This file is indexed.

/usr/share/gap/doc/ref/chap15.html is in gap-doc 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 15: Number Theory</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap15"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap14.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap16.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap15_mj.html">[MathJax on]</a></p>
<p><a id="X7FB995737B7ED8A2" name="X7FB995737B7ED8A2"></a></p>
<div class="ChapSects"><a href="chap15.html#X7FB995737B7ED8A2">15 <span class="Heading">Number Theory</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15.html#X7845C1F97A1742C7">15.1 <span class="Heading">InfoNumtheor (Info Class)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X796F0DFE7D5D211C">15.1-1 InfoNumtheor</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15.html#X823386567DAC22E6">15.2 <span class="Heading">Prime Residues</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X7FA3F5347B7004BA">15.2-1 PrimeResidues</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X85A0C67982D9057A">15.2-2 Phi</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X85296F3087611B03">15.2-3 Lambda</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X7D191CF67E5018BE">15.2-4 GeneratorsPrimeResidues</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15.html#X83103A5385821BAE">15.3 <span class="Heading">Primitive Roots and Discrete Logarithms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X82373F3D8277EE9E">15.3-1 OrderMod</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X81AD9C7779A7BA89">15.3-2 LogMod</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X82440BB9812FF148">15.3-3 PrimitiveRootMod</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X790466C07BD90E20">15.3-4 IsPrimitiveRootMod</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15.html#X7F9069D77AC48054">15.4 <span class="Heading">Roots Modulo Integers</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X83449DBC80495971">15.4-1 Jacobi</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X81464ABF7F10E544">15.4-2 Legendre</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X83E3ED577B7A04ED">15.4-3 RootMod</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X84D3F03B862841F8">15.4-4 RootsMod</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X81F856E682A8ECBA">15.4-5 RootsUnityMod</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15.html#X7B3A5A0378A32F83">15.5 <span class="Heading">Multiplicative Arithmetic Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X823707DF821E79A0">15.5-1 Sigma</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X798C62847EE0372E">15.5-2 Tau</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X79C1DA36827C2959">15.5-3 MoebiusMu</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15.html#X7B2E061C835159B9">15.6 <span class="Heading">Continued Fractions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X874C161B83416092">15.6-1 ContinuedFractionExpansionOfRoot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X8059667580A039A6">15.6-2 ContinuedFractionApproximationOfRoot</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15.html#X7C5563A37D566DA5">15.7 <span class="Heading">Miscellaneous</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap15.html#X85E1EFC484F648A4">15.7-1 TwoSquares</a></span>
</div></div>
</div>

<h3>15 <span class="Heading">Number Theory</span></h3>

<p><strong class="pkg">GAP</strong> provides a couple of elementary number theoretic functions. Most of these deal with the group of integers coprime to <span class="SimpleMath">m</span>, called the <em>prime residue group</em>. The order of this group is <span class="SimpleMath">ϕ(m)</span> (see <code class="func">Phi</code> (<a href="chap15.html#X85A0C67982D9057A"><span class="RefLink">15.2-2</span></a>)), and <span class="SimpleMath">λ(m)</span> (see <code class="func">Lambda</code> (<a href="chap15.html#X85296F3087611B03"><span class="RefLink">15.2-3</span></a>)) is its exponent. This group is cyclic if and only if <span class="SimpleMath">m</span> is 2, 4, an odd prime power <span class="SimpleMath">p^n</span>, or twice an odd prime power <span class="SimpleMath">2 p^n</span>. In this case the generators of the group, i.e., elements of order <span class="SimpleMath">ϕ(m)</span>, are called <em>primitive roots</em> (see <code class="func">PrimitiveRootMod</code> (<a href="chap15.html#X82440BB9812FF148"><span class="RefLink">15.3-3</span></a>)).</p>

<p>Note that neither the arguments nor the return values of the functions listed below are groups or group elements in the sense of <strong class="pkg">GAP</strong>. The arguments are simply integers.</p>

<p><a id="X7845C1F97A1742C7" name="X7845C1F97A1742C7"></a></p>

<h4>15.1 <span class="Heading">InfoNumtheor (Info Class)</span></h4>

<p><a id="X796F0DFE7D5D211C" name="X796F0DFE7D5D211C"></a></p>

<h5>15.1-1 InfoNumtheor</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InfoNumtheor</code></td><td class="tdright">(&nbsp;info class&nbsp;)</td></tr></table></div>
<p><code class="func">InfoNumtheor</code> is the info class (see <a href="chap7.html#X7A9C902479CB6F7C"><span class="RefLink">7.4</span></a>) for the functions in the number theory chapter.</p>

