/usr/include/cppad/local/sparse_internal.hpp is in cppad 2018.00.00.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | # ifndef CPPAD_LOCAL_SPARSE_INTERNAL_HPP
# define CPPAD_LOCAL_SPARSE_INTERNAL_HPP
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell
CppAD is distributed under multiple licenses. This distribution is under
the terms of the
GNU General Public License Version 3.
A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
// necessary definitions
# include <cppad/core/define.hpp>
# include <cppad/local/sparse_pack.hpp>
# include <cppad/local/sparse_list.hpp>
# include <cppad/local/sparse_sizevec.hpp>
namespace CppAD { namespace local { // BEGIN_CPPAD_LOCAL_NAMESPACE
/*!
\file sparse_internal.hpp
Routines that enable code to be independent of which internal spasity pattern
is used.
*/
// ---------------------------------------------------------------------------
/*!
Template structure used obtain the internal sparsity pattern type
form the corresponding element type.
The general form is not valid, must use a specialization.
\tparam Element_type
type of an element in the sparsity structrue.
\par <code>internal_sparsity<Element_type>::pattern_type</code>
is the type of the corresponding internal sparsity pattern.
*/
template <class Element_type> struct internal_sparsity;
/// Specilization for \c bool elements.
template <>
struct internal_sparsity<bool>
{
typedef sparse_pack pattern_type;
};
/// Specilization for <code>std::set<size_t></code> elements.
template <>
struct internal_sparsity< std::set<size_t> >
{
typedef sparse_list pattern_type;
};
// ---------------------------------------------------------------------------
/*!
Update the internal sparsity pattern for a sub-set of rows
\tparam SizeVector
The type used for index sparsity patterns. This is a simple vector
with elements of type size_t.
\tparam InternalSparsitiy
The type used for intenal sparsity patterns. This can be either
sparse_pack or sparse_list.
\param zero_empty
If this is true, the internal sparstity pattern corresponds to row zero
must be empty on input and will be emtpy output; i.e., any corresponding
values in pattern_in will be ignored.
\param input_empty
If this is true, the initial sparsity pattern for row
internal_index[i] is empty for all i.
In this case, one is setting the sparsity patterns; i.e.,
the output pattern in row internal_index[i] is the corresponding
entries in pattern.
\param transpose
If this is true, pattern_in is transposed.
\param internal_index
This specifies the sub-set of rows in internal_sparsity that we are updating.
If traspose is false (true),
this is the mapping from row (column) index in pattern_in to the corresponding
row index in the internal_pattern.
\param internal_pattern
On input, the number of sets internal_pattern.n_set(),
and possible elements internal_pattern.end(), have been set.
If input_empty is true, and all of the sets
in internal_index are empty on input.
On output, the entries in pattern_in are added to internal_pattern.
To be specific, suppose transpose is false, and (i, j) is a possibly
non-zero entry in pattern_in, the entry (internal_index[i], j) is added
to internal_pattern.
On the other hand, if transpose is true,
the entry (internal_index[j], i) is added to internal_pattern.
\param pattern_in
This is the sparsity pattern for variables,
or its transpose, depending on the value of transpose.
*/
template <class SizeVector, class InternalSparsity>
void set_internal_sparsity(
bool zero_empty ,
bool input_empty ,
bool transpose ,
const vector<size_t>& internal_index ,
InternalSparsity& internal_pattern ,
const sparse_rc<SizeVector>& pattern_in )
{
size_t nr = internal_index.size();
# ifndef NDEBUG
size_t nc = internal_pattern.end();
if( transpose )
{ CPPAD_ASSERT_UNKNOWN( pattern_in.nr() == nc );
CPPAD_ASSERT_UNKNOWN( pattern_in.nc() == nr );
}
else
{ CPPAD_ASSERT_UNKNOWN( pattern_in.nr() == nr );
CPPAD_ASSERT_UNKNOWN( pattern_in.nc() == nc );
}
if( input_empty ) for(size_t i = 0; i < nr; i++)
{ size_t i_var = internal_index[i];
CPPAD_ASSERT_UNKNOWN( internal_pattern.number_elements(i_var) == 0 );
}
# endif
const SizeVector& row( pattern_in.row() );
const SizeVector& col( pattern_in.col() );
size_t nnz = row.size();
for(size_t k = 0; k < nnz; k++)
{ size_t r = row[k];
size_t c = col[k];
if( transpose )
