This file is indexed.

/usr/share/faust/demo.lib is in faust-common 0.9.95~repack1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
//#################################### demo.lib ##########################################
// This library contains a set of demo functions based on examples located in the
// `/examples` folder.
// 
// It should be used using the `dm` environment:
//
// ```
// dm = library("demo.lib");
// process = dm.functionCall;
// ```
//
// Another option is to import `stdfaust.lib` which already contains the `dm`
// environment:
//
// ```
// import("stdfaust.lib");
// process = dm.functionCall;
// ```
//########################################################################################

/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/

ma = library("math.lib");
ba = library("basic.lib");
de = library("delay.lib");
si = library("signal.lib");
an = library("analyzer.lib");
fi = library("filter.lib");
os = library("miscoscillator.lib");
no = library("noise.lib");
ef = library("misceffect.lib");
co = library("compressor.lib");
ve = library("vaeffect.lib");
pf = library("phafla.lib");
re = library("reverb.lib");

//====================================Analyzers===========================================
//========================================================================================

//----------------------`mth_octave_spectral_level_demo`----------------------
// Demonstrate mth_octave_spectral_level in a standalone GUI.
//
// #### Usage
// ```
// _ : mth_octave_spectral_level_demo(BandsPerOctave);
// _ : spectral_level_demo : _; // 2/3 octave
// ```
//------------------------------------------------------------
// TODO: author JOS and Orlarey, revised by RM 
mth_octave_spectral_level_demo(BPO) =  an.mth_octave_spectral_level_default(M,ftop,N,tau,dB_offset)
with{
	M = BPO;
	ftop = 16000;
	Noct = 10; // number of octaves down from ftop
	// Lowest band-edge is at ftop*2^(-Noct+2) = 62.5 Hz when ftop=16 kHz:
	N = int(Noct*M); // without 'int()', segmentation fault observed for M=1.67
	ctl_group(x)  = hgroup("[1] SPECTRUM ANALYZER CONTROLS", x);
	tau = ctl_group(hslider("[0] Level Averaging Time [unit:ms] [scale:log]
		[tooltip: band-level averaging time in milliseconds]",
    	100,1,10000,1)) * 0.001; 
	dB_offset = ctl_group(hslider("[1] Level dB Offset [unit:dB]
    	[tooltip: Level offset in decibels]",
    	50,0,100,1)); 
};

spectral_level_demo = mth_octave_spectral_level_demo(1.5); // 2/3 octave


//======================================Filters===========================================
//========================================================================================

//--------------------------`parametric_eq_demo`------------------------------
// A parametric equalizer application.
//
// #### Usage:
//
// ```
// _ : parametric_eq_demo : _ ;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
parametric_eq_demo = fi.low_shelf(LL,FL) : fi.peak_eq(LP,FP,BP) : fi.high_shelf(LH,FH)
with{
	eq_group(x) = hgroup("[0] PARAMETRIC EQ SECTIONS [tooltip: See Faust's filter.lib 
		for info and pointers]",x);
	ls_group(x) = eq_group(vgroup("[1] Low Shelf",x));

	LL = ls_group(hslider("[0] Low Boost|Cut [unit:dB] [style:knob]
		[tooltip: Amount of low-frequency boost or cut in decibels]",0,-40,40,0.1));
	FL = ls_group(hslider("[1] Transition Frequency [unit:Hz] [style:knob] [scale:log]
		[tooltip: Transition-frequency from boost (cut) to unity gain]",200,1,5000,1));

	pq_group(x) = eq_group(vgroup("[2] Peaking Equalizer[tooltip: Parametric Equalizer 
		sections from filter.lib]",x));
	LP = pq_group(hslider("[0] Peak Boost|Cut [unit:dB] [style:knob][tooltip: Amount of 
		local boost or cut in decibels]",0,-40,40,0.1));
	FP = pq_group(hslider("[1] Peak Frequency [unit:PK] [style:knob] [tooltip: Peak 
		Frequency in Piano Key (PK) units (A440 = 49PK)]",49,1,100,1)) : si.smooth(0.999) 
		: ba.pianokey2hz;
	Q = pq_group(hslider("[2] Peak Q [style:knob] [scale:log] [tooltip: Quality factor 
		(Q) of the peak = center-frequency/bandwidth]",40,1,1000,0.1));

	BP = FP/Q;

	hs_group(x) = eq_group(vgroup("[3] High Shelf [tooltip: A high shelf provides a boost 
		or cut above some frequency]",x));
	LH = hs_group(hslider("[0] High Boost|Cut [unit:dB] [style:knob] [tooltip: Amount of 
		high-frequency boost or cut in decibels]",0,-40,40,.1));
	FH = hs_group(hslider("[1] Transition Frequency [unit:Hz] [style:knob] [scale:log]
    	[tooltip: Transition-frequency from boost (cut) to unity gain]",8000,20,10000,1));
};


//-------------------`spectral_tilt_demo`-----------------------
// A spectral tilt application.
//
// #### Usage
//
// ```
// _ : spectral_tilt_demo(N) : _ ;
// ```
//
// Where:
//
// * `N`: filter order (integer)
//
// All other parameters interactive
//------------------------------------------------------------
// TODO: author JOS, revised by RM
spectral_tilt_demo(N) = fi.spectral_tilt(O,f0,bw,alpha)
with{
	O = N;
	alpha = hslider("[1] Slope of Spectral Tilt across Band",-1/2,-1,1,0.001);
	f0 = hslider("[2] Band Start Frequency [unit:Hz]",100,20,10000,1);
	bw = hslider("[3] Band Width [unit:Hz]",5000,100,10000,1);
};


//---------`mth_octave_filterbank_demo` and `filterbank_demo`-------------
// Graphic Equalizer: Each filter-bank output signal routes through a fader.
//
// #### Usage
//
// ```
// _ : mth_octave_filterbank_demo(M) : _
// _ : filterbank_demo : _
// ```
//
// Where: 
//
// * `N`: number of bands per octave
//--------------------------------------------------------------
// TODO: author JOS, revised by RM
mth_octave_filterbank_demo(O) = bp1(bp,mthoctavefilterbankdemo)
with{
	M = O;
	bp1 = ba.bypass1;
	mofb_group(x) = vgroup("CONSTANT-Q FILTER BANK (Butterworth dyadic tree)
		[tooltip: See Faust's filter.lib for documentation and references]", x);
	bypass_group(x) = mofb_group(hgroup("[0]", x));
	slider_group(x)  = mofb_group(hgroup("[1]", x));

