This file is indexed.

/usr/include/cppad/utility/ode_gear.hpp is in cppad 2018.00.00.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# ifndef CPPAD_UTILITY_ODE_GEAR_HPP
# define CPPAD_UTILITY_ODE_GEAR_HPP

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */

/*
$begin OdeGear$$
$spell
	cppad.hpp
	Jan
	bool
	const
	CppAD
	dep
$$


$section An Arbitrary Order Gear Method$$
$mindex OdeGear Ode stiff differential equation$$

$head Syntax$$
$codei%# include <cppad/utility/ode_gear.hpp>
%$$
$codei%OdeGear(%F%, %m%, %n%, %T%, %X%, %e%)%$$


$head Purpose$$
This routine applies
$cref/Gear's Method/OdeGear/Gear's Method/$$
to solve an explicit set of ordinary differential equations.
We are given
$latex f : \B{R} \times \B{R}^n \rightarrow \B{R}^n$$ be a smooth function.
This routine solves the following initial value problem
$latex \[
\begin{array}{rcl}
	x( t_{m-1} )  & = & x^0    \\
	x^\prime (t)  & = & f[t , x(t)]
\end{array}
\] $$
for the value of $latex x( t_m )$$.
If your set of  ordinary differential equations are not stiff
an explicit method may be better (perhaps $cref Runge45$$.)

$head Include$$
The file $code cppad/ode_gear.hpp$$ is included by $code cppad/cppad.hpp$$
but it can also be included separately with out the rest of
the $code CppAD$$ routines.

$head Fun$$
The class $icode Fun$$
and the object $icode F$$ satisfy the prototype
$codei%
	%Fun% &%F%
%$$
This must support the following set of calls
$codei%
	%F%.Ode(%t%, %x%, %f%)
	%F%.Ode_dep(%t%, %x%, %f_x%)
%$$

$subhead t$$
The argument $icode t$$ has prototype
$codei%
	const %Scalar% &%t%
%$$
(see description of $cref/Scalar/OdeGear/Scalar/$$ below).

$subhead x$$
The argument $icode x$$ has prototype
$codei%
	const %Vector% &%x%
%$$
and has size $icode n$$
(see description of $cref/Vector/OdeGear/Vector/$$ below).

$subhead f$$
The argument $icode f$$ to $icode%F%.Ode%$$ has prototype
$codei%
	%Vector% &%f%
%$$
On input and output, $icode f$$ is a vector of size $icode n$$
and the input values of the elements of $icode f$$ do not matter.
On output,
$icode f$$ is set equal to $latex f(t, x)$$
(see $icode f(t, x)$$ in $cref/Purpose/OdeGear/Purpose/$$).

$subhead f_x$$
The argument $icode f_x$$ has prototype
$codei%
	%Vector% &%f_x%
%$$
On input and output, $icode f_x$$ is a vector of size $latex n * n$$
and the input values of the elements of $icode f_x$$ do not matter.
On output,
$latex \[
	f\_x [i * n + j] = \partial_{x(j)} f_i ( t , x )
\] $$

$subhead Warning$$
The arguments $icode f$$, and $icode f_x$$
must have a call by reference in their prototypes; i.e.,
do not forget the $code &$$ in the prototype for
$icode f$$ and $icode f_x$$.

$head m$$
The argument $icode m$$ has prototype
$codei%
	size_t %m%
%$$
It specifies the order (highest power of $latex t$$)
used to represent the function $latex x(t)$$ in the multi-step method.
Upon return from $code OdeGear$$,
the $th i$$ component of the polynomial is defined by
$latex \[
	p_i ( t_j ) = X[ j * n + i ]
\] $$
for $latex j = 0 , \ldots , m$$ (where $latex 0 \leq i < n$$).
The value of $latex m$$ must be greater than or equal one.

$head n$$
The argument $icode n$$ has prototype
$codei%
	size_t %n%
%$$
It specifies the range space dimension of the
vector valued function $latex x(t)$$.

