/usr/share/expeyes/firmware/eyes.c is in expeyes-firmware-dev 4.3.6+dfsg-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 | /*
EYES for Young Engineers & Scientists (EYES 1.0)
Program : eyes.c, running on AtMega32 micro-controller
Listens on the RS232 port for commands fom the PC, by eyes.py, and acts accordingly.
Author : Ajith Kumar B.P, ( bpajith at gmail.com )
License : GNU GPL version 3
First Edit on 1-Sep-2010
Last Edit 23-Dec-2010 : added CAPTURE_M32
Last Edit 27-Jan-2011 : added ECHO
Last Edit 13-Oct-2011 : added IRSEND
*/
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#define GROUPSIZE 40 // Up to 40 commands in each group
// commands without any arguments (1 to 40)
#define GETVERSION 1 // Get the Eyes firmware version
#define DIGIN 2 // Digital Input (4 bits)
#define USOUND 3 // Send a pulse on OD1 and look for echo on ID2
// Commands with One byte argument (41 to 80)
#define SETSAMTIME 41 // MCP3208 sampling duration
#define SETADCSIZE 42 // ADC data size (1 or 2)
#define READADC 43 // Read the specified ADC channel
#define R2FTIME 44 // Rise to Fall of signal on input pins
#define R2RTIME 45 // Rise to Fall of signal on input pins
#define F2RTIME 46 // Fall to Rise of signal on input pins
#define F2FTIME 47 // Fall to Rise of signal on input pins
#define SET2RTIME 48 // Setting of bit to rising edge
#define SET2FTIME 49 // to falling time
#define CLR2RTIME 50 // Setting of bit to rising edge
#define CLR2FTIME 51 // to falling time
#define PULSE2RTIME 52 // Pulse to rising edge
#define PULSE2FTIME 53 // Pulse to rising edge
#define SETPULSEWID 54 // width for PULSE2 functions (0 to 250)
#define SETPULSEPOL 55 // PULSE polarity (0 for HIGH true)
#define DIGOUT 56 // Digital output (4 bits)
#define ADC2CMP 57 // Route ADC input to ACOMP-
#define SETPWM 58 // Set 488 Hz PWM wave on TC0
#define SETPWMDAC 59 // Set 31.25 kHz PWM wave on TC0
#define GETPORT 60 // PINX data from port X
#define IRSEND 61 // IR transmission using SQR1 output
// Commands with Two bytes argument (81 to 120)
#define SETPWM0 81 // PWM on on OSC0
#define SETCOUNTER0 82 // Square wave on OSC2
#define SETCOUNTER2 83 // Square wave on OSC2
#define SETACTION 84 // Capture Actions of SET/CLR/PULSE & WAIT type
#define MULTIR2R 85 // Rising edge to a rising edge after N cycles
#define ADCTRIGS 86 // Trigger levels for read_block functions
#define SETWAVEFORM 87 // ISR Wavegen. OCR0 and which DAC from the caller
#define PULSE_D0D1 88 // Interrupt driven square wave on D0 and D1
#define SETDDR 90 // DDRX = dirmask (arg1 = X, arg2 = mask)
#define SETPORT 91 // PORTX = DATA (arg1 = X, arg2 = DATA)
// Commands with Three bytes argument (121 to 160)
#define SETDAC 121 // Serial DAC: send ch, dlo & dhi
#define QCAPTURE01 122 // 2 bytes N, 1 byte dt. captures channel 0 and 1
#define WREEPROM 123 // Write EEPROM , 2 byte addr & 1 byte data
#define RDEEPROM 124 // Read EEPROM , 2 byte addr , 1 byte number of bytes
// Commands with Four bytes argument (161 to 200)
#define CAPTURE01 161 // 2 bytes N, 2 bytes dt. Capture channel 0 and 1
#define QCAPTURE 162 // Ch, 2 byte N, 1 byte dt.
// Commands with Five bytes argument (201 to 220)
#define CAPTURE 201 // Ch, 2 byte N, 2 byte dt. Capture single channel MCP3208
#define CAPTURE_M32 202 // Ch, 2 byte N, 2 byte dt. Capture from, uC internal ADC
// Reply from ATmega8 to the PC
#define DONE 'D' // Command executed successfully
#define INVCMD 'C' // Invalid Command
#define INVARG 'A' // Invalid input data
#define INVBUFSIZE 'B' // Resulting data exceeds buffersize
#define TIMEOUT 'T' // Time measurement timed out
#define TRUE 1
#define FALSE 0
#define TIMERSIZE 50000 // count for 50 ms before clearing
#define TIMEOUTVAL 40 // 50 ms x 40 = 2 seconds
#define MAXTG 1000 // Maximum timegap for CAPTURE, usec
#define MAXTGQ 100 // Same for qcapture
#define MINTG 20 // Minimum timegap for CAPTURE, usec
#define MINTGQ 10 // Same for qcapture
#define DEADTIME 5 // for PULSE2 calls
typedef uint16_t u16;
typedef uint8_t u8, *u8ptr;
typedef u8 boolean;
const char version[] PROGMEM = "ey1.0";
u16 tmp16; // Gloabal temporary variable
#define BUFSIZE 1800 // 1800 for atmega32
//----------------------- Global variables -----------------------------
u8 dbuffer[2 + BUFSIZE]; // status + adc_size info + Databytes
u16 buf_index;
u8 adc_size = 1;
u8 sampling_time = 200;
u8 HTM; // third byte of timer
u8 pulse_width = 13; // Used by PULSE2*time functions
u8 pulse_pol = 0;
u8 action; // SET/CLR/PULSE and WAIT actions
u8 actionmask; // Digital I/O bits for action
u8 triglo = 125; // Trigger around the ADC mid range
u8 trighi = 131;
// -------------------------- Serial ADC & DAC -------------------------
#define SPICTL PORTD // CK=PD2, ADCS = PD3, DACS = PD4
#define CLK (1 << PD2)
#define ADCS (1 << PD3)
#define DACS (1 << PD4)
#define ADCKLO DACS // ADCS and CLK low
#define ADCKHI DACS+CLK // ADCS low and Clock hi
#define CSHI DACS+ADCS+CLK // Both CS and Clock hi
#define DACKLO ADCS // DACS and CLK low
#define DACKHI ADCS+CLK // DACS low and Clock hi
#define SPIWR PORTB
#define SPIRD PINB
#define OUTHI 2+1 // PB1 HI and pullup of PB0
#define OUTLO 1 // PB1 LO pullup of PB0
u8 hi; // hi MUST be global to meet timing !!!. Need some assembly code ??
