/usr/src/castle-game-engine-6.4/3d/castlegeometryarrays.pas is in castle-game-engine-src 6.4+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 | {
Copyright 2010-2017 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Geometry represented as arrays (TGeometryArrays). }
unit CastleGeometryArrays;
{$I castleconf.inc}
interface
uses Generics.Collections,
CastleUtils, CastleVectors, CastleTriangles, CastleRendererBaseTypes;
type
{ Primitive geometry types. Analogous to OpenGL / OpenGLES primitives. }
TGeometryPrimitive = (gpTriangles, {$ifndef OpenGLES} gpQuads, {$endif}
gpTriangleFan, gpTriangleStrip, gpLineStrip, gpPoints);
TTexCoordDimensions = 2..4;
{ Texture coordinate generation methods.
For their meaning, see the X3D specification about
TextureCoordinateGenerator.mode values.
We also add some extensions, see
[http://castle-engine.sourceforge.net/x3d_extensions.php#section_ext_tex_coord_worldspace] and
[http://castle-engine.sourceforge.net/x3d_extensions.php#section_ext_tex_coord_bounds].
We also support ProjectedTextureCoordinate, see
[http://castle-engine.sourceforge.net/x3d_extensions_shadow_maps.php#section_ext_texture_gen_projective].
Special value tgExplicit means that texture coordinates are not generated. }
TTextureCoordinateGeneration = (
tgExplicit,
tgBounds2d,
tgBounds3d,
tgSphereMap,
tgCoord,
tgCoordEye,
tgCameraSpaceNormal,
tgWorldSpaceNormal,
tgCameraSpaceReflectionVector,
tgWorldSpaceReflectionVector,
tgProjection);
TProjectorMatrixFunction = function: TMatrix4 of object;
TTextureGenerationVectors = array [0..2] of TVector4;
{ Texture coord array information, for TGeometryArrays.
If Generation <> tgExplicit, then the actual array data is not stored. }
TGeometryTexCoord = class
Generation: TTextureCoordinateGeneration;
{ If Generation is tgBounds2d or tgBounds3d, then
these are vectors used to generate
texture coords from local (object space) vertex positions.
TextureGen[0] says how to generate S texture coord,
TextureGen[1] says how to generate T texture coord,
and TextureGen[2] (only for tgBounds3d) is fo R tex coord.}
GenerationBoundsVector: TTextureGenerationVectors;
{ For Generation = tgProjection, this is the function that generates
matrix used for glTexGen }
GenerationProjectorMatrix: TProjectorMatrixFunction;
{ Dimensions, only for Generation = tgExplicit. }
Dimensions: TTexCoordDimensions;
{ Offset, only for Generation = tgExplicit. }
Offset: Integer;
end;
TGeometryTexCoordList = specialize TObjectList<TGeometryTexCoord>;
TGeometryAttribType = (atFloat, atVector2, atVector3, atVector4,
atMatrix3, atMatrix4);
{ GLSL attributes array information, for TGeometryArrays. }
TGeometryAttrib = class
Name: string;
{ Internal for our engine (as opposed to specified in 3D model file).
This is only used to change warnings related to this attribute. }
Internal: boolean;
AType: TGeometryAttribType;
Offset: Integer;
end;
TGeometryAttribList = class(specialize TObjectList<TGeometryAttrib>)
public
function Find(const Name: string): TGeometryAttrib;
end;
TGeometryIndex = {$ifdef GLIndexesShort} Word {$else} LongWord {$endif};
TGeometryIndexList = {$ifdef GLIndexesShort} TWordList {$else} TLongWordList {$endif};
{ Geometry represented as arrays of indexes, vertex positions,
texture coordinates and such. Many (eventually, all) geometry nodes
(TVRMLGeometryNode) can be processed into an instance of this class.
This can be used to render, as arrays here map very naturally to
an efficient OpenGL vertex arrays and VBOs. We use interleaving,
storing everything in two arrays: 1st one for positions and normals
(stuff that changes during coordinate morphing, most common dynamic shapes,
so we specifically think about optimizing it).
