This file is indexed.

/usr/include/cppad/local/csum_op.hpp is in cppad 2018.00.00.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// $Id: csum_op.hpp 3845 2016-11-19 01:50:47Z bradbell $
# ifndef CPPAD_LOCAL_CSUM_OP_HPP
# define CPPAD_LOCAL_CSUM_OP_HPP

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-16 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */

namespace CppAD { namespace local { // BEGIN_CPPAD_LOCAL_NAMESPACE
/*!
\file csum_op.hpp
Forward, reverse and sparsity calculations for cummulative summation.
*/

/*!
Compute forward mode Taylor coefficients for result of op = CsumOp.

This operation is
\verbatim
	z = s + x(1) + ... + x(m) - y(1) - ... - y(n).
\endverbatim

\tparam Base
base type for the operator; i.e., this operation was recorded
using AD< \a Base > and computations by this routine are done using type
\a Base.

\param p
lowest order of the Taylor coefficient that we are computing.

\param q
highest order of the Taylor coefficient that we are computing.

\param i_z
variable index corresponding to the result for this operation;
i.e. the row index in \a taylor corresponding to z.

\param arg
\a arg[0]
is the number of addition variables in this cummulative summation; i.e.,
<tt>m</tt>.
\n
\a arg[1]
is the number of subtraction variables in this cummulative summation; i.e.,
\c m.
\n
<tt>parameter[ arg[2] ]</tt>
is the parameter value \c s in this cummunative summation.
\n
<tt>arg[2+i]</tt>
for <tt>i = 1 , ... , m</tt> is the variable index of <tt>x(i)</tt>.
\n
<tt>arg[2+arg[0]+i]</tt>
for <tt>i = 1 , ... , n</tt> is the variable index of <tt>y(i)</tt>.

\param num_par
is the number of parameters in \a parameter.

\param parameter
is the parameter vector for this operation sequence.

\param cap_order
number of colums in the matrix containing all the Taylor coefficients.

\param taylor
\b Input: <tt>taylor [ arg[2+i] * cap_order + k ]</tt>
for <tt>i = 1 , ... , m</tt>
and <tt>k = 0 , ... , q</tt>
is the k-th order Taylor coefficient corresponding to <tt>x(i)</tt>
\n
\b Input: <tt>taylor [ arg[2+m+i] * cap_order + k ]</tt>
for <tt>i = 1 , ... , n</tt>
and <tt>k = 0 , ... , q</tt>
is the k-th order Taylor coefficient corresponding to <tt>y(i)</tt>
\n
\b Input: <tt>taylor [ i_z * cap_order + k ]</tt>
for k = 0 , ... , p,
is the k-th order Taylor coefficient corresponding to z.
\n
\b Output: <tt>taylor [ i_z * cap_order + k ]</tt>
for k = p , ... , q,
is the \a k-th order Taylor coefficient corresponding to z.
*/
template <class Base>
inline void forward_csum_op(
	size_t        p           ,
	size_t        q           ,
	size_t        i_z         ,
	const addr_t* arg         ,
	size_t        num_par     ,
	const Base*   parameter   ,
	size_t        cap_order   ,
	Base*         taylor      )
{	Base zero(0);
	size_t i, j, k;

	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumRes(CSumOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( q < cap_order );
	CPPAD_ASSERT_UNKNOWN( p <= q );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[2]) < num_par );
	CPPAD_ASSERT_UNKNOWN(
		arg[0] + arg[1] == arg[ arg[0] + arg[1] + 3 ]
	);

	// Taylor coefficients corresponding to result
	Base* z = taylor + i_z    * cap_order;
	for(k = p; k <= q; k++)
		z[k] = zero;
	if( p == 0 )
		z[p] = parameter[ arg[2] ];
	Base* x;
	i = arg[0];
	j = 2;
	while(i--)
	{	CPPAD_ASSERT_UNKNOWN( size_t(arg[j+1]) < i_z );
		x     = taylor + arg[++j] * cap_order;
		for(k = p; k <= q; k++)
			z[k] += x[k];
	}
	i = arg[1];
	while(i--)
	{	CPPAD_ASSERT_UNKNOWN( size_t(arg[j+1]) < i_z );
		x     = taylor + arg[++j] * cap_order;
		for(k = p; k <= q; k++)
			z[k] -= x[k];
	}
}

/*!
Multiple direction forward mode Taylor coefficients for op = CsumOp.

