/usr/src/castle-game-engine-6.4/base/castletimeutils.pas is in castle-game-engine-src 6.4+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | {
Copyright 2000-2017 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Time utilities. }
unit CastleTimeUtils;
{$I castleconf.inc}
interface
uses
{$ifdef MSWINDOWS} Windows, {$endif}
{$ifdef UNIX} BaseUnix, Unix, Dl, {$endif}
SysUtils, Math,
CastleUtils;
type
{ Time in seconds. This is used throughout my engine to represent time
as a floating-point value with good accuracy in seconds.
Using the "double" precision (not just "single") is good to guarantee
good accuracy. It is also the precision required for storing time in X3D.
See also:
https://randomascii.wordpress.com/2012/02/13/dont-store-that-in-a-float/
https://twitter.com/ID_AA_Carmack/status/418158611664097280
To test that "single" is not enough, open some animation in
view3dscene, and change "on display" time pass to 1000.
It goes even better if AutoRedisplay is @false, and LimitFps is 0.0,
and model is still for some time --- then we do many OnUpdate calls with
very small SecondsPassed values. }
TFloatTime = Double;
const
OldestTime = -MaxDouble;
type
{ @deprecated
To measure time, better use Timer + TimerSeconds or ProcessTimer + ProcessTimerSeconds }
TMilisecTime = QWord
{$ifdef FPC}
// This works in Delphi too, but is too noisy
deprecated 'To measure time, better use Timer + TimerSeconds or ProcessTimer + ProcessTimerSeconds'
{$endif};
{ Check is SecondTime larger by at least TimeDelay than FirstTime.
Simple implementation of this would be @code(SecondTime - FirstTime >= TimeDelay).
FirstTime and SecondTime are milisecond times from some initial point.
For example, they may be taken from a function like 32-bit GetTickCount
(on older Windows; on newer we use GetTickCount64).
Such time may "wrap".
This function checks these times intelligently, using the assumption that
the SecondTime is always "later" than the FirstTime, and only having to check
if it's later by at least TimeDelay.
Always TimeTickSecond(X, X, 0) = @true. that is, when both times
are actually equal, it's correctly "later by zero miliseconds". }
function TimeTickSecondLater(const FirstTime, SecondTime, TimeDelay: TMilisecTime): boolean;
deprecated 'to measure time, better use Timer + TimerSeconds or ProcessTimer + ProcessTimerSeconds';
{ Difference in times between SecondTime and FirstTime.
Naive implementation would be just @code(SecondTime - FirstTime),
this function does a little better: takes into account that times may "wrap"
(see TimeTickSecondLater), and uses the assumption that
the SecondTime for sure "later", to calculate hopefully correct difference. }
function TimeTickDiff(const FirstTime, SecondTime: TMilisecTime): TMilisecTime;
deprecated 'to measure time, better use Timer + TimerSeconds or ProcessTimer + ProcessTimerSeconds. Also, this function has non-intuitive argument order, inconsistent with ProcessTimerSeconds and TimerSeconds';
{ Simply add and subtract two TMilisecTime values.
These don't care if TMilisecTime is a point in time, or time interval.
They simply add / subtract values. It's your problem if adding / subtracting
them is sensible.
Range checking is ignored. In particular, this means that if you subtract
smaller value from larger value, the result will be like the time "wrapped"
in between (since TMilisecTime range is limited).
@groupBegin }
function MilisecTimesAdd(const t1, t2: TMilisecTime): TMilisecTime;
deprecated 'to measure time, better use Timer + TimerSeconds or ProcessTimer + ProcessTimerSeconds';
function MilisecTimesSubtract(const t1, t2: TMilisecTime): TMilisecTime;
deprecated 'to measure time, better use Timer + TimerSeconds or ProcessTimer + ProcessTimerSeconds';
{ @groupEnd }
{ Get current time, in miliseconds. On newer OSes (non-Windows,
or Windows >= Windows Vista) this uses 64-bit int under the hood.