	N = 10*M; // total number of bands (highpass band, octave-bands, dc band)
	ftop = 10000;
	mthoctavefilterbankdemo = chan;
	chan = fi.mth_octave_filterbank_default(M,ftop,N) : sum(i,N,(*(ba.db2linear(fader(N-i)))));
	fader(i) = slider_group(vslider("[%2i] [unit:dB] [tooltip: Bandpass filter 
		gain in dB]", -10, -70, 10, 0.1)) : si.smoo;
	bp = bypass_group(checkbox("[0] Bypass 
		[tooltip: When this is checked, the filter-bank has no effect]"));
};

filterbank_demo = mth_octave_filterbank_demo(1); // octave-bands = default


//======================================Effects===========================================
//========================================================================================

//---------------------------`cubicnl_demo`--------------------------
// Distortion demo application.
//
// #### Usage: 
//
// ```
// _ : cubicnl_demo : _;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
cubicnl_demo = ba.bypass1(bp, ef.cubicnl_nodc(drive:si.smoo,offset:si.smoo))
with{
	cnl_group(x)  = vgroup("CUBIC NONLINEARITY cubicnl [tooltip: Reference:
		https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html]", x);
	bp = cnl_group(checkbox("[0] Bypass [tooltip: When this is checked, the 
		nonlinearity has no effect]"));
	drive = cnl_group(hslider("[1] Drive [tooltip: Amount of distortion]",
		0, 0, 1, 0.01));
	offset = cnl_group(hslider("[2] Offset [tooltip: Brings in even harmonics]",
		0, 0, 1, 0.01));
};


//----------------------------`gate_demo`-------------------------
// Gate demo application.
//
// #### Usage
// 
// ```
// _,_ : gate_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
gate_demo = ba.bypass2(gbp,gate_stereo_demo)
with{
	gate_group(x) = vgroup("GATE  [tooltip: Reference: 
		http://en.wikipedia.org/wiki/Noise_gate]", x);
	meter_group(x) = gate_group(hgroup("[0]", x));
	knob_group(x) = gate_group(hgroup("[1]", x));

	gbp = meter_group(checkbox("[0] Bypass  [tooltip: When this is checked, 
		the gate has no effect]"));

	gateview = ef.gate_gain_mono(gatethr,gateatt,gatehold,gaterel) : ba.linear2db :
    	meter_group(hbargraph("[1] Gate Gain [unit:dB] [tooltip: Current gain of the 
     	gate in dB]", -50,+10)); // [style:led]

	gate_stereo_demo(x,y) = attach(x,gateview(abs(x)+abs(y))),y :
    	ef.gate_stereo(gatethr,gateatt,gatehold,gaterel);

	gatethr = knob_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip: When 
		the signal level falls below the Threshold (expressed in dB), the signal is 
		muted]", -30, -120, 0, 0.1));

	gateatt = knob_group(hslider("[2] Attack [unit:us] [style:knob] [scale:log]
    	[tooltip: Time constant in MICROseconds (1/e smoothing time) for the gate 
     	gain to go (exponentially) from 0 (muted) to 1 (unmuted)]",
     	10, 10, 10000, 1)) : *(0.000001) : max(1.0/float(ma.SR));

	gatehold = knob_group(hslider("[3] Hold [unit:ms] [style:knob] [scale:log]
    	[tooltip: Time in ms to keep the gate open (no muting) after the signal 
     	level falls below the Threshold]", 200, 1, 1000, 1)) : *(0.001) : 
     	max(1.0/float(ma.SR));

	gaterel = knob_group(hslider("[4] Release [unit:ms] [style:knob] [scale:log]
    	[tooltip: Time constant in ms (1/e smoothing time) for the gain to go 
     	(exponentially) from 1 (unmuted) to 0 (muted)]",
     	100, 1, 1000, 1)) : *(0.001) : max(1.0/float(ma.SR));
};


//----------------------------`compressor_demo`-------------------------
// Compressor demo application.
//
// #### Usage
//
// ```
// _,_ : compressor_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
compressor_demo = ba.bypass2(cbp,compressor_stereo_demo)
with{
	comp_group(x) = vgroup("COMPRESSOR [tooltip: Reference: 
		http://en.wikipedia.org/wiki/Dynamic_range_compression]", x);

	meter_group(x)  = comp_group(hgroup("[0]", x));
	knob_group(x)  = comp_group(hgroup("[1]", x));

	cbp = meter_group(checkbox("[0] Bypass  [tooltip: When this is checked, the compressor 
		has no effect]"));
	gainview = co.compression_gain_mono(ratio,threshold,attack,release) : ba.linear2db :
    	meter_group(hbargraph("[1] Compressor Gain [unit:dB] [tooltip: Current gain of 
     	the compressor in dB]",-50,+10));

	displaygain = _,_ <: _,_,(abs,abs:+) : _,_,gainview : _,attach;

	compressor_stereo_demo =
    	displaygain(co.compressor_stereo(ratio,threshold,attack,release)) :
     	*(makeupgain), *(makeupgain);

	ctl_group(x)  = knob_group(hgroup("[3] Compression Control", x));

	ratio = ctl_group(hslider("[0] Ratio [style:knob]
    	[tooltip: A compression Ratio of N means that for each N dB increase in input 
     	signal level above Threshold, the output level goes up 1 dB]",
     	5, 1, 20, 0.1));

	threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob]
    	[tooltip: When the signal level exceeds the Threshold (in dB), its level 
     	is compressed according to the Ratio]",
     	-30, -100, 10, 0.1));

	env_group(x)  = knob_group(hgroup("[4] Compression Response", x));

	attack = env_group(hslider("[1] Attack [unit:ms] [style:knob] [scale:log]
    	tooltip: Time constant in ms (1/e smoothing time) for the compression gain 
     	to approach (exponentially) a new lower target level (the compression 
     	`kicking in')]", 50, 1, 1000, 0.1)) : *(0.001) : max(1/ma.SR);

	release = env_group(hslider("[2] Release [unit:ms] [style: knob] [scale:log]
    	[tooltip: Time constant in ms (1/e smoothing time) for the compression gain 
     	to approach (exponentially) a new higher target level (the compression 
     	'releasing')]", 500, 1, 1000, 0.1)) : *(0.001) : max(1/ma.SR);

	makeupgain = comp_group(hslider("[5] Makeup Gain [unit:dB]
     	[tooltip: The compressed-signal output level is increased by this amount 
     	(in dB) to make up for the level lost due to compression]",
     	40, -96, 96, 0.1)) : ba.db2linear;
};


