This file is indexed.

/usr/share/faust/music.lib is in faust-common 0.9.95~repack1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//////////////////////////////////////////////////////////////////////////////////////////
// WARNING: Deprecated Library!!
// Read the README file in /libraries for more information
//////////////////////////////////////////////////////////////////////////////////////////

/************************************************************************
 ************************************************************************
  	FAUST library file
	Copyright (C) 2003-2012 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as 
	published by the Free Software Foundation; either version 2.1 of the 
	License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
 	License along with the GNU C Library; if not, write to the Free
  	Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  	02111-1307 USA. 
  	  	
  	EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
  	larger FAUST program which directly or indirectly imports this library
  	file and still distribute the compiled code generated by the FAUST
  	compiler, or a modified version of this compiled code, under your own
  	copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
  	grants you the right to freely choose the license for the resulting
  	compiled code. In particular the resulting compiled code has no obligation
  	to be LGPL or GPL. For example you are free to choose a commercial or
  	closed source license or any other license if you decide so.

 ************************************************************************
 ************************************************************************/

declare name "Music Library";
declare author "GRAME";
declare copyright "GRAME";
declare version "1.0";
declare license "LGPL with exception";
declare deprecated "This library is deprecated and is not maintained anymore. It might
be removed in future released."; 

import("math.lib");

//-----------------------------------------------
// 					DELAY LINE
//-----------------------------------------------
// frac(n)                 = n-int(n); // Redefined in math.lib
index(n)                = &(n-1) ~ +(1);                // n = 2**i
//delay(n,d,x)  = rwtable(n, 0.0, index(n), x, (index(n)-int(d)) & (n-1));
delay(n,d,x)    = x@(int(d)&(n-1));
fdelay(n,d,x)   = delay(n,int(d),x)*(1 - frac(d)) + delay(n,int(d)+1,x)*frac(d);


delay1s(d)		= delay(65536,d);
delay2s(d)		= delay(131072,d);
delay5s(d)		= delay(262144,d);
delay10s(d)		= delay(524288,d);
delay21s(d)		= delay(1048576,d);
delay43s(d)		= delay(2097152,d);

fdelay1s(d)		= fdelay(65536,d);
fdelay2s(d)		= fdelay(131072,d);
fdelay5s(d)		= fdelay(262144,d);
fdelay10s(d)	= fdelay(524288,d);
fdelay21s(d)	= fdelay(1048576,d);
fdelay43s(d)	= fdelay(2097152,d);

millisec	= SR/1000.0;

time1s 	= hslider("time", 0, 0,  1000, 0.1)*millisec;
time2s 	= hslider("time", 0, 0,  2000, 0.1)*millisec;
time5s 	= hslider("time", 0, 0,  5000, 0.1)*millisec;
time10s = hslider("time", 0, 0, 10000, 0.1)*millisec;
time21s = hslider("time", 0, 0, 21000, 0.1)*millisec;
time43s = hslider("time", 0, 0, 43000, 0.1)*millisec;


echo1s  = vgroup("echo  1000", +~(delay(65536,   int(hslider("millisecond", 0, 0,	1000, 0.10)*millisec)-1) * (hslider("feedback", 0, 0,  100, 0.1)/100.0)));
echo2s  = vgroup("echo  2000", +~(delay(131072,  int(hslider("millisecond", 0, 0,	2000, 0.25)*millisec)-1) * (hslider("feedback", 0, 0,  100, 0.1)/100.0)));
echo5s  = vgroup("echo  5000", +~(delay(262144,  int(hslider("millisecond", 0, 0,	5000, 0.50)*millisec)-1) * (hslider("feedback", 0, 0,  100, 0.1)/100.0)));
echo10s = vgroup("echo 10000", +~(delay(524288,  int(hslider("millisecond", 0, 0,  10000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0,  100, 0.1)/100.0)));
echo21s = vgroup("echo 21000", +~(delay(1048576, int(hslider("millisecond", 0, 0,  21000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0,  100, 0.1)/100.0)));
echo43s = vgroup("echo 43000", +~(delay(2097152, int(hslider("millisecond", 0, 0,  43000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0,  100, 0.1)/100.0)));