Or older Windows versions it's based on 32-bit Windows.GetTickCount
that measures time since system start, that will wrap in ~ 49 days. }
function GetTickCount64: TMilisecTime;
deprecated 'to measure time, better use Timer + TimerSeconds or ProcessTimer + ProcessTimerSeconds';
const
MinDateTime: TDateTime = MinDouble;
{ Convert DateTime to string in the form "date at time". }
function DateTimeToAtStr(DateTime: TDateTime): string;
{ ------------------------------------------------------------------------------
@section(Measuring time (CPU usage of this process, if possible.) }
type
{ Current time from @link(ProcessTimer).
If possible, this measures only the CPU usage local to this process. }
TProcessTimerResult = record
private
Value:
{$ifdef UNIX} clock_t {$endif}
{$ifdef MSWINDOWS} DWord {$endif};
public
{ Seconds passed since this time sample up to now.
Equivalent to @code(ProcessTimerSeconds(ProcessTimer, Self)) }
function ElapsedTime: TFloatTime;
end;
const
{ Resolution of the timer used by @link(ProcessTimer). }
ProcessTimersPerSec
{$ifdef UNIX}
= { What is the frequency of FpTimes ?
sysconf (_SC_CLK_TCK) ?
Or does sysconf exist only in Libc ? }
{ Values below were choosen experimentally for Linux and FreeBSD
(and I know that on most UNIXes it should be 128, that's
a traditional value) }
{$ifdef LINUX} 100 {$else}
{$ifdef DARWIN}
{ In /usr/include/ppc/_limits.h and
/usr/include/i386/_limits.h
__DARWIN_CLK_TCK is defined to 100. }
100 {$else}
128 {$endif} {$endif}
{$endif}
{$ifdef MSWINDOWS} = 1000 { Using GetLastError } {$endif}
deprecated 'do not use this, it should be only used internally; use ProcessTimerSeconds to compare two times';
{ Current time, local to this process.
Use this to measure and compare the time it takes your program to do
some calculations.
If possible, this measures only the CPU usage of this process.
So it ignores delays caused by other processes doing something on your system,
and it ignores things like waiting for hard disk (I/O).
This is possible on Unix thanks to the @code(clock) API,
see http://www.gnu.org/software/libc/manual/html_node/Processor-And-CPU-Time.html .
On other platforms (like Windows), this simply measures real time that passed.
You usually take two ProcessTimer values,
subtract them with @link(ProcessTimerSeconds),
and this is the time that passed -- in seconds. Like this:
@longCode(#
var
TimeStart: TProcessTimerResult;
Seconds: TFloatTime;
begin
TimeStart := ProcessTimer;
// ... do something time-consuming ...
Seconds := ProcessTimerSeconds(ProcessTimer, TimeStart);
// or: Seconds := TimeStart.ElapsedTime;
WritelnLog('Seconds passed (in this process): %f', [Seconds]);
end;
#)
}
function ProcessTimer: TProcessTimerResult;
function ProcessTimerNow: TProcessTimerResult; deprecated 'use ProcessTimer';
{ Subtract two times obtained from @link(ProcessTimer),
A-B, return a difference in ProcessTimersPerSec.
Although it may just subtract two values, it may also do something more.
For example, if timer resolution is only miliseconds, and it may wrap
(just like TMilisecTime), then we may subtract values intelligently,
taking into account that time could wrap (see TimeTickDiff). }
function ProcessTimerDiff(a, b: TProcessTimerResult): TProcessTimerResult;
deprecated 'use ProcessTimerSeconds instead';
{ Subtract two times obtained from @link(ProcessTimer),
A-B, return a difference in seconds. }
function ProcessTimerSeconds(const a, b: TProcessTimerResult): TFloatTime;
{ Simple measure of process CPU time. Call ProcessTimerBegin at the beginning
of your calculation, call ProcessTimerEnd at the end. ProcessTimerEnd
returns a float number, with 1.0 being one second.
Note that using this is unsafe in libraries, not to mention multi-threaded
programs (it's not "reentrant") --- you risk that some other code
called ProcessTimerBegin, and your ProcessTimerEnd doesn't measure
what you think. So in general units, do not use this, use @link(ProcessTimer)
and @link(ProcessTimerSeconds) instead.