// TODO: need a demo function for speakerbp

//-------------------------------`exciter`-------------------------------
// Psychoacoustic harmonic exciter, with GUI.
//
// #### Usage
//
// ```
// _ : exciter : _
// ```
//
// #### References
//
// * <https://secure.aes.org/forum/pubs/ebriefs/?elib=16939>
// * <https://www.researchgate.net/publication/258333577_Modeling_the_Harmonic_Exciter>
//------------------------------------------------------------
// TODO: author PPriyanka Shekar + licence, etc., revised by RM
exciter = _ <: (fi.highpass(2, fc) : compressor : pregain : harmonicCreator : 
	postgain), _ : balance
with{
	// TODO: not really sure why this doesn't use the standard compressor from compressor.lib:
	// needs to be investigated
	compressor = ba.bypass1(cbp,compressorMono) 
	with{
		comp_group(x) = vgroup("COMPRESSOR  [tooltip: Reference: 
			http://en.wikipedia.org/wiki/Dynamic_range_compression]", x);

    	meter_group(x)  = comp_group(hgroup("[0]", x));
    	knob_group(x)  = comp_group(hgroup("[1]", x));

	    cbp = meter_group(checkbox("[0] Bypass  [tooltip: When this is checked, 
    		the compressor has no effect]"));

	    gainview = co.compression_gain_mono(ratio,threshold,attack,release) : ba.linear2db 
    		: meter_group(hbargraph("[1] Compressor Gain [unit:dB] [tooltip: Current gain 
    		of the compressor in dB]",-50,+10));

	    displaygain = _ <: _,abs : _,gainview : attach;

	    compressorMono = displaygain(co.compressor_mono(ratio,threshold,attack,release));

	    ctl_group(x)  = knob_group(hgroup("[3] Compression Control", x));

	    ratio = ctl_group(hslider("[0] Ratio [style:knob]  [tooltip: A compression Ratio 
    	of N means that for each N dB increase in input signal level above Threshold, the 
    	output level goes up 1 dB]", 5, 1, 20, 0.1));

	    threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip: 
    	When the signal level exceeds the Threshold (in dB), its level is compressed 
    	according to the Ratio]", -30, -100, 10, 0.1));

	    env_group(x)  = knob_group(hgroup("[4] Compression Response", x));

    	attack = env_group(hslider("[1] Attack [unit:ms] [style:knob]  [tooltip: 
    	Time constant in ms (1/e smoothing time) for the compression gain to approach 
    	(exponentially) a new lower target level (the compression `kicking in')]",
    	50, 0, 500, 0.1)) : *(0.001) : max(1/ma.SR);

	    release = env_group(hslider("[2] Release [unit:ms] [style: knob]  [tooltip: 
    	Time constant in ms (1/e smoothing time) for the compression gain to approach 
    	(exponentially) a new higher target level (the compression 'releasing')]",
    	500, 0, 1000, 0.1)) : *(0.001) : max(1/ma.SR);
	};

	//Exciter GUI controls	
	ex_group(x) = hgroup("EXCITER  [tooltip: Reference: Patent US4150253 A]", x);

	//Highpass - selectable cutoff frequency
	fc = ex_group(hslider("[0] Cutoff Frequency [unit:Hz] [style:knob] [scale:log]
		[tooltip: Cutoff frequency for highpassed components to be excited]",
    	5000, 1000, 10000, 100));
  
	//Pre-distortion gain - selectable percentage of harmonics
	ph = ex_group(hslider("[1] Harmonics [unit:percent] [style:knob] [tooltip: 
		Percentage of harmonics generated]", 20, 0, 200, 1)) / 100;
	pregain = * (ph);
  
	// TODO: same thing: why doesn't this use cubicnl?
	//Asymmetric cubic soft clipper
	harmonicCreator(x) = x <: cubDist1, cubDist2, cubDist3 :> _;
	cubDist1(x) = (x < 0) * x;
	cubDist2(x) = (x >= 0) * (x <= 1) * (x - x ^ 3 / 3);
	cubDist3(x) = (x > 1) * 2/3;

	//Post-distortion gain - undoes effect of pre-gain
	postgain = * (1/ph);

	//Balance - selectable dry/wet mix
	ml = ex_group(hslider("[2] Mix [style:knob] [tooltip: Dry/Wet mix of original signal 
		to excited signal]", 0.50, 0.00, 1.00, 0.01));
	balance = (_ * ml), (_ * (1.0 - ml)) :> _;
};


//-------------------------`moog_vcf_demo`---------------------------
// Illustrate and compare all three Moog VCF implementations above.
//
// #### Usage
// 
// ```
// _ : moog_vcf_demo : _;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
moog_vcf_demo = ba.bypass1(bp,vcf)
with{
	mvcf_group(x) = hgroup("MOOG VCF (Voltage Controlled Filter) [tooltip: See Faust's 
		vaeffect.lib for info and references]",x);
	cb_group(x) = mvcf_group(hgroup("[0]",x));

	bp = cb_group(checkbox("[0] Bypass  [tooltip: When this is checked, the Moog VCF 
		has no effect]"));
	archsw = cb_group(checkbox("[1] Use Biquads [tooltip: Select moog_vcf_2b (two-biquad) 
		implementation, instead of the default moog_vcf (analog style) implementation]"));
	bqsw = cb_group(checkbox("[2] Normalized Ladders [tooltip: If using biquads, make 
		them normalized ladders (moog_vcf_2bn)]"));

	freq = mvcf_group(hslider("[1] Corner Frequency [unit:PK] [tooltip: The VCF resonates 
		at the corner frequency (specified in PianoKey (PK) units, with A440 = 49 PK).  
		The VCF response is flat below the corner frequency, and rolls off -24 dB per 
		octave above.]",
   		25, 1, 88, 0.01) : ba.pianokey2hz) : si.smoo;

	res = mvcf_group(hslider("[2] Corner Resonance [style:knob] [tooltip: Amount of 
		resonance near VCF corner frequency (specified between 0 and 1)]", 0.9, 0, 1, 0.01));

	outgain = mvcf_group(hslider("[3] VCF Output Level [unit:dB] [style:knob] [tooltip: 
		output level in decibels]", 5, -60, 20, 0.1)) : ba.db2linear : si.smoo;

	vcfbq = _ <: select2(bqsw, ve.moog_vcf_2b(res,freq), ve.moog_vcf_2bn(res,freq));
	vcfarch = _ <: select2(archsw, ve.moog_vcf(res^4,freq), vcfbq);
	vcf = vcfarch : *(outgain);
};


