/usr/src/castle-game-engine-6.4/x3d/castleshapes.pas is in castle-game-engine-src 6.4+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 | {
Copyright 2003-2017 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Shape (TShape class) and a simple tree of shapes (TShapeTree class). }
unit CastleShapes;
{$I castleconf.inc}
{ $define SHAPE_ITERATOR_SOPHISTICATED}
{$I octreeconf.inc}
{$modeswitch nestedprocvars}{$H+}
interface
uses SysUtils, Classes, Generics.Collections,
CastleVectors, CastleTransform, CastleBoxes, X3DNodes, CastleClassUtils,
CastleUtils, CastleInternalTriangleOctree, CastleFrustum, CastleInternalOctree,
X3DTriangles, X3DFields, CastleGeometryArrays, CastleTriangles,
CastleMaterialProperties, CastleShapeInternalShadowVolumes;
type
TShadowSampling = (ssSimple,
{ Percentage Closer Filtering improve shadow maps look, by sampling
the depth map a couple of times. They also make shadow more blurry
(increase shadow map size to counteract this), and a little slower.
They may also introduce new artifacts (due to bad interaction
with the "polygon offset" of shadow map). }
ssPCF4, ssPCF4Bilinear, ssPCF16,
{ Variance Shadow Maps, see http://www.punkuser.net/vsm/ .
This may generally produce superior
results, as shadow maps can be then filtered like normal textures
(bilinear, mipmaps, anisotropic filtering). So shadows look much nicer
from very close and very far distances.
However, this requires new GPU, and may cause artifacts on some scenes. }
ssVarianceShadowMaps);
const
ShadowSamplingNames: array [TShadowSampling] of string =
( 'Simple', 'PCF 4', 'PCF 4 Bilinear', 'PCF 16', 'Variance Shadow Maps (Experimental)' );
DefaultShadowSampling = ssPCF16;
{ }
DefLocalTriangleOctreeMaxDepth = 10;
{ Default octree leaf capacity for TShape.OctreeTriangles.
This is slightly larger than DefTriangleOctreeLeafCapacity, as this
octree will usually be used interactively for collision detection,
not by ray-tracer. So octree construction speed is somewhat important,
and cannot be too large... }
DefLocalTriangleOctreeLeafCapacity = 32;
DefLocalTriangleOctreeLimits: TOctreeLimits = (
MaxDepth: DefLocalTriangleOctreeMaxDepth;
LeafCapacity: DefLocalTriangleOctreeLeafCapacity
);
type
{ Possible spatial structure types that may be managed by TShape,
see TShape.Spatial. }
TShapeSpatialStructure = (
{ Create the TShape.OctreeTriangles.
This is an octree containing all triangles. }
ssTriangles);
TShapeSpatialStructures = set of TShapeSpatialStructure;
TShape = class;
TShapeTraverseFunc = procedure (Shape: TShape) is nested;
TEnumerateShapeTexturesFunction = function (Shape: TShape;
Texture: TAbstractTextureNode): Pointer of object;
TTestShapeVisibility = function (Shape: TShape): boolean of object;
{ Triangle information, called by TShape.LocalTriangulate and such.
See the @link(TTriangle) fields documentation for the meaning
of parameters of this callback. }
TTriangleEvent = procedure (Shape: TObject;
const Position: TTriangle3;
const Normal: TTriangle3; const TexCoord: TTriangle4;
const Face: TFaceIndex) of object;
{ Triangle in a 3D model.
Helper methods. }
TTriangleHelper = record helper for TTriangle
{ Shape containing this triangle. }
function Shape: TShape;
{ State of this shape, containing various information about 3D shape.
This is a shortcut for @link(Shape).State. }
function State: TX3DGraphTraverseState;
{ Use State.Transform to update triangle @link(TTriangle.World) geometry
from triangle @link(TTriangle.Local) geometry. }
procedure UpdateWorld;
{ X3D shape node of this triangle. May be @nil in case of VRML 1.0. }
function ShapeNode: TAbstractShapeNode;
{ X3D material node of this triangle. May be @nil in case material is not set,
or in VRML 1.0. }
function Material: TMaterialNode;
function MaterialNode: TMaterialNode; deprecated 'use Material';
{ Material information for the material of this triangle.
See TMaterialInfo for usage description.
Returns @nil when no node determines material properties
(which indicates white unlit look).
Returned TMaterialInfo is valid only as long as the underlying
Material or CommonSurfaceShader node exists.
Do not free it yourself, it will be automatically freed. }
function MaterialInfo: TMaterialInfo;
{ Return transparency of this triangle's material.
Equivalent to MaterialInfo.Transparency, although a little faster. }
function Transparency: Single;
{ Returns @true for triangles that are transparent. }
function IsTransparent: boolean;
{ Returns @true for triangles that should be ignored by shadow rays.
Returns @true for transparent triangles
(with Material.Transparency > 0) and non-shadow-casting triangles
(with Appearance.shadowCaster = FALSE).
@seealso TBaseTrianglesOctree.IgnoreForShadowRays }
function IgnoreForShadowRays: boolean;
{$ifndef CONSERVE_TRIANGLE_MEMORY}
{ For a given position (in world coordinates), return the smooth
normal vector at this point, with the resulting normal vector
in world coordinates.
@seealso TTriangle.INormal }
function INormalWorldSpace(const Point: TVector3): TVector3;
{$endif}
end;
{ Tree of shapes.
Although VRML/X3D model already provides the tree (graph of VRML/X3D nodes),
it's a little too complicated to be used at each render call.
It's especially true for VRML <= 1.0 (where properties may "leak out"
from one node to the next), VRML/X3D >= 2.0 cleaned a lot here but still
some work must be done when traversing (like accumulating transformations).
So we process VRML/X3D tree to this tree, which is much simpler with
all the geometry nodes (TAbstractGeometryNode) along with their state
(TX3DGraphTraverseState) as leafs (TShape). }
TShapeTree = class
strict private
FParentScene: TObject;
public
constructor Create(AParentScene: TObject);
{ Parent TCastleSceneCore instance. This cannot be declared here as
TCastleSceneCore (this would create circular unit dependency),
but it always is TCastleSceneCore. }
property ParentScene: TObject read FParentScene write FParentScene;
procedure Traverse(Func: TShapeTraverseFunc;
const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false); virtual; abstract;
function ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal; virtual; abstract;
{ Look for shape with Geometry.X3DName = GeometryNodeName.
Returns @nil if not found. }
function FindGeometryNodeName(const GeometryNodeName: string;
OnlyActive: boolean = false): TShape;
{ Look for shape with Geometry that has a parent named ParentNodeName.
Parent is searched by Geometry.TryFindParentNodeByName.
Returns @nil if not found. }
function FindShapeWithParentNamed(const ParentNodeName: string;
OnlyActive: boolean = false): TShape;
{ Enumerate all single texture nodes (possibly) used by the shapes.
This looks into all shapes (not only active, so e.g. it looks into all
Switch/LOD children, not only the chosen one).
This looks into the
@unorderedList(
@itemSpacing Compact
@item(Appearance.texture field (and if it's MultiTexture,
looks into it's children))
@item Into shaders textures (GLSL shaders, CommonSurfaceShader...).
@item For VRML 1.0, it also looks into VRML1State.Texture2.
)
If Enumerate callbacks returns non-nil for some texture, returns it immediately,
and stops further processing. }
function EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer; virtual; abstract;
function DebugInfo(const Indent: string = ''): string; virtual; abstract;
end;
{ Shape is a geometry node @link(Geometry) instance and it's
@link(State). For VRML >= 2.0, this usually corresponds to
a single instance of actual VRML @code(Shape) node.
It allows to perform many operations that need to know both geometry
and it's current state (parent Shape node, current transformation and such).
This class caches results of methods LocalBoundingBox, BoundingBox,
and most others (see TShapeValidities for hints).
This means that things work fast, but this also means that
you must manually call @link(Changed)
when you changed some properties of Geometry or contents of State.
But note that you can't change Geometry or State to different
objects --- they are readonly properties.
Also note that if you're using @link(TCastleSceneCore) class
then you don't have to worry about calling @link(Changed)
of items in @link(TCastleSceneCore.Shapes).
All you have to do is to call appropriate @code(Changed*)
methods of @link(TCastleSceneCore). }
TShape = class(TShapeTree)
strict private
type
TShapeValidities = set of (svLocalBBox, svBBox,
svVerticesCountNotOver, svVerticesCountOver,
svTrianglesCountNotOver, svTrianglesCountOver,
svBoundingSphere,
svNormals);
TNormalsCached = (ncSmooth, ncFlat, ncCreaseAngle);
var
FLocalBoundingBox: TBox3D;
FBoundingBox: TBox3D;
FVerticesCount, FTrianglesCount: array [boolean] of Cardinal;
Validities: TShapeValidities;
FBoundingSphereCenter: TVector3;
FBoundingSphereRadiusSqr: Single;
FOriginalGeometry: TAbstractGeometryNode;
FOriginalState: TX3DGraphTraverseState;
{ FGeometry[false] should be nil exactly when FState[false] is nil.
Same for FGeometry[true] and FState[true]. }
FGeometry: array [boolean] of TAbstractGeometryNode;
FState: array [boolean] of TX3DGraphTraverseState;
FGeometryParentNodeName,
FGeometryGrandParentNodeName,
FGeometryGrandGrandParentNodeName: string;
FDynamicGeometry: boolean;
IsCachedMaterialProperty: boolean;
CachedMaterialProperty: TMaterialProperty;
FShadowVolumes: TShapeShadowVolumes;
{ Just like Geometry() and State(), except return @nil if no proxy available
(when Geometry would return the same thing as OriginalGeometry).
@groupBegin }
function ProxyGeometry(const OverTriangulate: boolean): TAbstractGeometryNode;
function ProxyState(const OverTriangulate: boolean): TX3DGraphTraverseState;
{ @groupEnd }
procedure ValidateBoundingSphere;
{ Make both FGeometry[OverTriangulate] and FState[OverTriangulate] set.
Uses appropriate Proxy calls to initialize them. }
procedure ValidateGeometryState(const OverTriangulate: boolean);
{ Make both FGeometry and FState nil (unset),
freeing eventual instances created by Proxy methods.
Next Geometry() or State() call will cause Proxy to be recalculated. }
procedure FreeProxy;
strict private
TriangleOctreeToAdd: TTriangleOctree;
procedure AddTriangleToOctreeProgress(Shape: TObject;
const Position: TTriangle3;
const Normal: TTriangle3; const TexCoord: TTriangle4;
const Face: TFaceIndex);
function CreateTriangleOctree(const ALimits: TOctreeLimits;
const ProgressTitle: string): TTriangleOctree;
strict private
FTriangleOctreeLimits: TOctreeLimits;
FTriangleOctreeProgressTitle: string;
FOctreeTriangles: TTriangleOctree;
FSpatial: TShapeSpatialStructures;
procedure SetSpatial(const Value: TShapeSpatialStructures);
function OverrideOctreeLimits(
const BaseLimits: TOctreeLimits): TOctreeLimits;
strict private
{$ifdef SHAPE_OCTREE_USE_MAILBOX}
{ Mailbox, for speeding up collision queries.
@groupBegin }
MailboxSavedTag: TMailboxTag;
MailboxResult: PTriangle;
MailboxIntersection: TVector3;
MailboxIntersectionDistance: Single;
{ @groupEnd }
{$endif}
{ All fields below are meaningful only when svNormals in Validities.
Normals may be assigned only if svNormals in Validities.
Moreover, FNormalsCreaseAngle is meaningful only when
(svNormals in Validities) and (NormalsCached = ncCreaseAngle). }
FNormalsCached: TNormalsCached;
FNormalsCachedCcw: boolean;
FNormals: TVector3List;
FNormalsCreaseAngle: Single;
FNormalsOverTriangulate: boolean;
{ Free and nil FOctreeTriangles. Also, makes sure to call
PointingDeviceClear on ParentScene (since some PTriangle pointers
were freed). }
procedure FreeOctreeTriangles;
public
{ Constructor.
@param(ParentInfo Resursive information about parents,
for the geometry node of given shape.
Note that for VRML 2.0/X3D, the immediate parent
of geometry node is always TShapeNode.) }
constructor Create(AParentScene: TObject;
AOriginalGeometry: TAbstractGeometryNode; AOriginalState: TX3DGraphTraverseState;
ParentInfo: PTraversingInfo);
destructor Destroy; override;
{ Original geometry node, that you get from a VRML/X3D graph. }
property OriginalGeometry: TAbstractGeometryNode read FOriginalGeometry;
{ Original state, that you get from a VRML/X3D graph. }
property OriginalState: TX3DGraphTraverseState read FOriginalState;
{ Geometry of this shape.