//--------------------------sdelay(N,it,dt)----------------------------
// s(mooth)delay : a mono delay that doesn't click and doesn't 
// transpose when the delay time is changed. It takes 4 input signals 
// and produces a delayed output signal
//
// USAGE : 	... : sdelay(N,it,dt) : ...
//
// Where :
//	<N>  = maximal delay in samples (must be a constant power of 2, for example 65536)
//	<it> = interpolation time (in samples) for example 1024
//	<dt> = delay time (in samples)
//  <  > = input signal we want to delay
//--------------------------------------------------------------------------

sdelay(N, it, dt) = ctrl(it,dt),_ : ddi(N)

	with {

		//---------------------------ddi(N,i,d0,d1)-------------------------------
		//	DDI (Double Delay with Interpolation) : the input signal is sent to two
		//	delay lines. The outputs of these delay lines are crossfaded with 
		//	an interpolation stage. By acting on this interpolation value one 
		//	can move smoothly from one delay to another. When <i> is 0 we can 
		//	freely change the delay time <d1> of line 1, when it is 1 we can freely change
		//	the delay time <d0> of line 0.
		//
		//	<N>  = maximal delay in samples (must be a power of 2, for example 65536)
		//	<i>  = interpolation value between 0 and 1 used to crossfade the outputs of the 
		//		   two delay lines (0.0: first delay line, 1.0: second delay line)
		//	<d0> = delay time of delay line 0 in samples between 0 and <N>-1
		//	<d1> = delay time of delay line 1 in samples between 0 and <N>-1
		//  <  > = the input signal we want to delay
		//-------------------------------------------------------------------------
		ddi(N, i, d0, d1) = _ <: delay(N,d0), delay(N,d1) : interpolate(i);


		//----------------------------ctrl(it,dt)------------------------------------
		// 	Control logic for a Double Delay with Interpolation according to two 
		//
		//	USAGE : ctrl(it,dt)
		//  where : 
		//	<it> an interpolation time (in samples, for example 256)
		//	<dt> a delay time (in samples)
		//
		//	ctrl produces 3 outputs : an interpolation value <i> and two delay 
		//	times <d0> and <d1>. These signals are used to control a ddi (Double Delay with Interpolation). 
		//	The principle is to detect changes in the input delay time dt, then to 
		//	change the delay time of the delay line currently unused and then by a
		//	smooth crossfade to remove the first delay line and activate the second one.
		//
		//	The control logic has an internal state controlled by 4 elements
		//	<v> : the interpolation variation (0, 1/it, -1/it)
		//	<i> : the interpolation value (between 0 and 1)
		//	<d0>: the delay time of line 0
		//	<d1>: the delay time of line 1
		//
		//	Please note that the last stage (!,_,_,_) cut <v> because it is only 
		//	used internally.
		//-------------------------------------------------------------------------
		ctrl(it, dt) = \(v,ip,d0,d1).( (nv, nip, nd0, nd1) 
			with {

				// interpolation variation
				nv = if (v!=0.0, 							// if variation we are interpolating
						if( (ip>0.0) & (ip<1.0), v , 0),	// 		should we continue or not ?
					 if ((ip==0.0) & (dt!=d0),  1.0/it,		// if true xfade from dl0 to dl1
					 if ((ip==1.0) & (dt!=d1), -1.0/it,		// if true xfade from dl1 to dl0	
					 0)));									// nothing to change
				// interpolation value
				nip = ip+nv : min(1.0) : max(0.0);

				// update delay time of line 0 if needed
				nd0 = if ((ip >= 1.0) & (d1!=dt), dt, d0);

				// update delay time of line 0 if needed
				nd1 = if ((ip <= 0.0) & (d0!=dt), dt, d1);

			} ) ~ (_,_,_,_) : (!,_,_,_);
	};




