/usr/share/common-lisp/source/regex/optimize.lisp is in cl-regex 1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 | ;;; -*- Mode: LISP; Syntax: COMMON-LISP; Package: REGEX; Base: 10 -*-
(in-package :REGEX)
;;;
;;; Pass 3 - Canonicalization/tree rewrites/simplification
;;;
; (class "c") --> #\c
; (seq <char> <char> ... <non-char> ...) --> (seq <str> <non-char> ...)
; (seq a b (seq c d) e f) --> (seq a b c d e f)
; (alt a b (alt c d) e f) --> (alt a b c d e f)
; (reg n <expr>) --> (seq (rstart n) <expr> (rend n))
; (opt a) --> (alt a nil) or (alt nil a)
; Iteratively canonicalize the tree, until it stabilizes, then simplify
(defun optimize-regex-tree (tree)
(let* ((canonical (canonicalize tree))
(better (improve canonical))
(even-better (split-alts better))
(simple (simplify even-better)))
simple))
(defun canonicalize (tree)
(when *regex-compile-verbose*
(format t "~&~%Canonicalize Start:")
(pprint tree))
(loop with prev-tree = tree
for pass from 1
for new-tree = (canonicalize-once prev-tree)
when (or (equal prev-tree new-tree) (> pass 10))
return new-tree
do (progn
(when *regex-compile-verbose*
(format t "~&Canonicalize Pass ~D:" pass)
(pprint new-tree))
(setq prev-tree new-tree))))
(defun improve (tree)
(when *regex-compile-verbose*
(format t "~&~%Optimize Start:")
(pprint tree))
(loop with prev-tree = tree
for pass from 1
for new-tree = (improve-once prev-tree)
when (or (equal prev-tree new-tree) (> pass 10))
return new-tree
do (progn
(when *regex-compile-verbose*
(format t "~&Optimize Pass ~D:" pass)
(pprint new-tree))
(setq prev-tree new-tree))))
(defun split-alts (tree)
(when *regex-compile-verbose*
(format t "~&~%Split Alts Start:")
(pprint tree))
(split-alts-aux tree))
(defun simplify (tree)
(when *regex-compile-verbose*
(format t "~&~%Simplify Start:")
(pprint tree))
(loop with prev-tree = tree
for pass from 1
for new-tree = (simplify-once prev-tree)
when (or (equal prev-tree new-tree) (> pass 10))
return new-tree
do (progn
(when *regex-compile-verbose*
(format t "~&Simplify Pass ~D:" pass)
(pprint new-tree))
(setq prev-tree new-tree))))
; for ALT's, after hoisting, try partitioning the set on the leading element,
; and see if we can't reduce things further:
; (alt (seq a) (seq a c) (seq c)) -> (alt (seq a (alt nil (seq c))) (seq c))
; --> (alt-case (a (alt nil (seq c)))
; (c ))
;
; for Kleene's, check to see if the child node is also a kleene w/ no
; registers, and if so remove the inner kleene.
;
(defun canonicalize-once (node)
(cond ;; expand strings into sequences of char to enable more optimizations
((string-node-p node)
(make-seq-node-list (coerce (string-node-string node) 'list)))
;; expand class-sequences into sequences of charclass
((classseq-node-p node)
(make-seq-node-list (mapcar #'make-charclass-node
(classseq-node-seq node))))
((seq-node-p node)
(let* ((canonicalchildren (mapcar #'canonicalize-once
(seq-node-children node)))
(denullchildren (remove-if #'null canonicalchildren))
(flatchildren (flatten-sequence denullchildren))
(children flatchildren)
(numchildren (length flatchildren)))
(cond ((zerop numchildren) nil)
((= numchildren 1) (first children))
(t (make-seq-node-list children)))))
((alt-node-p node)
(let* ((children (mapcar #'canonicalize-once (alt-node-children node)))
(flatchildren (flatten-alt children))
(uniquechildren (remove-duplicates flatchildren :from-end t))
(children uniquechildren))
(make-alt-node-list children)))
((kleene-node-p node)
(make-kleene-node (canonicalize-once (kleene-node-child node))
(kleene-node-greedy-p node)))
;; If the child node is something trivial like char, seq of char,
;; any, charclass, specclass,or seq of charclass, may want to go
;; ahead and leave it as a + node and specialize it during the
;; instruction selection pass.