This may come from initial VRML/X3D node graph (see OriginalGeometry),
or it may be processed by @link(TAbstractGeometryNode.Proxy)
for easier handling. }
function Geometry(const OverTriangulate: boolean = true): TAbstractGeometryNode;
{ State of this shape.
This may come from initial VRML/X3D node graph (see OriginalState),
or it may be processed by @link(TAbstractGeometryNode.Proxy)
for easier handling.
Owned by this TShape class. }
function State(const OverTriangulate: boolean = true): TX3DGraphTraverseState;
{ Calculate bounding box and vertices/triangles count,
see TAbstractGeometryNode methods.
@groupBegin }
function LocalBoundingBox: TBox3D;
function BoundingBox: TBox3D;
function VerticesCount(OverTriangulate: boolean): Cardinal;
function TrianglesCount(OverTriangulate: boolean): Cardinal;
{ @groupEnd }
{ Decompose the geometry into primitives, with arrays of per-vertex data. }
function GeometryArrays(OverTriangulate: boolean): TGeometryArrays;
{ Calculates bounding sphere based on BoundingBox.
In the future this may be changed to use BoundingSphere method
of @link(TAbstractGeometryNode), when I will implement it.
For now, BoundingSphere is always worse approximation of bounding
volume than @link(BoundingBox) (i.e. BoundingSphere is always
larger) but it may be useful in some cases when
detecting collision versus bounding sphere is much faster than detecting
them versus bounding box.
BoundingSphereRadiusSqr = 0 and BoundingSphereCenter is undefined
if Box is empty.
@groupBegin }
function BoundingSphereCenter: TVector3;
function BoundingSphereRadiusSqr: Single;
function BoundingSphereRadius: Single;
{ @groupEnd }
{ Exactly equivalent to getting
@link(BoundingSphereCenter) and @link(BoundingSphereRadiusSqr)
and then using @link(TFrustum.SphereCollisionPossible).
But it may be a little faster since it avoids some small speed problems
(like copying memory contents when you get values of
BoundingSphereXxx properties and checking twice are
BoundingSphereXxx calculated). }
function FrustumBoundingSphereCollisionPossible(
const Frustum: TFrustum): TFrustumCollisionPossible;
{ Exactly equivalent to getting
@link(BoundingSphereCenter) and @link(BoundingSphereRadiusSqr)
and then using @link(TFrustum.SphereCollisionPossibleSimple).
But it may be a little faster since it avoids some small speed problems. }
function FrustumBoundingSphereCollisionPossibleSimple(
const Frustum: TFrustum): boolean;
{ Notify this shape that you changed a field inside one of it's nodes
(automatically done by TCastleSceneCore).
This should be called when fields within Shape.Geometry,
Shape.State.Last*, Shape.State.ShapeNode or such change.
Pass InactiveOnly = @true is you know that this shape is fully in
inactive VRML graph part (inactive Switch, LOD etc. children).
Including chTransform in Changes means something more than
general chTransform (which means that transformation of children changed,
which implicates many things --- not only shape changes).
Here, chTransform in Changes means that only the transformation
of TShape.State changed (so only on fields ignored by
EqualsNoTransform). }
procedure Changed(const InactiveOnly: boolean;
const Changes: TX3DChanges); virtual;
{ @exclude
Called when local geometry changed. Internally used to communicate
between TCastleSceneCore and TShape.
"Local" means that we're concerned here about changes visible
in shape local coordinate system. E.g. things that only change our
transformation (State.Transform) do not cause "local" geometry changes.
"Geometry" means that we're concerned only about changes to topology
--- vertexes, edges, faces, how they connect each other.
Things that affect only appearance (e.g. whole Shape.appearance content
in stuff for VRML >= 2.0) is not relevant here. E.g. changing
material color does not cause "local" geometry changes.
This frees the octree (will be recreated on Octree* call).
Also removes cached normals.
Also notifies parent scene about this change (unless CalledFromParentScene). }
procedure LocalGeometryChanged(const CalledFromParentScene, ChangedOnlyCoord: boolean);
{ The dynamic octree containing all triangles.
It contains only triangles within this shape.
There is no distinction here between collidable / visible
(as for TCastleSceneCore octrees), since only the whole shape may be
marked as visible and/or collidable, not particular triangles.
The triangles are specified in local coordinate system of this shape
(that is, they are independent from transformation within State.Transform).
This allows the tree to remain unmodified when transformation of this
shape changes.
This is automatically managed (initialized, updated, and used)
by parent TCastleSceneCore. You usually don't need to know about this
octree from outside.
To initialize this, add ssTriangles to @link(InternalSpatial) property,
otherwise it's @nil. Parent TCastleSceneCore will take care of this
(when parent TCastleSceneCore.Spatial contains ssDynamicCollisions, then
all shapes contain ssTriangles within their InternalSpatial).
Parent TCastleSceneCore will take care to keep this octree always updated.
Parent TCastleSceneCore will also take care of actually using
this octree: TCastleSceneCore.OctreeCollisions methods actually use the
octrees of specific shapes at the bottom. }
function InternalOctreeTriangles: TTriangleOctree;
{ Which spatial structrues (octrees, for now) should be created and managed.
This works analogous to TCastleSceneCore.Spatial, but this manages
octrees within this TShape.
Parent TCastleSceneCore will take care to keep this value updated,
you should only set TCastleSceneCore.Spatial from the outside. }
property InternalSpatial: TShapeSpatialStructures read FSpatial write SetSpatial;
{ Properties of created triangle octrees.
See TriangleOctree unit comments for description.
Default value comes from DefLocalTriangleOctreeLimits.
They are used only when the octree is created, so usually you
want to set them right before changing @link(InternalSpatial) from []
to something else. }
function InternalTriangleOctreeLimits: POctreeLimits;
{ If TriangleOctreeProgressTitle <> '', it will be shown during
octree creation (through TProgress.Title). Will be shown only
if progress is not active already
(so we avoid starting "progress bar within progress bar"). }
property InternalTriangleOctreeProgressTitle: string
read FTriangleOctreeProgressTitle
write FTriangleOctreeProgressTitle;
{ Decide should the shape use alpha blending (partial transparency),
looking at material, color, texture nodes (including at texture
images contents).
This may look at the data of the texture node,
so it should be called before any calls to TCastleSceneCore.FreeResources.
It checks AlphaChannel of textures, so assumes that given shape
textures are already loaded. }
function Blending: boolean;
function Transparent: boolean; deprecated 'use Blending';
procedure Traverse(Func: TShapeTraverseFunc;
const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false); override;
function ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal; override;
{ Is shape visible, according to VRML Collision node rules.
Ths is simply a shortcut (with more obvious name) for
@code(State.InsideInvisible = 0). }
function Visible: boolean;
{ Is shape collidable, according to VRML Collision node rules.
Ths is simply a shortcut (with more obvious name) for
@code(State.InsideIgnoreCollision = 0). }
function Collidable: boolean;
{ Equivalent to using OctreeTriangles.RayCollision, except this
wil use the mailbox. }
function RayCollision(
const Tag: TMailboxTag;
out Intersection: TVector3;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: TTriangleIgnoreFunc): PTriangle;
{ Equivalent to using OctreeTriangles.SegmentCollision, except this
wil use the mailbox. }
function SegmentCollision(
const Tag: TMailboxTag;
out Intersection: TVector3;
out IntersectionDistance: Single;
const Pos1, Pos2: TVector3;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: TTriangleIgnoreFunc): PTriangle;
{ Create normals suitable for this shape.
You can call this only when Geometry is coordinate-based
X3D geometry, implementing Coord and having non-empty coordinates
(that is, Geometry.Coord returns @true and sets ACoord <> @nil),
and having Geometry.CoordIndex <> @nil.
For NormalsSmooth, also Geometry.CoordIndex = @nil is allowed,
but make sure that Geometry.InternalCoordPolygons is available.
See CreateSmoothNormalsCoordinateNode.
@unorderedList(
@item(Smooth normals are perfectly smooth, per-vertex.
As an exception, you can call this even when coords are currently
empty (Geometry.Coord returns @true but ACoord is @nil),
then result is also @nil.)
@item(Flat normals are per-face.
Calculated by CreateFlatNormals.)
@item(Finally NormalsCreaseAngle creates separate
normal per index (auto-smoothing by CreaseAngle).)
)
The normals here are cached. So using these methods makes condiderable
speedup if the shape will not change (@link(Changed) method) and
will need normals many times (e.g. will be rendered many times).
@groupBegin }
function NormalsSmooth(const OverTriangulate, FromCcw: boolean): TVector3List;
function NormalsFlat(const OverTriangulate, FromCcw: boolean): TVector3List;
function NormalsCreaseAngle(const OverTriangulate, FromCcw: boolean;
const CreaseAngle: Single): TVector3List;
{ @groupEnd }
function EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer; override;
{ Is the texture node Node possibly used by this shape.
This is equivalent to checking does EnumerateShapeTextures return this shape. }
function UsesTexture(Node: TAbstractTextureNode): boolean;
{ Check is shape a shadow caster. Looks at Shape's
Appearance.shadowCaster field (see
http://castle-engine.sourceforge.net/x3d_extensions.php#section_ext_shadow_caster). }
function ShadowCaster: boolean;
{ Triangulate shape. Calls TriangleEvent callback for each triangle.
LocalTriangulate returns coordinates in local shape transformation
(that is, not transformed by State.Transform yet).
OverTriangulate determines if we should make more triangles for Gouraud
shading. For example, it makes Cones and Cylinders divided into
additional stacks.
@groupBegin }
procedure Triangulate(OverTriangulate: boolean; TriangleEvent: TTriangleEvent);
procedure LocalTriangulate(OverTriangulate: boolean; TriangleEvent: TTriangleEvent);
{ @groupEnd }
function DebugInfo(const Indent: string = ''): string; override;
function NiceName: string;
{ Local geometry is treated as dynamic (changes very often, like every frame).
This is automatically detected and set to @true, although you can also
explicitly set this if you want.
Dynamic geometry has worse collision detection (using a crude
approximation) and falls back to rendering method better for
dynamic geometry (for example, marking VBO data as dynamic for OpenGL
rendering). }
property DynamicGeometry: boolean read FDynamicGeometry write FDynamicGeometry;
{ Shape node in VRML/X3D graph.
This is always present for VRML >= 2 (including X3D).
For VRML 1.0 and Inventor this is @nil. }
function Node: TAbstractShapeNode;
{ Node names of parents of the geometry node.
Note that for X3D/VRML 2.0, GeometryParentNodeName is the same
as Node.NodeName, because the parent of geometry node is always
a TShapeNode.
@groupBegin }
property GeometryParentNodeName: string read FGeometryParentNodeName;
property GeometryGrandParentNodeName: string read FGeometryGrandParentNodeName;
property GeometryGrandGrandParentNodeName: string read FGeometryGrandGrandParentNodeName;
{ @groupEnd }
{ Material property associated with this shape's material/texture. }
function InternalMaterialProperty: TMaterialProperty;
function MaterialProperty: TMaterialProperty; deprecated 'use InternalMaterialProperty, or (better) do not use it at all -- this is internal';
{ @exclude }
property InternalShadowVolumes: TShapeShadowVolumes read FShadowVolumes;
end;
TShapeTreeList = specialize TObjectList<TShapeTree>;
{ Internal (non-leaf) node of the TShapeTree.
This is practically just a list of other children
(other TShapeTree items).
All children are considered "active" by this class.
This class owns it's children TShapeTree.
Since TShapeTree is a simple tree structure, there are no duplicates
possible, that is given TShapeTree instance may be within only
one parent TShapeTree. (VRML node's parenting mechanism is more
complicated than this, because of DEF/USE mechanism.) }
TShapeTreeGroup = class(TShapeTree)
strict private
FChildren: TShapeTreeList;
public
constructor Create(AParentScene: TObject);
destructor Destroy; override;
procedure Traverse(Func: TShapeTraverseFunc;
const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false); override;
function ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal; override;
property Children: TShapeTreeList read FChildren;
function EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer; override;
{$ifdef SHAPE_ITERATOR_SOPHISTICATED}
{ Start index for TShapeTreeIterator.
Must be >= -1 (-1 means to start from 0).