2nd one for everything else (colors, tex coords, also GLSL attributes).
This should allow for the most efficient usage, making use of interleaving
and still allowing fast dynamic updates in common cases. }
TGeometryArrays = class
private
FIndexes: TGeometryIndexList;
FIndexesCount: Cardinal;
FHasIndexes: boolean;
FPrimitive: TGeometryPrimitive;
FCount: Integer;
FCounts: TCardinalList;
FDataFreed: boolean;
FAttributeArray: Pointer;
FAttributeSize: Cardinal;
FCoordinateArray: Pointer;
FCoordinateSize: Cardinal;
FHasColor: boolean;
ColorOffset: Integer;
FHasDefaultColor: boolean;
FDefaultColor: TVector4;
FHasFogCoord: boolean;
FogCoordOffset: Integer;
FFogDirectValues: boolean;
FTexCoords: TGeometryTexCoordList;
FAttribs: TGeometryAttribList;
FCullFace: boolean;
FFrontFaceCcw: boolean;
FForceFlatShading: boolean;
FFaces: TFaceIndexesList;
procedure SetCount(const Value: Integer);
procedure AddTexCoord(const Generation: TTextureCoordinateGeneration;
const Dimensions: TTexCoordDimensions;
const TextureUnit: Cardinal);
procedure AddGLSLAttribute(const AType: TGeometryAttribType;
const Name: string; const Internal: boolean);
function GLSLAttribute(const AType: TGeometryAttribType;
const Name: string; const Index: Cardinal): PtrUInt;
public
constructor Create;
destructor Destroy; override;
{ Indexes to remaining arrays.
If non-nil, we will render using these indexes,
which means that items on the remaining lists (vertex positions,
tex coords etc.) may be used multiple times. This is good
(the lists may be possibly shorter, and GPU will be able to reuse
more calculation results), but it's also limited: a vertex
must always have the same properties in this case (e.g. the same
normal vector, so shape must be completely smooth).
When this is nil, we will simply use all the vertexes in order.
So every item of the remaining lists will be processed exactly once,
in the given order. This seems dumb, but actually we're often forced
to use this: when you use flat (per-face) normals or colors,
then the same vertex position must be used many times with different
normal/color. If you want to use OpenGL vertex arrays for whole rendering,
this vertex position will just have to be duplicated (which is OK,
as the calculation results couldn't be shared anyway,
since normal/color are different). }
property Indexes: TGeometryIndexList read FIndexes write FIndexes;
(*Information about Indexes.
Before using FreeData, you could as well use the @link(Indexes) property
to get the same information. You can use Indexes[Index], Indexes <> nil,
Indexes.Count and such. However, FreeData call (that you should use
to conserve memory usage after loading arrays to VBO)
releases the Indexes property, while these properties stay the same.
IndexesPtr may be casted to "^TGeometryIndex", before the FreeData call.
@groupBegin *)
function IndexesPtr(const Index: Cardinal): PtrUInt;
property IndexesCount: Cardinal read FIndexesCount;
property HasIndexes: boolean read FHasIndexes;
{ @groupEnd }
property Primitive: TGeometryPrimitive read FPrimitive write FPrimitive;
{ If this is assigned, then the vertexes are divided into groups.
This is the only way to put many triangle strips, triangle fans and such
into one TGeometryArrays instance. For normal sets of triangles and quads
this has no use, as there's never a need to divide them for rendering.
Each value of this list specifies to take consecutive number of vertexes
for next primitive.
If Indexes are assigned, then they are divided into groups.
Otherwise, the other arrays (positions, normals etc.)
are divided into groups.
The sum of values must be equal to the Indexes.Count
(if Indexes assigned) or arrays Count (if Indexes not assigned). }
property Counts: TCardinalList read FCounts write FCounts;
{ Memory containing vertex positions and normals, that is everything
that changes during Coordinate.coord animation.
CoordinateSize is size, in bytes, of one item of this array
(currently just constant, 2 * TVector3).
