/usr/share/common-lisp/source/mcclim/bezier.lisp is in cl-mcclim 0.9.6.dfsg.cvs20100315-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | (in-package :clim-internals)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Utilities
(defun point-to-complex (point)
"convert a point to a complex number"
(complex (point-x point) (point-y point)))
(defun complex-to-point (complex)
"convert a complex number to a point"
(make-point (realpart complex) (imagpart complex)))
(defun distance (p0 p1)
"return the euclidian distance between two points"
(multiple-value-bind (x0 y0) (point-position p0)
(multiple-value-bind (x1 y1) (point-position p1)
(let* ((dx (- x1 x0))
(dx2 (* dx dx))
(dy (- y1 y0))
(dy2 (* dy dy)))
(sqrt (+ dx2 dy2))))))
(defun part-way (p0 p1 alpha)
"return a point that is part way between two other points"
(multiple-value-bind (x0 y0) (point-position p0)
(multiple-value-bind (x1 y1) (point-position p1)
(make-point (+ (* (- 1 alpha) x0) (* alpha x1))
(+ (* (- 1 alpha) y0) (* alpha y1))))))
(defun dot-dist (p p0 p1)
"dot distance between a point and a line"
(let ((dx (- (point-x p1) (point-x p0)))
(dy (- (point-y p1) (point-y p0))))
(- (* (point-x p) dy)
(* (point-y p) dx))))
(defun solve-quadratic (a2 a1 a0 &key complex-roots multiple-roots)
(when (zerop a2)
(return-from solve-quadratic (- (/ a0 a1))))
(unless (= a2 1)
(setf a1 (/ a1 a2)
a0 (/ a0 a2)))
(let* ((-a1/2 (- (/ a1 2.0)))
(r (- (* -a1/2 -a1/2) a0)))
(cond ((zerop r)
(if multiple-roots (values -a1/2 -a1/2) -a1/2))
((minusp r)
(if complex-roots (values (+ -a1/2 (sqrt r)) (- -a1/2 (sqrt r))) (values)))
(t
(values (+ -a1/2 (sqrt r)) (- -a1/2 (sqrt r)))))))
(defun dist (v z)
"compute the distance between a point and a vector represented as a complex number"
(- (* (realpart z) (point-y v))
(* (imagpart z) (point-x v))))
(defclass bezier-design (design)
((%or :accessor original-region :initform nil)))
(defgeneric medium-draw-bezier-design* (stream design))
(defclass bezier-design-output-record (standard-graphics-displayed-output-record)
((stream :initarg :stream)
(design :initarg :design)))
(defmethod initialize-instance :after ((record bezier-design-output-record) &key)
(with-slots (design) record
(setf (rectangle-edges* record)
(bounding-rectangle* design))))
(defmethod medium-draw-bezier-design* :around ((stream output-recording-stream) design)
(with-sheet-medium (medium stream)
(let ((transformed-design (transform-region (medium-transformation medium) design)))
(when (stream-recording-p stream)
(let ((record (make-instance 'bezier-design-output-record
:stream stream
:design transformed-design)))
(stream-add-output-record stream record)))
(when (stream-drawing-p stream)
(medium-draw-bezier-design* medium design)))))
(defmethod medium-draw-bezier-design* :around
((medium transform-coordinates-mixin) design)
(let* ((tr (medium-transformation medium))
(design (transform-region tr design)))
(call-next-method medium design)))
(defmethod replay-output-record ((record bezier-design-output-record) stream &optional
(region +everywhere+) (x-offset 0) (y-offset 0))
(declare (ignore x-offset y-offset region))
(with-slots (design) record
(medium-draw-bezier-design* (sheet-medium stream) design)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Bezier curves and areas
(defclass bezier-segment ()
((p0 :initarg :p0)
(p1 :initarg :p1)
(p2 :initarg :p2)
(p3 :initarg :p3)))