((pkleene-node-p node)
(let ((greedyp (pkleene-node-greedy-p node))
(canonical-child (canonicalize-once (pkleene-node-child node))))
(make-seq-node-args
canonical-child
(make-kleene-node
(cond (*registers-match-rightmost* canonical-child)
(t (canonicalize-once (unregister canonical-child))))
greedyp))))
((optional-node-p node)
(let ((greedyp (optional-node-greedy-p node))
(canonical-child (canonicalize-once (optional-node-child node))))
(cond (greedyp
(make-alt-node-args canonical-child nil))
(t (make-alt-node-args nil canonical-child)))))
((charclass-node-p node)
(let* ((negp (charclass-node-negated-p node))
(chars (charclass-node-chars node))
(cclen (length chars)))
(cond ((zerop cclen)
nil)
((and (= cclen 1) (not negp))
(make-char-node (char chars 0)))
(t node))))
((register-node-p node)
(let ((regnum (register-node-regnum node)))
(make-seq-node-args
(make-regstart-node regnum)
(canonicalize-once (register-node-child node))
(make-regend-node regnum))))
((range-node-p node)
(expand-range (range-node-greedy-p node)
(range-node-min node) (range-node-max node)
(canonicalize-once (range-node-child node))))
((lookahead-node-p node)
(make-lookahead-node (canonicalize-once (lookahead-node-expr node))))
((nlookahead-node-p node)
(make-nlookahead-node (canonicalize-once (nlookahead-node-expr node))))
(t node)))
(defun improve-once (node)
(cond ((alt-node-p node)
(let ((children (mapcar #'improve-once (alt-node-children node))))
(multiple-value-bind (prefix altbody suffix)
(hoist-alt-ends children)
(cond (altbody
(make-seq-node-list `(,@prefix
,(make-alt-node-list altbody)
,@suffix)))
((and (or prefix suffix) (null altbody))
(make-seq-node-list `(,@prefix ,@suffix)))
(t
(make-alt-node-list altbody))))))
((seq-node-p node)
(make-seq-node-list (mapcar #'improve-once (seq-node-children node))))
((kleene-node-p node)
(let* ((greedyp (kleene-node-greedy-p node))
(child (improve-once (kleene-node-child node)))
(hasregs (contains-registers-p child)))
(cond ((or *registers-match-rightmost* (not hasregs))
(make-kleene-node child greedyp))
(greedyp
(let ((more (make-kleene-node (unregister child)
greedyp)))
(make-alt-node-args (make-seq-node-args
child
more)
nil)))
(t ;; not greedy
(let ((more (make-kleene-node (unregister child)
greedyp)))
(make-alt-node-args
nil
(make-seq-node-args child more)))))))
((lookahead-node-p node)
(make-lookahead-node (improve-once (lookahead-node-expr node))))
((nlookahead-node-p node)
(make-nlookahead-node (improve-once (nlookahead-node-expr node))))
(t node)))
(defun split-alts-aux (node)
(cond ((seq-node-p node)
(let ((children (mapcar #'split-alts-aux (seq-node-children node))))
(make-seq-node-list children)))
((alt-node-p node)
(let ((children (mapcar #'split-alts-aux (alt-node-children node)))
(num-children (alt-node-numchildren node)))
(multiple-value-bind (unknown-char known-char-sets)
(partition-on-leading-char children)
(let* ((num-unknown-char (length unknown-char))
(num-known-char-sets (length known-char-sets))
(worth-partitioning-p
(worth-alt-case-partitioning-p num-children
num-unknown-char
num-known-char-sets)))
(cond ((and unknown-char known-char-sets worth-partitioning-p)
(make-alt-node-list
`(,(make-casealt-node-list (mapcar #'subalt-if-necessary known-char-sets))
,@unknown-char)))
((and (not unknown-char) known-char-sets worth-partitioning-p)