@groupBegin }
property CoordinateArray: Pointer read FCoordinateArray;
property CoordinateSize: Cardinal read FCoordinateSize;
{ @groupEnd }
{ Memory containing everything other vertex attribute, like color,
texture coordinates and GLSL attributes.
AttributeSize is size, in bytes, of one item of this array.
@groupBegin }
property AttributeArray: Pointer read FAttributeArray;
property AttributeSize: Cardinal read FAttributeSize;
{ @groupEnd }
function Position: PVector3;
function Position(const Index: Cardinal): PVector3;
procedure IncPosition(var P: PVector3);
{ Allocated number of items in vertex positions, normals, colors
and such arrays.
You can only set this once.
You must do all necessary AddColor / AddAttribute calls before setting this.
You can access all Position / Normal etc. pointers only after setting this.
Also, IndexesCount and HasIndexes is stored at this point. }
property Count: Integer read FCount write SetCount;
function Normal: PVector3;
function Normal(const Index: Cardinal): PVector3;
procedure IncNormal(var P: PVector3);
procedure AddColor;
function Color(const Index: Cardinal = 0): PVector4;
procedure IncColor(var P: PVector4);
property HasColor: boolean read FHasColor;
{ When Color array is not initialized and HasDefaultColor,
then the default color will be set to DefaultColor.
@groupBegin }
property HasDefaultColor: boolean read FHasDefaultColor write FHasDefaultColor default false;
property DefaultColor: TVector4 read FDefaultColor write FDefaultColor;
{ @groupEnd }
procedure AddFogCoord;
function FogCoord(const Index: Cardinal = 0): PSingle;
property HasFogCoord: boolean read FHasFogCoord;
{ If FogCoord present, does it specify direct fog intensities,
that should be used to change pixel colors without any further processing.
When this is @false, then fog coordinates are understood
as distance from the eye, and they are processed by linear/exp equations
before being used to blend pixel colors. }
property FogDirectValues: boolean
read FFogDirectValues write FFogDirectValues default false;
{ Allocated in AttributeArray texture coords.
Index is texture unit (counted from renderer first available texture
unit). If given item is @nil on this list, then this texture unit
is not allocated (just like it would be outside of TexCoords.Count). }
property TexCoords: TGeometryTexCoordList read FTexCoords;
procedure AddTexCoord2D(const TextureUnit: Cardinal);
procedure AddTexCoord3D(const TextureUnit: Cardinal);
procedure AddTexCoord4D(const TextureUnit: Cardinal);
{ Add generated texture coord.
Such texture coord will not have actual data allocated in the array
(you're expected to instead setup and enable glTexGen when rendering).
Generation passed here must not be tgExplicit. }
procedure AddTexCoordGenerated(const Generation: TTextureCoordinateGeneration;
const TextureUnit: Cardinal);
{ Add texture coord, with configuration copied from existing texture coord. }
procedure AddTexCoordCopy(const NewTextureUnit, ExistingTextureUnit: Cardinal);
function TexCoord(const TextureUnit, Index: Cardinal): Pointer;
function TexCoord2D(const TextureUnit, Index: Cardinal): PVector2;
function TexCoord3D(const TextureUnit, Index: Cardinal): PVector3;
function TexCoord4D(const TextureUnit, Index: Cardinal): PVector4;
property Attribs: TGeometryAttribList read FAttribs;
procedure AddGLSLAttributeFloat(const Name: string; const Internal: boolean);
procedure AddGLSLAttributeVector2(const Name: string; const Internal: boolean);
procedure AddGLSLAttributeVector3(const Name: string; const Internal: boolean);
procedure AddGLSLAttributeVector4(const Name: string; const Internal: boolean);
procedure AddGLSLAttributeMatrix3(const Name: string; const Internal: boolean);
procedure AddGLSLAttributeMatrix4(const Name: string; const Internal: boolean);
function GLSLAttribute(A: TGeometryAttrib; const Offset: PtrUInt = 0): PtrUInt;
function GLSLAttributeFloat(const Name: string; const Index: Cardinal = 0): PSingle;
function GLSLAttributeVector2(const Name: string; const Index: Cardinal = 0): PVector2;
function GLSLAttributeVector3(const Name: string; const Index: Cardinal = 0): PVector3;
function GLSLAttributeVector4(const Name: string; const Index: Cardinal = 0): PVector4;
function GLSLAttributeMatrix3(const Name: string; const Index: Cardinal = 0): PMatrix3;
function GLSLAttributeMatrix4(const Name: string; const Index: Cardinal = 0): PMatrix4;
{ Should we use backface-culling (ignore some faces during rendering).