May be >= Children.Count, even IterateBeginIndex + 1 may
be >= Children.Count, i.e. it's Ok if this is already out of range. }
function IterateBeginIndex(OnlyActive: boolean): Integer; virtual;
{ End index for TShapeTreeIterator. Valid indexes are < this.
This must be <= Children.Count. }
function IterateEndIndex(OnlyActive: boolean): Cardinal; virtual;
{$endif}
function DebugInfo(const Indent: string = ''): string; override;
end;
{ Node of the TShapeTree representing an alternative,
choosing one (or none) child from it's children list as active.
It's ideal for representing the VRML >= 2.0 Switch node
(not possible for VRML 1.0 Switch node, as it may affect also other
nodes after Switch). Actually, it even has a SwitchNode link that is
used to decide which child to choose (using SwitchNode.FdWhichChoice). }
TShapeTreeSwitch = class(TShapeTreeGroup)
strict private
FSwitchNode: TSwitchNode;
public
property SwitchNode: TSwitchNode read FSwitchNode write FSwitchNode;
procedure Traverse(Func: TShapeTraverseFunc;
const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false); override;
function ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal; override;
{$ifdef SHAPE_ITERATOR_SOPHISTICATED}
function IterateBeginIndex(OnlyActive: boolean): Integer; override;
function IterateEndIndex(OnlyActive: boolean): Cardinal; override;
{$endif}
end;
{ Node of the TShapeTree transforming it's children.
It's ideal for handling VRML 2.0 / X3D Transform node,
and similar nodes (MatrixTransform and some H-Anim nodes also act
as a transformation node and also may be handled by this). }
TShapeTreeTransform = class(TShapeTreeGroup)
strict private
FTransformNode: TX3DNode;
FTransformState: TX3DGraphTraverseState;
public
constructor Create(AParentScene: TObject);
destructor Destroy; override;
{ Internal note: We don't declare TransformNode as ITransformNode interface,
because we don't want to keep reference to it too long,
as it's manually freed. That's safer. }
{ Transforming VRML/X3D node. Always assigned, always may be casted
to ITransformNode interface. }
property TransformNode: TX3DNode read FTransformNode write FTransformNode;
{ State right before traversing the TransformNode.
Owned by this TShapeTreeTransform instance. You should assign
to it when you set TransformNode. }
property TransformState: TX3DGraphTraverseState read FTransformState;
end;
{ Node of the TShapeTree representing the LOD (level of detail) alternative.
It chooses one child from it's children list as active.
Represents the VRML >= 2.0 LOD node
(not possible for VRML 1.0 LOD node, as it may affect also other
nodes after LOD).
To choose which child is active we need to know the LOD node,
with it's transformation in VRML graph.
This information is in LODNode and LODInvertedTransform properties.
Also, we need to know the current camera position.
This is passed as CameraPosition to CalculateLevel.
Note that this class doesn't call CalculateLevel by itself, never.
You have to call CalculateLevel, and use it to set Level property,
from parent scene to make this LOD work. (Reasoning behind this decision:
parent scene has CameraPosition and such, and parent scene
knows whether to initiate level_changes event sending.) }
TShapeTreeLOD = class(TShapeTreeGroup)
strict private
FLODNode: TAbstractLODNode;
FLODInvertedTransform: TMatrix4;
FLevel: Cardinal;
FWasLevel_ChangedSend: boolean;
public
property LODNode: TAbstractLODNode read FLODNode write FLODNode;
function LODInvertedTransform: PMatrix4;
{ Calculate @link(Level). This only calculates level, doesn't
assign @link(Level) property or send level_changed event. }
function CalculateLevel(const CameraPosition: TVector3): Cardinal;
{ Current level, that is index of the active child of this LOD node.
This is always < Children.Count, unless there are no children.
In this case it's 0.
Should be calculated by CalculateLevel. By default
we simply use the first (highest-detail) LOD as active.
So if you never assign this (e.g. because TCastleSceneCore.CameraViewKnown
= @false, that is user position is never known) we'll always
use the highest-detail children. }
property Level: Cardinal read FLevel write FLevel default 0;
property WasLevel_ChangedSend: boolean
read FWasLevel_ChangedSend write FWasLevel_ChangedSend default false;
procedure Traverse(Func: TShapeTraverseFunc;
const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false); override;
function ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal; override;
{$ifdef SHAPE_ITERATOR_SOPHISTICATED}
function IterateBeginIndex(OnlyActive: boolean): Integer; override;
function IterateEndIndex(OnlyActive: boolean): Cardinal; override;
{$endif}
end;
TProximitySensorInstance = class(TShapeTree)
strict private
FNode: TProximitySensorNode;
public
InvertedTransform: TMatrix4;
IsActive: boolean;
property Node: TProximitySensorNode read FNode write FNode;
procedure Traverse(Func: TShapeTraverseFunc;
const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false); override;
function ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal; override;
function EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer; override;
function DebugInfo(const Indent: string = ''): string; override;
end;
TVisibilitySensorInstance = class(TShapeTree)
strict private
FNode: TVisibilitySensorNode;
public
{ Bounding box of this visibility sensor instance,
already transformed to global VRML/X3D scene coordinates.
That is, transformed by parent Transform and similar nodes. }
Box: TBox3D;
Transform: TMatrix4;
property Node: TVisibilitySensorNode read FNode write FNode;
procedure Traverse(Func: TShapeTraverseFunc;
const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false); override;
function ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal; override;
function EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer; override;
function DebugInfo(const Indent: string = ''): string; override;
end;
TShapeList = class;
{ Iterates over all TShape items that would be enumerated by
Tree.Traverse. Sometimes it's easier to write code using this iterator
than to create callbacks and use TShapeTree.Traverse. }
TShapeTreeIterator = class
strict private
FCurrent: TShape;
{$ifdef SHAPE_ITERATOR_SOPHISTICATED}
Info: Pointer;
SingleShapeRemaining: boolean;
FOnlyActive, FOnlyVisible, FOnlyCollidable: boolean;
function CurrentMatches: boolean;
{$else}
List: TShapeList;
CurrentIndex: Integer;
{$endif}
public
constructor Create(Tree: TShapeTree; const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false);
destructor Destroy; override;
function GetNext: boolean;
property Current: TShape read FCurrent;
end;
TShapeList = class(specialize TObjectList<TShape>)
strict private
SortPosition: TVector3;
function IsSmallerFrontToBack(constref A, B: TShape): Integer;
function IsSmallerBackToFront3D(constref A, B: TShape): Integer;
function IsSmallerBackToFront2D(constref A, B: TShape): Integer;
public
constructor Create;
{ Constructor that initializes list contents by traversing given tree. }
constructor Create(Tree: TShapeTree; const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false);
{ Sort shapes by distance to given Position point, closest first. }
procedure SortFrontToBack(const Position: TVector3);
{ Sort shapes by distance to given Position point, farthest first.
If Distance3D is @true: we use real distance in 3D to sort.
See the @link(bs3D) at @link(TBlendingSort) documentation.
If Distance3D is @false: we use only the distance in the Z coordinate
to sort. This is suitable for
rendering things that pretend to be 2D, like Spine slots.
See the @link(bs2D) at @link(TBlendingSort) documentation. }
procedure SortBackToFront(const Position: TVector3;
const Distance3D: boolean);
end;
var
{ If nonzero, disables automatic TShape.DynamicGeometry detection
on every node modification. This is useful if you do some interactive
editing of the shape, but you don't want the shape octree to be replaced
by it's approximation. }
DisableAutoDynamicGeometry: Cardinal;
{ Log various information about shapes. This displays quite a lot of non-critical
information when opening non-trivial models.
Meaningful only if you initialized log (see CastleLog unit) by InitializeLog first. }
LogShapes: boolean = false;
type
{ Detect the 3D placeholder name set in the external modeler,
like 3D object name set in Blender or 3DS Max.
Assumes that a specific modeler was used to create and export this 3D model.
Each TPlaceholderName function is made to follow the logic of a single
modeler, and they are gathered in PlaceholderNames.
Returns empty string if none.
When implementing this, you may find useful the following properties
of the shape: TShape.OriginalGeometry.X3DName,
TShape.Node.X3DName, TShape.GeometryParentNodeName,
TShape.GeometryGrandParentNodeName,
TShape.GeometryGrandGrandParentNodeName.
Preferably, the result should be unique, only for this VRML/X3D shape.
But in practice it's the responsibility of the modeler
and model author to make it true.
For example, modelers that allow multiple materials on object (like
Blender) @italic(must) split a single 3D object into many VRML/X3D shapes
sometimes.
So just don't use shapes with multiple materials if this shape
may be meaningful for a placeholder.
This is used only by TGameSceneManager.LoadLevel placeholders.
Ultimately, this should be something that is easy to set when creating
a 3D model in given external modeler.
@italic(Nothing else in our engine depends on a particular modeler
strategy for exporting VRML/X3D models.)
This should be object name (to allow sharing a single mesh underneath).
Except when it's not possible (like for old Blender VRML 1.0 exporter,
when only mesh names are stored in VRML/X3D exported files),
in which case it can be a mesh name. }
TPlaceholderName = function (const Shape: TShape): string;
TPlaceholderNames = class(specialize TDictionary<string, TPlaceholderName>)
strict private
function GetItems(const AKey: string): TPlaceholderName;
procedure SetItems(const AKey: string; const AValue: TPlaceholderName);
public
{ Access dictionary items.
