/usr/share/doc/libchemps2/html/caspt2.html is in chemps2-doc 1.8.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>10. Internally contracted CASPT2 — CheMPS2 1.8.5 (2018-01-14) documentation</title>
<link rel="stylesheet" href="_static/classic.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '1.8.5 (2018-01-14)',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="/usr/share/javascript/jquery/jquery.js"></script>
<script type="text/javascript" src="/usr/share/javascript/underscore/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="/usr/share/javascript/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="11. Interfaces to psi4 and pyscf" href="interfaces.html" />
<link rel="prev" title="9. DMRG-SCF calculations" href="dmrgscfcalcs.html" />
</head>
<body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="interfaces.html" title="11. Interfaces to psi4 and pyscf"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="dmrgscfcalcs.html" title="9. DMRG-SCF calculations"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.8.5 (2018-01-14) documentation</a> »</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="internally-contracted-caspt2">
<span id="index-0"></span><h1>10. Internally contracted CASPT2<a class="headerlink" href="#internally-contracted-caspt2" title="Permalink to this headline">¶</a></h1>
<div class="section" id="the-required-4-rdm-elements">
<h2>10.1. The required 4-RDM elements<a class="headerlink" href="#the-required-4-rdm-elements" title="Permalink to this headline">¶</a></h2>
<p>As DMRG is a wavefunction method, higher order reduced density matrices can be evaluated.
In CheMPS2, up to the 3-RDM is implemented with the usual sweep algorithm.
For internally contracted CASPT2, the contraction of the 4-RDM with the generalized Fock operator is needed. The generalized Fock operator</p>
<div class="math">
\[\hat{F} & = & \sum\limits_{pq} F_{pq} \hat{E}_{pq}\]</div>
<p>has matrix elements</p>
<div class="math">
\[F_{pq} = \frac{1}{2} \sum\limits_{\sigma} \left\langle \hat{a}_{p\sigma} \left[ \hat{H}, \hat{a}_{q \sigma}^{\dagger} \right] - \hat{a}_{p\sigma}^{\dagger} \left[ \hat{H}, \hat{a}_{q \sigma} \right] \right\rangle = t_{pq} + \sum\limits_{rs} \left\langle \hat{E}_{rs} \right\rangle \left( \left( pq | rs \right) - \frac{1}{2} \left( pr | qs \right) \right).\]</div>
<p>These matrix elements are symmetric and diagonal in the spatial orbital irreps. The required contraction of the 4-RDM with the generalized Fock operator</p>
<div class="math">
\[\left( F . \Gamma^4 \right)_{pqr; wxy} & = & \sum_{\sigma \tau \upsilon} \left\langle \hat{a}^{\dagger}_{p \sigma} \hat{a}^{\dagger}_{q \tau} \hat{a}^{\dagger}_{r \upsilon} \hat{F} \hat{a}_{y \upsilon} \hat{a}_{ x \tau} \hat{a}_{w \sigma} \right\rangle\]</div>
<p>can therefore be obtained from excited wavefunctions, formed by symmetry-conserving single-particle excitations op top of the reference wavefunction. For the matrix element <span class="math">\(F_{sz} = F_{zs}\)</span> the following sum of 4-RDM elements is needed:</p>
<div class="math">
\[\Gamma^4_{pqrs; wxyz} + \Gamma^4_{pqrz; wxys}.\]</div>
<p>It can be obtained by calculating</p>
<div class="math">
\[\left| sz, \alpha, \beta \right\rangle = \left[ \alpha \left( \hat{E}_{sz} + {E}_{zs} \right) + \beta \right] \left| \Psi_0 \right\rangle\]</div>
<p>in which the spatial orbitals <span class="math">\(s\)</span> and <span class="math">\(z\)</span> have equal irreps. This excited wavefunction is decomposed into an MPS, with a sweep algorithm with negligible cost <a class="reference internal" href="#caspt2" id="id1">[CASPT2]</a>. Denote the 3-RDM of the (unnormalized) excited wavefunctions as</p>
