/usr/share/faust/demo.lib is in faust-common 0.9.95~repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 | //#################################### demo.lib ##########################################
// This library contains a set of demo functions based on examples located in the
// `/examples` folder.
//
// It should be used using the `dm` environment:
//
// ```
// dm = library("demo.lib");
// process = dm.functionCall;
// ```
//
// Another option is to import `stdfaust.lib` which already contains the `dm`
// environment:
//
// ```
// import("stdfaust.lib");
// process = dm.functionCall;
// ```
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("math.lib");
ba = library("basic.lib");
de = library("delay.lib");
si = library("signal.lib");
an = library("analyzer.lib");
fi = library("filter.lib");
os = library("miscoscillator.lib");
no = library("noise.lib");
ef = library("misceffect.lib");
co = library("compressor.lib");
ve = library("vaeffect.lib");
pf = library("phafla.lib");
re = library("reverb.lib");
//====================================Analyzers===========================================
//========================================================================================
//----------------------`mth_octave_spectral_level_demo`----------------------
// Demonstrate mth_octave_spectral_level in a standalone GUI.
//
// #### Usage
// ```
// _ : mth_octave_spectral_level_demo(BandsPerOctave);
// _ : spectral_level_demo : _; // 2/3 octave
// ```
//------------------------------------------------------------
// TODO: author JOS and Orlarey, revised by RM
mth_octave_spectral_level_demo(BPO) = an.mth_octave_spectral_level_default(M,ftop,N,tau,dB_offset)
with{
M = BPO;
ftop = 16000;
Noct = 10; // number of octaves down from ftop
// Lowest band-edge is at ftop*2^(-Noct+2) = 62.5 Hz when ftop=16 kHz:
N = int(Noct*M); // without 'int()', segmentation fault observed for M=1.67
ctl_group(x) = hgroup("[1] SPECTRUM ANALYZER CONTROLS", x);
tau = ctl_group(hslider("[0] Level Averaging Time [unit:ms] [scale:log]
[tooltip: band-level averaging time in milliseconds]",
100,1,10000,1)) * 0.001;
dB_offset = ctl_group(hslider("[1] Level dB Offset [unit:dB]
[tooltip: Level offset in decibels]",
50,0,100,1));
};
spectral_level_demo = mth_octave_spectral_level_demo(1.5); // 2/3 octave
//======================================Filters===========================================
//========================================================================================
//--------------------------`parametric_eq_demo`------------------------------
// A parametric equalizer application.
//
// #### Usage:
//
// ```
// _ : parametric_eq_demo : _ ;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
parametric_eq_demo = fi.low_shelf(LL,FL) : fi.peak_eq(LP,FP,BP) : fi.high_shelf(LH,FH)
with{
eq_group(x) = hgroup("[0] PARAMETRIC EQ SECTIONS [tooltip: See Faust's filter.lib
for info and pointers]",x);
ls_group(x) = eq_group(vgroup("[1] Low Shelf",x));
LL = ls_group(hslider("[0] Low Boost|Cut [unit:dB] [style:knob]
[tooltip: Amount of low-frequency boost or cut in decibels]",0,-40,40,0.1));
FL = ls_group(hslider("[1] Transition Frequency [unit:Hz] [style:knob] [scale:log]
[tooltip: Transition-frequency from boost (cut) to unity gain]",200,1,5000,1));
pq_group(x) = eq_group(vgroup("[2] Peaking Equalizer[tooltip: Parametric Equalizer
sections from filter.lib]",x));
LP = pq_group(hslider("[0] Peak Boost|Cut [unit:dB] [style:knob][tooltip: Amount of
local boost or cut in decibels]",0,-40,40,0.1));
FP = pq_group(hslider("[1] Peak Frequency [unit:PK] [style:knob] [tooltip: Peak
Frequency in Piano Key (PK) units (A440 = 49PK)]",49,1,100,1)) : si.smooth(0.999)
: ba.pianokey2hz;
Q = pq_group(hslider("[2] Peak Q [style:knob] [scale:log] [tooltip: Quality factor
(Q) of the peak = center-frequency/bandwidth]",40,1,1000,0.1));
BP = FP/Q;
hs_group(x) = eq_group(vgroup("[3] High Shelf [tooltip: A high shelf provides a boost
or cut above some frequency]",x));
LH = hs_group(hslider("[0] High Boost|Cut [unit:dB] [style:knob] [tooltip: Amount of
high-frequency boost or cut in decibels]",0,-40,40,.1));
FH = hs_group(hslider("[1] Transition Frequency [unit:Hz] [style:knob] [scale:log]
[tooltip: Transition-frequency from boost (cut) to unity gain]",8000,20,10000,1));
};
//-------------------`spectral_tilt_demo`-----------------------
// A spectral tilt application.
//
// #### Usage
//
// ```
// _ : spectral_tilt_demo(N) : _ ;
// ```
//
// Where:
//
// * `N`: filter order (integer)
//
// All other parameters interactive
//------------------------------------------------------------
// TODO: author JOS, revised by RM
spectral_tilt_demo(N) = fi.spectral_tilt(O,f0,bw,alpha)
with{
O = N;
alpha = hslider("[1] Slope of Spectral Tilt across Band",-1/2,-1,1,0.001);
f0 = hslider("[2] Band Start Frequency [unit:Hz]",100,20,10000,1);
bw = hslider("[3] Band Width [unit:Hz]",5000,100,10000,1);
};
//---------`mth_octave_filterbank_demo` and `filterbank_demo`-------------
// Graphic Equalizer: Each filter-bank output signal routes through a fader.
