This file is indexed.

/usr/share/code_saturne/user_examples/cs_user_boundary_conditions-compressible.f90 is in code-saturne-data 4.3.3+repack-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
!-------------------------------------------------------------------------------

!                      Code_Saturne version 4.3.3
!                      --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2016 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.

!-------------------------------------------------------------------------------

!===============================================================================
! Function:
! ---------
!> \file  cs_user_boundary_conditions-compressible.f90
!> \brief Example of cs_user_boundary_conditions.f90 for compressible
!
!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------
! Arguments
!______________________________________________________________________________.
!  mode           name          role                                           !
!______________________________________________________________________________!
!> \param[in]     nvar          total number of variables
!> \param[in]     nscal         total number of scalars
!> \param[out]    icodcl        boundary condition code:
!>                               - 1 Dirichlet
!>                               - 2 Radiative outlet
!>                               - 3 Neumann
!>                               - 4 sliding and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 5 smooth wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 6 rough wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 9 free inlet/outlet
!>                                 (input mass flux blocked to 0)
!> \param[in]     itrifb        indirection for boundary faces ordering
!> \param[in,out] itypfb        boundary face types
!> \param[out]    izfppp        boundary face zone number
!> \param[in]     dt            time step (per cell)
!> \param[in,out] rcodcl        boundary condition values:
!>                               - rcodcl(1) value of the dirichlet
!>                               - rcodcl(2) value of the exterior exchange
!>                                 coefficient (infinite if no exchange)
!>                               - rcodcl(3) value flux density
!>                                 (negative if gain) in w/m2 or roughness
!>                                 in m if icodcl=6
!>                                 -# for the velocity \f$ (\mu+\mu_T)
!>                                    \gradt \, \vect{u} \cdot \vect{n}  \f$
!>                                 -# for the pressure \f$ \Delta t
!>                                    \grad P \cdot \vect{n}  \f$
!>                                 -# for a scalar \f$ cp \left( K +
!>                                     \dfrac{K_T}{\sigma_T} \right)
!>                                     \grad T \cdot \vect{n} \f$
!_______________________________________________________________________________

subroutine cs_f_user_boundary_conditions &
 ( nvar   , nscal  ,                                              &
   icodcl , itrifb , itypfb , izfppp ,                            &
   dt     ,                                                       &
   rcodcl )

!===============================================================================

!===============================================================================
! Module files
!===============================================================================

use paramx
use numvar
use optcal
use cstphy
use cstnum
use entsor
use parall
use period
use ihmpre
use ppppar
use ppthch
use coincl
use cpincl
use ppincl
use ppcpfu
use atincl
use ctincl
use cs_fuel_incl
use mesh
use field

!===============================================================================

implicit none

! Arguments

integer          nvar   , nscal

integer          icodcl(nfabor,nvarcl)
integer          itrifb(nfabor), itypfb(nfabor)
integer          izfppp(nfabor)

double precision dt(ncelet)
double precision rcodcl(nfabor,nvarcl,3)

! Local variables

!< [loc_var_dec]
integer          ifac  , iel   , ii
integer          izone , iutile
integer          ilelt, nlelt

double precision uref2 , dhyd  , rhomoy
double precision ustar2, xkent , xeent , d2s3

integer, allocatable, dimension(:) :: lstelt
double precision, dimension(:), pointer ::  cpro_rom
!< [loc_var_dec]

!===============================================================================

!===============================================================================
! Initialization
!===============================================================================

allocate(lstelt(nfabor))  ! temporary array for boundary faces selection

d2s3 = 2.d0/3.d0

call field_get_val_s(icrom, cpro_rom)

!===============================================================================
! Assign boundary conditions to boundary faces here

! For each subset:
! - use selection criteria to filter boundary faces of a given subset
! - loop on faces from a subset
!   - set the boundary condition for each face
!===============================================================================

! --- Example of inlet/outlet for which everything is known

!       Without assuming the subsonic or supersonic nature of the inlet
!       the user wishes to impose all the characteristics of the flow,
!       a supersonic inlet is a particular case.

!       The turbulence and the user scalars take a zero flux if the
!       velocity is outward.

!< [example_1]
call getfbr('1 and X <= 1.0 ', nlelt, lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  ! Cell adjacent to boundary face

  iel = ifabor(ifac)

  ! Number of zones from 1 to n...
  izone = 1
  izfppp(ifac) = izone

  itypfb(ifac) = iesicf

  ! Velocity
  rcodcl(ifac,iu,1) = 5.0d0
  rcodcl(ifac,iv,1) = 0.0d0
  rcodcl(ifac,iw,1) = 0.0d0

  ! Pressure, Density, Temperature, Total Specific Energy

  !     Only 2 of the 4 variables are independant,
  !     hence one can impose values for any couple of variables
  !     (except Temperature-Energy) and the two other variables
  !     will be computed automatically

  !  ** Choose a couple of variables which values are to be imposed
  !     and delete the others (that will be computed with the help of
  !     the thermodynamic laws in cfther.f90).

