/usr/share/common-lisp/source/regex/regex.lisp is in cl-regex 1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | ;;; -*- Mode: LISP; Syntax: COMMON-LISP; Package: REGEX; Base: 10 -*-
(in-package :REGEX)
;
; Rewrite to use parse-tree functions.
; Separate optimization from parsing.
; Add separate canonicalization and rewrite passes.
;
; Partly because I'm about to allow the caller to manipulate
; the parse trees himself, so I can't depend on the parse
; tree being in any particular format. Partly because the
; lexer needs some beefier optimizations that I can easily
; provide in the current ad-hoc scheme. And partly because
; compile-greedy-star/compile-greedy-plus are a mess and
; about to get messier.
;
; Planned organization:
; pass 1. Lexical analysis
; pass 2. Parsing
; pass 3. Canonicalize parse tree (needed because we allow
; program interaction at the parse tree level). Also
; convert (reg n <node>) to (seq (rstart n) <node> (rend n)).
; Either are valid parse-tree inputs, but the (reg ...)
; syntax is nearly always more convenient, but obscures
; the cps form, complicating some optimizations.
; pass 4. Instruction selection (fast-xxx ops)
; pass 5. CPS conversion to tuple list.
; For incremental use:
; pass 6. Code (closure) generation.
; pass 7. Linking (resolve target labels to functions).
;
; For batch use (i.e. deflexer, defregex et al)
; pass 6: Sexpr generation
;
; Passes 1&2 are coroutines.
; Pass 3 should be iterated until it reaches a fixedpoint.
; Passes 4-7 are currently all rolled into one pass, which is
; a PITA to maintain, and doesn't facilitate the generation of both
; closures and code.
;
;
; Planned optimizations:
;
; Merge ALT heads and tails.
; (alt (seq a A) (seq a B) (seq b A) (seq b B))
; --> (alt (seq a (alt A B)) (seq b (alt A B))
; --> (seq (alt (seq a) (seq b)) (alt (seq A) (seq B)))
; DONE.
;
; For n-way ALTs, support merging subsets of the children, and n-way
; branches on leading char. This should be a big win for the lexer.
; (alt (seq a) (seq a c) (seq c)) -> (alt (seq a (alt nil (seq c))) (seq c))
; --> (guarded-alt (a (alt nil (seq c)))
; (c ))
; Since this involves pushing down alts, it conflicts with the
; alt-merging logic, so we need a way to turn off the merging logic
; temporarily (we need to group char type branches into a sub-alt,
; canonicalize them, then re-run the alt-merge at the higher level
; to re-integrate anything that didn't migrate out. Then at simplify
; time, we look for runs of alt branches that start with char-type
; nodes, and group these into guarded-alts.
; DONE
;
; Merge single-char/char-class alt clauses into char-class.
; (seq (alt (seq a) (seq b)) (alt (seq A) (seq B)))
; --> (seq (charclass "ab") (charclass "AB"))
; DONE.
;
; Merge lists of chars and strings into strings.
; DONE.
;
; Support lists of 2-char classes (common for case-insensitive matches)
; DONE
;
; Eliminate null states in sequences (caused by fully merging
; alt clause heads, and possibly others).
; DONE.
;
; Support fast alt of (<char>|node), (<string>|node),
; (<charclass>|node), (<specclass>|node)
;
; Support merging sequences of 1-valued nodes into a specialized matcher
; that takes an array of "match" functions that return either nil or the
; new pos. If any of them fail, the whole sequence fails.
;
; If the child of + is something trivial like char, seq of char,
; any, charclass, specclass, or seq of charclass, leave it as a
; + node and specialize it during the instruction selection pass.