Setting this is allowed regardless if the key previously existed or not,
in other words: setting this does AddOrSetValue, contrary to the ancestor TDictionary
that only allows setting when the key already exists. }
property Items [const AKey: string]: TPlaceholderName read GetItems write SetItems; default;
end;
var
PlaceholderNames: TPlaceholderNames;
implementation
uses Generics.Defaults,
CastleProgress, CastleSceneCore, CastleInternalNormals, CastleLog,
CastleStringUtils, CastleArraysGenerator, CastleImages, CastleURIUtils;
const
UnknownTexCoord: TTriangle4 = (Data: (
(Data: (0, 0, 0, 1)),
(Data: (0, 0, 0, 1)),
(Data: (0, 0, 0, 1))
));
{ TTriangleHelper ------------------------------------------------------------ }
function TTriangleHelper.Shape: TShape;
begin
Assert(InternalShape is TShape); // will be optimized out in RELEASE mode
Result := TShape(InternalShape);
end;
function TTriangleHelper.State: TX3DGraphTraverseState;
begin
Result := TShape(InternalShape).State;
end;
procedure TTriangleHelper.UpdateWorld;
begin
World.Triangle := Local.Triangle.Transform(State.Transform);
{$ifndef CONSERVE_TRIANGLE_MEMORY_MORE}
World.Plane := World.Triangle.NormalizedPlane;
World.Area := World.Triangle.Area;
{$endif}
end;
function TTriangleHelper.ShapeNode: TAbstractShapeNode;
begin
Result := State.ShapeNode;
end;
function TTriangleHelper.Material: TMaterialNode;
var
S: TAbstractShapeNode;
begin
S := ShapeNode;
if S <> nil then
Result := S.Material
else
Result := nil;
end;
function TTriangleHelper.MaterialNode: TMaterialNode;
begin
Result := Material;
end;
function TTriangleHelper.MaterialInfo: TMaterialInfo;
begin
Result := State.MaterialInfo;
end;
function TTriangleHelper.Transparency: Single;
var
M: TMaterialInfo;
begin
M := MaterialInfo;
if M <> nil then
Result := M.Transparency
else
Result := 0;
end;
function TTriangleHelper.IsTransparent: boolean;
begin
Result := Transparency > SingleEpsilon;
end;
function TTriangleHelper.IgnoreForShadowRays: boolean;
function NonShadowCaster(State: TX3DGraphTraverseState): boolean;
var
Shape: TAbstractShapeNode;
begin
Shape := State.ShapeNode;
Result :=
(Shape <> nil) and
(Shape.FdAppearance.Value <> nil) and
(Shape.FdAppearance.Value is TAppearanceNode) and
(not TAppearanceNode(Shape.FdAppearance.Value).FdShadowCaster.Value);
end;
begin
Result := ({ IsTransparent } Transparency > SingleEpsilon) or
NonShadowCaster(State);
end;
{$ifndef CONSERVE_TRIANGLE_MEMORY}
function TTriangleHelper.INormalWorldSpace(const Point: TVector3): TVector3;
begin
Result := State.Transform.MultDirection(INormalCore(Point)).Normalize;
end;
{$endif not CONSERVE_TRIANGLE_MEMORY}
{ TShapeTree ------------------------------------------------------------ }
constructor TShapeTree.Create(AParentScene: TObject);
begin
inherited Create;
FParentScene := AParentScene;
end;
function TShapeTree.FindGeometryNodeName(
const GeometryNodeName: string; OnlyActive: boolean): TShape;
var
SI: TShapeTreeIterator;
begin
SI := TShapeTreeIterator.Create(Self, OnlyActive);
try
while SI.GetNext do
begin
Result := SI.Current;
if Result.OriginalGeometry.X3DName = GeometryNodeName then Exit;
end;
finally FreeAndNil(SI) end;
Result := nil;
end;
function TShapeTree.FindShapeWithParentNamed(
const ParentNodeName: string; OnlyActive: boolean): TShape;
var
SI: TShapeTreeIterator;
begin
SI := TShapeTreeIterator.Create(Self, OnlyActive);
try
while SI.GetNext do
begin
Result := SI.Current;
if Result.OriginalGeometry.TryFindParentByName(ParentNodeName) <> nil then Exit;
end;
finally FreeAndNil(SI) end;
Result := nil;
end;
{ TShape -------------------------------------------------------------- }
constructor TShape.Create(AParentScene: TObject;
AOriginalGeometry: TAbstractGeometryNode; AOriginalState: TX3DGraphTraverseState;
ParentInfo: PTraversingInfo);
begin
inherited Create(AParentScene);
FTriangleOctreeLimits := DefLocalTriangleOctreeLimits;
FShadowVolumes := TShapeShadowVolumes.Create(Self);
FOriginalGeometry := AOriginalGeometry;
FOriginalState := AOriginalState;
if ParentInfo <> nil then
begin
FGeometryParentNodeName := ParentInfo^.Node.X3DName;
ParentInfo := ParentInfo^.ParentInfo;
if ParentInfo <> nil then
begin
FGeometryGrandParentNodeName := ParentInfo^.Node.X3DName;
ParentInfo := ParentInfo^.ParentInfo;
if ParentInfo <> nil then
FGeometryGrandGrandParentNodeName := ParentInfo^.Node.X3DName;
end;
end;
{$ifdef SHAPE_OCTREE_USE_MAILBOX}
MailboxSavedTag := -1;
{$endif}
end;
destructor TShape.Destroy;
begin
FreeAndNil(FShadowVolumes);
FreeProxy;
FreeAndNil(FNormals);
FreeAndNil(FOriginalState);
FreeOctreeTriangles;
inherited;
end;
procedure TShape.FreeOctreeTriangles;
begin
{ secure against ParentScene = nil, since this may be called from destructor }
if ParentScene <> nil then
begin
{ Some PTriangles will be freed. Make sure to clear
PointingDeviceOverItem, unless they belong to a different shape. }
if (TCastleSceneCore(ParentScene).PointingDeviceOverItem <> nil) and
(TCastleSceneCore(ParentScene).PointingDeviceOverItem^.Shape = Self) then
TCastleSceneCore(ParentScene).PointingDeviceClear;
end;
FreeAndNil(FOctreeTriangles);
end;
function TShape.InternalOctreeTriangles: TTriangleOctree;
begin
if (ssTriangles in InternalSpatial) and (FOctreeTriangles = nil) then
begin
FOctreeTriangles := CreateTriangleOctree(
OverrideOctreeLimits(FTriangleOctreeLimits),
InternalTriangleOctreeProgressTitle);
if Log and LogChanges then
WritelnLog('X3D changes (octree)', Format(
'Shape(%s).OctreeTriangles updated', [PointerToStr(Self)]));
end;
Result := FOctreeTriangles;
end;
function TShape.InternalTriangleOctreeLimits: POctreeLimits;
begin
Result := @FTriangleOctreeLimits;
end;
function TShape.LocalBoundingBox: TBox3D;
begin
if not (svLocalBBox in Validities) then
begin
FLocalBoundingBox := OriginalGeometry.LocalBoundingBox(OriginalState,
ProxyGeometry(false), ProxyState(false));
Include(Validities, svLocalBBox);
end;
Result := FLocalBoundingBox;
end;
function TShape.BoundingBox: TBox3D;
begin
if not (svBBox in Validities) then
begin
FBoundingBox := OriginalGeometry.BoundingBox(OriginalState,
ProxyGeometry(false), ProxyState(false));
Include(Validities, svBBox);
end;
Result := FBoundingBox;
end;
function TShape.VerticesCount(OverTriangulate: boolean): Cardinal;
procedure Calculate;
begin
FVerticesCount[OverTriangulate] := OriginalGeometry.VerticesCount(
OriginalState, OverTriangulate,
ProxyGeometry(OverTriangulate),
ProxyState(OverTriangulate));
end;
begin
if OverTriangulate then
begin
if not (svVerticesCountOver in Validities) then
begin
Calculate;
Include(Validities, svVerticesCountOver);
end;
end else
begin
if not (svVerticesCountNotOver in Validities) then
begin
Calculate;
Include(Validities, svVerticesCountNotOver);
end;
end;
Result := FVerticesCount[OverTriangulate];
end;
function TShape.TrianglesCount(OverTriangulate: boolean): Cardinal;
procedure Calculate;
begin
FTrianglesCount[OverTriangulate] := OriginalGeometry.TrianglesCount(
OriginalState, OverTriangulate,
ProxyGeometry(OverTriangulate),
ProxyState(OverTriangulate));
end;
begin
if OverTriangulate then
begin
if not (svTrianglesCountOver in Validities) then
begin
Calculate;
Include(Validities, svTrianglesCountOver);
end;
end else
begin
if not (svTrianglesCountNotOver in Validities) then
begin
Calculate;
Include(Validities, svTrianglesCountNotOver);
end;
end;
Result := FTrianglesCount[OverTriangulate];
end;
function TShape.GeometryArrays(OverTriangulate: boolean): TGeometryArrays;
var
G: TAbstractGeometryNode;
S: TX3DGraphTraverseState;
function MaterialOpacity: Single;
begin
// TODO: maybe this should take S.ShapeNode.CommonSurfaceShader into account?
// And just use S.MaterialInfo or such?
if G is TAbstractGeometryNode_1 then
Result := S.VRML1State.Material.MaterialInfo(0).Opacity else
if (S.ShapeNode <> nil) and
(S.ShapeNode.Material <> nil) then
Result := S.ShapeNode.Material.Opacity else
Result := 1;
end;
function TexCoordsNeeded: Cardinal;
var
Tex: TAbstractTextureNode;
SurfaceShader: TCommonSurfaceShaderNode;
begin
Tex := S.DiffuseAlphaTexture;
if Tex is TMultiTextureNode then
Result := TMultiTextureNode(Tex).FdTexture.Count
else
if Tex <> nil then
Result := 1
else
Result := 0;
{ we need at least 1 texture coordinate if some special texture
(not necessarily diffuse texture) is used }
if (S.ShapeNode <> nil) and
(S.ShapeNode.Appearance <> nil) then
begin
// CommonSurfaceShader can only be non-nil if Appearance is non-nil
SurfaceShader := S.ShapeNode.CommonSurfaceShader;
if SurfaceShader <> nil then
begin
if SurfaceShader.NormalTexture <> nil then
MaxVar(Result, SurfaceShader.NormalTextureCoordinatesId + 1);
if SurfaceShader.AmbientTexture <> nil then
MaxVar(Result, SurfaceShader.AmbientTextureCoordinatesId + 1);
if SurfaceShader.SpecularTexture <> nil then
MaxVar(Result, SurfaceShader.SpecularTextureCoordinatesId + 1);
if SurfaceShader.ShininessTexture <> nil then
MaxVar(Result, SurfaceShader.ShininessTextureCoordinatesId + 1);
end else
if S.ShapeNode.Appearance.NormalMap <> nil then
MaxVar(Result, 1);
end;
if OriginalGeometry.FontTextureNode <> nil then
Inc(Result);
end;
function ArrayForBox(Box: TBox3D): TGeometryArrays;
begin
{ When there's no TArraysGenerator suitable, then we have an unsupported node.
For now, we make an array describing a single quad: this shape's
bounding box in XY plane. The reason for this is historical
(this was a proper shape to approximate collision with 2D Text nodes;
but they do not get anymore into this procedure, as they are implemented
by a proxy that renders them through QuadSet or such node). }
Result := TGeometryArrays.Create;
if not Box.IsEmpty then
begin
Result.Primitive := gpTriangleFan; // gpQuads; - use triangle fan instead, to work with OpenGLES
Result.Count := 4;
Result.Position(0)^ := Vector3(Box.Data[0][0], Box.Data[0][1], Box.Data[0][2]);
Result.Position(1)^ := Vector3(Box.Data[1][0], Box.Data[0][1], Box.Data[0][2]);
Result.Position(2)^ := Vector3(Box.Data[1][0], Box.Data[1][1], Box.Data[0][2]);
Result.Position(3)^ := Vector3(Box.Data[0][0], Box.Data[1][1], Box.Data[0][2]);
Result.Normal(0)^ := TVector3.One[2];
Result.Normal(1)^ := TVector3.One[2];
Result.Normal(2)^ := TVector3.One[2];
Result.Normal(3)^ := TVector3.One[2];
end;
end;
var
GeneratorClass: TArraysGeneratorClass;
Generator: TArraysGenerator;
begin
G := Geometry(OverTriangulate);
S := State(OverTriangulate);
GeneratorClass := GetArraysGenerator(G);
if GeneratorClass <> nil then
begin
Generator := GeneratorClass.Create(Self, OverTriangulate);
try
Generator.TexCoordsNeeded := TexCoordsNeeded;
Generator.MaterialOpacity := MaterialOpacity;
Generator.FacesNeeded := true;
{ Leave the rest of Generator properties as default }
Result := Generator.GenerateArrays;
finally FreeAndNil(Generator) end;
end else
Result := ArrayForBox(LocalBoundingBox);
end;
procedure TShape.FreeProxy;
begin
if Log and LogChanges and
{ OriginalGeometry should always be <> nil, but just in case
(e.g. running from destructor, or with bad state) check. }
(OriginalGeometry <> nil) and
(
( (FGeometry[false] <> OriginalGeometry) and (FGeometry[false] <> nil) ) or
( (FGeometry[true ] <> OriginalGeometry) and (FGeometry[true ] <> nil) ) or
( (FState[false] <> OriginalState) and (FState[false] <> nil) ) or
( (FState[true ] <> OriginalState) and (FState[true ] <> nil) )
) then
WritelnLog('X3D changes', 'Releasing the Proxy geometry of ' + OriginalGeometry.ClassName);
if FGeometry[false] <> OriginalGeometry then
begin
if FGeometry[true] = FGeometry[false] then
{ Then either both FGeometry[] are nil (in which case we do no harm
by code below) or they are <> nil because
ProxyUsesOverTriangulate = false. In the 2nd case, we should
avoid freeing the same instance twice. }
FGeometry[true] := nil;
FreeAndNil(FGeometry[false]);
end else
FGeometry[false] := nil;
if FGeometry[true] <> OriginalGeometry then
FreeAndNil(FGeometry[true]) else
FGeometry[true] := nil;
if FState[false] <> OriginalState then
begin
if FState[true] = FState[false] then FState[true] := nil;
FreeAndNil(FState[false]);
end else
FState[false] := nil;
if FState[true] <> OriginalState then
FreeAndNil(FState[true]) else
FState[true] := nil;
Assert(FGeometry[false] = nil);
Assert(FGeometry[true] = nil);
Assert(FState[false] = nil);
Assert(FState[true] = nil);
end;
procedure TShape.Changed(const InactiveOnly: boolean;
const Changes: TX3DChanges);
begin
{ Remember to code everything here to act only when some stuff
is included inside Changed value. For example, when
Changes = [chClipPlane], there's no need to do anything here. }
{ When Proxy needs to be recalculated.
Include chVisibleVRML1State, since even MaterialBinding may change VRML 1.0
proxies. }
if Changes * [chCoordinate, chVisibleVRML1State, chGeometryVRML1State,
chTextureCoordinate, chGeometry, chWireframe] <> [] then
FreeProxy;
{ When bounding volumes in global coordinates changed.
