/usr/share/faust/music.lib is in faust-common 0.9.95~repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | //////////////////////////////////////////////////////////////////////////////////////////
// WARNING: Deprecated Library!!
// Read the README file in /libraries for more information
//////////////////////////////////////////////////////////////////////////////////////////
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2012 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
declare name "Music Library";
declare author "GRAME";
declare copyright "GRAME";
declare version "1.0";
declare license "LGPL with exception";
declare deprecated "This library is deprecated and is not maintained anymore. It might
be removed in future released.";
import("math.lib");
//-----------------------------------------------
// DELAY LINE
//-----------------------------------------------
// frac(n) = n-int(n); // Redefined in math.lib
index(n) = &(n-1) ~ +(1); // n = 2**i
//delay(n,d,x) = rwtable(n, 0.0, index(n), x, (index(n)-int(d)) & (n-1));
delay(n,d,x) = x@(int(d)&(n-1));
fdelay(n,d,x) = delay(n,int(d),x)*(1 - frac(d)) + delay(n,int(d)+1,x)*frac(d);
delay1s(d) = delay(65536,d);
delay2s(d) = delay(131072,d);
delay5s(d) = delay(262144,d);
delay10s(d) = delay(524288,d);
delay21s(d) = delay(1048576,d);
delay43s(d) = delay(2097152,d);
fdelay1s(d) = fdelay(65536,d);
fdelay2s(d) = fdelay(131072,d);
fdelay5s(d) = fdelay(262144,d);
fdelay10s(d) = fdelay(524288,d);
fdelay21s(d) = fdelay(1048576,d);
fdelay43s(d) = fdelay(2097152,d);
millisec = SR/1000.0;
time1s = hslider("time", 0, 0, 1000, 0.1)*millisec;
time2s = hslider("time", 0, 0, 2000, 0.1)*millisec;
time5s = hslider("time", 0, 0, 5000, 0.1)*millisec;
time10s = hslider("time", 0, 0, 10000, 0.1)*millisec;
time21s = hslider("time", 0, 0, 21000, 0.1)*millisec;
time43s = hslider("time", 0, 0, 43000, 0.1)*millisec;
echo1s = vgroup("echo 1000", +~(delay(65536, int(hslider("millisecond", 0, 0, 1000, 0.10)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo2s = vgroup("echo 2000", +~(delay(131072, int(hslider("millisecond", 0, 0, 2000, 0.25)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo5s = vgroup("echo 5000", +~(delay(262144, int(hslider("millisecond", 0, 0, 5000, 0.50)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo10s = vgroup("echo 10000", +~(delay(524288, int(hslider("millisecond", 0, 0, 10000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo21s = vgroup("echo 21000", +~(delay(1048576, int(hslider("millisecond", 0, 0, 21000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo43s = vgroup("echo 43000", +~(delay(2097152, int(hslider("millisecond", 0, 0, 43000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
//--------------------------sdelay(N,it,dt)----------------------------
// s(mooth)delay : a mono delay that doesn't click and doesn't
// transpose when the delay time is changed. It takes 4 input signals
// and produces a delayed output signal
//
// USAGE : ... : sdelay(N,it,dt) : ...
//
// Where :
// <N> = maximal delay in samples (must be a constant power of 2, for example 65536)
// <it> = interpolation time (in samples) for example 1024
// <dt> = delay time (in samples)
// < > = input signal we want to delay
//--------------------------------------------------------------------------
sdelay(N, it, dt) = ctrl(it,dt),_ : ddi(N)
with {
//---------------------------ddi(N,i,d0,d1)-------------------------------
// DDI (Double Delay with Interpolation) : the input signal is sent to two
// delay lines. The outputs of these delay lines are crossfaded with
// an interpolation stage. By acting on this interpolation value one
// can move smoothly from one delay to another. When <i> is 0 we can
// freely change the delay time <d1> of line 1, when it is 1 we can freely change
// the delay time <d0> of line 0.
//
// <N> = maximal delay in samples (must be a power of 2, for example 65536)
// <i> = interpolation value between 0 and 1 used to crossfade the outputs of the
// two delay lines (0.0: first delay line, 1.0: second delay line)
// <d0> = delay time of delay line 0 in samples between 0 and <N>-1
// <d1> = delay time of delay line 1 in samples between 0 and <N>-1
// < > = the input signal we want to delay
//-------------------------------------------------------------------------
ddi(N, i, d0, d1) = _ <: delay(N,d0), delay(N,d1) : interpolate(i);
//----------------------------ctrl(it,dt)------------------------------------
// Control logic for a Double Delay with Interpolation according to two
//
// USAGE : ctrl(it,dt)
// where :
// <it> an interpolation time (in samples, for example 256)
// <dt> a delay time (in samples)
//
// ctrl produces 3 outputs : an interpolation value <i> and two delay
// times <d0> and <d1>. These signals are used to control a ddi (Double Delay with Interpolation).
