This file is indexed.

/usr/share/code_saturne/user_examples/cs_user_cdo-condif.c is in code-saturne-data 4.3.3+repack-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
/*============================================================================
 * Set main parameters for the current simulation when the CDO kernel is used
 *============================================================================*/

/* Code_Saturne version 4.3.3 */

/*
  This file is part of Code_Saturne, a general-purpose CFD tool.

  Copyright (C) 1998-2016 EDF S.A.

  This program is free software; you can redistribute it and/or modify it under
  the terms of the GNU General Public License as published by the Free Software
  Foundation; either version 2 of the License, or (at your option) any later
  version.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
  details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
  Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/

/*----------------------------------------------------------------------------*/

#include "cs_defs.h"

/*----------------------------------------------------------------------------
 * Standard C library headers
 *----------------------------------------------------------------------------*/

#include <errno.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>

/*----------------------------------------------------------------------------
 *  Local headers
 *----------------------------------------------------------------------------*/

#include <bft_mem.h>
#include <bft_printf.h>

#include "cs_mesh_location.h"
#include "cs_cdo_toolbox.h"
#include "cs_property.h"
#include "cs_advection_field.h"

/*----------------------------------------------------------------------------
 * Header for the current file
 *----------------------------------------------------------------------------*/

#include "cs_prototypes.h"

/*----------------------------------------------------------------------------*/

BEGIN_C_DECLS

/*=============================================================================
 * Additional doxygen documentation
 *============================================================================*/

/*----------------------------------------------------------------------------*/
/*!
 * \file cs_user_cdo-condif.c
 *
 * \brief Main user subroutine for setting of a calculation with CDO.
 *
 */
/*----------------------------------------------------------------------------*/

/*! \cond DOXYGEN_SHOULD_SKIP_THIS */

/*! \endcond (end ignore by Doxygen) */

static const double  one_third = 1./3.;

/*============================================================================
 * Private function prototypes
 *============================================================================*/

/* ---------------------------------------------------------------------------
 * TEST 1 -- Boundary conditions
 * -------------------------------------------------------------------------- */

static void
_define_adv_field(cs_real_t           time,
                  const cs_real_3_t   xyz,
                  cs_get_t           *get)
{
  const double  x = xyz[0], y = xyz[1], z = xyz[2];

  (*get).vect[0] = y - 0.5;
  (*get).vect[1] = 0.5 - x;
  (*get).vect[2] = z;
}

/* ---------------------------------------------------------------------------
 * TEST 1 -- Boundary conditions
 * -------------------------------------------------------------------------- */

static void
_define_bcs(cs_real_t           time,
            const cs_real_3_t   xyz,
            cs_get_t           *get)
{
  double  bcval = 0.0;

  const double  x = xyz[0], y = xyz[1], z = xyz[2];
  const double  pi = 4.0*atan(1.0);

  bcval = 1 + sin(pi*x) * sin(pi*(y + 0.5)) * sin(pi*(z + one_third));

  (*get).val = bcval;
}

/* ---------------------------------------------------------------------------
 * TEST 1 -- Source term
 * -------------------------------------------------------------------------- */

static void
_define_source(cs_real_t           time,
               const cs_real_3_t   xyz,
               cs_get_t           *get)
{
  cs_real_t  gx, gy, gz, gxx, gyy, gzz, gxy, gxz, gyz;
  cs_real_33_t  cond;

  const double  x = xyz[0], y = xyz[1], z = xyz[2];
  const double  pi = 4.0*atan(1.0), pi2 = pi*pi;
  const double  cpx = cos(pi*x), spx = sin(pi*x);
  const double  cpy = cos(pi*(y+0.5)), spy = sin(pi*(y+0.5));
  const double  cpz = cos(pi*(z+one_third)), spz = sin(pi*(z+one_third));

  /* first derivatives */
  gx = pi*cpx*spy*spz, gy = pi*spx*cpy*spz, gz = pi*spx*spy*cpz;