Probably only chTransform is really needed here
(testcase: upwind_turbine.x3d), as other flags already cause other changes
that invalidate global bboxes anyway. }
if Changes * [chTransform, chCoordinate, chGeometry, chGeometryVRML1State,
chEverything] <> [] then
Validities := Validities - [svBBox, svBoundingSphere];
if chCoordinate in Changes then
{ Coordinate changes actual geometry. }
LocalGeometryChanged(false, true);
if Changes * [chGeometry, chGeometryVRML1State, chWireframe] <> [] then
LocalGeometryChanged(false, false);
if not InactiveOnly then
TCastleSceneCore(ParentScene).VisibleChangeHere([vcVisibleGeometry, vcVisibleNonGeometry]);
end;
procedure TShape.ValidateBoundingSphere;
begin
if not (svBoundingSphere in Validities) then
begin
BoundingBox.BoundingSphere(FBoundingSphereCenter, FBoundingSphereRadiusSqr);
Include(Validities, svBoundingSphere);
end;
end;
function TShape.BoundingSphereCenter: TVector3;
begin
ValidateBoundingSphere;
Result := FBoundingSphereCenter;
end;
function TShape.BoundingSphereRadiusSqr: Single;
begin
ValidateBoundingSphere;
Result := FBoundingSphereRadiusSqr;
end;
function TShape.BoundingSphereRadius: Single;
begin
Result := Sqrt(BoundingSphereRadiusSqr);
end;
function TShape.FrustumBoundingSphereCollisionPossible(
const Frustum: TFrustum): TFrustumCollisionPossible;
begin
ValidateBoundingSphere;
Result := Frustum.SphereCollisionPossible(
FBoundingSphereCenter, FBoundingSphereRadiusSqr);
end;
function TShape.FrustumBoundingSphereCollisionPossibleSimple(
const Frustum: TFrustum): boolean;
begin
ValidateBoundingSphere;
Result := Frustum.SphereCollisionPossibleSimple(
FBoundingSphereCenter, FBoundingSphereRadiusSqr);
end;
function TShape.OverrideOctreeLimits(
const BaseLimits: TOctreeLimits): TOctreeLimits;
var
Props: TKambiOctreePropertiesNode;
begin
Result := BaseLimits;
if (State.ShapeNode <> nil) and
(State.ShapeNode.FdOctreeTriangles.Value <> nil) and
(State.ShapeNode.FdOctreeTriangles.Value is TKambiOctreePropertiesNode) then
begin
Props := TKambiOctreePropertiesNode(State.ShapeNode.FdOctreeTriangles.Value);
Props.OverrideLimits(Result);
end;
end;
procedure TShape.AddTriangleToOctreeProgress(Shape: TObject;
const Position: TTriangle3;
const Normal: TTriangle3; const TexCoord: TTriangle4;
const Face: TFaceIndex);
begin
Progress.Step;
TriangleOctreeToAdd.AddItemTriangle(Shape, Position, Normal, TexCoord, Face);
end;
function TShape.CreateTriangleOctree(
const ALimits: TOctreeLimits;
const ProgressTitle: string): TTriangleOctree;
procedure LocalTriangulateBox(const Box: TBox3D);
procedure LocalTriangulateRect(constCoord: integer;
const constCoordValue, x1, y1, x2, y2: Single);
var
Position, Normal: TTriangle3;
i, c1, c2: integer;
procedure TriAssign(TriIndex: integer; c1value, c2value: Single);
begin
Position.Data[TriIndex].Data[c1] := c1value;
Position.Data[TriIndex].Data[c2] := c2value;
end;
begin
RestOf3dCoords(constCoord, c1, c2);
for I := 0 to 2 do
begin
Position.Data[I].Data[ConstCoord] := ConstCoordValue;
Normal.Data[I].Data[C1] := 0;
Normal.Data[I].Data[C2] := 0;
Normal.Data[I].Data[ConstCoord] := 1; { TODO: or -1 }
end;
TriAssign(0, x1, y1);
TriAssign(1, x1, y2);
TriAssign(2, x2, y2);
Result.AddItemTriangle(Self, Position, Normal, UnknownTexCoord, UnknownFaceIndex);
TriAssign(0, x1, y1);
TriAssign(1, x2, y2);
TriAssign(2, x2, y1);
Result.AddItemTriangle(Self, Position, Normal, UnknownTexCoord, UnknownFaceIndex);
end;
var
I, XCoord, YCoord: Integer;
begin
for I := 0 to 2 do
begin
RestOf3dCoords(I, XCoord, YCoord);
LocalTriangulateRect(I, Box.Data[0][I], Box.Data[0][XCoord], Box.Data[0][YCoord], Box.Data[1][XCoord], Box.Data[1][YCoord]);
LocalTriangulateRect(I, Box.Data[1][I], Box.Data[0][XCoord], Box.Data[0][YCoord], Box.Data[1][XCoord], Box.Data[1][YCoord]);
end;
end;
begin
Result := TTriangleOctree.Create(ALimits, LocalBoundingBox);
try
if DynamicGeometry then
begin
{ Add 12 triangles for 6 cube (LocalBoundingBox) sides.
No point in progress here, as this is always fast. }
Result.Triangles.Capacity := 12;
LocalTriangulateBox(LocalBoundingBox);
end else
begin
Result.Triangles.Capacity := TrianglesCount(false);
if (ProgressTitle <> '') and
(not Progress.Active) then
begin
Progress.Init(TrianglesCount(false), ProgressTitle, true);
try
TriangleOctreeToAdd := Result;
LocalTriangulate(false, @AddTriangleToOctreeProgress);
finally Progress.Fini end;
end else
LocalTriangulate(false, @Result.AddItemTriangle);
end;
except Result.Free; raise end;
{ $define CASTLE_DEBUG_OCTREE_DUPLICATION}
{$ifdef CASTLE_DEBUG_OCTREE_DUPLICATION}
WritelnLog('Triangles In Shape Octree Stats', '%d items in octree, %d items in octree''s leafs, duplication %f. Size of items in bytes: %d * %d = %d',
[Result.TotalItemsInOctree,
Result.TotalItemsInLeafs,
Result.TotalItemsInLeafs / Result.TotalItemsInOctree,
Result.Triangles.Count,
SizeOf(TTriangle),
Result.Triangles.Count * SizeOf(TTriangle)]);
{$endif}
end;
procedure TShape.SetSpatial(const Value: TShapeSpatialStructures);
var
Old, New: boolean;
begin
if Value <> InternalSpatial then
begin
{ Handle OctreeTriangles }
Old := ssTriangles in InternalSpatial;
New := ssTriangles in Value;
if Old and not New then
FreeOctreeTriangles;
FSpatial := Value;
end;
end;
procedure TShape.LocalGeometryChanged(
const CalledFromParentScene, ChangedOnlyCoord: boolean);
begin
if FOctreeTriangles <> nil then
begin
if DisableAutoDynamicGeometry = 0 then
begin
if (not DynamicGeometry) and Log then
WritelnLog('Shape', Format('Shape with geometry %s detected as dynamic, will use more crude collision detection and more suitable rendering',
[OriginalGeometry.X3DType]));
DynamicGeometry := true;
end;
FreeOctreeTriangles;
end;
{ Remove cached normals }
FreeAndNil(FNormals);
Exclude(Validities, svNormals);
{ Remove from Validities things that depend on geometry.
Local geometry change means that also global (world-space) geometry changed. }
Validities := Validities - [svLocalBBox, svBBox,
svVerticesCountNotOver, svVerticesCountOver,
svTrianglesCountNotOver, svTrianglesCountOver,
svBoundingSphere,
svNormals];
{ Clear variables after removing fvTrianglesList* }
FShadowVolumes.InvalidateTrianglesListShadowCasters;
{ Edges topology possibly changed. }
if not ChangedOnlyCoord then
{ When ChangedOnlyCoord, we don't do InvalidateManifoldAndBorderEdges,
and this an important optimization (makes mesh deformation cheaper). }
FShadowVolumes.InvalidateManifoldAndBorderEdges;
if not CalledFromParentScene then
begin
if ChangedOnlyCoord then
TCastleSceneCore(ParentScene).DoGeometryChanged(gcLocalGeometryChangedCoord, Self) else
TCastleSceneCore(ParentScene).DoGeometryChanged(gcLocalGeometryChanged, Self);
end;
end;
function TShape.Transparent: boolean;
begin
Result := Blending;
end;
function TShape.Blending: boolean;
{ All the "transparency" field values are greater than zero.
So the blending should be used when rendering.
Note that when "transparency" field is empty, then we assume
a default transparency (0) should be used. So AllMaterialsTransparent
is @false then (contrary to the strict definition of "all",
which should be true for empty sets). }
function AllMaterialsTransparent(const Node: TMaterialNode_1): boolean;
var
i: Integer;
begin
if Node.FdTransparency.Items.Count = 0 then
result := TMaterialInfo.DefaultTransparency > SingleEpsilon else
begin
for i := 0 to Node.FdTransparency.Items.Count-1 do
if Node.FdTransparency.Items.L[i] <= SingleEpsilon then
Exit(false);
result := true;
end;
end;
var
SurfaceShader: TCommonSurfaceShaderNode;
M: TMaterialNode;
Tex: TAbstractTextureNode;
begin
if State.ShapeNode <> nil then
begin
SurfaceShader := State.ShapeNode.CommonSurfaceShader;
if SurfaceShader <> nil then
begin
Result := SurfaceShader.Transparency > SingleEpsilon;
end else
begin
M := State.ShapeNode.Material;
Result := (M <> nil) and (M.FdTransparency.Value > SingleEpsilon);
end;
end else
{ For VRML 1.0, there may be multiple materials on a node.
Some of them may be transparent, some not --- we arbitrarily
decide for now that AllMaterialsTransparent decides whether
blending should be used or not. We may change this in the
future to AnyMaterialsTransparent, since this will be more
consistent with X3D ColorRGBA treatment?
We do not try to split node into multiple instances.
This is difficult and memory-consuming task, so we just
depend on VRML author to split his geometry nodes if he
wants it.
Obviously, we also drop the idea of splitting the geometry
into separate triangles and deciding whether to use blending
for each separate triangle. Or to sort every separate triangle.
This would obviously get very very slow for models with lots
of triangles. }
Result := AllMaterialsTransparent(State.VRML1State.Material);
if Geometry.InternalColorRGBA <> nil then
Result := true;
{ If texture exists with full range alpha channel then use blending.