u8 lo;
//---------------------Capture using ATmega32 Internal ADC. Having some trouble !!! -------------------
void capture_m32(u8 ch, u16 np, u16 timegap) // sqr1 = ch7, sqr2 = ch6, SENSOR = ch5
{
ADCSRA = (1 << ADEN) | (1<<ADSC) | 1; // start a dummy conversion
if(timegap < 20) lo = (1<<ADEN) | (1<<ADSC) | 1;
else if(timegap < 40) lo = (1<<ADEN) | (1<<ADSC) | 2;
else if(timegap < 80) lo = (1<<ADEN) | (1<<ADSC) | 3;
else if(timegap < 160)lo = (1<<ADEN) | (1<<ADSC) | 4;
else if(timegap < 320)lo = (1<<ADEN) | (1<<ADSC) | 5;
else lo = (1<<ADEN) | (1<<ADSC) | 6;
TCCR1B = (1<<CS11); // Counter1 Normal mode, 1 MHz
ADMUX = (1<<REFS0) |(1 << ADLAR) | ch; // MUX
timegap -= 1;
PORTC |= 128;
while ( !(ADCSRA & (1<<ADIF)) ) ; // wait for ADC conversion
ADCSRA |= ADIF; // reset ADC flag
for(tmp16=0; tmp16 < np; ++tmp16) // Sample in timed loop
{
TCNT1 = 0;
ADCSRA = lo;
while ( !(ADCSRA & (1<<ADIF)) ) ; // wait for ADC conversion
dbuffer[buf_index++] = ADCH;
ADCSRA |= ADIF; // reset ADC flag
while(TCNT1L < timegap) ; // Wait on counter
}
ADCSRA = 0; // Disable ADC
PORTC &= 127;
}
//------------------------------ Reading External ADC MCP3208 -------------------------------
void qcapture_min(u8 ch, u16 np, u8 timer) // only for 10 microseconds spacing
{
u8 d0 = ((ch & 1)<<1) | 1; // Channel D0
u8 d1 = (ch & 2) | 1; // Channel D1
u8 d2 = ((ch & 4)>>1) | 1; // Channel D2
timer -= 2; // 2 usec forloop overhead
TCCR1B = (1<<CS11); // Counter1 Normal mode, 1 MHz
PORTC |= 128;
for(tmp16=0; tmp16 < np; ++tmp16)
{
TCNT1L = 0;
SPIWR = OUTHI; // start bit
SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI;
// DATA remains HI, for SGL mode
SPICTL = ADCKLO; // 2nd clock
SPICTL = ADCKHI;
SPIWR = d2; // Channel # D2
SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
SPIWR = d1; // Channel # D1
SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
SPIWR = d0; // Channel # D0
SPICTL = ADCKLO; // 5th clock
SPICTL = ADCKHI; SPICTL = ADCKHI; //samplimg start
SPICTL = ADCKLO; SPICTL = ADCKLO; // 6th clock
SPICTL = ADCKHI; // sampling end
SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI;
SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = CSHI;
while(TCNT1L < timer) ; // Wait on counter
dbuffer[buf_index++] = hi; // store data
}
PORTC &= 127;
}
void qcapture(u8 ch, u16 np, u8 timer)
{
u8 d0 = ((ch & 1)<<1) | 1; // Channel D0
u8 d1 = (ch & 2) | 1; // Channel D1
u8 d2 = ((ch & 4)>>1) | 1; // Channel D2
timer -= 2; // 2 usec forloop overhead
TCCR1B = (1<<CS11); // Counter1 Normal mode, 1 MHz
PORTC |= 128;
for(tmp16=0; tmp16 < np; ++tmp16)
{
TCNT1L = 0;
SPIWR = OUTHI; // start bit
SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI;
// DATA remains HI, for SGL mode
SPICTL = ADCKLO; // 2nd clock
SPICTL = ADCKHI;
SPIWR = d2; // Channel # D2
SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
SPIWR = d1; // Channel # D1
SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
SPIWR = d0; // Channel # D0
SPICTL = ADCKLO; // 5th clock
SPICTL = ADCKHI; SPICTL = ADCKHI; //samplimg start
SPICTL = ADCKLO; SPICTL = ADCKLO; // 6th clock
SPICTL = ADCKHI; // sampling end
SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI;
SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = CSHI;
//asm("nop");
while(TCNT1L < timer) ; // Wait on counter
asm("nop"); asm("nop"); asm("nop");
dbuffer[buf_index++] = hi; // store data
}
PORTC &= 127;
}
void qcapture01(u16 np, u8 timer) // CH0 & CH1, only for 10 microseconds spacing
{
TCCR1B = (1<<CS11); // Counter1 Normal mode, 1 MHz
timer = timer*2 -2; // 2 channels, 2 usec forloop overhead
PORTC |= 128;
for(tmp16=0; tmp16 < np; ++tmp16)
{
TCNT1L = 0;
SPIWR = OUTHI; // start bit
SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI;
// DATA remains HI, for SGL mode
SPICTL = ADCKLO; // 2nd clock
SPICTL = ADCKHI;
SPIWR = OUTLO; // Channel # D2
SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
// D1 also is LO
SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
// D0 is also LO
SPICTL = ADCKLO; // 5th clock
SPICTL = ADCKHI; SPICTL = ADCKHI; //samplimg start
SPICTL = ADCKLO; SPICTL = ADCKLO; // 6th clock
SPICTL = ADCKHI; // sampling end
SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI;
SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = CSHI;
dbuffer[buf_index++] = hi; // store data
// Read Channel #1 now
SPIWR = OUTHI; // start bit
SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI;
// DATA remains HI, for SGL mode
SPICTL = ADCKLO; // 2nd clock
SPICTL = ADCKHI;
SPIWR = OUTLO; // Channel # D2
SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
// D1 is also LO
SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
SPIWR = OUTHI; // D0 is HI
SPICTL = ADCKLO; // 5th clock
