/usr/include/faust/audio/alsa-dsp.h is in faust-common 0.9.95~repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 | /************************************************************************
IMPORTANT NOTE : this file contains two clearly delimited sections :
the ARCHITECTURE section (in two parts) and the USER section. Each section
is governed by its own copyright and license. Please check individually
each section for license and copyright information.
*************************************************************************/
/*******************BEGIN ARCHITECTURE SECTION (part 1/2)****************/
/************************************************************************
FAUST Architecture File
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This Architecture section is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; If not, see <http://www.gnu.org/licenses/>.
EXCEPTION : As a special exception, you may create a larger work
that contains this FAUST architecture section and distribute
that work under terms of your choice, so long as this FAUST
architecture section is not modified.
************************************************************************
************************************************************************/
#ifndef __alsa_dsp__
#define __alsa_dsp__
#include <stdio.h>
#include <pthread.h>
#include <sys/types.h>
#include <pwd.h>
#include <limits.h>
#include <alsa/asoundlib.h>
#include "faust/audio/audio.h"
#include "faust/dsp/dsp.h"
/**
DEFAULT ALSA PARAMETERS CONTROLLED BY ENVIRONMENT VARIABLES
Some default parameters of Faust's ALSA applications are controlled by the following environment variables :
FAUST2ALSA_DEVICE = "hw:0"
FAUST2ALSA_FREQUENCY= 44100
FAUST2ALSA_BUFFER = 512
FAUST2ALSA_PERIODS = 2
*/
// handle 32/64 bits int size issues
#ifdef __x86_64__
#define uint32 unsigned int
#define uint64 unsigned long int
#define int32 int
#define int64 long int
#else
#define uint32 unsigned int
#define uint64 unsigned long long int
#define int32 int
#define int64 long long int
#endif
// check 32/64 bits issues are correctly handled
#define check_error(err) if (err) { printf("%s:%d, alsa error %d : %s\n", __FILE__, __LINE__, err, snd_strerror(err)); exit(1); }
#define check_error_msg(err,msg) if (err) { fprintf(stderr, "%s:%d, %s : %s(%d)\n", __FILE__, __LINE__, msg, snd_strerror(err), err); exit(1); }
#define display_error_msg(err,msg) if (err) { fprintf(stderr, "%s:%d, %s : %s(%d)\n", __FILE__, __LINE__, msg, snd_strerror(err), err); }
/**
* Used to set the priority and scheduling of the audi#include <sys/types.h>
#include <pwd.h>
o thread
*/
static bool setRealtimePriority ()
{
struct passwd * pw;
int err;
uid_t uid;
struct sched_param param;
uid = getuid ();
pw = getpwnam ("root");
err = setuid (pw->pw_uid);
if (err==0) {
param.sched_priority = 50; /* 0 to 99 */
err = sched_setscheduler(0, SCHED_RR, ¶m);
err = setuid (uid);
}
return (err != -1);
}
/******************************************************************************
*******************************************************************************
AUDIO INTERFACE
*******************************************************************************
*******************************************************************************/
enum { kRead = 1, kWrite = 2, kReadWrite = 3 };
/**
* A convenient class to pass parameters to AudioInterface
*/
struct AudioParam
{
const char* fCardName;
unsigned int fFrequency;
unsigned int fBuffering;
unsigned int fPeriods;
unsigned int fSoftInputs;
unsigned int fSoftOutputs;
