/usr/include/faust/dsp/dsp-bench.h is in faust-common 0.9.95~repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | /************************************************************************
FAUST Architecture File
Copyright (C) 2016 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This Architecture section is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; If not, see <http://www.gnu.org/licenses/>.
EXCEPTION : As a special exception, you may create a larger work
that contains this FAUST architecture section and distribute
that work under terms of your choice, so long as this FAUST
architecture section is not modified.
************************************************************************/
#ifndef __dsp_bench__
#define __dsp_bench__
#include <limits.h>
#include <sys/time.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <assert.h>
#include <string.h>
#include "faust/dsp/dsp.h"
// Handle 32/64 bits int size issues
#ifdef __x86_64__
#define uint32 unsigned int
#define uint64 unsigned long int
#define int32 int
#define int64 long int
#else
#define uint32 unsigned int
#define uint64 unsigned long long int
#define int32 int
#define int64 long long int
#endif
/*
A class to do do timing measurements
*/
class time_bench {
protected:
int fMeasure;
int fMeasureCount;
int fSkip;
// These values are used to determine the number of clocks in a second
uint64 fFirstRDTSC;
uint64 fLastRDTSC;
// These tables contains the last fMeasureCount in clocks
uint64* fStarts;
uint64* fStops;
struct timeval fTv1;
struct timeval fTv2;
/**
* Returns the number of clock cycles elapsed since the last reset of the processor
*/
inline uint64 rdtsc(void)
{
union {
uint32 i32[2];
uint64 i64;
} count;
__asm__ __volatile__("rdtsc" : "=a" (count.i32[0]), "=d" (count.i32[1]));
return count.i64;
}
/**
* return the number of RDTSC clocks per seconds
*/
double rdtscpersec()
{
// If the environment variable CLOCKSPERSEC is defined
// we use it instead of our own measurement
char* str = getenv("CLOCKSPERSEC");
if (str) {
int64 cps = (int64)atoll(str);
if (cps > 1000000000) {
return cps;
}
}
return double(fLastRDTSC - fFirstRDTSC)
/ (((double(fTv2.tv_sec) * 1000000 + double(fTv2.tv_usec)) - (double(fTv1.tv_sec) * 1000000 + double(fTv1.tv_usec)))
/ 1000000);
}
/**
* Converts a duration, expressed in RDTSC clocks, into seconds
*/
double rdtsc2sec(uint64 clk)
{
return double(clk) / rdtscpersec();
}
double rdtsc2sec(double clk)
{
return clk / rdtscpersec();
}
/**
* Converts RDTSC clocks into Megabytes/seconds according to the
* number of frames processed during the period, the number of channels
* and 4 bytes samples.
*/
double megapersec(int frames, int chans, uint64 clk)
{
return double(frames) * double(chans) * 4 / double(1024 * 1024 * rdtsc2sec(clk));
}
/**
* Compute the mean value of a vector of measures
*/
uint64 meanValue(std::vector<uint64>::const_iterator a, std::vector<uint64>::const_iterator b)
{
uint64 r = 0;
unsigned int n = 0;
while (a != b) { r += *a++; n++; }
return (n > 0) ? r/n : 0;
}
public:
time_bench(int count, int skip)
{
fSkip = skip;
fMeasureCount = count;
fMeasure = 0;
fFirstRDTSC = 0;
fLastRDTSC = 0;
fStarts = new uint64[fMeasureCount];
fStops = new uint64[fMeasureCount];
}
virtual ~time_bench()
{
delete [] fStarts;
delete [] fStops;
}
void startMeasure() { fStarts[fMeasure % fMeasureCount] = rdtsc(); }
void stopMeasure() { fStops[fMeasure % fMeasureCount] = rdtsc(); fMeasure++; }
void openMeasure()
{
struct timezone tz;
gettimeofday(&fTv1, &tz);
fFirstRDTSC = rdtsc();
fMeasure = 0;
}
void closeMeasure()
{
struct timezone tz;
gettimeofday(&fTv2, &tz);
fLastRDTSC = rdtsc();
}
double measureDurationUsec()
{
return ((double(fTv2.tv_sec) * 1000000 + double(fTv2.tv_usec)) - (double(fTv1.tv_sec) * 1000000 + double(fTv1.tv_usec)));
}
/**
* Returns best estimation.
*/
double getStats(int bsize, int ichans, int ochans)
{
//std::cout << "getStats fMeasure = " << fMeasure << " fMeasureCount = " << fMeasureCount << std::endl;
assert(fMeasure > fMeasureCount);
std::vector<uint64> V(fMeasureCount);
for (int i = 0; i < fMeasureCount; i++) {
V[i] = fStops[i] - fStarts[i];
}
sort(V.begin(), V.end());
// Mean of 10 best values (gives relatively stable results)
uint64 meavalx = meanValue(V.begin(), V.begin() + 10);
return megapersec(bsize, ichans + ochans, meavalx);
}
/**
* Print the median value (in Megabytes/second) of fMeasureCount throughputs measurements.
