This file is indexed.

/usr/share/code_saturne/user/cs_user_lagr_model.c is in code-saturne-data 4.3.3+repack-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/* Code_Saturne version 4.3.3 */

/*
  This file is part of Code_Saturne, a general-purpose CFD tool.

  Copyright (C) 1998-2016 EDF S.A.

  This program is free software; you can redistribute it and/or modify it under
  the terms of the GNU General Public License as published by the Free Software
  Foundation; either version 2 of the License, or (at your option) any later
  version.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
  details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
  Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/

/*----------------------------------------------------------------------------*/

#include "cs_defs.h"

/*----------------------------------------------------------------------------
 * Standard C library headers
 *----------------------------------------------------------------------------*/

#include <stdio.h>

/*----------------------------------------------------------------------------
 *  Local headers
 *----------------------------------------------------------------------------*/

#include "cs_lagr.h"
#include "cs_lagr_post.h"
#include "cs_lagr_stat.h"
#include "cs_lagr_particle.h"
#include "cs_lagr_prototypes.h"
#include "cs_prototypes.h"

/*---------------------------------------------------------------------------------*/
/* \brief User subroutine of the Lagrangian particle-tracking module
 *
 *  User subroutine for input of calculation parameters.
 *  This parameters concerns physical, numerical and post-processing options.
 */
/*---------------------------------------------------------------------------------*/

void
cs_user_lagr_model(void)
{
  return;

  /* ==========================================================================
   * 1. Particle-tracking mode
   * ========================================================================== */

  /* iilagr = 0 : no particle tracking (default)
   *        = 1 : particle-tracking one-way coupling
   *        = 2 : particle-tracking two-way coupling
   *        = 3 : particle tracking on frozen field
   *     (this option requires a calculation restart isuite=1,
   *     all Eulerian fields are frozen (pressure, velocities,
   *     scalars). This option is stronger than iccvfg)     */

  cs_glob_lagr_time_scheme->iilagr = 1;

  /* ==========================================================================
   * 2. Particle-tracking calculation restart
   * ========================================================================== */

  /* isuila = 0 : no restart (default)
     = 1 : restart (this value requires a restart on the continuous
     phase too, i.e. isuite = 1)    */

  cs_glob_lagr_time_scheme->isuila = 0;

  /* Restart on volume and boundary statistics, and two-way coupling terms; */
  /* useful if isuila = 1 (defaul off: 0 ; on: 1)  */

  if (cs_glob_lagr_time_scheme->isuila == 1)
    cs_glob_lagr_stat_options->isuist = 0;

  /* ==========================================================================
   * 3. Particle tracking: specific models
   * ========================================================================== */

  /* iphyla = 0 : only transport modeling (default)
   *         = 1 : equation on temperature (in Celsius degrees), diameter or mass
   *         = 2 : pulverized coal combustion (only available if the continuous
   *               phase is a flame of pulverized coal)     */

  cs_glob_lagr_model->physical_model = 0;

  /* 3.1 equation on temperature, diameter or mass */
  if (cs_glob_lagr_model->physical_model == 1) {
    /* equation on diameter */
    /* (default off: 0 ; on: 1)  */
    cs_glob_lagr_specific_physics->idpvar   = 0;

    /* equation on temperature (in Celsius degrees)  */
    /* (default off: 0 ; on: 1)  */
    /* This option requires a thermal scalar for the continuous phase.   */
    cs_glob_lagr_specific_physics->itpvar   = 0;

    /* equation on mass     */
    /* (default off: 0 ; on: 1)  */
    cs_glob_lagr_specific_physics->impvar   = 0;