@groupBegin }
procedure ProcessTimerBegin; deprecated 'instead of this, better to use a local variable, and ProcessTimer and ProcessTimerSeconds';
function ProcessTimerEnd: TFloatTime; deprecated 'instead of this, better to use a local variable, and ProcessTimer and ProcessTimerSeconds';
{ @groupEnd }
{ -----------------------------------------------------------------------------
@section(Measuring real time.) }
type
{ Current time from @link(Timer). }
TTimerResult = record
private
{ The type of this could be platform-dependent. But for now, all platforms
are happy with Int64. }
Value: Int64;
public
{ Seconds passed since this time sample up to now.
Equivalent to @code(TimerSeconds(Timer, Self)) }
function ElapsedTime: TFloatTime;
end;
{ Timer to measure (real) time passed during some operations.
It is a "real" time, which means that subtracting two values measures
the actual time that passed between two events.
Contrast this with @link(ProcessTimer) that tries to measure
only CPU time used by the current process.
Call Timer twice, and calculate the difference (in seconds)
using the TimerSeconds. Like this:
@longCode(#
var
TimeStart: TTimerResult;
Seconds: TFloatTime;
begin
TimeStart := Timer;
// ... do something time-consuming ...
Seconds := TimerSeconds(Timer, TimeStart);
// or: Seconds := TimeStart.ElapsedTime;
WritelnLog('Seconds passed: %f', [Seconds]);
end;
#)
}
function Timer: TTimerResult;
{ Subtract two times obtained from @link(Timer),
A-B, return a difference in seconds. }
function TimerSeconds(const A, B: TTimerResult): TFloatTime;
{ TFramesPerSecond ----------------------------------------------------------- }
type
{ Utility to measure frames per second, independent of actual
rendering API. For example, it can be easily "plugged" into TCastleWindowCustom
(see TCastleWindowCustom.Fps) or Lazarus GL control (see TCastleControlCustom.Fps).
Things named "_" here are supposed to be internal to the TCastleWindowCustom /
TCastleControlCustom and such implementations. Other properties can be
controlled by the user of TCastleWindowCustom / TCastleControlCustom. }
TFramesPerSecond = class
private
FOnlyRenderFps: TFloatTime;
FRealFps: TFloatTime;
FSecondsPassed: TFloatTime;
DoZeroNextSecondsPassed: boolean;
FUpdateStartTime: TTimerResult;
LastRecalculateTime: TTimerResult;
RenderStartTime: TTimerResult;
{ 0 means "no frame was rendered yet" }
FramesRendered: Int64;
{ how much time passed inside frame rendering }
OnlyRenderTimePassed: TTimerResult;
FMaxSensibleSecondsPassed: TFloatTime;
FWasSleeping, FSleeping: boolean;
public
const
DefaultMaxSensibleSecondsPassed = 0.5;
constructor Create;
{ Internal for Castle Game Engine.
Called from CastleWindow or CastleControl.
Don't call these methods yourself.
@groupBegin
@exclude }
procedure _RenderBegin;
{ @exclude }
procedure _RenderEnd;
{ @exclude }
procedure _Sleeping;
{ @exclude }
procedure _UpdateBegin;
{ @groupEnd }
{ Rendering speed, measured in frames per second, but accounting only
time spent inside "render" calls (thus ignoring time spent on
physics and other logic).
This measures only time spend in @link(TUIContainer.EventRender)
method (and it's subordinates, like @link(TUIControl.Render),
@link(TCastleScene.LocalRender),
@link(TCastleWindowCustom.OnRender)).
It does not take into account time spent on other activities,
like "update" calls, and it doesn't take into account that frames are possibly
not rendered all the time (when AutoRedisplay = @false).
See https://castle-engine.sourceforge.io/manual_optimization.php#section_fps
for a detailed description what FPS mean and how they should be interpreted.
@seealso RealFps }
property OnlyRenderFps: TFloatTime read FOnlyRenderFps;
property FrameTime: TFloatTime read FOnlyRenderFps;
{$ifdef FPC} deprecated 'use OnlyRenderFps'; {$endif}
{ How many frames per second were actually rendered.
This is the number of @link(TUIContainer.EventRender) calls
that actually happened within a real second of time.
So it's an actual speed of your program.
Anything can slow this down, not only long rendering,
but also slow processing of other events (like "update" that does physics).
When @link(TCastleWindowCustom.AutoRedisplay) or
@link(TCastleControlCustom.AutoRedisplay) is @false,
this may be very low, since we may not
render the frames all the time (we may sleep for some time,
or perform updates without rendering).
