This file is indexed.

/usr/share/code_saturne/user_examples/cs_user_radiative_transfer_bcs.c is in code-saturne-data 4.3.3+repack-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/*============================================================================
 * Radiation solver operations.
 *============================================================================*/

/* Code_Saturne version 4.3.3 */

/*
  This file is part of Code_Saturne, a general-purpose CFD tool.

  Copyright (C) 1998-2016 EDF S.A.

  This program is free software; you can redistribute it and/or modify it under
  the terms of the GNU General Public License as published by the Free Software
  Foundation; either version 2 of the License, or (at your option) any later
  version.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
  details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
  Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/*----------------------------------------------------------------------------*/

#include "cs_defs.h"

/*----------------------------------------------------------------------------
 * Standard C library headers
 *----------------------------------------------------------------------------*/

#include <assert.h>
#include <string.h>
#include <math.h>

#if defined(HAVE_MPI)
#include <mpi.h>
#endif

/*----------------------------------------------------------------------------
 *  Local headers
 *----------------------------------------------------------------------------*/

#include "bft_mem.h"
#include "bft_error.h"
#include "bft_printf.h"

#include "fvm_writer.h"

#include "cs_base.h"
#include "cs_fan.h"
#include "cs_field.h"
#include "cs_gui_util.h"
#include "cs_field_pointer.h"
#include "cs_field_operator.h"
#include "cs_math.h"
#include "cs_mesh.h"
#include "cs_mesh_location.h"
#include "cs_mesh_quantities.h"
#include "cs_halo.h"
#include "cs_halo_perio.h"
#include "cs_log.h"
#include "cs_multigrid.h"
#include "cs_parameters.h"
#include "cs_physical_constants.h"
#include "cs_prototypes.h"
#include "cs_rotation.h"
#include "cs_sles.h"
#include "cs_sles_it.h"
#include "cs_time_moment.h"
#include "cs_time_step.h"
#include "cs_turbomachinery.h"
#include "cs_selector.h"
#include "cs_rad_transfer.h"
#include "cs_thermal_model.h"

#include "cs_post.h"

/*----------------------------------------------------------------------------
 *  Header for the current file
 *----------------------------------------------------------------------------*/

#include "cs_prototypes.h"

/*----------------------------------------------------------------------------*/

BEGIN_C_DECLS

/*=============================================================================
 * Additional Doxygen documentation
 *============================================================================*/

/*! \file cs_user_radiative_transfer_bcs.c */

/*! \cond DOXYGEN_SHOULD_SKIP_THIS */

/*! (DOXYGEN_SHOULD_SKIP_THIS) \endcond */

/*=============================================================================
 * Public function definitions
 *============================================================================*/