(defun make-bezier-segment (p0 p1 p2 p3)
(make-instance 'bezier-segment
:p0 p0 :p1 p1 :p2 p2 :p3 p3))
(defclass bounding-rectangle-mixin ()
((min-x) (min-y) (max-x) (max-y)))
(defmethod bounding-rectangle* ((region bounding-rectangle-mixin))
(with-slots (min-x min-y max-x max-y) region
(values min-x min-y max-x max-y)))
(defclass segments-mixin (bounding-rectangle-mixin)
((%segments :initarg :segments :initform '() :reader %segments)))
(defmethod compute-bounding-rectangle* ((segments-mixin segments-mixin))
(multiple-value-bind (final-min-x final-min-y final-max-x final-max-y)
(segment-bounding-rectangle (car (%segments segments-mixin)))
(loop for segment in (cdr (%segments segments-mixin))
do (multiple-value-bind (min-x min-y max-x max-y)
(segment-bounding-rectangle segment)
(setf final-min-x (min final-min-x min-x)
final-min-y (min final-min-y min-y)
final-max-x (max final-max-x max-x)
final-max-y (max final-max-y max-y))))
(values final-min-x final-min-y final-max-x final-max-y)))
(defmethod initialize-instance :after ((region segments-mixin) &rest args)
(declare (ignore args))
(multiple-value-bind (computed-min-x computed-min-y computed-max-x computed-max-y)
(compute-bounding-rectangle* region)
(with-slots (min-x min-y max-x max-y) region
(setf min-x computed-min-x
min-y computed-min-y
max-x computed-max-x
max-y computed-max-y))))
;;; a path defined as a sequence of Bezier curve segments
(defclass bezier-curve (path segments-mixin bounding-rectangle-mixin) ())
(defun make-bezier-thing (class point-seq)
(assert (= (mod (length point-seq) 3) 1))
(make-instance class
:segments (loop for (p0 p1 p2 p3) on point-seq by #'cdddr
until (null p1)
collect (make-bezier-segment p0 p1 p2 p3))))
(defun make-bezier-thing* (class coord-seq)
(assert (= (mod (length coord-seq) 6) 2))
(make-instance class
:segments (loop for (x0 y0 x1 y1 x2 y2 x3 y3 x4 y4)
on coord-seq by #'(lambda (x) (nthcdr 6 x))
until (null x1)
collect (make-bezier-segment
(make-point x0 y0)
(make-point x1 y1)
(make-point x2 y2)
(make-point x3 y3)))))
(defun make-bezier-curve (point-seq)
(make-bezier-thing 'bezier-curve point-seq))
(defun make-bezier-curve* (coord-seq)
(make-bezier-thing* 'bezier-curve coord-seq))
(defun transform-segment (transformation segment)
(with-slots (p0 p1 p2 p3) segment
(make-bezier-segment (transform-region transformation p0)
(transform-region transformation p1)
(transform-region transformation p2)
(transform-region transformation p3))))
(defmethod transform-region (transformation (path bezier-curve))
(make-instance 'bezier-curve
:segments (mapcar (lambda (segment)
(transform-segment transformation segment))
(%segments path))))
(defmethod region-equal ((p1 point) (p2 point))
(let ((coordinate-epsilon (* #.(expt 2 10) double-float-epsilon)))
(and (<= (abs (- (point-x p1) (point-x p2))) coordinate-epsilon)
(<= (abs (- (point-y p1) (point-y p2))) coordinate-epsilon))))
(defmethod region-union ((r1 bezier-curve) (r2 bezier-curve))
(let ((p (slot-value (car (last (%segments r1))) 'p3))
(seg (car (%segments r2))))
(if (region-equal p (slot-value seg 'p0))
(with-slots (p1 p2 p3) seg
(make-instance 'bezier-curve
:segments (append (%segments r1)
(cons (make-bezier-segment p p1 p2 p3)
(cdr (%segments r2))))))
(call-next-method))))
;;; an area defined as a closed path of Bezier curve segments
(defclass bezier-area (area bezier-design segments-mixin bounding-rectangle-mixin)