//
// #### Usage
//
// ```
// _ : mth_octave_filterbank_demo(M) : _
// _ : filterbank_demo : _
// ```
//
// Where:
//
// * `N`: number of bands per octave
//--------------------------------------------------------------
// TODO: author JOS, revised by RM
mth_octave_filterbank_demo(O) = bp1(bp,mthoctavefilterbankdemo)
with{
M = O;
bp1 = ba.bypass1;
mofb_group(x) = vgroup("CONSTANT-Q FILTER BANK (Butterworth dyadic tree)
[tooltip: See Faust's filter.lib for documentation and references]", x);
bypass_group(x) = mofb_group(hgroup("[0]", x));
slider_group(x) = mofb_group(hgroup("[1]", x));
N = 10*M; // total number of bands (highpass band, octave-bands, dc band)
ftop = 10000;
mthoctavefilterbankdemo = chan;
chan = fi.mth_octave_filterbank_default(M,ftop,N) : sum(i,N,(*(ba.db2linear(fader(N-i)))));
fader(i) = slider_group(vslider("[%2i] [unit:dB] [tooltip: Bandpass filter
gain in dB]", -10, -70, 10, 0.1)) : si.smoo;
bp = bypass_group(checkbox("[0] Bypass
[tooltip: When this is checked, the filter-bank has no effect]"));
};
filterbank_demo = mth_octave_filterbank_demo(1); // octave-bands = default
//======================================Effects===========================================
//========================================================================================
//---------------------------`cubicnl_demo`--------------------------
// Distortion demo application.
//
// #### Usage:
//
// ```
// _ : cubicnl_demo : _;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
cubicnl_demo = ba.bypass1(bp, ef.cubicnl_nodc(drive:si.smoo,offset:si.smoo))
with{
cnl_group(x) = vgroup("CUBIC NONLINEARITY cubicnl [tooltip: Reference:
https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html]", x);
bp = cnl_group(checkbox("[0] Bypass [tooltip: When this is checked, the
nonlinearity has no effect]"));
drive = cnl_group(hslider("[1] Drive [tooltip: Amount of distortion]",
0, 0, 1, 0.01));
offset = cnl_group(hslider("[2] Offset [tooltip: Brings in even harmonics]",
0, 0, 1, 0.01));
};
//----------------------------`gate_demo`-------------------------
// Gate demo application.
//
// #### Usage
//
// ```
// _,_ : gate_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
gate_demo = ba.bypass2(gbp,gate_stereo_demo)
with{
gate_group(x) = vgroup("GATE [tooltip: Reference:
http://en.wikipedia.org/wiki/Noise_gate]", x);
meter_group(x) = gate_group(hgroup("[0]", x));
knob_group(x) = gate_group(hgroup("[1]", x));
gbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked,
the gate has no effect]"));
gateview = ef.gate_gain_mono(gatethr,gateatt,gatehold,gaterel) : ba.linear2db :
meter_group(hbargraph("[1] Gate Gain [unit:dB] [tooltip: Current gain of the
gate in dB]", -50,+10)); // [style:led]
gate_stereo_demo(x,y) = attach(x,gateview(abs(x)+abs(y))),y :
ef.gate_stereo(gatethr,gateatt,gatehold,gaterel);
gatethr = knob_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip: When
the signal level falls below the Threshold (expressed in dB), the signal is
muted]", -30, -120, 0, 0.1));
gateatt = knob_group(hslider("[2] Attack [unit:us] [style:knob] [scale:log]
[tooltip: Time constant in MICROseconds (1/e smoothing time) for the gate
gain to go (exponentially) from 0 (muted) to 1 (unmuted)]",
10, 10, 10000, 1)) : *(0.000001) : max(1.0/float(ma.SR));
gatehold = knob_group(hslider("[3] Hold [unit:ms] [style:knob] [scale:log]
[tooltip: Time in ms to keep the gate open (no muting) after the signal
level falls below the Threshold]", 200, 1, 1000, 1)) : *(0.001) :
max(1.0/float(ma.SR));
gaterel = knob_group(hslider("[4] Release [unit:ms] [style:knob] [scale:log]
[tooltip: Time constant in ms (1/e smoothing time) for the gain to go
(exponentially) from 1 (unmuted) to 0 (muted)]",
100, 1, 1000, 1)) : *(0.001) : max(1.0/float(ma.SR));
};
//----------------------------`compressor_demo`-------------------------
// Compressor demo application.
//
// #### Usage
//
// ```
// _,_ : compressor_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
compressor_demo = ba.bypass2(cbp,compressor_stereo_demo)
with{
comp_group(x) = vgroup("COMPRESSOR [tooltip: Reference:
http://en.wikipedia.org/wiki/Dynamic_range_compression]", x);
meter_group(x) = comp_group(hgroup("[0]", x));
knob_group(x) = comp_group(hgroup("[1]", x));
cbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked, the compressor
has no effect]"));
gainview = co.compression_gain_mono(ratio,threshold,attack,release) : ba.linear2db :
meter_group(hbargraph("[1] Compressor Gain [unit:dB] [tooltip: Current gain of
the compressor in dB]",-50,+10));
displaygain = _,_ <: _,_,(abs,abs:+) : _,_,gainview : _,attach;
compressor_stereo_demo =
displaygain(co.compressor_stereo(ratio,threshold,attack,release)) :
*(makeupgain), *(makeupgain);
ctl_group(x) = knob_group(hgroup("[3] Compression Control", x));
ratio = ctl_group(hslider("[0] Ratio [style:knob]
[tooltip: A compression Ratio of N means that for each N dB increase in input
signal level above Threshold, the output level goes up 1 dB]",
5, 1, 20, 0.1));
threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob]
[tooltip: When the signal level exceeds the Threshold (in dB), its level
is compressed according to the Ratio]",
-30, -100, 10, 0.1));
env_group(x) = knob_group(hgroup("[4] Compression Response", x));
attack = env_group(hslider("[1] Attack [unit:ms] [style:knob] [scale:log]
tooltip: Time constant in ms (1/e smoothing time) for the compression gain
to approach (exponentially) a new lower target level (the compression
`kicking in')]", 50, 1, 1000, 0.1)) : *(0.001) : max(1/ma.SR);
release = env_group(hslider("[2] Release [unit:ms] [style: knob] [scale:log]
[tooltip: Time constant in ms (1/e smoothing time) for the compression gain
to approach (exponentially) a new higher target level (the compression
'releasing')]", 500, 1, 1000, 0.1)) : *(0.001) : max(1/ma.SR);
makeupgain = comp_group(hslider("[5] Makeup Gain [unit:dB]
[tooltip: The compressed-signal output level is increased by this amount
(in dB) to make up for the level lost due to compression]",
40, -96, 96, 0.1)) : ba.db2linear;
};
// TODO: need a demo function for speakerbp
//-------------------------------`exciter`-------------------------------
// Psychoacoustic harmonic exciter, with GUI.