<p><a id="X823386567DAC22E6" name="X823386567DAC22E6"></a></p>

<h4>15.2 <span class="Heading">Prime Residues</span></h4>

<p><a id="X7FA3F5347B7004BA" name="X7FA3F5347B7004BA"></a></p>

<h5>15.2-1 PrimeResidues</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrimeResidues</code>( <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">PrimeResidues</code> returns the set of integers from the range <code class="code">[ 0 .. Abs( <var class="Arg">m</var> )-1 ]</code> that are coprime to the integer <var class="Arg">m</var>.</p>

<p><code class="code">Abs(<var class="Arg">m</var>)</code> must be less than <span class="SimpleMath">2^28</span>, otherwise the set would probably be too large anyhow.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimeResidues( 0 );  PrimeResidues( 1 );  PrimeResidues( 20 );</span>
[  ]
[ 0 ]
[ 1, 3, 7, 9, 11, 13, 17, 19 ]
</pre></div>

<p><a id="X85A0C67982D9057A" name="X85A0C67982D9057A"></a></p>

<h5>15.2-2 Phi</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Phi</code>( <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">Phi</code> returns the number <span class="SimpleMath">ϕ(<var class="Arg">m</var>)</span> of positive integers less than the positive integer <var class="Arg">m</var> that are coprime to <var class="Arg">m</var>.</p>

<p>Suppose that <span class="SimpleMath">m = p_1^{e_1} p_2^{e_2} ⋯ p_k^{e_k}</span>. Then <span class="SimpleMath">ϕ(m)</span> is <span class="SimpleMath">p_1^{e_1-1} (p_1-1) p_2^{e_2-1} (p_2-1) ⋯ p_k^{e_k-1} (p_k-1)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Phi( 12 );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Phi( 2^13-1 );  # this proves that 2^(13)-1 is a prime</span>
8190
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Phi( 2^15-1 );</span>
27000
</pre></div>

<p><a id="X85296F3087611B03" name="X85296F3087611B03"></a></p>

<h5>15.2-3 Lambda</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Lambda</code>( <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">Lambda</code> returns the exponent <span class="SimpleMath">λ(<var class="Arg">m</var>)</span> of the group of prime residues modulo the integer <var class="Arg">m</var>.</p>

<p><span class="SimpleMath">λ(<var class="Arg">m</var>)</span> is the smallest positive integer <span class="SimpleMath">l</span> such that for every <span class="SimpleMath">a</span> relatively prime to <var class="Arg">m</var> we have <span class="SimpleMath">a^l ≡ 1 mod <var class="Arg">m</var></span>. Fermat's theorem asserts <span class="SimpleMath">a^{ϕ(<var class="Arg">m</var>)} ≡ 1 mod <var class="Arg">m</var></span>; thus <span class="SimpleMath">λ(<var class="Arg">m</var>)</span> divides <span class="SimpleMath">ϕ(<var class="Arg">m</var>)</span> (see <code class="func">Phi</code> (<a href="chap15.html#X85A0C67982D9057A"><span class="RefLink">15.2-2</span></a>)).</p>

<p>Carmichael's theorem states that <span class="SimpleMath">λ</span> can be computed as follows: <span class="SimpleMath">λ(2) = 1</span>, <span class="SimpleMath">λ(4) = 2</span> and <span class="SimpleMath">λ(2^e) = 2^{e-2}</span> if <span class="SimpleMath">3 ≤ e</span>, <span class="SimpleMath">λ(p^e) = (p-1) p^{e-1}</span> (i.e. <span class="SimpleMath">ϕ(m)</span>) if <span class="SimpleMath">p</span> is an odd prime and <span class="SimpleMath">λ(m*n) =</span><code class="code">Lcm</code><span class="SimpleMath">( λ(m), λ(n) )</span> if <span class="SimpleMath">m, n</span> are coprime.</p>

<p>Composites for which <span class="SimpleMath">λ(m)</span> divides <span class="SimpleMath">m - 1</span> are called Carmichaels. If <span class="SimpleMath">6k+1</span>, <span class="SimpleMath">12k+1</span> and <span class="SimpleMath">18k+1</span> are primes their product is such a number. There are only 1547 Carmichaels below <span class="SimpleMath">10^10</span> but 455052511 primes.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Lambda( 10 );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Lambda( 30 );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Lambda( 561 );  # 561 is the smallest Carmichael number</span>
80
</pre></div>

<p><a id="X7D191CF67E5018BE" name="X7D191CF67E5018BE"></a></p>

<h5>15.2-4 GeneratorsPrimeResidues</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsPrimeResidues</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">n</var> be a positive integer. <code class="func">GeneratorsPrimeResidues</code> returns a description of generators of the group of prime residues modulo <var class="Arg">n</var>. The return value is a record with components</p>


