/usr/share/faust/miscoscillator.lib is in faust-common 0.9.95~repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 | //############################## miscoscillator.lib ######################################
// This library contains a collection of sound generators.
//
// It should be used using the `os` environment:
//
// ```
// os = library("miscoscillator.lib");
// process = os.functionCall;
// ```
//
// Another option is to import `stdfaust.lib` which already contains the `os`
// environment:
//
// ```
// import("stdfaust.lib");
// process = os.functionCall;
// ```
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
declare name "Faust Oscillator Library";
declare version "0.0";
ma = library("math.lib");
ba = library("basic.lib");
fi = library("filter.lib");
//=========================Wave-Table-Based Oscillators===================================
//========================================================================================
//-----------------------`sinwaveform`------------------------
// Sine waveform ready to use with a `rdtable`.
//
// #### Usage
//
// ```
// sinwaveform(tablesize) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
//------------------------------------------------------------
sinwaveform(tablesize) = float(ba.time)*(2.0*ma.PI)/float(tablesize) : sin;
//-----------------------`coswaveform`------------------------
// Cosine waveform ready to use with a `rdtable`.
//
// #### Usage
//
// ```
// coswaveform(tablesize) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
//------------------------------------------------------------
coswaveform(tablesize) = float(ba.time)*(2.0*ma.PI)/float(tablesize) : cos;
//-----------------------`phasor`------------------------
// A simple phasor to be used with a `rdtable`.
// `phasor` is a standard Faust function.
//
// #### Usage
//
// ```
// phasor(tablesize,freq) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
phasor(tablesize,freq) = freq/float(ma.SR) : (+ : ma.decimal) ~ _ : *(float(tablesize));
//-----------------------`oscsin`------------------------
// Sine wave oscillator.
// `oscsin` is a standard Faust function.
//
// #### Usage
//
// ```
// oscsin(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
oscsin(freq) = rdtable(tablesize, sinwaveform(tablesize), int(phasor(tablesize,freq)))
with{
tablesize = 1 << 16;
};
//-----------------------`osccos`------------------------
// Cosine wave oscillator.
//
// #### Usage
//
// ```
// osccos(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
osccos(freq) = rdtable(tablesize, coswaveform(tablesize), int(phasor(tablesize,freq)) )
with{
tablesize = 1 << 16;
};
//-----------------------`oscp`------------------------
// A sine wave generator with controllable phase.
//
// #### Usage
//
// ```
// oscp(freq,p) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
// * `p`: the phase in radian
//------------------------------------------------------------
oscp(freq,p) = oscsin(freq) * cos(p) + osccos(freq) * sin(p);
//-----------------------`osci`------------------------
// Interpolated phase sine wave oscillator.
//
// #### Usage
//
// ```
// osci(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
osci(freq) = s1 + d * (s2 - s1)
with {
tablesize = 1 << 16;
i = int(phasor(tablesize,freq));
d = ma.decimal(phasor(tablesize,freq));
s1 = rdtable(tablesize+1,sinwaveform(tablesize),i);
s2 = rdtable(tablesize+1,sinwaveform(tablesize),i+1);
};
//===============================LFOs===============================
// Low-frequency oscillators have prefix `lf_`
// (no aliasing suppression, signal-means not necessarily zero).
//==================================================================
//--------`lf_imptrain`----------
// Unit-amplitude low-frequency impulse train.
// `lf_imptrain` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_imptrain(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
// TODO: author JOS, revised by RM
lf_imptrain(freq) = lf_sawpos(freq)<:-(mem)<0; // definition below
//--------`lf_pulsetrainpos`----------
// Unit-amplitude nonnegative LF pulse train, duty cycle between 0 and 1
//
//
// #### Usage
//
// ```
// lf_pulsetrainpos(freq,duty) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `duty`: duty cycle between 0 and 1
//------------------------------------------------------------
// TODO: author JOS, revised by RM
lf_pulsetrainpos(freq,duty) = float(lf_sawpos(freq) <= duty);
//pulsetrainpos = lf_pulsetrainpos; // for backward compatibility
//--------`lf_squarewavepos`----------
// Positive LF square wave in [0,1]
//
// #### Usage
//
// ```
// lf_squarewavepos(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
// TODO: author JOS, revised by RM
lf_squarewavepos(freq) = lf_pulsetrainpos(freq,0.5);
// squarewavepos = lf_squarewavepos; // for backward compatibility
//--------`lf_squarewave`----------
// Zero-mean unit-amplitude LF square wave.