AudioParam() :
fCardName("hw:0"),
fFrequency(44100),
fBuffering(512),
fPeriods(2),
fSoftInputs(2),
fSoftOutputs(2)
{}
AudioParam& cardName(const char* n) { fCardName = n; return *this; }
AudioParam& frequency(int f) { fFrequency = f; return *this; }
AudioParam& buffering(int fpb) { fBuffering = fpb; return *this; }
AudioParam& periods(int p) { fPeriods = p; return *this; }
AudioParam& inputs(int n) { fSoftInputs = n; return *this; }
AudioParam& outputs(int n) { fSoftOutputs = n; return *this; }
};
/**
* An ALSA audio interface
*/
struct AudioInterface : public AudioParam
{
snd_pcm_t* fOutputDevice;
snd_pcm_t* fInputDevice;
snd_pcm_hw_params_t* fInputParams;
snd_pcm_hw_params_t* fOutputParams;
snd_pcm_format_t fSampleFormat;
snd_pcm_access_t fSampleAccess;
unsigned int fCardInputs;
unsigned int fCardOutputs;
unsigned int fChanInputs;
unsigned int fChanOutputs;
bool fDuplexMode;
// interleaved mode audiocard buffers
void* fInputCardBuffer;
void* fOutputCardBuffer;
// non interleaved mode audiocard buffers
void* fInputCardChannels[256];
void* fOutputCardChannels[256];
// non interleaved mod, floating point software buffers
float* fInputSoftChannels[256];
float* fOutputSoftChannels[256];
const char* cardName() { return fCardName; }
int frequency() { return fFrequency; }
int buffering() { return fBuffering; }
int periods() { return fPeriods; }
float** inputSoftChannels() { return fInputSoftChannels; }
float** outputSoftChannels() { return fOutputSoftChannels; }
bool duplexMode() { return fDuplexMode; }
AudioInterface(const AudioParam& ap = AudioParam()) : AudioParam(ap)
{
fInputDevice = 0;
fOutputDevice = 0;
fInputParams = 0;
fOutputParams = 0;
}
/**
* Open the audio interface
*/
void open()
{
int err;
// try to open output device, quit if fail to open output device
err = snd_pcm_open( &fOutputDevice, fCardName, SND_PCM_STREAM_PLAYBACK, 0 ); check_error(err)
// setup output device parameters
err = snd_pcm_hw_params_malloc ( &fOutputParams ); check_error(err)
setAudioParams(fOutputDevice, fOutputParams);
fCardOutputs = fSoftOutputs;
snd_pcm_hw_params_set_channels_near(fOutputDevice, fOutputParams, &fCardOutputs);
err = snd_pcm_hw_params (fOutputDevice, fOutputParams ); check_error(err);
// allocate alsa output buffers
if (fSampleAccess == SND_PCM_ACCESS_RW_INTERLEAVED) {
fOutputCardBuffer = calloc(interleavedBufferSize(fOutputParams), 1);
} else {
for (unsigned int i = 0; i < fCardOutputs; i++) {
fOutputCardChannels[i] = calloc(noninterleavedBufferSize(fOutputParams), 1);
}
}
// check for duplex mode (if we need and have an input device)
if (fSoftInputs == 0) {
fDuplexMode = false;
fCardInputs = 0;
} else {
// try to open input device
err = snd_pcm_open( &fInputDevice, fCardName, SND_PCM_STREAM_CAPTURE, 0 );
if (err == 0) {
fDuplexMode = true;
} else {
printf("Warning : no input device");
fDuplexMode = false;
fCardInputs = 0;
}
}
if (fDuplexMode) {
// we have and need an input device
// set the number of physical inputs close to what we need
err = snd_pcm_hw_params_malloc ( &fInputParams ); check_error(err);
setAudioParams(fInputDevice, fInputParams);
fCardInputs = fSoftInputs;
snd_pcm_hw_params_set_channels_near(fInputDevice, fInputParams, &fCardInputs);
err = snd_pcm_hw_params (fInputDevice, fInputParams ); check_error(err);
// allocation of alsa buffers
if (fSampleAccess == SND_PCM_ACCESS_RW_INTERLEAVED) {
fInputCardBuffer = calloc(interleavedBufferSize(fInputParams), 1);
} else {
for (unsigned int i = 0; i < fCardInputs; i++) {
fInputCardChannels[i] = calloc(noninterleavedBufferSize(fInputParams), 1);