/*----------------------------------------------------------------------------*/
/*!
 * \brief User definition of radiative transfer boundary conditions.
 *
 * See \subpage cs_user_radiative_transfer for examples.
 *
 * \warning the temperature unit here is the Kelvin
 *
 * \section cs_user_radiative_transfer_bcs_zones  Zone definitions
 *
 *   We define zones of wall boundaries, and we assign a type.
 *     This allows to apply the boundary conditions and realize
 *     balance sheets by treating them separately for each zone.
 *   For each boundary face face_id (not just wall faces) a zone number
 *     izfrdp[face_id]) must be assigned.
 *   Warning: it is essential that ALL boundary faces
 *     have been assigned to a zone.
 *   The number of zones (the value of izfrdp[face_id]) is
 *     arbitrarily chosen by the user, but must be a positive integer
 *     less than or equal to cs_glob_rad_transfer_params->nbzrdm
 *     (value set in parameter cs_user_radiation_parameters.h).
 *
 \section cs_user_radiative_transfer_bcs_wall  Wall characteristics
 *
 * The following face characteristics must be set:
 *  - isothp(face_id) boundary face type
 *               = itpimp -> Gray wall with fixed inside temperature
 *               = ipgrno -> Gray wall with fixed outside temperature
 *               = iprefl -> Reflecting wall with fixed outside temperature
 *               = ifgrno -> Gray wall with fixed conduction flux
 *               = ifrefl -> Reflecting wall with fixed conduction flux
 *  - tintp(face_id) inside wall temperature (Kelvin)
 *               initialize thwall at the first time step.
 *               If isothp = itpimp, the value of thwall is fixed to tintp
 *               In the other case, tintp is only for initialization.
 *
 * Depending on the value of isothp, other values may also need to be set:
 *  - rcodcl = conduction flux
 *  - epsp   = emissivity
 *  - xlamp  = conductivity (W/m/K)
 *  - epap   = thickness (m)
 *  - textp  = outside temperature (K)
 *
 * \param[in]     nvarcl        total number of variable BC's
 * \param[in]     bc_type       boundary face types
 * \param[in]     icodcl        boundary face code
 *                                - 1  -> Dirichlet
 *                                - 2  -> convective outlet
 *                                - 3  -> flux density
 *                                - 4  -> sliding wall and u.n=0 (velocity)
 *                                - 5  -> friction and u.n=0 (velocity)
 *                                - 6  -> roughness and u.n=0 (velocity)
 *                                - 9  -> free inlet/outlet (velocity)
 *                                inflowing possibly blocked
 * \param[in]     izfrdp        boundary faces -> zone number
 * \param[in]     isothp        boundary face type for radative transfer
 *                                - itpimp -> Gray wall with fixed inside temp
 *                                - ipgrno -> Gray wall with fixed outside temp
 *                                - iprefl -> Reflecting wall with fixed
 *                                         outside temp
 *                                - ifgrno -> Gray wall with fixed
 *                                      conduction flux
 *                                - ifrefl -> Reflecting wall with fixed
 *                                      conduction flux
 * \param[out]    tmin          min allowed value of the wall temperature
 * \param[out]    tmax          max allowed value of the wall temperature
 * \param[in]     tx            relaxation coefficient (0 < tx < 1)
 * \param[in]     dt            time step (per cell)
 * \param[in]     rcodcl        boundary condition values
 *                                rcodcl(3) = flux density value
 *                                (negative for gain) in W/m2
 * \param[in]     thwall        inside current wall temperature (K)
 * \param[in]     qincid        radiative incident flux  (W/m2)
 * \param[in]     hfcnvp        convective exchange coefficient (W/m2/K)
 * \param[in]     flcnvp        convective flux (W/m2)
 * \param[out]    xlamp         conductivity (W/m/K)
 * \param[out]    epap          thickness (m)
 * \param[out]    epsp          emissivity (>0)
 * \param[out]    textp         outside temperature (K)
 * \param[out]    tintp         initial inside temperature (K)
 */
/*----------------------------------------------------------------------------*/

void
cs_user_radiative_transfer_bcs(int               nvarcl,
                               const int         bc_type[],
                               int               icodcl[],
                               int               izfrdp[],
                               int               isothp[],
                               cs_real_t        *tmin,
                               cs_real_t        *tmax,
                               cs_real_t        *tx,
                               const cs_real_t   dt[],
                               cs_real_t         rcodcl[],
                               const cs_real_t   thwall[],
                               const cs_real_t   qincid[],
                               cs_real_t         hfcnvp[],
                               cs_real_t         flcnvp[],
                               cs_real_t         xlamp[],
                               cs_real_t         epap[],
                               cs_real_t         epsp[],
                               cs_real_t         textp[],
                               cs_real_t         tintp[])
{
  /*< [loc_var]*/
  cs_real_t tkelvi = 273.15;
  cs_lnum_t n_b_faces = cs_glob_mesh->n_b_faces;
  /*< [loc_var]*/

  /*< [allocate]*/
  /* Allocate a temporary array for boundary faces selection */

  cs_lnum_t nlelt;
  cs_lnum_t  *lstelt;
  BFT_MALLOC(lstelt, n_b_faces, cs_lnum_t);
  /*< [allocate]*/

  /*< [ivar]*/
  cs_field_t *fth;

  switch (cs_glob_thermal_model->itherm) {
  case 1:
    fth = CS_F_(t);
    break;
  case 2:
    fth = CS_F_(h);
    break;
  default:
    fth = NULL;
  }

  const cs_lnum_t ivart
    = cs_field_get_key_int(fth, cs_field_key_id("variable_id")) - 1;
  /*< [ivar]*/