Which faces are "back" (and will be culled) is determined by FrontFaceCcw.
When FrontFaceCcw = @true, the the faces ordered counter-clockwise are front,
and thus the faces ordered clockwise will be culled.
When FrontFaceCcw = @false, the faces ordered counter-clockwise
will be culled. }
property CullFace: boolean
read FCullFace write FCullFace default false;
{ Which faces are front, for backface-culling (see @link(CullFace))
and for normals data (see @link(Normal)). }
property FrontFaceCcw: boolean
read FFrontFaceCcw write FFrontFaceCcw default false;
{ Make the whole rendering with flat shading. }
property ForceFlatShading: boolean
read FForceFlatShading write FForceFlatShading default false;
{ Release the allocated memory for arrays (CoordinateArray, AttributeArray,
Indexes). Further calls to IndexesPtr, Normal, Color and such will
return only an offset relative to the original arrays pointer.
This is necessary if you loaded arrays data into GPU memory
(like Vertex Buffer Object of OpenGL), and it is also optimal
-- you should not need the data anymore, once loaded to VBO. }
procedure FreeData;
{ Was FreeData called. }
property DataFreed: boolean read FDataFreed;
{ Information about faces. Generated for some geometry types.
Generated only when TArraysGenerator.FacesNeeded is @true.
Generated only for indexed shapes. When Indexes <> nil,
these have the same count as Indexes.Count. Otherwise these
have the same count as our @link(Count). }
property Faces: TFaceIndexesList read FFaces write FFaces;
end;
implementation
uses SysUtils, CastleStringUtils;
{ TGeometryAttribList ------------------------------------------------------- }
function TGeometryAttribList.Find(const Name: string): TGeometryAttrib;
var
I: Integer;
begin
for I := 0 to Count - 1 do
if Items[I].Name = Name then
Exit(Items[I]);
Result := nil;
end;
{ TGeometryArrays ------------------------------------------------------------ }
constructor TGeometryArrays.Create;
begin
inherited;
FCoordinateSize := SizeOf(TVector3) * 2;
FAttributeSize := 0;
FTexCoords := TGeometryTexCoordList.Create;
FAttribs := TGeometryAttribList.Create;
end;
destructor TGeometryArrays.Destroy;
begin
FreeAndNil(FIndexes);
FreeAndNil(FTexCoords);
FreeAndNil(FAttribs);
FreeAndNil(FCounts);
FreeMemNiling(FCoordinateArray);
FreeMemNiling(FAttributeArray);
FreeAndNil(FFaces);
inherited;
end;
procedure TGeometryArrays.SetCount(const Value: Integer);
begin
if FCount <> Value then
begin
FCount := Value;
ReallocMem(FCoordinateArray, CoordinateSize * Value);
ReallocMem(FAttributeArray, AttributeSize * Value);
{ calculate FHasIndexes, FIndexesCount now }
FHasIndexes := Indexes <> nil;
if FHasIndexes then
FIndexesCount := Indexes.Count else
FIndexesCount := 0;
end;
end;
function TGeometryArrays.IndexesPtr(const Index: Cardinal): PtrUInt;
begin
Result := Index * SizeOf(TGeometryIndex);
if not DataFreed then
PtrUInt(Result) += PtrUInt(FIndexes.L);
end;
function TGeometryArrays.Position: PVector3;
begin
{ When DataFreed, FCoordinateArray is already nil }
Result := FCoordinateArray;
end;
function TGeometryArrays.Position(const Index: Cardinal): PVector3;
begin
{ When DataFreed, FCoordinateArray is already nil }
