This file is indexed.

/usr/include/cppad/local/sparse_internal.hpp is in cppad 2018.00.00.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# ifndef CPPAD_LOCAL_SPARSE_INTERNAL_HPP
# define CPPAD_LOCAL_SPARSE_INTERNAL_HPP

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */

// necessary definitions
# include <cppad/core/define.hpp>
# include <cppad/local/sparse_pack.hpp>
# include <cppad/local/sparse_list.hpp>
# include <cppad/local/sparse_sizevec.hpp>

namespace CppAD { namespace local { // BEGIN_CPPAD_LOCAL_NAMESPACE
/*!
\file sparse_internal.hpp
Routines that enable code to be independent of which internal spasity pattern
is used.
*/
// ---------------------------------------------------------------------------
/*!
Template structure used obtain the internal sparsity pattern type
form the corresponding element type.
The general form is not valid, must use a specialization.

\tparam Element_type
type of an element in the sparsity structrue.

\par <code>internal_sparsity<Element_type>::pattern_type</code>
is the type of the corresponding internal sparsity pattern.
*/
template <class Element_type> struct internal_sparsity;
/// Specilization for \c bool elements.
template <>
struct internal_sparsity<bool>
{
	typedef sparse_pack pattern_type;
};
/// Specilization for <code>std::set<size_t></code> elements.
template <>
struct internal_sparsity< std::set<size_t> >
{
	typedef sparse_list pattern_type;
};
// ---------------------------------------------------------------------------
/*!
Update the internal sparsity pattern for a sub-set of rows

\tparam SizeVector
The type used for index sparsity patterns. This is a simple vector
with elements of type size_t.

\tparam InternalSparsitiy
The type used for intenal sparsity patterns. This can be either
sparse_pack or sparse_list.

\param zero_empty
If this is true, the internal sparstity pattern corresponds to row zero
must be empty on input and will be emtpy output; i.e., any corresponding
values in pattern_in will be ignored.

\param input_empty
If this is true, the initial sparsity pattern for row
internal_index[i] is empty for all i.
In this case, one is setting the sparsity patterns; i.e.,
the output pattern in row internal_index[i] is the corresponding
entries in pattern.

\param transpose
If this is true, pattern_in is transposed.

\param internal_index
This specifies the sub-set of rows in internal_sparsity that we are updating.
If traspose is false (true),
this is the mapping from row (column) index in pattern_in to the corresponding
row index in the internal_pattern.

\param internal_pattern
On input, the number of sets internal_pattern.n_set(),
and possible elements internal_pattern.end(), have been set.
If input_empty is true, and all of the sets
in internal_index are empty on input.
On output, the entries in pattern_in are added to internal_pattern.
To be specific, suppose transpose is false, and (i, j) is a possibly
non-zero entry in pattern_in, the entry (internal_index[i], j) is added
to internal_pattern.
On the other hand, if transpose is true,
the entry (internal_index[j], i) is added to internal_pattern.