In this case, the RealFps value may be confusing and useless
(it does not reflect the speed of your application).
Use the WasSleeping to detect this, and potentially hide the display
of RealFps from user.
See https://castle-engine.sourceforge.io/manual_optimization.php#section_fps
for a detailed description what FPS mean and how they should be interpreted.
@seealso OnlyRenderFps }
property RealFps: TFloatTime read FRealFps;
property RealTime: TFloatTime read FRealFps; {$ifdef FPC} deprecated 'use RealFps'; {$endif}
{ Some of the frames were not rendered, because the scene and camera
were not moving. This happens only when
@link(TCastleWindowCustom.AutoRedisplay)
or @link(TCastleControlCustom.AutoRedisplay) are @false,
and it basically indicates that the @link(RealFps) value is not a useful
indicator of your application speed.
See https://castle-engine.sourceforge.io/manual_optimization.php#section_fps
for a detailed description what this means. }
property WasSleeping: boolean read FWasSleeping;
{ Display current FPS (RealFps, OnlyRenderFps, taking into account WasSleeping). }
function ToString: string; override;
{ How much time passed since the last "update".
You should use this inside "update" events and methods
(@link(TUIContainer.EventUpdate),
@link(TInputListener.Update),
@link(TCastleTransform.Update)...) to scale the movement.
This way, your animation will work with the same speed
(objects will travel at the same speed),
regardless of the system performance (regardless of how often
the "update" event occurs).
This is calculated as a time between
start of previous "update" event and start of current "update" event. }
property SecondsPassed: TFloatTime read FSecondsPassed;
property UpdateSecondsPassed: TFloatTime read FSecondsPassed;
{$ifdef FPC} deprecated 'use SecondsPassed'; {$endif}
{ Limit the SecondsPassed variable, to avoid increasing time in game
a lot when a game was hanging or otherwise waiting for some exceptional
event from OS.
Used only when non-zero.
By default it's DefaultMaxSensibleSecondsPassed. }
property MaxSensibleSecondsPassed: TFloatTime
read FMaxSensibleSecondsPassed write FMaxSensibleSecondsPassed;
{ Forces SecondsPassed for the next "update" call to be zero.
This is useful if you just came back from some modal state,
like a modal dialog box (like TCastleWindowCustom.FileDialog or modal boxes
in CastleMessages -- they already call this method).
SecondsPassed could be ridicoulously long in such case
(if our message loop is totally paused, as in TCastleWindowCustom.FileDialog
on Windows) or not relevant (if we do our message loop,
but we display something entirely different, like CastleMessages).
So it's best to pretend that SecondsPassed is 0.0,
so things such as TCastleSceneCore.Time do not advance wildly
just because we did a modal dialog.
This forces the SecondsPassed to be zero at the next update event
(_UpdateBegin). }
procedure ZeroNextSecondsPassed;
{ Time of last Update call. }
property UpdateStartTime: TTimerResult read FUpdateStartTime;
{ Current frame identifier.
Changed when each container "update" event occurs,
so this is equal during all @link(TInputListener.Update),
@link(TUIControl.Render), @link(TCastleTransform.Update),
@link(TCastleTransform.LocalRender) occuring within the same frame.
You can use this to avoid performing the same job many times
in a single frame.
Never zero.
