This file is indexed.

/usr/share/doc/libchemps2/html/caspt2.html is in chemps2-doc 1.8.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    <title>10. Internally contracted CASPT2 &#8212; CheMPS2 1.8.5 (2018-01-14) documentation</title>
    <link rel="stylesheet" href="_static/classic.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '1.8.5 (2018-01-14)',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true,
        SOURCELINK_SUFFIX: '.txt'
      };
    </script>
    <script type="text/javascript" src="/usr/share/javascript/jquery/jquery.js"></script>
    <script type="text/javascript" src="/usr/share/javascript/underscore/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="/usr/share/javascript/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <link rel="index" title="Index" href="genindex.html" />
    <link rel="search" title="Search" href="search.html" />
    <link rel="next" title="11. Interfaces to psi4 and pyscf" href="interfaces.html" />
    <link rel="prev" title="9. DMRG-SCF calculations" href="dmrgscfcalcs.html" /> 
  </head>
  <body>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="interfaces.html" title="11. Interfaces to psi4 and pyscf"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="dmrgscfcalcs.html" title="9. DMRG-SCF calculations"
             accesskey="P">previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.8.5 (2018-01-14) documentation</a> &#187;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <div class="section" id="internally-contracted-caspt2">
<span id="index-0"></span><h1>10. Internally contracted CASPT2<a class="headerlink" href="#internally-contracted-caspt2" title="Permalink to this headline"></a></h1>
<div class="section" id="the-required-4-rdm-elements">
<h2>10.1. The required 4-RDM elements<a class="headerlink" href="#the-required-4-rdm-elements" title="Permalink to this headline"></a></h2>
<p>As DMRG is a wavefunction method, higher order reduced density matrices can be evaluated.
In CheMPS2, up to the 3-RDM is implemented with the usual sweep algorithm.
For internally contracted CASPT2, the contraction of the 4-RDM with the generalized Fock operator is needed. The generalized Fock operator</p>
<div class="math">
\[\hat{F} &amp; = &amp; \sum\limits_{pq} F_{pq} \hat{E}_{pq}\]</div>
<p>has matrix elements</p>
<div class="math">
\[F_{pq}  =  \frac{1}{2} \sum\limits_{\sigma} \left\langle \hat{a}_{p\sigma} \left[ \hat{H}, \hat{a}_{q \sigma}^{\dagger} \right] - \hat{a}_{p\sigma}^{\dagger} \left[ \hat{H}, \hat{a}_{q \sigma} \right]  \right\rangle  =  t_{pq} + \sum\limits_{rs} \left\langle \hat{E}_{rs} \right\rangle \left( \left( pq | rs \right) - \frac{1}{2} \left( pr | qs \right) \right).\]</div>
<p>These matrix elements are symmetric and diagonal in the spatial orbital irreps. The required contraction of the 4-RDM with the generalized Fock operator</p>
<div class="math">
\[\left( F . \Gamma^4 \right)_{pqr; wxy} &amp; = &amp; \sum_{\sigma \tau \upsilon} \left\langle \hat{a}^{\dagger}_{p \sigma} \hat{a}^{\dagger}_{q \tau} \hat{a}^{\dagger}_{r \upsilon} \hat{F} \hat{a}_{y \upsilon} \hat{a}_{ x \tau} \hat{a}_{w \sigma} \right\rangle\]</div>
<p>can therefore be obtained from excited wavefunctions, formed by symmetry-conserving single-particle excitations op top of the reference wavefunction. For the matrix element <span class="math">\(F_{sz} = F_{zs}\)</span> the following sum of 4-RDM elements is needed:</p>
<div class="math">
\[\Gamma^4_{pqrs; wxyz} + \Gamma^4_{pqrz; wxys}.\]</div>
<p>It can be obtained by calculating</p>
<div class="math">
\[\left| sz, \alpha, \beta \right\rangle = \left[ \alpha \left( \hat{E}_{sz} + {E}_{zs} \right) + \beta \right]  \left| \Psi_0 \right\rangle\]</div>