\param pattern_in
This is the sparsity pattern for variables,
or its transpose, depending on the value of transpose.
*/
template <class SizeVector, class InternalSparsity>
void set_internal_sparsity(
	bool                          zero_empty       ,
	bool                          input_empty      ,
	bool                          transpose        ,
	const vector<size_t>&         internal_index   ,
	InternalSparsity&             internal_pattern ,
	const sparse_rc<SizeVector>&  pattern_in       )
{
	size_t nr = internal_index.size();
# ifndef NDEBUG
	size_t nc = internal_pattern.end();
	if( transpose )
	{	CPPAD_ASSERT_UNKNOWN( pattern_in.nr() == nc );
		CPPAD_ASSERT_UNKNOWN( pattern_in.nc() == nr );
	}
	else
	{	CPPAD_ASSERT_UNKNOWN( pattern_in.nr() == nr );
		CPPAD_ASSERT_UNKNOWN( pattern_in.nc() == nc );
	}
	if( input_empty ) for(size_t i = 0; i < nr; i++)
	{	size_t i_var = internal_index[i];
		CPPAD_ASSERT_UNKNOWN( internal_pattern.number_elements(i_var) == 0 );
	}
# endif
	const SizeVector& row( pattern_in.row() );
	const SizeVector& col( pattern_in.col() );
	size_t nnz = row.size();
	for(size_t k = 0; k < nnz; k++)
	{	size_t r = row[k];
		size_t c = col[k];
		if( transpose )
			std::swap(r, c);
		//
		size_t i_var = internal_index[r];
		CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
		CPPAD_ASSERT_UNKNOWN( c < nc );
		bool ignore  = zero_empty && i_var == 0;
		if( ! ignore )
			internal_pattern.post_element( internal_index[r], c );
	}
	// process posts
	for(size_t i = 0; i < nr; ++i)
		internal_pattern.process_post( internal_index[i] );
}
template <class InternalSparsity>
void set_internal_sparsity(
	bool                          zero_empty       ,
	bool                          input_empty      ,
	bool                          transpose        ,
	const vector<size_t>&         internal_index   ,
	InternalSparsity&             internal_pattern ,
	const vectorBool&             pattern_in       )
{	size_t nr = internal_index.size();
	size_t nc = internal_pattern.end();
# ifndef NDEBUG
	CPPAD_ASSERT_UNKNOWN( pattern_in.size() == nr * nc );
	if( input_empty ) for(size_t i = 0; i < nr; i++)
	{	size_t i_var = internal_index[i];
		CPPAD_ASSERT_UNKNOWN( internal_pattern.number_elements(i_var) == 0 );
	}
# endif
	for(size_t i = 0; i < nr; i++)
	{	for(size_t j = 0; j < nc; j++)
		{	bool flag = pattern_in[i * nc + j];
			if( transpose )
				flag = pattern_in[j * nr + i];
			if( flag )
			{	size_t i_var = internal_index[i];
				CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
				CPPAD_ASSERT_UNKNOWN( j < nc );
				bool ignore  = zero_empty && i_var == 0;
				if( ! ignore )
					internal_pattern.post_element( i_var, j);
			}
		}
	}
	// process posts
	for(size_t i = 0; i < nr; ++i)
		internal_pattern.process_post( internal_index[i] );
	return;
}
template <class InternalSparsity>
void set_internal_sparsity(
	bool                          zero_empty       ,
	bool                          input_empty      ,
	bool                          transpose        ,
	const vector<size_t>&         internal_index   ,
	InternalSparsity&             internal_pattern ,
	const vector<bool>&           pattern_in       )
{	size_t nr = internal_index.size();
	size_t nc = internal_pattern.end();
# ifndef NDEBUG
	CPPAD_ASSERT_UNKNOWN( pattern_in.size() == nr * nc );
	if( input_empty ) for(size_t i = 0; i < nr; i++)
	{	size_t i_var = internal_index[i];
		CPPAD_ASSERT_UNKNOWN( internal_pattern.number_elements(i_var) == 0 );
	}
# endif
	for(size_t i = 0; i < nr; i++)
	{	for(size_t j = 0; j < nc; j++)
		{	bool flag = pattern_in[i * nc + j];
			if( transpose )
				flag = pattern_in[j * nr + i];
			if( flag )
			{	size_t i_var = internal_index[i];
				CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
				CPPAD_ASSERT_UNKNOWN( j < nc );
				bool ignore  = zero_empty && i_var == 0;
				if( ! ignore )
					internal_pattern.post_element( i_var, j);
			}
		}
	}
	// process posts
	for(size_t i = 0; i < nr; ++i)
		internal_pattern.process_post( internal_index[i] );
	return;
}
template <class InternalSparsity>
void set_internal_sparsity(
	bool                               zero_empty       ,
	bool                               input_empty      ,
	bool                               transpose        ,
	const vector<size_t>&              internal_index   ,
	InternalSparsity&                  internal_pattern ,
	const vector< std::set<size_t> >&  pattern_in       )
{	size_t nr = internal_index.size();
	size_t nc = internal_pattern.end();
# ifndef NDEBUG
	if( input_empty ) for(size_t i = 0; i < nr; i++)
	{	size_t i_var = internal_index[i];
		CPPAD_ASSERT_UNKNOWN( internal_pattern.number_elements(i_var) == 0 );
	}
# endif
	if( transpose )
	{	CPPAD_ASSERT_UNKNOWN( pattern_in.size() == nc );
		for(size_t j = 0; j < nc; j++)
		{	std::set<size_t>::const_iterator itr( pattern_in[j].begin() );
			while( itr != pattern_in[j].end() )
			{	size_t i = *itr;
				size_t i_var = internal_index[i];
				CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
				CPPAD_ASSERT_UNKNOWN( j < nc );
				bool ignore  = zero_empty && i_var == 0;
				if( ! ignore )
					internal_pattern.post_element( i_var, j);
				++itr;
			}
		}
	}
	else
	{	CPPAD_ASSERT_UNKNOWN( pattern_in.size() == nr );
		for(size_t i = 0; i < nr; i++)
		{	std::set<size_t>::const_iterator itr( pattern_in[i].begin() );
			while( itr != pattern_in[i].end() )
			{	size_t j = *itr;
				size_t i_var = internal_index[i];
				CPPAD_ASSERT_UNKNOWN( i_var < internal_pattern.n_set() );
				CPPAD_ASSERT_UNKNOWN( j < nc );
				bool ignore  = zero_empty && i_var == 0;
				if( ! ignore )
					internal_pattern.post_element( i_var, j);
				++itr;
			}
		}
	}
	// process posts
	for(size_t i = 0; i < nr; ++i)
		internal_pattern.process_post( internal_index[i] );
	return;
}
// ---------------------------------------------------------------------------
/*!
Get sparsity pattern for a sub-set of variables

\tparam SizeVector
The type used for index sparsity patterns. This is a simple vector
with elements of type size_t.

\tparam InternalSparsitiy
The type used for intenal sparsity patterns. This can be either
sparse_pack or sparse_list.

\param transpose
If this is true, pattern_out is transposed.

\param internal_index
If transpose is false (true)
this is the mapping from row (column) an index in pattern_out
to the corresponding row index in internal_pattern.

\param internal_pattern
This is the internal sparsity pattern.