Result := PVector3(PtrUInt(FCoordinateArray) + CoordinateSize * Index);
end;
procedure TGeometryArrays.IncPosition(var P: PVector3);
begin
PtrUInt(P) += {CoordinateSize} SizeOf(TVector3) * 2;
end;
function TGeometryArrays.Normal: PVector3;
begin
{ When DataFreed, FCoordinateArray is already nil }
Result := PVector3(PtrUInt(PtrUInt(FCoordinateArray) +
SizeOf(TVector3)));
end;
function TGeometryArrays.Normal(const Index: Cardinal): PVector3;
begin
{ When DataFreed, FCoordinateArray is already nil }
Result := PVector3(PtrUInt(PtrUInt(FCoordinateArray) +
SizeOf(TVector3) + CoordinateSize * Index));
end;
procedure TGeometryArrays.IncNormal(var P: PVector3);
begin
PtrUInt(P) += {CoordinateSize} SizeOf(TVector3) * 2;
end;
procedure TGeometryArrays.AddColor;
begin
if not HasColor then
begin
FHasColor := true;
ColorOffset := AttributeSize;
FAttributeSize += SizeOf(TVector4);
end;
end;
function TGeometryArrays.Color(const Index: Cardinal): PVector4;
begin
if HasColor then
{ When DataFreed, FAttributeArray is already nil }
Result := PVector4(PtrUInt(PtrUInt(FAttributeArray) +
ColorOffset + Index * AttributeSize)) else
Result := nil;
end;
procedure TGeometryArrays.IncColor(var P: PVector4);
begin
PtrUInt(P) += AttributeSize;
end;
procedure TGeometryArrays.AddFogCoord;
begin
if not HasFogCoord then
begin
FHasFogCoord := true;
FogCoordOffset := AttributeSize;
FAttributeSize += SizeOf(Single);
end;
end;
function TGeometryArrays.FogCoord(const Index: Cardinal = 0): PSingle;
begin
if HasFogCoord then
{ When DataFreed, FAttributeArray is already nil }
Result := PSingle(PtrUInt(PtrUInt(FAttributeArray) +
FogCoordOffset + Index * AttributeSize)) else
Result := nil;
end;
procedure TGeometryArrays.AddTexCoord(
const Generation: TTextureCoordinateGeneration;
const Dimensions: TTexCoordDimensions;
const TextureUnit: Cardinal);
var
OldCount, I: Integer;
begin
if TextureUnit >= TexCoords.Count then
begin
OldCount := TexCoords.Count;
TexCoords.Count := TextureUnit + 1;
for I := OldCount to TexCoords.Count - 1 do
TexCoords[I] := nil; { make sure new items are nil }
end;
Assert(TextureUnit < TexCoords.Count);
if TexCoords[TextureUnit] = nil then
begin
TexCoords[TextureUnit] := TGeometryTexCoord.Create;
TexCoords[TextureUnit].Generation := Generation;
TexCoords[TextureUnit].Dimensions := Dimensions;
if Generation = tgExplicit then
begin
TexCoords[TextureUnit].Offset := AttributeSize;
FAttributeSize += SizeOf(Single) * Dimensions;
end;
end else
if TexCoords[TextureUnit].Dimensions <> Dimensions then
begin
raise Exception.CreateFmt('Texture unit %d is already allocated but for %-dimensional tex coords (while %d requested)',
[TextureUnit, TexCoords[TextureUnit].Dimensions, Dimensions]);
end else
if TexCoords[TextureUnit].Generation <> Generation then
begin
raise Exception.CreateFmt('Texture unit %d is already allocated but for different tex coords generation method',
[TextureUnit]);
end
end;
procedure TGeometryArrays.AddTexCoordGenerated(const Generation: TTextureCoordinateGeneration;
const TextureUnit: Cardinal);
begin
Assert(Generation <> tgExplicit);
AddTexCoord(Generation, 2 { doesn't matter }, TextureUnit);
end;