//
// #### Usage
//
// ```
// _ : exciter : _
// ```
//
// #### References
//
// * <https://secure.aes.org/forum/pubs/ebriefs/?elib=16939>
// * <https://www.researchgate.net/publication/258333577_Modeling_the_Harmonic_Exciter>
//------------------------------------------------------------
// TODO: author PPriyanka Shekar + licence, etc., revised by RM
exciter = _ <: (fi.highpass(2, fc) : compressor : pregain : harmonicCreator :
postgain), _ : balance
with{
// TODO: not really sure why this doesn't use the standard compressor from compressor.lib:
// needs to be investigated
compressor = ba.bypass1(cbp,compressorMono)
with{
comp_group(x) = vgroup("COMPRESSOR [tooltip: Reference:
http://en.wikipedia.org/wiki/Dynamic_range_compression]", x);
meter_group(x) = comp_group(hgroup("[0]", x));
knob_group(x) = comp_group(hgroup("[1]", x));
cbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked,
the compressor has no effect]"));
gainview = co.compression_gain_mono(ratio,threshold,attack,release) : ba.linear2db
: meter_group(hbargraph("[1] Compressor Gain [unit:dB] [tooltip: Current gain
of the compressor in dB]",-50,+10));
displaygain = _ <: _,abs : _,gainview : attach;
compressorMono = displaygain(co.compressor_mono(ratio,threshold,attack,release));
ctl_group(x) = knob_group(hgroup("[3] Compression Control", x));
ratio = ctl_group(hslider("[0] Ratio [style:knob] [tooltip: A compression Ratio
of N means that for each N dB increase in input signal level above Threshold, the
output level goes up 1 dB]", 5, 1, 20, 0.1));
threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip:
When the signal level exceeds the Threshold (in dB), its level is compressed
according to the Ratio]", -30, -100, 10, 0.1));
env_group(x) = knob_group(hgroup("[4] Compression Response", x));
attack = env_group(hslider("[1] Attack [unit:ms] [style:knob] [tooltip:
Time constant in ms (1/e smoothing time) for the compression gain to approach
(exponentially) a new lower target level (the compression `kicking in')]",
50, 0, 500, 0.1)) : *(0.001) : max(1/ma.SR);
release = env_group(hslider("[2] Release [unit:ms] [style: knob] [tooltip:
Time constant in ms (1/e smoothing time) for the compression gain to approach
(exponentially) a new higher target level (the compression 'releasing')]",
500, 0, 1000, 0.1)) : *(0.001) : max(1/ma.SR);
};
//Exciter GUI controls
ex_group(x) = hgroup("EXCITER [tooltip: Reference: Patent US4150253 A]", x);
//Highpass - selectable cutoff frequency
fc = ex_group(hslider("[0] Cutoff Frequency [unit:Hz] [style:knob] [scale:log]
[tooltip: Cutoff frequency for highpassed components to be excited]",
5000, 1000, 10000, 100));
//Pre-distortion gain - selectable percentage of harmonics
ph = ex_group(hslider("[1] Harmonics [unit:percent] [style:knob] [tooltip:
Percentage of harmonics generated]", 20, 0, 200, 1)) / 100;
pregain = * (ph);
// TODO: same thing: why doesn't this use cubicnl?
//Asymmetric cubic soft clipper
harmonicCreator(x) = x <: cubDist1, cubDist2, cubDist3 :> _;
cubDist1(x) = (x < 0) * x;
cubDist2(x) = (x >= 0) * (x <= 1) * (x - x ^ 3 / 3);
cubDist3(x) = (x > 1) * 2/3;
//Post-distortion gain - undoes effect of pre-gain
postgain = * (1/ph);
//Balance - selectable dry/wet mix
ml = ex_group(hslider("[2] Mix [style:knob] [tooltip: Dry/Wet mix of original signal
to excited signal]", 0.50, 0.00, 1.00, 0.01));
balance = (_ * ml), (_ * (1.0 - ml)) :> _;
};
//-------------------------`moog_vcf_demo`---------------------------
// Illustrate and compare all three Moog VCF implementations above.
//
// #### Usage
//
// ```
// _ : moog_vcf_demo : _;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
moog_vcf_demo = ba.bypass1(bp,vcf)
with{
mvcf_group(x) = hgroup("MOOG VCF (Voltage Controlled Filter) [tooltip: See Faust's
vaeffect.lib for info and references]",x);
cb_group(x) = mvcf_group(hgroup("[0]",x));
bp = cb_group(checkbox("[0] Bypass [tooltip: When this is checked, the Moog VCF
has no effect]"));
archsw = cb_group(checkbox("[1] Use Biquads [tooltip: Select moog_vcf_2b (two-biquad)
implementation, instead of the default moog_vcf (analog style) implementation]"));
bqsw = cb_group(checkbox("[2] Normalized Ladders [tooltip: If using biquads, make
them normalized ladders (moog_vcf_2bn)]"));
freq = mvcf_group(hslider("[1] Corner Frequency [unit:PK] [tooltip: The VCF resonates
at the corner frequency (specified in PianoKey (PK) units, with A440 = 49 PK).