SPICTL = ADCKHI; SPICTL = ADCKHI; //samplimg start
SPICTL = ADCKLO; SPICTL = ADCKLO; // 6th clock
SPICTL = ADCKHI; // sampling end
SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI;
SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = CSHI;
while(TCNT1L < timer) ; // Wait on counter
dbuffer[buf_index++] = hi; // store data
asm("nop"); asm("nop");
}
PORTC &= 127;
}
void capture(u8 ch, u16 np, u16 timer)
{
u8 d0 = ((ch & 1)<<1) | 1; // Channel D0
u8 d1 = (ch & 2) | 1; // Channel D1
u8 d2 = ((ch & 4)>>1) | 1; // Channel D2
timer -= 2; // 2 usec forloop overhead
TCCR1B = (1<<CS11); // Counter1 Normal mode, 1 MHz
PORTC |= 128;
for(tmp16=0; tmp16 < np; ++tmp16)
{
TCNT1 = 0;
SPIWR = OUTHI; // start bit
SPICTL = ADCKLO; SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI; SPICTL = ADCKHI;
// DATA remains HI, for SGL mode
SPICTL = ADCKLO; SPICTL = ADCKLO; // 2nd clock
SPICTL = ADCKHI;
SPIWR = d2; //channel bit D2
SPICTL = ADCKLO;SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
SPIWR = d1; //channel bit D1
SPICTL = ADCKLO;SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
SPIWR = d0; //channel bit D0
SPICTL = ADCKLO; SPICTL = ADCKLO; // 5th clock
//SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKLO; SPICTL = ADCKLO;; // 6th clock
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
//SPICTL = ADCKHI;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKLO;SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 16th clock, B3
SPICTL = ADCKHI;
lo = (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 17th clock, B2
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 18th clock, B1
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 19th clock, B0
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = CSHI;
if(adc_size > 1)
dbuffer[buf_index++] = lo << 4;
dbuffer[buf_index++] = hi;
while(TCNT1 < timer) ; // Wait on TCNT1
asm("nop"); asm("nop"); asm("nop");
//asm("nop"); asm("nop"); asm("nop");
}
PORTC &= 127;
}
void capture01(u16 np, u16 timer)
{
timer = timer*2-2; // 2 reads,2 usec forloop overhead
TCCR1B = (1<<CS11); // Counter1 Normal mode, 1 MHz
PORTC |= 128;
for(tmp16=0; tmp16 < np; ++tmp16)
{
TCNT1 = 0;
SPIWR = OUTHI; // start bit
SPICTL = ADCKLO; SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI; SPICTL = ADCKHI;
// DATA remains HI, for SGL mode
SPICTL = ADCKLO; SPICTL = ADCKLO; // 2nd clock
SPICTL = ADCKHI;
SPIWR = OUTLO; //channel bit D2
SPICTL = ADCKLO;SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
SPIWR = OUTLO; //channel bit D1
SPICTL = ADCKLO;SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
SPIWR = OUTLO; //channel bit D0
SPICTL = ADCKLO; SPICTL = ADCKLO; // 5th clock
//SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKLO; SPICTL = ADCKLO;; // 6th clock
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
//SPICTL = ADCKHI;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKLO;SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 16th clock, B3
SPICTL = ADCKHI;
lo = (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 17th clock, B2
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 18th clock, B1
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 19th clock, B0
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = CSHI;
if(adc_size > 1)
dbuffer[buf_index++] = lo << 4;
dbuffer[buf_index++] = hi;
// Read Channel #1
SPIWR = OUTHI; // start bit
SPICTL = ADCKLO; SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI; SPICTL = ADCKHI;
// DATA remains HI, for SGL mode
SPICTL = ADCKLO; SPICTL = ADCKLO; // 2nd clock
SPICTL = ADCKHI;
SPIWR = OUTLO; //channel bit D2
SPICTL = ADCKLO;SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
SPIWR = OUTLO; //channel bit D1
SPICTL = ADCKLO;SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
SPIWR = OUTHI; //channel bit D0
SPICTL = ADCKLO; SPICTL = ADCKLO; // 5th clock
//SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKLO; SPICTL = ADCKLO;; // 6th clock
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKHI; SPICTL = ADCKHI;
//SPICTL = ADCKHI;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKLO;SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 16th clock, B3
SPICTL = ADCKHI;
lo = (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 17th clock, B2
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 18th clock, B1
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 19th clock, B0
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = CSHI;
if(adc_size > 1)
dbuffer[buf_index++] = lo << 4;
dbuffer[buf_index++] = hi;
while(TCNT1 < timer) ; // Wait on TCNT1
asm("nop"); asm("nop"); asm("nop");
}
PORTC &= 127;
}
u16 read_sadc(u8 ch)
{
SPIWR = OUTHI; // MCP3208 start bit