// `lf_squarewave` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_squarewave(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
// TODO: author JOS, revised by RM
lf_squarewave(freq) = 2*lf_squarewavepos(freq) - 1;
// squarewave = lf_squarewave; // for backward compatibility
//--------`lf_trianglepos`----------
// Positive unit-amplitude LF positive triangle wave
//
// #### Usage
//
// ```
// lf_trianglepos(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
// TODO: author JOS, revised by RM
lf_trianglepos(freq) = 1-abs(saw1(freq)); // saw1 defined below
//----------`lf_triangle`----------
// Positive unit-amplitude LF triangle wave
// `lf_triangle` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_triangle(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
// TODO: author RM
lf_triangle(freq) = 2*lf_trianglepos(freq) - 1;
//================== Low Frequency Sawtooths ====================
// Sawtooth waveform oscillators for virtual analog synthesis et al.
// The 'simple' versions (`lf_rawsaw`, `lf_sawpos` and `saw1`), are mere samplings of
// the ideal continuous-time ("analog") waveforms. While simple, the
// aliasing due to sampling is quite audible. The differentiated
// polynomial waveform family (`saw2`, `sawN`, and derived functions)
// do some extra processing to suppress aliasing (not audible for
// very low fundamental frequencies). According to Lehtonen et al.
// (JASA 2012), the aliasing of `saw2` should be inaudible at fundamental
// frequencies below 2 kHz or so, for a 44.1 kHz sampling rate and 60 dB SPL
// presentation level; fundamentals 415 and below required no aliasing
// suppression (i.e., `saw1` is ok).
//=====================================================================
//-----------------`lf_rawsaw`--------------------
// Simple sawtooth waveform oscillator between 0 and period in samples.
//
// #### Usage
//
// ```
// lf_rawsaw(periodsamps)
// ```
//
// Where:
//
// * `periodsamps`: number of periods per samples
//---------------------------------------------------------
// TODO: author JOS, revised by RM
lf_rawsaw(periodsamps) = (_,periodsamps : fmod) ~ +(1.0);
//-----------------`lf_sawpos`--------------------
// Simple sawtooth waveform oscillator between 0 and 1.
//
// #### Usage
//
// ```
// lf_sawpos(freq)
// ```
//
// Where:
//
// * `freq`: frequency
//---------------------------------------------------------
// TODO: author Bart Brouns, revised by RM
lf_sawpos(freq) = ma.frac ~ +(freq/ma.SR);
//-----------------`lf_saw`--------------------
// Simple sawtooth waveform.
// `lf_saw` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_saw(freq)
// ```
//
// Where:
//
// * `freq`: frequency
//---------------------------------------------------------
// TODO: author Bart Brouns, revised by RM
saw1(freq) = 2.0 * lf_sawpos(freq) - 1.0;
lf_saw(freq) = saw1(freq);
//-----------------`lf_sawpos_phase`--------------------
// Simple sawtooth waveform oscillator between 0 and 1
// with phase control.
//
// #### Usage
//
// ```
// lf_sawpos_phase(freq,phase)
// ```
//
// Where:
//
// * `freq`: frequency
// * `phase`: phase
//---------------------------------------------------------
// TODO: author JOS, revised by RM
lf_sawpos_phase(phase,freq) = (+(phase-phase') : ma.frac ) ~ +(freq/ma.SR);
//================== Bandlimited Sawtooth ====================
// Bandlimited Sawtooth
//
// `sawN(N,freq)`, `sawNp`, `saw2dpw(freq)`, `saw2(freq)`, `saw3(freq)`,
// `saw4(freq)`, `saw5(freq)`, `saw6(freq)`, `sawtooth(freq)`, `saw2f2(freq)`
// `saw2f4(freq)`
//
// #### Method 1 (`saw2`)
//
// Polynomial Transition Regions (PTR) (for aliasing suppression)
//
// ##### Reference
//
// * Kleimola, J.; Valimaki, V., "Reducing Aliasing from Synthetic Audio
// Signals Using Polynomial Transition Regions," in Signal Processing
// Letters, IEEE , vol.19, no.2, pp.67-70, Feb. 2012
// * <https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747/publication6.pdf?sequence=9>
// * <http://research.spa.aalto.fi/publications/papers/spl-ptr/>
//
// #### Method 2 (`sawN`)
//
// Differentiated Polynomial Waves (DPW) (for aliasing suppression)
//
// ##### Reference
//
// "Alias-Suppressed Oscillators based on Differentiated Polynomial Waveforms",
// Vesa Valimaki, Juhan Nam, Julius Smith, and Jonathan Abel,
// IEEE Tr. Acoustics, Speech, and Language Processing (IEEE-ASLP),
// Vol. 18, no. 5, May 2010.
