This file is indexed.

/usr/share/gap/doc/ref/chap16.html is in gap-doc 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 16: Combinatorics</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap16"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap15.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap17.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap16_mj.html">[MathJax on]</a></p>
<p><a id="X7BDA99EE7CEADA7C" name="X7BDA99EE7CEADA7C"></a></p>
<div class="ChapSects"><a href="chap16.html#X7BDA99EE7CEADA7C">16 <span class="Heading">Combinatorics</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap16.html#X800E48927D5C83F5">16.1 <span class="Heading">Combinatorial Numbers</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X87665F748594BF29">16.1-1 Factorial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7A9AF5F58682819D">16.1-2 Binomial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7DC5667580522BDA">16.1-3 Bell</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X792FF6EA786A5C2B">16.1-4 Bernoulli</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X85037456785BB33C">16.1-5 Stirling1</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7C93E14D7BC360F0">16.1-6 Stirling2</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap16.html#X81B4696585C38147">16.2 <span class="Heading">Combinations, Arrangements and Tuples</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X8770F16D794C0ADB">16.2-1 Combinations</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X78DD5C0D81057540">16.2-2 <span class="Heading">Iterator and enumerator of combinations</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X82A6E98C85714FD0">16.2-3 NrCombinations</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7837B3357C7566C8">16.2-4 Arrangements</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7DE1ABD47D19F140">16.2-5 NrArrangements</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X81601C6786120DDC">16.2-6 UnorderedTuples</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7959281584C42C52">16.2-7 NrUnorderedTuples</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X86A3CA0F7CC8C320">16.2-8 Tuples</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7BA135297E8DA819">16.2-9 EnumeratorOfTuples</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X86416A31807B0086">16.2-10 IteratorOfTuples</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X85E18A9A87FD4CA2">16.2-11 NrTuples</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7B0143FB83F359B7">16.2-12 PermutationsList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X8629A2908050EB3A">16.2-13 NrPermutationsList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X79C159507B2BF1C9">16.2-14 Derangements</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7C1741B181A9AB9C">16.2-15 NrDerangements</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7A13D8DC8204525F">16.2-16 PartitionsSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7BCD7FC2876386F1">16.2-17 NrPartitionsSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X84A6D15F8107008B">16.2-18 Partitions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X8793AEBD7E529E1D">16.2-19 IteratorOfPartitions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X86933C4F795C4EBD">16.2-20 NrPartitions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X820DF201871F2723">16.2-21 OrderedPartitions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X80BB9F4982CA1E8B">16.2-22 NrOrderedPartitions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X8009520C82942461">16.2-23 PartitionsGreatestLE</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7CB8D4FF8592A9BB">16.2-24 PartitionsGreatestEQ</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7A70D4F3809494E7">16.2-25 RestrictedPartitions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X800B43838742FBF4">16.2-26 NrRestrictedPartitions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7F4EDCCA780B469D">16.2-27 SignPartition</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7DB9BEB6856EC03D">16.2-28 AssociatedPartition</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7A95D8A6820363A8">16.2-29 PowerPartition</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X877D997B7F66A119">16.2-30 PartitionTuples</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7F44AD098561DE32">16.2-31 NrPartitionTuples</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap16.html#X83DC50B67D74E674">16.3 <span class="Heading">Fibonacci and Lucas Sequences</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X85AE1D70803A886C">16.3-1 Fibonacci</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7830A03181D67192">16.3-2 Lucas</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap16.html#X821888E77EB43F67">16.4 <span class="Heading">Permanent of a Matrix</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap16.html#X7F0942DD83BBAB7A">16.4-1 Permanent</a></span>
</div></div>
</div>

<h3>16 <span class="Heading">Combinatorics</span></h3>

<p>This chapter describes functions that deal with combinatorics. We mainly concentrate on two areas. One is about <em>selections</em>, that is the ways one can select elements from a set. The other is about <em>partitions</em>, that is the ways one can partition a set into the union of pairwise disjoint subsets.</p>

<p><a id="X800E48927D5C83F5" name="X800E48927D5C83F5"></a></p>

<h4>16.1 <span class="Heading">Combinatorial Numbers</span></h4>

<p><a id="X87665F748594BF29" name="X87665F748594BF29"></a></p>

<h5>16.1-1 Factorial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Factorial</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <em>factorial</em> <span class="SimpleMath">n!</span> of the positive integer <var class="Arg">n</var>, which is defined as the product <span class="SimpleMath">1 ⋅ 2 ⋅ 3 ⋯ n</span>.</p>

<p><span class="SimpleMath">n!</span> is the number of permutations of a set of <span class="SimpleMath">n</span> elements. <span class="SimpleMath">1 / n!</span> is the coefficient of <span class="SimpleMath">x^n</span> in the formal series <span class="SimpleMath">exp(x)</span>, which is the generating function for factorial.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..10], Factorial );</span>
[ 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Factorial( 30 );</span>
265252859812191058636308480000000
</pre></div>

<p><code class="func">PermutationsList</code> (<a href="chap16.html#X7B0143FB83F359B7"><span class="RefLink">16.2-12</span></a>) computes the set of all permutations of a list.</p>

<p><a id="X7A9AF5F58682819D" name="X7A9AF5F58682819D"></a></p>

<h5>16.1-2 Binomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Binomial</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <em>binomial coefficient</em> <span class="SimpleMath">{n choose k}</span> of integers <var class="Arg">n</var> and <var class="Arg">k</var>, which is defined as <span class="SimpleMath">n! / (k! (n-k)!)</span> (see <code class="func">Factorial</code> (<a href="chap16.html#X87665F748594BF29"><span class="RefLink">16.1-1</span></a>)). We define <span class="SimpleMath">{0 choose 0} = 1, {n choose k} = 0</span> if <span class="SimpleMath">k &lt; 0</span> or <span class="SimpleMath">n &lt; k</span>, and <span class="SimpleMath">{n choose k} = (-1)^k {-n+k-1 choose k}</span> if <span class="SimpleMath">n &lt; 0</span>, which is consistent with the equivalent definition <span class="SimpleMath">{n choose k} = {n-1 choose k} + {n-1 choose k-1}</span>.</p>

<p><span class="SimpleMath">{n choose k}</span> is the number of combinations with <span class="SimpleMath">k</span> elements, i.e., the number of subsets with <span class="SimpleMath">k</span> elements, of a set with <span class="SimpleMath">n</span> elements. <span class="SimpleMath">{n choose k}</span> is the coefficient of the term <span class="SimpleMath">x^k</span> of the polynomial <span class="SimpleMath">(x + 1)^n</span>, which is the generating function for <span class="SimpleMath">{n choose .}</span>, hence the name.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># Knuth calls this the trademark of Binomial:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..4], k-&gt;Binomial( 4, k ) );</span>
[ 1, 4, 6, 4, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..6], n-&gt;List( [0..6], k-&gt;Binomial( n, k ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># the lower triangle is called Pascal's triangle:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray( last );</span>
[ [   1,   0,   0,   0,   0,   0,   0 ],
  [   1,   1,   0,   0,   0,   0,   0 ],
  [   1,   2,   1,   0,   0,   0,   0 ],
  [   1,   3,   3,   1,   0,   0,   0 ],
  [   1,   4,   6,   4,   1,   0,   0 ],
  [   1,   5,  10,  10,   5,   1,   0 ],
  [   1,   6,  15,  20,  15,   6,   1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Binomial( 50, 10 );</span>
10272278170
</pre></div>