*/
void printStats(const char* applname, int bsize, int ichans, int ochans)
{
assert(fMeasure > fMeasureCount);
std::vector<uint64> V(fMeasureCount);
for (int i = 0; i < fMeasureCount; i++) {
V[i] = fStops[i] - fStarts[i];
}
sort(V.begin(), V.end());
// Mean of 10 best values (gives relatively stable results)
uint64 meaval00 = meanValue(V.begin(), V.begin()+ 5);
uint64 meaval25 = meanValue(V.begin() + fMeasureCount / 4 - 2, V.begin()+fMeasureCount / 4 + 3);
uint64 meaval50 = meanValue(V.begin() + fMeasureCount / 2 - 2, V.begin()+fMeasureCount / 2 + 3);
uint64 meaval75 = meanValue(V.begin() + 3 * fMeasureCount / 4 - 2, V.begin() + 3 * fMeasureCount / 4 + 3);
uint64 meaval100 = meanValue(V.end() - 5, V.end());
// Printing
std::cout << applname
<< '\t' << megapersec(bsize, ichans+ochans, meaval00)
<< '\t' << megapersec(bsize, ichans+ochans, meaval25)
<< '\t' << megapersec(bsize, ichans+ochans, meaval50)
<< '\t' << megapersec(bsize, ichans+ochans, meaval75)
<< '\t' << megapersec(bsize, ichans+ochans, meaval100)
<< std::endl;
}
bool isRunning() { return (fMeasure <= (fMeasureCount + fSkip)); }
};
/*
A class to measure DSP CPU use.
*/
class measure_dsp : public decorator_dsp {
protected:
FAUSTFLOAT** fInputs;
FAUSTFLOAT** fOutputs;
time_bench* fBench;
int fBufferSize;
void init()
{
fInputs = new FAUSTFLOAT*[fDSP->getNumInputs()];
for (int i = 0; i < fDSP->getNumInputs(); i++) {
fInputs[i] = new FAUSTFLOAT[fBufferSize];
memset(fInputs[i], 0, sizeof(FAUSTFLOAT) * fBufferSize);
}
fOutputs = new FAUSTFLOAT*[fDSP->getNumOutputs()];
for (int i = 0; i < fDSP->getNumOutputs(); i++) {
fOutputs[i] = new FAUSTFLOAT[fBufferSize];
memset(fOutputs[i], 0, sizeof(FAUSTFLOAT) * fBufferSize);
}
}
public:
/**
* Constructor.
*
* @param dsp - the dsp to be measured.
* @param buffer_size - the buffer size used when calling 'computeAll'
* @param count - the number of cycles using in 'computeAll'
* @param skip - ??
*
*/
measure_dsp(dsp* dsp, int buffer_size, int count, int skip)
:decorator_dsp(dsp), fBufferSize(buffer_size)
{
init();
fBench = new time_bench(count, 10);
}
measure_dsp(dsp* dsp, int buffer_size, double duration_in_sec)
:decorator_dsp(dsp), fBufferSize(buffer_size)
{
init();
fBench = new time_bench(500, 10);
measure();
double duration = fBench->measureDurationUsec();
int cout = int (500 * (duration_in_sec * 1e6 / duration));
std::cout << "duration = " << duration << " count = " << cout << std::endl;
delete fBench;
fBench = new time_bench(cout, 10);
}
virtual ~measure_dsp()
{
for (int i = 0; i < fDSP->getNumInputs(); i++) {
delete [] fInputs[i];
}
delete [] fInputs;
for (int i = 0; i < fDSP->getNumOutputs(); i++) {
delete [] fOutputs[i];
}
delete[] fOutputs;
}
/*
Measure the duration of the compute call
*/
virtual void compute(int count, FAUSTFLOAT** inputs, FAUSTFLOAT** outputs)
{
fBench->startMeasure();
fDSP->compute(count, inputs, outputs);
fBench->stopMeasure();
}
virtual void compute(double date_usec, int count, FAUSTFLOAT** inputs, FAUSTFLOAT** outputs)
{
compute(count, inputs, outputs);
}
/*
Measure the duration of 'count' (given in constructor) calls to compute
*/
void computeAll()
{
AVOIDDENORMALS;
do {
compute(0, fBufferSize, fInputs, fOutputs);
} while (fBench->isRunning());
}
/**
* Initialize measure datas
*/
void openMeasure() { fBench->openMeasure(); }
/**
* Terminate measurement
*/
void closeMeasure() { fBench->closeMeasure(); }
double measureDurationUsec()
{
return fBench->measureDurationUsec();
}
void measure()
{
openMeasure();
computeAll();
closeMeasure();
}
/**
* Returns best estimation
*/
double getStats()
{
return fBench->getStats(fBufferSize, fDSP->getNumInputs(), fDSP->getNumOutputs());
}
/**
* Print the median value (in Megabytes/second) of fMeasureCount throughputs measurements
*/
void printStats(const char* applname)
{
fBench->printStats(applname, fBufferSize, fDSP->getNumInputs(), fDSP->getNumOutputs());
}
bool isRunning() { return fBench->isRunning(); }
};
#endif
|