// The principle is to detect changes in the input delay time dt, then to
// change the delay time of the delay line currently unused and then by a
// smooth crossfade to remove the first delay line and activate the second one.
//
// The control logic has an internal state controlled by 4 elements
// <v> : the interpolation variation (0, 1/it, -1/it)
// <i> : the interpolation value (between 0 and 1)
// <d0>: the delay time of line 0
// <d1>: the delay time of line 1
//
// Please note that the last stage (!,_,_,_) cut <v> because it is only
// used internally.
//-------------------------------------------------------------------------
ctrl(it, dt) = \(v,ip,d0,d1).( (nv, nip, nd0, nd1)
with {
// interpolation variation
nv = if (v!=0.0, // if variation we are interpolating
if( (ip>0.0) & (ip<1.0), v , 0), // should we continue or not ?
if ((ip==0.0) & (dt!=d0), 1.0/it, // if true xfade from dl0 to dl1
if ((ip==1.0) & (dt!=d1), -1.0/it, // if true xfade from dl1 to dl0
0))); // nothing to change
// interpolation value
nip = ip+nv : min(1.0) : max(0.0);
// update delay time of line 0 if needed
nd0 = if ((ip >= 1.0) & (d1!=dt), dt, d0);
// update delay time of line 0 if needed
nd1 = if ((ip <= 0.0) & (d0!=dt), dt, d1);
} ) ~ (_,_,_,_) : (!,_,_,_);
};
//-----------------------------------------------
// Tempo, beats and pulses
//-----------------------------------------------
tempo(t) = (60*SR)/t; // tempo(t) -> samples
period(p) = %(int(p))~+(1); // signal en dent de scie de periode p
pulse(t) = period(t)==0; // pulse (10000...) de periode p
pulsen(n,t) = period(t)<n; // pulse (1110000...) de taille n et de periode p
beat(t) = pulse(tempo(t)); // pulse au tempo t
//-----------------------------------------------
// conversions between db and linear values
//-----------------------------------------------
db2linear(x) = pow(10, x/20.0);
linear2db(x) = 20*log10(x);
//===============================================
// Random and Noise generators
//===============================================
//-----------------------------------------------
// noise : Noise generator
//-----------------------------------------------
random = +(12345) ~ *(1103515245); // "linear congruential"
RANDMAX = 2147483647.0; // = 2^31-1 = MAX_SIGNED_INT in 32 bits
noise = random / RANDMAX;
//-----------------------------------------------
// Generates multiple decorrelated random numbers
// in parallel. Expects n>0.
//-----------------------------------------------
multirandom(n) = randomize(n) ~_
with {
randomize (1) = +(12345) : *(1103515245);
randomize (n) = randomize(1) <: randomize(n-1),_;
};
//-----------------------------------------------
// Generates multiple decorrelated noises
// in parallel. Expects n>0.
//-----------------------------------------------
multinoise(n) = multirandom(n) : par(i,n,/(RANDMAX))
with {
RANDMAX = 2147483647.0;
};
//------------------------------------------------
noises(N,i) = multinoise(N) : selector(i,N);
//-----------------------------------------------
// osc(freq) : Sinusoidal Oscillator
//-----------------------------------------------
tablesize = 1 << 16;
samplingfreq = SR;
time = (+(1)~_ ) - 1; // 0,1,2,3,...
