This file is indexed.

/usr/include/cppad/utility/vector.hpp is in cppad 2018.00.00.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
# ifndef CPPAD_UTILITY_VECTOR_HPP
# define CPPAD_UTILITY_VECTOR_HPP

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */

/*
$begin CppAD_vector$$
$spell
	rvalues
	thread_alloc
	cppad.hpp
	Bool
	resize
	cout
	endl
	std
	Cpp
	const
	vec
	ostream
	elem
$$


$section The CppAD::vector Template Class$$
$mindex vector CppAD [] push thread_alloc$$

$head Syntax$$
$codei%# include <cppad/utility/vector.hpp>%$$

$head Description$$
The include file $code cppad/vector.hpp$$ defines the
vector template class $code CppAD::vector$$.
This is a $cref SimpleVector$$ template class and in addition
it has the features listed below:

$head Include$$
The file $code cppad/vector.hpp$$ is included by $code cppad/cppad.hpp$$
but it can also be included separately with out the rest of the
CppAD include files.

$head capacity$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$,
and $icode cap$$ is a $code size_t$$ object,
$codei%
	%cap% = %x%.capacity()
%$$
set $icode cap$$ to the number of $icode Scalar$$ objects that
could fit in the memory currently allocated for $icode x$$.
Note that
$codei%
	%x%.size() <= %x%.capacity()
%$$

$head Assignment$$
If $icode x$$ and $icode y$$ are
$codei%CppAD::vector<%Scalar%>%$$ objects,
$codei%
	%y% = %x%
%$$
has all the properties listed for a
$cref/simple vector assignment/SimpleVector/Assignment/$$
plus the following:

$subhead Check Size$$
The $code CppAD::vector$$ template class will check that
the size of $icode x$$ is either zero or the size of $icode y$$
before doing the assignment.
If this is not the case, $code CppAD::vector$$ will use
$cref ErrorHandler$$
to generate an appropriate error report.
Allowing for assignment to a vector with size zero makes the following
code work:
$codei%
	CppAD::vector<%Scalar%> %y%;
	%y% = %x%;
%$$

$subhead Return Reference$$
A reference to the vector $icode y$$ is returned.
An example use of this reference is in multiple assignments of the form
$codei%
	%z% = %y% = %x%
%$$

$subhead Move Semantics$$
If the C++ compiler supports move semantic rvalues using the $code &&$$
syntax, then it will be used during the vector assignment statement.
This means that return values and other temporaries are not be copied,
but rather pointers are transferred.

$head Element Access$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
and $icode i$$ has type $code size_t$$,
$codei%
	%x%[%i%]
%$$
has all the properties listed for a
$cref/simple vector element access/SimpleVector/Element Access/$$
plus the following:
$pre

$$
The object $icode%x%[%i%]%$$ has type $icode Scalar$$
(is not possibly a different type that can be converted to $icode Scalar$$).
$pre

$$
If $icode i$$ is not less than the size of the $icode x$$,
$code CppAD::vector$$ will use
$cref ErrorHandler$$
to generate an appropriate error report.

$head push_back$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
with size equal to $icode n$$ and
$icode s$$ has type $icode Scalar$$,
$codei%
	%x%.push_back(%s%)
%$$
extends the vector $icode x$$ so that its new size is $icode n$$ plus one
and $icode%x%[%n%]%$$ is equal to $icode s$$
(equal in the sense of the $icode Scalar$$ assignment operator).

$head push_vector$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
with size equal to $icode n$$ and
$icode v$$ is a $cref/simple vector/SimpleVector/$$
with elements of type $icode Scalar$$ and size $icode m$$,
$codei%
	%x%.push_vector(%v%)
%$$
extends the vector $icode x$$ so that its new size is $icode%n%+%m%$$
and $icode%x%[%n% + %i%]%$$ is equal to $icode%v%[%i%]%$$
for $icode%i = 1 , ... , m-1%$$
(equal in the sense of the $icode Scalar$$ assignment operator).

$head Output$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
and $icode os$$ is an $code std::ostream$$,
and the operation
$codei%
	%os% << %x%
%$$
will output the vector $icode x$$ to the standard
output stream $icode os$$.
The elements of $icode x$$ are enclosed at the beginning by a
$code {$$ character,
they are separated by $code ,$$ characters,
and they are enclosed at the end by $code }$$ character.
It is assumed by this operation that if $icode e$$
is an object with type $icode Scalar$$,
$codei%
	%os% << %e%
%$$
will output the value $icode e$$ to the standard
output stream $icode os$$.