((%trans :initarg :transformation :reader transformation :initform +identity-transformation+)))
(defgeneric close-path (path))
(defmethod close-path ((path bezier-curve))
(let ((segments (%segments path)))
(assert (region-equal (slot-value (car segments) 'p0)
(slot-value (car (last segments)) 'p3)))
(make-instance 'bezier-area :segments segments)))
(defun path-start (path)
(slot-value (car (%segments path)) 'p0))
(defun path-end (path)
(slot-value (car (last (%segments path))) 'p3))
(defun make-bezier-area (point-seq)
(assert (region-equal (car point-seq) (car (last point-seq))))
(make-bezier-thing 'bezier-area point-seq))
(defun make-bezier-area* (coord-seq)
(assert (and (coordinate= (car coord-seq) (car (last coord-seq 2)))
(coordinate= (cadr coord-seq) (car (last coord-seq)))))
(make-bezier-thing* 'bezier-area coord-seq))
(defmethod segments ((area bezier-area))
(let ((tr (transformation area)))
(mapcar (lambda (s) (transform-segment tr s)) (%segments area))))
(defmethod transform-region (transformation (area bezier-area))
(let* ((tr (transformation area))
(result (if (translation-transformation-p transformation)
(make-instance 'bezier-area :segments (%segments area)
:transformation
(compose-transformations transformation tr))
(make-instance 'bezier-area
:segments (mapcar (lambda (s) (transform-segment transformation s)) (segments area))))))
(when (translation-transformation-p transformation)
(setf (original-region result) (or (original-region area) area)))
result))
(defmethod compute-bounding-rectangle* ((area bezier-area))
(multiple-value-bind (lx ly ux uy) (call-next-method)
(let ((tr (transformation area)))
(transform-rectangle* tr lx ly ux uy))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Special cases of combined Bezier areas
;;; A union of bezier areas. This is not itself a bezier area.
(defclass bezier-union (area bezier-design)
((%trans :initarg :transformation :reader transformation :initform +identity-transformation+)
(%areas :initarg :areas :initform '() :reader areas)))
(defmethod transform-region (transformation (union bezier-union))
(let* ((tr (transformation union))
(new-tr (compose-transformations transformation tr))
(result (if (translation-transformation-p transformation)
(make-instance 'bezier-union :areas (areas union)
:transformation new-tr)
(make-instance 'bezier-union
:areas (loop for area in (areas union) collect (transform-region new-tr area))))))
(when (translation-transformation-p transformation)
(setf (original-region result) (or (original-region union) union)))
result))
(defun bounding-rectangle-of-areas (areas)
(multiple-value-bind (final-min-x final-min-y final-max-x final-max-y)
(bounding-rectangle* (car areas))
(loop for area in (cdr areas)
do (multiple-value-bind (min-x min-y max-x max-y)
(bounding-rectangle* area)
(setf final-min-x (min final-min-x min-x)
final-min-y (min final-min-y min-y)
final-max-x (max final-max-x max-x)
final-max-y (max final-max-y max-y))))
(values final-min-x final-min-y final-max-x final-max-y)))
(defmethod bounding-rectangle* ((design bezier-union))
(multiple-value-bind (lx ly ux uy)
(bounding-rectangle-of-areas (areas design))
(transform-rectangle* (transformation design) lx ly ux uy)))
(defmethod region-union ((r1 bezier-area) (r2 bezier-area))
(make-instance 'bezier-union :areas (list r1 r2)))
(defmethod region-union ((r1 bezier-union) (r2 bezier-area))
(let ((tr (transformation r1)))