<dl>
<dt><strong class="Mark"><code class="code">primes</code>: </strong></dt>
<dd><p>a list of the prime factors of <var class="Arg">n</var>,</p>

</dd>
<dt><strong class="Mark"><code class="code">exponents</code>: </strong></dt>
<dd><p>a list of the exponents of these primes in the factorization of <var class="Arg">n</var>, and</p>

</dd>
<dt><strong class="Mark"><code class="code">generators</code>: </strong></dt>
<dd><p>a list describing generators of the group of prime residues; for the prime factor <span class="SimpleMath">2</span>, either a primitive root or a list of two generators is stored, for each other prime factor of <var class="Arg">n</var>, a primitive root is stored.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsPrimeResidues( 1 );</span>
rec( exponents := [  ], generators := [  ], primes := [  ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsPrimeResidues( 4*3 );</span>
rec( exponents := [ 2, 1 ], generators := [ 7, 5 ], 
  primes := [ 2, 3 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsPrimeResidues( 8*9*5 );</span>
rec( exponents := [ 3, 2, 1 ], 
  generators := [ [ 271, 181 ], 281, 217 ], primes := [ 2, 3, 5 ] )
</pre></div>

<p><a id="X83103A5385821BAE" name="X83103A5385821BAE"></a></p>

<h4>15.3 <span class="Heading">Primitive Roots and Discrete Logarithms</span></h4>

<p><a id="X82373F3D8277EE9E" name="X82373F3D8277EE9E"></a></p>

<h5>15.3-1 OrderMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrderMod</code>( <var class="Arg">n</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">OrderMod</code> returns the multiplicative order of the integer <var class="Arg">n</var> modulo the positive integer <var class="Arg">m</var>. If <var class="Arg">n</var> and <var class="Arg">m</var> are not coprime the order of <var class="Arg">n</var> is not defined and <code class="func">OrderMod</code> will return <code class="code">0</code>.</p>

<p>If <var class="Arg">n</var> and <var class="Arg">m</var> are relatively prime the multiplicative order of <var class="Arg">n</var> modulo <var class="Arg">m</var> is the smallest positive integer <span class="SimpleMath">i</span> such that <span class="SimpleMath"><var class="Arg">n</var>^i ≡ 1 mod <var class="Arg">m</var></span>. If the group of prime residues modulo <var class="Arg">m</var> is cyclic then each element of maximal order is called a primitive root modulo <var class="Arg">m</var> (see <code class="func">IsPrimitiveRootMod</code> (<a href="chap15.html#X790466C07BD90E20"><span class="RefLink">15.3-4</span></a>)).</p>

<p><code class="func">OrderMod</code> usually spends most of its time factoring <var class="Arg">m</var> and <span class="SimpleMath">ϕ(<var class="Arg">m</var>)</span> (see <code class="func">FactorsInt</code> (<a href="chap14.html#X82C989DB84744B36"><span class="RefLink">14.4-7</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrderMod( 2, 7 );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrderMod( 3, 7 );  # 3 is a primitive root modulo 7</span>
6
</pre></div>

<p><a id="X81AD9C7779A7BA89" name="X81AD9C7779A7BA89"></a></p>

<h5>15.3-2 LogMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LogMod</code>( <var class="Arg">n</var>, <var class="Arg">r</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LogModShanks</code>( <var class="Arg">n</var>, <var class="Arg">r</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>computes the discrete <var class="Arg">r</var>-logarithm of the integer <var class="Arg">n</var> modulo the integer <var class="Arg">m</var>. It returns a number <var class="Arg">l</var> such that <span class="SimpleMath"><var class="Arg">r</var>^<var class="Arg">l</var><var class="Arg">n</var> mod <var class="Arg">m</var></span> if such a number exists. Otherwise <code class="keyw">fail</code> is returned.</p>

<p><code class="func">LogModShanks</code> uses the Baby Step - Giant Step Method of Shanks (see for example <a href="chapBib.html#biBCoh93">[Coh93, section 5.4.1]</a>) and in general requires more memory than a call to <code class="func">LogMod</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:= LogMod( 2, 5, 7 );  5^l mod 7 = 2;</span>
4
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LogMod( 1, 3, 3 );  LogMod( 2, 3, 3 );</span>
0
fail
</pre></div>