<p>in which the spatial orbitals <span class="math">\(s\)</span> and <span class="math">\(z\)</span> have equal irreps. This excited wavefunction is decomposed into an MPS, with a sweep algorithm with negligible cost <a class="reference internal" href="#caspt2" id="id1">[CASPT2]</a>. Denote the 3-RDM of the (unnormalized) excited wavefunctions as</p>
<div class="math">
\[\Gamma(sz,\alpha,\beta)^3_{pqr; wxy} = \sum\limits_{ \sigma \tau \upsilon } \left\langle sz, \alpha, \beta \mid \hat{a}_{p\sigma}^{\dagger} \hat{a}_{q\tau}^{\dagger} \hat{a}_{r\upsilon}^{\dagger} \hat{a}_{y\upsilon} \hat{a}_{x\tau} \hat{a}_{w\sigma} \mid sz, \alpha, \beta \right\rangle.\]</div>
<p>In this notation <span class="math">\(\Gamma( sz, 0, 1 )^3_{pqr; wxy} = \Gamma^3_{pqr; wxy}\)</span>, the 3-RDM of the reference wavefunction. The following identity holds:</p>
<div class="math">
\[\begin{split}&amp; &amp; 2 \left[ \Gamma^4_{pqrs; wxyz} + \Gamma^4_{pqrz; wxys} \right] + \Gamma^3_{pqr; wxy} \\
&amp; = &amp; \Gamma( sz, 1, 1 )^3_{pqr; wxy} - \Gamma( sz, 1, 0 )^3_{pqr; wxy} \\
&amp; - &amp; \delta_{s,p} \Gamma^3_{zqr; wxy} - \delta_{s,q} \Gamma^3_{pzr; wxy} - \delta_{s,r} \Gamma^3_{pqz; wxy} \\
&amp; - &amp; \delta_{s,w} \Gamma^3_{pqr; zxy} - \delta_{s,x} \Gamma^3_{pqr; wzy} - \delta_{s,y} \Gamma^3_{pqr; wxz} \\
&amp; - &amp; \delta_{z,p} \Gamma^3_{sqr; wxy} - \delta_{z,q} \Gamma^3_{psr; wxy} - \delta_{z,r} \Gamma^3_{pqs; wxy} \\
&amp; - &amp; \delta_{z,w} \Gamma^3_{pqr; sxy} - \delta_{z,x} \Gamma^3_{pqr; wsy} - \delta_{z,y} \Gamma^3_{pqr; wxs},\end{split}\]</div>
<p>which allows to obtain the contraction <span class="math">\(\left( F . \Gamma^4 \right)\)</span> by calculating the 3-RDM of several excited wavefunctions! This algorithm has in practice the same computational cost as the regular 4-RDM evaluation during the usual sweep algorithm.</p>
</div>
<div class="section" id="cas-perturbation-theory">
<h2>10.2. CAS perturbation theory<a class="headerlink" href="#cas-perturbation-theory" title="Permalink to this headline"></a></h2>
<p>The full Hilbert space <span class="math">\(\mathcal{H}\)</span> is split up into four parts <a class="reference internal" href="#roos1" id="id2">[ROOS1]</a> <a class="reference internal" href="#roos2" id="id3">[ROOS2]</a>:</p>
<div class="math">
\[\mathcal{H} = \mathcal{V}_0 \oplus \mathcal{V}_{\text{K}} \oplus \mathcal{V}_{\text{SD}} \oplus \mathcal{V}_{\text{TQ..}}.\]</div>
<ol class="arabic">
<li><p class="first"><span class="math">\(\mathcal{V}_0\)</span> contains only the CASSCF solution <span class="math">\(\left| \Psi_0 \right\rangle\)</span>.</p>
</li>
<li><p class="first"><span class="math">\(\mathcal{V}_{\text{K}}\)</span> is the space spanned by all possible active space excitations on top of <span class="math">\(\left| \Psi_0 \right\rangle\)</span> which are orthogonal to <span class="math">\(\mathcal{V}_0\)</span>. Wavefunctions in <span class="math">\(\mathcal{V}_{\text{K}}\)</span> have the same core and virtual orbitals as <span class="math">\(\left| \Psi_0 \right\rangle\)</span>, with the same occupation.</p>
</li>
<li><p class="first"><span class="math">\(\mathcal{V}_{{\text{SD}}}\)</span> contains all single and double particle excitations on top of <span class="math">\(\left| \Psi_0 \right\rangle\)</span> which are orthogonal to <span class="math">\(\mathcal{V}_0 \oplus \mathcal{V}_{\text{K}}\)</span>. With the indices <span class="math">\(ij\)</span> for core orbitals, <span class="math">\(tuv\)</span> for active orbitals, and <span class="math">\(ab\)</span> for virtual orbitals, <span class="math">\(\mathcal{V}_{{\text{SD}}}\)</span> is spanned by the following excitation types:</p>
<blockquote>
<div><div class="math">
\[\begin{split}\text{A} &amp; : &amp; \quad \hat{E}_{ti} \hat{E}_{uv} \left| \Psi_0 \right\rangle, \\
\text{B} &amp; : &amp; \quad \hat{E}_{ti} \hat{E}_{uj} \left| \Psi_0 \right\rangle, \\