The VCF response is flat below the corner frequency, and rolls off -24 dB per
octave above.]",
25, 1, 88, 0.01) : ba.pianokey2hz) : si.smoo;
res = mvcf_group(hslider("[2] Corner Resonance [style:knob] [tooltip: Amount of
resonance near VCF corner frequency (specified between 0 and 1)]", 0.9, 0, 1, 0.01));
outgain = mvcf_group(hslider("[3] VCF Output Level [unit:dB] [style:knob] [tooltip:
output level in decibels]", 5, -60, 20, 0.1)) : ba.db2linear : si.smoo;
vcfbq = _ <: select2(bqsw, ve.moog_vcf_2b(res,freq), ve.moog_vcf_2bn(res,freq));
vcfarch = _ <: select2(archsw, ve.moog_vcf(res^4,freq), vcfbq);
vcf = vcfarch : *(outgain);
};
//-------------------------`wah4_demo`---------------------------
// Wah pedal application.
//
// #### Usage
//
// ```
// _ : wah4_demo : _;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
wah4_demo = ba.bypass1(bp, ve.wah4(fr))
with{
wah4_group(x) = hgroup("WAH4 [tooltip: Fourth-order wah effect made using moog_vcf]", x);
bp = wah4_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah pedal has
no effect]"));
fr = wah4_group(hslider("[1] Resonance Frequency [scale:log] [tooltip: wah resonance
frequency in Hz]", 200,100,2000,1));
// Avoid dc with the moog_vcf (amplitude too high when freq comes up from dc)
// Also, avoid very high resonance frequencies (e.g., 5kHz or above).
};
//-------------------------`crybaby_demo`---------------------------
// Crybaby effect application.
//
// #### Usage
//
// ```
// _ : crybaby_demo : _ ;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
crybaby_demo = ba.bypass1(bp, ve.crybaby(wah))
with{
crybaby_group(x) = hgroup("CRYBABY [tooltip: Reference:
https://ccrma.stanford.edu/~jos/pasp/vegf.html]", x);
bp = crybaby_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah
pedal has no effect]"));
wah = crybaby_group(hslider("[1] Wah parameter [tooltip: wah pedal angle between
0 (rocked back) and 1 (rocked forward)]",0.8,0,1,0.01));
};
//----------------------------`vocoder_demo`-------------------------
// Use example of the vocoder function where an impulse train is used
// as excitation.
//
// #### Usage
//
// ```
// _ : vocoder_demo : _;
// ```
//------------------------------------------------------------
// TODO: author RM
vocoder_demo = hgroup("My Vocoder",_,os.lf_imptrain(freq)*gain :
ve.vocoder(bands,att,rel,BWRatio) <: _,_)
with{
bands = 32;
vocoderGroup(x) = vgroup("Vocoder",x);
att = vocoderGroup(hslider("[0] Attack [style:knob] [tooltip: Attack time in seconds]",
5,0.1,100,0.1)*0.001);
rel = vocoderGroup(hslider("[1] Release [style:knob] [tooltip: Release time in seconds]",
5,0.1,100,0.1)*0.001);
BWRatio = vocoderGroup(hslider("[2] BW [style:knob] [tooltip: Coefficient to adjust the
bandwidth of each band]",0.5,0.1,2,0.001));
excitGroup(x) = vgroup("Excitation",x);
freq = excitGroup(hslider("[0] Freq [style:knob]",330,50,2000,0.1));
gain = excitGroup(vslider("[1] Gain",0.5,0,1,0.01) : si.smoo);
};
//-------------------------`flanger_demo`---------------------------
// Flanger effect application.
//
// #### Usage
//
// ```
// _,_ : flanger_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
flanger_demo = ba.bypass2(fbp,flanger_stereo_demo)
with{
flanger_group(x) = vgroup("FLANGER
[tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
meter_group(x) = flanger_group(hgroup("[0]", x));
ctl_group(x) = flanger_group(hgroup("[1]", x));
del_group(x) = flanger_group(hgroup("[2] Delay Controls", x));
lvl_group(x) = flanger_group(hgroup("[3]", x));
fbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked, the flanger
has no effect]"));
invert = meter_group(checkbox("[1] Invert Flange Sum"));
// FIXME: This should be an amplitude-response display:
flangeview = lfor(freq) + lfol(freq) : meter_group(hbargraph("[2] Flange LFO
[style: led] [tooltip: Display sum of flange delays]", -1.5,+1.5));
flanger_stereo_demo(x,y) = attach(x,flangeview),y :
*(level),*(level) : pf.flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert);
lfol = os.oscrs;
lfor = os.oscrc;
dmax = 2048;
dflange = 0.001 * ma.SR *
del_group(hslider("[1] Flange Delay [unit:ms] [style:knob]", 10, 0, 20, 0.001));
odflange = 0.001 * ma.SR *
del_group(hslider("[2] Delay Offset [unit:ms] [style:knob]", 1, 0, 20, 0.001));
freq = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.01));
depth = ctl_group(hslider("[2] Depth [style:knob]", 1, 0, 1, 0.001));
fb = ctl_group(hslider("[3] Feedback [style:knob]", 0, -0.999, 0.999, 0.001));
level = lvl_group(hslider("Flanger Output Level [unit:dB]", 0, -60, 10, 0.1)) :
ba.db2linear;
curdel1 = odflange+dflange*(1 + lfol(freq))/2;
curdel2 = odflange+dflange*(1 + lfor(freq))/2;
};
//-------------------------`phaser2_demo`---------------------------
// Phaser effect demo application.