  }

  /* 3.2 coal fouling
   * ---------------------------------------------------------------------
   * Reference internal reports EDF/R&D: HI-81/00/030/A and HI-81/01/033/A
   *
   *  Evaluation of the probability for a particle to stick to a wall.
   *  This probability is the ratio of a critical viscosity on the
   *  viscosity of coal ashes
   *
   *           visref
   *  P(Tp) = --------      for viscen >= visref
   *           viscen
   *
   *        = 1             otherwise
   *
   *
   *  The expression of J.D. Watt and T.Fereday (J.Inst.Fuel-Vol42-p99)
   *  is used to evaluate the viscosity of the ashes
   *
   *                     Enc1 * 1.0d+7
   *  Log (10*viscen) = --------------- + Enc2
   *    10                           2
   *                    (Tp(C) - 150)
   *
   *  In literature, the range of the critical viscosity visref is between
   *  8 Pa.s and 1.D7 Pa.s For general purpose 1.0D+4 Pa.s is chosen
   *----------------------------------------------------------------------- */

  if (cs_glob_lagr_model->physical_model == 2) {
    /* iencra = 0 no fouling (default)
       = 1 fouling
       * In uslag2.f90, the boundary on which the fouling can occur must
       be given

       * Post-processing: iensi3 = 1 and
       * iencnbbd = 1 / iencmabd = 1 / iencdibd = 1 /iencckbd = 1 (10.2) */

    cs_glob_lagr_model->fouling = 0;

    /* Example of definition of fouling criteria for each coal first
       (and single) coal icha = 1    */
    int icha = 0;

    /* tprenc : threshold temperature below which no fouling occurs
       (in degrees Celcius) */
    cs_glob_lagr_encrustation->tprenc[icha] = 600.0;

    /* visref : critical viscosity (Pa.s) */
    cs_glob_lagr_encrustation->visref[icha] = 10000.0;

    /* > coal composition in mineral matters:
       (with SiO2 + Al2O3 + Fe2O3 + CaO + MgO = 100% in mass)  */
    cs_real_t sio2  = 36.0;
    cs_real_t al2o3 = 20.8;
    cs_real_t fe2o3 = 4.9;
    cs_real_t cao   = 13.3;

    /* Enc1 and Enc2 : coefficients in Watt and Fereday expression  */
    cs_glob_lagr_encrustation->enc1[icha] = 0.00835 * sio2 + 0.00601 * al2o3 - 0.109;
    cs_glob_lagr_encrustation->enc2[icha] =  0.0415  * sio2 + 0.0192  * al2o3
      + 0.0276 * fe2o3 + 0.016 * cao - 3.92;
  }

  /* ==========================================================================
   * 4. Calculation features for the dispersed phases
   * ========================================================================== */

  /* 4.1 Additional variables
   *   ------------------------
   *
   *   Additional variables may be accessed using the (CS_LAGR_USER + i)
   *   attribute, where 0 < i < lagr_params->n_user_variables
   *   is the additional variable index.
   *
   *   The integration of the associated differential stochastic equation
   *   requires a user intervention in cs_user_lagr_sde() function */

  cs_lagr_set_n_user_variables(0);

  /* 4.2 Steady or unsteady continuous phase
   *   ------------------------
   *   if steady: isttio = 1
   *   if unsteady: isttio = 0
   *   if iilagr = 3 then isttio = 1

   Remark: if isttio = 0, then the statistical averages are reset
   at each time step   */

  if (cs_glob_lagr_time_scheme->iilagr != 3)
    cs_glob_lagr_time_scheme->isttio   = 0;

  /* 4.3 Two-way coupling: (iilagr = 2)  */

  if (cs_glob_lagr_time_scheme->iilagr == 2) {
    /* * number of absolute time step (i.e. with restart)
       from which a time average for two-way coupling source terms is
       computed (steady source terms)
       * if the time step is lower than NSTITS, source terms are
       unsteady: they are reset at each time step
       * useful only if ISTTIO = 1.
       * the min value for NSTITS is 1 */

    cs_glob_lagr_source_terms->nstits   = 1;

