/usr/share/faust/instrument.lib is in faust-common 0.9.95~repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | //instrument.lib - Faust function of various types useful for building physical model instruments
declare name "Faust-STK Tools Library";
declare author "Romain Michon (rmichon@ccrma.stanford.edu)";
declare copyright "Romain Michon";
declare version "1.0";
declare licence "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license);
//no = library("noise.lib");
en = library("envelope.lib");
ma = library("math.lib");
ba = library("basic.lib");
de = library("delay.lib");
si = library("signal.lib");
fi = library("filter.lib");
os = library("miscoscillator.lib");
re = library("reverb.lib");
//========================= ENVELOPE GENERATORS ===============================
//----------------------- VIBRATO ENVELOPE ----------------------------
// 4 phases envelope to control vibrato gain
//
// USAGE:
// _ : *(envVibrato(b,a,s,r,t)) : _
// where
// b = beginning duration (silence) in seconds
// a = attack duration in seconds
// s = sustain as a percentage of the amplitude to be modified
// r = release duration in seconds
// t = trigger signal
envVibrato(b,a,s,r,t) = env ~ (_,_,_) : (!,!,_) // the 3 'state' signals are fed back
with {
env (p2,cnt,y) =
(t>0) & (p2|(y>=1)),
(cnt + 1)*(t>0), // counter for the first step "b"
(y + p1*p3*u*(s/100) - p4*w*y)*((p4==0)|(y>=eps)) // y = envelop signal
//*(y>=eps) // cut off tails to prevent denormals
with {
p1 = (p2==0) & (t>0) & (y<1) & (cnt>(b*ma.SR)); // p1 = attack phase
p3 = 1-(cnt<(nb)); // p3 = beginning phase
p4 = (t<=0) & (y>0); // p4 = release phase
// #samples in attack, release, must be >0
nb = ma.SR*b+(b==0.0) ; na = ma.SR*a+(a==0.0); nr = ma.SR*r+(r==0.0);
// attack and (-60dB) release rates
z = s+(s==0.0)*ba.db2linear(-60);
u = 1/na; w = 1-1/pow(z*ba.db2linear(60), 1/nr);
// values below this threshold are considered zero in the release phase
eps = ba.db2linear(-120);
};
};
//----------------------- ASYMPT60 ----------------------------
// Envelope generator which asymptotically approaches a target value.
//
// USAGE:
// asympT60(value,trgt,T60,trig) : _
// where
// value = starting value
// trgt = target value
// T60 = ramping time
// trig = trigger signal
asympT60(value,trgt,T60,trig) = (_*factor + constant)~_
with{
cntSample = *(trig) + 1~_ : -(1);
attDur = float(2);
cndFirst = ((cntSample < attDur) & (trig > 0));
target = value*cndFirst + trgt*(cndFirst < 1);
factorAtt = exp(-7/attDur);
factorT60 = exp(-7/(T60*float(ma.SR)));
factor = factorAtt*((cntSample < attDur) & (trig > 0)) +
((cntSample >= attDur) | (trig < 1))*factorT60;
constant = (1 - factor)*target;
};
//========================= TABLES ===============================
//----------------------- CLIPPING FUNCTION ----------------------------
// Positive and negative clipping functions.
//
// USAGE:
// _ : saturationPos : _
// _ : saturationNeg : _
// _ : saturationPos : saturationNeg : _
saturationPos(x) = x <: (_>1),(_<=1 : *(x)) :> +;
saturationNeg(x) = x <: (_<-1),(_>=-1 : *(x)) :> *(-1) + _;
//----------------------- BOW TABLE ----------------------------
// Simple bow table.
//
// USAGE:
// index : bow(offset,slope) : _
// where
// 0 <= index <= 1
bow(offset,slope) = pow(abs(sample) + 0.75, -4) : saturationPos
with{
sample(y) = (y + offset)*slope;
};
//----------------------- REED TABLE ----------------------------
// Simple reed table to be used with waveguide models of clanrinet, saxophone, etc.
