
        self.grid.saveEditControlValue()
        # Choose the appropriate kind of plot.
        output = self.state.output[self.outputKeys[index]]
        self.plotFrames(output)

    def plotFrames(self, output):
        # Check that at least one row has been selected.
        if not self.grid.areAnyItemsSelected():
            wx.MessageBox('No rows are selected.', 'Error.')
            return
        # The items to plot.
        indices = self.grid.getCheckedItems()
        if not indices:
            return
        if self.mean.GetValue():
            # Plot the mean and optionally the standard deviation.
            for index in indices:
                times = output.frameTimes
                y = [frame[index][0] for frame in output.statistics]
                # If the standard deviation box is checked.
                if self.grid.GetCellValue(index, 1):
                    yerr = [frame[index][1] for frame in output.statistics]
                else:
                    yerr = None
                if self.grid.useMarkers(index):
                    errorbar(times, y, yerr=yerr, 
                             **self.grid.getLineAndMarkerStyles(index))
                else:
                    errorbar(times, y, yerr=yerr,
                             **self.grid.getLineStyles(index))
        else:
            # Plot the standard deviation.
            for index in indices:
                times = output.frameTimes
                y = [frame[index][1] for frame in output.statistics]
                if self.grid.useMarkers(index):
                    plot(times, y, **self.grid.getLineAndMarkerStyles(index))
                else:
                    plot(times, y, **self.grid.getLineStyles(index))
        self._showLegendAndLabels(indices)
        self.options.setLimits()
        draw()

        
def main():
    from FigureNumber import FigureNumber
    from state.StatisticsFrames import StatisticsFrames
    from state.State import State
    from state.Model import Model
    #from state.Reaction import Reaction

    class TestConfiguration(wx.Frame):
        """Test the Configuration panel."""

        def __init__(self, parent, title, state, figureNumber):
            wx.Frame.__init__(self, parent, -1, title)
            panel = Configuration(self, state, figureNumber)

            bestSize = self.GetBestSize()
            # Add twenty to avoid an unecessary horizontal scroll bar.
            size = (bestSize[0] + 80, min(bestSize[1], 700))
            self.SetSize(size)
            self.Fit()

    app = wx.PySimpleApp()
    figureNumber = FigureNumber()

    s = ['a', 'b', 'c']
    t = StatisticsFrames([0, 1, 2])
    t.setFrameTimes([0, 1, 2])
    t.setStatistics([1, 0.1, 2, 0.2, 3, 0.3] * 3)
    state = State()
    # Set the species identifiers.
    modelId = state.insertNewModel()
    model = state.models[modelId]
    model.id = modelId
    model.speciesIdentifiers = s
    # Dummy reactions.
    #model.reactions = [Reaction(_id, '', [], [], True, '0') for _id in r]
    # Store the trajectories.
    state.output[(modelId, 'method')] = t
    TestConfiguration(None, 'Populations.', state, figureNumber).Show()

    app.MainLoop()

if __name__ == '__main__':
    main()