(make-instance 'bezier-union
:areas (cons (untransform-region tr r2) (areas r1))
:transformation tr)))
(defmethod region-union ((r1 bezier-area) (r2 bezier-union))
(let ((tr (transformation r2)))
(make-instance 'bezier-union
:areas (cons (untransform-region tr r1) (areas r2))
:transformation tr)))
(defmethod region-union ((r1 bezier-union) (r2 bezier-union))
(let ((tr1 (transformation r1))
(tr2 (transformation r2)))
(if (transformation-equal tr1 tr2)
(make-instance 'bezier-union
:areas (append (areas r1) (areas r2))
:transformation tr1)
(let ((len1 (length (areas r1)))
(len2 (length (areas r2))))
(if (> len2 len1)
(make-instance 'bezier-union
:areas (append (mapcar (lambda (r) (untransform-region tr2 (transform-region tr1 r))) (areas r1)) (areas r2))
:transformation tr2)
(make-instance 'bezier-union
:areas (append (mapcar (lambda (r) (untransform-region tr1 (transform-region tr2 r))) (areas r2)) (areas r1))
:transformation tr1))))))
(defclass bezier-difference (area bezier-design)
((%positive-areas :initarg :positive-areas :initform '() :reader positive-areas)
(%negative-areas :initarg :negative-areas :initform '() :reader negative-areas)))
(defmethod transform-region (transformation (area bezier-difference))
(let* ((pareas (loop for area in (positive-areas area)
collect (transform-region transformation area)))
(nareas (loop for area in (negative-areas area)
collect (transform-region transformation area)))
(result (make-instance 'bezier-difference
:positive-areas pareas
:negative-areas nareas)))
(when (translation-transformation-p transformation)
(setf (original-region result) (or (original-region area) area)))
result))
(defmethod bounding-rectangle* ((design bezier-difference))
(bounding-rectangle-of-areas (positive-areas design)))
(defmethod region-difference ((r1 bezier-area) (r2 bezier-area))
(make-instance 'bezier-difference
:positive-areas (list r1)
:negative-areas (list r2)))
(defmethod region-difference ((r1 bezier-area) (r2 bezier-union))
(let ((tr (transformation r2)))
(make-instance 'bezier-difference
:positive-areas (list r1)
:negative-areas (mapcar (lambda (r) (transform-region tr r)) (areas r2)))))
(defmethod region-difference ((r1 bezier-union) (r2 bezier-area))
(let ((tr (transformation r1)))
(make-instance 'bezier-difference
:positive-areas (mapcar (lambda (r) (transform-region tr r)) (areas r1))
:negative-areas (list r2))))
(defmethod region-difference ((r1 bezier-union) (r2 bezier-union))
(let ((tr1 (transformation r1))
(tr2 (transformation r2)))
(make-instance 'bezier-difference
:positive-areas (mapcar (lambda (r) (transform-region tr1 r)) (areas r1))
:negative-areas (mapcar (lambda (r) (transform-region tr2 r)) (areas r2)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Converting a path to a polyline or an area to a polygon
;;; convert a cubic bezier segment to a list of
;;; line segments
(defun %polygonalize (p0 p1 p2 p3 &key (precision 0.01))
(if (< (- (+ (distance p0 p1)
(distance p1 p2)
(distance p2 p3))
(distance p0 p3))
precision)
(list p3)
(let* ((p01 (part-way p0 p1 0.5))
(p12 (part-way p1 p2 0.5))
(p23 (part-way p2 p3 0.5))
(p012 (part-way p01 p12 0.5))
(p123 (part-way p12 p23 0.5))
(p0123 (part-way p012 p123 0.5)))
(nconc (%polygonalize p0 p01 p012 p0123 :precision precision)
(%polygonalize p0123 p123 p23 p3 :precision precision)))))
(defgeneric polygonalize (thing))
(defmethod polygonalize ((segment bezier-segment))