//
// #### Other Cases
//
// Correction-filtered versions of `saw2`: `saw2f2`, `saw2f4`
// The correction filter compensates "droop" near half the sampling rate.
// See reference for sawN.
//
// #### Usage
//
// ```
// sawN(N,freq) : _
// sawNp(N,freq,phase) : _
// saw2dpw(freq) : _
// saw2(freq) : _
// saw3(freq) : _ // based on sawN
// saw4(freq) : _ // based on sawN
// saw5(freq) : _ // based on sawN
// saw6(freq) : _ // based on sawN
// sawtooth(freq) : _ // = saw2
// saw2f2(freq) : _
// saw2f4(freq) : _
// ```
//
// Where:
//
// * `N`: polynomial order
// * `freq`: frequency in Hz
// * `phase`: phase
//===================================================================
// TODO: author JOS, revised by RM
//------------------`sawN`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS, revised by RM
// --- sawN for N = 1 to 6 ---
//We can do 6, but 5 and 6 have noise at low fundamentals: MAX_SAW_ORDER = 6; MAX_SAW_ORDER_NEXTPOW2 = 8;
MAX_SAW_ORDER = 4; MAX_SAW_ORDER_NEXTPOW2 = 8; // par cannot handle the case of 0 elements
sawN(N,freq) = saw1l : poly(Nc) : D(Nc-1) : gate(Nc-1)
with {
Nc = max(1,min(N,MAX_SAW_ORDER));
clippedFreq = max(20.0,abs(freq)); // use lf_sawpos(freq) for LFOs (freq < 20 Hz)
saw1l = 2*lf_sawpos(clippedFreq) - 1; // zero-mean, amplitude +/- 1
// Also note the availability of lf_sawpos_phase above.
poly(1,x) = x;
poly(2,x) = x*x;
poly(3,x) = x*x*x - x;
poly(4,x) = x*x*(x*x - 2.0);
poly(5,x) = x*(7.0/3 + x*x*(-10.0/3.0 + x*x));
poly(6,x) = x*x*(7.0 + x*x*(-5.0 + x*x));
p0n = float(ma.SR)/clippedFreq; // period in samples
diff1(x) = (x - x')/(2.0/p0n);
diff(N) = seq(n,N,diff1); // N diff1s in series
factorial(0) = 1;
factorial(i) = i * factorial(i-1);
D(0) = _;
D(i) = diff(i)/factorial(i+1);
gate(N) = *(1@(N)); // delayed step for blanking startup glitch
};
//------------------`sawNp`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS, revised by RM
// --- sawNp for N = 1 to 6 ---
// Phase offset = delay (max 8191 samples is more than one period of audio):
sawNp(N,freq,phase) = sawN(N,freq) : @(max(0,min(8191,int(phase*ma.SR/freq))));
// Special named cases:
//------------------`saw2dpw`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS, revised by RM
// --- sawN ---
saw2dpw(freq) = saw1(freq) <: * <: -(mem) : *(0.25'*ma.SR/freq); // inferior to saw2 below
//------------------`saw3`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS, revised by RM
saw3 = sawN(3); saw4 = sawN(4); saw5 = sawN(5); saw6 = sawN(6);
//------------------`sawtooth`--------------------------------
// Alias-free sawtooth wave. 2nd order interpolation (based
// on `saw2`).
// `sawtooth` is a standard Faust function.
//
// #### Usage
//
// ```
// sawtooth(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//--------------------------------------------------------
// TODO: author JOS, revised by RM
saw2(freq) = y with { // newer PTR version (stateless - freq can vary at any speed)
p0 = float(ma.SR)/float(max(1.0e-7,abs(freq))); // period in samples
t0 = 1.0/p0; // phase increment
p = ((_<:(-(1)<:_,_),_) <: selector1,selector2) ~(+(t0)):!,_;
selector1 = select2(<(0)); // for feedback
selector2 = select2(<(0), (_<:_,(*(1-p0):+(1)):+), _); // for output
y = 2*p-1;
};
// --- sawtooth ---
sawtooth = saw2; // default choice for sawtooth signal - see also sawN
//------------------`saw2f2`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS
// --- Correction-filtered versions of saw2: saw2f2, saw2f4 ----
// The correction filter compensates "droop" near half the sampling rate.