//-------------------------`wah4_demo`---------------------------
// Wah pedal application.
//
// #### Usage
//
// ```
// _ : wah4_demo : _;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
wah4_demo = ba.bypass1(bp, ve.wah4(fr))
with{
	wah4_group(x) = hgroup("WAH4 [tooltip: Fourth-order wah effect made using moog_vcf]", x);
	bp = wah4_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah pedal has 
		no effect]"));
	fr = wah4_group(hslider("[1] Resonance Frequency [scale:log] [tooltip: wah resonance 
		frequency in Hz]", 200,100,2000,1));
	// Avoid dc with the moog_vcf (amplitude too high when freq comes up from dc)
	// Also, avoid very high resonance frequencies (e.g., 5kHz or above).
};


//-------------------------`crybaby_demo`---------------------------
// Crybaby effect application.
//
// #### Usage
//
// ```
// _ : crybaby_demo : _ ;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
crybaby_demo = ba.bypass1(bp, ve.crybaby(wah))
with{
	crybaby_group(x) = hgroup("CRYBABY [tooltip: Reference: 
		https://ccrma.stanford.edu/~jos/pasp/vegf.html]", x);
	bp = crybaby_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah 
		pedal has no effect]"));
	wah = crybaby_group(hslider("[1] Wah parameter [tooltip: wah pedal angle between 
		0 (rocked back) and 1 (rocked forward)]",0.8,0,1,0.01));
};


//----------------------------`vocoder_demo`-------------------------
// Use example of the vocoder function where an impulse train is used
// as excitation.
//
// #### Usage
//
// ```
// _ : vocoder_demo : _;
// ```
//------------------------------------------------------------
// TODO: author RM
vocoder_demo = hgroup("My Vocoder",_,os.lf_imptrain(freq)*gain : 
	ve.vocoder(bands,att,rel,BWRatio) <: _,_)
with{
	bands = 32;
	vocoderGroup(x) = vgroup("Vocoder",x);
	att = vocoderGroup(hslider("[0] Attack [style:knob] [tooltip: Attack time in seconds]",
		5,0.1,100,0.1)*0.001);
	rel = vocoderGroup(hslider("[1] Release [style:knob] [tooltip: Release time in seconds]",
		5,0.1,100,0.1)*0.001);
	BWRatio = vocoderGroup(hslider("[2] BW [style:knob] [tooltip: Coefficient to adjust the 
		bandwidth of each band]",0.5,0.1,2,0.001));
	excitGroup(x) = vgroup("Excitation",x);
	freq = excitGroup(hslider("[0] Freq [style:knob]",330,50,2000,0.1));
	gain = excitGroup(vslider("[1] Gain",0.5,0,1,0.01) : si.smoo);
};


//-------------------------`flanger_demo`---------------------------
// Flanger effect application.
//
// #### Usage
//
// ```
// _,_ : flanger_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
flanger_demo = ba.bypass2(fbp,flanger_stereo_demo)
with{
	flanger_group(x) = vgroup("FLANGER 
		[tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
	meter_group(x) = flanger_group(hgroup("[0]", x));
	ctl_group(x)  = flanger_group(hgroup("[1]", x));
	del_group(x)  = flanger_group(hgroup("[2] Delay Controls", x));
	lvl_group(x)  = flanger_group(hgroup("[3]", x));

	fbp = meter_group(checkbox("[0] Bypass  [tooltip: When this is checked, the flanger 
		has no effect]"));
	invert = meter_group(checkbox("[1] Invert Flange Sum"));

	// FIXME: This should be an amplitude-response display:
	flangeview = lfor(freq) + lfol(freq) : meter_group(hbargraph("[2] Flange LFO 
		[style: led] [tooltip: Display sum of flange delays]", -1.5,+1.5));

	flanger_stereo_demo(x,y) = attach(x,flangeview),y :
		*(level),*(level) : pf.flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert);

	lfol = os.oscrs;
	lfor = os.oscrc;

	dmax = 2048;
	dflange = 0.001 * ma.SR *
		del_group(hslider("[1] Flange Delay [unit:ms] [style:knob]", 10, 0, 20, 0.001));
	odflange = 0.001 * ma.SR *
    	del_group(hslider("[2] Delay Offset [unit:ms] [style:knob]", 1, 0, 20, 0.001));
	freq   = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.01));
	depth  = ctl_group(hslider("[2] Depth [style:knob]", 1, 0, 1, 0.001));
	fb     = ctl_group(hslider("[3] Feedback [style:knob]", 0, -0.999, 0.999, 0.001));
	level  = lvl_group(hslider("Flanger Output Level [unit:dB]", 0, -60, 10, 0.1)) : 
		ba.db2linear;
	curdel1 = odflange+dflange*(1 + lfol(freq))/2;
	curdel2 = odflange+dflange*(1 + lfor(freq))/2;
};


//-------------------------`phaser2_demo`---------------------------
// Phaser effect demo application.
//
// #### Usage
//
// ```
// _,_ : phaser2_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
phaser2_demo = ba.bypass2(pbp,phaser2_stereo_demo)
with{
	phaser2_group(x) = vgroup("PHASER2 [tooltip: Reference: 
		https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
	meter_group(x) = phaser2_group(hgroup("[0]", x));
	ctl_group(x)  = phaser2_group(hgroup("[1]", x));
	nch_group(x)  = phaser2_group(hgroup("[2]", x));
	lvl_group(x)  = phaser2_group(hgroup("[3]", x));

	pbp = meter_group(checkbox("[0] Bypass  [tooltip: When this is checked, the phaser 
		has no effect]"));
	invert = meter_group(checkbox("[1] Invert Internal Phaser Sum"));
	vibr = meter_group(checkbox("[2] Vibrato Mode")); // In this mode you can hear any "Doppler"