//-----------------------------------------------
// 			Tempo, beats and pulses
//-----------------------------------------------

tempo(t) 	= (60*SR)/t;			// tempo(t) -> samples

period(p) 	= %(int(p))~+(1);		// signal en dent de scie de periode p
pulse(t) 	= period(t)==0;			// pulse (10000...) de periode p
pulsen(n,t) = period(t)<n;			// pulse (1110000...) de taille n et de periode p
beat(t) 	= pulse(tempo(t));		// pulse au tempo t



//-----------------------------------------------
// 	conversions between db and linear values
//-----------------------------------------------

db2linear(x)	= pow(10, x/20.0);
linear2db(x)	= 20*log10(x);





//===============================================
// 			Random and Noise generators
//===============================================


//-----------------------------------------------
// 			noise : Noise generator
//-----------------------------------------------

random 		= +(12345) ~ *(1103515245); // "linear congruential"
RANDMAX		= 2147483647.0; // = 2^31-1 = MAX_SIGNED_INT in 32 bits

noise 		= random / RANDMAX;


//-----------------------------------------------
// Generates multiple decorrelated random numbers 
// in parallel. Expects n>0.
//-----------------------------------------------

multirandom(n) = randomize(n) ~_
with {
	randomize (1) 	= +(12345) : *(1103515245);
	randomize (n) 	= randomize(1) <: randomize(n-1),_;
};


//-----------------------------------------------
// Generates multiple decorrelated noises
// in parallel. Expects n>0.
//-----------------------------------------------

multinoise(n) = multirandom(n) : par(i,n,/(RANDMAX)) 
with { 
	RANDMAX = 2147483647.0; 
};


//------------------------------------------------

noises(N,i) = multinoise(N) : selector(i,N);
 

//-----------------------------------------------
// 			osc(freq) : Sinusoidal Oscillator
//-----------------------------------------------

tablesize 	= 1 << 16;
samplingfreq	= SR;

time 		= (+(1)~_ ) - 1; 			// 0,1,2,3,...
sinwaveform 	= float(time)*(2.0*PI)/float(tablesize) : sin;
coswaveform 	= float(time)*(2.0*PI)/float(tablesize) : cos;

// decimal(x)	= x - floor(x); // redefined in math.lib
phase(freq) 	= freq/float(samplingfreq) : (+ : decimal) ~ _ : *(float(tablesize));
oscsin(freq)	= rdtable(tablesize, sinwaveform, int(phase(freq)) );
osccos(freq)	= rdtable(tablesize, coswaveform, int(phase(freq)) );
oscp(freq,p)	= oscsin(freq) * cos(p) + osccos(freq) * sin(p);
osc		= oscsin;
osci(freq)	= s1 + d * (s2 - s1)
		with {
			i = int(phase(freq));
			d = decimal(phase(freq));
			s1 = rdtable(tablesize+1,sinwaveform,i);
			s2 = rdtable(tablesize+1,sinwaveform,i+1);};


//-----------------------------------------------
// 			ADSR envelop
//-----------------------------------------------

// a,d,s,r = attack (sec), decay (sec), sustain (percentage of t), release (sec)
// t       = trigger signal ( >0 for attack, then release is when t back to 0)

adsr(a,d,s,r,t) = env ~ (_,_) : (!,_) // the 2 'state' signals are fed back
with {
    env (p2,y) =
        (t>0) & (p2|(y>=1)),          // p2 = decay-sustain phase
        (y + p1*u - (p2&(y>s))*v*y - p3*w*y)	// y  = envelop signal
	*((p3==0)|(y>=eps)) // cut off tails to prevent denormals
    with {
	p1 = (p2==0) & (t>0) & (y<1);         // p1 = attack phase
	p3 = (t<=0) & (y>0);                  // p3 = release phase
	// #samples in attack, decay, release, must be >0
	na = SR*a+(a==0.0); nd = SR*d+(d==0.0); nr = SR*r+(r==0.0);
	// correct zero sustain level
	z = s+(s==0.0)*db2linear(-60);
	// attack, decay and (-60dB) release rates
	u = 1/na; v = 1-pow(z, 1/nd); w = 1-1/pow(z*db2linear(60), 1/nr);
	// values below this threshold are considered zero in the release phase
	eps = db2linear(-120);
    };
};