<p><code class="func">NrCombinations</code> (<a href="chap16.html#X82A6E98C85714FD0"><span class="RefLink">16.2-3</span></a>) is the generalization of <code class="func">Binomial</code> for multisets. <code class="func">Combinations</code> (<a href="chap16.html#X8770F16D794C0ADB"><span class="RefLink">16.2-1</span></a>) computes the set of all combinations of a multiset.</p>

<p><a id="X7DC5667580522BDA" name="X7DC5667580522BDA"></a></p>

<h5>16.1-3 Bell</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Bell</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <em>Bell number</em> <span class="SimpleMath">B(n)</span>. The Bell numbers are defined by <span class="SimpleMath">B(0) = 1</span> and the recurrence <span class="SimpleMath">B(n+1) = ∑_{k = 0}^n {n choose k} B(k)</span>.</p>

<p><span class="SimpleMath">B(n)</span> is the number of ways to partition a set of <var class="Arg">n</var> elements into pairwise disjoint nonempty subsets (see <code class="func">PartitionsSet</code> (<a href="chap16.html#X7A13D8DC8204525F"><span class="RefLink">16.2-16</span></a>)). This implies of course that <span class="SimpleMath">B(n) = ∑_{k = 0}^n S_2(n,k)</span> (see <code class="func">Stirling2</code> (<a href="chap16.html#X7C93E14D7BC360F0"><span class="RefLink">16.1-6</span></a>)). <span class="SimpleMath">B(n)/n!</span> is the coefficient of <span class="SimpleMath">x^n</span> in the formal series <span class="SimpleMath">exp( exp(x)-1 )</span>, which is the generating function for <span class="SimpleMath">B(n)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..6], n -&gt; Bell( n ) );</span>
[ 1, 1, 2, 5, 15, 52, 203 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Bell( 14 );</span>
190899322
</pre></div>

<p><a id="X792FF6EA786A5C2B" name="X792FF6EA786A5C2B"></a></p>

<h5>16.1-4 Bernoulli</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Bernoulli</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <var class="Arg">n</var>-th <em>Bernoulli number</em> <span class="SimpleMath">B_n</span>, which is defined by <span class="SimpleMath">B_0 = 1</span> and <span class="SimpleMath">B_n = -∑_{k = 0}^{n-1} {n+1 choose k} B_k/(n+1)</span>.</p>

<p><span class="SimpleMath">B_n / n!</span> is the coefficient of <span class="SimpleMath">x^n</span> in the power series of <span class="SimpleMath">x / (exp(x)-1)</span>. Except for <span class="SimpleMath">B_1 = -1/2</span> the Bernoulli numbers for odd indices are zero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Bernoulli( 4 );</span>
-1/30
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Bernoulli( 10 );</span>
5/66
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Bernoulli( 12 );  # there is no simple pattern in Bernoulli numbers</span>
-691/2730
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Bernoulli( 50 );  # and they grow fairly fast</span>
495057205241079648212477525/66
</pre></div>

<p><a id="X85037456785BB33C" name="X85037456785BB33C"></a></p>

<h5>16.1-5 Stirling1</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Stirling1</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <em>Stirling number of the first kind</em> <span class="SimpleMath">S_1(n,k)</span> of the integers <var class="Arg">n</var> and <var class="Arg">k</var>. Stirling numbers of the first kind are defined by <span class="SimpleMath">S_1(0,0) = 1</span>, <span class="SimpleMath">S_1(n,0) = S_1(0,k) = 0</span> if <span class="SimpleMath">n, k ne 0</span> and the recurrence <span class="SimpleMath">S_1(n,k) = (n-1) S_1(n-1,k) + S_1(n-1,k-1)</span>.</p>

<p><span class="SimpleMath">S_1(n,k)</span> is the number of permutations of <var class="Arg">n</var> points with <var class="Arg">k</var> cycles. Stirling numbers of the first kind appear as coefficients in the series <span class="SimpleMath">n! {x choose n} = ∑_{k = 0}^n S_1(n,k) x^k</span> which is the generating function for Stirling numbers of the first kind. Note the similarity to <span class="SimpleMath">x^n = ∑_{k = 0}^n S_2(n,k) k! {x choose k}</span> (see <code class="func">Stirling2</code> (<a href="chap16.html#X7C93E14D7BC360F0"><span class="RefLink">16.1-6</span></a>)). Also the definition of <span class="SimpleMath">S_1</span> implies <span class="SimpleMath">S_1(n,k) = S_2(-k,-n)</span> if <span class="SimpleMath">n, k &lt; 0</span>. There are many formulae relating Stirling numbers of the first kind to Stirling numbers of the second kind, Bell numbers, and Binomial coefficients.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># Knuth calls this the trademark of S_1:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..4], k -&gt; Stirling1( 4, k ) );</span>
[ 0, 6, 11, 6, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..6], n-&gt;List( [0..6], k-&gt;Stirling1( n, k ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># note the similarity with Pascal's triangle for Binomial numbers</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray( last );</span>
[ [    1,    0,    0,    0,    0,    0,    0 ],
  [    0,    1,    0,    0,    0,    0,    0 ],
  [    0,    1,    1,    0,    0,    0,    0 ],
  [    0,    2,    3,    1,    0,    0,    0 ],
  [    0,    6,   11,    6,    1,    0,    0 ],
  [    0,   24,   50,   35,   10,    1,    0 ],
  [    0,  120,  274,  225,   85,   15,    1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Stirling1(50,10);</span>
101623020926367490059043797119309944043405505380503665627365376
</pre></div>

<p><a id="X7C93E14D7BC360F0" name="X7C93E14D7BC360F0"></a></p>

<h5>16.1-6 Stirling2</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Stirling2</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <em>Stirling number of the second kind</em> <span class="SimpleMath">S_2(n,k)</span> of the integers <var class="Arg">n</var> and <var class="Arg">k</var>. Stirling numbers of the second kind are defined by <span class="SimpleMath">S_2(0,0) = 1</span>, <span class="SimpleMath">S_2(n,0) = S_2(0,k) = 0</span> if <span class="SimpleMath">n, k ne 0</span> and the recurrence <span class="SimpleMath">S_2(n,k) = k S_2(n-1,k) + S_2(n-1,k-1)</span>.</p>

<p><span class="SimpleMath">S_2(n,k)</span> is the number of ways to partition a set of <var class="Arg">n</var> elements into <var class="Arg">k</var> pairwise disjoint nonempty subsets (see <code class="func">PartitionsSet</code> (<a href="chap16.html#X7A13D8DC8204525F"><span class="RefLink">16.2-16</span></a>)). Stirling numbers of the second kind appear as coefficients in the expansion of <span class="SimpleMath">x^n = ∑_{k = 0}^n S_2(n,k) k! {x choose k}</span>. Note the similarity to <span class="SimpleMath">n! {x choose n} = ∑_{k = 0}^n S_1(n,k) x^k</span> (see <code class="func">Stirling1</code> (<a href="chap16.html#X85037456785BB33C"><span class="RefLink">16.1-5</span></a>)). Also the definition of <span class="SimpleMath">S_2</span> implies <span class="SimpleMath">S_2(n,k) = S_1(-k,-n)</span> if <span class="SimpleMath">n, k &lt; 0</span>. There are many formulae relating Stirling numbers of the second kind to Stirling numbers of the first kind, Bell numbers, and Binomial coefficients.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># Knuth calls this the trademark of S_2:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..4], k-&gt;Stirling2( 4, k ) );</span>
[ 0, 1, 7, 6, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..6], n-&gt;List( [0..6], k-&gt;Stirling2( n, k ) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># note the similarity with Pascal's triangle for Binomial numbers</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintArray( last );</span>
[ [   1,   0,   0,   0,   0,   0,   0 ],
  [   0,   1,   0,   0,   0,   0,   0 ],
  [   0,   1,   1,   0,   0,   0,   0 ],
  [   0,   1,   3,   1,   0,   0,   0 ],
  [   0,   1,   7,   6,   1,   0,   0 ],
  [   0,   1,  15,  25,  10,   1,   0 ],
  [   0,   1,  31,  90,  65,  15,   1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Stirling2( 50, 10 );</span>
26154716515862881292012777396577993781727011
</pre></div>