procedure TGeometryArrays.AddTexCoord2D(const TextureUnit: Cardinal);
begin
AddTexCoord(tgExplicit, 2, TextureUnit);
end;
procedure TGeometryArrays.AddTexCoord3D(const TextureUnit: Cardinal);
begin
AddTexCoord(tgExplicit, 3, TextureUnit);
end;
procedure TGeometryArrays.AddTexCoord4D(const TextureUnit: Cardinal);
begin
AddTexCoord(tgExplicit, 4, TextureUnit);
end;
procedure TGeometryArrays.AddTexCoordCopy(
const NewTextureUnit, ExistingTextureUnit: Cardinal);
begin
if TexCoords[ExistingTextureUnit].Generation <> tgExplicit then
begin
AddTexCoordGenerated(TexCoords[ExistingTextureUnit].Generation, NewTextureUnit);
TexCoords[NewTextureUnit].GenerationBoundsVector := TexCoords[ExistingTextureUnit].GenerationBoundsVector;
TexCoords[NewTextureUnit].GenerationProjectorMatrix := TexCoords[ExistingTextureUnit].GenerationProjectorMatrix;
end else
case TexCoords[ExistingTextureUnit].Dimensions of
2: AddTexCoord2D(NewTextureUnit);
3: AddTexCoord3D(NewTextureUnit);
4: AddTexCoord4D(NewTextureUnit);
else raise EInternalError.Create('TexCoords[ExistingTextureUnit].Dimensions?');
end;
end;
function TGeometryArrays.TexCoord(const TextureUnit, Index: Cardinal): Pointer;
begin
if (TextureUnit < TexCoords.Count) and
(TexCoords[TextureUnit] <> nil) then
begin
Assert(TexCoords[TextureUnit].Generation = tgExplicit, 'Texture coords are generated, not explicit, for this unit');
{ When DataFreed, FAttributeArray is already nil }
Result := Pointer(PtrUInt(PtrUInt(FAttributeArray) +
TexCoords[TextureUnit].Offset + Index * AttributeSize));
end else
Result := nil;
end;
function TGeometryArrays.TexCoord2D(const TextureUnit, Index: Cardinal): PVector2;
begin
Assert(TexCoords[TextureUnit].Dimensions = 2, 'Texture coord allocated but for different dimensions');
Result := PVector2(TexCoord(TextureUnit, Index));
end;
function TGeometryArrays.TexCoord3D(const TextureUnit, Index: Cardinal): PVector3;
begin
Assert(TexCoords[TextureUnit].Dimensions = 3, 'Texture coord allocated but for different dimensions');
Result := PVector3(TexCoord(TextureUnit, Index));
end;
function TGeometryArrays.TexCoord4D(const TextureUnit, Index: Cardinal): PVector4;
begin
Assert(TexCoords[TextureUnit].Dimensions = 4, 'Texture coord allocated but for different dimensions');
Result := PVector4(TexCoord(TextureUnit, Index));
end;
const
AttribTypeName: array[TGeometryAttribType] of string =
( 'float', 'vec2', 'vec3', 'vec4', 'mat3', 'mat4' );
procedure TGeometryArrays.AddGLSLAttribute(const AType: TGeometryAttribType;
const Name: string; const Internal: boolean);
const
AttribSizes: array[TGeometryAttribType] of Cardinal =
( SizeOf(Single),
SizeOf(TVector2),
SizeOf(TVector3),
SizeOf(TVector4),
SizeOf(TMatrix3),
SizeOf(TMatrix4)
);
var
A: TGeometryAttrib;
begin
A := Attribs.Find(Name);
if A <> nil then
begin
if A.AType <> AType then
raise Exception.CreateFmt('GLSL attribute "%s" is already allocated but for different type (%s) than currently requested (%s)',
[Name, AttribTypeName[A.AType], AttribTypeName[AType]]);
if A.Internal <> Internal then
raise Exception.CreateFmt('GLSL attribute "%s" is already allocated but for different internal (%s) than currently requested (%s)',
[Name, BoolToStr(A.Internal, true), BoolToStr(Internal, true)]);