  /* second derivatives */
  gxx = gyy = gzz = -pi2*spx*spy*spz;
  gxy = pi2*cpx*cpy*spz, gxz = pi2*cpx*spy*cpz, gyz = pi2*spx*cpy*cpz;

  /* Material property */
  cond[0][0] = 1.0, cond[0][1] = 0.5, cond[0][2] = 0.0;
  cond[1][0] = 0.5, cond[1][1] = 1.0, cond[1][2] = 0.5;
  cond[2][0] = 0.0, cond[2][1] = 0.5, cond[2][2] = 1.0;

  /* Contribution of the diffusive part */
  (*get).val = cond[0][0]*gxx + cond[1][1]*gyy + cond[2][2]*gzz +
    2*( cond[0][1]*gxy + cond[0][2]*gxz + cond[1][2]*gyz);
  (*get).val *= -1;

  /* Contribution of the advection term */
  (*get).val += (y - 0.5)*gx + (0.5 - x)*gy + z*gz + 1 + spx*spy*spz;
}

/*============================================================================
 * Public function prototypes
 *============================================================================*/

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Activate or not the CDO module
 */
/*----------------------------------------------------------------------------*/

bool
cs_user_cdo_activated(void)
{
  return  true;
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Specify additional mesh locations
 */
/*----------------------------------------------------------------------------*/

void
cs_user_cdo_add_mesh_locations(void)
{
  return; /* REMOVE_LINE_FOR_USE_OF_SUBROUTINE */

  /* ===========================
     Define mesh locations
     ===========================

     By default several mesh locations are predefined
     >> "cells"
     >> "interior_faces"
     >> "boundary_faces"
     >> "vertices"

 */

  cs_mesh_location_add("in", CS_MESH_LOCATION_BOUNDARY_FACES, "x < 1e-5");
  cs_mesh_location_add("out", CS_MESH_LOCATION_BOUNDARY_FACES, "x > 0.9999");

  return;
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Specify for the computational domain:
 *         -- which type of boundaries closed the computational domain
 *         -- the settings for the time step
 *         -- activate predefined equations or modules
 *         -- add user-defined properties and/or advection fields
 *         -- add user-defined equations
 *
 * \param[in, out]   domain    pointer to a cs_domain_t structure
 */
/*----------------------------------------------------------------------------*/

void
cs_user_cdo_init_domain(cs_domain_t   *domain)
{
  return; /* REMOVE_LINE_FOR_USE_OF_SUBROUTINE */

  /* ======================
     Boundary of the domain
     ====================== */

  /* Choose a boundary by default.
     keyval is one of the following keyword: "wall" or "symmetry"  */

  cs_domain_set_param(domain, CS_DOMAIN_DEFAULT_BOUNDARY, "wall");

  /* Add a boundary
     >> cs_domain_add_boundary(domain,
                               mesh location name,
                               boundary keyword)

     mesh location name is either a predefined mesh location or one defined
     by user

     boundary keyword is one of the following keyword
     >> wall, inlet, outlet, symmetry
  */

  cs_domain_add_boundary(domain, "in", "inlet");
  cs_domain_add_boundary(domain, "out", "outlet");

  /* =========================
     Generic output management
     ========================= */

  /* Set the output frequency for log either in terms of number of iteration
     >> cs_domain_set_param(domain, CS_DOMAIN_OUTPUT_NT, keyval);
     keyval is for instance "10"

     either in terms of simulated time
     >>  cs_domain_set_param(domain, CS_DOMAIN_OUTPUT_DT, keyval);
     keyval is for instance "0.1"  */

  cs_domain_set_param(domain, CS_DOMAIN_OUTPUT_NT, "10");

  /* Set the level of verbosity (a fine-grained setting is also available if
     one uses the function cs_user_cdo_numerics_settings())
     >> cs_domain_set_param(domain, CS_DOMAIN_VERBOSITY, keyval);
     keyval is for instance "-1" --> the lowest-level of information
                             "0" --> reduced level of information
                             "1" --> standard level of information
                             "2" --> higher level of information  */

  cs_domain_set_param(domain, CS_DOMAIN_VERBOSITY, "2");