// See reference for sawN.
saw2f2 = saw2 : cf2 with {
cf2 = fi.tf2(1.155704605878911, 0.745184288225518,0.040305967265900,
0.823765146386639, 0.117420665547108);
};
//------------------`saw2f4`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS
saw2f4 = saw2 : cf4 with {
cf4 = fi.iir((1.155727435125014, 2.285861038554662,
1.430915027294021, 0.290713280893317, 0.008306401748854),
(2.156834679164532, 1.559532244409321, 0.423036498118354,
0.032080681130972));
};
//=========Bandlimited Pulse, Square, and Impulse Trains============
// Bandlimited Pulse, Square, and Impulse Trains
//
// `pulsetrainN`, `pulsetrain`, `squareN`, `square`, `imptrain`, `imptrainN`,
// `triangle`, `triangleN`
//
// All are zero-mean and meant to oscillate in the audio frequency range.
// Use simpler sample-rounded lf_* versions above for LFOs.
//
// #### Usage
//
// ```
// pulsetrainN(N,freq,duty) : _
// pulsetrain(freq, duty) : _ // = pulsetrainN(2)
// squareN(N, freq) : _
// square : _ // = squareN(2)
// imptrainN(N,freq) : _
// imptrain : _ // = imptrainN(2)
// triangleN(N,freq) : _
// triangle : _ // = triangleN(2)
// ```
//
// Where:
//
// * `N`: polynomial order
// * `freq`: frequency in Hz
//====================================================================
// TODO: author JOS
//------------------`pulsetrainN`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS
pulsetrainN(N,freq,duty) = diffdel(sawN(N,freqC),del) with {
// non-interpolated-delay version: diffdel(x,del) = x - x@int(del+0.5);
// linearly interpolated delay version (sounds good to me):
diffdel(x,del) = x-x@int(del)*(1-ma.frac(del))-x@(int(del)+1)*ma.frac(del);
// Third-order Lagrange interpolated-delay version (see filter.lib):
// diffdel(x,del) = x - fdelay3(DELPWR2,max(1,min(DELPWR2-2,ddel)));
DELPWR2 = 2048; // Needs to be a power of 2 when fdelay*() used above.
delmax = DELPWR2-1; // arbitrary upper limit on diff delay (duty=0.5)
SRmax = 96000.0; // assumed upper limit on sampling rate
fmin = SRmax / float(2.0*delmax); // 23.4 Hz (audio freqs only)
freqC = max(freq,fmin); // clip frequency at lower limit
period = (float(ma.SR) / freqC); // actual period
ddel = duty * period; // desired delay
del = max(0,min(delmax,ddel));
};
//------------------`pulsetrain`--------------------------------
// Bandlimited pulse train oscillator. Based on `pulsetrainN(2)`.
// `pulsetrain` is a standard Faust function.
//
// #### Usage
//
// ```
// pulsetrain(freq, duty) : _
// ```
//
// Where:
//
// * `freq`: frequency
// * `duty`: duty cycle between 0 and 1
//--------------------------------------------------------
// TODO: author JOS
pulsetrain = pulsetrainN(2);
//------------------`squareN`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS
squareN(N,freq) = pulsetrainN(N,freq,0.5);
//------------------`square`--------------------------------
// Bandlimited square wave oscillator. Based on `squareN(2)`.
// `square` is a standard Faust function.
//
// #### Usage
//
// ```
// square(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//--------------------------------------------------------
// TODO: author JOS
square = squareN(2);
//------------------`impulse`--------------------------------
// One-time impulse generated when the Faust process is started.
// `impulse` is a standard Faust function.
//
// #### Usage
//
// ```
// impulse : _
// ```
//--------------------------------------------------------
// TODO: author JOS
impulse = 1-1';
//------------------`imptrainN`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS
imptrainN(N,freq) = impulse + 0.5*ma.diffn(sawN(N,freq));
//------------------`imptrain`--------------------------------
// Bandlimited impulse train generator. Based on `imptrainN(2)`.