//
// USAGE:
// _ : reed(offset,slope) : _
// where
// offset = offset between 0 and 1
// slope = slope between 0 and 1
// REFERENCE:
// https://ccrma.stanford.edu/~jos/pasp/View_Single_Reed_Oscillation.html
reed(offset,slope) = reedTable : saturationPos : saturationNeg
with{
reedTable = offset + (slope*_);
};
//========================= FILTERS ===============================
//----------------------- ONE POLE ----------------------------
onePole(b0,a1,x) = (b0*x - a1*_)~_;
//----------------------- ONE POLE SWEPT ----------------------------
onePoleSwep(a1,x) = (1 + a1)*x - a1*x';
//----------------------- POLE ZERO ----------------------------
poleZero(b0,b1,a1,x) = (b0*x + b1*x' - a1*_)~_;
//----------------------- ONE ZEROS ----------------------------
// Simple One zero and One zero recursive filters
//
// USAGE:
// _ : oneZero0(b0,b1) : _
// _ : oneZero1(b0,b1) : _
// REFERENCE:
// https://ccrma.stanford.edu/~jos/fp2/One_Zero.html
oneZero0(b0,b1,x) = (*(b1) + x*b0)~_;
oneZero1(b0,b1,x) = (x'*b1 + x*b0);
//----------------------- BANDPASS FILTER WITH CONSTANT UNITY PEAK GAIN BASED ON A BIQUAD ----------------------------
bandPass(resonance,radius) = fi.TF2(b0,b1,b2,a1,a2)
with{
a2 = radius*radius;
a1 = -2*radius*cos(ma.PI*2*resonance/ma.SR);
b0 = 0.5-0.5*a2;
b1 = 0;
b2 = -b0;
};
//----------------------- BANDPASS FILTER BASED ON A BIQUAD ----------------------------
// Band pass filter using a biquad (TF2 is declared in filter.lib)
//
// USAGE:
// _ : bandPassH(resonance,radius) : _
// where
// resonance = center frequency
// radius = radius
bandPassH(resonance,radius) = fi.TF2(b0,b1,b2,a1,a2)
with{
a2 = radius*radius;
a1 = -2*radius*cos(ma.PI*2*resonance/ma.SR);
b0 = 1;
b1 = 0;
b2 = 0;
};
//----------------------- FLUE JET NON-LINEAR FUNCTION ----------------------------
// Jet Table: flue jet non-linear function, computed by a polynomial calculation
jetTable(x) = x <: _*(_*_-1) : saturationPos : saturationNeg;
//----------------------- NON LINEAR MODULATOR ----------------------------
// nonLinearModulator adapts the function allpassnn from filter.lib for using it with waveguide instruments
//
// USAGE:
// _ : nonLinearModulator(nonlinearity,env,freq,typeMod,freqMod,order) : _
// where
// nonlinearity = nonlinearity coefficient between 0 and 1
// env = input to connect any kind of envelope
// freq = current tone frequency
// typeMod = if 0: theta is modulated by the incoming signal;
// if 1: theta is modulated by the averaged incoming signal;
// if 2: theta is modulated by the squared incoming signal;
// if 3: theta is modulated by a sine wave of frequency freqMod;
// if 4: theta is modulated by a sine wave of frequency freq;
// freqMod = frequency of the sine wave modulation
// order = order of the filter
nonLinearModulator(nonlinearity,env,freq,typeMod,freqMod,order) =
//theta is modulated by a sine wave
_ <: nonLinearFilterOsc*(typeMod >= 3),
//theta is modulated by the incoming signal
(_ <: nonLinearFilterSig*nonlinearity,_*(1 - nonlinearity) :> +)*(typeMod < 3)
:> +
with{
//which frequency to use for the sine wave oscillator?
freqOscMod = (typeMod == 4)*freq + (typeMod != 4)*freqMod;
//the incoming signal is scaled and the envelope is applied
tsignorm(x) = nonlinearity*ma.PI*x*env;
tsigsquared(x) = nonlinearity*ma.PI*x*x*env; //incoming signal is squared
tsigav(x) = nonlinearity*ma.PI*((x + x')/2)*env; //incoming signal is averaged with its previous sample
//select which version of the incoming signal of theta to use
tsig(x) = tsignorm(x)*(typeMod == 0) + tsigav(x)*(typeMod == 1)
+ tsigsquared(x)*(typeMod == 2);
//theta is modulated by a sine wave generator
tosc = nonlinearity*ma.PI*os.osc(freqOscMod)*env;
//incoming signal is sent to the nonlinear passive allpass ladder filter
nonLinearFilterSig(x) = x <: fi.allpassnn(order,(par(i,order,tsig(x))));
nonLinearFilterOsc = _ <: fi.allpassnn(order,(par(i,order,tosc)));
};
//========================= TOOLS ===============================
//----------------------- STEREOIZER ----------------------------
// This function takes a mono input signal and spacialize it in stereo
// in function of the period duration of the tone being played.
//
// USAGE:
// _ : stereo(periodDuration) : _,_
// where
// periodDuration = period duration of the tone being played in number of samples
// ACKNOWLEDGMENT
// Formulation initiated by Julius O. Smith in https://ccrma.stanford.edu/realsimple/faust_strings/
stereoizer(periodDuration) = _ <: _,widthdelay : stereopanner
with{
W = hslider("v:Spat/spatial width", 0.5, 0, 1, 0.01);
A = hslider("v:Spat/pan angle", 0.6, 0, 1, 0.01);
widthdelay = de.delay(4096,W*periodDuration/2);
stereopanner = _,_ : *(1.0-A), *(A);
};
//----------------------- INSTRREVERB ----------------------------
// GUI for zita_rev1_stereo from reverb.lib
//
// USAGE:
// _,_ : instrRerveb
instrReverb = _,_ <: *(reverbGain),*(reverbGain),*(1 - reverbGain),*(1 - reverbGain) :
re.zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax),_,_ <: _,!,_,!,!,_,!,_ : +,+
with{
reverbGain = hslider("v:Reverb/reverbGain",0.137,0,1,0.01) : si.smoo;
roomSize = hslider("v:Reverb/roomSize",0.72,0.01,2,0.01);
rdel = 20;
f1 = 200;
f2 = 6000;
t60dc = roomSize*3;
t60m = roomSize*2;
fsmax = 48000;
};
|