;
; \d \D \w \W \s \S \< \>
; DONE
;
; Match hooks
; DONE (in sexpr form only)
;
; Acceptance functions
; DONE (in sexpr form only)
;
; Additional features:
; Forward lookahead, negative lookahead
; Named captures
;
;;;
;;; Code Generator
;;;
(defun compile-expr-to-matcher (parse-tree &optional str)
(multiple-value-bind (matchfn numregs simplified-tree)
(compile-expr-to-matchfn parse-tree)
(cond (*match-simple-strings-only*
(make-matcher
:simple-string-matchfn matchfn
:string-matchfn nil
:numregs numregs
:matchstr str
:matchexpr simplified-tree))
(t (make-matcher
:simple-string-matchfn nil
:string-matchfn matchfn
:numregs numregs
:matchstr str
:matchexpr simplified-tree)))))
(defun compile-expr-to-matchfn (parse-tree &key (simplifyp t))
(let* ((numregs (1+ (compute-max-regnum parse-tree)))
(simple-tree (if simplifyp
(optimize-regex-tree parse-tree)
parse-tree))
(instr-tree (select-instructions simple-tree)))
(multiple-value-bind (start-instr cps-instrs)
(gen-instr-list instr-tree)
(when *regex-compile-verbose*
(format t "~&~%Numregs: ~D" numregs)
(format t "~&~%Simplified tree:")
(pprint simple-tree)
(format t "~&~%Instruction tree:")
(pprint instr-tree)
(format t "~&~%CPS instruction list (start = ~D):" start-instr)
(pprint cps-instrs))
(let ((closure-info (gen-closures cps-instrs)))
(link-closures closure-info)
(let ((matchfn (make-init-closure
(remove-if #'null (map 'list
#'closure-info-initfn
closure-info))
(resolve-instr closure-info start-instr))))
(values (make-anchored-matcher matchfn) numregs simple-tree))))))
(defun make-anchored-matcher (matchfn)
#'(lambda (*str* *regs* *start* *end*
*start-is-anchor* *end-is-anchor*
*acceptfn* *hooks*)
#-:debug-regex (declare (optimize (speed 3) (safety 0) (space 0) (debug 0)
#+:lispworks (hcl:fixnum-safety 0)))
(declare (special *str* *regs* *start* *end*
*start-is-anchor* *end-is-anchor*
*acceptfn* *hooks*))
(declare (ftype (function (fixnum) t) matchfn))
(catch 'cease-matching
(funcall matchfn *start*))))
;;;
;;; code-expansion version...
;;;
;(defun expand-anchored-matcher (matchfn vars funs)
; `(lambda (%str% %regs% %start% %end%
; %start-is-anchor% %end-is-anchor%
; %acceptfn% %hooks%)
; #-:debug-regex (declare (optimize (speed 3) (safety 1) (space 0) (debug 0)))
; (declare (ignorable %str% %regs% %start% %end%
; %start-is-anchor% %end-is-anchor%
; %acceptfn% %hooks%))
; (declare (special %str% %regs% %start% %end%
; %start-is-anchor% %end-is-anchor%
; %acceptfn% %hooks%))
; `(let ,vars
; (labels ,funs
; ;;(declare (inline ,@(mapcar #'first funs)))
; (catch 'cease-matching
; (,matchfn %start%))))))
;(defun expand-anchored-matcher (matchfn vars funs)
; `(locally
; (declare (special *str* *regs* *start* *end*
; *start-is-anchor* *end-is-anchor*
; *acceptfn* *hooks*))
; (labels ,funs
; #'(lambda (*str* *regs* *start* *end*
; *start-is-anchor* *end-is-anchor*
; *acceptfn* *hooks*)
; (declare (special *str* *regs* *start* *end*
; *start-is-anchor* *end-is-anchor*
; *acceptfn* *hooks*))
; (let ,vars
; #-:debug-regex (declare (optimize (speed 3) (safety 1) (space 0) (debug 0)))
; (catch 'cease-matching
; (,matchfn *start*)))))))
;(defun expand-expr-to-matchfn (parse-tree &key charfn (simplifyp t))
; (let* ((numregs (1+ (compute-max-regnum parse-tree)))
; (simple-tree (if simplifyp
; (optimize-regex-tree parse-tree)
; parse-tree))
; (instr-tree (select-instructions simple-tree)))
; (multiple-value-bind (start-instr cps-instrs)
; (gen-instr-list instr-tree)
; (when *regex-compile-verbose*
; (format t "~&~%Numregs: ~D" numregs)
; (format t "~&~%Simplified tree:")
; (pprint simple-tree)
; (format t "~&~%Instruction tree:")
; (pprint instr-tree)
; (format t "~&~%CPS instruction list (start = ~D):" start-instr)
; (pprint cps-instrs))
; (let ((code-info (expand-code cps-instrs charfn)))
; (let ((matchfn
; (expand-anchored-matcher
; (fnname-for-state start-instr)
; (remove-if #'null (mapcar #'second code-info))
; (mapcar #'(lambda (inf)
; `(,(first inf) ,@(rest (third inf))))
; code-info))))
; (values matchfn numregs simple-tree))))))
; search the parse tree, looking for the highest register in use.
