/usr/share/faust/reverb.lib is in faust-common 0.9.95~repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 | //#################################### reverb.lib ########################################
// A library of reverb effects.
//
// It should be used using the `re` environment:
//
// ```
// re = library("reverb.lib");
// process = re.functionCall;
// ```
//
// Another option is to import `stdfaust.lib` which already contains the `re`
// environment:
//
// ```
// import("stdfaust.lib");
// process = re.functionCall;
// ```
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("math.lib");
ba = library("basic.lib");
de = library("delay.lib");
ro = library("route.lib");
si = library("signal.lib");
fi = library("filter.lib");
declare name "Faust Reverb Library";
declare version "0.0";
//=============================Functions Reference========================================
//========================================================================================
//------------------------------`jcrev`------------------------------
// This artificial reverberator take a mono signal and output stereo
// (`satrev`) and quad (`jcrev`). They were implemented by John Chowning
// in the MUS10 computer-music language (descended from Music V by Max
// Mathews). They are Schroeder Reverberators, well tuned for their size.
// Nowadays, the more expensive freeverb is more commonly used (see the
// Faust examples directory).
//
// `jcrev` reverb below was made from a listing of "RV", dated April 14, 1972,
// which was recovered from an old SAIL DART backup tape.
// John Chowning thinks this might be the one that became the
// well known and often copied JCREV.
//
// `jcrev` is a standard Faust function
//
// #### Usage
//
// ```
// _ : jcrev : _,_,_,_
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
jcrev = *(0.06) : allpass_chain <: comb_bank : mix_mtx with {
rev1N = fi.rev1;
rev12(len,g) = rev1N(2048,len,g);
rev14(len,g) = rev1N(4096,len,g);
allpass_chain =
fi.rev2(512,347,0.7) :
fi.rev2(128,113,0.7) :
fi.rev2( 64, 37,0.7);
comb_bank =
rev12(1601,.802),
rev12(1867,.773),
rev14(2053,.753),
rev14(2251,.733);
mix_mtx = _,_,_,_ <: psum, -psum, asum, -asum : _,_,_,_ with {
psum = _,_,_,_ :> _;
asum = *(-1),_,*(-1),_ :> _;
};
};
//------------------------------`satrev`------------------------------
// This artificial reverberator take a mono signal and output stereo
// (`satrev`) and quad (`jcrev`). They were implemented by John Chowning
// in the MUS10 computer-music language (descended from Music V by Max
// Mathews). They are Schroeder Reverberators, well tuned for their size.
// Nowadays, the more expensive freeverb is more commonly used (see the
// Faust examples directory).
//
// `satrev` was made from a listing of "SATREV", dated May 15, 1971,
// which was recovered from an old SAIL DART backup tape.
// John Chowning thinks this might be the one used on his
// often-heard brass canon sound examples, one of which can be found at
// <https://ccrma.stanford.edu/~jos/wav/FM_BrassCanon2.wav>
//
// #### Usage
//
// ```
// _ : satrev : _,_
// ```
//------------------------------------------------------------
// TODO: author JOS, revised by RM
satrev = *(0.2) <: comb_bank :> allpass_chain <: _,*(-1) with {
rev1N = fi.rev1;
rev11(len,g) = rev1N(1024,len,g);
rev12(len,g) = rev1N(2048,len,g);
comb_bank =
rev11( 778,.827),
rev11( 901,.805),
rev11(1011,.783),
rev12(1123,.764);
rev2N = fi.rev2;
allpass_chain =
rev2N(128,125,0.7) :
rev2N( 64, 42,0.7) :
rev2N( 16, 12,0.7);
};
//----------------------------`mono_freeverb`-------------------------
// A simple Schroeder reverberator primarily developed by "Jezar at Dreampoint" that
// is extensively used in the free-software world. It uses four Schroeder allpasses in
// series and eight parallel Schroeder-Moorer filtered-feedback comb-filters for each
// audio channel, and is said to be especially well tuned.