  /* Min and max values for the wall temperatures (clipping otherwise)
   * TMIN and TMAX are given in Kelvin. */

  /*< [temp]*/
  *tmin = 0.0;
  *tmax = cs_math_big_r + tkelvi;
  /*<[temp]*/

  /* Zone definitions */
  /*------------------*/

   /* Example: for wall boundary faces, selection criteria: color 1;
    * gray or black wall with profile of fixed inside temperature
    * ------------------------------------------------------------*/

  /*< [example_1]*/
  cs_selector_get_b_face_list("1",
                              &nlelt,
                              lstelt);
  for (cs_lnum_t ilelt = 0; ilelt < nlelt; ilelt++) {

    cs_lnum_t face_id = lstelt[ilelt];

    if (bc_type[face_id] == CS_SMOOTHWALL) {
      /* zone number */
      izfrdp[face_id] = 51;

      /* Type of condition: gray or black wall with fixed inside temperature */
      isothp[face_id] = cs_glob_rad_transfer_params->itpimp;

      /* Emissivity */
      epsp[face_id] = 0.1;

      /* Fixed inside temperature */
      tintp[face_id] = 200 + tkelvi;
    }

  }
  /*< [example_1]*/

  /* Example: for wall boundary faces, selection criteria: color 2;
   * gray or black wall with fixed outside temperature TEXTP
   * --------------------------------------------------------*/

  /*< [example_2]*/
  cs_selector_get_b_face_list("2",
                              &nlelt,
                              lstelt);
  for (cs_lnum_t ilelt = 0; ilelt < nlelt; ilelt++) {

    cs_lnum_t face_id = lstelt[ilelt];

    if (bc_type[face_id] == CS_ROUGHWALL) {
      /* zone number */
      izfrdp[face_id] = 52;

      /* Type of condition: gray or black wall with fixed
         outside temperature TEXTP */
      isothp[face_id] = cs_glob_rad_transfer_params->ipgrno;

      /* Emissivity */
      epsp[face_id] = 0.9;

      /* Conductivity (W/m/K)*/
      xlamp[face_id] = 3.0;

      /* Thickness (m)*/
      epap[face_id] = 0.1;

      /* Fixed outside temperature: 473.16 K */
      textp[face_id] = 200. + tkelvi;

      /* Initial inside temperature: 473.16 K */
      tintp[face_id] = 200. + tkelvi;
    }

  }
  /*< [example_2]*/

  /* Example: for wall boundary faces, selection criteria: color 3
   * reflecting wall (EPSP = 0) with fixed outside temperature TEXTP
   * --------------------------------------------------------------- */

  /*< [example_3]*/
  cs_selector_get_b_face_list("3",
                                  &nlelt,
                                  lstelt);
  for (cs_lnum_t ilelt = 0; ilelt < nlelt; ilelt++) {

    cs_lnum_t face_id = lstelt[ilelt];

    if (bc_type[face_id] == CS_SMOOTHWALL) {
      /* zone number */
      izfrdp[face_id] = 53;

      /* Type of condition: reflecting wall with fixed outside temperature TEXTP */
      isothp[face_id] = cs_glob_rad_transfer_params->iprefl;

      /* Conductivity (W/m/K) */
      xlamp[face_id] = 3.0;

      /* Thickness    (m)*/
      epap[face_id] = 0.10;

      /* Fixed outside temperature: 473.16 K */
      textp[face_id] = 200.0 + tkelvi;

      /* Initial inside temperature: 473.16 K */
      tintp[face_id] = 200.0 + tkelvi;
    }

  }
  /*< [example_3]*/

  /* Example: for wall boundary faces which have the color 4:
   * gray or black wall and fixed conduction flux through the wall
   *
   *        XLAMP
   *        -----(Tparop-Textp) = fixed conduction flux     (W/m2)
   *        EPAP
   *                         = RODCL(FACE_ID,IVAR,3)