    /* two-way coupling for dynamic (velocities and turbulent scalars)   */
    /* (default off: 0 ; on: 1)  */
    /* (useful if ICCVFG = 0)    */

    cs_glob_lagr_source_terms->ltsdyn   = 0;

    /* two-way coupling for mass (if IPHYLA = 1 and IMPVAR = 1)     */
    /* (default off: 0 ; on: 1)  */

    if (   cs_glob_lagr_model->physical_model == 1
        && (   cs_glob_lagr_specific_physics->impvar == 1
            || cs_glob_lagr_specific_physics->idpvar == 1))
      cs_glob_lagr_source_terms->ltsmas     = 0;

    /* two-way coupling for thermal scalar */
    /* (if iphyla = 1 and impvar = 1, or iphyla = 2) */
    /* or for coal variables (if IPHYLA = 2)    */
    /* (default off: 0 ; on: 1)  */

    if (   (   cs_glob_lagr_model->physical_model == 1
            && cs_glob_lagr_specific_physics->itpvar == 1)
        || cs_glob_lagr_model->physical_model == 2)
      cs_glob_lagr_source_terms->ltsthe     = 0;

  }

  /* 4.4 Volume statistics
     --------------------- */

  /* Threshold for the management of volume statistics
     -------------------------------------------------
     * the value of the seuil variable is a statistical weight.
     * each cell of the mesh contains a statistical weight
     (sum of the statistical weights of all the particles
     located in the cell); seuil is the minimal value from
     which the contribution in statistical weight of a particle
     is not taken into account anymore in the full model
     of turbulent dispersion, in the resolution of the
     Poisson equation of correction of the mean velocities, and
     in the writing of the listing and post-processing. */

  cs_glob_lagr_stat_options->threshold = 0.0;

  /* Calculation of the volume statistics from the absolute number
   * of time steps
   * * idstnt is a absolute number of time steps
   * (i.e. including calculation restarts) */

  cs_glob_lagr_stat_options->idstnt = 1;

  /* Steady calculation from the absolute time step nstist
   *   * nstist is a absolute number of time steps
   *     (i.e. including calculation restarts) from which the statistics
   *     are averaged in time.
   *   * useful if the calculation is steady (isttio=1)
   *   * if the number of time steps is lower than nstits,
   *     the transmitted source terms are unsteady (i.e. they are reset to
   *     zero ar each time step)
   *   * the minimal value acceptable for nstist is 1.    */

  cs_glob_lagr_stat_options->nstist = cs_glob_lagr_stat_options->idstnt;

  /* 4.4.2 Volume statistical variables  */
  /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
  /* Activation of the calculation of the particle volume fraction     */
  /* Name of the mean : Part_vol_frac    */

  cs_lagr_stat_activate(CS_LAGR_STAT_VOLUME_FRACTION);

  /* Activation of the calculation of the particle velocity */

  cs_lagr_stat_activate_attr(CS_LAGR_VELOCITY);

  /* Activation of the calculation of the particle residence time */

  cs_lagr_stat_activate_attr(CS_LAGR_RESIDENCE_TIME);

  /* Activation of the calculation of the weight */

  cs_lagr_stat_activate_attr(CS_LAGR_STAT_WEIGHT);

  /* 2) Specific models (iphyla = 1) following the chosen options:     */
  /* Mean and variance of the temperature     */
  /* Mean and variance of the diameter   */
  /* Mean and variance of the mass  */

  /* 6) Statistics per group:
   * ----------------------- */

  cs_glob_lagr_model->n_stat_classes = 0;

  /* ==========================================================================
   * 8. Options concerning the numerical treatment of the dispersed phase
   * ========================================================================== */

  /* Integration order of the stochastic differential equations   */
  /* (default 2; acceptable values 1 or 2)    */

  cs_glob_lagr_time_scheme->t_order = 1;

  /* ==========================================================================
   * 9. Options concerning the treatment of the dispersed phase
   * ========================================================================== */

  /*  Caution: In this version, the turbulent dispersion works only if
      ------- the continuous phase is calculated with a k-eps or a Rij-eps model

      Activation of the turbulent dispersion
      (default on: 1 ; off: 0)  */

  cs_glob_lagr_time_scheme->idistu = 1;

  /* Turbulent dispersion imposed to the fluid one.