It's a class function, so you can access it like
@code(TFramesPerSecond.FrameId),
no need to have a TFramesPerSecond instance (which is usually
accessed from TUIContainer, like @link(TUIContainer.Fps),
@link(TCastleWindowCustom.Fps), @link(TCastleControlCustom.Fps). }
class function FrameId: Int64;
end;
implementation
uses CastleLog;
function TimeTickSecondLater(const FirstTime, SecondTime, TimeDelay: TMilisecTime): boolean;
var
SecondTimeMinusDelay: Int64;
begin
if Log and (FirstTime > SecondTime) then
WritelnLog('Time', 'FirstTime > SecondTime for TimeTickSecondLater. Maybe 32-bit GetTickCount just wrapped (Windows XP? Otherwise, 64-bit GetTickCount64 should always be used), or maybe you swapped arguments for TimeTickSecondLater.');
{ Need 64 bit signed int to hold the result of QWord - QWord }
{$I norqcheckbegin.inc}
SecondTimeMinusDelay := SecondTime - TimeDelay;
{$I norqcheckend.inc}
if SecondTimeMinusDelay < 0 then
begin
// detected Windows with 32-bit GetTickCount, it just wrapped, fix
SecondTimeMinusDelay := SecondTimeMinusDelay + High(LongWord);
result := (FirstTime > SecondTime) and (FirstTime <= SecondTimeMinusDelay);
end else
result := FirstTime <= SecondTimeMinusDelay;
end;
function TimeTickDiff(const FirstTime, SecondTime: TMilisecTime): TMilisecTime;
begin
{$warnings off} // knowingly using deprecated stuff in another deprecated
result := MilisecTimesSubtract(SecondTime, FirstTime);
{$warnings on}
{old implementation :
if FirstTime <= SecondTime then
result := SecondTime-FirstTime else
result := High(LongWord) -FirstTime +SecondTime;
}
end;
{$I norqcheckbegin.inc}
function MilisecTimesAdd(const t1, t2: TMilisecTime): TMilisecTime;
begin result := t1+t2 end;
function MilisecTimesSubtract(const t1, t2: TMilisecTime): TMilisecTime;
begin result := t1-t2 end;
{$I norqcheckend.inc}
{$ifdef MSWINDOWS}
{ GetTickCount64 for Windows, from fpc/3.0.0/src/rtl/win/sysutils.pp }
{$IFNDEF WINCE}
type
TGetTickCount64 = function : QWord; stdcall;
var
WinGetTickCount64: TGetTickCount64 = Nil;
{$ENDIF}
function GetTickCount64: QWord;
{$IFNDEF WINCE}
var
lib: THandle;
{$ENDIF}
begin
{$IFNDEF WINCE}
{ on Vista and newer there is a GetTickCount64 implementation }
if Win32MajorVersion >= 6 then begin
if not Assigned(WinGetTickCount64) then begin
lib := LoadLibrary('kernel32.dll');
WinGetTickCount64 := TGetTickCount64(
GetProcAddress(lib, 'GetTickCount64'));
end;
Result := WinGetTickCount64();
end else
{$ENDIF}
Result := Windows.GetTickCount;
end;
{$endif MSWINDOWS}
{$ifdef UNIX}
{ GetTickCount64 for Unix.
Not based on, but in fact very similar idea as the one in
FPC fpc/3.0.0/src/rtl/unix/sysutils.pp }
var
{$warnings off} // knowingly using deprecated stuff
LastGetTickCount64: TMilisecTime;
{$warnings on}
{$I norqcheckbegin.inc}
function GetTickCount64: TMilisecTime;
var
timeval: TTimeVal;
begin
FpGettimeofday(@timeval, nil);
{ By doing tv_sec * 1000, we reject 3 most significant digits from tv_sec.
That's Ok, since these digits change least often.
And this way we get the 3 least significant digits to fill
with tv_usec div 1000 (which must be < 1000, because tv_usec must be < 1 million). }
Result := Int64(timeval.tv_sec) * 1000 + (timeval.tv_usec div 1000);
{ We cannot trust some Android systems to return increasing values here
(Android device "Moto X Play", "XT1562", OS version 5.1.1).
Maybe they synchronize the time from the Internet, and do not take care
to keep it monotonic (unlike https://lwn.net/Articles/23313/ says?) }
if Result < LastGetTickCount64 then
begin
WritelnLog('Time', 'Detected gettimeofday() going backwards on Unix, workarounding. This is known to happen on some Android devices');
Result := LastGetTickCount64;
end else
LastGetTickCount64 := Result;
end;
{$I norqcheckend.inc}
{$endif UNIX}
function DateTimeToAtStr(DateTime: TDateTime): string;
begin
Result := FormatDateTime('yyyy"-"mm"-"dd" at "tt', DateTime);
end;
{ cross-platform process timers ---------------------------------------------- }
{$ifdef UNIX}
function ProcessTimer: TProcessTimerResult;
var
Dummy: tms;
begin
{ See console.tests/test_times/RESULTS,
it seems that (at least on my Linux? Debian, Linux 2.4.20, libc-2.3.2)
the only reliable way is to use return value from times (from Libc or FpTimes).
tms.tms_utime, tms.tms_stime, clock() values are nonsense!