<p><a id="X81B4696585C38147" name="X81B4696585C38147"></a></p>

<h4>16.2 <span class="Heading">Combinations, Arrangements and Tuples</span></h4>

<p><a id="X8770F16D794C0ADB" name="X8770F16D794C0ADB"></a></p>

<h5>16.2-1 Combinations</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Combinations</code>( <var class="Arg">mset</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all combinations of the multiset <var class="Arg">mset</var> (a list of objects which may contain the same object several times) with <var class="Arg">k</var> elements; if <var class="Arg">k</var> is not given it returns all combinations of <var class="Arg">mset</var>.</p>

<p>A <em>combination</em> of <var class="Arg">mset</var> is an unordered selection without repetitions and is represented by a sorted sublist of <var class="Arg">mset</var>. If <var class="Arg">mset</var> is a proper set, there are <span class="SimpleMath">{|<var class="Arg">mset</var>| choose <var class="Arg">k</var>}</span> (see <code class="func">Binomial</code> (<a href="chap16.html#X7A9AF5F58682819D"><span class="RefLink">16.1-2</span></a>)) combinations with <var class="Arg">k</var> elements, and the set of all combinations is just the <em>power set</em> of <var class="Arg">mset</var>, which contains all <em>subsets</em> of <var class="Arg">mset</var> and has cardinality <span class="SimpleMath">2^{|<var class="Arg">mset</var>|}</span>.</p>

<p>To loop over combinations of a larger multiset use <code class="func">IteratorOfCombinations</code> (<a href="chap16.html#X78DD5C0D81057540"><span class="RefLink">16.2-2</span></a>) which produces combinations one by one and may save a lot of memory. Another memory efficient representation of the list of all combinations is provided by <code class="func">EnumeratorOfCombinations</code> (<a href="chap16.html#X78DD5C0D81057540"><span class="RefLink">16.2-2</span></a>).</p>

<p><a id="X78DD5C0D81057540" name="X78DD5C0D81057540"></a></p>

<h5>16.2-2 <span class="Heading">Iterator and enumerator of combinations</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IteratorOfCombinations</code>( <var class="Arg">mset</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EnumeratorOfCombinations</code>( <var class="Arg">mset</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">IteratorOfCombinations</code> returns an <code class="func">Iterator</code> (<a href="chap30.html#X83ADF8287ED0668E"><span class="RefLink">30.8-1</span></a>) for combinations (see <code class="func">Combinations</code> (<a href="chap16.html#X8770F16D794C0ADB"><span class="RefLink">16.2-1</span></a>)) of the given multiset <var class="Arg">mset</var>. If a non-negative integer <var class="Arg">k</var> is given as second argument then only the combinations with <var class="Arg">k</var> entries are produced, otherwise all combinations.</p>

<p><code class="func">EnumeratorOfCombinations</code> returns an <code class="func">Enumerator</code> (<a href="chap30.html#X7EF8910F82B45EC7"><span class="RefLink">30.3-2</span></a>) of the given multiset <var class="Arg">mset</var>. Currently only a variant without second argument <var class="Arg">k</var> is implemented.</p>

<p>The ordering of combinations from these functions can be different and also different from the list returned by <code class="func">Combinations</code> (<a href="chap16.html#X8770F16D794C0ADB"><span class="RefLink">16.2-1</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:=[1..15];; Add(m, 15);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrCombinations(m);</span>
49152
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">i := 0;; for c in Combinations(m) do i := i+1; od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">i;</span>
49152
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cm := EnumeratorOfCombinations(m);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cm[1000];</span>
[ 1, 2, 3, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Position(cm, [1,13,15,15]);</span>
36866
</pre></div>

<p><a id="X82A6E98C85714FD0" name="X82A6E98C85714FD0"></a></p>

<h5>16.2-3 NrCombinations</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrCombinations</code>( <var class="Arg">mset</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">Combinations(<var class="Arg">mset</var>,<var class="Arg">k</var>)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Combinations( [1,2,2,3] );</span>
[ [  ], [ 1 ], [ 1, 2 ], [ 1, 2, 2 ], [ 1, 2, 2, 3 ], [ 1, 2, 3 ], 
  [ 1, 3 ], [ 2 ], [ 2, 2 ], [ 2, 2, 3 ], [ 2, 3 ], [ 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># number of different hands in a game of poker:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrCombinations( [1..52], 5 );</span>
2598960
</pre></div>

<p>The function <code class="func">Arrangements</code> (<a href="chap16.html#X7837B3357C7566C8"><span class="RefLink">16.2-4</span></a>) computes ordered selections without repetitions, <code class="func">UnorderedTuples</code> (<a href="chap16.html#X81601C6786120DDC"><span class="RefLink">16.2-6</span></a>) computes unordered selections with repetitions, and <code class="func">Tuples</code> (<a href="chap16.html#X86A3CA0F7CC8C320"><span class="RefLink">16.2-8</span></a>) computes ordered selections with repetitions.</p>

<p><a id="X7837B3357C7566C8" name="X7837B3357C7566C8"></a></p>

<h5>16.2-4 Arrangements</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Arrangements</code>( <var class="Arg">mset</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of arrangements of the multiset <var class="Arg">mset</var> that contain <var class="Arg">k</var> elements. If <var class="Arg">k</var> is not given it returns all arrangements of <var class="Arg">mset</var>.</p>

<p>An <em>arrangement</em> of <var class="Arg">mset</var> is an ordered selection without repetitions and is represented by a list that contains only elements from <var class="Arg">mset</var>, but maybe in a different order. If <var class="Arg">mset</var> is a proper set there are <span class="SimpleMath">|mset|! / (|mset|-k)!</span> (see <code class="func">Factorial</code> (<a href="chap16.html#X87665F748594BF29"><span class="RefLink">16.1-1</span></a>)) arrangements with <var class="Arg">k</var> elements.</p>

<p><a id="X7DE1ABD47D19F140" name="X7DE1ABD47D19F140"></a></p>

<h5>16.2-5 NrArrangements</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrArrangements</code>( <var class="Arg">mset</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">Arrangements(<var class="Arg">mset</var>,<var class="Arg">k</var>)</code>.</p>

<p>As an example of arrangements of a multiset, think of the game Scrabble. Suppose you have the six characters of the word <code class="code">"settle"</code> and you have to make a four letter word. Then the possibilities are given by</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Arrangements( ["s","e","t","t","l","e"], 4 );</span>
[ [ "e", "e", "l", "s" ], [ "e", "e", "l", "t" ], [ "e", "e", "s", "l" ],
  [ "e", "e", "s", "t" ], [ "e", "e", "t", "l" ], [ "e", "e", "t", "s" ],
  ... 93 more possibilities ...
  [ "t", "t", "l", "s" ], [ "t", "t", "s", "e" ], [ "t", "t", "s", "l" ] ]
</pre></div>