// `imptrain` is a standard Faust function.
//
// #### Usage
//
// ```
// imptrain(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//--------------------------------------------------------
// TODO: author JOS
imptrain = imptrainN(2); // default based on saw2
//------------------`triangleN`--------------------------------
// TODO: implemented but not documented. For now, you can
// look at the source code.
//--------------------------------------------------------
// TODO: author JOS
triangleN(N,freq) = squareN(N,freq) : fi.pole(p) : *(gain) with {
gain = 4.0*freq/ma.SR; // for aproximate unit peak amplitude
p = 0.999;
};
//------------------`triangle`--------------------------------
// Bandlimited triangle wave oscillator. Based on `triangleN(2)`.
// `triangle` is a standard Faust function.
//
// #### Usage
//
// ```
// triangle(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//--------------------------------------------------------
// TODO: author JOS
triangle = triangleN(2); // default based on saw2
//===============================Filter-Based Oscillators=================================
// Filter-Based Oscillators
//
// #### Usage
//
// ```
// osc[b|r|rs|rc|s|w](f), where f = frequency in Hz.
// ```
//
// #### References
//
// * <http://lac.linuxaudio.org/2012/download/lac12-slides-jos.pdf>
// * <https://ccrma.stanford.edu/~jos/pdf/lac12-paper-jos.pdf>
//========================================================================================
//--------------------------`oscb`--------------------------------
// Sinusoidal oscillator based on the biquad.
//
// #### Usage
//
// ```
// oscb(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscb(f) = impulse : fi.tf2(1,0,0,a1,1)
with {
a1 = -2*cos(2*ma.PI*f/ma.SR);
};
//--------------------------`oscrq`---------------------------
// Sinusoidal (sine and cosine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrq(freq) : _,_
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscrq(f) = impulse : fi.nlf2(f,1); // sine and cosine outputs
//--------------------------`oscrs`---------------------------
// Sinusoidal (sine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrs(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscrs(f) = impulse : fi.nlf2(f,1) : _,!; // sine
//--------------------------`oscrc`---------------------------
// Sinusoidal (cosine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrc(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscrc(f) = impulse : fi.nlf2(f,1) : !,_; // cosine
oscrp(f,p) = oscrq(f) : *(cos(p)), *(sin(p)) : + ; // p=0 for sine, p=PI/2 for cosine, etc.
oscr = oscrs; // default = sine (starts without a pop)
//-----------------------`osc`------------------------
// Default sine wave oscillator (same as oscrs).
// `osc` is a standard Faust function.
//
// #### Usage
//
// ```
// osc(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the wave (Hz)
//------------------------------------------------------------
//osc = oscsin;
osc = oscrs;
//--------------------------`oscs`--------------------------------
// Sinusoidal oscillator based on the state variable filter
// = undamped "modified-coupled-form" resonator
// = "magic circle" algorithm used in graphics
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscs(f) = (*(-1) : sint(wn) : sintp(wn,impulse)) ~ _
with {
wn = 2*ma.PI*f/ma.SR; // approximate
// wn = 2*sin(PI*f/SR); // exact
sub(x,y) = y-x;
sint(x) = *(x) : + ~ _ ; // frequency-scaled integrator
sintp(x,y) = *(x) : +(y): + ~ _ ; // same + state input
};
//================ Waveguide-Resonator-Based Osccilators================
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
//======================================================================
//-----------------`oscw`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`. Unit-amplitude
// cosine oscillator.
//
// #### Usage
//
// ```
// oscwc(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscwc(fr) = impulse : fi.wgr(fr,1) : _,!; // cosine (cheapest at 1 mpy/sample)
//-----------------`oscws`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`. Unit-amplitude
// sine oscillator
//
// #### Usage
//
// ```
// oscws(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscws(fr) = impulse : fi.wgr(fr,1) : !,_; // sine (needs a 2nd scaling mpy)
//-----------------`oscwq`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
// Unit-amplitude cosine and sine (quadrature) oscillator.
//
// #### Usage
//
// ```
// oscwq(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscq(fr) = impulse : fi.wgr(fr,1); // phase quadrature outputs
//-----------------`oscw`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
// Unit-amplitude cosine oscillator (default)
//
// #### Usage
//
// ```
// oscw(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
oscw = oscwc;
|