//
// #### Usage
//
// ```
// _,_ : phaser2_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
phaser2_demo = ba.bypass2(pbp,phaser2_stereo_demo)
with{
phaser2_group(x) = vgroup("PHASER2 [tooltip: Reference:
https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
meter_group(x) = phaser2_group(hgroup("[0]", x));
ctl_group(x) = phaser2_group(hgroup("[1]", x));
nch_group(x) = phaser2_group(hgroup("[2]", x));
lvl_group(x) = phaser2_group(hgroup("[3]", x));
pbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked, the phaser
has no effect]"));
invert = meter_group(checkbox("[1] Invert Internal Phaser Sum"));
vibr = meter_group(checkbox("[2] Vibrato Mode")); // In this mode you can hear any "Doppler"
// FIXME: This should be an amplitude-response display:
// flangeview = phaser2_amp_resp : meter_group(hspectrumview("[2] Phaser Amplitude Response", 0,1));
// phaser2_stereo_demo(x,y) = attach(x,flangeview),y : ...
phaser2_stereo_demo = *(level),*(level) :
pf.phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,mdepth,fb,invert);
Notches = 4; // Compile-time parameter: 2 is typical for analog phaser stomp-boxes
// FIXME: Add tooltips
speed = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.001));
depth = ctl_group(hslider("[2] Notch Depth (Intensity) [style:knob]", 1, 0, 1, 0.001));
fb = ctl_group(hslider("[3] Feedback Gain [style:knob]", 0, -0.999, 0.999, 0.001));
width = nch_group(hslider("[1] Notch width [unit:Hz] [style:knob] [scale:log]",
1000, 10, 5000, 1));
frqmin = nch_group(hslider("[2] Min Notch1 Freq [unit:Hz] [style:knob] [scale:log]",
100, 20, 5000, 1));
frqmax = nch_group(hslider("[3] Max Notch1 Freq [unit:Hz] [style:knob] [scale:log]",
800, 20, 10000, 1)) : max(frqmin);
fratio = nch_group(hslider("[4] Notch Freq Ratio: NotchFreq(n+1)/NotchFreq(n) [style:knob]",
1.5, 1.1, 4, 0.001));
level = lvl_group(hslider("Phaser Output Level [unit:dB]", 0, -60, 10, 0.1)) :
ba.db2linear;
mdepth = select2(vibr,depth,2); // Improve "ease of use"
};
//----------------------------`freeverb_demo`-------------------------
// Freeverb demo application.
//
// #### Usage
//
// ```
// _,_ : freeverb_demo : _,_;
// ```
//------------------------------------------------------------
// TODO: author RM
freeverb_demo = _,_ <: (*(g)*fixedgain,*(g)*fixedgain :
re.stereo_freeverb(combfeed, allpassfeed, damping, spatSpread)),
*(1-g), *(1-g) :> _,_
with{
scaleroom = 0.28;
offsetroom = 0.7;
allpassfeed = 0.5;
scaledamp = 0.4;
fixedgain = 0.1;
origSR = 44100;
parameters(x) = hgroup("Freeverb",x);
knobGroup(x) = parameters(vgroup("[0]",x));
damping = knobGroup(vslider("[0] Damp [style: knob] [tooltip: Somehow control the
density of the reverb.]",0.5, 0, 1, 0.025)*scaledamp*origSR/ma.SR);
combfeed = knobGroup(vslider("[1] RoomSize [style: knob] [tooltip: The room size
between 0 and 1 with 1 for the largest room.]", 0.5, 0, 1, 0.025)*scaleroom*
origSR/ma.SR + offsetroom);
spatSpread = knobGroup(vslider("[2] Stereo Spread [style: knob] [tooltip: Spatial
spread between 0 and 1 with 1 for maximum spread.]",0.5,0,1,0.01)*46*ma.SR/origSR
: int);
g = parameters(vslider("[1] Wet [tooltip: The amount of reverb applied to the signal
between 0 and 1 with 1 for the maximum amount of reverb.]", 0.3333, 0, 1, 0.025));
};
//---------------------`stereo_reverb_tester`--------------------
// Handy test inputs for reverberator demos below.
//
// #### Usage
//
// ```
// _ : stereo_reverb_tester : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
stereo_reverb_tester(revin_group,x,y) = reverb_tester(_)
with{
reverb_tester(revin_group,x,y) = inx,iny with {
ck_group(x) = revin_group(vgroup("[1] Input Config",x));
mutegain = 1 - ck_group(checkbox("[1] Mute Ext Inputs
[tooltip: When this is checked, the stereo external audio inputs are
disabled (good for hearing the impulse response or pink-noise response alone)]"));
pinkin = ck_group(checkbox("[2] Pink Noise
[tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise (useful for adjusting
the EQ sections)]"));
imp_group(x) = revin_group(hgroup("[2] Impulse Selection",x));
pulseL = imp_group(button("[1] Left
[tooltip: Send impulse into LEFT channel]")) : ba.impulsify;
pulseC = imp_group(button("[2] Center
[tooltip: Send impulse into LEFT and RIGHT channels]")) : ba.impulsify;
pulseR = imp_group(button("[3] Right
[tooltip: Send impulse into RIGHT channel]")) : ba.impulsify;
inx = x*mutegain + (pulseL+pulseC) + pn;
iny = y*mutegain + (pulseR+pulseC) + pn;
pn = 0.1*pinkin*no.pink_noise;
};
};
//-------------------------`fdnrev0_demo`---------------------------
// A reverb application using `fdnrev0`.
//
// #### Usage
//
// ```
// _,_ : fdnrev0_demo(N,NB,BBSO) : _,_
// ```
//
// Where:
//
// * `n`: Feedback Delay Network (FDN) order / number of delay lines used =
// order of feedback matrix / 2, 4, 8, or 16 [extend primes array below for
// 32, 64, ...]
