/usr/share/faust/hoa.lib is in faust-common 0.9.95~repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | //################################### hoa.lib ############################################
// Faust library for high order ambisonic.
//
// It should be used using the `ho` environment:
//
// ```
// ho = library("ho.lib");
// process = ho.functionCall;
// ```
//
// Another option is to import `stdfaust.lib` which already contains the `ho`
// environment:
//
// ```
// import("stdfaust.lib");
// process = ho.functionCall;
// ```
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2012 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
declare name "High Order Ambisonics library";
declare author "Pierre Guillot";
declare author "Eliott Paris";
declare author "Julien Colafrancesco";
declare copyright "2012-2013 Guillot, Paris, Colafrancesco, CICM labex art H2H, U. Paris 8";
ma = library("math.lib");
si = library("signal.lib");
//----------------------`encoder`---------------------------------
// Ambisonic encoder. Encodes a signal in the circular harmonics domain
// depending on an order of decomposition and an angle.
//
// #### Usage
//
// ```
// encoder(n, x, a) : _
// ```
//
// Where:
//
// * `n`: the order
// * `x`: the signal
// * `a`: the angle
//----------------------------------------------------------------
encoder(0, x, a) = x;
encoder(n, x, a) = encoder(n-1, x, a), x*sin(n*a), x*cos(n*a);
//--------------------------`decoder`--------------------------------
// Decodes an ambisonics sound field for a circular array of loudspeakers.
//
// #### Usage
//
// ```
// _ : decoder(n, p) : _
// ```
//
// Where:
//
// * `n`: the order
// * `p`: the number of speakers
//
// #### Note
//
// Number of loudspeakers must be greater or equal to 2n+1. It's preferable
// to use 2n+2 loudspeakers.
//-------------------------------------------------------------------
decoder(n, p) = par(i, 2*n+1, _) <: par(i, p, speaker(n, 2*ma.PI*i/p))
with
{
speaker(n,a) = /(2), par(i, 2*n, _), encoder(n,2/(2*n+1),a) : si.dot(2*n+1);
};
//-----------------------`decoderStereo`------------------------
// Decodes an ambisonic sound field for stereophonic configuration.
// An "home made" ambisonic decoder for stereophonic restitution
// (30° - 330°) : Sound field lose energy around 180°. You should
// use `inPhase` optimization with ponctual sources.
// #### Usage
//
// ```
// _ : decoderStereo(n) : _
// ```
//
// Where:
//
// * `n`: the order
//--------------------------------------------------------------
decoderStereo(n) = decoder(n, p) <: (par(i, 2*n+2, gainLeft(360 * i / p)) :> _),
(par(i, 2*n+2, gainRight(360 * i / p)) :> _)
with
{
p = 2*n+2;
gainLeft(a) = _ * sin(ratio_minus + ratio_cortex)
with
{
ratio_minus = ma.PI*.5 * abs( (30 + a) / 60 * ((a <= 30)) + (a - 330) / 60 * (a >= 330) );
ratio_cortex= ma.PI*.5 * abs( (120 + a) / 150 * (a > 30) * (a <= 180));
};
gainRight(a) = _ * sin(ratio_minus + ratio_cortex)
with
{
ratio_minus = ma.PI*.5 * abs( (390 - a) / 60 * (a >= 330) + (30 - a) / 60 * (a <= 30) );
ratio_cortex= ma.PI*.5 * abs( (180 - a) / 150 * (a < 330) * (a >= 180));
};
};
//============================Optimization Functions======================================
// Functions to weight the circular harmonics signals depending to the
// ambisonics optimization.
// It can be `basic` for no optimization, `maxRe` or `inPhase`.
//========================================================================================
//----------------`optimBasic`-------------------------
// The basic optimization has no effect and should be used for a perfect
// circle of loudspeakers with one listener at the perfect center loudspeakers
// array.