sinwaveform = float(time)*(2.0*PI)/float(tablesize) : sin;
coswaveform = float(time)*(2.0*PI)/float(tablesize) : cos;
// decimal(x) = x - floor(x); // redefined in math.lib
phase(freq) = freq/float(samplingfreq) : (+ : decimal) ~ _ : *(float(tablesize));
oscsin(freq) = rdtable(tablesize, sinwaveform, int(phase(freq)) );
osccos(freq) = rdtable(tablesize, coswaveform, int(phase(freq)) );
oscp(freq,p) = oscsin(freq) * cos(p) + osccos(freq) * sin(p);
osc = oscsin;
osci(freq) = s1 + d * (s2 - s1)
with {
i = int(phase(freq));
d = decimal(phase(freq));
s1 = rdtable(tablesize+1,sinwaveform,i);
s2 = rdtable(tablesize+1,sinwaveform,i+1);};
//-----------------------------------------------
// ADSR envelop
//-----------------------------------------------
// a,d,s,r = attack (sec), decay (sec), sustain (percentage of t), release (sec)
// t = trigger signal ( >0 for attack, then release is when t back to 0)
adsr(a,d,s,r,t) = env ~ (_,_) : (!,_) // the 2 'state' signals are fed back
with {
env (p2,y) =
(t>0) & (p2|(y>=1)), // p2 = decay-sustain phase
(y + p1*u - (p2&(y>s))*v*y - p3*w*y) // y = envelop signal
*((p3==0)|(y>=eps)) // cut off tails to prevent denormals
with {
p1 = (p2==0) & (t>0) & (y<1); // p1 = attack phase
p3 = (t<=0) & (y>0); // p3 = release phase
// #samples in attack, decay, release, must be >0
na = SR*a+(a==0.0); nd = SR*d+(d==0.0); nr = SR*r+(r==0.0);
// correct zero sustain level
z = s+(s==0.0)*db2linear(-60);
// attack, decay and (-60dB) release rates
u = 1/na; v = 1-pow(z, 1/nd); w = 1-1/pow(z*db2linear(60), 1/nr);
// values below this threshold are considered zero in the release phase
eps = db2linear(-120);
};
};
//-----------------------------------------------
// Spatialisation
//-----------------------------------------------
panner(c) = _ <: *(1-c), *(c);
bus2 = _,_;
bus3 = _,_,_;
bus4 = _,_,_,_;
bus5 = _,_,_,_,_;
bus6 = _,_,_,_,_,_;
bus7 = _,_,_,_,_,_,_;
bus8 = _,_,_,_,_,_,_,_;
gain2(g) = *(g),*(g);
gain3(g) = *(g),*(g),*(g);
gain4(g) = *(g),*(g),*(g),*(g);
gain5(g) = *(g),*(g),*(g),*(g),*(g);
gain6(g) = *(g),*(g),*(g),*(g),*(g),*(g);
gain7(g) = *(g),*(g),*(g),*(g),*(g),*(g),*(g);
gain8(g) = *(g),*(g),*(g),*(g),*(g),*(g),*(g),*(g);
//------------------------------------------------------
//
// GMEM SPAT
// n-outputs spatializer
// implementation of L. Pottier
//
//------------------------------------------------------
//
// n = number of outputs
// r = rotation (between 0 et 1)
// d = distance of the source (between 0 et 1)
//
//------------------------------------------------------
spat(n,a,d) = _ <: par(i, n, *( scaler(i, n, a, d) : smooth(0.9999) ))
with {
scaler(i,n,a,d) = (d/2.0+0.5)
* sqrt( max(0.0, 1.0 - abs(fmod(a+0.5+float(n-i)/n, 1.0) - 0.5) * n * d) );
smooth(c) = *(1-c) : +~*(c);
};
//--------------- Second Order Generic Transfert Function -------------------------
// TF2(b0,b1,b2,a1,a2)
//
//---------------------------------------------------------------------------------
TF2(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2)
with {
conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x'';
conv2(k0,k1,x) = k0*x + k1*x';
sub(x,y) = y-x;
};
/*************************** Break Point Functions ***************************
bpf is an environment (a group of related definitions) that can be used to
create break-point functions. It contains three functions :
- start(x,y) to start a break-point function
- end(x,y) to end a break-point function
- point(x,y) to add intermediate points to a break-point function
A minimal break-point function must contain at least a start and an end point :
f = bpf.start(x0,y0) : bpf.end(x1,y1);
A more involved break-point function can contains any number of intermediate
points
f = bpf.start(x0,y0) : bpf.point(x1,y1) : bpf.point(x2,y2) : bpf.end(x3,y3);
In any case the x_{i} must be in increasing order (for all i, x_{i} < x_{i+1})
For example the following definition :
f = bpf.start(x0,y0) : ... : bpf.point(xi,yi) : ... : bpf.end(xn,yn);
implements a break-point function f such that :
f(x) = y_{0} when x < x_{0}
f(x) = y_{n} when x > x_{n}
f(x) = y_{i} + (y_{i+1}-y_{i})*(x-x_{i})/(x_{i+1}-x_{i}) when x_{i} <= x and x < x_{i+1}
******************************************************************************/
bpf = environment
{
// Start a break-point function
start(x0,y0) = \(x).(x0,y0,x,y0);
// Add a break-point
point(x1,y1) = \(x0,y0,x,y).(x1, y1, x , if (x < x0, y, if (x < x1, y0 + (x-x0)*(y1-y0)/(x1-x0), y1)));
// End a break-point function
end (x1,y1) = \(x0,y0,x,y).(if (x < x0, y, if (x < x1, y0 + (x-x0)*(y1-y0)/(x1-x0), y1)));
// definition of if
if (c,t,e) = select2(c,e,t);
};
//----------------------------------Stereoize------------------------------
// Transform an arbitrary processor p into a stereo processor with 2 inputs
// and 2 outputs.