SPICTL = ADCKLO; SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI; SPICTL = ADCKHI;
//if(diffmode) SPIWR = OUTLO; // DATA remains HI, for SGL mode
SPICTL = ADCKLO; SPICTL = ADCKLO;// 2nd clock
SPICTL = ADCKHI;
if(ch & 4) // D2 bit of channel
SPIWR = OUTHI;
else
SPIWR = OUTLO;
SPICTL = ADCKLO;SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
if(ch & 2) // D1 bit of channel
SPIWR = OUTHI;
else
SPIWR = OUTLO;
SPICTL = ADCKLO;SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
if(ch & 1) // D0 bit of channel
SPIWR = OUTHI;
else
SPIWR = OUTLO;
SPICTL = ADCKLO;SPICTL = ADCKLO; // 5th clock
SPICTL = ADCKHI;
SPICTL = ADCKLO; // 6th clock
TCCR1B = (1<<CS11); // Counter1 Normal mode, 1 MHz
TCNT1 = 0;
while(TCNT1L < sampling_time) ; // Wait for sampling
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI; SPICTL = ADCKHI;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
lo = (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 16th clock, B3
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 17th clock, B2
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 18th clock, B1
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = ADCKLO; SPICTL = ADCKLO; // 19th clock, B0
SPICTL = ADCKHI;
lo = (lo << 1) | (SPIRD & 1);
SPICTL = CSHI;
return (hi << 8) | lo;
}
void fast_read_sadc(u8 ch) // data saved in hi. Used by trigger routine only
{
u8 d0 = ((ch & 1)<<1) | 1; // Channel D0
u8 d1 = (ch & 2) | 1; // Channel D1
u8 d2 = ((ch & 4)>>1) | 1; // Channel D2
SPIWR = OUTHI; // start bit
SPICTL = ADCKLO; // 1st clock
SPICTL = ADCKHI;
// DATA remains HI, for SGL mode
SPICTL = ADCKLO; // 2nd clock
SPICTL = ADCKHI;
SPIWR = d2; // Channel # D2
SPICTL = ADCKLO; // 3rd clock
SPICTL = ADCKHI;
SPIWR = d1; // Channel # D1
SPICTL = ADCKLO; // 4th clock
SPICTL = ADCKHI;
SPIWR = d0; // Channel # D0
SPICTL = ADCKLO; // 5th clock
SPICTL = ADCKHI; SPICTL = ADCKHI; //samplimg start
SPICTL = ADCKLO; SPICTL = ADCKLO; // 6th clock
SPICTL = ADCKHI; // sampling end
SPICTL = ADCKLO; // 7th clock, Null bit
SPICTL = ADCKHI;
SPICTL = ADCKLO; // 8th clock, B11
SPICTL = ADCKHI;
hi = SPIRD & 1;
SPICTL = ADCKLO; // 9th clock, B10
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 10th clock, B9
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 11th clock, B8
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 12th clock, B7
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 13th clock, B6
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 14th clock, B5
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = ADCKLO; // 15th clock, B4
SPICTL = ADCKHI;
hi = (hi << 1) | (SPIRD & 1);
SPICTL = CSHI;
}
void set_dac(u8 ch, u16 val) // channel number & data
{
SPICTL = DACKLO; // DAC CS and CLK goes LO
SPIWR = (ch << 1) | 1; // channel select bit and PB0 pullup
SPICTL = DACKLO; SPICTL = DACKLO; // 1st clock
SPICTL = DACKHI; SPICTL = DACKHI;
SPIWR = OUTHI; // Buffer enable
SPICTL = DACKLO; SPICTL = DACKLO; // 2st clock
SPICTL = DACKHI; SPICTL = DACKHI;
SPIWR = OUTHI; // gain = 1
SPICTL = DACKLO; SPICTL = DACKLO; // 3rd clock
SPICTL = DACKHI; SPICTL = DACKHI;
SPIWR = OUTHI; // power down bit
SPICTL = DACKLO; SPICTL = DACKLO; // 4th clock
SPICTL = DACKHI; SPICTL = DACKHI;
tmp16 = 0x800;
for(hi=0; hi<12; ++hi)
{
if(tmp16 & val)
SPIWR = OUTHI; // data bit PB1 + pullup PB0
else
SPIWR = OUTLO;
SPICTL = DACKLO; SPICTL = DACKLO; // send clock
SPICTL = DACKHI; SPICTL = DACKHI;
tmp16 >>= 1;
}
SPICTL = CSHI;
}
//------------------ Time Interval Measurements ----------------------
boolean wait_for_high(u8 mask) // Wait until the Input is HIGH
{
/*Returns TRUE if any of the Digital Input Socket specified in the
'mask' goes HIGH. If mask is zero, waits for a rising edge on CMP
input socket. Timeout after '50 * TIMEOUTVAL' milliseconds.
*/
for(;;)
{
if(mask) // Check on Digins
{
if(PINC & mask) // Digital Input specified by mask is HIGH ?
break;
}
else // Mask = 0 means ACMP input
if(~ACSR & (1<< ACO)) // When AIN- goes above 1.23V, ACO goes LOW
break;
if(TCNT1 > TIMERSIZE)
{
TCNT1 = 0;
if(++HTM > TIMEOUTVAL)
{
dbuffer[0] = TIMEOUT; // Timeout error
return FALSE;
}
}
}
return TRUE;
}
boolean wait_for_low(u8 mask) // Wait until the Input is LOW
{
for(;;)
{
if(mask) // Check on Digins
{
if(~PINC & mask) // Digital Input specified by mask is LOW ?
break;
}
else // Mask = 0 means ACMP input
if(ACSR & (1<< ACO)) // When AIN- goes below 1.23V, ACO goes HIGH
break;
if(TCNT1 > TIMERSIZE)
{
TCNT1 = 0;
if(++HTM > TIMEOUTVAL)
{
dbuffer[0] = TIMEOUT; // Timeout error
return FALSE;
}
}
}
return TRUE;
}
boolean clear_on_rise(u8 mask) // Clear counters on rising edge
{
/* Clears the TCNT1 register and variable HTM and returns TRUE if any of the
Digital Input (sockets) specified in the 'mask'goes HIGH.