<p>Can you find the five proper English words, where <code class="code">"lets"</code> does not count? Note that the fact that the list returned by <code class="func">Arrangements</code> (<a href="chap16.html#X7837B3357C7566C8"><span class="RefLink">16.2-4</span></a>) is a proper set means in this example that the possibilities are listed in the same order as they appear in the dictionary.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrArrangements( ["s","e","t","t","l","e"] );</span>
523
</pre></div>

<p>The function <code class="func">Combinations</code> (<a href="chap16.html#X8770F16D794C0ADB"><span class="RefLink">16.2-1</span></a>) computes unordered selections without repetitions, <code class="func">UnorderedTuples</code> (<a href="chap16.html#X81601C6786120DDC"><span class="RefLink">16.2-6</span></a>) computes unordered selections with repetitions, and <code class="func">Tuples</code> (<a href="chap16.html#X86A3CA0F7CC8C320"><span class="RefLink">16.2-8</span></a>) computes ordered selections with repetitions.</p>

<p><a id="X81601C6786120DDC" name="X81601C6786120DDC"></a></p>

<h5>16.2-6 UnorderedTuples</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UnorderedTuples</code>( <var class="Arg">set</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all unordered tuples of length <var class="Arg">k</var> of the set <var class="Arg">set</var>.</p>

<p>An <em>unordered tuple</em> of length <var class="Arg">k</var> of <var class="Arg">set</var> is an unordered selection with repetitions of <var class="Arg">set</var> and is represented by a sorted list of length <var class="Arg">k</var> containing elements from <var class="Arg">set</var>. There are <span class="SimpleMath">{|set| + k - 1 choose k}</span> (see <code class="func">Binomial</code> (<a href="chap16.html#X7A9AF5F58682819D"><span class="RefLink">16.1-2</span></a>)) such unordered tuples.</p>

<p>Note that the fact that <code class="func">UnorderedTuples</code> returns a set implies that the last index runs fastest. That means the first tuple contains the smallest element from <var class="Arg">set</var> <var class="Arg">k</var> times, the second tuple contains the smallest element of <var class="Arg">set</var> at all positions except at the last positions, where it contains the second smallest element from <var class="Arg">set</var> and so on.</p>

<p><a id="X7959281584C42C52" name="X7959281584C42C52"></a></p>

<h5>16.2-7 NrUnorderedTuples</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrUnorderedTuples</code>( <var class="Arg">set</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">UnorderedTuples(<var class="Arg">set</var>,<var class="Arg">k</var>)</code>.</p>

<p>As an example for unordered tuples think of a poker-like game played with 5 dice. Then each possible hand corresponds to an unordered five-tuple from the set <span class="SimpleMath">{ 1, 2, ..., 6 }</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrUnorderedTuples( [1..6], 5 );</span>
252
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UnorderedTuples( [1..6], 5 );</span>
[ [ 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 2 ], [ 1, 1, 1, 1, 3 ], [ 1, 1, 1, 1, 4 ],
  [ 1, 1, 1, 1, 5 ], [ 1, 1, 1, 1, 6 ], [ 1, 1, 1, 2, 2 ], [ 1, 1, 1, 2, 3 ],
  ... 100 more tuples ...
  [ 1, 3, 5, 5, 6 ], [ 1, 3, 5, 6, 6 ], [ 1, 3, 6, 6, 6 ], [ 1, 4, 4, 4, 4 ],
  ... 100 more tuples ...
  [ 3, 3, 5, 5, 5 ], [ 3, 3, 5, 5, 6 ], [ 3, 3, 5, 6, 6 ], [ 3, 3, 6, 6, 6 ],
  ... 32 more tuples ...
  [ 5, 5, 5, 6, 6 ], [ 5, 5, 6, 6, 6 ], [ 5, 6, 6, 6, 6 ], [ 6, 6, 6, 6, 6 ] ]
</pre></div>

<p>The function <code class="func">Combinations</code> (<a href="chap16.html#X8770F16D794C0ADB"><span class="RefLink">16.2-1</span></a>) computes unordered selections without repetitions, <code class="func">Arrangements</code> (<a href="chap16.html#X7837B3357C7566C8"><span class="RefLink">16.2-4</span></a>) computes ordered selections without repetitions, and <code class="func">Tuples</code> (<a href="chap16.html#X86A3CA0F7CC8C320"><span class="RefLink">16.2-8</span></a>) computes ordered selections with repetitions.</p>

<p><a id="X86A3CA0F7CC8C320" name="X86A3CA0F7CC8C320"></a></p>

<h5>16.2-8 Tuples</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Tuples</code>( <var class="Arg">set</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all ordered tuples of length <var class="Arg">k</var> of the set <var class="Arg">set</var>.</p>

<p>An <em>ordered tuple</em> of length <var class="Arg">k</var> of <var class="Arg">set</var> is an ordered selection with repetition and is represented by a list of length <var class="Arg">k</var> containing elements of <var class="Arg">set</var>. There are <span class="SimpleMath">|<var class="Arg">set</var>|^<var class="Arg">k</var></span> such ordered tuples.</p>

<p>Note that the fact that <code class="func">Tuples</code> returns a set implies that the last index runs fastest. That means the first tuple contains the smallest element from <var class="Arg">set</var> <var class="Arg">k</var> times, the second tuple contains the smallest element of <var class="Arg">set</var> at all positions except at the last positions, where it contains the second smallest element from <var class="Arg">set</var> and so on.</p>

<p><a id="X7BA135297E8DA819" name="X7BA135297E8DA819"></a></p>

<h5>16.2-9 EnumeratorOfTuples</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EnumeratorOfTuples</code>( <var class="Arg">set</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>This function is referred to as an example of enumerators that are defined by functions but are not constructed from a domain. The result is equal to that of <code class="code">Tuples( <var class="Arg">set</var>, <var class="Arg">k</var> )</code>. However, the entries are not stored physically in the list but are created/identified on demand.</p>

<p><a id="X86416A31807B0086" name="X86416A31807B0086"></a></p>

<h5>16.2-10 IteratorOfTuples</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IteratorOfTuples</code>( <var class="Arg">set</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>For a set <var class="Arg">set</var> and a positive integer <var class="Arg">k</var>, <code class="func">IteratorOfTuples</code> returns an iterator (see <a href="chap30.html#X85A3F00985453F95"><span class="RefLink">30.8</span></a>) of the set of all ordered tuples (see <code class="func">Tuples</code> (<a href="chap16.html#X86A3CA0F7CC8C320"><span class="RefLink">16.2-8</span></a>)) of length <var class="Arg">k</var> of the set <var class="Arg">set</var>. The tuples are returned in lexicographic order.</p>

<p><a id="X85E18A9A87FD4CA2" name="X85E18A9A87FD4CA2"></a></p>

<h5>16.2-11 NrTuples</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrTuples</code>( <var class="Arg">set</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">Tuples(<var class="Arg">set</var>,<var class="Arg">k</var>)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Tuples( [1,2,3], 2 );</span>
[ [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 2, 1 ], [ 2, 2 ], [ 2, 3 ], 
  [ 3, 1 ], [ 3, 2 ], [ 3, 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrTuples( [1..10], 5 );</span>
100000
</pre></div>