// * `nb`: Number of frequency bands / Number of (nearly) independent T60 controls
// / Integer 3 or greater
// * `bbso` = Butterworth band-split order / order of lowpass/highpass bandsplit
// used at each crossover freq / odd positive integer
//------------------------------------------------------------
// TODO: author JOS, revised by RM
fdnrev0_demo(N,NB,BBSO) = stereo_reverb_tester(revin_group)
<: re.fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl)
:> *(gain),*(gain)
with{
MAXDELAY = 8192; // sync w delays and prime_power_delays above
defdurs = (8.4,6.5,5.0,3.8,2.7); // NB default durations (sec)
deffreqs = (500,1000,2000,4000); // NB-1 default crossover frequencies (Hz)
deflens = (56.3,63.0); // 2 default min and max path lengths
fdn_group(x) = vgroup("FEEDBACK DELAY NETWORK (FDN) REVERBERATOR, ORDER 16
[tooltip: See Faust's reverb.lib for documentation and references]", x);
freq_group(x) = fdn_group(vgroup("[1] Band Crossover Frequencies", x));
t60_group(x) = fdn_group(hgroup("[2] Band Decay Times (T60)", x));
path_group(x) = fdn_group(vgroup("[3] Room Dimensions", x));
revin_group(x) = fdn_group(hgroup("[4] Input Controls", x));
nonl_group(x) = revin_group(vgroup("[4] Nonlinearity",x));
quench_group(x) = revin_group(vgroup("[3] Reverb State",x));
nonl = nonl_group(hslider("[style:knob] [tooltip: nonlinear mode coupling]",
0, -0.999, 0.999, 0.001));
loopgainmax = 1.0-0.5*quench_group(button("[1] Quench
[tooltip: Hold down 'Quench' to clear the reverberator]"));
pathmin = path_group(hslider("[1] min acoustic ray length [unit:m] [scale:log]
[tooltip: This length (in meters) determines the shortest delay-line used in the FDN
reverberator. Think of it as the shortest wall-to-wall separation in the room.]",
46, 0.1, 63, 0.1));
pathmax = path_group(hslider("[2] max acoustic ray length [unit:m] [scale:log]
[tooltip: This length (in meters) determines the longest delay-line used in the
FDN reverberator. Think of it as the largest wall-to-wall separation in the room.]",
63, 0.1, 63, 0.1));
durvals(i) = t60_group(vslider("[%i] %i [unit:s] [scale:log][tooltip: T60 is the 60dB
decay-time in seconds. For concert halls, an overall reverberation time (T60) near
1.9 seconds is typical [Beranek 2004]. Here we may set T60 independently in each
frequency band. In real rooms, higher frequency bands generally decay faster due
to absorption and scattering.]",ba.take(i+1,defdurs), 0.1, 100, 0.1));
durs = par(i,NB,durvals(NB-1-i));
freqvals(i) = freq_group(hslider("[%i] Band %i upper edge in Hz [unit:Hz] [scale:log]
[tooltip: Each delay-line signal is split into frequency-bands for separate
decay-time control in each band]",ba.take(i+1,deffreqs), 100, 10000, 1));
freqs = par(i,NB-1,freqvals(i));
delays = de.prime_power_delays(N,pathmin,pathmax);
gain = hslider("[3] Output Level (dB) [unit:dB][tooltip: Output scale factor]",
-40, -70, 20, 0.1) : ba.db2linear;
// (can cause infinite loop:) with { db2linear(x) = pow(10, x/20.0); };
};
//---------------------------`zita_rev_fdn_demo`------------------------------
// Reverb demo application based on `zita_rev_fdn`.
//
// #### Usage
//
// ```
// si.bus(8) : zita_rev_fdn_demo : si.bus(8)
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
zita_rev_fdn_demo = re.zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
with{
fsmax = 48000.0;
fdn_group(x) = hgroup("Zita_Rev Internal FDN Reverb [tooltip: ~ Zita_Rev's internal
8x8 Feedback Delay Network (FDN) & Schroeder allpass-comb reverberator. See
Faust's reverb.lib for documentation and references]",x);
t60dc = fdn_group(vslider("[1] Low RT60 [unit:s] [style:knob][style:knob]
[tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
3, 1, 8, 0.1));
f1 = fdn_group(vslider("[2] LF X [unit:Hz] [style:knob] [scale:log]
[tooltip: Crossover frequency (Hz) separating low and middle frequencies]",
200, 50, 1000, 1));
t60m = fdn_group(vslider("[3] Mid RT60 [unit:s] [style:knob] [scale:log]
[tooltip: T60 = time (in seconds) to decay 60dB in middle band]",
2, 1, 8, 0.1));
f2 = fdn_group(vslider("[4] HF Damping [unit:Hz] [style:knob] [scale:log]
[tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
6000, 1500, 0.49*fsmax, 1));
};
//----------------------------------`zita_rev1`------------------------------
// Example GUI for `zita_rev1_stereo` (mostly following the Linux `zita-rev1` GUI).
//
// Only the dry/wet and output level parameters are "dezippered" here. If
// parameters are to be varied in real time, use `smooth(0.999)` or the like
// in the same way.