     If activated, then particle turbulent dispersion is
     equal to the fluid-particle one. The crossing-trajectory effects
     are suppressed ; it is then a case of turbulent diffusion. If the
     simulated particle density is equal to the fluid density, then
     we are simulating the displacement of fluid particles.
     (default off: 0 ; on: 1) */

  cs_glob_lagr_time_scheme->idiffl = 0;

  /* modcpl :
     = 0 for the incomplete model (default value)
     > 0 for the full model, is equal the absolute number
     of time steps from which the full model is activated
     modcpl must not be lower than idstnt */

  cs_glob_lagr_time_scheme->modcpl = 0;

  /* idirla (=1 or 2 or 3) : 1st, 2nd or 3rd direction
     of the full model. Corresponds to the main direction
     of the flow. Allow to calculate a non-isotropic Lagrangian timescale
     (default idirla=1) */

  if (cs_glob_lagr_time_scheme->modcpl > 0)
    cs_glob_lagr_time_scheme->idirla = 1;

  /* ==========================================================================
   * 10. Options concerning the treatment of specific forces
   * ========================================================================== */

  /* idlvo = 0
     = 1 dlvo deposition conditions are activated for the
     wall with appropriate conditions idepfa (see cs_user_lag2.c) */

  cs_glob_lagr_model->dlvo  = 0;

  if (cs_glob_lagr_model->dlvo == 1) {
    /* Constants for the van der Waals forces
       --------------------------------------
       Hamaker constant for the particle/fluid/substrate system:*/
    cs_glob_lagr_physico_chemical->cstham = 6e-20;

    /* Retardation wavelength for the particle/fluid/substrate system:*/
    cs_glob_lagr_physico_chemical->lambda_vdw = 1000.0;

    /* Constants for the elecstrostatic forces
       ---------------------------------------
       Dielectric constant of the fluid (example: water at 293 K)*/
    cs_glob_lagr_physico_chemical->epseau = 80.1;

    /* Electrokinetic potential of the first solid - particle (Volt)*/
    cs_glob_lagr_physico_chemical->phi_p  = 0.05;

    /* Electrokinetic potential of the second solid - surface (Volt)*/
    cs_glob_lagr_physico_chemical->phi_s  =  -0.05;

    /* Valency of ions in the solution (used for EDL forces)*/
    cs_glob_lagr_physico_chemical->valen  = 1.0;

    /* Ionic force (mol/l)*/
    cs_glob_lagr_physico_chemical->fion   = 0.01;
  }

  /* ==========================================================================
   * 11. Activation of Brownian motion
   * ========================================================================== */

  /* Activation of Brownian motion:
     (default off: 0 ; on: 1)
     Caution: OPTION FOR DEVELOPERS ONLY
     ======== */
  cs_glob_lagr_brownian->lamvbr = 0;

  /* ==========================================================================
   * 12. Activation of deposition model
   * ========================================================================== */

  /* Activation of the deposition model
     (default off: 0 ; on: 1) */
  cs_glob_lagr_model->deposition = 0;

  /* ==========================================================================
   * 13. Activation of roughness and resuspension model
   * ========================================================================== */

  /* Activation of the resuspension model
     (default off: 0 ; on: 1) */
  cs_glob_lagr_model->resuspension = 0;

  /* Caution: OPTION FOR DEVELOPERS ONLY
     ========
     dlvo deposition conditions for roughness surface */

  cs_glob_lagr_model->roughness = 0;

  /* Parameters of the particle resuspension model for the roughness */

  /*   average distance between two large-scale asperities */
  cs_glob_lagr_reentrained_model->espasg = 2e-05;