<p><a id="X82440BB9812FF148" name="X82440BB9812FF148"></a></p>

<h5>15.3-3 PrimitiveRootMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrimitiveRootMod</code>( <var class="Arg">m</var>[, <var class="Arg">start</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">PrimitiveRootMod</code> returns the smallest primitive root modulo the positive integer <var class="Arg">m</var> and <code class="keyw">fail</code> if no such primitive root exists. If the optional second integer argument <var class="Arg">start</var> is given <code class="func">PrimitiveRootMod</code> returns the smallest primitive root that is strictly larger than <var class="Arg">start</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># largest primitive root for a prime less than 2000:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitiveRootMod( 409 ); </span>
21
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitiveRootMod( 541, 2 );</span>
10
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># 327 is the largest primitive root mod 337:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitiveRootMod( 337, 327 );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># there exists no primitive root modulo 30:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimitiveRootMod( 30 );</span>
fail
</pre></div>

<p><a id="X790466C07BD90E20" name="X790466C07BD90E20"></a></p>

<h5>15.3-4 IsPrimitiveRootMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPrimitiveRootMod</code>( <var class="Arg">r</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">IsPrimitiveRootMod</code> returns <code class="keyw">true</code> if the integer <var class="Arg">r</var> is a primitive root modulo the positive integer <var class="Arg">m</var>, and <code class="keyw">false</code> otherwise. If <var class="Arg">r</var> is less than 0 or larger than <var class="Arg">m</var> it is replaced by its remainder.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPrimitiveRootMod( 2, 541 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPrimitiveRootMod( -539, 541 );  # same computation as above;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPrimitiveRootMod( 4, 541 );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( [1..29], r -&gt; IsPrimitiveRootMod( r, 30 ) );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># there is no a primitive root modulo 30</span>
</pre></div>

<p><a id="X7F9069D77AC48054" name="X7F9069D77AC48054"></a></p>

<h4>15.4 <span class="Heading">Roots Modulo Integers</span></h4>

<p><a id="X83449DBC80495971" name="X83449DBC80495971"></a></p>

<h5>15.4-1 Jacobi</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Jacobi</code>( <var class="Arg">n</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">Jacobi</code> returns the value of the <em>Kronecker-Jacobi symbol</em> <span class="SimpleMath">J(<var class="Arg">n</var>,<var class="Arg">m</var>)</span> of the integer <var class="Arg">n</var> modulo the integer <var class="Arg">m</var>. It is defined as follows:</p>

<p>If <span class="SimpleMath">n</span> and <span class="SimpleMath">m</span> are not coprime then <span class="SimpleMath">J(n,m) = 0</span>. Furthermore, <span class="SimpleMath">J(n,1) = 1</span> and <span class="SimpleMath">J(n,-1) = -1</span> if <span class="SimpleMath">m &lt; 0</span> and <span class="SimpleMath">+1</span> otherwise. And for odd <span class="SimpleMath">n</span> it is <span class="SimpleMath">J(n,2) = (-1)^k</span> with <span class="SimpleMath">k = (n^2-1)/8</span>. For odd primes <span class="SimpleMath">m</span> which are coprime to <span class="SimpleMath">n</span> the Kronecker-Jacobi symbol has the same value as the Legendre symbol (see <code class="func">Legendre</code> (<a href="chap15.html#X81464ABF7F10E544"><span class="RefLink">15.4-2</span></a>)).</p>

<p>For the general case suppose that <span class="SimpleMath">m = p_1 ⋅ p_2 ⋯ p_k</span> is a product of <span class="SimpleMath">-1</span> and of primes, not necessarily distinct, and that <span class="SimpleMath">n</span> is coprime to <span class="SimpleMath">m</span>. Then <span class="SimpleMath">J(n,m) = J(n,p_1) ⋅ J(n,p_2) ⋯ J(n,p_k)</span>.</p>

<p>Note that the Kronecker-Jacobi symbol coincides with the Jacobi symbol that is defined for odd <span class="SimpleMath">m</span> in many number theory books. For odd primes <span class="SimpleMath">m</span> and <span class="SimpleMath">n</span> coprime to <span class="SimpleMath">m</span> it coincides with the Legendre symbol.</p>

<p><code class="func">Jacobi</code> is very efficient, even for large values of <var class="Arg">n</var> and <var class="Arg">m</var>, it is about as fast as the Euclidean algorithm (see <code class="func">Gcd</code> (<a href="chap56.html#X7DE207718456F98F"><span class="RefLink">56.7-1</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Jacobi( 11, 35 );  # 9^2 = 11 mod 35</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># this is -1, thus there is no r such that r^2 = 6 mod 35</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Jacobi( 6, 35 );</span>
-1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># this is 1 even though there is no r with r^2 = 3 mod 35</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Jacobi( 3, 35 );</span>
1
</pre></div>