	// FIXME: This should be an amplitude-response display:
	// flangeview = phaser2_amp_resp : meter_group(hspectrumview("[2] Phaser Amplitude Response", 0,1));
	// phaser2_stereo_demo(x,y) = attach(x,flangeview),y : ...

	phaser2_stereo_demo = *(level),*(level) :
		pf.phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,mdepth,fb,invert);

	Notches = 4; // Compile-time parameter: 2 is typical for analog phaser stomp-boxes

	// FIXME: Add tooltips
	speed  = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.001));
	depth  = ctl_group(hslider("[2] Notch Depth (Intensity) [style:knob]", 1, 0, 1, 0.001));
	fb     = ctl_group(hslider("[3] Feedback Gain [style:knob]", 0, -0.999, 0.999, 0.001));

	width  = nch_group(hslider("[1] Notch width [unit:Hz] [style:knob] [scale:log]", 
		1000, 10, 5000, 1));
	frqmin = nch_group(hslider("[2] Min Notch1 Freq [unit:Hz] [style:knob] [scale:log]", 
		100, 20, 5000, 1));
	frqmax = nch_group(hslider("[3] Max Notch1 Freq [unit:Hz] [style:knob] [scale:log]", 
		800, 20, 10000, 1)) : max(frqmin);
	fratio = nch_group(hslider("[4] Notch Freq Ratio: NotchFreq(n+1)/NotchFreq(n) [style:knob]", 
		1.5, 1.1, 4, 0.001));

	level  = lvl_group(hslider("Phaser Output Level [unit:dB]", 0, -60, 10, 0.1)) : 
		ba.db2linear;

	mdepth = select2(vibr,depth,2); // Improve "ease of use"
};


//----------------------------`freeverb_demo`-------------------------
// Freeverb demo application.
//
// #### Usage
//
// ```
// _,_ : freeverb_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author RM
freeverb_demo = _,_ <: (*(g)*fixedgain,*(g)*fixedgain : 
	re.stereo_freeverb(combfeed, allpassfeed, damping, spatSpread)), 
	*(1-g), *(1-g) :> _,_
with{
	scaleroom   = 0.28;
	offsetroom  = 0.7;
	allpassfeed = 0.5;
	scaledamp   = 0.4;
	fixedgain   = 0.1;
	origSR = 44100;

	parameters(x) = hgroup("Freeverb",x);
	knobGroup(x) = parameters(vgroup("[0]",x));
	damping = knobGroup(vslider("[0] Damp [style: knob] [tooltip: Somehow control the 
		density of the reverb.]",0.5, 0, 1, 0.025)*scaledamp*origSR/ma.SR);
	combfeed = knobGroup(vslider("[1] RoomSize [style: knob] [tooltip: The room size 
		between 0 and 1 with 1 for the largest room.]", 0.5, 0, 1, 0.025)*scaleroom*
		origSR/ma.SR + offsetroom);
	spatSpread = knobGroup(vslider("[2] Stereo Spread [style: knob] [tooltip: Spatial 
		spread between 0 and 1 with 1 for maximum spread.]",0.5,0,1,0.01)*46*ma.SR/origSR 
		: int);
	g = parameters(vslider("[1] Wet [tooltip: The amount of reverb applied to the signal 
		between 0 and 1 with 1 for the maximum amount of reverb.]", 0.3333, 0, 1, 0.025));
};



//---------------------`stereo_reverb_tester`--------------------
// Handy test inputs for reverberator demos below.
// 
// #### Usage
// 
// ```
// _ : stereo_reverb_tester : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
stereo_reverb_tester(revin_group,x,y) = reverb_tester(_)
with{	
	reverb_tester(revin_group,x,y) = inx,iny with {
  		ck_group(x) = revin_group(vgroup("[1] Input Config",x));
  		mutegain = 1 - ck_group(checkbox("[1] Mute Ext Inputs
        	[tooltip: When this is checked, the stereo external audio inputs are 
         	disabled (good for hearing the impulse response or pink-noise response alone)]"));
  		pinkin = ck_group(checkbox("[2] Pink Noise
        	[tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise (useful for adjusting 
         	the EQ sections)]"));

  		imp_group(x) = revin_group(hgroup("[2] Impulse Selection",x));
  		pulseL =  imp_group(button("[1] Left
        	[tooltip: Send impulse into LEFT channel]")) : ba.impulsify;
  		pulseC =  imp_group(button("[2] Center
        	[tooltip: Send impulse into LEFT and RIGHT channels]")) : ba.impulsify;
  		pulseR = imp_group(button("[3] Right
        	[tooltip: Send impulse into RIGHT channel]")) : ba.impulsify;

  		inx = x*mutegain + (pulseL+pulseC) + pn;
  		iny = y*mutegain + (pulseR+pulseC) + pn;
  		pn = 0.1*pinkin*no.pink_noise;
	};
};


//-------------------------`fdnrev0_demo`---------------------------
// A reverb application using `fdnrev0`.
//
// #### Usage
//
// ```
// _,_ : fdnrev0_demo(N,NB,BBSO) : _,_
// ```
//
// Where:
//
// * `n`: Feedback Delay Network (FDN) order / number of delay lines used = 
// 	order of feedback matrix / 2, 4, 8, or 16 [extend primes array below for 
// 	32, 64, ...]
// * `nb`: Number of frequency bands / Number of (nearly) independent T60 controls
// 	/ Integer 3 or greater
// * `bbso` = Butterworth band-split order / order of lowpass/highpass bandsplit 
// 	used at each crossover freq / odd positive integer
//------------------------------------------------------------
// TODO: author JOS, revised by RM
fdnrev0_demo(N,NB,BBSO) = stereo_reverb_tester(revin_group)
          <: re.fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl)
          :> *(gain),*(gain)
with{
	MAXDELAY = 8192; // sync w delays and prime_power_delays above
	defdurs = (8.4,6.5,5.0,3.8,2.7); // NB default durations (sec)
	deffreqs = (500,1000,2000,4000); // NB-1 default crossover frequencies (Hz)
	deflens = (56.3,63.0); // 2 default min and max path lengths