(defun compute-max-regnum (node)
(cond ((seq-node-p node)
(reduce #'max
(mapcar #'compute-max-regnum (seq-node-children node))
:initial-value -1))
((alt-node-p node)
(reduce #'max
(mapcar #'compute-max-regnum (alt-node-children node))
:initial-value -1))
((kleene-node-p node)
(compute-max-regnum (kleene-node-child node)))
((pkleene-node-p node)
(compute-max-regnum (pkleene-node-child node)))
((optional-node-p node)
(compute-max-regnum (optional-node-child node)))
((range-node-p node)
(compute-max-regnum (range-node-child node)))
((backmatch-node-p node)
(backmatch-node-regnum node))
((register-node-p node)
(max (register-node-regnum node)
(compute-max-regnum (register-node-child node))))
((regstart-node-p node)
(regstart-node-regnum node))
((regend-node-p node)
(regend-node-regnum node))
((lookahead-node-p node)
(compute-max-regnum (lookahead-node-expr node)))
((nlookahead-node-p node)
(compute-max-regnum (nlookahead-node-expr node)))
(t 0)))
;;;
;;; Pass 7 - Linking
;;;
; resolve the target labels with the actual target closures
(defun link-closures (link-info)
(loop for info across link-info
for linkfn = (closure-info-linkfn info)
when (functionp linkfn)
do (funcall linkfn link-info)))
;;;;
;;;; Compiled Matcher structure, and high-level functions
;;;;
(defun compile-str (patstr)
"Parse a string regex expression, and compile it into matcher object.
Uses the pattern cache."
; (format t "~A entries in cache" (hash-table-count *pattern-cache*))
(let ((cached-machine (gethash patstr *pattern-cache*)))
(or cached-machine (newly-compiled-str-matcher patstr))))
(defun compile-expr (regexpr)
"Parse a string regex expression, and compile it into matcher object.
Uses the pattern cache."
; (format t "~A entries in cache" (hash-table-count *pattern-cache*))
(let ((cached-machine (gethash regexpr *pattern-cache*)))
(or cached-machine (newly-compiled-expr-matcher regexpr))))
(defun macroexpand-regex-str (patstr)
`(compile-expr-to-matcher ',(parse-str patstr) ,patstr))
(defmacro defregex (name patstr &rest rest)
`(defparameter ,name ,(macroexpand-regex-str patstr) ,@rest))
(defmacro macroexpand-regex-expr (regex-expr)
`(compile-expr-to-matcher ,regex-expr))
;;;
;;; code-expansion version...
;;;
;(defun macroexpand-regex-expr (regex-expr)
; "Parse a string regex expression, and translate it to lisp code."
; (multiple-value-bind (matchfn numregs simplified-tree)
; (expand-expr-to-matchfn regex-expr
; :charfn (if *match-simple-strings-only* 'schar 'char))
; (declare (ignore simplified-tree))
; (cond (*match-simple-strings-only*
; `(make-matcher :simple-string-matchfn ,matchfn
; :string-matchfn nil
; :numregs ,numregs
; :matchstr nil
; :matchstr nil))
; (t `(make-matcher :simple-string-matchfn ,matchfn
; :string-matchfn nil
; :numregs ,numregs
; :matchstr nil
; :matchstr nil)))))
;(defun macroexpand-regex-str (patstr)
; "Parse a string regex expression, and translate it to lisp code."
; (macroexpand-regex-expr (parse-str patstr)))
;(defmacro defregex (name patstr &rest rest)
; `(defparameter ,name ,(macroexpand-regex-str patstr) ,@rest))
; Try to use the quickest matcher for the input string. If the
; candidate string isn't a simple string, then match with the slower
; string-matcher. Since this isn't compiled by default, it may need
; to be compiled from the saved expr.
(defun match-str-all-parms (matcher candstr regs
start length
start-is-anchor end-is-anchor
acceptfn hooks)
(dotimes (i (length regs))
(let ((reg (aref regs i)))
(setf (car reg) nil)
(setf (cdr reg) nil)))
(cond ((simple-string-p candstr)
(cond ((functionp (matcher-simple-string-matchfn matcher))
(funcall (matcher-simple-string-matchfn matcher)
candstr regs start (+ start length)
start-is-anchor end-is-anchor
acceptfn hooks))
((functionp (matcher-string-matchfn matcher))
(funcall (matcher-string-matchfn matcher)
candstr regs start (+ start length)
start-is-anchor end-is-anchor
acceptfn hooks))
(t (error "REGEX Error: ~S is not a valid regex matcher" matcher))))
((stringp candstr)
(cond ((functionp (matcher-string-matchfn matcher))
(funcall (matcher-string-matchfn matcher)
candstr regs start (+ start length)
start-is-anchor end-is-anchor
acceptfn hooks))
((functionp (matcher-matchexpr matcher))
(let ((*match-simple-strings-only* nil))
(setf (matcher-string-matchfn matcher)
(compile-expr-to-matcher (matcher-matchexpr matcher))))
(unless (matcher-string-matchfn matcher)
(error "REGEX Error: ~S does not have a valid match function for class STRING"
matcher))
(funcall (matcher-string-matchfn matcher)
candstr regs start (+ start length)
start-is-anchor end-is-anchor
acceptfn hooks))))
(t (error "REGEX Error: ~S is not a string" candstr))))
(defun match-str (matcher candstr
&key (regs (make-regs (matcher-numregs matcher)))
(start 0)
(length (- (length candstr) start))
(start-is-anchor (= start 0))
(end-is-anchor (= length (length candstr)))
acceptfn hooks)
"Run a matcher against a candidate string, without scanning
\(so it is implicitly anchored\). Returns \(values t start end regs\) on
success, nil on failure."
