This file is indexed.

/usr/share/gap/doc/ref/chap34.html is in gap-doc 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 34: Orderings</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap34"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap33.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap35.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap34_mj.html">[MathJax on]</a></p>
<p><a id="X7E4AAA7382D42361" name="X7E4AAA7382D42361"></a></p>
<div class="ChapSects"><a href="chap34.html#X7E4AAA7382D42361">34 <span class="Heading">Orderings</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap34.html#X79B1262585CE5427">34.1 <span class="Heading">IsOrdering (Filter)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7EFDF115780934AF">34.1-1 IsOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X85E6445C87283BEC">34.1-2 OrderingsFamily</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap34.html#X85C4CAA784BD7F01">34.2 <span class="Heading">Building new orderings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X78B5D91278EFAFC9">34.2-1 OrderingByLessThanFunctionNC</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X813D5BEB80506CE4">34.2-2 OrderingByLessThanOrEqualFunctionNC</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap34.html#X7F62235B87C20A54">34.3 <span class="Heading">Properties and basic functionality</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X84FA448B7B4DDFDC">34.3-1 IsWellFoundedOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X867AC932843AD921">34.3-2 IsTotalOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X814E5E7D85EDCAC7">34.3-3 IsIncomparableUnder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X872497B9782B97B4">34.3-4 FamilyForOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7D08ED6882015BFB">34.3-5 LessThanFunction</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X857E800583E9026D">34.3-6 LessThanOrEqualFunction</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X87F51D737C695D41">34.3-7 IsLessThanUnder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X8308B7DF7AAF6D9C">34.3-8 IsLessThanOrEqualUnder</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap34.html#X834CD021878745BC">34.4 <span class="Heading">Orderings on families of associative words</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7C1808AE84B989AE">34.4-1 IsOrderingOnFamilyOfAssocWords</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X8175B8887868F29A">34.4-2 IsTranslationInvariantOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X816CD4BD82D41ED0">34.4-3 IsReductionOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7B6051C282EA88D5">34.4-4 OrderingOnGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X79B2DEB786680F51">34.4-5 LexicographicOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X802EB44B7E7B1F57">34.4-6 ShortLexOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7B6ED9327E0A2099">34.4-7 IsShortLexOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X849DD7C6782333D5">34.4-8 WeightLexOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7C7D7954784F5C73">34.4-9 IsWeightLexOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7E7FAEA484148947">34.4-10 WeightOfGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X79D1019E7C3E575E">34.4-11 BasicWreathProductOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7CB765477FBC3383">34.4-12 IsBasicWreathProductOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7E6DF1B17F53642E">34.4-13 WreathProductOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7F0EE6E987148C96">34.4-14 IsWreathProductOrdering</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap34.html#X7901AA4479EDBE72">34.4-15 LevelsOfGenerators</a></span>
</div></div>
</div>

<h3>34 <span class="Heading">Orderings</span></h3>

<p>In <strong class="pkg">GAP</strong> an ordering is a relation defined on a family, which is reflexive, anti-symmetric and transitive.</p>

<p><a id="X79B1262585CE5427" name="X79B1262585CE5427"></a></p>

<h4>34.1 <span class="Heading">IsOrdering (Filter)</span></h4>

<p><a id="X7EFDF115780934AF" name="X7EFDF115780934AF"></a></p>

<h5>34.1-1 IsOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsOrdering</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;category&nbsp;)</td></tr></table></div>
<p>returns <code class="keyw">true</code> if and only if the object <var class="Arg">ord</var> is an ordering.</p>

<p><a id="X85E6445C87283BEC" name="X85E6445C87283BEC"></a></p>

<h5>34.1-2 OrderingsFamily</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrderingsFamily</code>( <var class="Arg">fam</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>for a family <var class="Arg">fam</var>, returns the family of all orderings on elements of <var class="Arg">fam</var>.</p>