If mask is zero, waits for a rising edge on analog comparator
input socket.
*/
HTM = 0;
for(;;)
{
if(mask) // Check on Digins
{
if(PINC & mask) // Digital Input specified by mask
break;
}
else // Mask = 0 means ACMP input
if(~ACSR & (1<< ACO)) // When AIN- goes above 1.23V, ACO goes LOW
break;
if(TCNT1 > TIMERSIZE)
{
TCNT1 = 0;
if(++HTM > TIMEOUTVAL)
{
dbuffer[0] = TIMEOUT; // Timeout error
return FALSE;
}
}
}
TCNT1 = 0;
HTM = 0;
return TRUE;
}
boolean clear_on_fall(u8 mask) // Clear counters on falling edge
{
HTM = 0;
for(;;)
{
if(mask)
{
if(~PINC & mask) // Digital Input specified by mask
break;
}
else // Mask = 0 means ACMP input
if(ACSR & (1<< ACO)) // When AIN- goes below 1.23V, ACO goes HIGH
break;
if(TCNT1 > TIMERSIZE)
{
TCNT1 = 0;
if(++HTM > TIMEOUTVAL)
{
dbuffer[0] = TIMEOUT; // Timeout error
return FALSE;
}
}
}
TCNT1 = 0;
HTM = 0;
return TRUE;
}
boolean mark_on_rise(u8 mask) // Save the 24 bit counter to dbuffer
{
/* Saves the current value of TCNT1 register to variable 'tmp16' when the
Digital Input (sockets) specified in the 'mask' goes HIGH. If mask is zero,
save on the rising edge of analog comparator input socket.
TCNT1 is cleared every time it touches 'TIMESIZE' and variable 'HTM' is incremeted.
8 bit HTM and 16 bit TCNT1 together stores a 24 bit size time interval
that is send to the PC.
*/
for(;;)
{
if(mask)
{
if(PINC & mask) // Digital Input specified by mask
break;
}
else // Mask = 0 means ACMP input
if(~ACSR & (1<< ACO)) // When AIN- goes above 1.23V, ACO goes LOW
break;
if(TCNT1 > TIMERSIZE)
{
TCNT1 = 0;
if(++HTM > TIMEOUTVAL)
{
dbuffer[0] = TIMEOUT; // Timeout error
return FALSE;
}
}
}
dbuffer[buf_index++] = TCNT1L;
dbuffer[buf_index++] = TCNT1H;
dbuffer[buf_index++] = HTM;
return TRUE;
}
boolean mark_on_fall(u8 mask) // Save counter to dbuffer
{
for(;;)
{
if(mask)
{
if(~PINC & mask) // Digital Input specified by mask
break;
}
else // Mask = 0 means ACMP input
if(ACSR & (1<< ACO)) // When AIN- goes below 1.23V, ACO goes HIGH
break;
if(TCNT1 > TIMERSIZE)
{
TCNT1 = 0;
if(++HTM > TIMEOUTVAL)
{
dbuffer[0] = TIMEOUT; // Timeout error
return FALSE;
}
}
}
dbuffer[buf_index++] = TCNT1L;
dbuffer[buf_index++] = TCNT1H;
dbuffer[buf_index++] = HTM;
return TRUE;
}
//------------------ Actions before capturing waveforms ------------------
#define ASET 1
#define ACLR 2
#define APULSEHI 3
#define APULSELO 4
#define AWAITHI 5
#define AWAITLO 6
#define AWAITRISE 7
#define AWAITFALL 8
void triggers(u8 ch, u16 tg)
{
TCNT1 =0;
HTM = 0;
switch(action)
{
case 0:
for(tmp16 = 0; tmp16 < 200; ++ tmp16) // NEED changes here
{
fast_read_sadc(ch); // result stored in hi
lo = hi;
TCNT1 = 0;
while(TCNT1 < 20) ;
fast_read_sadc(ch); // result stored in hi
if( (lo < hi) && (hi >= triglo) && (hi <= trighi) ) break;
}
break;
case ASET:
PORTC |= actionmask; // Set the output bits as per mask
break;
case ACLR:
PORTC &= ~actionmask; // Clear the output bits as per mask
break;
case APULSEHI:
PORTC |= actionmask; // Set the output bits as per mask
TCNT1 = 0;
while(TCNT1 < pulse_width) ; // delay
PORTC &= ~actionmask; // Clear the output bits as per mask
break;
case APULSELO:
PORTC &= ~actionmask; // Clear the output bit as per mask
TCNT1 = 0;
while(TCNT1 < pulse_width) ; // delay
PORTC |= actionmask; // Set the output bits as per mask
break;
case AWAITHI:
wait_for_high(actionmask); // Wait for HIGH
break;
case AWAITLO:
wait_for_low(actionmask); // Wait for LOW
break;
case AWAITRISE:
wait_for_low(actionmask); // Wait for LOW and then
wait_for_high(actionmask); // Wait for HIGH
break;
case AWAITFALL:
wait_for_high(actionmask); // Wait for HIGH and then
wait_for_low(actionmask); // Wait for LOW
break;
}
dbuffer[0] = 'D'; // Action timeout NOT an error ???
}
int main()
{
u8 cmd,ch;
u16 ns, tg; // Number of samples and Time gap
DDRA = 31; // D0 to D4 are 555 capacitor switches. DDR will change.