}
}
}
printf("inputs : %u, outputs : %u\n", fCardInputs, fCardOutputs);
// allocation of floating point buffers needed by the dsp code
fChanInputs = max(fSoftInputs, fCardInputs); assert (fChanInputs < 256);
fChanOutputs = max(fSoftOutputs, fCardOutputs); assert (fChanOutputs < 256);
for (unsigned int i = 0; i < fChanInputs; i++) {
fInputSoftChannels[i] = (float*) calloc (fBuffering, sizeof(float));
for (unsigned int j = 0; j < fBuffering; j++) {
fInputSoftChannels[i][j] = 0.0;
}
}
for (unsigned int i = 0; i < fChanOutputs; i++) {
fOutputSoftChannels[i] = (float*) calloc (fBuffering, sizeof(float));
for (unsigned int j = 0; j < fBuffering; j++) {
fOutputSoftChannels[i][j] = 0.0;
}
}
}
void setAudioParams(snd_pcm_t* stream, snd_pcm_hw_params_t* params)
{
int err;
// set params record with initial values
err = snd_pcm_hw_params_any ( stream, params );
check_error_msg(err, "unable to init parameters")
// set alsa access mode (and fSampleAccess field) either to non interleaved or interleaved
err = snd_pcm_hw_params_set_access (stream, params, SND_PCM_ACCESS_RW_NONINTERLEAVED );
if (err) {
err = snd_pcm_hw_params_set_access (stream, params, SND_PCM_ACCESS_RW_INTERLEAVED );
check_error_msg(err, "unable to set access mode neither to non-interleaved or to interleaved");
}
snd_pcm_hw_params_get_access(params, &fSampleAccess);
// search for 32-bits or 16-bits format
err = snd_pcm_hw_params_set_format (stream, params, SND_PCM_FORMAT_S32);
if (err) {
err = snd_pcm_hw_params_set_format (stream, params, SND_PCM_FORMAT_S16);
check_error_msg(err, "unable to set format to either 32-bits or 16-bits");
}
snd_pcm_hw_params_get_format(params, &fSampleFormat);
// set sample frequency
snd_pcm_hw_params_set_rate_near (stream, params, &fFrequency, 0);
// set period and period size (buffering)
err = snd_pcm_hw_params_set_period_size (stream, params, fBuffering, 0);
check_error_msg(err, "period size not available");
err = snd_pcm_hw_params_set_periods (stream, params, fPeriods, 0);
check_error_msg(err, "number of periods not available");
}
ssize_t interleavedBufferSize (snd_pcm_hw_params_t* params)
{
_snd_pcm_format format; snd_pcm_hw_params_get_format(params, &format);
snd_pcm_uframes_t psize; snd_pcm_hw_params_get_period_size(params, &psize, NULL);
unsigned int channels; snd_pcm_hw_params_get_channels(params, &channels);
ssize_t bsize = snd_pcm_format_size (format, psize * channels);
return bsize;
}
ssize_t noninterleavedBufferSize (snd_pcm_hw_params_t* params)
{
_snd_pcm_format format; snd_pcm_hw_params_get_format(params, &format);
snd_pcm_uframes_t psize; snd_pcm_hw_params_get_period_size(params, &psize, NULL);
ssize_t bsize = snd_pcm_format_size (format, psize);
return bsize;
}
void close()
{}
/**
* Read audio samples from the audio card. Convert samples to floats and take
* care of interleaved buffers
*/
void read()
{
if (fSampleAccess == SND_PCM_ACCESS_RW_INTERLEAVED) {
int count = snd_pcm_readi(fInputDevice, fInputCardBuffer, fBuffering);
if (count < 0) {
//display_error_msg(count, "reading samples");
snd_pcm_prepare(fInputDevice);
//check_error_msg(err, "preparing input stream");
}
if (fSampleFormat == SND_PCM_FORMAT_S16) {
short* buffer16b = (short*)fInputCardBuffer;
for (unsigned int s = 0; s < fBuffering; s++) {
for (unsigned int c = 0; c < fCardInputs; c++) {
fInputSoftChannels[c][s] = float(buffer16b[c + s*fCardInputs])*(1.0/float(SHRT_MAX));
}
}
} else if (fSampleFormat == SND_PCM_FORMAT_S32) {
int32* buffer32b = (int32*)fInputCardBuffer;
for (unsigned int s = 0; s < fBuffering; s++) {
