/usr/src/castle-game-engine-6.4/base/castleprojection.pas is in castle-game-engine-src 6.4+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | {
Copyright 2003-2017 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Projection parameters (TProjection). }
unit CastleProjection;
{$I castleconf.inc}
interface
uses CastleVectors, CastleRectangles;
type
{ Projection type, used by @link(TProjection.ProjectionType). }
TProjectionType = (ptOrthographic, ptPerspective, ptFrustum);
{ Projection determines how does the 3D world map onto 2D.
To change the currently displayed projection,
you usually want to override the @link(TCastleAbstractViewport.CalculateProjection). }
TProjection = record
ProjectionType: TProjectionType;
{ If ProjectionType is ptPerspective, this property specifies
angles of view (horizontal and vertical), in degrees.
Note that when overriding the @link(TCastleAbstractViewport.CalculateProjection),
you are expected to provide both angles calculated, even though some routines
for now will only use the vertical angle (and automatically adjust the other
to the aspect ratio).
Use the AdjustViewAngleDegToAspectRatio to calculate the angles as necessary.
}
PerspectiveAngles: TVector2;
{ If ProjectionType is ptOrthographic or ptFrustum, this property specifies
dimensions of the visible window. }
Dimensions: TFloatRectangle;
{ Near clipping distance.
Everything closer to this distance is clipped (invisible). }
ProjectionNear: Single;
{ Far clipping distance.
Everything further than this distance is clipped (invisible).
Note that it have a special value ZFarInfinity, which means that
no far clipping plane is used. E.g. shadow volumes require this. }
ProjectionFar: Single;
{ Far clipping distance to be used in cases when it cannot be infinite.
Unlike ProjectionFar, this property cannot have a magical value ZFarInfinity.
It should be calculated just like ProjectionFar,
except it's never changed to be ZFarInfinity. }
ProjectionFarFinite: Single;
{ Projection matrix, adjusted to given viewport aspect ratio (width/height). }
function Matrix(const AspectRatio: Single): TMatrix4;
end;
{ Calculate second viewing angle for perspective projection.
Given one viewing angle of the camera (FirstViewAngleDeg) and
aspect ratio of your window sizes (SecondToFirstRatio),
calculate second viewing angle of the camera.
The intention is that when projecting camera view (with given view angles)
on a screen with given aspect ratio), the image will not be distorted
(squeezed horizontally or vertically).
For the "Deg" version both angles (given and returned) are in degress,
for the "Rad" version both angles and in radians.
@groupBegin }
function AdjustViewAngleDegToAspectRatio(const FirstViewAngleDeg,
SecondToFirstRatio: Single): Single;
function AdjustViewAngleRadToAspectRatio(const FirstViewAngleRad,
SecondToFirstRatio: Single): Single;
{ @groupEnd }
const
{ Special value that you can pass to various perspective-projection functions
with the intention to set far plane at infinity.
These functions include
like @link(FrustumProjectionMatrix), @link(PerspectiveProjectionMatrixDeg),
@link(PerspectiveProjectionMatrixRad), @link(PerspectiveProjection).
You can pass ZFarInfinity as their @code(ZFar) parameter value.
@italic(Implementation note:)
It would be "cooler" to define this constant as Math.Infinity,
but operating on Math.Infinity requires unnecessary turning
off of some compiler checks. The point was only to have some special ZFar
value, so 0 is as good as Infinity. }
ZFarInfinity = 0.0;
{ Functions to create 4x4 matrices used in 3D graphics for projection.
That are equivalent to OpenGL glOrtho, glFrustum, gluPerspective.
The frustum and pespective generation
(routines FrustumProjectionMatrix, PerspectiveProjectionMatrixDeg, PerspectiveProjectionMatrixRad)
accept also a special value ZFarInfinity as the ZFar parameter.
Then you get perspective projection matrix withour far clipping plane,
which is very useful for the z-fail shadow volumes technique.