<p><code class="code">Tuples(<var class="Arg">set</var>,<var class="Arg">k</var>)</code> can also be viewed as the <var class="Arg">k</var>-fold cartesian product of <var class="Arg">set</var> (see <code class="func">Cartesian</code> (<a href="chap21.html#X7E1593B979BDF2CD"><span class="RefLink">21.20-16</span></a>)).</p>

<p>The function <code class="func">Combinations</code> (<a href="chap16.html#X8770F16D794C0ADB"><span class="RefLink">16.2-1</span></a>) computes unordered selections without repetitions, <code class="func">Arrangements</code> (<a href="chap16.html#X7837B3357C7566C8"><span class="RefLink">16.2-4</span></a>) computes ordered selections without repetitions, and finally the function <code class="func">UnorderedTuples</code> (<a href="chap16.html#X81601C6786120DDC"><span class="RefLink">16.2-6</span></a>) computes unordered selections with repetitions.</p>

<p><a id="X7B0143FB83F359B7" name="X7B0143FB83F359B7"></a></p>

<h5>16.2-12 PermutationsList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermutationsList</code>( <var class="Arg">mset</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">PermutationsList</code> returns the set of permutations of the multiset <var class="Arg">mset</var>.</p>

<p>A <em>permutation</em> is represented by a list that contains exactly the same elements as <var class="Arg">mset</var>, but possibly in different order. If <var class="Arg">mset</var> is a proper set there are <span class="SimpleMath">|<var class="Arg">mset</var>| !</span> (see <code class="func">Factorial</code> (<a href="chap16.html#X87665F748594BF29"><span class="RefLink">16.1-1</span></a>)) such permutations. Otherwise if the first elements appears <span class="SimpleMath">k_1</span> times, the second element appears <span class="SimpleMath">k_2</span> times and so on, the number of permutations is <span class="SimpleMath">|<var class="Arg">mset</var>| ! / (k_1! k_2! ...)</span>, which is sometimes called multinomial coefficient.</p>

<p><a id="X8629A2908050EB3A" name="X8629A2908050EB3A"></a></p>

<h5>16.2-13 NrPermutationsList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrPermutationsList</code>( <var class="Arg">mset</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">PermutationsList(<var class="Arg">mset</var>)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationsList( [1,2,3] );</span>
[ [ 1, 2, 3 ], [ 1, 3, 2 ], [ 2, 1, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ], 
  [ 3, 2, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationsList( [1,1,2,2] );</span>
[ [ 1, 1, 2, 2 ], [ 1, 2, 1, 2 ], [ 1, 2, 2, 1 ], [ 2, 1, 1, 2 ], 
  [ 2, 1, 2, 1 ], [ 2, 2, 1, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrPermutationsList( [1,2,2,3,3,3,4,4,4,4] );</span>
12600
</pre></div>

<p>The function <code class="func">Arrangements</code> (<a href="chap16.html#X7837B3357C7566C8"><span class="RefLink">16.2-4</span></a>) is the generalization of <code class="func">PermutationsList</code> (<a href="chap16.html#X7B0143FB83F359B7"><span class="RefLink">16.2-12</span></a>) that allows you to specify the size of the permutations. <code class="func">Derangements</code> (<a href="chap16.html#X79C159507B2BF1C9"><span class="RefLink">16.2-14</span></a>) computes permutations that have no fixed points.</p>

<p><a id="X79C159507B2BF1C9" name="X79C159507B2BF1C9"></a></p>

<h5>16.2-14 Derangements</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Derangements</code>( <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all derangements of the list <var class="Arg">list</var>.</p>

<p>A <em>derangement</em> is a fixpointfree permutation of <var class="Arg">list</var> and is represented by a list that contains exactly the same elements as <var class="Arg">list</var>, but in such an order that the derangement has at no position the same element as <var class="Arg">list</var>. If the list <var class="Arg">list</var> contains no element twice there are exactly <span class="SimpleMath">|<var class="Arg">list</var>|! (1/2! - 1/3! + 1/4! - ⋯ + (-1)^n / n!)</span> derangements.</p>

<p>Note that the ratio <code class="code">NrPermutationsList( [ 1 .. n ] ) / NrDerangements( [ 1 .. n ] )</code>, which is <span class="SimpleMath">n! / (n! (1/2! - 1/3! + 1/4! - ⋯ + (-1)^n / n!))</span> is an approximation for the base of the natural logarithm <span class="SimpleMath">e = 2.7182818285...</span>, which is correct to about <span class="SimpleMath">n</span> digits.</p>

<p><a id="X7C1741B181A9AB9C" name="X7C1741B181A9AB9C"></a></p>

<h5>16.2-15 NrDerangements</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrDerangements</code>( <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">Derangements(<var class="Arg">list</var>)</code>.</p>

<p>As an example of derangements suppose that you have to send four different letters to four different people. Then a derangement corresponds to a way to send those letters such that no letter reaches the intended person.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Derangements( [1,2,3,4] );</span>
[ [ 2, 1, 4, 3 ], [ 2, 3, 4, 1 ], [ 2, 4, 1, 3 ], [ 3, 1, 4, 2 ], 
  [ 3, 4, 1, 2 ], [ 3, 4, 2, 1 ], [ 4, 1, 2, 3 ], [ 4, 3, 1, 2 ], 
  [ 4, 3, 2, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrDerangements( [1..10] );</span>
1334961
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Int( 10^7*NrPermutationsList([1..10])/last );</span>
27182816
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Derangements( [1,1,2,2,3,3] );</span>
[ [ 2, 2, 3, 3, 1, 1 ], [ 2, 3, 1, 3, 1, 2 ], [ 2, 3, 1, 3, 2, 1 ], 
  [ 2, 3, 3, 1, 1, 2 ], [ 2, 3, 3, 1, 2, 1 ], [ 3, 2, 1, 3, 1, 2 ], 
  [ 3, 2, 1, 3, 2, 1 ], [ 3, 2, 3, 1, 1, 2 ], [ 3, 2, 3, 1, 2, 1 ], 
  [ 3, 3, 1, 1, 2, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrDerangements( [1,2,2,3,3,3,4,4,4,4] );</span>
338
</pre></div>

<p>The function <code class="func">PermutationsList</code> (<a href="chap16.html#X7B0143FB83F359B7"><span class="RefLink">16.2-12</span></a>) computes all permutations of a list.</p>

<p><a id="X7A13D8DC8204525F" name="X7A13D8DC8204525F"></a></p>

<h5>16.2-16 PartitionsSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartitionsSet</code>( <var class="Arg">set</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all unordered partitions of the set <var class="Arg">set</var> into <var class="Arg">k</var> pairwise disjoint nonempty sets. If <var class="Arg">k</var> is not given it returns all unordered partitions of <var class="Arg">set</var> for all <var class="Arg">k</var>.</p>

<p>An <em>unordered partition</em> of <var class="Arg">set</var> is a set of pairwise disjoint nonempty sets with union <var class="Arg">set</var> and is represented by a sorted list of such sets. There are <span class="SimpleMath">B( |set| )</span> (see <code class="func">Bell</code> (<a href="chap16.html#X7DC5667580522BDA"><span class="RefLink">16.1-3</span></a>)) partitions of the set <var class="Arg">set</var> and <span class="SimpleMath">S_2( |set|, k )</span> (see <code class="func">Stirling2</code> (<a href="chap16.html#X7C93E14D7BC360F0"><span class="RefLink">16.1-6</span></a>)) partitions with <var class="Arg">k</var> elements.</p>