$head resize$$
The call $icode%x%.resize(%n%)%$$ set the size of $icode x$$ equal to
$icode n$$.
If $icode%n% <= %x%.capacity()%$$,
no memory is freed or allocated, the capacity of $icode x$$ does not change,
and the data in $icode x$$ is preserved.
If $icode%n% > %x%.capacity()%$$,
new memory is allocated and the data in $icode x$$ is lost
(not copied to the new memory location).

$head clear$$
All memory allocated for the vector is freed
and both its size and capacity are set to zero.
This can be useful when using very large vectors
and when checking for memory leaks (and there are global vectors)
see the $cref/memory/CppAD_vector/Memory and Parallel Mode/$$ discussion.

$head data$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
$codei%
	%x%.data()
%$$
returns a pointer to a $icode Scalar$$ object such that for
$codei%0 <= %i% < %x%.size()%$$,
$icode%x%[%i%]%$$ and $icode%x%.data()[%i%]%$$
are the same $icode Scalar$$ object.
If $icode x$$ is $code const$$, the pointer is $code const$$.
If $icode%x%.capacity()%$$ is zero, the value of the pointer is not defined.
The pointer may no longer be valid after the following operations on
$icode x$$:
its destructor,
$code clear$$,
$code resize$$,
$code push_back$$,
$code push_vector$$,
assignment to another vector when original size of $icode x$$ is zero.

$head vectorBool$$
The file $code <cppad/vector.hpp>$$ also defines the class
$code CppAD::vectorBool$$.
This has the same specifications as $code CppAD::vector<bool>$$
with the following exceptions:

$subhead Memory$$
The class $code vectorBool$$ conserves on memory
(on the other hand, $code CppAD::vector<bool>$$ is expected to be faster
than $code vectorBool$$).

$subhead bit_per_unit$$
The static function call
$codei%
	%s% = vectorBool::bit_per_unit()
%$$
returns the $code size_t$$ value $icode s$$
which is equal to the number of boolean values (bits) that are
packed into one operational unit.
For example, a logical $code or$$
acts on this many boolean values with one operation.

$subhead data$$
The $cref/data/CppAD_vector/data/$$ function is not supported by
$code vectorBool$$.

$subhead Output$$
The $code CppAD::vectorBool$$ output operator
prints each boolean value as
a $code 0$$ for false,
a $code 1$$ for true,
and does not print any other output; i.e.,
the vector is written a long sequence of zeros and ones with no
surrounding $code {$$, $code }$$ and with no separating commas or spaces.

$subhead Element Type$$
If $icode x$$ has type $code vectorBool$$
and $icode i$$ has type $code size_t$$,
the element access value $icode%x%[%i%]%$$ has an unspecified type,
referred to here as $icode elementType$$, that supports the following
operations:

$list number$$
$icode elementType$$ can be converted to $code bool$$; e.g.
the following syntax is supported:
$codei%
	static_cast<bool>( %x%[%i%] )
%$$

$lnext
$icode elementType$$ supports the assignment operator $code =$$ where the
right hand side is a $code bool$$ or an $icode elementType$$ object; e.g.,
if $icode y$$ has type $code bool$$, the following syntax is supported:
$codei%
	%x%[%i%] = %y%
%$$

$lnext
The result of an assignment to an $icode elementType$$
also has type $icode elementType$$.
Thus, if $icode z$$ has type $code bool$$, the following syntax is supported:
$codei%
	%z% = %x%[%i%] = %y%
%$$
$lend

$head Memory and Parallel Mode$$
These vectors use the multi-threaded fast memory allocator
$cref thread_alloc$$:

$list number$$
The routine $cref/parallel_setup/ta_parallel_setup/$$ must
be called before these vectors can be used
$cref/in parallel/ta_in_parallel/$$.
$lnext
Using these vectors affects the amount of memory
$cref/in_use/ta_inuse/$$ and $cref/available/ta_available/$$.
$lnext
Calling $cref/clear/CppAD_vector/clear/$$,
makes the corresponding memory available (though $code thread_alloc$$)
to the current thread.
$lnext
Available memory
can then be completely freed using $cref/free_available/ta_free_available/$$.
$lend

$head Example$$
$children%
	example/utility/cppad_vector.cpp%
	example/utility/vector_bool.cpp
%$$
The files
$cref cppad_vector.cpp$$ and
$cref vector_bool.cpp$$ each
contain an example and test of this template class.
They return true if they succeed and false otherwise.