<p><a id="X81464ABF7F10E544" name="X81464ABF7F10E544"></a></p>

<h5>15.4-2 Legendre</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Legendre</code>( <var class="Arg">n</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">Legendre</code> returns the value of the <em>Legendre symbol</em> of the integer <var class="Arg">n</var> modulo the positive integer <var class="Arg">m</var>.</p>

<p>The value of the Legendre symbol <span class="SimpleMath">L(n/m)</span> is 1 if <span class="SimpleMath">n</span> is a <em>quadratic residue</em> modulo <span class="SimpleMath">m</span>, i.e., if there exists an integer <span class="SimpleMath">r</span> such that <span class="SimpleMath">r^2 ≡ n mod m</span> and <span class="SimpleMath">-1</span> otherwise.</p>

<p>If a root of <var class="Arg">n</var> exists it can be found by <code class="func">RootMod</code> (<a href="chap15.html#X83E3ED577B7A04ED"><span class="RefLink">15.4-3</span></a>).</p>

<p>While the value of the Legendre symbol usually is only defined for <var class="Arg">m</var> a prime, we have extended the definition to include composite moduli too. The Jacobi symbol (see <code class="func">Jacobi</code> (<a href="chap15.html#X83449DBC80495971"><span class="RefLink">15.4-1</span></a>)) is another generalization of the Legendre symbol for composite moduli that is much cheaper to compute, because it does not need the factorization of <var class="Arg">m</var> (see <code class="func">FactorsInt</code> (<a href="chap14.html#X82C989DB84744B36"><span class="RefLink">14.4-7</span></a>)).</p>

<p>A description of the Jacobi symbol, the Legendre symbol, and related topics can be found in <a href="chapBib.html#biBBaker84">[Bak84]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Legendre( 5, 11 );  # 4^2 = 5 mod 11</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># this is -1, thus there is no r such that r^2 = 6 mod 11</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Legendre( 6, 11 );</span>
-1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># this is -1, thus there is no r such that r^2 = 3 mod 35</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Legendre( 3, 35 );</span>
-1
</pre></div>

<p><a id="X83E3ED577B7A04ED" name="X83E3ED577B7A04ED"></a></p>

<h5>15.4-3 RootMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RootMod</code>( <var class="Arg">n</var>[, <var class="Arg">k</var>], <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">RootMod</code> computes a <var class="Arg">k</var>th root of the integer <var class="Arg">n</var> modulo the positive integer <var class="Arg">m</var>, i.e., a <span class="SimpleMath">r</span> such that <span class="SimpleMath">r^<var class="Arg">k</var><var class="Arg">n</var> mod <var class="Arg">m</var></span>. If no such root exists <code class="func">RootMod</code> returns <code class="keyw">fail</code>. If only the arguments <var class="Arg">n</var> and <var class="Arg">m</var> are given, the default value for <var class="Arg">k</var> is <span class="SimpleMath">2</span>.</p>

<p>A square root of <var class="Arg">n</var> exists only if <code class="code">Legendre(<var class="Arg">n</var>,<var class="Arg">m</var>) = 1</code> (see <code class="func">Legendre</code> (<a href="chap15.html#X81464ABF7F10E544"><span class="RefLink">15.4-2</span></a>)). If <var class="Arg">m</var> has <span class="SimpleMath">r</span> different prime factors then there are <span class="SimpleMath">2^r</span> different roots of <var class="Arg">n</var> mod <var class="Arg">m</var>. It is unspecified which one <code class="func">RootMod</code> returns. You can, however, use <code class="func">RootsMod</code> (<a href="chap15.html#X84D3F03B862841F8"><span class="RefLink">15.4-4</span></a>) to compute the full set of roots.</p>

<p><code class="func">RootMod</code> is efficient even for large values of <var class="Arg">m</var>, in fact the most time is usually spent factoring <var class="Arg">m</var> (see <code class="func">FactorsInt</code> (<a href="chap14.html#X82C989DB84744B36"><span class="RefLink">14.4-7</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># note 'RootMod' does not return 8 in this case but -8:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootMod( 64, 1009 );</span>
1001
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootMod( 64, 3, 1009 );</span>
518
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootMod( 64, 5, 1009 );</span>
656
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">      x -&gt; x mod 1009 );  # set of all square roots of 64 mod 1009</span>
[ 1001, 8 ]
</pre></div>