<p><a id="X7BCD7FC2876386F1" name="X7BCD7FC2876386F1"></a></p>

<h5>16.2-17 NrPartitionsSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrPartitionsSet</code>( <var class="Arg">set</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">PartitionsSet(<var class="Arg">set</var>,<var class="Arg">k</var>)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PartitionsSet( [1,2,3] );</span>
[ [ [ 1 ], [ 2 ], [ 3 ] ], [ [ 1 ], [ 2, 3 ] ], [ [ 1, 2 ], [ 3 ] ], 
  [ [ 1, 2, 3 ] ], [ [ 1, 3 ], [ 2 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PartitionsSet( [1,2,3,4], 2 );</span>
[ [ [ 1 ], [ 2, 3, 4 ] ], [ [ 1, 2 ], [ 3, 4 ] ], 
  [ [ 1, 2, 3 ], [ 4 ] ], [ [ 1, 2, 4 ], [ 3 ] ], 
  [ [ 1, 3 ], [ 2, 4 ] ], [ [ 1, 3, 4 ], [ 2 ] ], 
  [ [ 1, 4 ], [ 2, 3 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrPartitionsSet( [1..6] );</span>
203
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrPartitionsSet( [1..10], 3 );</span>
9330
</pre></div>

<p>Note that <code class="func">PartitionsSet</code> (<a href="chap16.html#X7A13D8DC8204525F"><span class="RefLink">16.2-16</span></a>) does currently not support multisets and that there is currently no ordered counterpart.</p>

<p><a id="X84A6D15F8107008B" name="X84A6D15F8107008B"></a></p>

<h5>16.2-18 Partitions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Partitions</code>( <var class="Arg">n</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all (unordered) partitions of the positive integer <var class="Arg">n</var> into sums with <var class="Arg">k</var> summands. If <var class="Arg">k</var> is not given it returns all unordered partitions of <var class="Arg">set</var> for all <var class="Arg">k</var>.</p>

<p>An <em>unordered partition</em> is an unordered sum <span class="SimpleMath">n = p_1 + p_2 + ⋯ + p_k</span> of positive integers and is represented by the list <span class="SimpleMath">p = [ p_1, p_2, ..., p_k ]</span>, in nonincreasing order, i.e., <span class="SimpleMath">p_1 ≥ p_2 ≥ ... ≥ p_k</span>. We write <span class="SimpleMath">p ⊢ n</span>. There are approximately <span class="SimpleMath">exp(π sqrt{2/3 n}) / (4 sqrt{3} n)</span> such partitions, use <code class="func">NrPartitions</code> (<a href="chap16.html#X86933C4F795C4EBD"><span class="RefLink">16.2-20</span></a>) to compute the precise number.</p>

<p>If you want to loop over all partitions of some larger <var class="Arg">n</var> use the more memory efficient <code class="func">IteratorOfPartitions</code> (<a href="chap16.html#X8793AEBD7E529E1D"><span class="RefLink">16.2-19</span></a>).</p>

<p>It is possible to associate with every partition of the integer <var class="Arg">n</var> a conjugacy class of permutations in the symmetric group on <var class="Arg">n</var> points and vice versa. Therefore <span class="SimpleMath">p(n) :=</span><code class="code">NrPartitions</code><span class="SimpleMath">(n)</span> is the number of conjugacy classes of the symmetric group on <var class="Arg">n</var> points.</p>

<p>Ramanujan found the identities <span class="SimpleMath">p(5i+4) = 0</span> mod 5, <span class="SimpleMath">p(7i+5) = 0</span> mod 7 and <span class="SimpleMath">p(11i+6) = 0</span> mod 11 and many other fascinating things about the number of partitions.</p>

<p><a id="X8793AEBD7E529E1D" name="X8793AEBD7E529E1D"></a></p>

<h5>16.2-19 IteratorOfPartitions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IteratorOfPartitions</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>For a positive integer <var class="Arg">n</var>, <code class="func">IteratorOfPartitions</code> returns an iterator (see <a href="chap30.html#X85A3F00985453F95"><span class="RefLink">30.8</span></a>) of the set of partitions of <var class="Arg">n</var> (see <code class="func">Partitions</code> (<a href="chap16.html#X84A6D15F8107008B"><span class="RefLink">16.2-18</span></a>)). The partitions of <var class="Arg">n</var> are returned in lexicographic order.</p>

<p><a id="X86933C4F795C4EBD" name="X86933C4F795C4EBD"></a></p>

<h5>16.2-20 NrPartitions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrPartitions</code>( <var class="Arg">n</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">Partitions(<var class="Arg">set</var>,<var class="Arg">k</var>)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Partitions( 7 );</span>
[ [ 1, 1, 1, 1, 1, 1, 1 ], [ 2, 1, 1, 1, 1, 1 ], [ 2, 2, 1, 1, 1 ], 
  [ 2, 2, 2, 1 ], [ 3, 1, 1, 1, 1 ], [ 3, 2, 1, 1 ], [ 3, 2, 2 ], 
  [ 3, 3, 1 ], [ 4, 1, 1, 1 ], [ 4, 2, 1 ], [ 4, 3 ], [ 5, 1, 1 ], 
  [ 5, 2 ], [ 6, 1 ], [ 7 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Partitions( 8, 3 );</span>
[ [ 3, 3, 2 ], [ 4, 2, 2 ], [ 4, 3, 1 ], [ 5, 2, 1 ], [ 6, 1, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrPartitions( 7 );</span>
15
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrPartitions( 100 );</span>
190569292
</pre></div>

<p>The function <code class="func">OrderedPartitions</code> (<a href="chap16.html#X820DF201871F2723"><span class="RefLink">16.2-21</span></a>) is the ordered counterpart of <code class="func">Partitions</code> (<a href="chap16.html#X84A6D15F8107008B"><span class="RefLink">16.2-18</span></a>).</p>

<p><a id="X820DF201871F2723" name="X820DF201871F2723"></a></p>

<h5>16.2-21 OrderedPartitions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrderedPartitions</code>( <var class="Arg">n</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all ordered partitions of the positive integer <var class="Arg">n</var> into sums with <var class="Arg">k</var> summands. If <var class="Arg">k</var> is not given it returns all ordered partitions of <var class="Arg">set</var> for all <var class="Arg">k</var>.</p>

<p>An <em>ordered partition</em> is an ordered sum <span class="SimpleMath">n = p_1 + p_2 + ... + p_k</span> of positive integers and is represented by the list <span class="SimpleMath">[ p_1, p_2, ..., p_k ]</span>. There are totally <span class="SimpleMath">2^{n-1}</span> ordered partitions and <span class="SimpleMath">{n-1 choose k-1}</span> (see <code class="func">Binomial</code> (<a href="chap16.html#X7A9AF5F58682819D"><span class="RefLink">16.1-2</span></a>)) ordered partitions with <var class="Arg">k</var> summands.</p>

<p>Do not call <code class="func">OrderedPartitions</code> with an <var class="Arg">n</var> much larger than <span class="SimpleMath">15</span>, the list will simply become too large.</p>