$head Exercise$$
Create and run a program that contains the following code:
$codep
	CppAD::vector<double> x(3);
	size_t i;
	for(i = 0; i < 3; i++)
		x[i] = 4. - i;
	std::cout << "x = " << x << std::endl;
$$

$end


$end

------------------------------------------------------------------------
*/

# include <cstddef>
# include <iostream>
# include <limits>
# include <cppad/core/cppad_assert.hpp>
# include <cppad/utility/check_simple_vector.hpp>
# include <cppad/utility/thread_alloc.hpp>

namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\file vector.hpp
File used to define CppAD::vector and CppAD::vectorBool
*/

// ---------------------------------------------------------------------------
/*!
The CppAD Simple Vector template class.
*/
template <class Type>
class vector {
private:
	/// maximum number of Type elements current allocation can hold
	size_t capacity_;
	/// number of Type elements currently in this vector
	size_t length_;
	/// pointer to the first type elements
	/// (not defined and should not be used when capacity_ = 0)
	Type*  data_;
	/// delete data pointer
	void delete_data(Type* data_ptr)
	{	thread_alloc::delete_array(data_ptr); }
public:
	/// type of the elements in the vector
	typedef Type value_type;

	/// default constructor sets capacity_ = length_ = data_ = 0
	inline vector(void)
	: capacity_(0), length_(0), data_(CPPAD_NULL)
	{ }
	/// sizing constructor
	inline vector(
		/// number of elements in this vector
		size_t n
	) : capacity_(0), length_(0), data_(CPPAD_NULL)
	{	resize(n); }

	/// copy constructor
	inline vector(
		/// the *this vector will be a copy of \c x
		const vector& x
	) : capacity_(0), length_(0), data_(CPPAD_NULL)
	{	resize(x.length_);

		// copy the data
		for(size_t i = 0; i < length_; i++)
				data_[i] = x.data_[i];
	}
	/// destructor
	~vector(void)
	{	if( capacity_ > 0 )
			delete_data(data_);
	}

	/// maximum number of elements current allocation can store
	inline size_t capacity(void) const
	{	return capacity_; }

	/// number of elements currently in this vector.
	inline size_t size(void) const
	{	return length_; }

	/// raw pointer to the data
	inline Type* data(void)
	{	return data_; }

	/// const raw pointer to the data
	inline const Type* data(void) const
	{	return data_; }

	/// change the number of elements in this vector.
	inline void resize(
		/// new number of elements for this vector
		size_t n
	)
	{	length_ = n;

		// check if we must allocate new memory
		if( capacity_ < length_ )
		{
			// check if there is old memory to be freed
			if( capacity_ > 0 )
				delete_data(data_);

			// get new memory and set capacity
			data_ = thread_alloc::create_array<Type>(length_, capacity_);
		}
	}

	/// free memory and set number of elements to zero
	inline void clear(void)
	{	length_ = 0;
		// check if there is old memory to be freed
		if( capacity_ > 0 )
			delete_data(data_);
		capacity_ = 0;
	}

	/// vector assignment operator
	inline vector& operator=(
		/// right hand size of the assingment operation
		const vector& x
	)
	{	size_t i;
		// If original length is zero, then resize it.
		// Otherwise a length mismatch is an error.
		if( length_ == 0 )
			resize( x.length_ );
		CPPAD_ASSERT_KNOWN(
			length_ == x.length_ ,
			"vector: size miss match in assignment operation"
		);
		for(i = 0; i < length_; i++)
			data_[i] = x.data_[i];
		return *this;
	}
# if CPPAD_USE_CPLUSPLUS_2011
	/// vector assignment operator with move semantics
	inline vector& operator=(
		/// right hand size of the assingment operation
		vector&& x
	)
	{	CPPAD_ASSERT_KNOWN(
			length_ == x.length_ || (length_ == 0),
			"vector: size miss match in assignment operation"
		);
		if( this != &x )
		{	clear();
			//
			length_   = x.length_;
			capacity_ = x.capacity_;
			data_     = x.data_;
			//
			x.length_   = 0;
			x.capacity_ = 0;
			x.data_     = CPPAD_NULL;
		}
		return *this;
	}
# endif
	/// non-constant element access; i.e., we can change this element value
	Type& operator[](
		/// element index, must be less than length
		size_t i
	)
	{	CPPAD_ASSERT_KNOWN(
			i < length_,
			"vector: index greater than or equal vector size"
		);
		return data_[i];
	}
	/// constant element access; i.e., we cannot change this element value
	const Type& operator[](
		/// element index, must be less than length
		size_t i
	) const
	{	CPPAD_ASSERT_KNOWN(
			i < length_,
			"vector: index greater than or equal vector size"
		);
		return data_[i];
	}
	/// add an element to the back of this vector
	void push_back(
		/// value of the element
		const Type& s
	)
	{	// case where no allocation is necessary
		if( length_ + 1 <= capacity_ )
		{	data_[length_++] = s;
			return;
		}
		CPPAD_ASSERT_UNKNOWN( length_ == capacity_ );