for (unsigned int c = 0; c < fCardInputs; c++) {
fInputSoftChannels[c][s] = float(buffer32b[c + s*fCardInputs])*(1.0/float(INT_MAX));
}
}
} else {
printf("unrecognized input sample format : %u\n", fSampleFormat);
exit(1);
}
} else if (fSampleAccess == SND_PCM_ACCESS_RW_NONINTERLEAVED) {
int count = snd_pcm_readn(fInputDevice, fInputCardChannels, fBuffering);
if (count < 0) {
//display_error_msg(count, "reading samples");
snd_pcm_prepare(fInputDevice);
//check_error_msg(err, "preparing input stream");
}
if (fSampleFormat == SND_PCM_FORMAT_S16) {
for (unsigned int c = 0; c < fCardInputs; c++) {
short* chan16b = (short*)fInputCardChannels[c];
for (unsigned int s = 0; s < fBuffering; s++) {
fInputSoftChannels[c][s] = float(chan16b[s])*(1.0/float(SHRT_MAX));
}
}
} else if (fSampleFormat == SND_PCM_FORMAT_S32) {
for (unsigned int c = 0; c < fCardInputs; c++) {
int32* chan32b = (int32*)fInputCardChannels[c];
for (unsigned int s = 0; s < fBuffering; s++) {
fInputSoftChannels[c][s] = float(chan32b[s])*(1.0/float(INT_MAX));
}
}
} else {
printf("unrecognized input sample format : %u\n", fSampleFormat);
exit(1);
}
} else {
check_error_msg(-10000, "unknown access mode");
}
}
/**
* write the output soft channels to the audio card. Convert sample
* format and interleaves buffers when needed
*/
void write()
{
recovery :
if (fSampleAccess == SND_PCM_ACCESS_RW_INTERLEAVED) {
if (fSampleFormat == SND_PCM_FORMAT_S16) {
short* buffer16b = (short*)fOutputCardBuffer;
for (unsigned int f = 0; f < fBuffering; f++) {
for (unsigned int c = 0; c < fCardOutputs; c++) {
float x = fOutputSoftChannels[c][f];
buffer16b[c + f*fCardOutputs] = short( max(min(x,1.0f),-1.0f) * float(SHRT_MAX) ) ;
}
}
} else if (fSampleFormat == SND_PCM_FORMAT_S32) {
int32* buffer32b = (int32*)fOutputCardBuffer;
for (unsigned int f = 0; f < fBuffering; f++) {
for (unsigned int c = 0; c < fCardOutputs; c++) {
float x = fOutputSoftChannels[c][f];
buffer32b[c + f*fCardOutputs] = int( max(min(x,1.0f),-1.0f) * float(INT_MAX) ) ;
}
}
} else {
printf("unrecognized output sample format : %u\n", fSampleFormat);
exit(1);
}
int count = snd_pcm_writei(fOutputDevice, fOutputCardBuffer, fBuffering);
if (count<0) {
//display_error_msg(count, "w3");
snd_pcm_prepare(fOutputDevice);
//check_error_msg(err, "preparing output stream");
goto recovery;
}
} else if (fSampleAccess == SND_PCM_ACCESS_RW_NONINTERLEAVED) {
if (fSampleFormat == SND_PCM_FORMAT_S16) {
for (unsigned int c = 0; c < fCardOutputs; c++) {
short* chan16b = (short*) fOutputCardChannels[c];
for (unsigned int f = 0; f < fBuffering; f++) {
float x = fOutputSoftChannels[c][f];
chan16b[f] = short( max(min(x,1.0f),-1.0f) * float(SHRT_MAX) ) ;
}
}
} else if (fSampleFormat == SND_PCM_FORMAT_S32) {
for (unsigned int c = 0; c < fCardOutputs; c++) {
int32* chan32b = (int32*) fOutputCardChannels[c];
for (unsigned int f = 0; f < fBuffering; f++) {
float x = fOutputSoftChannels[c][f];
chan32b[f] = int( max(min(x,1.0f),-1.0f) * float(INT_MAX) ) ;
}
}
} else {
printf("unrecognized output sample format : %u\n", fSampleFormat);
exit(1);
}
int count = snd_pcm_writen(fOutputDevice, fOutputCardChannels, fBuffering);
if (count<0) {
//display_error_msg(count, "w3");
snd_pcm_prepare(fOutputDevice);
//check_error_msg(err, "preparing output stream");
goto recovery;
}
} else {
check_error_msg(-10000, "unknown access mode");
}
}
/**
* print short information on the audio device
*/
void shortinfo()
{
int err;
snd_ctl_card_info_t* card_info;
snd_ctl_t* ctl_handle;
err = snd_ctl_open (&ctl_handle, fCardName, 0); check_error(err);
snd_ctl_card_info_alloca (&card_info);