$head T$$
The argument $icode T$$ has prototype
$codei%
	const %Vector% &%T%
%$$
and size greater than or equal to $latex m+1$$.
For $latex j = 0 , \ldots m$$, $latex T[j]$$ is the time
corresponding to time corresponding
to a previous point in the multi-step method.
The value $latex T[m]$$ is the time
of the next point in the multi-step method.
The array $latex T$$ must be monotone increasing; i.e.,
$latex T[j] < T[j+1]$$.
Above and below we often use the shorthand $latex t_j$$ for $latex T[j]$$.


$head X$$
The argument $icode X$$ has the prototype
$codei%
	%Vector% &%X%
%$$
and size greater than or equal to $latex (m+1) * n$$.
On input to $code OdeGear$$,
for $latex j = 0 , \ldots , m-1$$, and
$latex i = 0 , \ldots , n-1$$
$latex \[
	X[ j * n + i ] = x_i ( t_j )
\] $$
Upon return from $code OdeGear$$,
for $latex i = 0 , \ldots , n-1$$
$latex \[
	X[ m * n + i ] \approx x_i ( t_m )
\] $$

$head e$$
The vector $icode e$$ is an approximate error bound for the result; i.e.,
$latex \[
	e[i] \geq | X[ m * n + i ] - x_i ( t_m ) |
\] $$
The order of this approximation is one less than the order of
the solution; i.e.,
$latex \[
	e = O ( h^m )
\] $$
where $latex h$$ is the maximum of $latex t_{j+1} - t_j$$.

$head Scalar$$
The type $icode Scalar$$ must satisfy the conditions
for a $cref NumericType$$ type.
The routine $cref CheckNumericType$$ will generate an error message
if this is not the case.
In addition, the following operations must be defined for
$icode Scalar$$ objects $icode a$$ and $icode b$$:

$table
$bold Operation$$ $cnext $bold Description$$  $rnext
$icode%a% < %b%$$ $cnext
	less than operator (returns a $code bool$$ object)
$tend

$head Vector$$
The type $icode Vector$$ must be a $cref SimpleVector$$ class with
$cref/elements of type Scalar/SimpleVector/Elements of Specified Type/$$.
The routine $cref CheckSimpleVector$$ will generate an error message
if this is not the case.

$head Example$$
$children%
	example/utility/ode_gear.cpp
%$$
The file
$cref ode_gear.cpp$$
contains an example and test a test of using this routine.
It returns true if it succeeds and false otherwise.

$head Source Code$$
The source code for this routine is in the file
$code cppad/ode_gear.hpp$$.