		// store old length, capacity and data
		size_t old_length   = length_;
		size_t old_capacity = capacity_;
		Type*  old_data     = data_;

		// set the new length, capacity and data
		length_   = 0;
		capacity_ = 0;
		resize(old_length + 1);

		// copy old data values
		for(size_t i = 0; i < old_length; i++)
			data_[i] = old_data[i];

		// put the new element in the vector
		CPPAD_ASSERT_UNKNOWN( old_length + 1 <= capacity_ );
		data_[old_length] = s;

		// free old data
		if( old_capacity > 0 )
			delete_data(old_data);

		CPPAD_ASSERT_UNKNOWN( old_length + 1 == length_ );
		CPPAD_ASSERT_UNKNOWN( length_ <= capacity_ );
	}

	/*! add vector to the back of this vector
	(we could not use push_back because MS V++ 7.1 did not resolve
	to non-template member function when scalar is used.)
	*/
	template <class Vector>
	void push_vector(
		/// value of the vector that we are adding
		const Vector& v
	)
	{	CheckSimpleVector<Type, Vector>();
		size_t m = v.size();

		// case where no allcoation is necessary
		if( length_ + m <= capacity_ )
		{	for(size_t i = 0; i < m; i++)
				data_[length_++] = v[i];
			return;
		}

		// store old length, capacity and data
		size_t old_length   = length_;
		size_t old_capacity = capacity_;
		Type*  old_data     = data_;

		// set new length, capacity and data
		length_   = 0;
		capacity_ = 0;
		resize(old_length + m);

		// copy old data values
		for(size_t i = 0; i < old_length; i++)
			data_[i] = old_data[i];

		// put the new elements in the vector
		CPPAD_ASSERT_UNKNOWN( old_length + m <= capacity_ );
		for(size_t i = 0; i < m; i++)
			data_[old_length + i] = v[i];

		// free old data
		if( old_capacity > 0 )
			delete_data(old_data);

		CPPAD_ASSERT_UNKNOWN( old_length + m  == length_ );
		CPPAD_ASSERT_UNKNOWN( length_ <= capacity_ );
	}
};

/// output a vector
template <class Type>
inline std::ostream& operator << (
	/// stream to write the vector to
	std::ostream&              os  ,
	/// vector that is output
	const CppAD::vector<Type>& vec )
{	size_t i = 0;
	size_t n = vec.size();

	os << "{ ";
	while(i < n)
	{	os << vec[i++];
		if( i < n )
			os << ", ";
	}
	os << " }";
	return os;
}

// ---------------------------------------------------------------------------
/*!
Class that is used to hold a non-constant element of a vector.
*/
class vectorBoolElement {
	/// the boolean data is packed with sizeof(UnitType) bits per value
	typedef size_t UnitType;
private:
	/// pointer to the UnitType value holding this eleemnt
	UnitType* unit_;
	/// mask for the bit corresponding to this element
	/// (all zero except for bit that corresponds to this element)
	UnitType mask_;
public:
	/// constructor from member values
	vectorBoolElement(
		/// unit for this element
		UnitType* unit ,
		/// mask for this element
		UnitType mask  )
	: unit_(unit) , mask_(mask)
	{ }
	/// constuctor from another element
	vectorBoolElement(
		/// other element
		const vectorBoolElement& e )
	: unit_(e.unit_) , mask_(e.mask_)
	{ }
	/// conversion to a boolean value
	operator bool() const
	{	return (*unit_ & mask_) != 0; }
	/// assignment of this element to a bool
	vectorBoolElement& operator=(
		/// right hand side for assignment
		bool bit
	)
	{	if(bit)
			*unit_ |= mask_;
		else	*unit_ &= ~mask_;
		return *this;
	}
	/// assignment of this element to another element
	vectorBoolElement& operator=(const vectorBoolElement& e)
	{	if( *(e.unit_) & e.mask_ )
			*unit_ |= mask_;
		else	*unit_ &= ~mask_;
		return *this;
	}
};