(with-slots (p0 p1 p2 p3) segment
(%polygonalize p0 p1 p2 p3)))
(defmethod polygonalize ((path bezier-curve))
(let ((segments (%segments path)))
(make-polyline
(cons (slot-value (car segments) 'p0)
(mapcan #'polygonalize segments)))))
(defmethod polygonalize ((area bezier-area))
(let ((segments (segments area)))
(make-polygon (mapcan #'polygonalize segments))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Reversing a path
(defgeneric reverse-path (path))
(defun reverse-segment (bezier-segment)
(with-slots (p0 p1 p2 p3) bezier-segment
(make-bezier-segment p3 p2 p1 p0)))
(defmethod reverse-path ((path bezier-curve))
(make-instance 'bezier-curve
:segments (reverse (mapcar #'reverse-segment (%segments path)))))
(defmethod reverse-path ((path bezier-area))
(make-instance 'bezier-area
:segments (reverse (mapcar #'reverse-segment (%segments path)))
:transformation (transformation path)))
;;; slanting transformation are used by Metafont
(defun make-slanting-transformation (slant)
(make-transformation 1.0 slant 0.0 1.0 0.0 0.0))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Bounding rectangle
(defun evaluate-bezier (w0 w1 w2 w3 a)
(let ((1-a (- 1.0 a)))
(+ (* 1-a 1-a 1-a w0)
(* 3.0 1-a 1-a a w1)
(* 3.0 1-a a a w2)
(* a a a w3))))
(defun dimension-min-max (w0 w1 w2 w3)
(when (> w0 w3)
(rotatef w0 w3)
(rotatef w1 w2))
(when (and (<= w0 w1 w3)
(<= w0 w2 w3))
(return-from dimension-min-max
(values w0 w3)))
(let ((a (+ (- w0) (* 3 w1) (* -3 w2) w3))
(b (+ (* 2 w0) (* -4 w1) (* 2 w2)))
(c (- w1 w0)))
(if (zerop a)
(if (zerop b)
(values w0 w3)
(let ((candidate (/ (- c) b)))
(if (or (<= candidate 0.0)
(>= candidate 1.0))
(values w0 w3)
(let ((w (evaluate-bezier w0 w1 w2 w3 candidate)))
(values (min w w0) (max w w3))))))
(multiple-value-bind (candidate0 candidate1)
(solve-quadratic a b c :multiple-roots t)
(if (null candidate0)
(values w0 w3)
(let ((wa (evaluate-bezier w0 w1 w2 w3 candidate0))
(wb (evaluate-bezier w0 w1 w2 w3 candidate1)))
(if (or (<= candidate0 0.0) (>= candidate0 1.0))
(if (or (<= candidate1 0.0) (>= candidate1 1.0))
(values w0 w3)
(values (min wb w0) (max wb w3)))
(if (or (<= candidate1 0.0) (>= candidate1 1.0))
(values (min wa w0) (max wa w3))
(values (min wa wb w0) (max wa wb w3))))))))))
(defun segment-bounding-rectangle (segment)
(with-slots (p0 p1 p2 p3) segment
(let ((x0 (point-x p0))
(x1 (point-x p1))
(x2 (point-x p2))
(x3 (point-x p3))
(y0 (point-y p0))
(y1 (point-y p1))
(y2 (point-y p2))
(y3 (point-y p3)))
(multiple-value-bind (min-x max-x)
(dimension-min-max x0 x1 x2 x3)
(multiple-value-bind (min-y max-y)
(dimension-min-max y0 y1 y2 y3)
(values min-x min-y max-x max-y))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Convolution
(defun find-split-points-for-side (aa bb cc)
(let ((roots '()))
(multiple-value-bind (r1 r2)
(solve-quadratic aa bb cc)
(unless (or (null r1) (<= r1 0.0) (>= r1 1.0)) (push r1 roots))
(unless (or (null r2) (<= r2 0.0) (>= r2 1.0)) (push r2 roots))
roots)))
(defun find-split-points (sides segment)
(let ((split-points '()))
(with-slots (p0 p1 p2 p3) segment
(let ((x0 (point-x p0)) (y0 (point-y p0))
(x1 (point-x p1)) (y1 (point-y p1))
(x2 (point-x p2)) (y2 (point-y p2))
(x3 (point-x p3)) (y3 (point-y p3)))
(let ((xa (+ (- x0) (* 3 x1) (* -3 x2) x3))
(ya (+ (- y0) (* 3 y1) (* -3 y2) y3))
(xb (* 2 (+ x0 (* -2 x1) x2)))
(yb (* 2 (+ y0 (* -2 y1) y2)))
(xc (- x1 x0))
(yc (- y1 y0)))