(make-casealt-node-list (mapcar #'subalt-if-necessary known-char-sets)))
(t node))))))
((kleene-node-p node)
(make-kleene-node (split-alts-aux (kleene-node-child node))
(kleene-node-greedy-p node)))
((lookahead-node-p node)
(make-lookahead-node (split-alts-aux (lookahead-node-expr node))))
((nlookahead-node-p node)
(make-nlookahead-node (split-alts-aux (nlookahead-node-expr node))))
(t node)))
(defun simplify-once (node)
(cond ((seq-node-p node)
(let ((newchildren (combine-sequence-text
(mapcar #'simplify-once (seq-node-children node)))))
(cond ((= (length newchildren) 1)
(first newchildren))
(t (make-seq-node-list newchildren)))))
((alt-node-p node)
(let ((newalts (combine-alt-charclass
(mapcar #'simplify-once (alt-node-children node)))))
(cond ((= (length newalts) 1)
(first newalts))
(t (make-alt-node-list newalts)))))
((casealt-node-p node)
(make-casealt-node-list (mapcar #'(lambda (arm)
(list (first arm) (simplify-once (second arm))))
(casealt-node-children node))))
((kleene-node-p node)
(make-kleene-node (simplify-once (kleene-node-child node))
(kleene-node-greedy-p node)))
((lookahead-node-p node)
(make-lookahead-node (simplify-once (lookahead-node-expr node))))
((nlookahead-node-p node)
(make-nlookahead-node (simplify-once (nlookahead-node-expr node))))
(t node)))
; expand out a range
(defun expand-range (greedyp lowbound highbound node)
(cond
((and *registers-match-rightmost* (numberp highbound))
(let* ((reqd
(loop for i from 0 below lowbound
collect node))
(opt
(loop with tmp = nil
for i from lowbound below highbound
when (= i lowbound)
do (setq tmp (make-optional-node node greedyp))
when (> i lowbound)
do (let ((seq (make-seq-node-args node tmp)))
(setq tmp
(cond (greedyp
(make-alt-node-args seq nil))
(t (make-alt-node-args nil seq)))))
finally (return tmp))))
(make-seq-node-list `(,@reqd ,opt))))
((and *registers-match-rightmost* (null highbound))
(let* ((reqd (loop for i from 0 below lowbound
collect node)))
(make-seq-node-list `(,@reqd ,(make-kleene-node node greedyp)))))
((and (not *registers-match-rightmost*) (numberp highbound))
(let* ((registerless-node (unregister node))
(reqd
(loop for i from 0 below lowbound
when (zerop i) collect node
when (> i 0) collect registerless-node))
(opt
(loop with tmp = nil
for i from lowbound below highbound
when (= i lowbound)
do (setq tmp
(make-optional-node (if (zerop lowbound)
node
registerless-node)
greedyp))
when (> i lowbound)
do (let ((seq (make-seq-node-args registerless-node tmp)))
(setq tmp
(cond (greedyp
(make-alt-node-args seq nil))
(t (make-alt-node-args nil seq)))))
finally (return tmp))))
(make-seq-node-list `(,@reqd ,opt))))
(t (let* ((registerless-node (unregister node))
(reqd
(loop for i from 0 below lowbound
when (zerop i) collect node
when (> i 0) collect registerless-node)))
(cond ((zerop lowbound)
(make-kleene-node node greedyp))
(t (make-seq-node-list `(,@reqd ,(make-kleene-node registerless-node greedyp)))))))))
(defun coercetostring (x)
(cond ((stringp x) x)
((characterp x) (string x))))
; unnest sequences where possible
(defun flatten-sequence (nodes)
(cond ((null nodes) nil)
((seq-node-p (first nodes))
(flatten-sequence (append (seq-node-children (first nodes))
(rest nodes))))
(t (cons (first nodes)
(flatten-sequence (rest nodes))))))
; combine runs of chars and strings into strings
; combine runs of character classes into charclass-sequence's