class vectorBool {
	/// the boolean data is packed with sizeof(UnitType) bits per value
	typedef size_t UnitType;
private:
	/// number of bits packed into each UnitType value in data_
	static const size_t bit_per_unit_
		= std::numeric_limits<UnitType>::digits;
	/// number of UnitType values in data_
	size_t    n_unit_;
	/// number of bits currently stored in this vector
	size_t    length_;
	/// pointer to where the bits are stored
	UnitType *data_;

	/// minimum number of UnitType values that can store length_ bits
	/// (note that this is really a function of length_)
	size_t unit_min(void)
	{	if( length_ == 0 )
			return 0;
		return (length_ - 1) / bit_per_unit_ + 1;
	}
public:
	/// type corresponding to the elements of this vector
	/// (note that non-const elements actually use vectorBoolElement)
	typedef bool value_type;

	// static member function
	static size_t bit_per_unit(void)
	{	return bit_per_unit_; }

	/// default constructor (sets all member data to zero)
	inline vectorBool(void) : n_unit_(0), length_(0), data_(CPPAD_NULL)
	{ }
	/// sizing constructor
	inline vectorBool(
		/// number of bits in this vector
		size_t n
	) : n_unit_(0), length_(n), data_(CPPAD_NULL)
	{	if( length_ > 0 )
		{	// set n_unit and data
			size_t min_unit = unit_min();
			data_ = thread_alloc::create_array<UnitType>(min_unit, n_unit_);
		}
	}
	/// copy constructor
	inline vectorBool(
		/// the *this vector will be a copy of \c v
		const vectorBool& v
	) : n_unit_(0), length_(v.length_), data_(CPPAD_NULL)
	{	if( length_ > 0 )
		{	// set n_unit and data
			size_t min_unit = unit_min();
			data_ = thread_alloc::create_array<UnitType>(min_unit, n_unit_);

			// copy values using UnitType assignment operator
			CPPAD_ASSERT_UNKNOWN( min_unit <= v.n_unit_ );
			size_t i;
			for(i = 0; i < min_unit; i++)
				data_[i] = v.data_[i];
		}
	}
	/// destructor
	~vectorBool(void)
	{	if( n_unit_ > 0 )
			thread_alloc::delete_array(data_);
	}

	/// number of elements in this vector
	inline size_t size(void) const
	{	return length_; }

	/// maximum number of elements current allocation can store
	inline size_t capacity(void) const
	{	return n_unit_ * bit_per_unit_; }

	/// change number of elements in this vector
	inline void resize(
		/// new number of elements for this vector
		size_t n
	)
	{	length_ = n;
		// check if we can use the current memory
		size_t min_unit = unit_min();
		if( n_unit_ >= min_unit )
			return;
		// check if there is old memory to be freed
		if( n_unit_ > 0 )
			thread_alloc::delete_array(data_);
		// get new memory and set n_unit
		data_ = thread_alloc::create_array<UnitType>(min_unit, n_unit_);
	}

	/// free memory and set number of elements to zero
	inline void clear(void)
	{	length_ = 0;
		// check if there is old memory to be freed
		if( n_unit_ > 0 )
			thread_alloc::delete_array(data_);
		n_unit_ = 0;
	}

	/// vector assignment operator
	inline vectorBool& operator=(
		/// right hand size of the assingment operation
		const vectorBool& v
	)
	{	size_t i;
		// If original length is zero, then resize it.
		// Otherwise a length mismatch is an error.
		if( length_ == 0 )
			resize( v.length_ );
		CPPAD_ASSERT_KNOWN(
			length_ == v.length_ ,
			"vectorBool: size miss match in assignment operation"
		);
		size_t min_unit = unit_min();
		CPPAD_ASSERT_UNKNOWN( min_unit <= n_unit_ );
		CPPAD_ASSERT_UNKNOWN( min_unit <= v.n_unit_ );
		for(i = 0; i < min_unit; i++)
			data_[i] = v.data_[i];
		return *this;
	}
# if CPPAD_USE_CPLUSPLUS_2011
	/// vector assignment operator with move semantics
	inline vectorBool& operator=(
		/// right hand size of the assingment operation
		vectorBool&& x
	)
	{	CPPAD_ASSERT_KNOWN(
			length_ == x.length_ || (length_ == 0),
			"vectorBool: size miss match in assignment operation"
		);
		if( this != &x )
		{	clear();
			//
			length_   = x.length_;
			n_unit_   = x.n_unit_;
			data_     = x.data_;
			//
			x.length_   = 0;
			x.n_unit_   = 0;
			x.data_     = CPPAD_NULL;
		}
		return *this;
	}
# endif