This is not FPC bug as I tested this with C program too. }
Result.Value := FpTimes(Dummy);
end;
function ProcessTimerDiff(a, b: TProcessTimerResult): TProcessTimerResult;
begin
Result.Value := A.Value - B.Value;
end;
{$endif UNIX}
{$ifdef MSWINDOWS}
function ProcessTimer: TProcessTimerResult;
begin
{ Deliberately using deprecated GetTickCount64 and friends.
It should be internal in this unit. }
{$warnings off}
Result.Value := GetTickCount64;
{$warnings on}
end;
function ProcessTimerDiff(a, b: TProcessTimerResult): TProcessTimerResult;
begin
{ Deliberately using deprecated GetTickCount64 and friends.
It should be internal in this unit. }
{$warnings off}
Result.Value := TimeTickDiff(b.Value, a.Value);
{$warnings on}
end;
{$endif MSWINDOWS}
function ProcessTimerNow: TProcessTimerResult;
begin
Result := ProcessTimer;
end;
function ProcessTimerSeconds(const a, b: TProcessTimerResult): TFloatTime;
begin
{$warnings off} // knowingly using deprecated stuff
Result := ProcessTimerDiff(A, B).Value / ProcessTimersPerSec;
{$warnings on}
end;
var
LastProcessTimerBegin: TProcessTimerResult;
procedure ProcessTimerBegin;
begin
LastProcessTimerBegin := ProcessTimer;
end;
function ProcessTimerEnd: TFloatTime;
begin
Result := ProcessTimerSeconds(ProcessTimer, LastProcessTimerBegin);
end;
function TProcessTimerResult.ElapsedTime: TFloatTime;
begin
Result := ProcessTimerSeconds(ProcessTimer, Self);
end;
{ timer ---------------------------------------------------------- }
{$ifdef MSWINDOWS}
type
TTimerFrequency = Int64;
TTimerState = (tsNotInitialized, tsQueryPerformance, tsGetTickCount64);
var
FTimerState: TTimerState = tsNotInitialized;
FTimerFrequency: TTimerFrequency;
{ Set FTimerState to something <> tsNotInitialized.
Also set FTimerFrequency. }
procedure InitTimer;
begin
if QueryPerformanceFrequency(FTimerFrequency) then
FTimerState := tsQueryPerformance else
begin
FTimerState := tsGetTickCount64;
FTimerFrequency := 1000;
end;
end;
function TimerFrequency: TTimerFrequency;
begin
if FTimerState = tsNotInitialized then InitTimer;
Result := FTimerFrequency;
end;
function Timer: TTimerResult;
begin
if FTimerState = tsNotInitialized then InitTimer;
if FTimerState = tsQueryPerformance then
QueryPerformanceCounter(Result.Value)
else
begin
{ Deliberately using deprecated GetTickCount64 and friends.
It should be internal in this unit. }
{$warnings off}
{ Unfortunately, below will cast GetTickCount64 back to 32-bit.
Hopefully QueryPerformanceCounter is usually available. }
Result.Value := GetTickCount64;
{$warnings on}
end;
end;
{$endif MSWINDOWS}
{$ifdef UNIX}
type
TTimerFrequency = LongWord;
const
TimerFrequency: TTimerFrequency = 1000000;
{$ifdef ANDROID}
var
{ Note that using this makes Timer not thread-safe
(but we neved guaranteed in the interface that it's thread-safe...). }
LastTimer: TTimerResult;
{$endif}
function Timer: TTimerResult;
var
tv: TTimeval;
begin
FpGettimeofday(@tv, nil);
{ We can fit whole TTimeval inside Int64, no problem. }
Result.Value := Int64(tv.tv_sec) * 1000000 + Int64(tv.tv_usec);
{$ifdef ANDROID}
{ We cannot trust some Android systems to return increasing values here
(Android device "Moto X Play", "XT1562", OS version 5.1.1).