//
// #### Usage
//
// ```
// _ : optimBasic(n) : _
// ```
//
// Where:
//
// * `n`: the order
//-----------------------------------------------------
optimBasic(n) = par(i, 2*n+1, _);
//----------------`optimMaxRe`-------------------------
// The maxRe optimization optimize energy vector. It should be used for an
// auditory confined in the center of the loudspeakers array.
//
// #### Usage
//
// ```
// _ : optimMaxRe(n) : _
// ```
//
// Where:
//
// * `n`: the order
//-----------------------------------------------------
optimMaxRe(n) = par(i, 2*n+1, optim(i, n, _))
with {
optim(i, n, _)= _ * cos(indexabs / (2*n+1) * ma.PI)
with {
numberOfharmonics = 2 *n + 1;
indexabs = (int)((i - 1) / 2 + 1);
};
};
//----------------`optimInPhase`-------------------------
// The inPhase Optimization optimize energy vector and put all loudspeakers signals
// in phase. It should be used for an auditory.
//
// #### Usage
//
// ```
// _ : optimInPhase(n) : _
// ```
//
// Where:
//
// * `n`: the order
//-----------------------------------------------------
optimInPhase(n) = par(i, 2*n+1, optim(i, n, _))
with
{
optim(i, n, _)= _ * (fact(n)^2.) / (fact(n+indexabs) * fact(n-indexabs))
with
{
indexabs = (int)((i - 1) / 2 + 1);
fact(0) = 1;
fact(n) = n * fact(n-1);
};
};
//----------------`wider`-------------------------
// Can be used to wide the diffusion of a localized sound. The order
// depending signals are weighted and appear in a logarithmic way to
// have linear changes.
//
// #### Usage
//
// ```
// _ : wider(n,w) : _
// ```
//
// Where:
//
// * `n`: the order
// * `w`: the width value between 0 - 1
//-----------------------------------------------------
wider(n, w) = par(i, 2*n+1, perform(n, w, i, _))
with
{
perform(n, w, i, _) = _ * (log(n+1) * (1 - w) + 1) * clipweight
with
{
clipweight = weighter(n, w, i) * (weighter(n, w, i) > 0) * (weighter(n, w, i) <= 1) + (weighter(n, w, i) > 1)
with
{
weighter(n, w, 0) = 1.;
weighter(n, w, i) = (((w * log(n+1)) - log(indexabs)) / (log(indexabs+1) - log(indexabs)))
with
{
indexabs = (int)((i - 1) / 2 + 1);
};
};
};
};
//----------------`map`-------------------------
// It simulate the distance of the source by applying a gain
// on the signal and a wider processing on the soundfield.
//
// #### Usage
//
// ```
// map(n, x, r, a)
// ```
//
// Where:
//
// * `n`: the order
// * `x`: the signal
// * `r`: the radius
// * `a`: the angle in radian
//-----------------------------------------------------
map(n, x, r, a) = encoder(n, x * volume(r), a) : wider(n, ouverture(r))
with
{
volume(r) = 1. / (r * r * (r > 1) + (r < 1));
ouverture(r) = r * (r < 1) + (r > 1);
};
//----------------`rotate`-------------------------
// Rotates the sound field.
//
// #### Usage
//
// ```
// _ : rotate(n, a) : _
// ```
//
// Where:
//
// * `n`: the order
// * `a`: the angle in radian
//-----------------------------------------------------
rotate(n, a) = par(i, 2*n+1, _) <: par(i, 2*n+1, rotation(i, a))
with
{
rotation(i, a) = (par(j, 2*n+1, gain1(i, j, a)), par(j, 2*n+1, gain2(i, j, a)), par(j, 2*n+1, gain3(i, j, a)) :> _)
with
{
indexabs = (int)((i - 1) / 2 + 1);
gain1(i, j, a) = _ * cos(a * indexabs) * (j == i);
gain2(i, j, a) = _ * sin(a * indexabs) * (j-1 == i) * (j != 0) * (i%2 == 1);
gain3(i, j, a) = (_ * sin(a * indexabs)) * (j+1 == i) * (j != 0) * (i%2 == 0);
};
};
|