//
// #### Usage
//
// ```
// _,_ : zita_rev1 : _,_
// ```
//
// #### Reference
//
// <http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
zita_rev1 = _,_ <: re.zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax),_,_ : out_eq,_,_ :
dry_wet : out_level
with{
fsmax = 48000.0; // highest sampling rate that will be used
fdn_group(x) = hgroup(
"[0] Zita_Rev1 [tooltip: ~ ZITA REV1 FEEDBACK DELAY NETWORK (FDN) & SCHROEDER
ALLPASS-COMB REVERBERATOR (8x8). See Faust's reverb.lib for documentation and
references]", x);
in_group(x) = fdn_group(hgroup("[1] Input", x));
rdel = in_group(vslider("[1] In Delay [unit:ms] [style:knob] [tooltip: Delay in ms
before reverberation begins]",60,20,100,1));
freq_group(x) = fdn_group(hgroup("[2] Decay Times in Bands (see tooltips)", x));
f1 = freq_group(vslider("[1] LF X [unit:Hz] [style:knob] [scale:log] [tooltip:
Crossover frequency (Hz) separating low and middle frequencies]", 200, 50, 1000, 1));
t60dc = freq_group(vslider("[2] Low RT60 [unit:s] [style:knob] [scale:log]
[style:knob] [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
3, 1, 8, 0.1));
t60m = freq_group(vslider("[3] Mid RT60 [unit:s] [style:knob] [scale:log] [tooltip:
T60 = time (in seconds) to decay 60dB in middle band]",2, 1, 8, 0.1));
f2 = freq_group(vslider("[4] HF Damping [unit:Hz] [style:knob] [scale:log]
[tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
6000, 1500, 0.49*fsmax, 1));
out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q);
// Zolzer style peaking eq (not used in zita-rev1) (filter.lib):
// pareq_stereo(eqf,eql,Q) = peak_eq(eql,eqf,eqf/Q), peak_eq(eql,eqf,eqf/Q);
// Regalia-Mitra peaking eq with "Q" hard-wired near sqrt(g)/2 (filter.lib):
pareq_stereo(eqf,eql,Q) = fi.peak_eq_rm(eql,eqf,tpbt), fi.peak_eq_rm(eql,eqf,tpbt)
with {
tpbt = wcT/sqrt(max(0,g)); // tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4)
wcT = 2*ma.PI*eqf/ma.SR; // peak frequency in rad/sample
g = ba.db2linear(eql); // peak gain
};
eq1_group(x) = fdn_group(hgroup("[3] RM Peaking Equalizer 1", x));
eq1f = eq1_group(vslider("[1] Eq1 Freq [unit:Hz] [style:knob] [scale:log] [tooltip:
Center-frequency of second-order Regalia-Mitra peaking equalizer section 1]",
315, 40, 2500, 1));
eq1l = eq1_group(vslider("[2] Eq1 Level [unit:dB] [style:knob] [tooltip: Peak level
in dB of second-order Regalia-Mitra peaking equalizer section 1]", 0, -15, 15, 0.1));
eq1q = eq1_group(vslider("[3] Eq1 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth
of second-order peaking equalizer section 1]", 3, 0.1, 10, 0.1));
eq2_group(x) = fdn_group(hgroup("[4] RM Peaking Equalizer 2", x));
eq2f = eq2_group(vslider("[1] Eq2 Freq [unit:Hz] [style:knob] [scale:log] [tooltip:
Center-frequency of second-order Regalia-Mitra peaking equalizer section 2]",
1500, 160, 10000, 1));
eq2l = eq2_group(vslider("[2] Eq2 Level [unit:dB] [style:knob] [tooltip: Peak level
in dB of second-order Regalia-Mitra peaking equalizer section 2]", 0, -15, 15, 0.1));
eq2q = eq2_group(vslider("[3] Eq2 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth
of second-order peaking equalizer section 2]", 3, 0.1, 10, 0.1));
out_group(x) = fdn_group(hgroup("[5] Output", x));
dry_wet(x,y) = *(wet) + dry*x, *(wet) + dry*y with {
wet = 0.5*(drywet+1.0);
dry = 1.0-wet;
};
drywet = out_group(vslider("[1] Dry/Wet Mix [style:knob] [tooltip: -1 = dry, 1 = wet]",
0, -1.0, 1.0, 0.01)) : si.smoo;
out_level = *(gain),*(gain);
gain = out_group(vslider("[2] Level [unit:dB] [style:knob] [tooltip: Output scale
factor]", -20, -70, 40, 0.1)) : ba.db2linear : si.smoo;
};
//====================================Generators==========================================
//========================================================================================
//--------------------------`sawtooth_demo`---------------------------
// An application demonstrating the different sawtooth oscillators of Faust.
//
// #### Usage
//
// ```
// sawtooth_demo : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
sawtooth_demo = signal
with{
osc_group(x) = vgroup("[0] SAWTOOTH OSCILLATOR [tooltip: See Faust's oscillator.lib
for documentation and references]",x);
knob_group(x) = osc_group(hgroup("[1]", x));
ampdb = knob_group(vslider("[1] Amplitude [unit:dB] [style:knob] [tooltip: Sawtooth
waveform amplitude]",-20,-120,10,0.1));
amp = ampdb : ba.db2linear : si.smoo;
freq = knob_group(vslider("[2] Frequency [unit:PK] [style:knob] [tooltip: Sawtooth
frequency as a Piano Key (PK) number (A440 = key 49)]",49,1,88,0.01) : ba.pianokey2hz);
detune1 = 1 + 0.01 * knob_group(
vslider("[3] Detuning 1 [unit:%%] [style:knob] [tooltip: Percentange frequency-shift
up or down for second oscillator]",-0.1,-10,10,0.01));
detune2 = 1 + 0.01 * knob_group(vslider("[4] Detuning 2 [unit:%%] [style:knob] [tooltip:
Percentange frequency-shift up or down for third detuned oscillator]",+0.1,-10,10,0.01));
portamento = knob_group(vslider("[5] Portamento [unit:sec] [style:knob] [scale:log]
[tooltip: Portamento (frequency-glide) time-constant in seconds]",0.1,0.001,10,0.001));
sfreq = freq : si.smooth(ba.tau2pole(portamento));
saworder = knob_group(nentry("[6] Saw Order [tooltip: Order of sawtootn aliasing
suppression]",2,1,os.MAX_SAW_ORDER,1));
sawchoice = _ <: par(i,os.MAX_SAW_ORDER,os.sawN(i+1)) :
ba.selectn(int(os.MAX_SAW_ORDER), int(saworder-1)); // when max is pwr of 2
tone = (amp/3) * (sawchoice(sfreq) + sawchoice(sfreq*detune1) + sawchoice(sfreq*detune2));
signal = amp * select2(ei, select2(ss, tone, white_or_pink_noise), _);
white_or_pink_noise = select2(wp,no.noise,no.pink_noise);
checkbox_group(x) = knob_group(vgroup("[7] Alternate Signals",x));
ss = checkbox_group(checkbox("[0] Noise (White or Pink - uses only Amplitude control on
the left)"));
wp = checkbox_group(checkbox("[1] Pink instead of White Noise (also called 1/f Noise)
[tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise, meaning that it has the
same total power in every octave]"));
ei = checkbox_group(checkbox("[2] External Signal Input (overrides Sawtooth/Noise
selection above)"));
};
//----------------------`virtual_analog_oscillator_demo`----------------------
// Virtual analog oscillator demo application.