	/// non-constant element access; i.e., we can change this element value
	vectorBoolElement operator[](
		/// element index, must be less than length
		size_t k
	)
	{	size_t i, j;
		CPPAD_ASSERT_KNOWN(
			k < length_,
			"vectorBool: index greater than or equal vector size"
		);
		i    = k / bit_per_unit_;
		j    = k - i * bit_per_unit_;
		return vectorBoolElement(data_ + i , UnitType(1) << j );
	}
	/// constant element access; i.e., we cannot change this element value
	bool operator[](size_t k) const
	{	size_t i, j;
		UnitType unit, mask;
		CPPAD_ASSERT_KNOWN(
			k < length_,
			"vectorBool: index greater than or equal vector size"
		);
		i    = k / bit_per_unit_;
		j    = k - i * bit_per_unit_;
		unit = data_[i];
		mask = UnitType(1) << j;
		return (unit & mask) != 0;
	}
	/// add an element to the back of this vector
	void push_back(
		/// value of the element
		bool bit
	)
	{	CPPAD_ASSERT_UNKNOWN( unit_min() <= n_unit_ );
		size_t i, j;
		UnitType mask;
		if( length_ + 1 > n_unit_ * bit_per_unit_ )
		{	CPPAD_ASSERT_UNKNOWN( unit_min() == n_unit_ );
			// store old n_unit and data values
			size_t    old_n_unit = n_unit_;
			UnitType* old_data   = data_;
			// set new n_unit and data values
			data_ = thread_alloc::create_array<UnitType>(n_unit_+1, n_unit_);
			// copy old data values
			for(i = 0; i < old_n_unit; i++)
				data_[i] = old_data[i];
			// free old data
			if( old_n_unit > 0 )
				thread_alloc::delete_array(old_data);
		}
		i    = length_ / bit_per_unit_;
		j    = length_ - i * bit_per_unit_;
		mask = UnitType(1) << j;
		if( bit )
			data_[i] |= mask;
		else	data_[i] &= ~mask;
		length_++;
	}
	/// add vector to the back of this vector
	template <class Vector>
	void push_vector(
		/// value of the vector that we are adding
		const Vector& v
	)
	{	 CheckSimpleVector<bool, Vector>();
		size_t min_unit = unit_min();
		CPPAD_ASSERT_UNKNOWN( length_ <= n_unit_ * bit_per_unit_ );
		// some temporaries
		size_t i, j, k, ell;
		UnitType mask;
		bool bit;
		// store old length
		size_t old_length = length_;
		// new length and minium number of units;
		length_    = length_ + v.size();
		min_unit   = unit_min();
		if( length_ >= n_unit_ * bit_per_unit_ )
		{	// store old n_unit and data value
			size_t  old_n_unit = n_unit_;
			UnitType* old_data = data_;
			// set new n_unit and data values
			data_ = thread_alloc::create_array<UnitType>(min_unit, n_unit_);
			// copy old data values
			for(i = 0; i < old_n_unit; i++)
				data_[i] = old_data[i];
			// free old data
			if( old_n_unit > 0 )
				thread_alloc::delete_array(old_data);
		}
		ell = old_length;
		for(k = 0; k < v.size(); k++)
		{
			i    = ell / bit_per_unit_;
			j    = ell - i * bit_per_unit_;
			bit  = v[k];
			mask = UnitType(1) << j;
			if( bit )
				data_[i] |= mask;
			else	data_[i] &= ~mask;
			ell++;
		}
		CPPAD_ASSERT_UNKNOWN( length_ == ell );
		CPPAD_ASSERT_UNKNOWN( length_ <= n_unit_ * bit_per_unit_ );
	}
};

/// output a vector
inline std::ostream& operator << (
	/// steam to write the vector to
	std::ostream&      os  ,
	/// vector that is output
	const vectorBool&  v   )
{	size_t i = 0;
	size_t n = v.size();

	while(i < n)
		os << v[i++];
	return os;
}

} // END_CPPAD_NAMESPACE
# endif