	fdn_group(x)  = vgroup("FEEDBACK DELAY NETWORK (FDN) REVERBERATOR, ORDER 16
    	[tooltip: See Faust's reverb.lib for documentation and references]", x);

	freq_group(x)  = fdn_group(vgroup("[1] Band Crossover Frequencies", x));
	t60_group(x)  = fdn_group(hgroup("[2] Band Decay Times (T60)", x));
	path_group(x)  = fdn_group(vgroup("[3] Room Dimensions", x));
	revin_group(x)  = fdn_group(hgroup("[4] Input Controls", x));
	nonl_group(x) = revin_group(vgroup("[4] Nonlinearity",x));
	quench_group(x) = revin_group(vgroup("[3] Reverb State",x));

	nonl = nonl_group(hslider("[style:knob] [tooltip: nonlinear mode coupling]",
            0, -0.999, 0.999, 0.001));
	loopgainmax = 1.0-0.5*quench_group(button("[1] Quench
		[tooltip: Hold down 'Quench' to clear the reverberator]"));

	pathmin = path_group(hslider("[1] min acoustic ray length [unit:m] [scale:log]
    	[tooltip: This length (in meters) determines the shortest delay-line used in the FDN 
    	reverberator. Think of it as the shortest wall-to-wall separation in the room.]",
    	46, 0.1, 63, 0.1));
	pathmax = path_group(hslider("[2] max acoustic ray length [unit:m] [scale:log]
		[tooltip: This length (in meters) determines the longest delay-line used in the 
		FDN reverberator. Think of it as the largest wall-to-wall separation in the room.]",
    	63, 0.1, 63, 0.1));

	durvals(i) = t60_group(vslider("[%i] %i [unit:s] [scale:log][tooltip: T60 is the 60dB 
		decay-time in seconds. For concert halls, an overall reverberation time (T60) near 
		1.9 seconds is typical [Beranek 2004]. Here we may set T60 independently in each 
		frequency band.  In real rooms, higher frequency bands generally decay faster due 
		to absorption and scattering.]",ba.take(i+1,defdurs), 0.1, 100, 0.1));
	durs = par(i,NB,durvals(NB-1-i));

	freqvals(i) = freq_group(hslider("[%i] Band %i upper edge in Hz [unit:Hz] [scale:log]
    	[tooltip: Each delay-line signal is split into frequency-bands for separate 
    	decay-time control in each band]",ba.take(i+1,deffreqs), 100, 10000, 1));
	freqs = par(i,NB-1,freqvals(i));

	delays = de.prime_power_delays(N,pathmin,pathmax);

	gain = hslider("[3] Output Level (dB) [unit:dB][tooltip: Output scale factor]", 
		-40, -70, 20, 0.1) : ba.db2linear;
     	// (can cause infinite loop:) with { db2linear(x) = pow(10, x/20.0); };
};



//---------------------------`zita_rev_fdn_demo`------------------------------
// Reverb demo application based on `zita_rev_fdn`.
//
// #### Usage
//
// ```
// si.bus(8) : zita_rev_fdn_demo : si.bus(8)
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
zita_rev_fdn_demo = re.zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
with{
	fsmax = 48000.0;
	fdn_group(x) = hgroup("Zita_Rev Internal FDN Reverb [tooltip: ~ Zita_Rev's internal 
		8x8 Feedback Delay Network (FDN) & Schroeder allpass-comb reverberator.  See 
		Faust's reverb.lib for documentation and references]",x);
	t60dc = fdn_group(vslider("[1] Low RT60 [unit:s] [style:knob][style:knob]
    	[tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
    	3, 1, 8, 0.1));
	f1 = fdn_group(vslider("[2] LF X [unit:Hz] [style:knob] [scale:log]
    	[tooltip: Crossover frequency (Hz) separating low and middle frequencies]",
    	200, 50, 1000, 1));
	t60m = fdn_group(vslider("[3] Mid RT60 [unit:s] [style:knob] [scale:log]
    	[tooltip: T60 = time (in seconds) to decay 60dB in middle band]",
    	2, 1, 8, 0.1));
	f2 = fdn_group(vslider("[4] HF Damping [unit:Hz] [style:knob] [scale:log]
    	[tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
    	6000, 1500, 0.49*fsmax, 1));
};



//----------------------------------`zita_rev1`------------------------------
// Example GUI for `zita_rev1_stereo` (mostly following the Linux `zita-rev1` GUI).
//
// Only the dry/wet and output level parameters are "dezippered" here.  If
// parameters are to be varied in real time, use `smooth(0.999)` or the like
// in the same way.
//
// #### Usage
//
// ```
// _,_ : zita_rev1 : _,_
// ```
//
// #### Reference
//
// <http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
zita_rev1 = _,_ <: re.zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax),_,_ : out_eq,_,_ : 
	dry_wet : out_level
with{
	fsmax = 48000.0;  // highest sampling rate that will be used

	fdn_group(x) = hgroup(
    	"[0] Zita_Rev1 [tooltip: ~ ZITA REV1 FEEDBACK DELAY NETWORK (FDN) & SCHROEDER 
    	ALLPASS-COMB REVERBERATOR (8x8). See Faust's reverb.lib for documentation and 
    	references]", x);

	in_group(x) = fdn_group(hgroup("[1] Input", x));

	rdel = in_group(vslider("[1] In Delay [unit:ms] [style:knob] [tooltip: Delay in ms 
		before reverberation begins]",60,20,100,1));

	freq_group(x) = fdn_group(hgroup("[2] Decay Times in Bands (see tooltips)", x));

	f1 = freq_group(vslider("[1] LF X [unit:Hz] [style:knob] [scale:log] [tooltip: 
		Crossover frequency (Hz) separating low and middle frequencies]", 200, 50, 1000, 1));

	t60dc = freq_group(vslider("[2] Low RT60 [unit:s] [style:knob] [scale:log]
    	[style:knob] [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
    	3, 1, 8, 0.1));