   *       If the conduction flux is zero then the wall is adiabatic.
   *       The array RCODCL(FACE_ID,IVAR,3) has the value of the flux.
   *       Flux density (< 0 if gain for the fluid)
   *         For temperatures T,    in Watt/m2:
   *            RCODCL(FACE_ID,IVAR,3) = CP*(VISCLS+VISCT/SIGMAS) * GRAD T
   *         For enthalpies H,      in Watt/m2:
   *            RCODCL(FACE_ID,IVAR,3) =    (VISCLS+VISCT/SIGMAS) * GRAD H
   */

  /*< [example_4]*/
  cs_selector_get_b_face_list("4",
                              &nlelt,
                              lstelt);
  for (cs_lnum_t ilelt = 0; ilelt < nlelt; ilelt++) {

    cs_lnum_t face_id = lstelt[ilelt];

    if (bc_type[face_id] == CS_SMOOTHWALL) {
      /* zone number */
      izfrdp[face_id] = 54;

      /* Type of condition: gray or black wall with fixed conduction
         flux through the wall */
      isothp[face_id] = cs_glob_rad_transfer_params->ifgrno;

      /* Emissivity */
      epsp[face_id] = 0.9;

      /* Conduction flux (W/m2) */
      rcodcl[face_id + ivart * n_b_faces + 2 * nvarcl * n_b_faces ] = 0.0;

      /* Initial inside temperature: 473.16 K */
      tintp[face_id] = 200.0 + tkelvi;
    }

  }
  /*< [example_4]*/

  /* Example: for wall boundary faces which have the color 5:
   * reflecting wall and fixed conduction flux through the wall
   *
   *      Equivalent to impose a Neumann to the fluid
   *
   *        XLAMP
   *        -----(Tparop-Textp) = fixed conduction flux and EPSP = 0
   *        EPAP
   *                         = RODCL(FACE_ID,IVAR,3)

   *       If the conduction flux is zero then the wall is adiabatic.
   *       Flux density (< 0 if gain for the fluid)
   *         For temperatures T,    in Watt/m2:
   *            RCODCL(FACE_ID,IVAR,3) = CP*(VISCLS+VISCT/SIGMAS) * GRAD T
   *         For enthalpies H,      in Watt/m2:
   *            RCODCL(FACE_ID,IVAR,3) =    (VISCLS+VISCT/SIGMAS) * GRAD H
   */

  /*< [example_5]*/
  cs_selector_get_b_face_list("5",
                              &nlelt,
                              lstelt);
  for (cs_lnum_t ilelt = 0; ilelt < nlelt; ilelt++) {

    cs_lnum_t face_id = lstelt[ilelt];

    if (bc_type[face_id] == CS_SMOOTHWALL) {
      /* zone number */
      izfrdp[face_id] = 55;

      /* Type of condition: reflecting wall with fixed conduction
         flux through the wall */
      isothp[face_id] = cs_glob_rad_transfer_params->ifrefl;

      /* Conduction flux (W/m2)*/
      rcodcl[face_id + ivart * n_b_faces + 2 * nvarcl * n_b_faces ] = 0.0;

      /* Initial inside temperature: 473.16 K */
      tintp[face_id] = 200.0 + tkelvi;
    }

  }
  /*< [example_5]*/

  /* WARNING: for all boundary faces, even when not a wall, it is MANDATORY to
   *          assign a zone number in the array izfrdp. */

  /* Example for assigning zones */

  for (cs_lnum_t face_id = 0; face_id < cs_glob_mesh->n_b_faces; face_id++) {

    if (bc_type[face_id] == CS_OUTLET)
      izfrdp[face_id] = 60;
    else if (bc_type[face_id] == CS_FREE_INLET)
      izfrdp[face_id] = 61;
    else if (bc_type[face_id] == CS_INLET)
      izfrdp[face_id] = 62;
    else if (bc_type[face_id] == CS_CONVECTIVE_INLET)
      izfrdp[face_id] = 63;
    else if (bc_type[face_id] == CS_SYMMETRY)
      izfrdp[face_id] = 64;

  }

  /* Deallocate the temporary array */
  BFT_FREE(lstelt);
}

/*----------------------------------------------------------------------------*/

END_C_DECLS