  ! Pressure (in Pa)
  rcodcl(ifac,ipr,1) = 5.d5

  ! Temperature (in K)
  rcodcl(ifac,isca(itempk),1) = 300.d0

  ! Specific Total Energy (in J/kg)
  ! rcodcl(ifac,isca(ienerg),1) = 355.d3

  ! Turbulence

  uref2 = rcodcl(ifac,iu,1)**2 + rcodcl(ifac,iv,1)**2 + rcodcl(ifac,iw,1)**2
  uref2 = max(uref2,1.d-12)

  !   Turbulence example computed using equations valid for a pipe.

  !   We will be careful to specify a hydraulic diameter adapted
  !     to the current inlet.

  !   We will also be careful if necessary to use a more precise
  !     formula for the dynamic viscosity use in the calculation of
  !     the Reynolds number (especially if it is variable, it may be
  !     useful to take the law from 'usphyv'. Here, we use by default
  !     the 'viscl0" value.
  !   Regarding the density, we have access to its value at boundary
  !     faces (romb) so this value is the one used here (specifically,
  !     it is consistent with the processing in 'usphyv', in case of
  !     variable density)

  !     Hydraulic diameter
  dhyd   = 0.075d0

  !   Calculation of friction velocity squared (ustar2)
  !     and of k and epsilon at the inlet (xkent and xeent) using
  !     standard laws for a circular pipe
  !     (their initialization is not needed here but is good practice).
  rhomoy = cpro_rom(iel)
  ustar2 = 0.d0
  xkent  = epzero
  xeent  = epzero

  call keendb                                              &
  !==========
    ( uref2, dhyd, rhomoy, viscl0, cmu, xkappa,            &
      ustar2, xkent, xeent )

  if    (itytur.eq.2) then

    rcodcl(ifac,ik,1)  = xkent
    rcodcl(ifac,iep,1) = xeent

  elseif(itytur.eq.3) then

    rcodcl(ifac,ir11,1) = 2.d0/3.d0*xkent
    rcodcl(ifac,ir22,1) = 2.d0/3.d0*xkent
    rcodcl(ifac,ir33,1) = 2.d0/3.d0*xkent
    rcodcl(ifac,ir12,1) = 0.d0
    rcodcl(ifac,ir13,1) = 0.d0
    rcodcl(ifac,ir23,1) = 0.d0
    rcodcl(ifac,iep,1)  = xeent

  elseif(iturb.eq.50) then

    rcodcl(ifac,ik,1)   = xkent
    rcodcl(ifac,iep,1)  = xeent
    rcodcl(ifac,iphi,1) = d2s3
    rcodcl(ifac,ifb,1)  = 0.d0

  elseif(iturb.eq.60) then

    rcodcl(ifac,ik,1)   = xkent
    rcodcl(ifac,iomg,1) = xeent/cmu/xkent

  elseif(iturb.eq.70) then

    rcodcl(ifac,inusa,1) = cmu*xkent**2/xeent

  endif

  ! Handle scalars
  ! (do not loop on nscal to avoid modifying rho and energy)
  if(nscaus.gt.0) then
    do ii = 1, nscaus
      rcodcl(ifac,isca(ii),1) = 1.d0
    enddo
  endif

enddo
!< [example_1]

! --- Supersonic outlet example

!     All the characteristics are outward,
!     nothing needs to be imposed (only internal values are used
!     to compute the boundary flux).

!     for the turbulence and the scalar, if values of rcodcl are
!     provided here, we impose them as Dirichlet if the mass flux is
!     inward ; otherwise a zero flux is imposed (outward mass flux or
!     RCODCL values given here).
!     Note that for turbulence, RCODCL has to be filled in for all
!     turbulent variable (otherwise a zero flux is imposed).