This operation is
\verbatim
	z = s + x(1) + ... + x(m) - y(1) - ... - y(n).
\endverbatim

\tparam Base
base type for the operator; i.e., this operation was recorded
using AD<Base> and computations by this routine are done using type
\a Base.

\param q
order ot the Taylor coefficients that we are computing.

\param r
number of directions for Taylor coefficients that we are computing.

\param i_z
variable index corresponding to the result for this operation;
i.e. the row index in \a taylor corresponding to z.

\param arg
\a arg[0]
is the number of addition variables in this cummulative summation; i.e.,
<tt>m</tt>.
\n
\a arg[1]
is the number of subtraction variables in this cummulative summation; i.e.,
\c m.
\n
<tt>parameter[ arg[2] ]</tt>
is the parameter value \c s in this cummunative summation.
\n
<tt>arg[2+i]</tt>
for <tt>i = 1 , ... , m</tt> is the variable index of <tt>x(i)</tt>.
\n
<tt>arg[2+arg[0]+i]</tt>
for <tt>i = 1 , ... , n</tt> is the variable index of <tt>y(i)</tt>.

\param num_par
is the number of parameters in \a parameter.

\param parameter
is the parameter vector for this operation sequence.

\param cap_order
number of colums in the matrix containing all the Taylor coefficients.

\param taylor
\b Input: <tt>taylor [ arg[2+i]*((cap_order-1)*r + 1) + 0 ]</tt>
for <tt>i = 1 , ... , m</tt>
is the 0-th order Taylor coefficient corresponding to <tt>x(i)</tt> and
<tt>taylor [ arg[2+i]*((cap_order-1)*r + 1) + (q-1)*r + ell + 1 ]</tt>
for <tt>i = 1 , ... , m</tt>,
<tt>ell = 0 , ... , r-1</tt>
is the q-th order Taylor coefficient corresponding to <tt>x(i)</tt>
and direction ell.
\n
\b Input: <tt>taylor [ arg[2+m+i]*((cap_order-1)*r + 1) + 0 ]</tt>
for <tt>i = 1 , ... , n</tt>
is the 0-th order Taylor coefficient corresponding to <tt>y(i)</tt> and
<tt>taylor [ arg[2+m+i]*((cap_order-1)*r + 1) + (q-1)*r + ell + 1 ]</tt>
for <tt>i = 1 , ... , n</tt>,
<tt>ell = 0 , ... , r-1</tt>
is the q-th order Taylor coefficient corresponding to <tt>y(i)</tt>
and direction ell.
\n
\b Output: <tt>taylor [ i_z*((cap_order-1)*r+1) + (q-1)*r + ell + 1 ]</tt>
is the \a q-th order Taylor coefficient corresponding to z
for direction <tt>ell = 0 , ... , r-1</tt>.
*/
template <class Base>
inline void forward_csum_op_dir(
	size_t        q           ,
	size_t        r           ,
	size_t        i_z         ,
	const addr_t* arg         ,
	size_t        num_par     ,
	const Base*   parameter   ,
	size_t        cap_order   ,
	Base*         taylor      )
{	Base zero(0);
	size_t i, j, ell;

	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumRes(CSumOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( q < cap_order );
	CPPAD_ASSERT_UNKNOWN( 0 < q );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[2]) < num_par );
	CPPAD_ASSERT_UNKNOWN(
		arg[0] + arg[1] == arg[ arg[0] + arg[1] + 3 ]
	);

	// Taylor coefficients corresponding to result
	size_t num_taylor_per_var = (cap_order-1) * r + 1;
	size_t m                  = (q-1)*r + 1;
	Base* z = taylor + i_z * num_taylor_per_var + m;
	for(ell = 0; ell < r; ell++)
		z[ell] = zero;
	Base* x;
	i = arg[0];
	j = 2;
	while(i--)
	{	CPPAD_ASSERT_UNKNOWN( size_t(arg[j+1]) < i_z );
		x = taylor + arg[++j] * num_taylor_per_var + m;
		for(ell = 0; ell < r; ell++)
			z[ell] += x[ell];
	}
	i = arg[1];
	while(i--)
	{	CPPAD_ASSERT_UNKNOWN( size_t(arg[j+1]) < i_z );
		x = taylor + arg[++j] * num_taylor_per_var + m;
		for(ell = 0; ell < r; ell++)
			z[ell] -= x[ell];
	}
}

/*!
Compute reverse mode Taylor coefficients for result of op = CsumOp.