\text{C} &amp; : &amp; \quad \hat{E}_{at} \hat{E}_{uv} \left| \Psi_0 \right\rangle, \\
\text{D} &amp; : &amp; \quad \hat{E}_{ai} \hat{E}_{tu} \left| \Psi_0 \right\rangle,~\hat{E}_{ti}\hat{E}_{au} \left| \Psi_0 \right\rangle, \\
\text{E} &amp; : &amp; \quad \hat{E}_{ti} \hat{E}_{aj} \left| \Psi_0 \right\rangle, \\
\text{F} &amp; : &amp; \quad \hat{E}_{at} \hat{E}_{bu} \left| \Psi_0 \right\rangle, \\
\text{G} &amp; : &amp; \quad \hat{E}_{ai} \hat{E}_{bt} \left| \Psi_0 \right\rangle, \\
\text{H} &amp; : &amp; \quad \hat{E}_{ai} \hat{E}_{bj} \left| \Psi_0 \right\rangle.\end{split}\]</div>
</div></blockquote>
</li>
<li><p class="first">And <span class="math">\(\mathcal{V}_{{\text{TQ..}}}\)</span> is the remainder of <span class="math">\(\mathcal{H}\)</span>.</p>
</li>
</ol>
<p>The zeroth order Hamiltonian for internally contracted CASPT2 is</p>
<div class="math">
\[\hat{H}_0 = \hat{P}_0 \hat{F} \hat{P}_0 + \hat{P}_{\text{K}} \hat{F} \hat{P}_{\text{K}} + \hat{P}_{{\text{SD}}} \hat{F} \hat{P}_{{\text{SD}}} + \hat{P}_{{\text{TQ..}}} \hat{F} \hat{P}_{{\text{TQ..}}},\]</div>
<p>where <span class="math">\(\hat{P}_{\text{X}}\)</span> is the projector onto <span class="math">\(\mathcal{V}_{\text{X}}\)</span>.
The first order wavefunction <span class="math">\(\left| \Psi_1 \right\rangle\)</span> for internally contracted CASPT2 is spanned by a linear combination over <span class="math">\(\mathcal{V}_{\text{SD}}\)</span>:</p>
<div class="math">
\[\left| \Psi_1 \right\rangle = \sum_{pq;rs \in \mathcal{V}_{\text{SD}}} C_{pq;rs} \hat{E}_{pq} \hat{E}_{rs} \left| \Psi_0 \right\rangle = \sum_{pq;rs \in \mathcal{V}_{\text{SD}}} C_{pq;rs} \left| \Psi_{pq;rs} \right\rangle.\]</div>
<p>The coefficients can be found by solving</p>
<div class="math">
\[\sum_{pq;rs \in \mathcal{V}_{\text{SD}}} \left\langle \Psi_{wx;yz} \mid \hat{H}_0 - E_0 \mid \Psi_{pq;rs} \right\rangle C_{pq;rs} = - \left\langle \Psi_{wx;yz} \mid \hat{H} \mid \Psi_0 \right\rangle.\]</div>
<p>The overlap matrix <span class="math">\(\left\langle \Psi_{wx;yz} \mid \Psi_{pq;rs} \right\rangle\)</span> is block-diagonal in the different excitation types (A to H). It is diagonalized, small eigenvalues are discarded, and the linear equation is transformed to</p>
<div class="math">
\[\sum\limits_{ \beta } \left( \mathcal{F}_{\alpha\beta} - E_0 \delta_{\alpha,\beta} \right) \mathcal{C}_{\beta} = - \mathcal{V}_{\alpha},\]</div>
<p>with <span class="math">\(\mathcal{F}\)</span> diagonal for two excitations of the same type (A to H). The following initial guess is used to solve this linear equation with either the conjugate gradient or Davidson algorithm:</p>
<div class="math">
\[\mathcal{C}_{\alpha}^{\text{ini}} = - \frac{ \mathcal{V}_{\alpha} }{ \mathcal{F}_{\alpha\alpha} - E_0 }.\]</div>
<p>If the active space orbitals in the DMRG algorithm are not pseudocanonical, <span class="math">\(\Gamma^1\)</span>, <span class="math">\(\Gamma^2\)</span>, <span class="math">\(\Gamma^3\)</span>, and <span class="math">\(\left(F.\Gamma^4\right)\)</span> are rotated to the pseudocanonical orbital basis before building the required intermediates to solve the CASPT2 linear equation.</p>
<p>In order to mitigate intruder state problems, CheMPS2 allows to specify an imaginary level shift <a class="reference internal" href="#imag" id="id4">[IMAG]</a> and/or ionization potential - electron affinity shift <a class="reference internal" href="#ipea" id="id5">[IPEA]</a>. For the latter, the left-hand side matrix of the CASPT2 linear equation is shifted with</p>
<div class="math">
\[\left\langle \Psi_{ wx;yz } \mid \hat{F} \mid \Psi_{pq;rs } \right\rangle \mathrel{+}= \delta_{p,w} \delta_{q,x} \delta_{r,y} \delta_{s,z} \frac{ \epsilon^{\text{IPEA}}}{2} \left\langle \Psi_{wx;yz} \mid \Psi_{pq;rs} \right\rangle \left( 4 + \left\langle \hat{E}_{pp} \right\rangle - \left\langle \hat{E}_{qq} \right\rangle + \left\langle \hat{E}_{rr} \right\rangle - \left\langle \hat{E}_{ss} \right\rangle \right).\]</div>