  /* density of the small-scale asperities */
  cs_glob_lagr_reentrained_model->denasp = 63600000000000.0;

  /* radius of small asperities */
  cs_glob_lagr_reentrained_model->rayasp = 5e-09;

  /* radius of large asperities */
  cs_glob_lagr_reentrained_model->rayasg = 2e-06;

  /* Young's modulus (GPa) */
  cs_glob_lagr_reentrained_model->modyeq = 266000000000.0;

  /* ==========================================================================
   * 14. Activation of the clogging model
   * ========================================================================== */

  /* Activation of the clogging model
     (default off: 0 ; on: 1)
     Caution: OPTION FOR DEVELOPERS ONLY
     ======== */

  cs_glob_lagr_model->clogging = 0;

  /* Parameters for the particle clogging model */

  /* Jamming limit */
  cs_glob_lagr_clogging_model->jamlim      = 0.74;

  /* Minimal porosity */
  cs_glob_lagr_clogging_model->mporos      = 0.366;

  /* Hamaker constant for the particle/fluid/particle system */
  cs_glob_lagr_clogging_model->csthpp      = 5e-20;

  /* ==========================================================================
   * 14bis. Influence of the deposit on the flow
   * ========================================================================== */

  /* Activation of the influence of the deposit on the flow
     by the head losses calculation (with clogging model only)
     (default off: 0 ; on: 1) */

  cs_glob_lagr_reentrained_model->iflow  = 0;

  if (cs_glob_lagr_reentrained_model->iflow == 1) {

    /* One-way coupling */
    cs_glob_lagr_time_scheme->iilagr  = 1;

    /* The statistical averages are not reset
       at each time step */
    cs_glob_lagr_time_scheme->isttio   = 1;

  }

  /*==========================================================================
   * 15. Activation of the precipitation/disolution model
   *==========================================================================*/

  /* Activation of the precipitation/dissolution model
     (default off: 0 ; on: 1)
     Caution: OPTION FOR DEVELOPERS ONLY */
  cs_glob_lagr_model->precipitation = 0;

  /* Diameter of particles formed by precipitation */
  cs_glob_lagr_precipitation_model->diameter  = 2e-06;

  /* Diameter of particles formed by precipitation */
  cs_glob_lagr_precipitation_model->rho       = 5200.0;

  /* Number of particle classes */
  cs_glob_lagr_precipitation_model->nbrclas   = 2;

  /* ==========================================================================
   * 16. Variables to visualize on the trajectories or the particles
   *  See also cs_user_postprocess_mesh in cs_user_postprocess.c to define
   * the associated visualization particle or trajectory segment meshes.
   * ========================================================================== */

  /* For all the following variables, a value of 0 means "off", and 1 means "on"*/

  cs_lagr_post_options_t *lagr_post_options = cs_lagr_post_get_options();

  /* velocity of the flow seen */
  lagr_post_options->ivisv1      = 0;

  /* particle velocity */
  lagr_post_options->ivisv2      = 0;

  /* residence time */
  lagr_post_options->ivistp      = 0;

  /* diameter */
  lagr_post_options->ivisdm      = 0;

  /* temperature */
  if (   cs_glob_lagr_model->physical_model == 1
      && cs_glob_lagr_specific_physics->itpvar == 1)
    lagr_post_options->iviste   = 0;

  /* mass */
  lagr_post_options->ivismp      = 0;

  if (cs_glob_lagr_model->physical_model == 2) {

    /* coal: diameter of the shrinking core */
    lagr_post_options->ivisdk   = 0;

    /* coal: mass of water */
    lagr_post_options->iviswat  = 0;

    /* coal: mass of reactive coal */
    lagr_post_options->ivisch   = 0;

    /* coal: mass of coke */
    lagr_post_options->ivisck   = 0;

  }

  /* 16.1 Boundary statistics: visualization of the particle/boundaries
     interactions
     ------------------------------------------------ */