(loop for side in sides
do (let* ((sr (realpart side))
(si (imagpart side))
(aa (- (* xa si)
(* ya sr)))
(bb (- (* xb si)
(* yb sr)))
(cc (- (* xc si)
(* yc sr))))
(setf split-points
(append (find-split-points-for-side aa bb cc) split-points))))))
(sort (remove-duplicates split-points) #'<))))
(defun split-segment (segment split-points)
(if (null split-points)
(list segment)
(with-slots (p0 p1 p2 p3) segment
(let* ((n (floor (length split-points) 2))
(pivot (nth n split-points))
(left (mapcar (lambda (x) (/ x pivot))
(subseq split-points 0 n)))
(right (mapcar (lambda (x) (/ (- x pivot) (- 1.0 pivot)))
(subseq split-points (1+ n))))
(p01 (part-way p0 p1 pivot))
(p12 (part-way p1 p2 pivot))
(p23 (part-way p2 p3 pivot))
(p012 (part-way p01 p12 pivot))
(p123 (part-way p12 p23 pivot))
(p0123 (part-way p012 p123 pivot)))
(append (split-segment (make-bezier-segment p0 p01 p012 p0123) left)
(split-segment (make-bezier-segment p0123 p123 p23 p3) right))))))
(defun mid-derivative (p0 p1 p2 p3)
(setf p0 (point-to-complex p0)
p1 (point-to-complex p1)
p2 (point-to-complex p2)
p3 (point-to-complex p3))
(let ((a 0.5))
(+ (* a a (+ (- p0) (* 3 p1) (* -3 p2) p3))
(* 2 a (+ p0 (* -2 p1) p2))
(- p1 p0))))
(defun make-line-segment (p0 p1)
(make-bezier-segment p0 (part-way p0 p1 1/3) (part-way p0 p1 2/3) p1))
(defun add-points (p0 p1)
(make-point (+ (point-x p0) (point-x p1)) (+ (point-y p0) (point-y p1))))
(defun convert-primitive-segment-to-bezier-area (polygon segment)
(with-slots (p0 p1 p2 p3) segment
(let* ((m (mid-derivative p0 p1 p2 p3))
(right (reduce (lambda (a b) (if (> (dist a m) (dist b m)) a b))
polygon))
(left (reduce (lambda (a b) (if (< (dist a m) (dist b m)) a b))
polygon)))
(make-instance 'bezier-area
:segments
(list (make-bezier-segment (add-points p0 right) (add-points p1 right)
(add-points p2 right) (add-points p3 right))
(make-line-segment (add-points p3 right) (add-points p3 left))
(make-bezier-segment (add-points p3 left) (add-points p2 left)
(add-points p1 left) (add-points p0 left))
(make-line-segment (add-points p0 left) (add-points p0 right)))))))
(defun area-at-point (area point)
(let ((transformation
(make-translation-transformation (point-x point) (point-y point))))
(transform-region transformation area)))
(defun convolve-polygon-and-segment (area polygon segment first)
(declare (optimize debug))
(let* ((points (polygon-points polygon))
(sides (loop for (p0 p1) on (append (last points) points)
until (null p1)
collect (- (point-to-complex p1) (point-to-complex p0))))
(split-points (find-split-points sides segment))
(segments (split-segment segment split-points)))
(loop for segment in segments
if first collect (area-at-point area (slot-value segment 'p0))
collect (convert-primitive-segment-to-bezier-area
(polygon-points polygon) segment)
collect (area-at-point area (slot-value segment 'p3)))))
(defgeneric convolve-regions (area path))
(defmethod convolve-regions ((area bezier-area) (path bezier-curve))
(let ((polygon (polygonalize area)))
(make-instance
'bezier-union :areas
(loop for segment in (%segments path)
for first = t then nil
append (convolve-polygon-and-segment area polygon segment first)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Rendering
(defclass scanlines ()
((%first-line :initform 0 :accessor first-line)
(%chain :initform (make-instance 'flexichain:standard-flexichain) :reader chain)))
(defun nb-lines (lines)