std::swap(r, c);
//
size_t i_var = internal_index[r];
CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
CPPAD_ASSERT_UNKNOWN( c < nc );
bool ignore = zero_empty && i_var == 0;
if( ! ignore )
internal_pattern.post_element( internal_index[r], c );
}
// process posts
for(size_t i = 0; i < nr; ++i)
internal_pattern.process_post( internal_index[i] );
}
template <class InternalSparsity>
void set_internal_sparsity(
bool zero_empty ,
bool input_empty ,
bool transpose ,
const vector<size_t>& internal_index ,
InternalSparsity& internal_pattern ,
const vectorBool& pattern_in )
{ size_t nr = internal_index.size();
size_t nc = internal_pattern.end();
# ifndef NDEBUG
CPPAD_ASSERT_UNKNOWN( pattern_in.size() == nr * nc );
if( input_empty ) for(size_t i = 0; i < nr; i++)
{ size_t i_var = internal_index[i];
CPPAD_ASSERT_UNKNOWN( internal_pattern.number_elements(i_var) == 0 );
}
# endif
for(size_t i = 0; i < nr; i++)
{ for(size_t j = 0; j < nc; j++)
{ bool flag = pattern_in[i * nc + j];
if( transpose )
flag = pattern_in[j * nr + i];
if( flag )
{ size_t i_var = internal_index[i];
CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
CPPAD_ASSERT_UNKNOWN( j < nc );
bool ignore = zero_empty && i_var == 0;
if( ! ignore )
internal_pattern.post_element( i_var, j);
}
}
}
// process posts
for(size_t i = 0; i < nr; ++i)
internal_pattern.process_post( internal_index[i] );
return;
}
template <class InternalSparsity>
void set_internal_sparsity(
bool zero_empty ,
bool input_empty ,
bool transpose ,
const vector<size_t>& internal_index ,
InternalSparsity& internal_pattern ,
const vector<bool>& pattern_in )
{ size_t nr = internal_index.size();
size_t nc = internal_pattern.end();
# ifndef NDEBUG
CPPAD_ASSERT_UNKNOWN( pattern_in.size() == nr * nc );
if( input_empty ) for(size_t i = 0; i < nr; i++)
{ size_t i_var = internal_index[i];
CPPAD_ASSERT_UNKNOWN( internal_pattern.number_elements(i_var) == 0 );
}
# endif
for(size_t i = 0; i < nr; i++)
{ for(size_t j = 0; j < nc; j++)
{ bool flag = pattern_in[i * nc + j];
if( transpose )
flag = pattern_in[j * nr + i];
if( flag )
{ size_t i_var = internal_index[i];
CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
CPPAD_ASSERT_UNKNOWN( j < nc );
bool ignore = zero_empty && i_var == 0;
if( ! ignore )
internal_pattern.post_element( i_var, j);
}
}
}
// process posts
for(size_t i = 0; i < nr; ++i)
internal_pattern.process_post( internal_index[i] );
return;
}
template <class InternalSparsity>
void set_internal_sparsity(
bool zero_empty ,
bool input_empty ,
bool transpose ,
const vector<size_t>& internal_index ,
InternalSparsity& internal_pattern ,
const vector< std::set<size_t> >& pattern_in )
{ size_t nr = internal_index.size();
size_t nc = internal_pattern.end();
# ifndef NDEBUG
if( input_empty ) for(size_t i = 0; i < nr; i++)
{ size_t i_var = internal_index[i];
CPPAD_ASSERT_UNKNOWN( internal_pattern.number_elements(i_var) == 0 );
}
# endif
if( transpose )
{ CPPAD_ASSERT_UNKNOWN( pattern_in.size() == nc );
for(size_t j = 0; j < nc; j++)
{ std::set<size_t>::const_iterator itr( pattern_in[j].begin() );
while( itr != pattern_in[j].end() )
{ size_t i = *itr;
size_t i_var = internal_index[i];
CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
CPPAD_ASSERT_UNKNOWN( j < nc );
bool ignore = zero_empty && i_var == 0;
if( ! ignore )
internal_pattern.post_element( i_var, j);
++itr;
}
}
}
else
{ CPPAD_ASSERT_UNKNOWN( pattern_in.size() == nr );
for(size_t i = 0; i < nr; i++)
{ std::set<size_t>::const_iterator itr( pattern_in[i].begin() );
while( itr != pattern_in[i].end() )
{ size_t j = *itr;
size_t i_var = internal_index[i];
CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
CPPAD_ASSERT_UNKNOWN( j < nc );
bool ignore = zero_empty && i_var == 0;
if( ! ignore )
internal_pattern.post_element( i_var, j);
++itr;
}
}
}
// process posts
for(size_t i = 0; i < nr; ++i)
internal_pattern.process_post( internal_index[i] );
return;
}
// ---------------------------------------------------------------------------
/*!
Get sparsity pattern for a sub-set of variables
\tparam SizeVector
The type used for index sparsity patterns. This is a simple vector
with elements of type size_t.
\tparam InternalSparsitiy
The type used for intenal sparsity patterns. This can be either
sparse_pack or sparse_list.
\param transpose
If this is true, pattern_out is transposed.