<div class="math">
\[\Gamma(sz,\alpha,\beta)^3_{pqr; wxy} = \sum\limits_{ \sigma \tau \upsilon } \left\langle sz, \alpha, \beta \mid \hat{a}_{p\sigma}^{\dagger} \hat{a}_{q\tau}^{\dagger} \hat{a}_{r\upsilon}^{\dagger} \hat{a}_{y\upsilon} \hat{a}_{x\tau} \hat{a}_{w\sigma} \mid sz, \alpha, \beta \right\rangle.\]</div>
<p>In this notation <span class="math">\(\Gamma( sz, 0, 1 )^3_{pqr; wxy} = \Gamma^3_{pqr; wxy}\)</span>, the 3-RDM of the reference wavefunction. The following identity holds:</p>
<div class="math">
\[\begin{split}& & 2 \left[ \Gamma^4_{pqrs; wxyz} + \Gamma^4_{pqrz; wxys} \right] + \Gamma^3_{pqr; wxy} \\
& = & \Gamma( sz, 1, 1 )^3_{pqr; wxy} - \Gamma( sz, 1, 0 )^3_{pqr; wxy} \\
& - & \delta_{s,p} \Gamma^3_{zqr; wxy} - \delta_{s,q} \Gamma^3_{pzr; wxy} - \delta_{s,r} \Gamma^3_{pqz; wxy} \\
& - & \delta_{s,w} \Gamma^3_{pqr; zxy} - \delta_{s,x} \Gamma^3_{pqr; wzy} - \delta_{s,y} \Gamma^3_{pqr; wxz} \\
& - & \delta_{z,p} \Gamma^3_{sqr; wxy} - \delta_{z,q} \Gamma^3_{psr; wxy} - \delta_{z,r} \Gamma^3_{pqs; wxy} \\
& - & \delta_{z,w} \Gamma^3_{pqr; sxy} - \delta_{z,x} \Gamma^3_{pqr; wsy} - \delta_{z,y} \Gamma^3_{pqr; wxs},\end{split}\]</div>
<p>which allows to obtain the contraction <span class="math">\(\left( F . \Gamma^4 \right)\)</span> by calculating the 3-RDM of several excited wavefunctions! This algorithm has in practice the same computational cost as the regular 4-RDM evaluation during the usual sweep algorithm.</p>
</div>
<div class="section" id="cas-perturbation-theory">
<h2>10.2. CAS perturbation theory<a class="headerlink" href="#cas-perturbation-theory" title="Permalink to this headline">¶</a></h2>
<p>The full Hilbert space <span class="math">\(\mathcal{H}\)</span> is split up into four parts <a class="reference internal" href="#roos1" id="id2">[ROOS1]</a> <a class="reference internal" href="#roos2" id="id3">[ROOS2]</a>:</p>
<div class="math">
\[\mathcal{H} = \mathcal{V}_0 \oplus \mathcal{V}_{\text{K}} \oplus \mathcal{V}_{\text{SD}} \oplus \mathcal{V}_{\text{TQ..}}.\]</div>
<ol class="arabic">
<li><p class="first"><span class="math">\(\mathcal{V}_0\)</span> contains only the CASSCF solution <span class="math">\(\left| \Psi_0 \right\rangle\)</span>.</p>
</li>
<li><p class="first"><span class="math">\(\mathcal{V}_{\text{K}}\)</span> is the space spanned by all possible active space excitations on top of <span class="math">\(\left| \Psi_0 \right\rangle\)</span> which are orthogonal to <span class="math">\(\mathcal{V}_0\)</span>. Wavefunctions in <span class="math">\(\mathcal{V}_{\text{K}}\)</span> have the same core and virtual orbitals as <span class="math">\(\left| \Psi_0 \right\rangle\)</span>, with the same occupation.</p>
</li>
<li><p class="first"><span class="math">\(\mathcal{V}_{{\text{SD}}}\)</span> contains all single and double particle excitations on top of <span class="math">\(\left| \Psi_0 \right\rangle\)</span> which are orthogonal to <span class="math">\(\mathcal{V}_0 \oplus \mathcal{V}_{\text{K}}\)</span>. With the indices <span class="math">\(ij\)</span> for core orbitals, <span class="math">\(tuv\)</span> for active orbitals, and <span class="math">\(ab\)</span> for virtual orbitals, <span class="math">\(\mathcal{V}_{{\text{SD}}}\)</span> is spanned by the following excitation types:</p>
<blockquote>
<div><div class="math">
\[\begin{split}\text{A} & : & \quad \hat{E}_{ti} \hat{E}_{uv} \left| \Psi_0 \right\rangle, \\
\text{B} & : & \quad \hat{E}_{ti} \hat{E}_{uj} \left| \Psi_0 \right\rangle, \\
\text{C} & : & \quad \hat{E}_{at} \hat{E}_{uv} \left| \Psi_0 \right\rangle, \\
\text{D} & : & \quad \hat{E}_{ai} \hat{E}_{tu} \left| \Psi_0 \right\rangle,~\hat{E}_{ti}\hat{E}_{au} \left| \Psi_0 \right\rangle, \\