err = snd_ctl_card_info(ctl_handle, card_info); check_error(err);
printf("%s|%d|%d|%d|%d|%s\n",
snd_ctl_card_info_get_driver(card_info),
fCardInputs, fCardOutputs,
fFrequency, fBuffering,
snd_pcm_format_name((_snd_pcm_format)fSampleFormat));
}
/**
* print more detailled information on the audio device
*/
void longinfo()
{
int err;
snd_ctl_card_info_t* card_info;
snd_ctl_t* ctl_handle;
printf("Audio Interface Description :\n");
printf("Sampling Frequency : %d, Sample Format : %s, buffering : %d\n",
fFrequency, snd_pcm_format_name((_snd_pcm_format)fSampleFormat), fBuffering);
printf("Software inputs : %2d, Software outputs : %2d\n", fSoftInputs, fSoftOutputs);
printf("Hardware inputs : %2d, Hardware outputs : %2d\n", fCardInputs, fCardOutputs);
printf("Channel inputs : %2d, Channel outputs : %2d\n", fChanInputs, fChanOutputs);
// affichage des infos de la carte
err = snd_ctl_open (&ctl_handle, fCardName, 0); check_error(err);
snd_ctl_card_info_alloca (&card_info);
err = snd_ctl_card_info(ctl_handle, card_info); check_error(err);
printCardInfo(card_info);
// affichage des infos liees aux streams d'entree-sortie
if (fSoftInputs > 0) printHWParams(fInputParams);
if (fSoftOutputs > 0) printHWParams(fOutputParams);
}
void printCardInfo(snd_ctl_card_info_t* ci)
{
printf("Card info (address : %p)\n", ci);
printf("\tID = %s\n", snd_ctl_card_info_get_id(ci));
printf("\tDriver = %s\n", snd_ctl_card_info_get_driver(ci));
printf("\tName = %s\n", snd_ctl_card_info_get_name(ci));
printf("\tLongName = %s\n", snd_ctl_card_info_get_longname(ci));
printf("\tMixerName = %s\n", snd_ctl_card_info_get_mixername(ci));
printf("\tComponents = %s\n", snd_ctl_card_info_get_components(ci));
printf("--------------\n");
}
void printHWParams( snd_pcm_hw_params_t* params )
{
printf("HW Params info (address : %p)\n", params);
#if 0
printf("\tChannels = %d\n", snd_pcm_hw_params_get_channels(params));
printf("\tFormat = %s\n", snd_pcm_format_name((_snd_pcm_format)snd_pcm_hw_params_get_format(params)));
printf("\tAccess = %s\n", snd_pcm_access_name((_snd_pcm_access)snd_pcm_hw_params_get_access(params)));
printf("\tRate = %d\n", snd_pcm_hw_params_get_rate(params, NULL));
printf("\tPeriods = %d\n", snd_pcm_hw_params_get_periods(params, NULL));
printf("\tPeriod size = %d\n", (int)snd_pcm_hw_params_get_period_size(params, NULL));
printf("\tPeriod time = %d\n", snd_pcm_hw_params_get_period_time(params, NULL));
printf("\tBuffer size = %d\n", (int)snd_pcm_hw_params_get_buffer_size(params));
printf("\tBuffer time = %d\n", snd_pcm_hw_params_get_buffer_time(params, NULL));
#endif
printf("--------------\n");
}
};
// lopt : Scan Command Line long int Arguments
long lopt(int argc, char *argv[], const char* longname, const char* shortname, long def)
{
for (int i=2; i<argc; i++)
if ( strcmp(argv[i-1], shortname) == 0 || strcmp(argv[i-1], longname) == 0 )
return atoi(argv[i]);
return def;
}
// sopt : Scan Command Line string Arguments
const char* sopt(int argc, char *argv[], const char* longname, const char* shortname, const char* def)
{
for (int i=2; i<argc; i++)
if ( strcmp(argv[i-1], shortname) == 0 || strcmp(argv[i-1], longname) == 0 )
return argv[i];
return def;
}
// fopt : Scan Command Line flag option (without argument), return true if the flag
bool fopt(int argc, char *argv[], const char* longname, const char* shortname)
{
for (int i=1; i<argc; i++)
if ( strcmp(argv[i], shortname) == 0 || strcmp(argv[i], longname) == 0 )
return true;
return false;
}
/**
* Return the value of an environment variable or defval if undefined.