PORTA = 0; // no pullups
DDRB = 2+8; // Serial OUT , OC0
DDRC = 0xF0; // 4 MSBs are outputs
DDRD = 128+16+8+4; // PWG, CSDAC, CSADC, CLOCK
PORTC= 3; // Enable pullup resistors for PC0 and PC1
// Initialize the RS232 communication link to the PC 38400, 8, 1, E
UCSRB = (1<<RXEN) | (1<<TXEN);
//UCSRA = (1 << U2X);
UBRRH = 0;
UBRRL = 12; // At 8MHz (12 =>38400) (25 => 19200)
UCSRC = (1<<URSEL) | (1<<UPM1) | (1<<UCSZ1) | (1<<UCSZ0); // 8,1,E
ACSR = (1<<ACBG); // AIN(+) connected to Vbg = 1.23V
TCCR1B = (1<<CS11); // Counter1 Normal mode, 1 MHz
buf_index = 0;
for(;;)
{
while ( !(UCSRA & (1<<RXC)) ) ; // wait for receiver data
dbuffer[buf_index++] = UDR; // Put the byte in the buffer.
if(buf_index*GROUPSIZE > dbuffer[0]) // Process after required no. of arguments
{
HTM = 0; TCNT1 = 0; // Keep them in known state
cmd = dbuffer[0];
dbuffer[0] = 'D'; // Fill reply Assuming Success
buf_index = 1; // Filling of return Data from second byte onwards
//PORTC |= 32; used for touble shooting
switch(cmd)
{
case CAPTURE_M32:
ch = dbuffer[1]; // ATmega32 ADC channel
ns = dbuffer[2] | (dbuffer[3] << 8); // Number of samples
tg = dbuffer[4] | (dbuffer[5] << 8) ; // Time gap
capture_m32(ch, ns, tg);
break;
case CAPTURE:
ch = dbuffer[1]; // ADC channel
ns = dbuffer[2] | (dbuffer[3] << 8); // Number of samples
tg = dbuffer[4] | (dbuffer[5] << 8) ; // Time gap
if( (ns*adc_size > BUFSIZE) || (tg < MINTG) || (tg > MAXTG))
{
dbuffer[0] = INVARG;
break;
}
triggers(ch,tg);
dbuffer[buf_index++] = adc_size; // adc_size to the caller
capture(ch, ns, tg); // dbuffer[1] is channel #
break;
case CAPTURE01: // Captures ch0 & ch1
ns = dbuffer[1] | (dbuffer[2] << 8); // Number of samples
tg = dbuffer[3] | (dbuffer[4] << 8); // Time gap
if( (2*ns*adc_size > BUFSIZE) || (tg < MINTG) ||(tg > MAXTG))
{
dbuffer[0] = INVARG;
break;
}
dbuffer[buf_index++] = adc_size; // adc_size to the caller
triggers(0,tg);
capture01(ns, tg);
break;
case QCAPTURE:
ch = dbuffer[1];
ns = dbuffer[2] | (dbuffer[3] << 8); // Number of samples
tg = dbuffer[4];
if( (ns > BUFSIZE) || (tg < MINTGQ) || (tg > MAXTGQ))
{
dbuffer[0] = INVARG;
break;
}
triggers(ch,tg);
if(dbuffer[4] == 10) // Special case Time gap
qcapture_min(ch, ns, dbuffer[4]);
else
qcapture(ch, ns, dbuffer[4]);
break;
case QCAPTURE01: // Captures ch0 & ch1
ns = dbuffer[1] | (dbuffer[2] << 8); // Number of samples
tg = dbuffer[3];
if( (2*ns > BUFSIZE) || (tg < MINTGQ)|| (tg > MAXTGQ))
{
dbuffer[0] = INVARG;
break;
}
triggers(0,tg);
qcapture01(ns, dbuffer[3]); // [3] is time gap
break;
case SETADCSIZE: // 12 bit ADC, set to 1 or 2 bytes
if(dbuffer[1] > 2)
{
dbuffer[0] = INVARG;
break;
}
adc_size = dbuffer[1];
break;
case SETSAMTIME: // Serial ADC, sampling time, clock 6
if(dbuffer[1] > 250)
{
dbuffer[0] = INVARG;
break;
}
sampling_time = dbuffer[1];
break;
case READADC: // Reads the requested channel of MCP3208 ADC
tmp16 = read_sadc(dbuffer[1]);
tmp16 += read_sadc(dbuffer[1]);
tmp16 += read_sadc(dbuffer[1]);
tmp16 += read_sadc(dbuffer[1]);
tmp16 /= 4;
dbuffer[buf_index++] = tmp16 & 255;
dbuffer[buf_index++] = tmp16 >> 8;
break;
case SETDAC: // Set the MCP4922 DAC
set_dac(dbuffer[1], dbuffer[2] | (dbuffer[3] << 8));
break;
case SETACTION:
/*
action 1 to 4 : SET/CLR/PULSE Digital Outputs just before capturing waveform.
action 5 to 8 : Waits on Levels/Edges on Digital Inputs.
actionmask MSBs keep the Digout Bits. LSBs keep the Digin Bits.
*/
if(dbuffer[1] <= 4)
{
action = dbuffer[1];
actionmask = dbuffer[2] << 4; // keep in high nibble
}
else
if(dbuffer[1] <= 8)
{
action = dbuffer[1];
actionmask = dbuffer[2] & 15; // Keep in low nibble
}
else
dbuffer[0] = INVARG;
break;
case ADCTRIGS:
/* To get a stable display of periodic waveform, every time the digitization
should start roughly at the same position of the waveform. Two levels are
specified to allow rising and falling edge triggering.