$head Theory$$
For this discussion we use the shorthand $latex x_j$$
for the value $latex x ( t_j ) \in \B{R}^n$$ which is not to be confused
with $latex x_i (t) \in \B{R}$$ in the notation above.
The interpolating polynomial $latex p(t)$$ is given by
$latex \[
p(t) =
\sum_{j=0}^m
x_j
\frac{
	\prod_{i \neq j} ( t - t_i )
}{
	\prod_{i \neq j} ( t_j - t_i )
}
\] $$
The derivative $latex p^\prime (t)$$ is given by
$latex \[
p^\prime (t) =
\sum_{j=0}^m
x_j
\frac{
	\sum_{i \neq j} \prod_{k \neq i,j} ( t - t_k )
}{
	\prod_{k \neq j} ( t_j - t_k )
}
\] $$
Evaluating the derivative at the point $latex t_\ell$$ we have
$latex \[
\begin{array}{rcl}
p^\prime ( t_\ell ) & = &
x_\ell
\frac{
	\sum_{i \neq \ell} \prod_{k \neq i,\ell} ( t_\ell - t_k )
}{
	\prod_{k \neq \ell} ( t_\ell - t_k )
}
+
\sum_{j \neq \ell}
x_j
\frac{
	\sum_{i \neq j} \prod_{k \neq i,j} ( t_\ell - t_k )
}{
	\prod_{k \neq j} ( t_j - t_k )
}
\\
& = &
x_\ell
\sum_{i \neq \ell}
\frac{ 1 }{ t_\ell - t_i }
+
\sum_{j \neq \ell}
x_j
\frac{
	\prod_{k \neq \ell,j} ( t_\ell - t_k )
}{
	\prod_{k \neq j} ( t_j - t_k )
}
\\
& = &
x_\ell
\sum_{k \neq \ell} ( t_\ell - t_k )^{-1}
+
\sum_{j \neq \ell}
x_j
( t_j - t_\ell )^{-1}
\prod_{k \neq \ell ,j} ( t_\ell - t_k ) / ( t_j - t_k )
\end{array}
\] $$
We define the vector $latex \alpha \in \B{R}^{m+1}$$ by
$latex \[
\alpha_j = \left\{ \begin{array}{ll}
\sum_{k \neq m} ( t_m - t_k )^{-1}
	& {\rm if} \; j = m
\\
( t_j - t_m )^{-1}
\prod_{k \neq m,j} ( t_m - t_k ) / ( t_j - t_k )
	& {\rm otherwise}
\end{array} \right.
\] $$
It follows that
$latex \[
	p^\prime ( t_m ) = \alpha_0 x_0 + \cdots + \alpha_m x_m
\] $$
Gear's method determines $latex x_m$$ by solving the following
nonlinear equation
$latex \[
	f( t_m , x_m ) = \alpha_0 x_0 + \cdots + \alpha_m x_m
\] $$
Newton's method for solving this equation determines iterates,
which we denote by $latex x_m^k$$, by solving the following affine
approximation of the equation above
$latex \[
\begin{array}{rcl}
f( t_m , x_m^{k-1} ) + \partial_x f( t_m , x_m^{k-1} ) ( x_m^k - x_m^{k-1} )
& = &
\alpha_0 x_0^k + \alpha_1 x_1 + \cdots + \alpha_m x_m
\\
\left[ \alpha_m I - \partial_x f( t_m , x_m^{k-1} ) \right]  x_m
& = &
\left[
f( t_m , x_m^{k-1} ) - \partial_x f( t_m , x_m^{k-1} ) x_m^{k-1}
- \alpha_0 x_0 - \cdots - \alpha_{m-1} x_{m-1}
\right]
\end{array}
\] $$
In order to initialize Newton's method; i.e. choose $latex x_m^0$$
we define the vector $latex \beta \in \B{R}^{m+1}$$ by
$latex \[
\beta_j = \left\{ \begin{array}{ll}
\sum_{k \neq m-1} ( t_{m-1} - t_k )^{-1}
	& {\rm if} \; j = m-1
\\
( t_j - t_{m-1} )^{-1}
\prod_{k \neq m-1,j} ( t_{m-1} - t_k ) / ( t_j - t_k )
	& {\rm otherwise}
\end{array} \right.
\] $$
It follows that
$latex \[
	p^\prime ( t_{m-1} ) = \beta_0 x_0 + \cdots + \beta_m x_m
\] $$
We solve the following approximation of the equation above to determine
$latex x_m^0$$:
$latex \[
	f( t_{m-1} , x_{m-1} ) =
	\beta_0 x_0 + \cdots + \beta_{m-1} x_{m-1} + \beta_m x_m^0
\] $$


$head Gear's Method$$
C. W. Gear,
``Simultaneous Numerical Solution of Differential-Algebraic Equations,''
IEEE Transactions on Circuit Theory,
vol. 18, no. 1, pp. 89-95, Jan. 1971.


$end
--------------------------------------------------------------------------
*/

# include <cstddef>
# include <cppad/core/cppad_assert.hpp>
# include <cppad/utility/check_simple_vector.hpp>
# include <cppad/utility/check_numeric_type.hpp>
# include <cppad/utility/vector.hpp>
# include <cppad/utility/lu_factor.hpp>
# include <cppad/utility/lu_invert.hpp>

namespace CppAD { // BEGIN CppAD namespace

template <typename Vector, typename Fun>
void OdeGear(
	Fun          &F  ,
	size_t        m  ,
	size_t        n  ,
	const Vector &T  ,
	Vector       &X  ,
	Vector       &e  )
{
	// temporary indices
	size_t i, j, k;

	typedef typename Vector::value_type Scalar;

	// check numeric type specifications
	CheckNumericType<Scalar>();

	// check simple vector class specifications
	CheckSimpleVector<Scalar, Vector>();