	t60m = freq_group(vslider("[3] Mid RT60 [unit:s] [style:knob] [scale:log] [tooltip: 
		T60 = time (in seconds) to decay 60dB in middle band]",2, 1, 8, 0.1));

	f2 = freq_group(vslider("[4] HF Damping [unit:Hz] [style:knob] [scale:log]
    	[tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
    	6000, 1500, 0.49*fsmax, 1));

	out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q);
	// Zolzer style peaking eq (not used in zita-rev1) (filter.lib):
	// pareq_stereo(eqf,eql,Q) = peak_eq(eql,eqf,eqf/Q), peak_eq(eql,eqf,eqf/Q);
	// Regalia-Mitra peaking eq with "Q" hard-wired near sqrt(g)/2 (filter.lib):
	pareq_stereo(eqf,eql,Q) = fi.peak_eq_rm(eql,eqf,tpbt), fi.peak_eq_rm(eql,eqf,tpbt)
	with {
    	tpbt = wcT/sqrt(max(0,g)); // tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4)
    	wcT = 2*ma.PI*eqf/ma.SR;  // peak frequency in rad/sample
    	g = ba.db2linear(eql); // peak gain
	};

	eq1_group(x) = fdn_group(hgroup("[3] RM Peaking Equalizer 1", x));

	eq1f = eq1_group(vslider("[1] Eq1 Freq [unit:Hz] [style:knob] [scale:log] [tooltip: 
		Center-frequency of second-order Regalia-Mitra peaking equalizer section 1]",
    	315, 40, 2500, 1));

	eq1l = eq1_group(vslider("[2] Eq1 Level [unit:dB] [style:knob] [tooltip: Peak level 
		in dB of second-order Regalia-Mitra peaking equalizer section 1]", 0, -15, 15, 0.1));

	eq1q = eq1_group(vslider("[3] Eq1 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth 
		of second-order peaking equalizer section 1]", 3, 0.1, 10, 0.1));

	eq2_group(x) = fdn_group(hgroup("[4] RM Peaking Equalizer 2", x));

	eq2f = eq2_group(vslider("[1] Eq2 Freq [unit:Hz] [style:knob] [scale:log] [tooltip: 
		Center-frequency of second-order Regalia-Mitra peaking equalizer section 2]",
    	1500, 160, 10000, 1));

	eq2l = eq2_group(vslider("[2] Eq2 Level [unit:dB] [style:knob] [tooltip: Peak level 
		in dB of second-order Regalia-Mitra peaking equalizer section 2]", 0, -15, 15, 0.1));

	eq2q = eq2_group(vslider("[3] Eq2 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth 
		of second-order peaking equalizer section 2]", 3, 0.1, 10, 0.1));

	out_group(x)  = fdn_group(hgroup("[5] Output", x));

	dry_wet(x,y) = *(wet) + dry*x, *(wet) + dry*y with {
		wet = 0.5*(drywet+1.0);
    	dry = 1.0-wet;
	};

	drywet = out_group(vslider("[1] Dry/Wet Mix [style:knob] [tooltip: -1 = dry, 1 = wet]",
    	0, -1.0, 1.0, 0.01)) : si.smoo;

	out_level = *(gain),*(gain);

	gain = out_group(vslider("[2] Level [unit:dB] [style:knob] [tooltip: Output scale 
		factor]", -20, -70, 40, 0.1)) : ba.db2linear : si.smoo;
};


//====================================Generators==========================================
//========================================================================================

//--------------------------`sawtooth_demo`---------------------------
// An application demonstrating the different sawtooth oscillators of Faust.
//
// #### Usage  
//
// ```
// sawtooth_demo : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
sawtooth_demo = signal
with{
	osc_group(x) = vgroup("[0] SAWTOOTH OSCILLATOR [tooltip: See Faust's oscillator.lib 
		for documentation and references]",x);
	knob_group(x)  = osc_group(hgroup("[1]", x));
	ampdb  = knob_group(vslider("[1] Amplitude [unit:dB] [style:knob] [tooltip: Sawtooth 
		waveform amplitude]",-20,-120,10,0.1));
	amp = ampdb : ba.db2linear : si.smoo;
	freq = knob_group(vslider("[2] Frequency [unit:PK] [style:knob] [tooltip: Sawtooth 
		frequency as a Piano Key (PK) number (A440 = key 49)]",49,1,88,0.01) : ba.pianokey2hz);
	detune1 = 1 + 0.01 * knob_group(
    	vslider("[3] Detuning 1 [unit:%%] [style:knob] [tooltip: Percentange frequency-shift 
    	up or down for second oscillator]",-0.1,-10,10,0.01));
	detune2 = 1 + 0.01 * knob_group(vslider("[4] Detuning 2 [unit:%%] [style:knob] [tooltip: 
		Percentange frequency-shift up or down for third detuned oscillator]",+0.1,-10,10,0.01));
	portamento = knob_group(vslider("[5] Portamento [unit:sec] [style:knob] [scale:log]
    	[tooltip: Portamento (frequency-glide) time-constant in seconds]",0.1,0.001,10,0.001));
	sfreq = freq : si.smooth(ba.tau2pole(portamento));
	saworder = knob_group(nentry("[6] Saw Order [tooltip: Order of sawtootn aliasing 
		suppression]",2,1,os.MAX_SAW_ORDER,1));
	sawchoice = _ <: par(i,os.MAX_SAW_ORDER,os.sawN(i+1)) : 
		ba.selectn(int(os.MAX_SAW_ORDER), int(saworder-1)); // when max is pwr of 2
	tone = (amp/3) * (sawchoice(sfreq) + sawchoice(sfreq*detune1) + sawchoice(sfreq*detune2));
	signal = amp * select2(ei, select2(ss, tone, white_or_pink_noise), _);
	white_or_pink_noise = select2(wp,no.noise,no.pink_noise);
	checkbox_group(x) = knob_group(vgroup("[7] Alternate Signals",x));
	ss = checkbox_group(checkbox("[0] Noise (White or Pink - uses only Amplitude control on 
		the left)"));
	wp = checkbox_group(checkbox("[1] Pink instead of White Noise (also called 1/f Noise) 
		[tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise, meaning that it has the 
		same total power in every octave]"));
	ei = checkbox_group(checkbox("[2] External Signal Input (overrides Sawtooth/Noise 
		selection above)"));
};