(defun combine-sequence-text (nodes)
(cond ((null nodes) nil)
((string-seq-p nodes)
(multiple-value-bind (str restseq)
(partition-string-sequence nodes)
(cons (make-string-node str)
(combine-sequence-text restseq))))
((char-class-seq-p nodes)
(multiple-value-bind (classseq restseq)
(partition-charclass-sequence nodes)
(cons (make-classseq-node classseq)
(combine-sequence-text restseq))))
(t (cons (first nodes)
(combine-sequence-text (rest nodes))))))
; combine multiple character classes in an ALT into one character class
(defun combine-alt-charclass (nodes)
(cond ((>= (count-if #'char-or-class-node-p nodes) 2)
(multiple-value-bind (chars othernodes)
(partition-charclass-alt nodes)
(cons (make-charclass-node chars)
othernodes)))
(t nodes)))
;; does this sequence start out with a run of chars?
(defun string-seq-p (seq)
(loop for item in seq
for i from 0
while (text-node-p item)
when (>= i 1) return t) )
;; does this sequence start out with a run of char-class?
(defun char-class-seq-p (seq)
(loop for item in seq
for i from 0
while (positive-charclass-node-p item)
when (>= i 1) return t) )
;; partitions sequences into a string representing the leading run,
;; and the rest of the sequence
(defun partition-string-sequence (seq)
(loop with strseq = nil
for item = (pop seq)
when (text-node-p item) do (push item strseq)
when (not (text-node-p item))
return (values (append-strings (mapcar #'coercetostring (reverse strseq)))
(cond ((and (null item) (null seq)) nil)
((null seq) (list item))
(t (cons item seq))))))
(defun append-strings (strings)
(cond ((null strings) "")
(t (loop for str in strings
for result = str then (concatenate 'simple-string result str)
finally (return result)))))
(defun partition-charclass-sequence (seq)
(loop with classseq = nil
for item = (pop seq)
when (positive-charclass-node-p item) do (push item classseq)
when (not (charclass-node-p item))
return (values (mapcar #'classseq-node-seq (reverse classseq))
(cond ((and (null item) (null seq)) nil)
((null seq) (list item))
(t (cons item seq))))))
(defun partition-charclass-alt (nodes)
(loop with chars = ""
for node = (pop nodes)
when (charclass-node-p node)
do (setq chars (concatenate 'string chars (charclass-node-chars node)))
when (char-node-p node)
do (setq chars (concatenate 'string chars (string (char-node-char node))))
when (not (char-or-class-node-p node))
return (values chars
(cond ((and (null node) (null nodes)) nil)
((null nodes) (list node))
(t (cons node nodes))))))
(defun flatten-alt (nodes)
(cond ((null nodes) nil)
((alt-node-p (first nodes))
(flatten-alt (append (alt-node-children (first nodes)) (rest nodes))))
(t (cons (first nodes)
(flatten-alt (rest nodes))))))
(defun hoist-alt-ends (nodes)
(multiple-value-bind (prefix restnodes)
(hoist-alt-prefix nodes)
(multiple-value-bind (altbody suffix)
(hoist-alt-suffix restnodes)
(values prefix altbody suffix))))
(defun seq-first (node)
(cond ((seq-node-p node)
(first (seq-node-children node)))
(t node)))
(defun seq-first-char (node)
(cond ((seq-node-p node)
(let ((children (seq-node-children node)))
(loop for child in children
when (or (alt-node-p child)
(kleene-node-p child)
(specclass-node-p child)
(hook-node-p child)
(backmatch-node-p child)
(lookahead-node-p child)
(nlookahead-node-p child)) return nil
when (or (charclass-node-p child)
(char-node-p child)) return child)))
(t nil)))