  /* ====================
     Time step management
     ==================== */

  /* Set the final time of the simulation
     >> cs_domain_set_param(domain, CS_DOMAIN_TMAX, keyval);
     keyval is for instance "1.5"

     Set the max. number of time steps
     >> cs_domain_set_param(domain, CS_DOMAIN_NTMAX, keyval);
     keyval is for instance "100"

     If there is an inconsistency between the max. number of iteration in
     time and the final physical time, the first condition encountered stops
     the calculation.
  */

  cs_domain_set_param(domain, CS_DOMAIN_NTMAX, "100");

  /* Define the value of the time step
     >> cs_domain_def_time_step_by_value(domain, dt_val);
     >> cs_domain_def_time_step_by_func(domain, dt_func);

     The second way to define the time step enable complex definitions.
     dt_func must have the following prototype:

     double dt_func(int  nt_cur, double  time_cur)
  */

  cs_domain_def_time_step_by_value(domain, 1.0);

  /* =============================
     Activate predefined equations
     =============================

     For the wall distance:
       cs_domain_activate_wall_distance(domain);

  */

  cs_domain_activate_wall_distance(domain);

  /* =========================================
     Define additional user equations to solve
     =========================================

     cs_domain_add_user_equation(...)

     >> arguments: domain,
                   equation name,
                   associated field name,
                   type of equation: "scalar", "vector" or "tensor"
                   default_bc:       "zero_value" or "zero_flux"

     By default, initial values are set to zero (or the value given by the
     restart file in case of restart).
  */

  cs_domain_add_user_equation(domain,
                              "AdvDiff",
                              "Potential",   // associated field name
                              "scalar",      // type of equation
                              "zero_value"); // default boundary condition

  /* ================================
     User-defined material properties
     ================================

     By default, one material property is defined:
     >> "unity" (isotropic and value equal 1.0)

     Users can also define additional material properties
     cs_domain_add_property(domain,
                            "name_of_property",
                            "type_keyword",
                            n_subdomains);

      type_keyword has predefined values among:
        >> "isotropic", "orthotropic" or "anisotropic"

      n_subdomains corresponds to the number of subdomains used to define
      this property (if 1 is given, use "cells" as mesh location, otherwise
      give the name of a mesh locations based on a selection of cells which
      has been previously defined).
  */

  cs_domain_add_property(domain,
                         "conductivity",  // property name
                         "anisotropic",   // type of material property
                         1);              // definition in n_subdomains

  cs_domain_add_property(domain,
                         "rho.cp",       // property name
                         "isotropic",    // type of material property
                         1);             // definition in n_subdomains

  /* =============================
     User-defined advection fields
     =============================

     Users can also define advection fields
     cs_domain_add_advection_field(domain,
                                   "name_of_advection_field");

  */

  cs_domain_add_advection_field(domain,
                                "adv_field");

}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  - Specify the elements such as properties, advection fields,
 *           user-defined equations and modules which have been previously
 *           added.
 *
 * \param[in, out]   domain    pointer to a cs_domain_t structure
*/
/*----------------------------------------------------------------------------*/

void
cs_user_cdo_set_domain(cs_domain_t   *domain)
{
  return; /* REMOVE_LINE_FOR_USE_OF_SUBROUTINE */

  /* =======================
     User-defined properties
     =======================

     Retrieve the property to set
     cs_property_t  *pty = cs_domain_get_property(domain, "pty_name");

    Several ways exist to define a property
      >> cs_property_def_by_value(pty, "location_name", value);
      >> cs_property_def_by_analytic(pty, "location_name", func);
      >> cs_property_def_by_law(pty, "location_name", func);

      -- pty is the structure related to the property to set
      -- "location_name" is the name of the mesh location (based on cells)
      where the given definition has to be applied

      For a definition by value:
      -- value is "1.0" for instance for an isotropic property
         or "0.5 0.1 1." for instance for an orthotropic property
      For a definition by analytical function or law
      -- func is a function with a predefined prototype