@groupBegin }
function OrthoProjectionMatrix(const Dimensions: TFloatRectangle; const ZNear, ZFar: Single): TMatrix4; overload;
function OrthoProjectionMatrix(const left, right, bottom, top, ZNear, ZFar: Single): TMatrix4; overload; deprecated 'use the overloaded version that takes Dimensions as TFloatRectangle';
function Ortho2DProjectionMatrix(const Dimensions: TFloatRectangle): TMatrix4; overload; deprecated 'just use OrthoProjectionMatrix, the 2D optimization is not really worth the maintenance';
function Ortho2DProjectionMatrix(const left, right, bottom, top: Single): TMatrix4; overload; deprecated 'just use OrthoProjectionMatrix, the 2D optimization is not really worth the maintenance';
function FrustumProjectionMatrix(const Dimensions: TFloatRectangle; const ZNear, ZFar: Single): TMatrix4; overload;
function FrustumProjectionMatrix(const left, right, bottom, top, ZNear, ZFar: Single): TMatrix4; overload; deprecated 'use the overloaded version that takes Dimensions as TFloatRectangle';
function PerspectiveProjectionMatrixDeg(const fovyDeg, aspect, ZNear, ZFar: Single): TMatrix4;
function PerspectiveProjectionMatrixRad(const fovyRad, aspect, ZNear, ZFar: Single): TMatrix4;
{ @groupEnd }
implementation
uses Math,
CastleUtils, CastleLog;
{ TProjection ---------------------------------------------------------------- }
function TProjection.Matrix(const AspectRatio: Single): TMatrix4;
begin
case ProjectionType of
ptPerspective:
Result := PerspectiveProjectionMatrixDeg(
PerspectiveAngles.Data[1],
AspectRatio,
ProjectionNear,
ProjectionFar);
ptOrthographic:
Result := OrthoProjectionMatrix(
Dimensions,
ProjectionNear,
ProjectionFarFinite);
ptFrustum:
Result := FrustumProjectionMatrix(
Dimensions,
ProjectionNear,
ProjectionFar);
else raise EInternalError.Create('TCastleAbstractViewport.ApplyProjection:ProjectionType?');
end;
end;
{ global routines ------------------------------------------------------------ }
function AdjustViewAngleRadToAspectRatio(const FirstViewAngleRad, SecondToFirstRatio: Single): Single;
begin
{ Ratio on window sizes is the ratio of angle tangeses.
For two angles (a, b), and window sizes (x, y) we have
Tan(a/2) = (x/2)/d
Tan(b/2) = (y/2)/d
where D is the distance to projection plane. So
Tan(a/2) / Tan(b/2) = x/y }
Result := ArcTan( Tan(FirstViewAngleRad/2) * SecondToFirstRatio) * 2;
end;
function AdjustViewAngleDegToAspectRatio(const FirstViewAngleDeg, SecondToFirstRatio: Single): Single;
begin
Result := RadToDeg( AdjustViewAngleRadToAspectRatio( DegToRad(FirstViewAngleDeg),
SecondToFirstRatio));
end;
function OrthoProjectionMatrix(const Left, Right, Bottom, Top, ZNear, ZFar: Single): TMatrix4;
var
Dimensions: TFloatRectangle;
begin
Dimensions.Left := Left;
Dimensions.Width := Right - Left;
Dimensions.Bottom := Bottom;
Dimensions.Height := Top - Bottom;
Result := OrthoProjectionMatrix(Dimensions, ZNear, ZFar);
end;
function OrthoProjectionMatrix(const Dimensions: TFloatRectangle; const ZNear, ZFar: Single): TMatrix4;
var
Depth: Single;
begin
Depth := ZFar - ZNear;
Result := TMatrix4.Zero;
Result.Data[0, 0] := 2 / Dimensions.Width;
Result.Data[1, 1] := 2 / Dimensions.Height;
Result.Data[2, 2] := - 2 / Depth; { negate, because our Z-y are negative when going "deeper inside the screen" }
Result.Data[3, 0] := - (Dimensions.Right + Dimensions.Left ) / Dimensions.Width;
Result.Data[3, 1] := - (Dimensions.Top + Dimensions.Bottom) / Dimensions.Height;
Result.Data[3, 2] := - (ZFar + ZNear) / Depth;