//-----------------------------------------------------------------------
stereoize(p) = S(inputs(p), outputs(p))
with {
// degenerated processor with no outputs
S(n,0) = !,! : 0,0; // just in case, probably a rare case
// processors with no inputs
S(0,1) = !,! : p <: _,_; // add two fake inputs and split output
S(0,2) = !,! : p;
S(0,n) = !,! : p,p :> _,_; // we are sure this will work if n is odd
// processors with one input
S(1,1) = p,p; // add two fake inputs and split output
S(1,n) = p,p :> _,_; // we are sure this will work if n is odd
// processors with two inputs
S(2,1) = p <: _,_; // split the output
S(2,2) = p; // nothing to do, p is already stereo
// processors with inputs > 2 and outputs > 2
S(n,m) = _,_ <: p,p :> _,_; // we are sure this works if n or p are odd
};
//----------------------------------Recursivize------------------------------
// Create a recursion from two arbitrary processors p and q
//-----------------------------------------------------------------------
recursivize(p,q) = (_,_,_,_ :> stereoize(p)) ~ stereoize(q);
//----------------------------------Automat------------------------------
// Record and replay to the values the input signal in a loop
//
// USAGE: hslider(...) : automat(360, 15, 0.0)
//-----------------------------------------------------------------------
automat(bps, size, init, input) = rwtable(size+1, init, windex, input, rindex)
with {
clock = beat(bps);
rindex = int(clock) : (+ : %(size)) ~ _; // each clock read the next entry of the table
windex = if (timeToRenew, rindex, size); // we ignore input unless it is time to renew
if(cond,thn,els) = select2(cond,els,thn);
timeToRenew = int(clock) & (inputHasMoved | (input <= init));
inputHasMoved = abs(input-input') : countfrom(int(clock)') : >(0);
countfrom(reset) = (+ : if(reset, 0, _)) ~ _;
};
//----------------------------------bsmooth------------------------------
// bsmooth : (block smooth) linear interpolation during a block of samples
//
// USAGE: hslider(...) : bsmooth
//-----------------------------------------------------------------------
bsmooth(c) = +(i) ~ _
with {
i = (c-c@n)/n;
n = min(4096, max(1, fvariable(int count, <math.h>)));
};
//--------------------------------chebychev-------------------------------
// chebychev(n) : chebychev transformation of order n
// USAGE: _ : chebychev(3) : _
//
//
// Semantics:
// T[0](x) = 1,
// T[1](x) = x,
// T[n](x) = 2x*T[n-1](x) - T[n-2](x)
//
// see : http://en.wikipedia.org/wiki/Chebyshev_polynomial
//-------------------------------------------------------------------------
// Redefined in math.lib
/*
chebychev(0) = !:1;
chebychev(1) = _;
chebychev(n) = _ <: *(2)*chebychev(n-1)-chebychev(n-2);
*/
//--------------------------------chebychevpoly-------------------------------
// chebychevpoly((c0,c1,...,cn)) : linear combination of the first Chebyshev polynomials
// USAGE: _ : chebychevpoly((0.1,0.8,0.1)) : _
//
//
// Semantics:
// chebychevpoly((c0,c1,...,cn)) = Sum of chebychev(i)*ci
// see : http://www.csounds.com/manual/html/chebyshevpoly.html
//-------------------------------------------------------------------------
// Redefined in math.lib
/*
chebychevpoly(lcoef) = _ <: L(0,lcoef) :> _
with {
L(n,(c,cs)) = chebychev(n)*c, L(n+1,cs);
L(n,c) = chebychev(n)*c;
};
*/
|