\text{E} & : & \quad \hat{E}_{ti} \hat{E}_{aj} \left| \Psi_0 \right\rangle, \\
\text{F} & : & \quad \hat{E}_{at} \hat{E}_{bu} \left| \Psi_0 \right\rangle, \\
\text{G} & : & \quad \hat{E}_{ai} \hat{E}_{bt} \left| \Psi_0 \right\rangle, \\
\text{H} & : & \quad \hat{E}_{ai} \hat{E}_{bj} \left| \Psi_0 \right\rangle.\end{split}\]</div>
</div></blockquote>
</li>
<li><p class="first">And <span class="math">\(\mathcal{V}_{{\text{TQ..}}}\)</span> is the remainder of <span class="math">\(\mathcal{H}\)</span>.</p>
</li>
</ol>
<p>The zeroth order Hamiltonian for internally contracted CASPT2 is</p>
<div class="math">
\[\hat{H}_0 = \hat{P}_0 \hat{F} \hat{P}_0 + \hat{P}_{\text{K}} \hat{F} \hat{P}_{\text{K}} + \hat{P}_{{\text{SD}}} \hat{F} \hat{P}_{{\text{SD}}} + \hat{P}_{{\text{TQ..}}} \hat{F} \hat{P}_{{\text{TQ..}}},\]</div>
<p>where <span class="math">\(\hat{P}_{\text{X}}\)</span> is the projector onto <span class="math">\(\mathcal{V}_{\text{X}}\)</span>.
The first order wavefunction <span class="math">\(\left| \Psi_1 \right\rangle\)</span> for internally contracted CASPT2 is spanned by a linear combination over <span class="math">\(\mathcal{V}_{\text{SD}}\)</span>:</p>
<div class="math">
\[\left| \Psi_1 \right\rangle = \sum_{pq;rs \in \mathcal{V}_{\text{SD}}} C_{pq;rs} \hat{E}_{pq} \hat{E}_{rs} \left| \Psi_0 \right\rangle = \sum_{pq;rs \in \mathcal{V}_{\text{SD}}} C_{pq;rs} \left| \Psi_{pq;rs} \right\rangle.\]</div>
<p>The coefficients can be found by solving</p>
<div class="math">
\[\sum_{pq;rs \in \mathcal{V}_{\text{SD}}} \left\langle \Psi_{wx;yz} \mid \hat{H}_0 - E_0 \mid \Psi_{pq;rs} \right\rangle C_{pq;rs} = - \left\langle \Psi_{wx;yz} \mid \hat{H} \mid \Psi_0 \right\rangle.\]</div>
<p>The overlap matrix <span class="math">\(\left\langle \Psi_{wx;yz} \mid \Psi_{pq;rs} \right\rangle\)</span> is block-diagonal in the different excitation types (A to H). It is diagonalized, small eigenvalues are discarded, and the linear equation is transformed to</p>
<div class="math">
\[\sum\limits_{ \beta } \left( \mathcal{F}_{\alpha\beta} - E_0 \delta_{\alpha,\beta} \right) \mathcal{C}_{\beta} = - \mathcal{V}_{\alpha},\]</div>
<p>with <span class="math">\(\mathcal{F}\)</span> diagonal for two excitations of the same type (A to H). The following initial guess is used to solve this linear equation with either the conjugate gradient or Davidson algorithm:</p>
<div class="math">
\[\mathcal{C}_{\alpha}^{\text{ini}} = - \frac{ \mathcal{V}_{\alpha} }{ \mathcal{F}_{\alpha\alpha} - E_0 }.\]</div>
<p>If the active space orbitals in the DMRG algorithm are not pseudocanonical, <span class="math">\(\Gamma^1\)</span>, <span class="math">\(\Gamma^2\)</span>, <span class="math">\(\Gamma^3\)</span>, and <span class="math">\(\left(F.\Gamma^4\right)\)</span> are rotated to the pseudocanonical orbital basis before building the required intermediates to solve the CASPT2 linear equation.</p>
<p>In order to mitigate intruder state problems, CheMPS2 allows to specify an imaginary level shift <a class="reference internal" href="#imag" id="id4">[IMAG]</a> and/or ionization potential - electron affinity shift <a class="reference internal" href="#ipea" id="id5">[IPEA]</a>. For the latter, the left-hand side matrix of the CASPT2 linear equation is shifted with</p>
<div class="math">
\[\left\langle \Psi_{ wx;yz } \mid \hat{F} \mid \Psi_{pq;rs } \right\rangle \mathrel{+}= \delta_{p,w} \delta_{q,x} \delta_{r,y} \delta_{s,z} \frac{ \epsilon^{\text{IPEA}}}{2} \left\langle \Psi_{wx;yz} \mid \Psi_{pq;rs} \right\rangle \left( 4 + \left\langle \hat{E}_{pp} \right\rangle - \left\langle \hat{E}_{qq} \right\rangle + \left\langle \hat{E}_{rr} \right\rangle - \left\langle \hat{E}_{ss} \right\rangle \right).\]</div>