Note that State.Texture may be TMultiTextureNode --- that's Ok,
it has AlphaChannel = atFullRange
if any child has atFullRange. So it automatically works Ok too. }
Tex := State.DiffuseAlphaTexture;
if (Tex <> nil) and (Tex.AlphaChannelFinal = acBlending) then
Result := true;
Tex := OriginalGeometry.FontTextureNode;
if (Tex <> nil) and (Tex.AlphaChannelFinal = acBlending) then
Result := true;
end;
procedure TShape.Traverse(Func: TShapeTraverseFunc;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
begin
if ((not OnlyVisible) or Visible) and
((not OnlyCollidable) or Collidable) then
Func(Self);
end;
function TShape.ShapesCount(
const OnlyActive, OnlyVisible, OnlyCollidable: boolean): Cardinal;
begin
if ((not OnlyVisible) or Visible) and
((not OnlyCollidable) or Collidable) then
Result := 1 else
Result := 0;
end;
function TShape.Visible: boolean;
begin
Result := State.InsideInvisible = 0;
end;
function TShape.Collidable: boolean;
begin
Result := State.InsideIgnoreCollision = 0;
end;
function TShape.RayCollision(
const Tag: TMailboxTag;
out Intersection: TVector3;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: TTriangleIgnoreFunc): PTriangle;
begin
{$ifdef SHAPE_OCTREE_USE_MAILBOX}
if MailboxSavedTag = Tag then
begin
Result := MailboxResult;
if Result <> nil then
begin
Intersection := MailboxIntersection;
IntersectionDistance := MailboxIntersectionDistance;
end;
end else
begin
{$endif}
Result := InternalOctreeTriangles.RayCollision(
Intersection, IntersectionDistance, RayOrigin, RayDirection,
ReturnClosestIntersection,
TriangleToIgnore, IgnoreMarginAtStart, TrianglesToIgnoreFunc);
{$ifdef SHAPE_OCTREE_USE_MAILBOX}
{ save result to mailbox }
MailboxSavedTag := Tag;
MailboxResult := Result;
if Result <> nil then
begin
MailboxIntersection := Intersection;
MailboxIntersectionDistance := IntersectionDistance;
end;
end;
{$endif}
end;
function TShape.SegmentCollision(
const Tag: TMailboxTag;
out Intersection: TVector3;
out IntersectionDistance: Single;
const Pos1, Pos2: TVector3;
const ReturnClosestIntersection: boolean;
const TriangleToIgnore: PTriangle;
const IgnoreMarginAtStart: boolean;
const TrianglesToIgnoreFunc: TTriangleIgnoreFunc): PTriangle;
begin
{$ifdef SHAPE_OCTREE_USE_MAILBOX}
if MailboxSavedTag = Tag then
begin
Result := MailboxResult;
if Result <> nil then
begin
Intersection := MailboxIntersection;
IntersectionDistance := MailboxIntersectionDistance;
end;
end else
begin
{$endif}
Result := InternalOctreeTriangles.SegmentCollision(
Intersection, IntersectionDistance, Pos1, Pos2,
ReturnClosestIntersection,
TriangleToIgnore, IgnoreMarginAtStart, TrianglesToIgnoreFunc);
{$ifdef SHAPE_OCTREE_USE_MAILBOX}
{ save result to mailbox }
MailboxSavedTag := Tag;
MailboxResult := Result;
if Result <> nil then
begin
MailboxIntersection := Intersection;
MailboxIntersectionDistance := IntersectionDistance;
end;
end;
{$endif}
end;
function TShape.NormalsSmooth(const OverTriangulate, FromCcw: boolean): TVector3List;
var
G: TAbstractGeometryNode;
S: TX3DGraphTraverseState;
begin
if not (
(svNormals in Validities) and
(FNormalsCached = ncSmooth) and
(FNormalsCachedCcw = FromCcw) and
(FNormalsOverTriangulate = OverTriangulate)
) then
begin
if Log and LogShapes then
WritelnLog('Normals', 'Calculating shape smooth normals');
{ Free previous normals }
FreeAndNil(FNormals);
Exclude(Validities, svNormals);
G := Geometry(OverTriangulate);
S := State(OverTriangulate);
FNormals := CreateSmoothNormalsCoordinateNode(G, S, FromCcw);
FNormalsCached := ncSmooth;
FNormalsCachedCcw := FromCcw;
FNormalsOverTriangulate := OverTriangulate;
Include(Validities, svNormals);
end;
Result := FNormals;
end;
function TShape.NormalsFlat(const OverTriangulate, FromCcw: boolean): TVector3List;
var
G: TAbstractGeometryNode;
S: TX3DGraphTraverseState;
begin
if not (
(svNormals in Validities) and
(FNormalsCached = ncFlat) and
(FNormalsCachedCcw = FromCcw) and
(FNormalsOverTriangulate = OverTriangulate)
) then
begin
if Log and LogShapes then
WritelnLog('Normals', 'Calculating shape flat normals');
{ Free previous normals }
FreeAndNil(FNormals);
Exclude(Validities, svNormals);
G := Geometry(OverTriangulate);
S := State(OverTriangulate);
FNormals := CreateFlatNormals(G.CoordIndexField.Items,
G.InternalCoordinates(S).Items, FromCcw, G.Convex);
FNormalsCached := ncFlat;
FNormalsCachedCcw := FromCcw;
FNormalsOverTriangulate := OverTriangulate;
Include(Validities, svNormals);
end;
Result := FNormals;
end;
function TShape.NormalsCreaseAngle(const OverTriangulate, FromCcw: boolean;
const CreaseAngle: Single): TVector3List;
var
G: TAbstractGeometryNode;
S: TX3DGraphTraverseState;
begin
if not (
(svNormals in Validities) and
(FNormalsCached = ncCreaseAngle) and
(FNormalsCachedCcw = FromCcw) and
(FNormalsOverTriangulate = OverTriangulate) and
(FNormalsCreaseAngle = CreaseAngle)
) then
begin
if Log and LogShapes then
WritelnLog('Normals', 'Calculating shape CreaseAngle normals');
{ Free previous normals }
FreeAndNil(FNormals);
Exclude(Validities, svNormals);
G := Geometry(OverTriangulate);
S := State(OverTriangulate);
FNormals := CreateNormals(G.CoordIndexField.Items,
G.InternalCoordinates(S).Items, CreaseAngle, FromCcw, G.Convex);
FNormalsCached := ncCreaseAngle;
FNormalsCachedCcw := FromCcw;
FNormalsOverTriangulate := OverTriangulate;
FNormalsCreaseAngle := CreaseAngle;
Include(Validities, svNormals);
end;
Result := FNormals;
end;
function TShape.EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer;
function HandleSingleTextureNode(Tex: TX3DNode): Pointer;
begin
if Tex is TAbstractTextureNode then
Result := Enumerate(Self, TAbstractTextureNode(Tex))
else
Result := nil;
end;
function HandleIDecls(IDecls: TX3DInterfaceDeclarationList): Pointer; forward;
function HandleIDecls(Nodes: TX3DNodeList): Pointer;
var
I: Integer;
begin
Result := nil;
for I := 0 to Nodes.Count - 1 do
begin
Result := HandleIDecls(Nodes[I].InterfaceDeclarations);
if Result <> nil then Exit;
end;
end;
function HandleTextureNode(Tex: TX3DNode): Pointer;
var
I: Integer;
begin
Result := nil;
if Tex is TAbstractTextureNode then
begin
{ Texture node may use more texture nodes through it's "effects" field. }
Result := HandleIDecls(TAbstractTextureNode(Tex).FdEffects.Items);
if Result <> nil then Exit;
if Tex is TMultiTextureNode then
begin
Result := Enumerate(Self, TMultiTextureNode(Tex));
if Result <> nil then Exit;
for I := 0 to TMultiTextureNode(Tex).FdTexture.Items.Count - 1 do
begin
Result := HandleSingleTextureNode(TMultiTextureNode(Tex).FdTexture.Items.Items[I]);
if Result <> nil then Exit;
end;
end else
Result := HandleSingleTextureNode(Tex);
end;
end;
{ Scan IDecls for SFNode and MFNode fields, handling texture nodes inside. }
function HandleIDecls(IDecls: TX3DInterfaceDeclarationList): Pointer;
var
I, J: Integer;
UniformField: TX3DField;
begin
Result := nil;
if IDecls <> nil then
for I := 0 to IDecls.Count - 1 do
begin
UniformField := IDecls.Items[I].Field;
if UniformField <> nil then
begin
if UniformField is TSFNode then
begin
Result := HandleTextureNode(TSFNode(UniformField).Value);
if Result <> nil then Exit;
end else
if UniformField is TMFNode then
begin
for J := 0 to TMFNode(UniformField).Count - 1 do
begin
Result := HandleTextureNode(TMFNode(UniformField).Items[J]);
if Result <> nil then Exit;
end;
end;
end;
end;
end;
function HandleCommonSurfaceShader(SurfaceShader: TCommonSurfaceShaderNode): Pointer;
begin
Result := HandleTextureNode(SurfaceShader.FdAlphaTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdAmbientTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdDiffuseTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdDiffuseDisplacementTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdDisplacementTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdEmissiveTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdEnvironmentTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdMultiDiffuseAlphaTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdMultiEmmisiveAmbientIntensityTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdMultiSpecularShininessTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdMultiVisibilityTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdNormalTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdReflectionTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdShininessTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdSpecularTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(SurfaceShader.FdTransmissionTexture.Value);
if Result <> nil then Exit;
end;
var
SurfaceShader: TCommonSurfaceShaderNode;
I: Integer;
App: TAppearanceNode;
Lights: TLightInstancesList;
begin
Result := HandleTextureNode(State.VRML1State.Texture2);
if Result <> nil then Exit;
if (State.ShapeNode <> nil) and
(State.ShapeNode.Appearance <> nil) then
begin
App := State.ShapeNode.Appearance;
Result := HandleTextureNode(App.FdTexture.Value);
if Result <> nil then Exit;
Result := HandleTextureNode(App.FdNormalMap.Value);
if Result <> nil then Exit;
HandleIDecls(App.FdShaders.Items);
HandleIDecls(App.FdEffects.Items);
{ CommonSurfaceShader can be non-nil only when App is non-nil }
SurfaceShader := State.ShapeNode.CommonSurfaceShader;
if SurfaceShader <> nil then
begin
HandleCommonSurfaceShader(SurfaceShader);
if Result <> nil then Exit;
end;
end;
Lights := State.Lights;
if Lights <> nil then
for I := 0 to Lights.Count - 1 do
begin
Result := HandleIDecls(Lights.L[I].Node.FdEffects.Items);
if Result <> nil then Exit;
end;
if State.Effects <> nil then
HandleIDecls(State.Effects);
Result := HandleTextureNode(OriginalGeometry.FontTextureNode);
if Result <> nil then Exit;
end;
type
TUsesTextureHelper = class
Node: TAbstractTextureNode;
function HandleTexture(Shape: TShape; Texture: TAbstractTextureNode): Pointer;
end;
function TUsesTextureHelper.HandleTexture(Shape: TShape;
Texture: TAbstractTextureNode): Pointer;
begin
if Texture = Node then
Result := Texture { anything non-nil } else
Result := nil;
end;
function TShape.UsesTexture(Node: TAbstractTextureNode): boolean;
var
Helper: TUsesTextureHelper;
begin
Helper := TUsesTextureHelper.Create;
try
Helper.Node := Node;
Result := EnumerateTextures(@Helper.HandleTexture) <> nil;
finally Helper.Free end;
end;
function TShape.ShadowCaster: boolean;
var
S: TAbstractShapeNode;
A: TX3DNode;
begin
Result := true;
S := State.ShapeNode;
if S <> nil then
begin
A := S.FdAppearance.Value;
if (A <> nil) and
(A is TAppearanceNode) then
Result := TAppearanceNode(A).FdShadowCaster.Value;
end;
end;
procedure TShape.ValidateGeometryState(const OverTriangulate: boolean);
begin
if FGeometry[OverTriangulate] = nil then
begin
Assert(FState[OverTriangulate] = nil);
FState[OverTriangulate] := OriginalState;
try
FGeometry[OverTriangulate] := OriginalGeometry.Proxy(
FState[OverTriangulate], OverTriangulate);
except
{ in case of trouble, remember to keep both
FGeometry[OverTriangulate] and FState[OverTriangulate] nil.
Never let one of them be nil, while other it not. }
FState[OverTriangulate] := nil;
raise;
end;
if FGeometry[OverTriangulate] <> nil then
begin
{ We just used OriginalGeometry.Proxy successfully.
Let's now check can we fill the over FGeometry/FState[] value for free.