(defun seq-rest (node)
(cond ((seq-node-p node)
(make-seq-node-list (rest (seq-node-children node))))
(t nil)))
;; unlike CL's last, this returns the last car, not the last cons cell
(defun seq-last (node)
(cond ((seq-node-p node)
(car (last (seq-node-children node))))
(t node)))
(defun seq-butlast (node)
(cond ((seq-node-p node)
(make-seq-node-list (butlast (seq-node-children node))))
(t nil)))
(defun hoist-alt-prefix (nodes)
(let ((prefixes (mapcar #'seq-first nodes))
(rests (mapcar #'seq-rest nodes)))
(cond ((or (null prefixes) (some #'null prefixes))
(values nil nodes))
((every #'equal prefixes (rest prefixes))
(cond ((or (null rests) (every #'null rests))
(values (list (first prefixes)) nil))
((or (null rests) (some #'null rests))
(values (list (first prefixes)) rests))
(t (multiple-value-bind (other-prefixes altnodes)
(hoist-alt-prefix rests)
(values (cons (first prefixes) other-prefixes)
altnodes)))))
(t (values nil nodes)))))
(defun hoist-alt-suffix (nodes)
(let ((suffixes (mapcar #'seq-last nodes))
(butlasts (mapcar #'seq-butlast nodes)))
(cond ((or (null suffixes) (some #'null suffixes))
(values nodes nil))
((every #'equal suffixes (rest suffixes))
(cond ((or (null butlasts) (some #'null butlasts))
(values butlasts (list (first suffixes))))
(t (multiple-value-bind (altnodes other-suffixes)
(hoist-alt-suffix butlasts)
(values altnodes (cons (first suffixes) other-suffixes))))))
(t (values nodes nil)))))
; (alt "aaa" "bbb" "bbc" "ccc" "ccd" (* #\e))
; -->
; ((* #\e))
; ((#\a "aaa")
; (#\b "bbb" "bbc")
; (#\c "ccc" "ccd"))
;; Now handles character classes as well
(defun partition-on-leading-char (children)
(let* ((leading-char-alist (make-discriminant-char-alist children))
(children-without-leading-char (mapcar #'second (remove-if #'first leading-char-alist)))
(children-with-leading-char (remove-if-not #'first leading-char-alist))
(sorted-lc-children (sort children-with-leading-char #'sort-lc-pred :key #'first)))
(loop with partition = nil
for (prev-leading-char prev-childnode) in sorted-lc-children
for (leading-char childnode) in (rest sorted-lc-children)
for current-set = (list prev-childnode) then current-set
when (not (equalp prev-leading-char leading-char))
do (progn
(push (cons prev-leading-char (reverse current-set)) partition)
(setq current-set (list childnode)))
when (equalp prev-leading-char leading-char)
do (push childnode current-set)
finally (return (values children-without-leading-char
(reverse (cons (cons leading-char (reverse current-set))
partition)))))))
(defun sort-lc-pred (a b)
(cond ((and (characterp a) (characterp b)) (char< a b))
((and (characterp a) (stringp b)) (char< a (char b 0)))
((and (stringp a) (characterp b)) (char< (char a 0) b))))
(defun make-discriminant-char-alist (nodes &aux alist)
(dolist (node nodes alist)
(setq alist (nconc alist (get-discriminant-chars-alist node)))))
;; if first in sequence is a positive charclass, return all chars as the discriminant
(defun get-discriminant-chars-alist (node)
(let ((first (seq-first-char node)))
(cond ((char-node-p first)
(list (list (char-node-char first) node)))
((charclass-node-p first)
(loop for x across (charclass-node-chars first)
collect (list x node)))
(t (list (list nil node))))))
(defun worth-alt-case-partitioning-p (num-children num-unknown-char-sets num-known-char-sets)
"Is it worth partitioning an alt into a case-alt?"