//
// #### Usage
//
// ```
// virtual_analog_oscillator_demo : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
virtual_analog_oscillator_demo = signal
with{
osc_group(x) = vgroup("[0] VIRTUAL ANALOG OSCILLATORS
[tooltip: See Faust's oscillator.lib for documentation and references]",x);
// Signals
sawchoice = _ <:
// When MAX_SAW_ORDER is a power of 2:
par(i,os.MAX_SAW_ORDER,os.sawN(i+1)) : ba.selectn(int(os.MAX_SAW_ORDER), int(saworder-1));
// When MAX_SAW_ORDER is NOT a power of 2:
// (par(i,MAX_SAW_ORDER,sawN(i+1)), par(j,MAX_SAW_ORDER_NEXTPOW2-MAX_SAW_ORDER,_))
// : selectn(MAX_SAW_ORDER_NEXTPOW2, saworder-1);
saw = (amp/3) *
(sawchoice(sfreq) + sawchoice(sfreq*detune1) + sawchoice(sfreq*detune2));
sq = (amp/3) *
(os.square(sfreq) + os.square(sfreq*detune1) + os.square(sfreq*detune2));
tri = (amp/3) *
(os.triangle(sfreq) + os.triangle(sfreq*detune1) + os.triangle(sfreq*detune2));
pt = (amp/3) * (os.pulsetrain(sfreq,ptd)
+ os.pulsetrain(sfreq*detune1,ptd)
+ os.pulsetrain(sfreq*detune2,ptd));
ptN = (amp/3) * (os.pulsetrainN(N,sfreq,ptd)
+ os.pulsetrainN(N,sfreq*detune1,ptd)
+ os.pulsetrainN(N,sfreq*detune2,ptd)) with {N=3;};
pn = amp * no.pink_noise;
signal = ssaw*saw + ssq*sq + stri*tri
+ spt*((ssptN*ptN)+(1-ssptN)*pt)
+ spn*pn + sei*_;
// Signal controls:
signal_group(x) = osc_group(hgroup("[0] Signal Levels",x));
ssaw = signal_group(vslider("[0] Sawtooth [style:vslider]",1,0,1,0.01));
pt_group(x) = signal_group(vgroup("[1] Pulse Train",x));
ssptN = pt_group(checkbox("[0] Order 3
[tooltip: When checked, use 3rd-order aliasing suppression (up from 2)
See if you can hear a difference with the freq high and swept]"));
spt = pt_group(vslider("[1] [style:vslider]",0,0,1,0.01));
ptd = pt_group(vslider("[2] Duty Cycle [style:knob]",0.5,0,1,0.01))
: si.smooth(0.99);
ssq = signal_group(vslider("[2] Square [style:vslider]",0,0,1,0.01));
stri = signal_group(vslider("[3] Triangle [style:vslider]",0,0,1,0.01));
spn = signal_group(vslider(
"[4] Pink Noise [style:vslider][tooltip: Pink Noise (or 1/f noise) is
Constant-Q Noise, meaning that it has the same total power in every octave
(uses only amplitude controls)]",0,0,1,0.01));
sei = signal_group(vslider("[5] Ext Input [style:vslider]",0,0,1,0.01));
// Signal Parameters
knob_group(x) = osc_group(hgroup("[1] Signal Parameters", x));
af_group(x) = knob_group(vgroup("[0]", x));
ampdb = af_group(hslider("[1] Mix Amplitude [unit:dB] [style:hslider]
[tooltip: Sawtooth waveform amplitude]",-20,-120,10,0.1));
amp = ampdb : ba.db2linear : si.smoo;
freq = af_group(hslider("[2] Frequency [unit:PK] [style:hslider] [tooltip: Sawtooth
frequency as a Piano Key (PK) number (A440 = key 49)]",49,1,88,0.01) : ba.pianokey2hz);
detune1 = 1 - 0.01 * knob_group(
vslider("[3] Detuning 1 [unit:%%] [style:knob]
[tooltip: Percentange frequency-shift up or down for second oscillator]",
-0.1,-10,10,0.01));
detune2 = 1 + 0.01 * knob_group(
vslider("[4] Detuning 2 [unit:%%] [style:knob]
[tooltip: Percentange frequency-shift up or down for third detuned oscillator]",
+0.1,-10,10,0.01));
portamento = knob_group(
vslider("[5] Portamento [unit:sec] [style:knob] [scale:log]
[tooltip: Portamento (frequency-glide) time-constant in seconds]",
0.1,0.001,10,0.001));
saworder = knob_group(nentry("[6] Saw Order [tooltip: Order of sawtooth aliasing
suppression]",2,1,os.MAX_SAW_ORDER,1));
sfreq = freq : si.smooth(ba.tau2pole(portamento));
};
//-------------------------- `oscrs_demo` ---------------------------
// Simple application demoing filter based oscillators.
//
// #### Usage
//
// ```
// oscrs_demo : _
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscrs_demo = signal
with{
osc_group(x) = vgroup("[0] SINE WAVE OSCILLATOR oscrs [tooltip: Sine oscillator based
on 2D vector rotation]",x);
ampdb = osc_group(hslider("[1] Amplitude [unit:dB] [tooltip: Sawtooth waveform
amplitude]",-20,-120,10,0.1));
amp = ampdb : ba.db2linear : si.smoo;
freq = osc_group(
hslider("[2] Frequency [unit:PK]
[tooltip: Sine wave frequency as a Piano Key (PK) number (A440 = 49 PK)]",
49,1,88,0.01) : ba.pianokey2hz);
portamento = osc_group(
hslider("[3] Portamento [unit:sec] [scale:log]
[tooltip: Portamento (frequency-glide) time-constant in seconds]",
0.1,0.001,10,0.001));
sfreq = freq : si.smooth(ba.tau2pole(portamento));
signal = amp * os.oscrs(sfreq);
};
oscr_demo = oscrs_demo; // synonym
|