  */

  cs_property_t  *conductivity = cs_domain_get_property(domain, "conductivity");

  cs_property_def_by_value(conductivity,     // property structure
                           "cells",          // name of the mesh location
                           "1.0  0.5  0.0\n" // values of the property
                           "0.5  1.0  0.5\n"
                           "0.0  0.5  1.0\n");

  cs_property_t  *rhocp = cs_domain_get_property(domain, "rho.cp");

  cs_property_def_by_value(rhocp,    // property structure
                           "cells",  // name of the mesh location
                           "1.0");   // value of the property

  /* =============================
     User-defined advection fields
     =============================

     Retrieve the advection field to set
     cs_adv_field_t  *adv = cs_domain_get_advection_field(domain, "adv_name");

     Several ways exist to define an advection field
      >> cs_advection_field_def_by_value(adv, values);
         -- adv is the structure related to the advection field to set
         -- values is "0.5 0.1 1." for instance

      >> cs_property_def_by_analytic(adv, func);
         -- adv is the structure related to the advection field to set
         -- func is a function with a predefined prototype

  */

  cs_adv_field_t  *adv = cs_domain_get_advection_field(domain, "adv_field");

  cs_advection_field_def_by_analytic(adv, _define_adv_field);

  /* ======================
     User-defined equations
     ====================== */

  /* Retrieve the equation to set
     >> cs_equation_t  *eq = cs_domain_get_equation(domain, "eq_name");
  */

  cs_equation_t  *eq = cs_domain_get_equation(domain, "AdvDiff");

  /* Define the boundary conditions
     >> cs_equation_add_bc(eq,
                           "mesh_location_name",
                           "bc_type_keyword",
                           "definition_type_keyword",
                           pointer to the definition);

     - eq is the structure related to the equation to set
     - Keyword related to the boundary condition type is a choice among:
       >> "dirichlet", "neumann" or "robin"
     - Keyword related to the type of definition is a choice among:
       >> "value", "analytic"

  */

  cs_equation_add_bc(eq,                // equation
                     "boundary_faces",  // name of the mesh location
                     "dirichlet",       // BC type
                     "analytic",        // type of definition
                     _define_bcs);      // pointer to the analytic function

  /* Link properties to different terms of this equation
     >> cs_equation_link(eq,
                         "term_keyword",
                         structure_to_link);

     - eq is the structure related to the equation to set
     - Keyword related to the term to set is a choice among:
       >> "diffusion", "time" or "advection"
     - If keyword is "time" or "diffusion", the structure to link is a
       property.
       If keyword is "advection", the structure to link is an advection field
  */

  /* Activate unsteady effect */
  cs_equation_link(eq, "time", rhocp);
  /* Activate diffusion effect */
  cs_equation_link(eq, "diffusion", conductivity);
  /* Activate advection effect */
  cs_equation_link(eq, "advection", adv);

  /* Add a source term:
     >> cs_equation_add_source_term_by_val(eq,
                                           label,
                                           ml_name,
                                           val);
     or
     >> cs_equation_add_source_term_by_analytic(eq,
                                                label,
                                                ml_name,
                                                analytic_func);

     where label of the source term is optional (i.e. NULL is possible)
     This label is mandatory if additional settings are requested only for
     this specific source term.

     where ml_name is the name of the mesh location where this source term is
     defined (a selection of cells)

     where val is the value of the source term by m^3
     or where analytic_func is the name of the analytical function
   */

  cs_equation_add_source_term_by_analytic(eq,
                                          "SourceTerm",    // label
                                          "cells",         // ml_name
                                          _define_source); // analytic function

  /* Optional: specify the quadrature used for computing a source term

     cs_equation_set_source_term_quadrature(eq,
                                            label,
                                            key);
     >> key takes value among
     CS_QUADRATURE_BARY     used the barycenter approximation
     CS_QUADRATURE_HIGHER   used 4 Gauss points for approximating the integral
     CS_QUADRATURE_HIGHEST  used 5 Gauss points for approximating the integral
  */

  cs_equation_set_source_term_quadrature(eq, "SourceTerm", CS_QUADRATURE_BARY);

}

/*----------------------------------------------------------------------------*/

END_C_DECLS