<p><a id="X84D3F03B862841F8" name="X84D3F03B862841F8"></a></p>

<h5>15.4-4 RootsMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RootsMod</code>( <var class="Arg">n</var>[, <var class="Arg">k</var>], <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">RootsMod</code> computes the set of <var class="Arg">k</var>th roots of the integer <var class="Arg">n</var> modulo the positive integer <var class="Arg">m</var>, i.e., the list of all <span class="SimpleMath">r</span> such that <span class="SimpleMath">r^<var class="Arg">k</var><var class="Arg">n</var> mod <var class="Arg">m</var></span>. If only the arguments <var class="Arg">n</var> and <var class="Arg">m</var> are given, the default value for <var class="Arg">k</var> is <span class="SimpleMath">2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootsMod( 1, 7*31 );  # the same as `RootsUnityMod( 7*31 )'</span>
[ 1, 92, 125, 216 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootsMod( 7, 7*31 );</span>
[ 21, 196 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootsMod( 5, 7*31 );</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootsMod( 1, 5, 7*31 );</span>
[ 1, 8, 64, 78, 190 ]
</pre></div>

<p><a id="X81F856E682A8ECBA" name="X81F856E682A8ECBA"></a></p>

<h5>15.4-5 RootsUnityMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RootsUnityMod</code>( [<var class="Arg">k</var>, ]<var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">RootsUnityMod</code> returns the set of <var class="Arg">k</var>-th roots of unity modulo the positive integer <var class="Arg">m</var>, i.e., the list of all solutions <span class="SimpleMath">r</span> of <span class="SimpleMath">r^<var class="Arg">k</var><var class="Arg">n</var> mod <var class="Arg">m</var></span>. If only the argument <var class="Arg">m</var> is given, the default value for <var class="Arg">k</var> is <span class="SimpleMath">2</span>.</p>

<p>In general there are <span class="SimpleMath"><var class="Arg">k</var>^n</span> such roots if the modulus <var class="Arg">m</var> has <span class="SimpleMath">n</span> different prime factors <span class="SimpleMath">p</span> such that <span class="SimpleMath">p ≡ 1 mod <var class="Arg">k</var></span>. If <span class="SimpleMath"><var class="Arg">k</var>^2</span> divides <var class="Arg">m</var> then there are <span class="SimpleMath"><var class="Arg">k</var>^{n+1}</span> such roots; and especially if <span class="SimpleMath"><var class="Arg">k</var> = 2</span> and 8 divides <var class="Arg">m</var> there are <span class="SimpleMath">2^{n+2}</span> such roots.</p>

<p>In the current implementation <var class="Arg">k</var> must be a prime.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootsUnityMod( 7*31 );  RootsUnityMod( 3, 7*31 );</span>
[ 1, 92, 125, 216 ]
[ 1, 25, 32, 36, 67, 149, 156, 191, 211 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RootsUnityMod( 5, 7*31 );</span>
[ 1, 8, 64, 78, 190 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">         x -&gt; x mod 1009 );  # set of all square roots of 64 mod 1009</span>
[ 1001, 8 ]
</pre></div>

<p><a id="X7B3A5A0378A32F83" name="X7B3A5A0378A32F83"></a></p>

<h4>15.5 <span class="Heading">Multiplicative Arithmetic Functions</span></h4>

<p><a id="X823707DF821E79A0" name="X823707DF821E79A0"></a></p>

<h5>15.5-1 Sigma</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Sigma</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">Sigma</code> returns the sum of the positive divisors of the nonzero integer <var class="Arg">n</var>.</p>

<p><code class="func">Sigma</code> is a multiplicative arithmetic function, i.e., if <span class="SimpleMath">n</span> and <span class="SimpleMath">m</span> are relatively prime we have that <span class="SimpleMath">σ(n ⋅ m) = σ(n) σ(m)</span>.</p>

<p>Together with the formula <span class="SimpleMath">σ(p^k) = (p^{k+1}-1) / (p-1)</span> this allows us to compute <span class="SimpleMath">σ(<var class="Arg">n</var>)</span>.</p>

<p>Integers <var class="Arg">n</var> for which <span class="SimpleMath">σ(<var class="Arg">n</var>) = 2 <var class="Arg">n</var></span> are called perfect. Even perfect integers are exactly of the form <span class="SimpleMath">2^{<var class="Arg">n</var>-1}(2^<var class="Arg">n</var>-1)</span> where <span class="SimpleMath">2^<var class="Arg">n</var>-1</span> is prime. Primes of the form <span class="SimpleMath">2^<var class="Arg">n</var>-1</span> are called <em>Mersenne primes</em>, and 42 among the known Mersenne primes are obtained for <var class="Arg">n</var> <span class="SimpleMath">=</span> 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583 and 25964951. Please find more up to date information about Mersenne primes at <span class="URL"><a href="http://www.mersenne.org">http://www.mersenne.org</a></span>. It is not known whether odd perfect integers exist, however <a href="chapBib.html#biBBC89">[BC89]</a> show that any such integer must have at least 300 decimal digits.</p>