(flexichain:nb-elements (chain lines)))
(defun crossings (lines i)
(flexichain:element* (chain lines) (- i (first-line lines))))
(defun line-number-to-index (lines line-number)
(let* ((chain (chain lines))
(size (flexichain:nb-elements chain)))
;; make sure there is an element corresponding to the line number
(cond ((zerop size)
(flexichain:insert* chain 0 '())
(setf (first-line lines) line-number))
((< line-number (first-line lines))
(loop for i from line-number below (first-line lines)
do (flexichain:insert* chain 0 '()))
(setf (first-line lines) line-number))
((>= line-number (+ (first-line lines) size))
(loop for i from (+ (first-line lines) size) to line-number
do (flexichain:insert* chain size '()))))
(- line-number (first-line lines))))
;;; insert a single crossing into LINES
(defun insert-crossing (lines line-number x inverse-p)
(let ((chain (chain lines))
(index (line-number-to-index lines line-number)))
(setf (flexichain:element* chain index)
(merge 'list
(flexichain:element* chain index)
(list (cons x inverse-p)) #'< :key #'car))))
;;; compute the crossings of a line segment and insert
;;; them into LINES
(defun compute-crossings (lines p0 p1)
(let ((inverse-p nil))
(when (< (point-y p1) (point-y p0))
(rotatef p0 p1)
(setf inverse-p t))
(let ((x0 (point-x p0)) (y0 (point-y p0))
(x1 (point-x p1)) (y1 (point-y p1)))
(loop for y from (round y0) below (round y1)
for x = (+ x0 (* (- x1 x0) (/ (- (+ y 0.5) y0) (- y1 y0))))
do (insert-crossing lines y x inverse-p)))))
(defun scan-lines (polygon)
(let ((lines (make-instance 'scanlines))
(points (polygon-points polygon)))
(loop for (p0 p1) on (append (last points) points)
until (null p1)
do (compute-crossings lines p0 p1))
lines))
(defun render-scan-lines (array pixel-value line crossings min-x min-y)
(let ((level 0)
(start nil)
(height (array-dimension array 0))
(width (array-dimension array 1)))
(loop for (x . inverse-p) in crossings
do (when (zerop level)
(setf start x))
do (setf level (if inverse-p (1+ level) (1- level)))
do (when (zerop level)
(loop for c from (round start) below (round x)
do (when (and (<= 0 (round (- line min-y)) (1- height))
(<= 0 (- c min-x) (1- width)))
(setf (aref array (round (- line min-y)) (- c min-x))
pixel-value)))))))
(defun render-polygon (array polygon pixel-value min-x min-y)
(let ((lines (scan-lines polygon)))
(loop for i from (first-line lines)
repeat (nb-lines lines)
do (render-scan-lines array pixel-value i (crossings lines i) min-x min-y))))
(defgeneric positive-negative-areas (design))
(defmethod positive-negative-areas ((design bezier-area))
(values (list design) '()))
(defmethod positive-negative-areas ((design bezier-union))
(values (areas design) '()))
(defmethod positive-negative-areas ((design bezier-difference))
(values (positive-areas design) (negative-areas design)))
(defun render-to-array (design)
(multiple-value-bind (positive-areas negative-areas)
(positive-negative-areas design)
(multiple-value-bind (min-x min-y max-x max-y)
(bounding-rectangle-of-areas positive-areas)
(setf min-x (* 4 (floor min-x))
min-y (* 4 (floor min-y))
max-x (* 4 (ceiling max-x))
max-y (* 4 (ceiling max-y)))
(let ((result (make-array (list (- max-y min-y) (- max-x min-x))
:element-type 'bit :initial-element 1))
(transformation (make-scaling-transformation* 4 4)))
(loop for area in positive-areas
do (let* ((transformed-area (transform-region transformation area))