//----------------------`virtual_analog_oscillator_demo`----------------------
// Virtual analog oscillator demo application.
//
// #### Usage
//
// ```
// virtual_analog_oscillator_demo : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
virtual_analog_oscillator_demo = signal
with{
	osc_group(x) = vgroup("[0] VIRTUAL ANALOG OSCILLATORS
		[tooltip: See Faust's oscillator.lib for documentation and references]",x);

	// Signals
	sawchoice = _ <:
	// When MAX_SAW_ORDER is a power of 2:
	par(i,os.MAX_SAW_ORDER,os.sawN(i+1)) : ba.selectn(int(os.MAX_SAW_ORDER), int(saworder-1));
	// When MAX_SAW_ORDER is NOT a power of 2:
	// (par(i,MAX_SAW_ORDER,sawN(i+1)), par(j,MAX_SAW_ORDER_NEXTPOW2-MAX_SAW_ORDER,_))
	//   : selectn(MAX_SAW_ORDER_NEXTPOW2, saworder-1);
	saw = (amp/3) *
		(sawchoice(sfreq) + sawchoice(sfreq*detune1) + sawchoice(sfreq*detune2));
	sq = (amp/3) *
    	(os.square(sfreq) + os.square(sfreq*detune1) + os.square(sfreq*detune2));
	tri = (amp/3) *
    	(os.triangle(sfreq) + os.triangle(sfreq*detune1) + os.triangle(sfreq*detune2));
	pt = (amp/3) * (os.pulsetrain(sfreq,ptd)
    	            + os.pulsetrain(sfreq*detune1,ptd)
        	        + os.pulsetrain(sfreq*detune2,ptd));
	ptN = (amp/3) * (os.pulsetrainN(N,sfreq,ptd)
    	            + os.pulsetrainN(N,sfreq*detune1,ptd)
        	        + os.pulsetrainN(N,sfreq*detune2,ptd)) with {N=3;};
	pn = amp * no.pink_noise;

	signal = ssaw*saw + ssq*sq + stri*tri
    	       + spt*((ssptN*ptN)+(1-ssptN)*pt)
        	   + spn*pn + sei*_;

	// Signal controls:
	signal_group(x) = osc_group(hgroup("[0] Signal Levels",x));
	ssaw = signal_group(vslider("[0] Sawtooth [style:vslider]",1,0,1,0.01));

	pt_group(x) = signal_group(vgroup("[1] Pulse Train",x));
	ssptN = pt_group(checkbox("[0] Order 3
		[tooltip: When checked, use 3rd-order aliasing suppression (up from 2)
    	See if you can hear a difference with the freq high and swept]"));
	spt = pt_group(vslider("[1] [style:vslider]",0,0,1,0.01));
	ptd = pt_group(vslider("[2] Duty Cycle [style:knob]",0.5,0,1,0.01))
    	: si.smooth(0.99);

	ssq = signal_group(vslider("[2] Square [style:vslider]",0,0,1,0.01));
	stri = signal_group(vslider("[3] Triangle [style:vslider]",0,0,1,0.01));
	spn = signal_group(vslider(
		"[4] Pink Noise [style:vslider][tooltip: Pink Noise (or 1/f noise) is 
		Constant-Q Noise, meaning that it has the same total power in every octave 
		(uses only amplitude controls)]",0,0,1,0.01));
	sei = signal_group(vslider("[5] Ext Input [style:vslider]",0,0,1,0.01));

	// Signal Parameters
	knob_group(x) = osc_group(hgroup("[1] Signal Parameters", x));
	af_group(x) = knob_group(vgroup("[0]", x));
	ampdb = af_group(hslider("[1] Mix Amplitude [unit:dB] [style:hslider]
		[tooltip: Sawtooth waveform amplitude]",-20,-120,10,0.1));
	amp = ampdb : ba.db2linear : si.smoo;
	freq = af_group(hslider("[2] Frequency [unit:PK] [style:hslider] [tooltip: Sawtooth 
		frequency as a Piano Key (PK) number (A440 = key 49)]",49,1,88,0.01) : ba.pianokey2hz);
	
	detune1 = 1 - 0.01 * knob_group(
		vslider("[3] Detuning 1 [unit:%%] [style:knob]
    	[tooltip: Percentange frequency-shift up or down for second oscillator]",
    	-0.1,-10,10,0.01));
	detune2 = 1 + 0.01 * knob_group(
    	vslider("[4] Detuning 2 [unit:%%] [style:knob]
    	[tooltip: Percentange frequency-shift up or down for third detuned oscillator]",
    	+0.1,-10,10,0.01));
	portamento = knob_group(
    	vslider("[5] Portamento [unit:sec] [style:knob] [scale:log]
    	[tooltip: Portamento (frequency-glide) time-constant in seconds]",
    	0.1,0.001,10,0.001));
	saworder = knob_group(nentry("[6] Saw Order [tooltip: Order of sawtooth aliasing 
	suppression]",2,1,os.MAX_SAW_ORDER,1));
	sfreq = freq : si.smooth(ba.tau2pole(portamento));
};


//-------------------------- `oscrs_demo` ---------------------------
// Simple application demoing filter based oscillators.
//
// #### Usage
//
// ```
// oscrs_demo : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscrs_demo = signal
with{
	osc_group(x) = vgroup("[0] SINE WAVE OSCILLATOR oscrs [tooltip: Sine oscillator based 
		on 2D vector rotation]",x);
	ampdb  = osc_group(hslider("[1] Amplitude [unit:dB] [tooltip: Sawtooth waveform 
		amplitude]",-20,-120,10,0.1));
	amp = ampdb : ba.db2linear : si.smoo;
	freq = osc_group(
		hslider("[2] Frequency [unit:PK]
    	[tooltip: Sine wave frequency as a Piano Key (PK) number (A440 = 49 PK)]",
    	49,1,88,0.01) : ba.pianokey2hz);
	portamento = osc_group(
    	hslider("[3] Portamento [unit:sec] [scale:log]
    	[tooltip: Portamento (frequency-glide) time-constant in seconds]",
    	0.1,0.001,10,0.001));
	sfreq = freq : si.smooth(ba.tau2pole(portamento));
	signal = amp * os.oscrs(sfreq);
};

oscr_demo = oscrs_demo; // synonym