<p><a id="X80BB9F4982CA1E8B" name="X80BB9F4982CA1E8B"></a></p>

<h5>16.2-22 NrOrderedPartitions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrOrderedPartitions</code>( <var class="Arg">n</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">OrderedPartitions(<var class="Arg">set</var>,<var class="Arg">k</var>)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrderedPartitions( 5 );</span>
[ [ 1, 1, 1, 1, 1 ], [ 1, 1, 1, 2 ], [ 1, 1, 2, 1 ], [ 1, 1, 3 ], 
  [ 1, 2, 1, 1 ], [ 1, 2, 2 ], [ 1, 3, 1 ], [ 1, 4 ], [ 2, 1, 1, 1 ], 
  [ 2, 1, 2 ], [ 2, 2, 1 ], [ 2, 3 ], [ 3, 1, 1 ], [ 3, 2 ], 
  [ 4, 1 ], [ 5 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrderedPartitions( 6, 3 );</span>
[ [ 1, 1, 4 ], [ 1, 2, 3 ], [ 1, 3, 2 ], [ 1, 4, 1 ], [ 2, 1, 3 ], 
  [ 2, 2, 2 ], [ 2, 3, 1 ], [ 3, 1, 2 ], [ 3, 2, 1 ], [ 4, 1, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrOrderedPartitions(20);</span>
524288
</pre></div>

<p>The function <code class="func">Partitions</code> (<a href="chap16.html#X84A6D15F8107008B"><span class="RefLink">16.2-18</span></a>) is the unordered counterpart of <code class="func">OrderedPartitions</code> (<a href="chap16.html#X820DF201871F2723"><span class="RefLink">16.2-21</span></a>).</p>

<p><a id="X8009520C82942461" name="X8009520C82942461"></a></p>

<h5>16.2-23 PartitionsGreatestLE</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartitionsGreatestLE</code>( <var class="Arg">n</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all (unordered) partitions of the integer <var class="Arg">n</var> having parts less or equal to the integer <var class="Arg">m</var>.</p>

<p><a id="X7CB8D4FF8592A9BB" name="X7CB8D4FF8592A9BB"></a></p>

<h5>16.2-24 PartitionsGreatestEQ</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartitionsGreatestEQ</code>( <var class="Arg">n</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the set of all (unordered) partitions of the integer <var class="Arg">n</var> having greatest part equal to the integer <var class="Arg">m</var>.</p>

<p><a id="X7A70D4F3809494E7" name="X7A70D4F3809494E7"></a></p>

<h5>16.2-25 RestrictedPartitions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedPartitions</code>( <var class="Arg">n</var>, <var class="Arg">set</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>In the first form <code class="func">RestrictedPartitions</code> returns the set of all restricted partitions of the positive integer <var class="Arg">n</var> into sums with <var class="Arg">k</var> summands with the summands of the partition coming from the set <var class="Arg">set</var>. If <var class="Arg">k</var> is not given all restricted partitions for all <var class="Arg">k</var> are returned.</p>

<p>A <em>restricted partition</em> is like an ordinary partition (see <code class="func">Partitions</code> (<a href="chap16.html#X84A6D15F8107008B"><span class="RefLink">16.2-18</span></a>)) an unordered sum <span class="SimpleMath">n = p_1 + p_2 + ... + p_k</span> of positive integers and is represented by the list <span class="SimpleMath">p = [ p_1, p_2, ..., p_k ]</span>, in nonincreasing order. The difference is that here the <span class="SimpleMath">p_i</span> must be elements from the set <var class="Arg">set</var>, while for ordinary partitions they may be elements from <code class="code">[ 1 .. n ]</code>.</p>

<p><a id="X800B43838742FBF4" name="X800B43838742FBF4"></a></p>

<h5>16.2-26 NrRestrictedPartitions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrRestrictedPartitions</code>( <var class="Arg">n</var>, <var class="Arg">set</var>[, <var class="Arg">k</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">RestrictedPartitions(<var class="Arg">n</var>,<var class="Arg">set</var>,<var class="Arg">k</var>)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RestrictedPartitions( 8, [1,3,5,7] );</span>
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ 3, 1, 1, 1, 1, 1 ], [ 3, 3, 1, 1 ], 
  [ 5, 1, 1, 1 ], [ 5, 3 ], [ 7, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrRestrictedPartitions(50,[1,2,5,10,20,50]);</span>
451
</pre></div>

<p>The last example tells us that there are 451 ways to return 50 pence change using 1, 2, 5, 10, 20 and 50 pence coins.</p>

<p><a id="X7F4EDCCA780B469D" name="X7F4EDCCA780B469D"></a></p>

<h5>16.2-27 SignPartition</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SignPartition</code>( <var class="Arg">pi</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the sign of a permutation with cycle structure <var class="Arg">pi</var>.</p>

<p>This function actually describes a homomorphism from the symmetric group <span class="SimpleMath">S_n</span> into the cyclic group of order 2, whose kernel is exactly the alternating group <span class="SimpleMath">A_n</span> (see <code class="func">SignPerm</code> (<a href="chap42.html#X7BE5011B7C0DB704"><span class="RefLink">42.4-1</span></a>)). Partitions of sign 1 are called <em>even</em> partitions while partitions of sign <span class="SimpleMath">-1</span> are called <em>odd</em>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SignPartition([6,5,4,3,2,1]);</span>
-1
</pre></div>

<p><a id="X7DB9BEB6856EC03D" name="X7DB9BEB6856EC03D"></a></p>

<h5>16.2-28 AssociatedPartition</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AssociatedPartition</code>( <var class="Arg">pi</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">AssociatedPartition</code> returns the associated partition of the partition <var class="Arg">pi</var> which is obtained by transposing the corresponding Young diagram.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AssociatedPartition([4,2,1]);</span>
[ 3, 2, 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AssociatedPartition([6]);</span>
[ 1, 1, 1, 1, 1, 1 ]
</pre></div>

<p><a id="X7A95D8A6820363A8" name="X7A95D8A6820363A8"></a></p>

<h5>16.2-29 PowerPartition</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PowerPartition</code>( <var class="Arg">pi</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">PowerPartition</code> returns the partition corresponding to the <var class="Arg">k</var>-th power of a permutation with cycle structure <var class="Arg">pi</var>.</p>

<p>Each part <span class="SimpleMath">l</span> of <var class="Arg">pi</var> is replaced by <span class="SimpleMath">d = gcd(l, k)</span> parts <span class="SimpleMath">l/d</span>. So if <var class="Arg">pi</var> is a partition of <span class="SimpleMath">n</span> then <span class="SimpleMath"><var class="Arg">pi</var>^<var class="Arg">k</var></span> also is a partition of <span class="SimpleMath">n</span>. <code class="func">PowerPartition</code> describes the power map of symmetric groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerPartition([6,5,4,3,2,1], 3);</span>
[ 5, 4, 2, 2, 2, 2, 1, 1, 1, 1 ]
</pre></div>

<p><a id="X877D997B7F66A119" name="X877D997B7F66A119"></a></p>

<h5>16.2-30 PartitionTuples</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartitionTuples</code>( <var class="Arg">n</var>, <var class="Arg">r</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">PartitionTuples</code> returns the list of all <var class="Arg">r</var>-tuples of partitions which together form a partition of <var class="Arg">n</var>.</p>

<p><var class="Arg">r</var>-tuples of partitions describe the classes and the characters of wreath products of groups with <var class="Arg">r</var> conjugacy classes with the symmetric group <span class="SimpleMath">S_n</span>.</p>