</div>
<div class="section" id="caspt2-calculations">
<h2>10.3. CASPT2 calculations<a class="headerlink" href="#caspt2-calculations" title="Permalink to this headline"></a></h2>
<p>In order to calculate the CASPT2 variational second order perturbation correction energy, the following call should be made:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="kt">double</span> <span class="n">CheMPS2</span><span class="o">::</span><span class="n">CASSCF</span><span class="o">::</span><span class="n">caspt2</span><span class="p">(</span> <span class="k">const</span> <span class="kt">int</span> <span class="n">Nelectrons</span><span class="p">,</span> <span class="k">const</span> <span class="kt">int</span> <span class="n">TwoS</span><span class="p">,</span> <span class="k">const</span> <span class="kt">int</span> <span class="n">Irrep</span><span class="p">,</span> <span class="n">ConvergenceScheme</span> <span class="o">*</span> <span class="n">OptScheme</span><span class="p">,</span> <span class="k">const</span> <span class="kt">int</span> <span class="n">rootNum</span><span class="p">,</span> <span class="n">DMRGSCFoptions</span> <span class="o">*</span> <span class="n">scf_options</span><span class="p">,</span> <span class="k">const</span> <span class="kt">double</span> <span class="n">IPEA</span><span class="p">,</span> <span class="k">const</span> <span class="kt">double</span> <span class="n">IMAG</span><span class="p">,</span> <span class="k">const</span> <span class="kt">bool</span> <span class="n">PSEUDOCANONICAL</span><span class="p">,</span> <span class="k">const</span> <span class="kt">bool</span> <span class="n">CHECKPOINT</span><span class="p">,</span> <span class="k">const</span> <span class="kt">bool</span> <span class="n">CUMULANT</span> <span class="p">)</span>
</pre></div>
</div>
<p><strong>after</strong> the CASSCF orbital rotations are converged.</p>
<ol class="arabic">
<li><p class="first">The first six parameters are the same as for <code class="docutils literal"><span class="pre">CheMPS2::CASSCF::solve</span></code> in <a class="reference internal" href="dmrgscfcalcs.html#label-casscf-calculations-api"><span class="std std-ref">CheMPS2::CASSCF</span></a>.</p>
</li>
<li><p class="first">IPEA and IMAG are the ionization potential - electron affinity and imaginary level shifts.</p>
</li>
<li><p class="first">PSEUDOCANONICAL allows to change the converged CASSCF orbitals (localized, natural, …) to pseudocanonical orbitals <strong>before</strong> the DMRG calculation to obtain the contraction of the 4-RDM with the generalized Fock operator. This has the advantage that the Fock operator matrix elements are diagonal, which leads to a significant reduction in computational cost <strong>if</strong> it not requires a significantly larger virtual dimension <span class="math">\(D\)</span>.</p>
</li>
<li><p class="first">CHECKPOINT allows to switch on the creation of checkpoints to calculate the required contraction during multiple runs. If CHECKPOINT is true, then after the initial run</p>
<blockquote>
<div><div class="highlight-c++"><div class="highlight"><pre><span></span><span class="n">scf_options</span><span class="o">-&gt;</span><span class="n">setDoDIIS</span><span class="p">(</span> <span class="nb">false</span> <span class="p">)</span>
<span class="n">scf_options</span><span class="o">-&gt;</span><span class="n">setWhichActiveSpace</span><span class="p">(</span> <span class="mi">0</span> <span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<p>should be set in order to use exactly the same orbitals in consecutive runs!</p>
</li>
<li><p class="first">It is advised to leave CUMULANT = false.</p>