\param internal_index
If transpose is false (true)
this is the mapping from row (column) an index in pattern_out
to the corresponding row index in internal_pattern.
\param internal_pattern
This is the internal sparsity pattern.
\param pattern_out
The input value of pattern_out does not matter.
Upon return it is an index sparsity pattern for each of the variables
in internal_index, or its transpose, depending on the value of transpose.
*/
template <class SizeVector, class InternalSparsity>
void get_internal_sparsity(
bool transpose ,
const vector<size_t>& internal_index ,
const InternalSparsity& internal_pattern ,
sparse_rc<SizeVector>& pattern_out )
{ typedef typename InternalSparsity::const_iterator iterator;
// number variables
size_t nr = internal_index.size();
// column size of interanl sparstiy pattern
size_t nc = internal_pattern.end();
// determine nnz, the number of possibly non-zero index pairs
size_t nnz = 0;
for(size_t i = 0; i < nr; i++)
{ CPPAD_ASSERT_UNKNOWN( internal_index[i] < internal_pattern.n_set() );
iterator itr(internal_pattern, internal_index[i]);
size_t j = *itr;
while( j < nc )
{ ++nnz;
j = *(++itr);
}
}
// transposed
if( transpose )
{ pattern_out.resize(nc, nr, nnz);
//
size_t k = 0;
for(size_t i = 0; i < nr; i++)
{ iterator itr(internal_pattern, internal_index[i]);
size_t j = *itr;
while( j < nc )
{ pattern_out.set(k++, j, i);
j = *(++itr);
}
}
return;
}
// not transposed
pattern_out.resize(nr, nc, nnz);
//
size_t k = 0;
for(size_t i = 0; i < nr; i++)
{ iterator itr(internal_pattern, internal_index[i]);
size_t j = *itr;
while( j < nc )
{ pattern_out.set(k++, i, j);
j = *(++itr);
}
}
return;
}
template <class InternalSparsity>
void get_internal_sparsity(
bool transpose ,
const vector<size_t>& internal_index ,
const InternalSparsity& internal_pattern ,
vectorBool& pattern_out )
{ typedef typename InternalSparsity::const_iterator iterator;
// number variables
size_t nr = internal_index.size();
//
// column size of interanl sparstiy pattern
size_t nc = internal_pattern.end();
//
pattern_out.resize(nr * nc);
for(size_t ij = 0; ij < nr * nc; ij++)
pattern_out[ij] = false;
//
for(size_t i = 0; i < nr; i++)
{ CPPAD_ASSERT_UNKNOWN( internal_index[i] < internal_pattern.n_set() );
iterator itr(internal_pattern, internal_index[i]);
size_t j = *itr;
while( j < nc )
{ if( transpose )
pattern_out[j * nr + i] = true;
else
pattern_out[i * nc + j] = true;
j = *(++itr);
}
}
return;
}
template <class InternalSparsity>
void get_internal_sparsity(
bool transpose ,
const vector<size_t>& internal_index ,
const InternalSparsity& internal_pattern ,
vector<bool>& pattern_out )
{ typedef typename InternalSparsity::const_iterator iterator;
// number variables
size_t nr = internal_index.size();
//
// column size of interanl sparstiy pattern
size_t nc = internal_pattern.end();
//
pattern_out.resize(nr * nc);
for(size_t ij = 0; ij < nr * nc; ij++)
pattern_out[ij] = false;
//
for(size_t i = 0; i < nr; i++)
{ CPPAD_ASSERT_UNKNOWN( internal_index[i] < internal_pattern.n_set() );
iterator itr(internal_pattern, internal_index[i]);
size_t j = *itr;
while( j < nc )
{ if( transpose )
pattern_out[j * nr + i] = true;
else
pattern_out[i * nc + j] = true;
j = *(++itr);
}
}
return;
}
template <class InternalSparsity>
void get_internal_sparsity(
bool transpose ,
const vector<size_t>& internal_index ,
const InternalSparsity& internal_pattern ,
vector< std::set<size_t> >& pattern_out )
{ typedef typename InternalSparsity::const_iterator iterator;
// number variables
size_t nr = internal_index.size();
//
// column size of interanl sparstiy pattern
size_t nc = internal_pattern.end();
//
if( transpose )
pattern_out.resize(nc);
else
pattern_out.resize(nr);
for(size_t k = 0; k < pattern_out.size(); k++)
pattern_out[k].clear();
//
for(size_t i = 0; i < nr; i++)
{ CPPAD_ASSERT_UNKNOWN( internal_index[i] < internal_pattern.n_set() );
iterator itr(internal_pattern, internal_index[i]);
size_t j = *itr;
while( j < nc )
{ if( transpose )
pattern_out[j].insert(i);
else
pattern_out[i].insert(j);
j = *(++itr);
}
}
return;
}
} } // END_CPPAD_LOCAL_NAMESPACE
# endif
|