(and ;; Partition must split out at least 4 alternatives
(>= (- num-children num-unknown-char-sets) 4)
;; Must be more than one set in the alt-case (the case of 1 should
;; be handled separately)
(> num-known-char-sets 1)))
(defun subalt-if-necessary (casealt-arm)
(let ((len (length (rest casealt-arm))))
(cond ((zerop len)
(error "sub-alt must have at least one clause ~S" casealt-arm))
((= len 1)
`(,(first casealt-arm) ,(make-seq-node-args (second casealt-arm))))
(t `(,(first casealt-arm) ,(make-alt-node-list (rest casealt-arm)))))))
(defun obviously-nullable-pattern (tree)
(and (listp tree)
(or (not (null (member (first tree) '(* *?))))
(and (eq (first tree) 'alt) (<= (length tree) 2)))))
(defun contains-looping-pattern-p (tree)
(tree-any #'(lambda (x) (member x '(* + *? +?) :test #'eq)) tree))
(defun contains-registers-p (tree)
(tree-any #'(lambda (x) (member x '(reg regstart regend))) tree))
(defun tree-any (fxn tree)
(labels ((tree-any-aux (tree)
(cond
((null tree) nil)
((atom tree) (funcall fxn tree))
(t (or (funcall fxn tree)
(safer-some #'tree-any-aux tree))))))
(tree-any-aux tree)))
;; Similar to CL's SOME, but doesn't barf on improper lists.
(defun safer-some (fxn lst)
(loop while (consp lst)
for x = (pop lst)
when (funcall fxn x) return t
finally (return (cond ((null lst) nil)
(t (funcall fxn lst))))))
(defun unregister (node)
(cond
((null node) nil)
((char-node-p node) node)
((string-node-p node) node)
((classseq-node-p node) node)
((backmatch-node-p node) node)
((seq-node-p node)
(make-seq-node-list
(remove-if #'null (mapcar #'unregister (seq-node-children node)))))
((kleene-node-p node)
(make-kleene-node (unregister (kleene-node-child node))
(kleene-node-greedy-p node)))
((pkleene-node-p node)
(make-pkleene-node (unregister (pkleene-node-child node))
(pkleene-node-greedy-p node)))
((optional-node-p node)
(make-optional-node (unregister (optional-node-child node))
(optional-node-greedy-p node)))
((range-node-p node)
(make-range-node (unregister (range-node-child node))
(range-node-min node)
(range-node-max node)
(range-node-greedy-p node)))
((alt-node-p node)
; don't descend into alt nodes -- we may match one branch one iter, and another
; branch the next.
;(make-alt-node-list (mapcar #'unregister (alt-node-children node))))
node)
((start-anchor-node-p node) node)
((end-anchor-node-p node) node)
((register-node-p node)
(unregister (register-node-child node)))
((regstart-node-p node)
nil)
((regend-node-p node)
nil)
((charclass-node-p node)
(make-charclass-node (charclass-node-chars node)
:negated (charclass-node-negated-p node)))
((specclass-node-p node)
(make-specclass-node (specclass-node-class node)
:negated (specclass-node-negated-p node)))
((any-node-p node) node)
((hook-node-p node) node)
((lookahead-node-p node)
(make-lookahead-node (unregister (lookahead-node-expr node))))
((nlookahead-node-p node)
(make-nlookahead-node (unregister (nlookahead-node-expr node))))
(t ;; once we're done, this should throw the :invalid-parse-tree tag
(throw 'regex-parse-error
(list "unregister: Unrecognized regex parse tree node ~S"
node)))) )
;;;
;;; Pass 4 - Instruction selection
;;;
; replace *, +, etc with the actual instructions to be used...