*/
triglo = dbuffer[1]; // First Trigger level
trighi = dbuffer[2]; // Second Trigger Level
break;
case ADC2CMP: // ch > 7 means disconnect routing
if(dbuffer[1] <= 7)
{
ADMUX = dbuffer[1];
SFIOR = (1 << ACME); // Route ADC input to AIN-
ADCSRA = 0; // Disable ADC
}
else
SFIOR = 0; // Disconnect AIN- from ADC inputs
break;
// Timer Counter related functions start here.
case SETCOUNTER0: // TC0 in CTC mode, caller sends CS bits & OCR0
TCCR0 = (1<<WGM01) | (1<<COM00) | (dbuffer[1] & 7);
OCR0 = dbuffer[2];
break;
case SETCOUNTER2: // TC2 in CTC mode, caller sends CS bits & OCR2
TCCR2 = (1<<WGM21) | (1<<COM20) | (dbuffer[1] & 7);
OCR2 = dbuffer[2];
break;
case SETPWM: // Set TC0 to 488 Hz PWM
if(dbuffer[1] == 0)
TCCR0 = 0; // Switch off
else
{
OCR0 = dbuffer[1];
TCCR0 = (1<<WGM01) | (1<<WGM00) | (1<<COM01) | (1<<CS01) | (1<<CS00); // Fast PWM mode
}
break;
case SETPWMDAC: // Set TC0 to 31.25 kHz PWM
if(dbuffer[1] == 0)
TCCR0 = 0; // Switch off
else
{
OCR0 = dbuffer[1];
TCCR0 = (1<<WGM01) | (1<<WGM00) | (1<<COM01) | (1<<CS00); // Fast PWM mode
}
break;
case IRSEND:
// Infrared communication vis SQR1 output
// Sets TC2 in CTC mode, as per the byte to send
#define SPACE 500
OCR2 = 104; // f = 1e6/256/OCR2
TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20); // Counter2 CTC mode, pre-scale = 1
TCNT1 = 0; while(TCNT1 < SPACE*5); // beginning
TCCR2 = 0;
TCNT1 = 0; while(TCNT1 < SPACE);
lo = dbuffer[1]; // byte to transmit
for(hi=0; hi < 8; ++hi)
{
TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20); // Counter2 CTC mode, pre-scale = 1
TCNT1 = 0; while(TCNT1 < SPACE) ;
TCCR2 = 0;
TCNT1 = 0; while(TCNT1 < SPACE);
if(lo & 128)
{
TCNT1 = 0; while(TCNT1 < SPACE);
}
lo <<= 1;
}
TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20); // Counter2 CTC mode, pre-scale = 1
TCNT1 = 0; while(TCNT1 < SPACE) ;
TCCR2 = 0;
TCNT1 = 0; while(TCNT1 < SPACE) ;
break;
/*-------------------- Passive Time Interval Measurements.-----------------
Time interval measurement functions using DIGITAL I/O and ACOMP Sockets.
The 16 bit Timer/Counter is used for time measurements. A 1 MHz clock is fed
to the counter and the variable HTM is incremented after when it reaches 50000.
Timeout is provided on all time measurements.
Measures the time interval between a Level Transition one Digital Input to
another. The 8 bit input data specifies the Input Sockets to wait for.
The HIGH 4 bits contain the Sockets to look for the First Transition.
For example dbuffer[1] = 00100001, time between a transition on D1 to a
transition on D0 is measured.
In fact it is possible to wait for more than one sockets at the same time and
which ever come first can be taken. At the moment the Python function sets only
a single bit in each half. The Start and Stop inputs could be same or different.
A special case arise when all the 4 bits are zero. In that case transition on
the Analog Comparator input Socket is waited for. Using the ADC2CMP function,
it is possible to route ADC input pins to Analog Comaparator Input.
*/
case R2RTIME:
hi = dbuffer[1] >> 4; // 4 MSBs start pins
lo = dbuffer[1] & 15; // 4 LSBs end pins
if(wait_for_low(hi)) // Just make sure the level is LOW
if(clear_on_rise(hi)) // Clear counter on rising edge src pin
if(wait_for_low(lo)) // DST pin should be LOW
mark_on_rise(lo); // Store counters at rising edge dst pin
break;
case F2FTIME:
hi = dbuffer[1] >> 4; // 4 MSBs start pins
lo = dbuffer[1] & 15; // 4 LSBs end pins
if(wait_for_high(hi)) // Just make sure the level is HIGH
if(clear_on_fall(hi)) // Clear counter on falling edge src pin
if(wait_for_high(lo)) // DST pin should be HIGH
mark_on_fall(lo); // Store counters at falling edge dst pin
break;
case R2FTIME:
hi = dbuffer[1] >> 4; // 4 MSBs start pins
lo = dbuffer[1] & 15; // 4 LSBs end pins
if(wait_for_low(hi)) // Just make sure the level is LOW
if(clear_on_rise(hi)) // Clear counter on rising edge src pin
mark_on_fall(lo); // Store counters at falling edge dst pin
break;
case F2RTIME:
hi = dbuffer[1] >> 4; // 4 MSBs start pins
lo = dbuffer[1] & 15; // 4 LSBs end pins
if(wait_for_high(hi)) // Just make sure the level is HIGH
if(clear_on_fall(hi)) // Clear counter on falling edge src pin
mark_on_rise(lo); // Store counters at rising edge dst pin
break;
case MULTIR2R:
/* Measures the time interval between two rising edges on the same Input Socket.
The 4 LSBs of the first argument specifies the Input Socket to look for.
The second argument specifies the number of rising edges to be skipped in between
the two edges measured. For example dbuffer[2] = 9 returns the time taken
for 10 cycles. Averaging is useful for better measurement accuracy.
*/
lo = dbuffer[1] & 15; // pin number in 4 LSBs
TCNT1 =0;
HTM = 0;
if(!wait_for_low(lo)) break; // Make sure the level is LOW
if(!clear_on_rise(lo))break; // Clear counter on rising edge src pin
if(!wait_for_low(lo)) break;
while (dbuffer[2]--)
{
if(!wait_for_high(lo))break;
if(!wait_for_low(lo)) break;
}
if(dbuffer[0] == TIMEOUT) break;
mark_on_rise(lo); // Store counters at rising edge
break;
/*-------------------- Active Time Interval Measurements ----------------------
Sets the DIGITAL Output Sockets as per the 4 MSBs of the argument and measures
the time from that to a Level Transition on the Input Socket specified by the 4 LSBs
of the argument. 4 LSBs zero means Analog Comparator.