//
// `mono_freeverb` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : mono_freeverb(fb1, fb2, damp, spread) : _;
// ```
//
// Where:
//
// * `fb1`: coefficient of the lowpass comb filters (0-1)
// * `fb2`: coefficient of the allpass comb filters (0-1)
// * `damp`: damping of the lowpass comb filter (0-1)
// * `spread`: spatial spread in number of samples (for stereo)
//------------------------------------------------------------
// TODO: author RM
mono_freeverb(fb1, fb2, damp, spread) = _ <: par(i,8,lbcf(combtuningL(i)+spread,fb1,damp))
:> seq(i,4,fi.allpass_comb(1024, allpasstuningL(i)+spread, -fb2))
with{
origSR = 44100;
// Filters parameters
combtuningL(0) = 1116*ma.SR/origSR : int;
combtuningL(1) = 1188*ma.SR/origSR : int;
combtuningL(2) = 1277*ma.SR/origSR : int;
combtuningL(3) = 1356*ma.SR/origSR : int;
combtuningL(4) = 1422*ma.SR/origSR : int;
combtuningL(5) = 1491*ma.SR/origSR : int;
combtuningL(6) = 1557*ma.SR/origSR : int;
combtuningL(7) = 1617*ma.SR/origSR : int;
allpasstuningL(0) = 556*ma.SR/origSR : int;
allpasstuningL(1) = 441*ma.SR/origSR : int;
allpasstuningL(2) = 341*ma.SR/origSR : int;
allpasstuningL(3) = 225*ma.SR/origSR : int;
// Lowpass Feedback Combfiler:
// https://ccrma.stanford.edu/~jos/pasp/Lowpass_Feedback_Comb_Filter.html
lbcf(dt, fb, damp) = (+:@(dt)) ~ (*(1-damp) : (+ ~ *(damp)) : *(fb));
};
//----------------------------`stereo_freeverb`-------------------------
// A simple Schroeder reverberator primarily developed by "Jezar at Dreampoint" that
// is extensively used in the free-software world. It uses four Schroeder allpasses in
// series and eight parallel Schroeder-Moorer filtered-feedback comb-filters for each
// audio channel, and is said to be especially well tuned.
//
// #### Usage
//
// ```
// _,_ : stereo_freeverb(fb1, fb2, damp, spread) : _,_;
// ```
//
// Where:
//
// * `fb1`: coefficient of the lowpass comb filters (0-1)
// * `fb2`: coefficient of the allpass comb filters (0-1)
// * `damp`: damping of the lowpass comb filter (0-1)
// * `spread`: spatial spread in number of samples (for stereo)
//------------------------------------------------------------
// TODO: author RM
stereo_freeverb(fb1, fb2, damp, spread) = + <: mono_freeverb(fb1, fb2, damp,0), mono_freeverb(fb1, fb2, damp, spread);
//--------------------------------`fdnrev0`---------------------------------
// Pure Feedback Delay Network Reverberator (generalized for easy scaling).
// `fdnrev0` is a standard Faust function.
//
// #### Usage
//
// ```
// <1,2,4,...,N signals> <:
// fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl) :>
// <1,2,4,...,N signals>
// ```
//
// Where:
//
// * `N`: 2, 4, 8, ... (power of 2)
// * `MAXDELAY`: power of 2 at least as large as longest delay-line length
// * `delays`: N delay lines, N a power of 2, lengths perferably coprime
// * `BBSO`: odd positive integer = order of bandsplit desired at freqs
// * `freqs`: NB-1 crossover frequencies separating desired frequency bands
// * `durs`: NB decay times (t60) desired for the various bands
// * `loopgainmax`: scalar gain between 0 and 1 used to "squelch" the reverb
// * `nonl`: nonlinearity (0 to 0.999..., 0 being linear)
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
fdnrev0(MAXDELAY, delays, BBSO, freqs, durs, loopgainmax, nonl)
= (si.bus(2*N) :> si.bus(N) : delaylines(N)) ~
(delayfilters(N,freqs,durs) : feedbackmatrix(N))