(polygon (polygonalize transformed-area)))
(render-polygon result polygon 0 min-x min-y)))
(loop for area in negative-areas
do (let* ((transformed-area (transform-region transformation area))
(polygon (polygonalize transformed-area)))
(render-polygon result polygon 1 min-x min-y)))
result))))
(defparameter *pixmaps* (make-hash-table :test #'equal))
(defun resolve-ink (medium)
(if (eq (medium-ink medium) +foreground-ink+)
(medium-foreground medium)
(medium-ink medium)))
(defun make-ink (medium transparency)
(let* ((a (/ transparency 16.0))
(1-a (- 1.0 a)))
(multiple-value-bind (r g b) (color-rgb (resolve-ink medium))
(make-rgb-color (+ (* a 1.0) (* 1-a r))
(+ (* a 1.0) (* 1-a g))
(+ (* a 1.0) (* 1-a b))))))
(defgeneric ensure-pixmap (medium design))
(defmethod ensure-pixmap (medium rdesign)
(let* ((design (or (original-region rdesign) rdesign))
(pixmap (gethash (list (medium-sheet medium) (resolve-ink medium) design)
*pixmaps*)))
(when (null pixmap)
(let* ((picture (render-to-array design))
(height (array-dimension picture 0))
(width (array-dimension picture 1))
(reduced-picture (make-array (list (/ height 4) (/ width 4)) :initial-element 16)))
(loop for l from 0 below height
do (loop for c from 0 below width
do (when (zerop (aref picture l c))
(decf (aref reduced-picture (floor l 4) (floor c 4))))))
(setf pixmap
(with-output-to-pixmap (pixmap-medium
(medium-sheet medium)
:width (/ width 4) :height (/ height 4))
(loop for l from 0 below (/ height 4)
do (loop for c from 0 below (/ width 4)
do (draw-point*
pixmap-medium c l
:ink (make-ink
medium
(aref reduced-picture l c)))))))
(setf (gethash (list (medium-sheet medium) (resolve-ink medium) design)
*pixmaps*)
pixmap)))
pixmap))
(defun render-through-pixmap (design medium)
(multiple-value-bind (min-x min-y)
(bounding-rectangle* design)
;; the design we've got has already been transformed by the
;; medium/user transformation, and COPY-FROM-PIXMAP is in user
;; coordinates. So we need to transform back (or set the medium's
;; transformation to be +IDENTITY-TRANSFORMATION+ temporarily, but
;; that's even uglier)
(multiple-value-bind (utmin-x utmin-y)
(untransform-position (medium-transformation medium) min-x min-y)
(setf min-x (floor utmin-x)
min-y (floor utmin-y))
(let ((pixmap (ensure-pixmap medium design)))
(copy-from-pixmap pixmap 0 0 (pixmap-width pixmap) (pixmap-height pixmap)
(medium-sheet medium) min-x min-y)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Generic drawing
(defun draw-bezier-design* (sheet design &rest options)
(climi::with-medium-options (sheet options)
(medium-draw-bezier-design* sheet design)))
(defmethod draw-design (medium (design bezier-design) &rest options &key &allow-other-keys)
(apply #'draw-bezier-design* medium design options))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Drawing bezier designs to screen
;;; Fallback method (suitable for CLX)
(defmethod medium-draw-bezier-design* (medium design)
(render-through-pixmap design medium))
#|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Test cases
(defparameter *r1* (make-bezier-area* '(10 10 20 20 30 20 40 10 30 5 20 5 10 10)))
(defparameter *r2* (make-bezier-area* '(15 10 20 12 30 15 35 10 30 8 20 8 15 10)))
(defparameter *r3* (region-difference *r1* *r2*))
(defparameter *r4* (make-bezier-curve* '(100 100 120 150 160 160 170 160)))
(defparameter *r5* (convolute-regions *r2* *r4*))
|#
|