This operation is
\verbatim
	z = q + x(1) + ... + x(m) - y(1) - ... - y(n).
	H(y, x, w, ...) = G[ z(x, y), y, x, w, ... ]
\endverbatim

\tparam Base
base type for the operator; i.e., this operation was recorded
using AD< \a Base > and computations by this routine are done using type
\a Base.

\param d
order the highest order Taylor coefficient that we are computing
the partial derivatives with respect to.

\param i_z
variable index corresponding to the result for this operation;
i.e. the row index in \a taylor corresponding to z.

\param arg
\a arg[0]
is the number of addition variables in this cummulative summation; i.e.,
<tt>m</tt>.
\n
\a arg[1]
is the number of subtraction variables in this cummulative summation; i.e.,
\c m.
\n
<tt>parameter[ arg[2] ]</tt>
is the parameter value \c q in this cummunative summation.
\n
<tt>arg[2+i]</tt>
for <tt>i = 1 , ... , m</tt> is the value <tt>x(i)</tt>.
\n
<tt>arg[2+arg[0]+i]</tt>
for <tt>i = 1 , ... , n</tt> is the value <tt>y(i)</tt>.

\param nc_partial
number of colums in the matrix containing all the partial derivatives.

\param partial
\b Input: <tt>partial [ arg[2+i] * nc_partial + k ]</tt>
for <tt>i = 1 , ... , m</tt>
and <tt>k = 0 , ... , d</tt>
is the partial derivative of G(z, y, x, w, ...) with respect to the
k-th order Taylor coefficient corresponding to <tt>x(i)</tt>
\n
\b Input: <tt>partial [ arg[2+m+i] * nc_partial + k ]</tt>
for <tt>i = 1 , ... , n</tt>
and <tt>k = 0 , ... , d</tt>
is the partial derivative of G(z, y, x, w, ...) with respect to the
k-th order Taylor coefficient corresponding to <tt>y(i)</tt>
\n
\b Input: <tt>partial [ i_z * nc_partial + k ]</tt>
for <tt>i = 1 , ... , n</tt>
and <tt>k = 0 , ... , d</tt>
is the partial derivative of G(z, y, x, w, ...) with respect to the
k-th order Taylor coefficient corresponding to \c z.
\n
\b Output: <tt>partial [ arg[2+i] * nc_partial + k ]</tt>
for <tt>i = 1 , ... , m</tt>
and <tt>k = 0 , ... , d</tt>
is the partial derivative of H(y, x, w, ...) with respect to the
k-th order Taylor coefficient corresponding to <tt>x(i)</tt>
\n
\b Output: <tt>partial [ arg[2+m+i] * nc_partial + k ]</tt>
for <tt>i = 1 , ... , n</tt>
and <tt>k = 0 , ... , d</tt>
is the partial derivative of H(y, x, w, ...) with respect to the
k-th order Taylor coefficient corresponding to <tt>y(i)</tt>
*/

template <class Base>
inline void reverse_csum_op(
	size_t        d           ,
	size_t        i_z         ,
	const addr_t* arg         ,
	size_t        nc_partial  ,
	Base*         partial     )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumRes(CSumOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( d < nc_partial );

	// Taylor coefficients and partial derivative corresponding to result
	Base* pz = partial + i_z * nc_partial;
	Base* px;
	size_t i, j, k;
	size_t d1 = d + 1;
	i = arg[0];
	j = 2;
	while(i--)
	{	CPPAD_ASSERT_UNKNOWN( size_t(arg[j+1]) < i_z );
		px    = partial + arg[++j] * nc_partial;
		k = d1;
		while(k--)
			px[k] += pz[k];
	}
	i = arg[1];
	while(i--)
	{	CPPAD_ASSERT_UNKNOWN( size_t(arg[j+1]) < i_z );
		px    = partial + arg[++j] * nc_partial;
		k = d1;
		while(k--)
			px[k] -= pz[k];
	}
}


/*!
Forward mode Jacobian sparsity pattern for CSumOp operator.