<p><code class="func">Sigma</code> usually spends most of its time factoring <var class="Arg">n</var> (see <code class="func">FactorsInt</code> (<a href="chap14.html#X82C989DB84744B36"><span class="RefLink">14.4-7</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sigma( 1 );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sigma( 1009 );  # 1009 is a prime</span>
1010
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sigma( 8128 ) = 2*8128;  # 8128 is a perfect number</span>
true
</pre></div>

<p><a id="X798C62847EE0372E" name="X798C62847EE0372E"></a></p>

<h5>15.5-2 Tau</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Tau</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">Tau</code> returns the number of the positive divisors of the nonzero integer <var class="Arg">n</var>.</p>

<p><code class="func">Tau</code> is a multiplicative arithmetic function, i.e., if <span class="SimpleMath">n</span> and <span class="SimpleMath">m</span> are relative prime we have <span class="SimpleMath">τ(n ⋅ m) = τ(n) τ(m)</span>. Together with the formula <span class="SimpleMath">τ(p^k) = k+1</span> this allows us to compute <span class="SimpleMath">τ(<var class="Arg">n</var>)</span>.</p>

<p><code class="func">Tau</code> usually spends most of its time factoring <var class="Arg">n</var> (see <code class="func">FactorsInt</code> (<a href="chap14.html#X82C989DB84744B36"><span class="RefLink">14.4-7</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Tau( 1 );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Tau( 1013 );  # thus 1013 is a prime</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Tau( 8128 );</span>
14
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># result is odd if and only if argument is a perfect square:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Tau( 36 );</span>
9
</pre></div>

<p><a id="X79C1DA36827C2959" name="X79C1DA36827C2959"></a></p>

<h5>15.5-3 MoebiusMu</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MoebiusMu</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">MoebiusMu</code> computes the value of Moebius inversion function for the nonzero integer <var class="Arg">n</var>. This is 0 for integers which are not squarefree, i.e., which are divided by a square <span class="SimpleMath">r^2</span>. Otherwise it is 1 if <var class="Arg">n</var> has a even number and <span class="SimpleMath">-1</span> if <var class="Arg">n</var> has an odd number of prime factors.</p>

<p>The importance of <span class="SimpleMath">μ</span> stems from the so called inversion formula. Suppose <span class="SimpleMath">f</span> is a multiplicative arithmetic function defined on the positive integers and let <span class="SimpleMath">g(n) = ∑_{d ∣ n} f(d)</span>. Then <span class="SimpleMath">f(n) = ∑_{d ∣ n} μ(d) g(n/d)</span>. As a special case we have <span class="SimpleMath">ϕ(n) = ∑_{d ∣ n} μ(d) n/d</span> since <span class="SimpleMath">n = ∑_{d ∣ n} ϕ(d)</span> (see <code class="func">Phi</code> (<a href="chap15.html#X85A0C67982D9057A"><span class="RefLink">15.2-2</span></a>)).</p>

<p><code class="func">MoebiusMu</code> usually spends all of its time factoring <var class="Arg">n</var> (see <code class="func">FactorsInt</code> (<a href="chap14.html#X82C989DB84744B36"><span class="RefLink">14.4-7</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MoebiusMu( 60 );  MoebiusMu( 61 );  MoebiusMu( 62 );</span>
0
-1
1
</pre></div>

<p><a id="X7B2E061C835159B9" name="X7B2E061C835159B9"></a></p>

<h4>15.6 <span class="Heading">Continued Fractions</span></h4>

<p><a id="X874C161B83416092" name="X874C161B83416092"></a></p>

<h5>15.6-1 ContinuedFractionExpansionOfRoot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContinuedFractionExpansionOfRoot</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The first <var class="Arg">n</var> terms of the continued fraction expansion of the only positive real root of the polynomial <var class="Arg">f</var> with integer coefficients. The leading coefficient of <var class="Arg">f</var> must be positive and the value of <var class="Arg">f</var> at 0 must be negative. If the degree of <var class="Arg">f</var> is 2 and <var class="Arg">n</var> = 0, the function computes one period of the continued fraction expansion of the root in question. Anything may happen if <var class="Arg">f</var> has three or more positive real roots.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x := Indeterminate(Integers);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ContinuedFractionExpansionOfRoot(x^2-7,20);</span>
[ 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ContinuedFractionExpansionOfRoot(x^2-7,0);</span>
[ 2, 1, 1, 1, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ContinuedFractionExpansionOfRoot(x^3-2,20);</span>
[ 1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ContinuedFractionExpansionOfRoot(x^5-x-1,50);</span>
[ 1, 5, 1, 42, 1, 3, 24, 2, 2, 1, 16, 1, 11, 1, 1, 2, 31, 1, 12, 5, 
  1, 7, 11, 1, 4, 1, 4, 2, 2, 3, 4, 2, 1, 1, 11, 1, 41, 12, 1, 8, 1, 
  1, 1, 1, 1, 9, 2, 1, 5, 4 ]
</pre></div>