with {
N = ba.count(delays);
NB = ba.count(durs);
//assert(count(freqs)+1==NB);
delayval(i) = ba.take(i+1,delays);
dlmax(i) = MAXDELAY; // must hardwire this from argument for now
//dlmax(i) = 2^max(1,nextpow2(delayval(i))) // try when slider min/max is known
// with { nextpow2(x) = ceil(log(x)/log(2.0)); };
// -1 is for feedback delay:
delaylines(N) = par(i,N,(de.delay(dlmax(i),(delayval(i)-1))));
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = bhadamard(N);
vbutterfly(n) = si.bus(n) <: (si.bus(n):>bus(n/2)) , ((si.bus(n/2),(si.bus(n/2):par(i,n/2,*(-1)))) :> si.bus(n/2));
bhadamard(2) = si.bus(2) <: +,-;
bhadamard(n) = si.bus(n) <: (si.bus(n):>si.bus(n/2)) , ((si.bus(n/2),(si.bus(n/2):par(i,n/2,*(-1)))) :> si.bus(n/2))
: (bhadamard(n/2) , bhadamard(n/2));
// Experimental nonlinearities:
// nonlinallpass = apnl(nonl,-nonl);
// s = nonl*PI;
// nonlinallpass(x) = allpassnn(3,(s*x,s*x*x,s*x*x*x)); // filter.lib
nonlinallpass = _; // disabled by default (rather expensive)
filter(i,freqs,durs) = fi.filterbank(BBSO,freqs) : par(j,NB,*(g(j,i)))
:> *(loopgainmax) / sqrt(N) : nonlinallpass
with {
dur(j) = ba.take(j+1,durs);
n60(j) = dur(j)*ma.SR; // decay time in samples
g(j,i) = exp(-3.0*log(10.0)*delayval(i)/n60(j));
// ~ 1.0 - 6.91*delayval(i)/(SR*dur(j)); // valid for large dur(j)
};
};
//-------------------------------`zita_rev_fdn`-------------------------------
// Internal 8x8 late-reverberation FDN used in the FOSS Linux reverb zita-rev1
// by Fons Adriaensen <fons@linuxaudio.org>. This is an FDN reverb with
// allpass comb filters in each feedback delay in addition to the
// damping filters.
//
// #### Usage
//
// ```
// bus(8) : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) : bus(8)
// ```
//
// Where:
//
// * `f1`: crossover frequency (Hz) separating dc and midrange frequencies
// * `f2`: frequency (Hz) above f1 where T60 = t60m/2 (see below)
// * `t60dc`: desired decay time (t60) at frequency 0 (sec)
// * `t60m`: desired decay time (t60) at midrange frequencies (sec)
// * `fsmax`: maximum sampling rate to be used (Hz)
//
// #### Reference
//
// * <http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Zita_Rev1.html>
//------------------------------------------------------------
// TODO: author JOS, revised by RM
zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) =
((si.bus(2*N) :> allpass_combs(N) : feedbackmatrix(N)) ~
(delayfilters(N,freqs,durs) : fbdelaylines(N)))
with {
N = 8;
// Delay-line lengths in seconds:
apdelays = (0.020346, 0.024421, 0.031604, 0.027333, 0.022904,
0.029291, 0.013458, 0.019123); // feedforward delays in seconds
tdelays = ( 0.153129, 0.210389, 0.127837, 0.256891, 0.174713,
0.192303, 0.125000, 0.219991); // total delays in seconds
tdelay(i) = floor(0.5 + ma.SR*ba.take(i+1,tdelays)); // samples
apdelay(i) = floor(0.5 + ma.SR*ba.take(i+1,apdelays));
fbdelay(i) = tdelay(i) - apdelay(i);
// NOTE: Since SR is not bounded at compile time, we can't use it to
// allocate delay lines; hence, the fsmax parameter:
tdelaymaxfs(i) = floor(0.5 + fsmax*ba.take(i+1,tdelays));
apdelaymaxfs(i) = floor(0.5 + fsmax*ba.take(i+1,apdelays));
fbdelaymaxfs(i) = tdelaymaxfs(i) - apdelaymaxfs(i);
nextpow2(x) = ceil(log(x)/log(2.0));
maxapdelay(i) = int(2.0^max(1.0,nextpow2(apdelaymaxfs(i))));
maxfbdelay(i) = int(2.0^max(1.0,nextpow2(fbdelaymaxfs(i))));
apcoeff(i) = select2(i&1,0.6,-0.6); // allpass comb-filter coefficient