</li>
</ol>
<table class="docutils citation" frame="void" id="caspt2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[CASPT2]</a></td><td><ol class="first last upperalpha simple" start="19">
<li>Wouters, V. Van Speybroeck and D. Van Neck, <em>Journal of Chemical Physics</em> <strong>145</strong>, 054120 (2016), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4959817">10.1063/1.4959817</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="roos1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[ROOS1]</a></td><td><ol class="first last upperalpha simple" start="11">
<li>Andersson, P.-A. Malmqvist, B.O. Roos, A.J. Sadlej and K. Wolinski, <em>Journal of Physical Chemistry</em> <strong>94</strong>, 5483-5488 (1990). doi: <a class="reference external" href="http://dx.doi.org/10.1021/j100377a012">10.1021/j100377a012</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="roos2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id3">[ROOS2]</a></td><td><ol class="first last upperalpha simple" start="11">
<li>Andersson, P.‐A. Malmqvist and B.O. Roos, <em>Journal of Chemical Physics</em> <strong>96</strong>, 1218-1226 (1992). doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.462209">10.1063/1.462209</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="imag" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id4">[IMAG]</a></td><td><ol class="first last upperalpha simple" start="14">
<li>Forsberg and P.-A. Malmqvist, <em>Chemical Physics Letters</em> <strong>274</strong>, 196-204 (1997). doi: <a class="reference external" href="http://dx.doi.org/10.1016/S0009-2614(97)00669-6">10.1016/S0009-2614(97)00669-6</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="ipea" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id5">[IPEA]</a></td><td><ol class="first last upperalpha simple" start="7">
<li>Ghigo, B.O. Roos and P.-A. Malmqvist, <em>Chemical Physics Letters</em> <strong>396</strong>, 142-149 (2004). doi: <a class="reference external" href="http://dx.doi.org/10.1016/j.cplett.2004.08.032">10.1016/j.cplett.2004.08.032</a></li>
</ol>
</td></tr>
</tbody>
</table>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="index.html">
              <img class="logo" src="_static/CheMPS2logo.png" alt="Logo"/>
            </a></p>
  <h3><a href="index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">10. Internally contracted CASPT2</a><ul>
<li><a class="reference internal" href="#the-required-4-rdm-elements">10.1. The required 4-RDM elements</a></li>
<li><a class="reference internal" href="#cas-perturbation-theory">10.2. CAS perturbation theory</a></li>
<li><a class="reference internal" href="#caspt2-calculations">10.3. CASPT2 calculations</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="dmrgscfcalcs.html"
                        title="previous chapter">9. DMRG-SCF calculations</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="interfaces.html"
                        title="next chapter">11. Interfaces to psi4 and pyscf</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="_sources/caspt2.rst.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="search.html" method="get">
      <div><input type="text" name="q" /></div>
      <div><input type="submit" value="Go" /></div>
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="interfaces.html" title="11. Interfaces to psi4 and pyscf"
             >next</a> |</li>
        <li class="right" >
          <a href="dmrgscfcalcs.html" title="9. DMRG-SCF calculations"
             >previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.8.5 (2018-01-14) documentation</a> &#187;</li> 
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &#169; Copyright 2013-2018, Sebastian Wouters.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.6.6.
    </div>
  </body>
</html>