	CPPAD_ASSERT_KNOWN(
		m >= 1,
		"OdeGear: m is less than one"
	);
	CPPAD_ASSERT_KNOWN(
		n > 0,
		"OdeGear: n is equal to zero"
	);
	CPPAD_ASSERT_KNOWN(
		size_t(T.size()) >= (m+1),
		"OdeGear: size of T is not greater than or equal (m+1)"
	);
	CPPAD_ASSERT_KNOWN(
		size_t(X.size()) >= (m+1) * n,
		"OdeGear: size of X is not greater than or equal (m+1) * n"
	);
	for(j = 0; j < m; j++) CPPAD_ASSERT_KNOWN(
		T[j] < T[j+1],
		"OdeGear: the array T is not monotone increasing"
	);

	// some constants
	Scalar zero(0);
	Scalar one(1);

	// vectors required by method
	Vector alpha(m + 1);
	Vector beta(m + 1);
	Vector f(n);
	Vector f_x(n * n);
	Vector x_m0(n);
	Vector x_m(n);
	Vector b(n);
	Vector A(n * n);

	// compute alpha[m]
	alpha[m] = zero;
	for(k = 0; k < m; k++)
		alpha[m] += one / (T[m] - T[k]);

	// compute beta[m-1]
	beta[m-1] = one / (T[m-1] - T[m]);
	for(k = 0; k < m-1; k++)
		beta[m-1] += one / (T[m-1] - T[k]);


	// compute other components of alpha
	for(j = 0; j < m; j++)
	{	// compute alpha[j]
		alpha[j] = one / (T[j] - T[m]);
		for(k = 0; k < m; k++)
		{	if( k != j )
			{	alpha[j] *= (T[m] - T[k]);
				alpha[j] /= (T[j] - T[k]);
			}
		}
	}

	// compute other components of beta
	for(j = 0; j <= m; j++)
	{	if( j != m-1 )
		{	// compute beta[j]
			beta[j] = one / (T[j] - T[m-1]);
			for(k = 0; k <= m; k++)
			{	if( k != j && k != m-1 )
				{	beta[j] *= (T[m-1] - T[k]);
					beta[j] /= (T[j] - T[k]);
				}
			}
		}
	}

	// evaluate f(T[m-1], x_{m-1} )
	for(i = 0; i < n; i++)
		x_m[i] = X[(m-1) * n + i];
	F.Ode(T[m-1], x_m, f);

	// solve for x_m^0
	for(i = 0; i < n; i++)
	{	x_m[i] =  f[i];
		for(j = 0; j < m; j++)
			x_m[i] -= beta[j] * X[j * n + i];
		x_m[i] /= beta[m];
	}
	x_m0 = x_m;

	// evaluate partial w.r.t x of f(T[m], x_m^0)
	F.Ode_dep(T[m], x_m, f_x);

	// compute the matrix A = ( alpha[m] * I - f_x )
	for(i = 0; i < n; i++)
	{	for(j = 0; j < n; j++)
			A[i * n + j]  = - f_x[i * n + j];
		A[i * n + i] += alpha[m];
	}

	// LU factor (and overwrite) the matrix A
	CppAD::vector<size_t> ip(n) , jp(n);
# ifndef NDEBUG
	int sign =
# endif
	LuFactor(ip, jp, A);
	CPPAD_ASSERT_KNOWN(
		sign != 0,
		"OdeGear: step size is to large"
	);

	// Iterations of Newton's method
	for(k = 0; k < 3; k++)
	{
		// only evaluate f( T[m] , x_m ) keep f_x during iteration
		F.Ode(T[m], x_m, f);

		// b = f + f_x x_m - alpha[0] x_0 - ... - alpha[m-1] x_{m-1}
		for(i = 0; i < n; i++)
		{	b[i]         = f[i];
			for(j = 0; j < n; j++)
				b[i]         -= f_x[i * n + j] * x_m[j];
			for(j = 0; j < m; j++)
				b[i] -= alpha[j] * X[ j * n + i ];
		}
		LuInvert(ip, jp, A, b);
		x_m = b;
	}

	// return estimate for x( t[k] ) and the estimated error bound
	for(i = 0; i < n; i++)
	{	X[m * n + i] = x_m[i];
		e[i]         = x_m[i] - x_m0[i];
		if( e[i] < zero )
			e[i] = - e[i];
	}
}

} // End CppAD namespace

# endif