*/
static int getDefaultEnv(const char* name, int defval)
{
const char* str = getenv(name);
if (str) {
return atoi(str);
} else {
return defval;
}
}
/**
* Return the value of an environment variable or defval if undefined.
*/
static const char* getDefaultEnv(const char* name, const char* defval)
{
const char* str = getenv(name);
if (str) {
return str;
} else {
return defval;
}
}
/******************************************************************************
*******************************************************************************
ALSA audio interface
*******************************************************************************
*******************************************************************************/
static void* __run(void* ptr);
class alsaaudio : public audio
{
AudioInterface* fAudio;
dsp* fDSP;
pthread_t fAudioThread;
bool fRunning;
public:
alsaaudio(int argc, char *argv[], dsp* DSP) : fDSP(DSP), fRunning(false)
{
fAudio = new AudioInterface(AudioParam().cardName(sopt(argc, argv, "--device", "-d", getDefaultEnv("FAUST2ALSA_DEVICE", "hw:0")))
.frequency(lopt(argc, argv, "--frequency", "-f", getDefaultEnv("FAUST2ALSA_FREQUENCY", 44100)))
.buffering(lopt(argc, argv, "--buffer", "-b", getDefaultEnv("FAUST2ALSA_BUFFER", 512)))
.periods(lopt(argc, argv, "--periods", "-p", getDefaultEnv("FAUST2ALSA_PERIODS", 2)))
.inputs(DSP->getNumInputs())
.outputs(DSP->getNumOutputs()));
}
alsaaudio(int srate, int bsize) : fDSP(0), fRunning(false)
{
fAudio = new AudioInterface(AudioParam().cardName("hw:0")
.frequency(srate)
.buffering(bsize)
.periods(2));
}
virtual ~alsaaudio() { stop(); delete fAudio; }
virtual bool init(const char */*name*/, dsp* DSP)
{
fAudio->inputs(DSP->getNumInputs());
fAudio->outputs(DSP->getNumOutputs());
fAudio->open();
DSP->init(fAudio->frequency());
return true;
}
virtual bool start()
{
fRunning = true;
if (pthread_create(&fAudioThread, 0, __run, this)) {
fRunning = false;
}
return fRunning;
}
virtual void stop() {
if (fRunning) {
fRunning = false;
pthread_join(fAudioThread, 0);
}
}
virtual int get_buffer_size() { return fAudio->buffering(); }
virtual int get_sample_rate() { return fAudio->frequency(); }
virtual void run() {
bool rt = setRealtimePriority();
printf(rt ? "RT : ":"NRT: "); fAudio->shortinfo();
AVOIDDENORMALS;
if (fAudio->duplexMode()) {
fAudio->write();
fAudio->write();
while (fRunning) {
fAudio->read();
fDSP->compute(fAudio->buffering(), fAudio->inputSoftChannels(), fAudio->outputSoftChannels());
fAudio->write();
}
} else {
fAudio->write();
while (fRunning) {
fDSP->compute(fAudio->buffering(), fAudio->inputSoftChannels(), fAudio->outputSoftChannels());
fAudio->write();
}
}
}
};
void* __run (void* ptr)
{
alsaaudio * alsa = (alsaaudio*)ptr;
alsa->run();
return 0;
}
#endif
/********************END ARCHITECTURE SECTION (part 2/2)****************/
|