</div>
<div class="section" id="caspt2-calculations">
<h2>10.3. CASPT2 calculations<a class="headerlink" href="#caspt2-calculations" title="Permalink to this headline">¶</a></h2>
<p>In order to calculate the CASPT2 variational second order perturbation correction energy, the following call should be made:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="kt">double</span> <span class="n">CheMPS2</span><span class="o">::</span><span class="n">CASSCF</span><span class="o">::</span><span class="n">caspt2</span><span class="p">(</span> <span class="k">const</span> <span class="kt">int</span> <span class="n">Nelectrons</span><span class="p">,</span> <span class="k">const</span> <span class="kt">int</span> <span class="n">TwoS</span><span class="p">,</span> <span class="k">const</span> <span class="kt">int</span> <span class="n">Irrep</span><span class="p">,</span> <span class="n">ConvergenceScheme</span> <span class="o">*</span> <span class="n">OptScheme</span><span class="p">,</span> <span class="k">const</span> <span class="kt">int</span> <span class="n">rootNum</span><span class="p">,</span> <span class="n">DMRGSCFoptions</span> <span class="o">*</span> <span class="n">scf_options</span><span class="p">,</span> <span class="k">const</span> <span class="kt">double</span> <span class="n">IPEA</span><span class="p">,</span> <span class="k">const</span> <span class="kt">double</span> <span class="n">IMAG</span><span class="p">,</span> <span class="k">const</span> <span class="kt">bool</span> <span class="n">PSEUDOCANONICAL</span><span class="p">,</span> <span class="k">const</span> <span class="kt">bool</span> <span class="n">CHECKPOINT</span><span class="p">,</span> <span class="k">const</span> <span class="kt">bool</span> <span class="n">CUMULANT</span> <span class="p">)</span>
</pre></div>
</div>
<p><strong>after</strong> the CASSCF orbital rotations are converged.</p>
<ol class="arabic">
<li><p class="first">The first six parameters are the same as for <code class="docutils literal"><span class="pre">CheMPS2::CASSCF::solve</span></code> in <a class="reference internal" href="dmrgscfcalcs.html#label-casscf-calculations-api"><span class="std std-ref">CheMPS2::CASSCF</span></a>.</p>
</li>
<li><p class="first">IPEA and IMAG are the ionization potential - electron affinity and imaginary level shifts.</p>
</li>
<li><p class="first">PSEUDOCANONICAL allows to change the converged CASSCF orbitals (localized, natural, …) to pseudocanonical orbitals <strong>before</strong> the DMRG calculation to obtain the contraction of the 4-RDM with the generalized Fock operator. This has the advantage that the Fock operator matrix elements are diagonal, which leads to a significant reduction in computational cost <strong>if</strong> it not requires a significantly larger virtual dimension <span class="math">\(D\)</span>.</p>
</li>
<li><p class="first">CHECKPOINT allows to switch on the creation of checkpoints to calculate the required contraction during multiple runs. If CHECKPOINT is true, then after the initial run</p>
<blockquote>
<div><div class="highlight-c++"><div class="highlight"><pre><span></span><span class="n">scf_options</span><span class="o">-></span><span class="n">setDoDIIS</span><span class="p">(</span> <span class="nb">false</span> <span class="p">)</span>
<span class="n">scf_options</span><span class="o">-></span><span class="n">setWhichActiveSpace</span><span class="p">(</span> <span class="mi">0</span> <span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<p>should be set in order to use exactly the same orbitals in consecutive runs!</p>
</li>