(match-str-all-parms matcher candstr regs start length
start-is-anchor end-is-anchor acceptfn hooks))
(define-compiler-macro match-str (matcher candstr
&key
(regs `(make-regs (matcher-numregs ,matcher)))
(start 0)
(length `(- (length ,candstr) ,start))
(start-is-anchor `(= ,start 0))
(end-is-anchor `(= ,length (length ,candstr)))
acceptfn hooks)
`(match-str-all-parms ,matcher ,candstr
,regs ,start ,length
,start-is-anchor ,end-is-anchor
,acceptfn ,hooks))
;;; This really needs a prefix-map array in the matcher structure so we can
;;; quickly find potential beginnings to the string
(defun scan-str-all-parms (matcher str regs
start length
start-is-anchor end-is-anchor
acceptfn hooks)
(declare (type matcher matcher)
(string str)
(fixnum start length))
(let ((matchedp t)
match-start
(match-start-pos start)
(len-remaining length)
(match-len length)
(match-regs nil))
(loop
(multiple-value-setq (matchedp match-start match-len match-regs)
(match-str-all-parms matcher str regs match-start-pos len-remaining
(and start-is-anchor (= match-start-pos start))
end-is-anchor acceptfn hooks))
(cond
(matchedp
(return-from scan-str-all-parms
(values matchedp match-start match-len match-regs)))
((>= match-start-pos (+ start length))
(return-from scan-str-all-parms nil))
(t (incf match-start-pos)
(decf len-remaining))))))
(defun scan-str (matcher candstr
&key (regs (make-regs (matcher-numregs matcher)))
(start 0)
(length (length candstr))
(start-is-anchor (= start 0))
(end-is-anchor (= length (length candstr)))
acceptfn hooks)
"Run a matcher against a candidate string, scanning forward if necessary.
Returns \(values t start end regs\) on success, nil on failure."
(scan-str-all-parms matcher candstr regs
start length
start-is-anchor end-is-anchor
acceptfn hooks))
(define-compiler-macro scan-str (matcher candstr
&key
(regs `(make-regs (matcher-numregs ,matcher)))
(start 0)
(length `(length ,candstr))
(start-is-anchor `(= ,start 0))
(end-is-anchor `(= ,length (length ,candstr)))
acceptfn hooks)
`(scan-str-all-parms ,matcher ,candstr
,regs ,start ,length
,start-is-anchor ,end-is-anchor
,acceptfn ,hooks))
(defun uncached-compile-str (patstr)
(let ((result (catch 'regex-parse-error
(compile-expr-to-matcher (parse-str patstr) patstr))))
(cond
((matcher-p result) result)
(t (apply #'format (cons t result))
nil))))
(defun uncached-compile-expr (regexpr &optional str)
(let ((result (catch 'regex-parse-error
(compile-expr-to-matcher regexpr str))))
(cond
((matcher-p result) result)
(t (apply #'format (cons t result))
nil))))
(defun newly-compiled-str-matcher (patstr)
(when (>= (hash-table-count *pattern-cache*) +max-regex-str-cache+)
(clrhash *pattern-cache*))
(setf (gethash patstr *pattern-cache*)
(uncached-compile-str patstr)))
(defun newly-compiled-expr-matcher (regexpr)
(when (>= (hash-table-count *pattern-cache*) +max-regex-str-cache+)
(clrhash *pattern-cache*))
(setf (gethash regexpr *pattern-cache*)
(uncached-compile-expr regexpr)))
;;;
;;; Testing
;;;
(defun testcomp (str)
(compile-expr-to-matcher (parse-str str) str))
(defun testmatch (str pat &key hooks)
(clear-pattern-cache)
(match-str (compile-str pat) str :hooks hooks))
|