allpass_combs(N) =
par(i,N,(fi.allpass_comb(maxapdelay(i),apdelay(i),apcoeff(i)))); // filter.lib
fbdelaylines(N) = par(i,N,(de.delay(maxfbdelay(i),(fbdelay(i)))));
freqs = (f1,f2); durs = (t60dc,t60m);
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = ro.hadamard(N);
staynormal = 10.0^(-20); // let signals decay well below LSB, but not to zero
special_lowpass(g,f) = si.smooth(p) with {
// unity-dc-gain lowpass needs gain g at frequency f => quadratic formula:
p = mbo2 - sqrt(max(0,mbo2*mbo2 - 1.0)); // other solution is unstable
mbo2 = (1.0 - gs*c)/(1.0 - gs); // NOTE: must ensure |g|<1 (t60m finite)
gs = g*g;
c = cos(2.0*ma.PI*f/float(ma.SR));
};
filter(i,freqs,durs) = lowshelf_lowpass(i)/sqrt(float(N))+staynormal
with {
lowshelf_lowpass(i) = gM*low_shelf1_l(g0/gM,f(1)):special_lowpass(gM,f(2));
low_shelf1_l(G0,fx,x) = x + (G0-1)*fi.lowpass(1,fx,x); // filter.lib
g0 = g(0,i);
gM = g(1,i);
f(k) = ba.take(k,freqs);
dur(j) = ba.take(j+1,durs);
n60(j) = dur(j)*ma.SR; // decay time in samples
g(j,i) = exp(-3.0*log(10.0)*tdelay(i)/n60(j));
};
};
// Stereo input delay used by zita_rev1 in both stereo and ambisonics mode:
zita_in_delay(rdel) = zita_delay_mono(rdel), zita_delay_mono(rdel) with {
zita_delay_mono(rdel) = de.delay(8192,ma.SR*rdel*0.001) * 0.3;
};
// Stereo input mapping used by zita_rev1 in both stereo and ambisonics mode:
zita_distrib2(N) = _,_ <: fanflip(N) with {
fanflip(4) = _,_,*(-1),*(-1);
fanflip(N) = fanflip(N/2),fanflip(N/2);
};
//----------------------------`zita_rev1_stereo`---------------------------
// Extend `zita_rev_fdn` to include `zita_rev1` input/output mapping in stereo mode.
// `zita_rev1_stereo` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_ : zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) : _,_
// ```
//
// Where:
//
// `rdel` = delay (in ms) before reverberation begins (e.g., 0 to ~100 ms)
// (remaining args and refs as for `zita_rev_fdn` above)
//------------------------------------------------------------
// TODO: author JOS, revised by RM
zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) =
zita_in_delay(rdel)
: zita_distrib2(N)
: zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
: output2(N)
with {
N = 8;
output2(N) = outmix(N) : *(t1),*(t1);
t1 = 0.37; // zita-rev1 linearly ramps from 0 to t1 over one buffer
outmix(4) = !,ro.butterfly(2),!; // probably the result of some experimenting!
outmix(N) = outmix(N/2),par(i,N/2,!);
};
//-----------------------------`zita_rev1_ambi`---------------------------
// Extend zita_rev_fdn to include zita_rev1 input/output mapping in
// "ambisonics mode", as provided in the Linux C++ version.
//
// #### Usage
//
// ```
// _,_ : zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) : _,_,_,_
// ```
//
// Where:
//
// `rgxyz` = relative gain of lanes 1,4,2 to lane 0 in output (e.g., -9 to 9)
// (remaining args and references as for zita_rev1_stereo above)
//------------------------------------------------------------
// TODO: author JOS, revised by RM
zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) =
zita_in_delay(rdel)
: zita_distrib2(N)
: zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
: output4(N) // ambisonics mode
with {
N=8;
output4(N) = select4 : *(t0),*(t1),*(t1),*(t1);
select4 = _,_,_,!,_,!,!,! : _,_,cross with { cross(x,y) = y,x; };
t0 = 1.0/sqrt(2.0);
t1 = t0 * 10.0^(0.05 * rgxyz);
};
|