//-----------------------------------------------
// 			Spatialisation
//-----------------------------------------------

panner(c) = _ <: *(1-c), *(c);

bus2 = _,_;
bus3 = _,_,_;
bus4 = _,_,_,_;
bus5 = _,_,_,_,_;
bus6 = _,_,_,_,_,_;
bus7 = _,_,_,_,_,_,_;
bus8 = _,_,_,_,_,_,_,_;

gain2(g) = *(g),*(g);
gain3(g) = *(g),*(g),*(g);
gain4(g) = *(g),*(g),*(g),*(g);
gain5(g) = *(g),*(g),*(g),*(g),*(g);
gain6(g) = *(g),*(g),*(g),*(g),*(g),*(g);
gain7(g) = *(g),*(g),*(g),*(g),*(g),*(g),*(g);
gain8(g) = *(g),*(g),*(g),*(g),*(g),*(g),*(g),*(g);


//------------------------------------------------------
//
// 					    GMEM SPAT
//	n-outputs spatializer
//	implementation of L. Pottier 
//
//------------------------------------------------------
// 
//  n = number of outputs
//	r = rotation (between 0 et 1)
// 	d = distance of the source (between 0 et 1)
//
//------------------------------------------------------
spat(n,a,d)	= _ <: par(i, n, *( scaler(i, n, a, d) : smooth(0.9999) ))
	with {
		scaler(i,n,a,d) = (d/2.0+0.5) 
						* sqrt( max(0.0, 1.0 - abs(fmod(a+0.5+float(n-i)/n, 1.0) - 0.5) * n * d) );
		smooth(c) = *(1-c) : +~*(c);
	};



//--------------- Second Order Generic Transfert Function -------------------------
// TF2(b0,b1,b2,a1,a2)
//
//---------------------------------------------------------------------------------

TF2(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2)
	with {
		conv3(k0,k1,k2,x) 	= k0*x + k1*x' + k2*x'';
		conv2(k0,k1,x) 		= k0*x + k1*x';
		sub(x,y)			= y-x;
	};


/*************************** Break Point Functions ***************************

bpf is an environment (a group of related definitions) that can be used to 
create break-point functions. It contains three functions : 
  - start(x,y) to start a break-point function
  - end(x,y) to end a break-point function
  - point(x,y) to add intermediate points to a break-point function

A minimal break-point function must contain at least a start and an end point :

  f = bpf.start(x0,y0) : bpf.end(x1,y1);

A more involved break-point function can contains any number of intermediate 
points

  f = bpf.start(x0,y0) : bpf.point(x1,y1) : bpf.point(x2,y2) : bpf.end(x3,y3);

In any case the x_{i} must be in increasing order (for all i, x_{i} < x_{i+1})

For example the following definition :

  f = bpf.start(x0,y0) : ... : bpf.point(xi,yi) : ... : bpf.end(xn,yn);

implements a break-point function f such that :

  f(x) = y_{0} when x < x_{0}
  f(x) = y_{n} when x > x_{n}
  f(x) = y_{i} + (y_{i+1}-y_{i})*(x-x_{i})/(x_{i+1}-x_{i}) when x_{i} <= x and x < x_{i+1} 

******************************************************************************/

bpf = environment 
{
  // Start a break-point function
  start(x0,y0) = \(x).(x0,y0,x,y0);

  // Add a break-point
  point(x1,y1) = \(x0,y0,x,y).(x1, y1, x , if (x < x0, y, if (x < x1, y0 + (x-x0)*(y1-y0)/(x1-x0), y1)));

  // End a break-point function
  end  (x1,y1) = \(x0,y0,x,y).(if (x < x0, y, if (x < x1, y0 + (x-x0)*(y1-y0)/(x1-x0), y1)));