<li><p class="first">It is advised to leave CUMULANT = false.</p>
</li>
</ol>
<table class="docutils citation" frame="void" id="caspt2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[CASPT2]</a></td><td><ol class="first last upperalpha simple" start="19">
<li>Wouters, V. Van Speybroeck and D. Van Neck, <em>Journal of Chemical Physics</em> <strong>145</strong>, 054120 (2016), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4959817">10.1063/1.4959817</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="roos1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[ROOS1]</a></td><td><ol class="first last upperalpha simple" start="11">
<li>Andersson, P.-A. Malmqvist, B.O. Roos, A.J. Sadlej and K. Wolinski, <em>Journal of Physical Chemistry</em> <strong>94</strong>, 5483-5488 (1990). doi: <a class="reference external" href="http://dx.doi.org/10.1021/j100377a012">10.1021/j100377a012</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="roos2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id3">[ROOS2]</a></td><td><ol class="first last upperalpha simple" start="11">
<li>Andersson, P.‐A. Malmqvist and B.O. Roos, <em>Journal of Chemical Physics</em> <strong>96</strong>, 1218-1226 (1992). doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.462209">10.1063/1.462209</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="imag" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id4">[IMAG]</a></td><td><ol class="first last upperalpha simple" start="14">
<li>Forsberg and P.-A. Malmqvist, <em>Chemical Physics Letters</em> <strong>274</strong>, 196-204 (1997). doi: <a class="reference external" href="http://dx.doi.org/10.1016/S0009-2614(97)00669-6">10.1016/S0009-2614(97)00669-6</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="ipea" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id5">[IPEA]</a></td><td><ol class="first last upperalpha simple" start="7">
<li>Ghigo, B.O. Roos and P.-A. Malmqvist, <em>Chemical Physics Letters</em> <strong>396</strong>, 142-149 (2004). doi: <a class="reference external" href="http://dx.doi.org/10.1016/j.cplett.2004.08.032">10.1016/j.cplett.2004.08.032</a></li>
</ol>
</td></tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="index.html">
<img class="logo" src="_static/CheMPS2logo.png" alt="Logo"/>
</a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">10. Internally contracted CASPT2</a><ul>
<li><a class="reference internal" href="#the-required-4-rdm-elements">10.1. The required 4-RDM elements</a></li>
<li><a class="reference internal" href="#cas-perturbation-theory">10.2. CAS perturbation theory</a></li>
<li><a class="reference internal" href="#caspt2-calculations">10.3. CASPT2 calculations</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="dmrgscfcalcs.html"
title="previous chapter">9. DMRG-SCF calculations</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="interfaces.html"
title="next chapter">11. Interfaces to psi4 and pyscf</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/caspt2.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<form class="search" action="search.html" method="get">
<div><input type="text" name="q" /></div>
<div><input type="submit" value="Go" /></div>
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="interfaces.html" title="11. Interfaces to psi4 and pyscf"
>next</a> |</li>
<li class="right" >
<a href="dmrgscfcalcs.html" title="9. DMRG-SCF calculations"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.8.5 (2018-01-14) documentation</a> »</li>
</ul>
</div>
<div class="footer" role="contentinfo">
© Copyright 2013-2018, Sebastian Wouters.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.6.6.
</div>
</body>
</html>
|