Result.Data[3, 3] := 1;
end;
function Ortho2DProjectionMatrix(const Left, Right, Bottom, Top: Single): TMatrix4;
var
Dimensions: TFloatRectangle;
begin
Dimensions.Left := Left;
Dimensions.Width := Right - Left;
Dimensions.Bottom := Bottom;
Dimensions.Height := Top - Bottom;
{$warnings off}
// consciously using deprecated function in another deprecated function
Result := Ortho2DProjectionMatrix(Dimensions);
{$warnings on}
end;
function Ortho2DProjectionMatrix(const Dimensions: TFloatRectangle): TMatrix4;
begin
{ simple version: Result := OrthoProjectionMatrix(Dimensions, -1, 1); }
{ optimized version below: }
Result := TMatrix4.Zero;
Result.Data[0, 0] := 2 / Dimensions.Width;
Result.Data[1, 1] := 2 / Dimensions.Height;
Result.Data[2, 2] := -1;
Result.Data[3, 0] := - (Dimensions.Right + Dimensions.Left ) / Dimensions.Width;
Result.Data[3, 1] := - (Dimensions.Top + Dimensions.Bottom) / Dimensions.Height;
Result.Data[3, 3] := 1;
end;
function FrustumProjectionMatrix(const Left, Right, Bottom, Top, ZNear, ZFar: Single): TMatrix4;
var
Dimensions: TFloatRectangle;
begin
Dimensions.Left := Left;
Dimensions.Width := Right - Left;
Dimensions.Bottom := Bottom;
Dimensions.Height := Top - Bottom;
Result := FrustumProjectionMatrix(Dimensions, ZNear, ZFar);
end;
function FrustumProjectionMatrix(const Dimensions: TFloatRectangle; const ZNear, ZFar: Single): TMatrix4;
{ This is based on "OpenGL Programming Guide",
Appendix G "... and Transformation Matrices".
ZFarInfinity version based on various sources, pretty much every
article about shadow volumes mentions z-fail and this trick. }
var
Depth, ZNear2: Single;
begin
ZNear2 := ZNear * 2;
Result := TMatrix4.Zero;
Result.Data[0, 0] := ZNear2 / Dimensions.Width;
Result.Data[2, 0] := (Dimensions.Right + Dimensions.Left) / Dimensions.Width;
Result.Data[1, 1] := ZNear2 / Dimensions.Height;
Result.Data[2, 1] := (Dimensions.Top + Dimensions.Bottom) / Dimensions.Height;
if ZFar <> ZFarInfinity then
begin
Depth := ZFar - ZNear;
Result.Data[2, 2] := - (ZFar + ZNear) / Depth;
Result.Data[3, 2] := - ZNear2 * ZFar / Depth;
end else
begin
Result.Data[2, 2] := -1;
Result.Data[3, 2] := -ZNear2;
end;
Result.Data[2, 3] := -1;
end;
function PerspectiveProjectionMatrixDeg(const FovyDeg, Aspect, ZNear, ZFar: Single): TMatrix4;
begin
Result := PerspectiveProjectionMatrixRad(DegToRad(FovyDeg), Aspect, ZNear, ZFar);
end;
function PerspectiveProjectionMatrixRad(const FovyRad, Aspect, ZNear, ZFar: Single): TMatrix4;
{ Based on various sources, e.g. sample implementation of
glu by SGI in Mesa3d sources. }
var
Depth, ZNear2, Cotangent: Single;
// R: TFloatRectangle;
// W, H: Single;
begin
{ You can express PerspectiveProjectionMatrixRad using FrustumProjectionMatrix.
Adapted from https://stackoverflow.com/a/12943456 }
// H := Tan(FovyRad / 2) * ZNear;
// W := H * Aspect;
// R := FloatRectangle(-W, -H, 2 * W, 2 * H);
// Result := FrustumProjectionMatrix(R, ZNear, ZFar);
// WritelnLog('Converted PerspectiveProjectionMatrixRad to a FrustumProjectionMatrix with rectangle %s',
// [R.ToString]);
ZNear2 := ZNear * 2;
Cotangent := CastleCoTan(FovyRad / 2);
Result := TMatrix4.Zero;
Result.Data[0, 0] := Cotangent / Aspect;
Result.Data[1, 1] := Cotangent;
if ZFar <> ZFarInfinity then
begin
Depth := ZFar - ZNear;
Result.Data[2, 2] := - (ZFar + ZNear) / Depth;
Result.Data[3, 2] := - ZNear2 * ZFar / Depth;
end else
begin
Result.Data[2, 2] := -1;
Result.Data[3, 2] := -ZNear2;
end;
Result.Data[2, 3] := -1;
end;
end.
|