(defun select-instructions (node)
(cond
((null node) nil)
((char-node-p node)
(select-char-instr (char-node-char node)))
((string-node-p node)
(select-string-instr (string-node-string node)))
((classseq-node-p node)
(select-classseq-instr (classseq-node-seq node)))
((backmatch-node-p node)
node)
((seq-node-p node)
(select-sequence-instrs (seq-node-children node)))
((kleene-node-p node)
(cond ((kleene-node-greedy-p node)
(select-greedy-kleene-instr (kleene-node-child node)))
(t (select-nongreedy-kleene-instr (kleene-node-child node)))))
;; pkleene-nodes have been removed by the simplification process
((optional-node-p node)
(cond ((optional-node-greedy-p node)
(select-greedy-optional-instr (optional-node-child node)))
(t (select-nongreedy-optional-instr (optional-node-child node)))))
;; range-nodes have been removed by simplification process
((alt-node-p node)
(select-alt-instrs (alt-node-children node)))
((casealt-node-p node)
(select-casealt-instr (casealt-node-children node)))
((start-anchor-node-p node)
node)
((end-anchor-node-p node)
node)
;; register-nodes have been removed by simplification process
((regstart-node-p node)
(let ((regnum (regstart-node-regnum node)))
(cond (*registers-match-rightmost*
`(right-rstart ,regnum))
(t `(left-rstart ,regnum)))))
((regend-node-p node)
node)
((charclass-node-p node)
(let ((chars (charclass-node-chars node)))
(cond ((not (charclass-node-negated-p node))
(select-charclass-instr chars))
(t (select-negated-charclass-instr chars)))))
((specclass-node-p node)
(cond ((not (specclass-node-negated-p node))
(select-specclass-instr (specclass-node-class node)))
(t (select-negated-specclass-instr (specclass-node-class node)))))
((any-node-p node)
node)
((hook-node-p node)
node)
((success-node-p node)
node)
((startword-node-p node)
node)
((endword-node-p node)
node)
((lookahead-node-p node)
(make-lookahead-node (select-instructions (lookahead-node-expr node))))
((nlookahead-node-p node)
(make-nlookahead-node (select-instructions (nlookahead-node-expr node))))
(t ;; once we're done, this should throw the :invalid-parse-tree tag
(throw 'regex-parse-error
(list "select-instructions: Unhandled regex parse tree node ~S"
node)))))
(defun select-char-instr (chr)
`(char ,chr))
(defun select-string-instr (str)
;; the pattern string must always be a simple-string
(let ((simple-pat-str (coerce str 'simple-string)))
`(string ,simple-pat-str)))
(defun select-classseq-instr (classseq)
`(classseq ,classseq))
(defun select-sequence-instrs (children)
(make-seq-node-list (mapcar #'select-instructions children)))
;; optimize (alt-2 <char> <node>)
;; optimize (alt-2 <string> <node>)
;; optimize (alt-2 <charclass> <node>)
;; optimize (alt-2 <specclass> <node>)
(defun select-alt-instrs (children)
(make-alt-node-list (mapcar #'select-instructions children)))
(defun select-casealt-instr (children)
(make-casealt-node-list (mapcar #'(lambda (arm)
(list (first arm)
(select-instructions (second arm))))
children)))
;; By this point, we have already been unrolled to move registers out
;; of loops, so we can just worry about the special cases.