If ProxyUsesOverTriangulate = false, then we can reuse
this Proxy. This may save us from unnecessarily calling Proxy
second time. }
if (FGeometry[not OverTriangulate] = nil) and
not OriginalGeometry.ProxyUsesOverTriangulate then
begin
Assert(FState[not OverTriangulate] = nil);
FGeometry[not OverTriangulate] := FGeometry[OverTriangulate];
FState [not OverTriangulate] := FState [OverTriangulate];
end;
end else
begin
FGeometry[OverTriangulate] := OriginalGeometry;
FState [OverTriangulate] := OriginalState;
end;
end;
end;
function TShape.Geometry(const OverTriangulate: boolean): TAbstractGeometryNode;
begin
ValidateGeometryState(OverTriangulate);
Result := FGeometry[OverTriangulate];
end;
function TShape.State(const OverTriangulate: boolean): TX3DGraphTraverseState;
begin
ValidateGeometryState(OverTriangulate);
Result := FState[OverTriangulate];
end;
function TShape.ProxyGeometry(const OverTriangulate: boolean): TAbstractGeometryNode;
begin
Result := Geometry(OverTriangulate);
if Result = OriginalGeometry then Result := nil;
end;
function TShape.ProxyState(const OverTriangulate: boolean): TX3DGraphTraverseState;
begin
if Geometry(OverTriangulate) <> OriginalGeometry then
Result := State(OverTriangulate) else
Result := nil;
end;
procedure TShape.LocalTriangulate(OverTriangulate: boolean; TriangleEvent: TTriangleEvent);
var
Arrays: TGeometryArrays;
RangeBeginIndex: Integer;
{ Call TriangleEvent once. Give indexes to Arrays (Arrays.Indexes,
if assigned, otherwise direct coordinates), relative to RangeBeginIndex. }
procedure Triangle(const I1, I2, I3: Cardinal);
var
VI1, VI2, VI3: Integer;
Position, Normal: TTriangle3;
TexCoord: TTriangle4;
Face: TFaceIndex;
begin
if Arrays.Indexes <> nil then
begin
VI1 := Arrays.Indexes[RangeBeginIndex + I1];
VI2 := Arrays.Indexes[RangeBeginIndex + I2];
VI3 := Arrays.Indexes[RangeBeginIndex + I3];
end else
begin
VI1 := RangeBeginIndex + I1;
VI2 := RangeBeginIndex + I2;
VI3 := RangeBeginIndex + I3;
end;
Position.Data[0] := Arrays.Position(VI1)^;
Position.Data[1] := Arrays.Position(VI2)^;
Position.Data[2] := Arrays.Position(VI3)^;
Normal.Data[0] := Arrays.Normal(VI1)^;
Normal.Data[1] := Arrays.Normal(VI2)^;
Normal.Data[2] := Arrays.Normal(VI3)^;
if (Arrays.TexCoords.Count <> 0) and
(Arrays.TexCoords[0] <> nil) and
(Arrays.TexCoords[0].Generation = tgExplicit) then
begin
case Arrays.TexCoords[0].Dimensions of
2: begin
TexCoord.Data[0] := Vector4(Arrays.TexCoord2D(0, VI1)^, 0, 1);
TexCoord.Data[1] := Vector4(Arrays.TexCoord2D(0, VI2)^, 0, 1);
TexCoord.Data[2] := Vector4(Arrays.TexCoord2D(0, VI3)^, 0, 1);
end;
3: begin
TexCoord.Data[0] := Vector4(Arrays.TexCoord3D(0, VI1)^, 1);
TexCoord.Data[1] := Vector4(Arrays.TexCoord3D(0, VI2)^, 1);
TexCoord.Data[2] := Vector4(Arrays.TexCoord3D(0, VI3)^, 1);
end;
4: begin
TexCoord.Data[0] := Arrays.TexCoord4D(0, VI1)^;
TexCoord.Data[1] := Arrays.TexCoord4D(0, VI2)^;
TexCoord.Data[2] := Arrays.TexCoord4D(0, VI3)^;
end;
else raise EInternalError.Create('Arrays.TexCoord[0].Dimensions? at TShape.localtriangulate');
end;
end else
TexCoord := UnknownTexCoord;
if Arrays.Faces <> nil then
Face := Arrays.Faces.L[RangeBeginIndex + I1]
else
Face := UnknownFaceIndex;
TriangleEvent(Self, Position, Normal, TexCoord, Face);
end;
{ Call NewTriangle, triangulating indexes 0 .. Count - 1. }
procedure TriangulateRange(const Count: Cardinal);
var
I: Cardinal;
NormalOrder: boolean;
begin
case Arrays.Primitive of
gpTriangles:
begin
I := 0;
while I + 2 < Count do
begin
Triangle(I, I + 1, I + 2);
I += 3;
end;
end;
{$ifndef OpenGLES}
gpQuads:
begin
I := 0;
while I + 3 < Count do
begin
Triangle(I, I + 1, I + 2);
Triangle(I, I + 2, I + 3);
I += 4;
end;
end;
{$endif}
gpTriangleFan:
begin
I := 0;
while I + 2 < Count do
begin
Triangle(0, I + 1, I + 2);
Inc(I);
end;
end;
gpTriangleStrip:
begin
I := 0;
NormalOrder := true;
while I + 2 < Count do
begin
if NormalOrder then
Triangle(I , I + 1, I + 2) else
Triangle(I + 1, I , I + 2);
NormalOrder := not NormalOrder;
Inc(I);
end;
end;
else { gpLineStrip, gpPoints don't make triangles } ;
end;
end;
var
Count: Cardinal;
I: Integer;
begin
Arrays := GeometryArrays(OverTriangulate);
try
if Arrays.Indexes <> nil then
Count := Arrays.IndexesCount else
Count := Arrays.Count;
RangeBeginIndex := 0;
if Arrays.Counts = nil then
TriangulateRange(Count) else
for I := 0 to Arrays.Counts.Count - 1 do
begin
TriangulateRange(Arrays.Counts[I]);
RangeBeginIndex += Arrays.Counts[I];
end;
finally FreeAndNil(Arrays) end;
end;
type
TTriangulateRedirect = class
Transform: PMatrix4;
TriangleEvent: TTriangleEvent;
procedure LocalNewTriangle(Shape: TObject;
const Position: TTriangle3;
const Normal: TTriangle3; const TexCoord: TTriangle4;
const Face: TFaceIndex);
end;
procedure TTriangulateRedirect.LocalNewTriangle(Shape: TObject;
const Position: TTriangle3;
const Normal: TTriangle3; const TexCoord: TTriangle4;
const Face: TFaceIndex);
begin
TriangleEvent(Shape, Position.Transform(Transform^), Normal, TexCoord, Face);
end;
procedure TShape.Triangulate(OverTriangulate: boolean; TriangleEvent: TTriangleEvent);
var
TR: TTriangulateRedirect;
begin
TR := TTriangulateRedirect.Create;
try
TR.Transform := @(State.Transform);
TR.TriangleEvent := TriangleEvent;
LocalTriangulate(OverTriangulate, @TR.LocalNewTriangle);
finally FreeAndNil(TR) end;
end;
function TShape.DebugInfo(const Indent: string): string;
begin
Result := Indent + NiceName + NL;
end;
function TShape.NiceName: string;
begin
Result := OriginalGeometry.NiceName;
if (Node <> nil) and (Node.X3DName <> '') then
Result := Node.X3DName + ':' + Result;
end;
function TShape.Node: TAbstractShapeNode;
begin
Result := State.ShapeNode;
end;
function TShape.MaterialProperty: TMaterialProperty;
begin
Result := InternalMaterialProperty;
end;
function TShape.InternalMaterialProperty: TMaterialProperty;
var
TextureUrl: string;
begin
if IsCachedMaterialProperty then
Exit(CachedMaterialProperty);
Result := nil;
if Node <> nil then
begin
{ VRML 2.0/X3D version: refer to TAppearanceNode.MaterialProperty }
if Node.Appearance <> nil then
Result := Node.Appearance.InternalMaterialProperty;
end else
begin
{ VRML 1.0 version: calculate it directly here }
TextureUrl := State.VRML1State.Texture2.FdFileName.Value;
if TextureUrl <> '' then
Result := MaterialProperties.FindTextureBaseName(
DeleteURIExt(ExtractURIName(TextureUrl)));
end;
IsCachedMaterialProperty := true;
CachedMaterialProperty := Result;
end;
{ TShapeTreeGroup -------------------------------------------------------- }
constructor TShapeTreeGroup.Create(AParentScene: TObject);
begin
inherited Create(AParentScene);
FChildren := TShapeTreeList.Create(true);
end;
destructor TShapeTreeGroup.Destroy;
begin
FreeAndNil(FChildren);
inherited;
end;
procedure TShapeTreeGroup.Traverse(Func: TShapeTraverseFunc;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
var
I: Integer;
begin
for I := 0 to FChildren.Count - 1 do
FChildren.Items[I].Traverse(Func, OnlyActive, OnlyVisible, OnlyCollidable);
end;
function TShapeTreeGroup.ShapesCount(
const OnlyActive, OnlyVisible, OnlyCollidable: boolean): Cardinal;
var
I: Integer;
ResultPart: Cardinal;
begin
Result := 0;
for I := 0 to FChildren.Count - 1 do
begin
{ Workaround for http://bugs.freepascal.org/bug_view_page.php?bug_id=14403
Without using ResultPart to hold partial result, this raises range check error. }
ResultPart := FChildren.Items[I].ShapesCount(OnlyActive, OnlyVisible, OnlyCollidable);
Result += ResultPart;
end;
end;
function TShapeTreeGroup.EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer;
var
I: Integer;
begin
Result := nil;
for I := 0 to FChildren.Count - 1 do
begin
Result := FChildren.Items[I].EnumerateTextures(Enumerate);
if Result <> nil then Exit;
end;
end;
{$ifdef SHAPE_ITERATOR_SOPHISTICATED}
function TShapeTreeGroup.IterateBeginIndex(OnlyActive: boolean): Integer;
begin
Result := -1;
end;
function TShapeTreeGroup.IterateEndIndex(OnlyActive: boolean): Cardinal;
begin
Result := FChildren.Count;
end;
{$endif}
function TShapeTreeGroup.DebugInfo(const Indent: string): string;
var
I: Integer;
begin
Result := Indent + ClassName + NL;
for I := 0 to FChildren.Count - 1 do
Result += FChildren[I].DebugInfo(Indent + Format(' %3d:', [I]));
end;
{ TShapeTreeSwitch ------------------------------------------------------- }
procedure TShapeTreeSwitch.Traverse(Func: TShapeTraverseFunc;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
var
WhichChoice: Integer;
begin
if OnlyActive then
begin
WhichChoice := SwitchNode.FdWhichChoice.Value;
if (WhichChoice >= 0) and
(WhichChoice < Children.Count) then
Children.Items[WhichChoice].Traverse(Func, OnlyActive, OnlyVisible, OnlyCollidable);
end else
inherited;
end;
function TShapeTreeSwitch.ShapesCount(
const OnlyActive, OnlyVisible, OnlyCollidable: boolean): Cardinal;
var
WhichChoice: Integer;
begin
if OnlyActive then
begin
WhichChoice := SwitchNode.FdWhichChoice.Value;
if (WhichChoice >= 0) and
(WhichChoice < Children.Count) then
Result := Children.Items[WhichChoice].ShapesCount(OnlyActive, OnlyVisible, OnlyCollidable) else
Result := 0;
end else
Result := inherited;
end;
{$ifdef SHAPE_ITERATOR_SOPHISTICATED}
function TShapeTreeSwitch.IterateBeginIndex(OnlyActive: boolean): Integer;
var
WhichChoice: Integer;
begin
if OnlyActive then
begin
WhichChoice := SwitchNode.FdWhichChoice.Value;
if WhichChoice >= 0 then
{ It's ok if whichChoice is >= children count,
iterator will check this. }
Result := WhichChoice - 1 else
Result := -1 { whatever; IterateCount will be 0 anyway };
end else
Result := inherited;
end;
function TShapeTreeSwitch.IterateEndIndex(OnlyActive: boolean): Cardinal;
var
WhichChoice: Integer;
begin
if OnlyActive then
begin
WhichChoice := SwitchNode.FdWhichChoice.Value;
if (WhichChoice >= 0) and
(WhichChoice < Children.Count) then
Result := WhichChoice + 1 else
Result := 0;
end else
Result := inherited;
end;
{$endif}
{ TShapeTreeTransform ---------------------------------------------------- }
constructor TShapeTreeTransform.Create(AParentScene: TObject);
begin
inherited;
FTransformState := TX3DGraphTraverseState.Create;
end;
destructor TShapeTreeTransform.Destroy;
begin
FreeAndNil(FTransformState);
inherited;
end;
{ TShapeTreeLOD ------------------------------------------------------- }
function TShapeTreeLOD.LODInvertedTransform: PMatrix4;
begin
Result := @FLODInvertedTransform;
end;
function TShapeTreeLOD.CalculateLevel(const CameraPosition: TVector3): Cardinal;
var
Camera: TVector3;
Dummy: Single;
begin
if (Children.Count = 0) or
(LODNode.FdRange.Count = 0) then
Result := 0 else
begin
try
Camera := LODInvertedTransform^.MultPoint(CameraPosition);
Result := KeyRange(LODNode.FdRange.Items,
PointsDistance(Camera, LODNode.FdCenter.Value), Dummy);
{ Now we know Result is between 0..LODNode.FdRange.Count.