*/
case SET2RTIME:
PORTC |= dbuffer[1] & 0xF0; // SET as per 4 MSBs
HTM = 0;
TCNT1 = 0;
mark_on_rise(dbuffer[1] & 15); // Wait as per 4 LSBs
break;
case SET2FTIME:
PORTC |= dbuffer[1] & 0xF0; // SET as per 4 MSBs
HTM = 0;
TCNT1 = 0;
mark_on_fall(dbuffer[1] & 15); // Wait as per 4 LSBs
break;
case CLR2RTIME:
PORTC &= ~(dbuffer[1] & 0xF0); // CLR as per 4 MSBs
HTM = 0;
TCNT1 = 0;
mark_on_rise(dbuffer[1] & 15); // Wait as per 4 LSBs
break;
case CLR2FTIME:
PORTC &= ~(dbuffer[1] & 0xF0); // CLR as per 4 MSBs
HTM = 0;
TCNT1 = 0;
mark_on_fall(dbuffer[1] & 15); // Wait as per 4 LSBs
break;
case SETPULSEWID:
pulse_width = dbuffer[1];
break;
case SETPULSEPOL: // For the PULSE2* functions
pulse_pol = dbuffer[1];
break;
case USOUND: // Sends a Pulse of PC5, look on PC2
PORTC |= (1 << PC4); // set OD0
TCNT1 = 0;
while(TCNT1L < pulse_width) ; //kill time
PORTC &= ~(1 << PC4); // Clear OD0
HTM = 0;
TCNT1 = 0;
while(TCNT1 < DEADTIME) ; // Wait to settle noise
mark_on_rise(1<<PC2); // Store counters at rising of PC2
break;
case PULSE2RTIME:
case PULSE2FTIME:
hi = dbuffer[1] & 0xF0; // 4 MSBs start pins
lo = dbuffer[1] & 15; // 4 LSBs end pins
if(pulse_pol) // HIGH TRUE pulse
{
PORTC |= hi; // Set source bit
TCNT1 = 0;
while(TCNT1L < pulse_width) ; //kill time
PORTC &= ~hi; // Restore old value
}
else // LOW TRUE pulse
{
PORTC &= ~hi; // Clear source bit
TCNT1 = 0;
while(TCNT1L < pulse_width) ; //kill time
PORTC |= hi; // Restore old value
}
HTM = 0;
TCNT1 = 0;
while(TCNT1 < DEADTIME) ; // Wait to settle noise
if(cmd == PULSE2RTIME)
mark_on_rise(lo); // Store counters at rising of dst
else
mark_on_fall(lo); // Store counters at falling of dst
break;
//-----------------------Digital I/O functions-------------------------
case DIGOUT:
PORTC = (dbuffer[1] << 4) | 3; // Only PCO & PC1 need to be pulled up
break;
case DIGIN: // 3 bits of PortC, 4th is analog comparator output
ADMUX = 5; // SENSOR output is on ADC input 5
SFIOR = (1 << ACME); // Route ADC input to AIN-
ADCSRA = 0; // Disable ADC
dbuffer[buf_index++] = (PINC & 7) | ((ACSR & (1<<ACO))>>2);
break;
case WREEPROM:
tmp16 = dbuffer[2] << 8; // 16 bit Internal SEEPROM address by
tmp16 |= dbuffer[1]; // combining low and high bytes
eeprom_write_byte ( (u8ptr)tmp16, dbuffer[3]);
break;
case RDEEPROM:
tmp16 = dbuffer[2] << 8; // 16 bit Internal SEEPROM address by
tmp16 |= dbuffer[1]; // combining low and high bytes
ch = dbuffer[3];
for(lo=0; lo < ch; ++lo)
dbuffer[buf_index++] = eeprom_read_byte ((u8ptr)(tmp16+lo));
break;
//----------------------- Low level PORT access functions----------------
case SETDDR:
if(dbuffer[1] == 0) DDRA = dbuffer[2];
else if(dbuffer[1] == 1) DDRB = dbuffer[2];
else if(dbuffer[1] == 2) DDRC = dbuffer[2];
else if(dbuffer[1] == 3) DDRD = dbuffer[2];
break;
case SETPORT:
if(dbuffer[1] == 0) PORTA = dbuffer[2];
else if(dbuffer[1] == 1) PORTB = dbuffer[2];
else if(dbuffer[1] == 2) PORTC = dbuffer[2];
else if(dbuffer[1] == 3) PORTD = dbuffer[2];
break;
case GETPORT:
if(dbuffer[1] == 0) dbuffer[buf_index++] = PINA;
else if(dbuffer[1] == 1) dbuffer[buf_index++] = PINB;
else if(dbuffer[1] == 2) dbuffer[buf_index++] = PINC;
else if(dbuffer[1] == 3) dbuffer[buf_index++] = PIND;
break;
case GETVERSION:
memcpy_P(&dbuffer[1], version,5);
buf_index += 5;
break;
default:
dbuffer[0] = INVCMD; // Invalid Command
break;
}
while( !(UCSRA & (1 <<UDRE) ) );
UDR = dbuffer[0]; // Send the response byte in all cases
// If no error, send the data bytes to the PC. No handshake used.
if(dbuffer[0] == 'D')
for(tmp16=1; tmp16 < buf_index; ++tmp16)
{
while( !(UCSRA & (1 <<UDRE) ) );
UDR = dbuffer[tmp16];
}
buf_index = 0;
//PORTC &= ~32; used for trouble shooting only
}
}
return 0;
}
|