end else
begin
A := TGeometryAttrib.Create;
A.Name := Name;
A.AType := AType;
A.Offset := AttributeSize;
A.Internal := Internal;
FAttributeSize += AttribSizes[AType];
Attribs.Add(A);
end;
end;
procedure TGeometryArrays.AddGLSLAttributeFloat(const Name: string; const Internal: boolean);
begin
AddGLSLAttribute(atFloat, Name, Internal);
end;
procedure TGeometryArrays.AddGLSLAttributeVector2(const Name: string; const Internal: boolean);
begin
AddGLSLAttribute(atVector2, Name, Internal);
end;
procedure TGeometryArrays.AddGLSLAttributeVector3(const Name: string; const Internal: boolean);
begin
AddGLSLAttribute(atVector3, Name, Internal);
end;
procedure TGeometryArrays.AddGLSLAttributeVector4(const Name: string; const Internal: boolean);
begin
AddGLSLAttribute(atVector4, Name, Internal);
end;
procedure TGeometryArrays.AddGLSLAttributeMatrix3(const Name: string; const Internal: boolean);
begin
AddGLSLAttribute(atMatrix3, Name, Internal);
end;
procedure TGeometryArrays.AddGLSLAttributeMatrix4(const Name: string; const Internal: boolean);
begin
AddGLSLAttribute(atMatrix4, Name, Internal);
end;
function TGeometryArrays.GLSLAttribute(const AType: TGeometryAttribType;
const Name: string; const Index: Cardinal): PtrUInt;
var
A: TGeometryAttrib;
begin
A := Attribs.Find(Name);
if A <> nil then
begin
if A.AType <> AType then
raise Exception.CreateFmt('GLSL attribute "%s" is allocated but for different type (%s) than currently requested (%s)',
[Name, AttribTypeName[A.AType], AttribTypeName[AType]]);
{ When DataFreed, FAttributeArray is already nil }
Result := PtrUInt(FAttributeArray) + A.Offset + Index * AttributeSize;
Exit;
end;
raise Exception.CreateFmt('GLSL attribute "%s" is not allocated', [Name]);
end;
function TGeometryArrays.GLSLAttribute(A: TGeometryAttrib; const Offset: PtrUInt): PtrUInt;
begin
{ When DataFreed, FAttributeArray is already nil }
Result := PtrUInt(FAttributeArray) + A.Offset + Offset;
end;
function TGeometryArrays.GLSLAttributeFloat(const Name: string; const Index: Cardinal = 0): PSingle;
begin
Result := PSingle(GLSLAttribute(atFloat, Name, Index));
end;
function TGeometryArrays.GLSLAttributeVector2(const Name: string; const Index: Cardinal = 0): PVector2;
begin
Result := PVector2(GLSLAttribute(atVector2, Name, Index));
end;
function TGeometryArrays.GLSLAttributeVector3(const Name: string; const Index: Cardinal = 0): PVector3;
begin
Result := PVector3(GLSLAttribute(atVector3, Name, Index));
end;
function TGeometryArrays.GLSLAttributeVector4(const Name: string; const Index: Cardinal = 0): PVector4;
begin
Result := PVector4(GLSLAttribute(atVector4, Name, Index));
end;
function TGeometryArrays.GLSLAttributeMatrix3(const Name: string; const Index: Cardinal = 0): PMatrix3;
begin
Result := PMatrix3(GLSLAttribute(atMatrix3, Name, Index));
end;
function TGeometryArrays.GLSLAttributeMatrix4(const Name: string; const Index: Cardinal = 0): PMatrix4;
begin
Result := PMatrix4(GLSLAttribute(atMatrix4, Name, Index));
end;
procedure TGeometryArrays.FreeData;
begin
FDataFreed := true;
FreeAndNil(FIndexes);
FreeMemNiling(FCoordinateArray);
FreeMemNiling(FAttributeArray);
FreeAndNil(FFaces);
end;
end.
|