Following X3D spec "Specifying too few levels will result in
the last level being used repeatedly for the lowest levels of detail",
so just clamp to last children. }
MinVar(Result, Children.Count - 1);
except
on E: ETransformedResultInvalid do
begin
WritelnWarning('VRML/X3D', Format('Cannot transform camera position %s to LOD node local coordinate space, transformation results in direction (not point): %s',
[ CameraPosition.ToRawString, E.Message ]));
Result := 0;
end;
end;
end;
Assert(
( (Children.Count = 0) and (Result = 0) ) or
( (Children.Count > 0) and (Result < Cardinal(Children.Count)) ) );
end;
procedure TShapeTreeLOD.Traverse(Func: TShapeTraverseFunc;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
begin
if Children.Count > 0 then
begin
if OnlyActive then
{ Now we know that Level < Children.Count, no need to check it. }
Children.Items[Level].Traverse(Func, OnlyActive, OnlyVisible, OnlyCollidable) else
inherited;
end;
end;
function TShapeTreeLOD.ShapesCount(
const OnlyActive, OnlyVisible, OnlyCollidable: boolean): Cardinal;
begin
if Children.Count > 0 then
begin
if OnlyActive then
{ Now we know that Level < Children.Count, no need to check it. }
Result := Children.Items[Level].ShapesCount(OnlyActive, OnlyVisible, OnlyCollidable) else
Result := inherited;
end else
Result := 0;
end;
{$ifdef SHAPE_ITERATOR_SOPHISTICATED}
function TShapeTreeLOD.IterateBeginIndex(OnlyActive: boolean): Integer;
begin
if (Children.Count > 0) and OnlyActive then
Result := Level - 1 else
Result := inherited;
end;
function TShapeTreeLOD.IterateEndIndex(OnlyActive: boolean): Cardinal;
begin
if (Children.Count > 0) and OnlyActive then
Result := Level + 1 else
Result := inherited;
end;
{$endif}
{ TProximitySensorInstance ---------------------------------------------- }
procedure TProximitySensorInstance.Traverse(Func: TShapeTraverseFunc;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
begin
{ Nothing to do: no geometry shapes, no children here }
end;
function TProximitySensorInstance.ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal;
begin
Result := 0;
end;
function TProximitySensorInstance.EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer;
begin
{ Nothing to do: no geometry shapes, no children here }
Result := nil;
end;
function TProximitySensorInstance.DebugInfo(const Indent: string = ''): string;
begin
Result := Indent + 'ProximitySensor (' + Node.X3DName + ')' + NL;
end;
{ TVisibilitySensorInstance ---------------------------------------------- }
procedure TVisibilitySensorInstance.Traverse(Func: TShapeTraverseFunc;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
begin
{ Nothing to do: no geometry shapes, no children here }
end;
function TVisibilitySensorInstance.ShapesCount(const OnlyActive: boolean;
const OnlyVisible: boolean = false;
const OnlyCollidable: boolean = false): Cardinal;
begin
Result := 0;
end;
function TVisibilitySensorInstance.EnumerateTextures(Enumerate: TEnumerateShapeTexturesFunction): Pointer;
begin
{ Nothing to do: no geometry shapes, no children here }
Result := nil;
end;
function TVisibilitySensorInstance.DebugInfo(const Indent: string = ''): string;
begin
Result := Indent + 'VisibilitySensor (' + Node.X3DName + ')' + NL;
end;
{ TShapeTreeIterator ----------------------------------------------------- }
{ When SHAPE_ITERATOR_SOPHISTICATED is defined, we use a complicated
implementation that has a nice O(1) speed for constructor and all
GetNext calls (well, actually some calls may have O(depth), but most
will not). It traverses one step further in each GetNext.
It's building a simple stack of items to make efficient push/pop while
walking down/up the tree of TShapesTree.
When SHAPE_ITERATOR_SOPHISTICATED is not defined, we use a very simple
implementation: just call Tree.Traverse,
collecting shapes to a list in constructor. Then simply iterate
over this list. This makes constructor time large (equal to traversing time,
so O(leaves count)), although GetNext is lighting fast.
Theoretically, the sophisticated version was supposed to be much better,
as speed is always O(1) and memory use is much smaller
(only the depth of the shapes tree, as opposed to the number of all leaves).
In practice however, it turned out that the sophisticated version
was useless. Time measures shown that "naive" and simple
version is even very very slightly faster in some cases.
Time measure is in castle_game_engine/tests/testscenecore.pas,
define ITERATOR_SPEED_TEST and test for yourself.
So in practice good memory allocator in FPC
(as this is the bottleneck of the naive version, since List is potentially
resized on adding each new shape) outperforms the sophisticated algorithm.
So right now we're back to simple version. Maybe the "sophisticated"
implementation will be restored some day... Just define
SHAPE_ITERATOR_SOPHISTICATED. }
{$ifdef SHAPE_ITERATOR_SOPHISTICATED}
type
{ To efficiently implement TShapeTreeIterator, we have to
use an efficient stack push/pop when entering TShapeTreeGroup
(this includes TShapeTreeSwitch), and remember current Index
within current group.
Note that this follows the logic of implemented Traverse methods.
There's no way to efficiently (without e.g. first collecting to a list)
realize iterator with actually calling Traverse methods. }
PIteratorInfo = ^TIteratorInfo;
TIteratorInfo = record
Group: TShapeTreeGroup;
Index: Integer;
GroupCount: Cardinal;
Parent: PIteratorInfo;
end;
{$define IteratorInfo := PIteratorInfo(Info)}
{ Check Current for FOnlyVisible and FOnlyCollidable flags. }
function TShapeTreeIterator.CurrentMatches: boolean;
begin
if FOnlyVisible and FOnlyCollidable then
Result := (Current <> nil) and Current.Visible and Current.Collidable else
if FOnlyVisible then
Result := (Current <> nil) and Current.Visible else
if FOnlyCollidable then
Result := (Current <> nil) and Current.Collidable else
Result := (Current <> nil);
end;
constructor TShapeTreeIterator.Create(Tree: TShapeTree;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
begin
inherited Create;
FOnlyActive := OnlyActive;
FOnlyVisible := OnlyVisible;
FOnlyCollidable := OnlyCollidable;
if Tree is TShapeTreeGroup then
begin
New(IteratorInfo);
IteratorInfo^.Group := TShapeTreeGroup(Tree);
IteratorInfo^.Index := IteratorInfo^.Group.IterateBeginIndex(OnlyActive);
IteratorInfo^.GroupCount := IteratorInfo^.Group.IterateEndIndex(OnlyActive);
IteratorInfo^.Parent := nil;
end else
begin
{ When the whole tree is one single TShape, this is a special case
marked by IteratorInfo = nil and using SingleShapeRemaining.
FCurrent is just constant in this case. }
Assert(Tree is TShape);
FCurrent := TShape(Tree);
IteratorInfo := nil;
SingleShapeRemaining := true;
end;
end;
destructor TShapeTreeIterator.Destroy;
procedure Done(I: PIteratorInfo);
begin
if I <> nil then
begin
Done(I^.Parent);
Dispose(I);
end;
end;
begin
Done(IteratorInfo);
inherited;
end;
function TShapeTreeIterator.GetNext: boolean;
var
ParentInfo: PIteratorInfo;
Child: TShapeTree;
begin
if IteratorInfo <> nil then
begin
repeat
Inc(IteratorInfo^.Index);
Assert(IteratorInfo^.Index >= 0);
Assert(IteratorInfo^.Index > IteratorInfo^.Group.IterateBeginIndex(FOnlyActive));
if Cardinal(IteratorInfo^.Index) < IteratorInfo^.GroupCount then
begin
Child := IteratorInfo^.Group.Children.Items[IteratorInfo^.Index];
if Child is TShape then
begin
FCurrent := TShape(Child);
if CurrentMatches then
Result := true else
Result := GetNext;
Exit;
end else
begin
Assert(Child is TShapeTreeGroup);
ParentInfo := IteratorInfo;
New(IteratorInfo);
IteratorInfo^.Group := TShapeTreeGroup(Child);
IteratorInfo^.Index := IteratorInfo^.Group.IterateBeginIndex(FOnlyActive);
IteratorInfo^.GroupCount := IteratorInfo^.Group.IterateEndIndex(FOnlyActive);
IteratorInfo^.Parent := ParentInfo;
end;
end else
begin
ParentInfo := IteratorInfo^.Parent;
if ParentInfo <> nil then
begin
Dispose(IteratorInfo);
IteratorInfo := ParentInfo;
end else
Exit(false);
end;
until false;
end else
begin
Result := SingleShapeRemaining;
SingleShapeRemaining := false;
{ FCurrent already set in constructor }
if Result and (not CurrentMatches) then
Result := false;
end;
end;
{$undef IteratorInfo}
{$else SHAPE_ITERATOR_SOPHISTICATED}
constructor TShapeTreeIterator.Create(Tree: TShapeTree;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
begin
inherited Create;
List := TShapeList.Create(Tree, OnlyActive, OnlyVisible, OnlyCollidable);
CurrentIndex := -1;
end;
destructor TShapeTreeIterator.Destroy;
begin
FreeAndNil(List);
inherited;
end;
function TShapeTreeIterator.GetNext: boolean;
begin
Inc(CurrentIndex);
Result := CurrentIndex < List.Count;
if Result then
FCurrent := List.Items[CurrentIndex];
end;
{$endif SHAPE_ITERATOR_SOPHISTICATED}
{ TShapeList ------------------------------------------------------- }
constructor TShapeList.Create;
begin
inherited Create(false);
end;
constructor TShapeList.Create(Tree: TShapeTree;
const OnlyActive, OnlyVisible, OnlyCollidable: boolean);
var
AddedCount: Integer;
procedure AddToList(Shape: TShape);
begin
Items[AddedCount] := Shape;
Inc(AddedCount);
end;
begin
Create;
{ We know exactly how many shapes are present. So set Count once,
calculating by ShapesCount. This will be faster than resizing
in each AddToList. (Confirmed e.g. by profiling animate_3d_model_by_code_2). }
AddedCount := 0;
Count := Tree.ShapesCount(OnlyActive, OnlyVisible, OnlyCollidable);
Tree.Traverse(@AddToList, OnlyActive, OnlyVisible, OnlyCollidable);
Assert(AddedCount = Count);
end;
type
TShapeComparer = specialize TComparer<TShape>;
function TShapeList.IsSmallerFrontToBack(constref A, B: TShape): Integer;
begin
{ To revert the order, we revert the order of A and B as passed to CompareBackToFront3D. }
Result := TBox3D.CompareBackToFront3D(B.BoundingBox, A.BoundingBox, SortPosition);
end;
function TShapeList.IsSmallerBackToFront3D(constref A, B: TShape): Integer;
begin
Result := TBox3D.CompareBackToFront3D(A.BoundingBox, B.BoundingBox, SortPosition);
end;
function TShapeList.IsSmallerBackToFront2D(constref A, B: TShape): Integer;
begin
Result := TBox3D.CompareBackToFront2D(A.BoundingBox, B.BoundingBox);
end;
procedure TShapeList.SortFrontToBack(const Position: TVector3);
begin
SortPosition := Position;
Sort(TShapeComparer.Construct(@IsSmallerFrontToBack));
end;
procedure TShapeList.SortBackToFront(const Position: TVector3;
const Distance3D: boolean);
begin
SortPosition := Position;
if Distance3D then
Sort(TShapeComparer.Construct(@IsSmallerBackToFront3D))
else
Sort(TShapeComparer.Construct(@IsSmallerBackToFront2D));
end;
{ TPlaceholderNames ------------------------------------------------------- }
function TPlaceholderNames.GetItems(const AKey: string): TPlaceholderName;
begin
Result := inherited Items[AKey];
end;
procedure TPlaceholderNames.SetItems(const AKey: string; const AValue: TPlaceholderName);
begin
AddOrSetValue(AKey, AValue);
end;
function X3DShapePlaceholder(const Shape: TShape): string;
begin
{ Shape.Node may be nil for old VRML 1.0 or Inventor. }
if Shape.Node <> nil then
Result := Shape.Node.X3DName else
Result := '';
end;
function BlenderPlaceholder(const Shape: TShape): string;
begin
if Shape.OriginalGeometry is TAbstractGeometryNode_1 then
begin
{ Geometry node generated by Blender VRML 1.0 exporter has one parent,
its mesh. The mesh node may have many parents representing its objects
(unfortunately, the object names are not recorded in exported file,
so we use mesh name for BlenderPlaceholder. }
Result := Shape.GeometryParentNodeName;
end else
begin
{ For VRML 2.0 and X3D exporter, the situation is quite similar.
We look at parent of the Shape node (mesh Group)
and parent of it (object Transform).
The object names are available.
For VRML 2.0 we have to remove ME_ and OB_ prefixes from node names.
Somewhere around/before 2.64a X3D exporter also added _ifs_TRANSFORM suffix,
remove it.
Note that we assume X3D exporter from Blender >= 2.57.
Earlier Blender X3D exporters were a little different (it seems,
probably because of mesh splitting added in 2.57),
we don't handle them. }
// not needed:
// BlenderMeshName := PrefixRemove('ME_', GeometryGrandParentNodeName, false);
Result := SuffixRemove('_ifs_TRANSFORM', PrefixRemove('OB_',
Shape.GeometryGrandGrandParentNodeName, false), false);
end;
end;
initialization
PlaceholderNames := TPlaceholderNames.Create;
PlaceholderNames['x3dshape'] := @X3DShapePlaceholder;
PlaceholderNames['blender'] := @BlenderPlaceholder;
finalization
FreeAndNil(PlaceholderNames);
end.
|