Maybe they synchronize the time from the Internet, and do not take care
to keep it monotonic (unlike https://lwn.net/Articles/23313/ says?) }
if Result.Value < LastTimer.Value then
begin
WritelnLog('Time', 'Detected gettimeofday() going backwards on Unix, workarounding. This is known to happen on some Android devices');
Result.Value := LastTimer.Value;
end else
LastTimer.Value := Result.Value;
{$endif ANDROID}
end;
{$endif UNIX}
function TimerSeconds(const A, B: TTimerResult): TFloatTime;
begin
Result := (A.Value - B.Value) / TimerFrequency;
end;
function TTimerResult.ElapsedTime: TFloatTime;
begin
Result := TimerSeconds(Timer, Self);
end;
{ TFramesPerSecond ----------------------------------------------------------- }
var
FFrameId: Int64 = 1;
constructor TFramesPerSecond.Create;
const
DefaultFps = 60.0;
begin
inherited;
{ init time measurements to some sensible defaults }
FOnlyRenderFps := DefaultFps;
FRealFps := DefaultFps;
{ for SecondsPassed this initialization is actually not essential,
since we call ZeroNextSecondsPassed anyway.
But in case programmer will (incorrectly!) try to use SecondsPassed
before _UpdateBegin call, it's useful to have here some predictable value. }
FSecondsPassed := 1 / DefaultFps;
{ the default is non-zero now, since all Android games need it }
FMaxSensibleSecondsPassed := DefaultMaxSensibleSecondsPassed;
ZeroNextSecondsPassed;
end;
procedure TFramesPerSecond._RenderBegin;
begin
RenderStartTime := Timer;
end;
procedure TFramesPerSecond._RenderEnd;
begin
Inc(FramesRendered);
OnlyRenderTimePassed.Value := OnlyRenderTimePassed.Value + Timer.Value - RenderStartTime.Value;
end;
procedure TFramesPerSecond._Sleeping;
begin
FSleeping := true;
end;
function TFramesPerSecond.ToString: string;
begin
if (RealFps = 0) and (OnlyRenderFps = 0) then
Exit('no frames rendered');
if WasSleeping then
Result := 'no need to render all frames'
else
Result := Format('%f', [RealFps]);
Result := Result + Format(' (only render: %f)', [OnlyRenderFps]);
end;
procedure TFramesPerSecond._UpdateBegin;
{ Update RealFps, OnlyRenderFps, WasSleeping }
procedure UpdateFps;
const
TimeToRecalculate = 1.0; { in seconds }
var
NowTime: TTimerResult;
begin
NowTime := Timer;
if TimerSeconds(NowTime, LastRecalculateTime) >= TimeToRecalculate then
begin
{ update FRealFps, FOnlyRenderFps once for TimeToRecalculate time.
This way they don't change rapidly.
Previously we used more elaborate hacks for this (resetting
their times after a longer periods, but keeping some previous
results), but they were complex and bad: when the game speed
was changing suddenly, FRealFps, FOnlyRenderFps should also change
suddenly, not gradually increase / decrease. }
FRealFps := FramesRendered / TimerSeconds(NowTime, LastRecalculateTime);
FWasSleeping := FSleeping;
if OnlyRenderTimePassed.Value > 0 then
FOnlyRenderFps := FramesRendered * TimerFrequency / OnlyRenderTimePassed.Value
else
FOnlyRenderFps := 0;
LastRecalculateTime := NowTime;
FramesRendered := 0;
OnlyRenderTimePassed.Value := 0;
FSleeping := false;
end;
end;
var
NewUpdateStartTime: TTimerResult;
begin
{ update FSecondsPassed, DoZeroNextSecondsPassed, FUpdateStartTime }
NewUpdateStartTime := Timer;
if DoZeroNextSecondsPassed then
begin
FSecondsPassed := 0.0;
DoZeroNextSecondsPassed := false;
end else
begin
FSecondsPassed := TimerSeconds(NewUpdateStartTime, FUpdateStartTime);
if MaxSensibleSecondsPassed > 0 then
FSecondsPassed := Min(FSecondsPassed, MaxSensibleSecondsPassed);
end;
FUpdateStartTime := NewUpdateStartTime;
Inc(FFrameId);
UpdateFps;
end;
procedure TFramesPerSecond.ZeroNextSecondsPassed;
begin
DoZeroNextSecondsPassed := true;
end;
class function TFramesPerSecond.FrameId: Int64;
begin
Result := FFrameId;
end;
end.
|