\param pattern_out
The input value of pattern_out does not matter.
Upon return it is an index sparsity pattern for each of the variables
in internal_index, or its transpose, depending on the value of transpose.
*/
template <class SizeVector, class InternalSparsity>
void get_internal_sparsity(
	bool                          transpose         ,
	const vector<size_t>&         internal_index    ,
	const InternalSparsity&       internal_pattern  ,
	sparse_rc<SizeVector>&        pattern_out        )
{	typedef typename InternalSparsity::const_iterator iterator;
	// number variables
	size_t nr = internal_index.size();
	// column size of interanl sparstiy pattern
	size_t nc = internal_pattern.end();
	// determine nnz, the number of possibly non-zero index pairs
	size_t nnz = 0;
	for(size_t i = 0; i < nr; i++)
	{	CPPAD_ASSERT_UNKNOWN( internal_index[i] < internal_pattern.n_set() );
		iterator itr(internal_pattern, internal_index[i]);
		size_t j = *itr;
		while( j < nc )
		{	++nnz;
			j = *(++itr);
		}
	}
	// transposed
	if( transpose )
	{	pattern_out.resize(nc, nr, nnz);
		//
		size_t k = 0;
		for(size_t i = 0; i < nr; i++)
		{	iterator itr(internal_pattern, internal_index[i]);
			size_t j = *itr;
			while( j < nc )
			{	pattern_out.set(k++, j, i);
				j = *(++itr);
			}
		}
		return;
	}
	// not transposed
	pattern_out.resize(nr, nc, nnz);
	//
	size_t k = 0;
	for(size_t i = 0; i < nr; i++)
	{	iterator itr(internal_pattern, internal_index[i]);
		size_t j = *itr;
		while( j < nc )
		{	pattern_out.set(k++, i, j);
			j = *(++itr);
		}
	}
	return;
}
template <class InternalSparsity>
void get_internal_sparsity(
	bool                          transpose         ,
	const vector<size_t>&         internal_index    ,
	const InternalSparsity&       internal_pattern  ,
	vectorBool&                   pattern_out       )
{	typedef typename InternalSparsity::const_iterator iterator;
	// number variables
	size_t nr = internal_index.size();
	//
	// column size of interanl sparstiy pattern
	size_t nc = internal_pattern.end();
	//
	pattern_out.resize(nr * nc);
	for(size_t ij = 0; ij < nr * nc; ij++)
		pattern_out[ij] = false;
	//
	for(size_t i = 0; i < nr; i++)
	{	CPPAD_ASSERT_UNKNOWN( internal_index[i] < internal_pattern.n_set() );
		iterator itr(internal_pattern, internal_index[i]);
		size_t j = *itr;
		while( j < nc )
		{	if( transpose )
				pattern_out[j * nr + i] = true;
			else
				pattern_out[i * nc + j] = true;
			j = *(++itr);
		}
	}
	return;
}
template <class InternalSparsity>
void get_internal_sparsity(
	bool                          transpose         ,
	const vector<size_t>&         internal_index    ,
	const InternalSparsity&       internal_pattern  ,
	vector<bool>&                 pattern_out       )
{	typedef typename InternalSparsity::const_iterator iterator;
	// number variables
	size_t nr = internal_index.size();
	//
	// column size of interanl sparstiy pattern
	size_t nc = internal_pattern.end();
	//
	pattern_out.resize(nr * nc);
	for(size_t ij = 0; ij < nr * nc; ij++)
		pattern_out[ij] = false;
	//
	for(size_t i = 0; i < nr; i++)
	{	CPPAD_ASSERT_UNKNOWN( internal_index[i] < internal_pattern.n_set() );
		iterator itr(internal_pattern, internal_index[i]);
		size_t j = *itr;
		while( j < nc )
		{	if( transpose )
				pattern_out[j * nr + i] = true;
			else
				pattern_out[i * nc + j] = true;
			j = *(++itr);
		}
	}
	return;
}
template <class InternalSparsity>
void get_internal_sparsity(
	bool                          transpose         ,
	const vector<size_t>&         internal_index    ,
	const InternalSparsity&       internal_pattern  ,
	vector< std::set<size_t> >&   pattern_out       )
{	typedef typename InternalSparsity::const_iterator iterator;
	// number variables
	size_t nr = internal_index.size();
	//
	// column size of interanl sparstiy pattern
	size_t nc = internal_pattern.end();
	//
	if( transpose )
		pattern_out.resize(nc);
	else
		pattern_out.resize(nr);
	for(size_t k = 0; k < pattern_out.size(); k++)
		pattern_out[k].clear();
	//
	for(size_t i = 0; i < nr; i++)
	{	CPPAD_ASSERT_UNKNOWN( internal_index[i] < internal_pattern.n_set() );
		iterator itr(internal_pattern, internal_index[i]);
		size_t j = *itr;
		while( j < nc )
		{	if( transpose )
				pattern_out[j].insert(i);
			else
				pattern_out[i].insert(j);
			j = *(++itr);
		}
	}
	return;
}



} } // END_CPPAD_LOCAL_NAMESPACE

# endif