This operation is
\verbatim
	z = q + x(1) + ... + x(m) - y(1) - ... - y(n).
\endverbatim

\tparam Vector_set
is the type used for vectors of sets. It can be either
sparse_pack or sparse_list.

\param i_z
variable index corresponding to the result for this operation;
i.e. the index in \a sparsity corresponding to z.

\param arg
\a arg[0]
is the number of addition variables in this cummulative summation; i.e.,
<tt>m + n</tt>.
\n
\a arg[1]
is the number of subtraction variables in this cummulative summation; i.e.,
\c m.
\n
<tt>parameter[ arg[2] ]</tt>
is the parameter value \c q in this cummunative summation.
\n
<tt>arg[2+i]</tt>
for <tt>i = 1 , ... , m</tt> is the value <tt>x(i)</tt>.
\n
<tt>arg[2+arg[1]+i]</tt>
for <tt>i = 1 , ... , n</tt> is the value <tt>y(i)</tt>.

\param sparsity
\b Input:
For <tt>i = 1 , ... , m</tt>,
the set with index \a arg[2+i] in \a sparsity
is the sparsity bit pattern for <tt>x(i)</tt>.
This identifies which of the independent variables the variable
<tt>x(i)</tt> depends on.
\n
\b Input:
For <tt>i = 1 , ... , n</tt>,
the set with index \a arg[2+arg[0]+i] in \a sparsity
is the sparsity bit pattern for <tt>x(i)</tt>.
This identifies which of the independent variables the variable
<tt>y(i)</tt> depends on.
\n
\b Output:
The set with index \a i_z in \a sparsity
is the sparsity bit pattern for z.
This identifies which of the independent variables the variable z
depends on.
*/

template <class Vector_set>
inline void forward_sparse_jacobian_csum_op(
	size_t           i_z         ,
	const addr_t*    arg         ,
	Vector_set&      sparsity    )
{	sparsity.clear(i_z);

	size_t i, j;
	i = arg[0] + arg[1];
	j = 2;
	while(i--)
	{	CPPAD_ASSERT_UNKNOWN( size_t(arg[j+1]) < i_z );
		sparsity.binary_union(
			i_z        , // index in sparsity for result
			i_z        , // index in sparsity for left operand
			arg[++j]   , // index for right operand
			sparsity     // sparsity vector for right operand
		);
	}
}

/*!
Reverse mode Jacobian sparsity pattern for CSumOp operator.

This operation is
\verbatim
	z = q + x(1) + ... + x(m) - y(1) - ... - y(n).
	H(y, x, w, ...) = G[ z(x, y), y, x, w, ... ]
\endverbatim

\tparam Vector_set
is the type used for vectors of sets. It can be either
sparse_pack or sparse_list.

\param i_z
variable index corresponding to the result for this operation;
i.e. the index in \a sparsity corresponding to z.

\param arg
\a arg[0]
is the number of addition variables in this cummulative summation; i.e.,
<tt>m + n</tt>.
\n
\a arg[1]
is the number of subtraction variables in this cummulative summation; i.e.,
\c m.
\n
<tt>parameter[ arg[2] ]</tt>
is the parameter value \c q in this cummunative summation.
\n
<tt>arg[2+i]</tt>
for <tt>i = 1 , ... , m</tt> is the value <tt>x(i)</tt>.
\n
<tt>arg[2+arg[1]+i]</tt>
for <tt>i = 1 , ... , n</tt> is the value <tt>y(i)</tt>.

\param sparsity
For <tt>i = 1 , ... , m</tt>,
the set with index \a arg[2+i] in \a sparsity
is the sparsity bit pattern for <tt>x(i)</tt>.
This identifies which of the dependent variables depend on <tt>x(i)</tt>.
On input, the sparsity patter corresponds to \c G,
and on ouput it corresponds to \c H.
\n
For <tt>i = 1 , ... , m</tt>,
the set with index \a arg[2+arg[0]+i] in \a sparsity
is the sparsity bit pattern for <tt>y(i)</tt>.
This identifies which of the dependent variables depend on <tt>y(i)</tt>.
On input, the sparsity patter corresponds to \c G,
and on ouput it corresponds to \c H.
\n
\b Input:
The set with index \a i_z in \a sparsity
is the sparsity bit pattern for z.
On input it corresponds to \c G and on output it is undefined.
*/