(defun select-greedy-kleene-instr (child &aux (nullpat (nullable-pattern-p child))
(looppat (contains-looping-pattern-p child)))
(cond ((char-node-p child)
`(char-greedy-kleene ,(char-node-char child)))
((string-node-p child)
;; the pattern string must always be a simple-string
(let ((simple-pat-str (coerce (string-node-string child)
'simple-string)))
`(str-greedy-kleene ,simple-pat-str)))
((charclass-node-p child)
(let* ((negp (charclass-node-negated-p child))
(chars (charclass-node-chars child))
(ccsize (length chars)))
(case ccsize
(0 '(any-greedy-kleene))
(1 (cond ((not negp)
`(char-greedy-kleene ,(char chars 0)))
(negp
`(not-char-greedy-kleene ,(char chars 0)))))
(2 (cond ((not negp)
`(cclass-2-greedy-kleene ,(char chars 0)
,(char chars 1)))
(negp
`(not-cclass-2-greedy-kleene ,(char chars 0)
,(char chars 1)))))
(t (let ((schars (coerce chars 'simple-string)))
(cond ((not negp)
`(cclass-greedy-kleene ,schars))
(t `(not-cclass-greedy-kleene ,schars))))))))
((specclass-node-p child)
(let* ((negp (specclass-node-negated-p child))
(specclass (specclass-node-class child)))
(cond ((not negp)
`(specclass-greedy-kleene ,specclass))
(negp
`(not-specclass-greedy-kleene ,specclass)))))
((not nullpat)
`(greedy-kleene-no-termcheck ,(select-instructions child)))
((or (and (not nullpat) looppat) (and nullpat (not looppat)))
`(greedy-kleene-simple-termcheck ,(select-instructions child)))
(t `(greedy-kleene-full-termcheck ,(select-instructions child)))) )
(defun select-nongreedy-kleene-instr (child)
(let ((nullpat (nullable-pattern-p child))
(looppat (contains-looping-pattern-p child)))
(cond ((not nullpat)
`(ngkleene-no-termcheck ,(select-instructions child)))
((or (and (not nullpat) looppat) (and nullpat (not looppat)))
`(ngkleene-simple-termcheck ,(select-instructions child)))
(t `(ngkleene-full-termcheck ,(select-instructions child))))) )
(defun select-greedy-optional-instr (child)
(make-alt-node-args (select-instructions child) nil))
(defun select-nongreedy-optional-instr (child)
(make-alt-node-args nil (select-instructions child)))
(defun select-charclass-instr (chars)
(let ((ccsize (length chars)))
(case ccsize
(1 (select-char-instr (char chars 0)))
(2 `(cclass-2 ,(char chars 0) ,(char chars 1)))
(t (let ((simple-chars (coerce chars 'simple-string)))
`(cclass ,simple-chars))))))
(defun select-negated-charclass-instr (chars)
(let ((ccsize (length chars)))
(case ccsize
(1 `(not-char ,(char chars 0)))
(2 `(not-cclass-2 ,(char chars 0) ,(char chars 1)))
(t (let ((simple-chars (coerce chars 'simple-string)))
`(not-cclass ,simple-chars))))))
(defun select-specclass-instr (class)
`(specclass ,class))
(defun select-negated-specclass-instr (class)
`(not-specclass ,class) )
(defun nullable-pattern-p (node)
(cond
((null node) t)
((char-node-p node) nil)
((string-node-p node) nil)
((classseq-node-p node) nil)
((backmatch-node-p node) t)
((seq-node-p node)
(every #'nullable-pattern-p (seq-node-children node)))
((kleene-node-p node) t)
((pkleene-node-p node)
(nullable-pattern-p (pkleene-node-child node)))
((optional-node-p node) t)
((range-node-p node) (zerop (range-node-min node)))
((alt-node-p node)
(some #'nullable-pattern-p (alt-node-children node)))
((start-anchor-node-p node) t)
((end-anchor-node-p node) t)
((register-node-p node)
(nullable-pattern-p (register-node-child node)))
((regstart-node-p node)
t)
((regend-node-p node)
t)
((charclass-node-p node) nil)
((specclass-node-p node) nil)
((any-node-p node) nil)
((hook-node-p node) t)
((lookahead-node-p node) t)
((nlookahead-node-p node) t)
(t ;; once we're done, this should throw the :invalid-parse-tree tag
(throw 'regex-parse-error
(list "nullable-pattern-p: Unrecognized regex parse tree node ~S"
node)))) )
|