  /* 16.1.1 Generic parameters
     ~~~~~~~~~~~~~~~~~~~~~~~~~~
     Particle/boundary interaction mode
     (default off: 0 ; on: 1) */

  lagr_post_options->iensi3      = 0;

  /* 16.1.2 Information to be recorded
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     * To activate them, the user has to set below
     the corresponding keyword to 1.
     * The default selection must be validated or modified by the user.
     * By default the asked information for all the particle/wall interactions
     are written in the same recording.
     * The boundary statistic 'number of particle/boundary interactions' must be
     selected to activate the particle average imoybr(...) = 2 */

  /* Number of particle/boundary interactions
     (default off: 0 ; on: 1) */
  cs_glob_lagr_boundary_interactions->inbrbd      = 1;

  /* Particle mass flux associated to particle/boundary interactions
     (default off: 0 ; on: 1)*/
  cs_glob_lagr_boundary_interactions->iflmbd      = 1;

  /* Angle between particle velocity and the plan of the boundary face
     (default off: 0 ; on: 1) */
  cs_glob_lagr_boundary_interactions->iangbd      = 0;

  /* Norm of particle velocity during the interation with the boundary face
     (default off: 0 ; on: 1) */
  cs_glob_lagr_boundary_interactions->ivitbd      = 0;

  /* (default off: 0 ; on: 1) */
  if (   cs_glob_lagr_model->physical_model == 2
      && cs_glob_lagr_model->fouling == 1) {

    /* Number of particle/boundary interactions with fouling */
    cs_glob_lagr_boundary_interactions->iencnbbd      = 0;

    /* Mass of fouled coal particles */
    cs_glob_lagr_boundary_interactions->iencmabd      = 0;

    /* Diameter of fouled coal particles */
    cs_glob_lagr_boundary_interactions->iencdibd      = 0;

    /* Coke fraction of fouled coal particles */
    cs_glob_lagr_boundary_interactions->iencckbd      = 0;
  }

  /* Additional user information to be recorded
     ------------------------------------------
     (for instance, erosion rate, temperature..)
     * these additional recordings are stored in the bound_stat array
     * here we prescribe the nusbor number of additional recordings
     * the max value of this number is nusbrd=10 */

  cs_glob_lagr_boundary_interactions->nusbor = 0;

  /* 16.1.3 Name of the recordings for display,
     Average in time of particle average
     of the boundary statistics
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

     * A priori the user intervenes only in the additional user information
     to be recorded: he must prescribe the name of the recording as well as
     the type of average that he wishes to apply to it for the writing
     of the listing and the post-processing.

     * The applied average is prescribed through the imoybr array:
     - if imoybr(iusb(ii)) = 0 -> no average applied
     - if imoybr(iusb(ii)) = 1 -> a time average is applied, i.e. the
         statistic is divided by the last time step in the case of an unsteady
         calculation with a number of iterations lower than nstist; or that
         the statistic is divided by the recording time in the case of a
         steady calculation.
     - if imoybr(iusb(ii)) = 2 -> a particle average is applied, i.e. the
         statistic is divided by the number of recorded particle/boundary
         interactions (in terms of statistical weight) in bound_stat(nfabor,inbr)
         To use this average, inbrbd must be set to 1.
     - if imoybr(iusb(ii)) = 3 -> (coal fouling only) a particle average
         is applied, i.e. the statistic is divided by the number of recorded
         particle/boundary interactions with fouling (in terms of statistical
         weight) in bound_stat(nfabor,inbr), To use this average, iencnbbd must be
         set to 1.
     * The back-ups in the restart file are performed without applying
       this average. */

  /*==========================================================================
   * Periodicity for the output of the Lagrangian log (listla)
   * ==========================================================================*/

  cs_glob_lagr_log_frequency_n  = 1;
}

/*----------------------------------------------------------------------------*/

END_C_DECLS