template <class Vector_set>
inline void reverse_sparse_jacobian_csum_op(
	size_t           i_z         ,
	const addr_t*    arg         ,
	Vector_set&      sparsity    )
{
	size_t i, j;
	i = arg[0] + arg[1];
	j = 2;
	while(i--)
	{	++j;
		CPPAD_ASSERT_UNKNOWN( size_t(arg[j]) < i_z );
		sparsity.binary_union(
			arg[j]     , // index in sparsity for result
			arg[j]     , // index in sparsity for left operand
			i_z        , // index for right operand
			sparsity     // sparsity vector for right operand
		);
	}
}
/*!
Reverse mode Hessian sparsity pattern for CSumOp operator.

This operation is
\verbatim
	z = q + x(1) + ... + x(m) - y(1) - ... - y(n).
	H(y, x, w, ...) = G[ z(x, y), y, x, w, ... ]
\endverbatim

\tparam Vector_set
is the type used for vectors of sets. It can be either
sparse_pack or sparse_list.

\param i_z
variable index corresponding to the result for this operation;
i.e. the index in \a sparsity corresponding to z.

\param arg
\a arg[0]
is the number of addition variables in this cummulative summation; i.e.,
<tt>m + n</tt>.
\n
\a arg[1]
is the number of subtraction variables in this cummulative summation; i.e.,
\c m.
\n
<tt>parameter[ arg[2] ]</tt>
is the parameter value \c q in this cummunative summation.
\n
<tt>arg[2+i]</tt>
for <tt>i = 1 , ... , m</tt> is the value <tt>x(i)</tt>.
\n
<tt>arg[2+arg[0]+i]</tt>
for <tt>i = 1 , ... , n</tt> is the value <tt>y(i)</tt>.

\param rev_jacobian
<tt>rev_jacobian[i_z]</tt>
is all false (true) if the Jabobian of G with respect to z must be zero
(may be non-zero).
\n
\n
For <tt>i = 1 , ... , m</tt>
<tt>rev_jacobian[ arg[2+i] ]</tt>
is all false (true) if the Jacobian with respect to <tt>x(i)</tt>
is zero (may be non-zero).
On input, it corresponds to the function G,
and on output it corresponds to the function H.
\n
\n
For <tt>i = 1 , ... , n</tt>
<tt>rev_jacobian[ arg[2+arg[0]+i] ]</tt>
is all false (true) if the Jacobian with respect to <tt>y(i)</tt>
is zero (may be non-zero).
On input, it corresponds to the function G,
and on output it corresponds to the function H.

\param rev_hes_sparsity
The set with index \a i_z in in \a rev_hes_sparsity
is the Hessian sparsity pattern for the fucntion G
where one of the partials derivative is with respect to z.
\n
\n
For <tt>i = 1 , ... , m</tt>
The set with index <tt>arg[2+i]</tt> in \a rev_hes_sparsity
is the Hessian sparsity pattern
where one of the partials derivative is with respect to <tt>x(i)</tt>.
On input, it corresponds to the function G,
and on output it corresponds to the function H.
\n
\n
For <tt>i = 1 , ... , n</tt>
The set with index <tt>arg[2+arg[0]+i]</tt> in \a rev_hes_sparsity
is the Hessian sparsity pattern
where one of the partials derivative is with respect to <tt>y(i)</tt>.
On input, it corresponds to the function G,
and on output it corresponds to the function H.
*/

template <class Vector_set>
inline void reverse_sparse_hessian_csum_op(
	size_t           i_z                 ,
	const addr_t*    arg                 ,
	bool*            rev_jacobian        ,
	Vector_set&      rev_hes_sparsity    )
{
	size_t i, j;
	i = arg[0] + arg[1];
	j = 2;
	while(i--)
	{	++j;
		CPPAD_ASSERT_UNKNOWN( size_t(arg[j]) < i_z );
		rev_hes_sparsity.binary_union(
		arg[j]             , // index in sparsity for result
		arg[j]             , // index in sparsity for left operand
		i_z                , // index for right operand
		rev_hes_sparsity     // sparsity vector for right operand
		);
		rev_jacobian[arg[j]] |= rev_jacobian[i_z];
	}
}

} } // END_CPPAD_LOCAL_NAMESPACE
# endif