<p><a id="X7F44AD098561DE32" name="X7F44AD098561DE32"></a></p>

<h5>16.2-31 NrPartitionTuples</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrPartitionTuples</code>( <var class="Arg">n</var>, <var class="Arg">r</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the number of <code class="code">PartitionTuples( <var class="Arg">n</var>, <var class="Arg">r</var> )</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PartitionTuples(3, 2);</span>
[ [ [ 1, 1, 1 ], [  ] ], [ [ 1, 1 ], [ 1 ] ], [ [ 1 ], [ 1, 1 ] ], 
  [ [  ], [ 1, 1, 1 ] ], [ [ 2, 1 ], [  ] ], [ [ 1 ], [ 2 ] ], 
  [ [ 2 ], [ 1 ] ], [ [  ], [ 2, 1 ] ], [ [ 3 ], [  ] ], 
  [ [  ], [ 3 ] ] ]
</pre></div>

<p><a id="X83DC50B67D74E674" name="X83DC50B67D74E674"></a></p>

<h4>16.3 <span class="Heading">Fibonacci and Lucas Sequences</span></h4>

<p><a id="X85AE1D70803A886C" name="X85AE1D70803A886C"></a></p>

<h5>16.3-1 Fibonacci</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Fibonacci</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <var class="Arg">n</var>th number of the <em>Fibonacci sequence</em>. The Fibonacci sequence <span class="SimpleMath">F_n</span> is defined by the initial conditions <span class="SimpleMath">F_1 = F_2 = 1</span> and the recurrence relation <span class="SimpleMath">F_{n+2} = F_{n+1} + F_n</span>. For negative <span class="SimpleMath">n</span> we define <span class="SimpleMath">F_n = (-1)^{n+1} F_{-n}</span>, which is consistent with the recurrence relation.</p>

<p>Using generating functions one can prove that <span class="SimpleMath">F_n = ϕ^n - 1/ϕ^n</span>, where <span class="SimpleMath">ϕ</span> is <span class="SimpleMath">(sqrt{5} + 1)/2</span>, i.e., one root of <span class="SimpleMath">x^2 - x - 1 = 0</span>. Fibonacci numbers have the property <span class="SimpleMath">gcd( F_m, F_n ) = F_{gcd(m,n)}</span>. But a pair of Fibonacci numbers requires more division steps in Euclid's algorithm (see <code class="func">Gcd</code> (<a href="chap56.html#X7DE207718456F98F"><span class="RefLink">56.7-1</span></a>)) than any other pair of integers of the same size. <code class="code">Fibonacci(<var class="Arg">k</var>)</code> is the special case <code class="code">Lucas(1,-1,<var class="Arg">k</var>)[1]</code> (see <code class="func">Lucas</code> (<a href="chap16.html#X7830A03181D67192"><span class="RefLink">16.3-2</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Fibonacci( 10 );</span>
55
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Fibonacci( 35 );</span>
9227465
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Fibonacci( -10 );</span>
-55
</pre></div>

<p><a id="X7830A03181D67192" name="X7830A03181D67192"></a></p>

<h5>16.3-2 Lucas</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Lucas</code>( <var class="Arg">P</var>, <var class="Arg">Q</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <var class="Arg">k</var>-th values of the <em>Lucas sequence</em> with parameters <var class="Arg">P</var> and <var class="Arg">Q</var>, which must be integers, as a list of three integers. If <var class="Arg">k</var> is a negative integer, then the values of the Lucas sequence may be nonintegral rational numbers, with denominator roughly <var class="Arg">Q</var>^<var class="Arg">k</var>.</p>

<p>Let <span class="SimpleMath">α, β</span> be the two roots of <span class="SimpleMath">x^2 - P x + Q</span> then we define <code class="code">Lucas( <var class="Arg">P</var>, <var class="Arg">Q</var>, <var class="Arg">k</var> )[1]</code> <span class="SimpleMath">= U_k = (α^k - β^k) / (α - β)</span> and <code class="code">Lucas( <var class="Arg">P</var>, <var class="Arg">Q</var>, <var class="Arg">k</var> )[2]</code> <span class="SimpleMath">= V_k = (α^k + β^k)</span> and as a convenience <code class="code">Lucas( <var class="Arg">P</var>, <var class="Arg">Q</var>, <var class="Arg">k</var> )[3]</code> <span class="SimpleMath">= Q^k</span>.</p>

<p>The following recurrence relations are easily derived from the definition <span class="SimpleMath">U_0 = 0, U_1 = 1, U_k = P U_{k-1} - Q U_{k-2}</span> and <span class="SimpleMath">V_0 = 2, V_1 = P, V_k = P V_{k-1} - Q V_{k-2}</span>. Those relations are actually used to define <code class="func">Lucas</code> if <span class="SimpleMath">α = β</span>.</p>

<p>Also the more complex relations used in <code class="func">Lucas</code> can be easily derived <span class="SimpleMath">U_2k = U_k V_k</span>, <span class="SimpleMath">U_{2k+1} = (P U_2k + V_2k) / 2</span> and <span class="SimpleMath">V_2k = V_k^2 - 2 Q^k</span>, <span class="SimpleMath">V_{2k+1} = ((P^2-4Q) U_2k + P V_2k) / 2</span>.</p>

<p><code class="code">Fibonacci(<var class="Arg">k</var>)</code> (see <code class="func">Fibonacci</code> (<a href="chap16.html#X85AE1D70803A886C"><span class="RefLink">16.3-1</span></a>)) is simply <code class="code">Lucas(1,-1,<var class="Arg">k</var>)[1]</code>. In an abuse of notation, the sequence <code class="code">Lucas(1,-1,<var class="Arg">k</var>)[2]</code> is sometimes called the Lucas sequence.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..10], i -&gt; Lucas(1,-2,i)[1] );     # 2^k - (-1)^k)/3</span>
[ 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..10], i -&gt; Lucas(1,-2,i)[2] );     # 2^k + (-1)^k</span>
[ 2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..10], i -&gt; Lucas(1,-1,i)[1] );     # Fibonacci sequence</span>
[ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..10], i -&gt; Lucas(2,1,i)[1] );      # the roots are equal</span>
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
</pre></div>

<p><a id="X821888E77EB43F67" name="X821888E77EB43F67"></a></p>

<h4>16.4 <span class="Heading">Permanent of a Matrix</span></h4>

<p><a id="X7F0942DD83BBAB7A" name="X7F0942DD83BBAB7A"></a></p>

<h5>16.4-1 Permanent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Permanent</code>( <var class="Arg">mat</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the <em>permanent</em> of the matrix <var class="Arg">mat</var>. The permanent is defined by <span class="SimpleMath">∑_{p ∈ Sym(n)} ∏_{i = 1}^n mat[i][i^p]</span>.</p>

<p>Note the similarity of the definition of the permanent to the definition of the determinant (see <code class="func">DeterminantMat</code> (<a href="chap24.html#X83045F6F82C180E1"><span class="RefLink">24.4-4</span></a>)). In fact the only difference is the missing sign of the permutation. However the permanent is quite unlike the determinant, for example it is not multilinear or alternating. It has however important combinatorial properties.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Permanent( [[0,1,1,1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [1,0,1,1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [1,1,0,1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [1,1,1,0]] );  # inefficient way to compute NrDerangements([1..4])</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># 24 permutations fit the projective plane of order 2:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Permanent( [[1,1,0,1,0,0,0],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [0,1,1,0,1,0,0],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [0,0,1,1,0,1,0],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [0,0,0,1,1,0,1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [1,0,0,0,1,1,0],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [0,1,0,0,0,1,1],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     [1,0,1,0,0,0,1]] );</span>
24
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap15.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap17.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>