!< [example_2]
call getfbr('2', nlelt, lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  ! Number zones from 1 to n...
  izone = 2
  izfppp(ifac) = izone

  itypfb(ifac) = isspcf

enddo
!< [example_2]

! --- Example of subsonic inlet (flow rate, entalpy flow rate)

!     2 characteristics out of 3 are inward : 2 informations have
!     to be given, the third is deduced by a 2-contact and
!     3-rarefaction scenario in the domain
!     here it is chosen to give (rho*(U.n), rho*(U.n)*H)
!     with H = 1/2 U*U + P/rho + e
!            n being the unit inward normal

!     WARNING, flux DENSITIES have to be given (per area unit)

!< [example_3]
call getfbr('3', nlelt, lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  ! Number of zones from 1 to n...
  izone = 3
  izfppp(ifac) = izone

  itypfb(ifac) = ieqhcf

  ! - flow rate density (kg/(m2 s))
  rcodcl(ifac,irun,1) = 5.d5

  ! - enthalpy flow rate density (J/(m2 s))
  rcodcl(ifac,irunh,1) = 5.d5

  !   Unavailable B.C. in current version
  call csexit (1)
  !==========

enddo
!< [example_3]

! --- Example of subsonic inlet (total pressure, total enthalpy)

!< [example_4]
call getfbr('4', nlelt, lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  ! Number zones from 1 to n...
  izone = 4
  izfppp(ifac) = izone

  itypfb(ifac) = iephcf

  ! Total pressure (in Pa)
  rcodcl(ifac,ipr,1) = 1.d5

  ! Total enthalpy
  rcodcl(ifac,isca(ienerg),1) = 294465.d0

  ! Direction of the velocity: normal to inlet faces
  rcodcl(ifac,iu,1) = -surfbo(1,ifac)
  rcodcl(ifac,iv,1) = -surfbo(2,ifac)
  rcodcl(ifac,iw,1) = -surfbo(3,ifac)

  ! Turbulence (no turbulence)

  ! Handle scalars
  ! (do not loop on nscal to avoid modifying rho and energy)
  if(nscaus.gt.0) then
    do ii = 1, nscaus
      rcodcl(ifac,isca(ii),1) = 1.d0
    enddo
  endif

enddo
!< [example_4]

! --- Subsonic outlet example

! 1 characteristic out of 3 exits: 1 information must be given
! the 2 others are deduced by a 2-contact and 3-relaxation in the domain.
! Here we choose to definer P.

! Turbulence and user scalars take a zero flux.

!< [example_5]
call getfbr('5', nlelt, lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  ! Number zones from 1 to n...
  izone = 5
  izfppp(ifac) = izone

  itypfb(ifac) = isopcf

  ! Pressure (in Pa)
  rcodcl(ifac,ipr,1) = 5.d5

enddo
!< [example_5]

! --- Wall example

!< [example_6]
call getfbr('7', nlelt, lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  ! Number zones from 1 to n...
  izone = 7
  izfppp(ifac) = izone

  itypfb(ifac) = iparoi

  ! --- Sliding wall

  ! By default, the wall does not slide.
  ! If the wall slides, define the nonzero components of its velocity.
  ! The velocity will be projected in a plane tangent to the wall.
  ! In the following example, we prescribe Ux = 1.
  ! (example activated if iutile=1)

  iutile = 0
  if(iutile.eq.1) then
    rcodcl(ifac,iu,1) = 1.d0
  endif

  ! --- Prescribed temperature

  ! By default, the wall is adiabatic.
  ! If the wall has a prescribed temperature, indicate it by setting
  ! icodcl = 5 and define a value in Kelvin in rcodcl(., ., 1)
  ! In the following example, we prescribe T = 293.15 K
  ! (example activated if iutile=1)

  iutile = 0
  if(iutile.eq.1) then
    icodcl(ifac,isca(itempk))   = 5
    rcodcl(ifac,isca(itempk),1) = 20.d0 + 273.15d0
  endif

  ! --- Prescribed flux

  ! By default, the wall is adiabatic.
  ! If the wall has a prescribed flux, indicate it by setting
  ! icodcl = 3 and define the value in Watt/m2 in rcodcl(., ., 3)
  ! In the following example, we prescribe a flux of 1000 W/m2
  ! - a midday in the summer - (example is activated if iutile=1)

  iutile = 0
  if(iutile.eq.1) then
    icodcl(ifac,isca(itempk))   = 3
    rcodcl(ifac,isca(itempk),3) = 1000.d0
  endif

enddo
!< [example_6]

! --- Symmetry example

!< [example_7]
call getfbr('8', nlelt, lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  ! Number zones from 1 to n...
  izone = 8
  izfppp(ifac) = izone

  itypfb(ifac) = isymet

enddo
!< [example_7]

! It is not recommended to use other boundary condition types than
! the ones provided above.

!--------
! Formats
!--------

!----
! End
!----

deallocate(lstelt)  ! temporary array for boundary faces selection

return
end subroutine cs_f_user_boundary_conditions