<p><a id="X8059667580A039A6" name="X8059667580A039A6"></a></p>

<h5>15.6-2 ContinuedFractionApproximationOfRoot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContinuedFractionApproximationOfRoot</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The <var class="Arg">n</var>th continued fraction approximation of the only positive real root of the polynomial <var class="Arg">f</var> with integer coefficients. The leading coefficient of <var class="Arg">f</var> must be positive and the value of <var class="Arg">f</var> at 0 must be negative. Anything may happen if <var class="Arg">f</var> has three or more positive real roots.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ContinuedFractionApproximationOfRoot(x^2-2,10);</span>
3363/2378
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">3363^2-2*2378^2;</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">z := ContinuedFractionApproximationOfRoot(x^5-x-1,20);</span>
499898783527/428250732317
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">z^5-z-1;</span>
486192462527432755459620441970617283/
14404247382319842421697357558805709031116987826242631261357
</pre></div>

<p><a id="X7C5563A37D566DA5" name="X7C5563A37D566DA5"></a></p>

<h4>15.7 <span class="Heading">Miscellaneous</span></h4>

<p><a id="X85E1EFC484F648A4" name="X85E1EFC484F648A4"></a></p>

<h5>15.7-1 TwoSquares</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TwoSquares</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">TwoSquares</code> returns a list of two integers <span class="SimpleMath">x ≤ y</span> such that the sum of the squares of <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> is equal to the nonnegative integer <var class="Arg">n</var>, i.e., <span class="SimpleMath">n = x^2 + y^2</span>. If no such representation exists <code class="func">TwoSquares</code> will return <code class="keyw">fail</code>. <code class="func">TwoSquares</code> will return a representation for which the gcd of <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> is as small as possible. It is not specified which representation <code class="func">TwoSquares</code> returns if there is more than one.</p>

<p>Let <span class="SimpleMath">a</span> be the product of all maximal powers of primes of the form <span class="SimpleMath">4k+3</span> dividing <var class="Arg">n</var>. A representation of <var class="Arg">n</var> as a sum of two squares exists if and only if <span class="SimpleMath">a</span> is a perfect square. Let <span class="SimpleMath">b</span> be the maximal power of <span class="SimpleMath">2</span> dividing <var class="Arg">n</var> or its half, whichever is a perfect square. Then the minimal possible gcd of <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> is the square root <span class="SimpleMath">c</span> of <span class="SimpleMath">a ⋅ b</span>. The number of different minimal representation with <span class="SimpleMath">x ≤ y</span> is <span class="SimpleMath">2^{l-1}</span>, where <span class="SimpleMath">l</span> is the number of different prime factors of the form <span class="SimpleMath">4k+1</span> of <var class="Arg">n</var>.</p>

<p>The algorithm first finds a square root <span class="SimpleMath">r</span> of <span class="SimpleMath">-1</span> modulo <span class="SimpleMath"><var class="Arg">n</var> / (a ⋅ b)</span>, which must exist, and applies the Euclidean algorithm to <span class="SimpleMath">r</span> and <var class="Arg">n</var>. The first residues in the sequence that are smaller than <span class="SimpleMath">sqrt{<var class="Arg">n</var>/(a ⋅ b)}</span> times <span class="SimpleMath">c</span> are a possible pair <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span>.</p>

<p>Better descriptions of the algorithm and related topics can be found in <a href="chapBib.html#biBWagon90">[Wag90]</a> and <a href="chapBib.html#biBZagier90">[Zag90]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoSquares( 5 );</span>
[ 1, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoSquares( 11 );  # there is no representation</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoSquares( 16 );</span>
[ 0, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># 3 is the minimal possible gcd because 9 divides 45:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoSquares( 45 );</span>
[ 3, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># it is not [5,10] because their gcd is not minimal:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoSquares( 125 );</span>
[ 2, 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># [10,11] would be the other possible representation:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoSquares( 13*17 );</span>
[ 5, 14 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoSquares( 848654483879497562821 );  # argument is prime</span>
[ 6305894639, 28440994650 ]
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap14.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap16.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>