  // definition of if
  if (c,t,e) = select2(c,e,t);
};


//----------------------------------Stereoize------------------------------
// Transform an arbitrary processor p into a stereo processor with 2 inputs
// and 2 outputs.
//-----------------------------------------------------------------------
stereoize(p) = S(inputs(p), outputs(p))
	with {
	  // degenerated processor with no outputs
		S(n,0) = !,! : 0,0; 		// just in case, probably a rare case

	  // processors with no inputs
		S(0,1) = !,! : p <: _,_; 	// add two fake inputs and split output
		S(0,2) = !,! : p;
		S(0,n) = !,! : p,p :> _,_;	// we are sure this will work if n is odd
 
	  // processors with one input
		S(1,1) = p,p; 				// add two fake inputs and split output
		S(1,n) = p,p :> _,_;		// we are sure this will work if n is odd
 
	  // processors with two inputs
		S(2,1) = p <: _,_; 			// split the output
		S(2,2) = p; 				// nothing to do, p is already stereo
 
	  // processors with inputs > 2 and outputs > 2
		S(n,m) = _,_ <: p,p :> _,_;	// we are sure this works if n or p are odd
	};


//----------------------------------Recursivize------------------------------
// Create a recursion from two arbitrary processors p and q 
//-----------------------------------------------------------------------
recursivize(p,q) = (_,_,_,_ :> stereoize(p)) ~ stereoize(q);


//----------------------------------Automat------------------------------
// Record and replay to the values the input signal in a loop
//
// USAGE: hslider(...) : automat(360, 15, 0.0)
//-----------------------------------------------------------------------

automat(bps, size, init, input) = rwtable(size+1, init, windex, input, rindex)
	with {
		clock 	= beat(bps);
		rindex 	= int(clock) : (+ : %(size)) ~ _;		// each clock read the next entry of the table
		windex 	= if (timeToRenew, rindex, size);		// we ignore input unless it is time to renew
		if(cond,thn,els) = select2(cond,els,thn);
		timeToRenew 	= int(clock) & (inputHasMoved | (input <= init));	
		inputHasMoved 	= abs(input-input') : countfrom(int(clock)') : >(0);
		countfrom(reset) = (+ : if(reset, 0, _)) ~ _;
	};


//----------------------------------bsmooth------------------------------
// bsmooth : (block smooth) linear interpolation during a block of samples
//
// USAGE: hslider(...) : bsmooth
//-----------------------------------------------------------------------

bsmooth(c) = +(i) ~ _
	with { 
		i = (c-c@n)/n;
		n = min(4096, max(1, fvariable(int count, <math.h>)));
	};


//--------------------------------chebychev-------------------------------
// chebychev(n) : chebychev transformation of order n
// USAGE: _ : chebychev(3) : _
//
//
// Semantics:
//	T[0](x) = 1,
//	T[1](x) = x,
//	T[n](x) = 2x*T[n-1](x) - T[n-2](x)
//
//	see : http://en.wikipedia.org/wiki/Chebyshev_polynomial
//-------------------------------------------------------------------------
// Redefined in math.lib
/*
chebychev(0) = !:1;
chebychev(1) = _;
chebychev(n) = _ <: *(2)*chebychev(n-1)-chebychev(n-2);
*/


//--------------------------------chebychevpoly-------------------------------
//	chebychevpoly((c0,c1,...,cn)) : linear combination of the first Chebyshev polynomials
// 	USAGE: _ : chebychevpoly((0.1,0.8,0.1)) : _
//
//
// Semantics:
// 	chebychevpoly((c0,c1,...,cn)) = Sum of chebychev(i)*ci
//  see : http://www.csounds.com/manual/html/chebyshevpoly.html
//-------------------------------------------------------------------------
// Redefined in math.lib
/*
chebychevpoly(lcoef) = _ <: L(0,lcoef) :> _
	with {
		L(n,(c,cs)) = chebychev(n)*c, L(n+1,cs);
		L(n,c)      = chebychev(n)*c;
	};
*/