<p><a id="X85C4CAA784BD7F01" name="X85C4CAA784BD7F01"></a></p>

<h4>34.2 <span class="Heading">Building new orderings</span></h4>

<p><a id="X78B5D91278EFAFC9" name="X78B5D91278EFAFC9"></a></p>

<h5>34.2-1 OrderingByLessThanFunctionNC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrderingByLessThanFunctionNC</code>( <var class="Arg">fam</var>, <var class="Arg">lt</var>[, <var class="Arg">l</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Called with two arguments, <code class="func">OrderingByLessThanFunctionNC</code> returns the ordering on the elements of the elements of the family <var class="Arg">fam</var>, according to the <code class="func">LessThanFunction</code> (<a href="chap34.html#X7D08ED6882015BFB"><span class="RefLink">34.3-5</span></a>) value given by <var class="Arg">lt</var>, where <var class="Arg">lt</var> is a function that takes two arguments in <var class="Arg">fam</var> and returns <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>Called with three arguments, for a family <var class="Arg">fam</var>, a function <var class="Arg">lt</var> that takes two arguments in <var class="Arg">fam</var> and returns <code class="keyw">true</code> or <code class="keyw">false</code>, and a list <var class="Arg">l</var> of properties of orderings, <code class="func">OrderingByLessThanFunctionNC</code> returns the ordering on the elements of <var class="Arg">fam</var> with <code class="func">LessThanFunction</code> (<a href="chap34.html#X7D08ED6882015BFB"><span class="RefLink">34.3-5</span></a>) value given by <var class="Arg">lt</var> and with the properties from <var class="Arg">l</var> set to <code class="keyw">true</code>.</p>

<p><a id="X813D5BEB80506CE4" name="X813D5BEB80506CE4"></a></p>

<h5>34.2-2 OrderingByLessThanOrEqualFunctionNC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrderingByLessThanOrEqualFunctionNC</code>( <var class="Arg">fam</var>, <var class="Arg">lteq</var>[, <var class="Arg">l</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Called with two arguments, <code class="func">OrderingByLessThanOrEqualFunctionNC</code> returns the ordering on the elements of the elements of the family <var class="Arg">fam</var> according to the <code class="func">LessThanOrEqualFunction</code> (<a href="chap34.html#X857E800583E9026D"><span class="RefLink">34.3-6</span></a>) value given by <var class="Arg">lteq</var>, where <var class="Arg">lteq</var> is a function that takes two arguments in <var class="Arg">fam</var> and returns <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>Called with three arguments, for a family <var class="Arg">fam</var>, a function <var class="Arg">lteq</var> that takes two arguments in <var class="Arg">fam</var> and returns <code class="keyw">true</code> or <code class="keyw">false</code>, and a list <var class="Arg">l</var> of properties of orderings, <code class="func">OrderingByLessThanOrEqualFunctionNC</code> returns the ordering on the elements of <var class="Arg">fam</var> with <code class="func">LessThanOrEqualFunction</code> (<a href="chap34.html#X857E800583E9026D"><span class="RefLink">34.3-6</span></a>) value given by <var class="Arg">lteq</var> and with the properties from <var class="Arg">l</var> set to <code class="keyw">true</code>.</p>

<p>Notice that these functions do not check whether <var class="Arg">fam</var> and <var class="Arg">lt</var> or <var class="Arg">lteq</var> are compatible, and whether the properties listed in <var class="Arg">l</var> are indeed satisfied.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := FreeSemigroup("a","b");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a := GeneratorsOfSemigroup(f)[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b := GeneratorsOfSemigroup(f)[2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lt := function(x,y) return Length(x)&lt;Length(y); end;</span>
function( x, y ) ... end
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fam := FamilyObj(a);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ord := OrderingByLessThanFunctionNC(fam,lt);</span>
Ordering
</pre></div>

<p><a id="X7F62235B87C20A54" name="X7F62235B87C20A54"></a></p>

<h4>34.3 <span class="Heading">Properties and basic functionality</span></h4>

<p><a id="X84FA448B7B4DDFDC" name="X84FA448B7B4DDFDC"></a></p>

<h5>34.3-1 IsWellFoundedOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsWellFoundedOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var>, returns <code class="keyw">true</code> if and only if the ordering is well founded. An ordering <var class="Arg">ord</var> is well founded if it admits no infinite descending chains. Normally this property is set at the time of creation of the ordering and there is no general method to check whether a certain ordering is well founded.</p>

<p><a id="X867AC932843AD921" name="X867AC932843AD921"></a></p>

<h5>34.3-2 IsTotalOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTotalOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var>, returns true if and only if the ordering is total. An ordering <var class="Arg">ord</var> is total if any two elements of the family are comparable under <var class="Arg">ord</var>. Normally this property is set at the time of creation of the ordering and there is no general method to check whether a certain ordering is total.</p>

<p><a id="X814E5E7D85EDCAC7" name="X814E5E7D85EDCAC7"></a></p>

<h5>34.3-3 IsIncomparableUnder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsIncomparableUnder</code>( <var class="Arg">ord</var>, <var class="Arg">el1</var>, <var class="Arg">el2</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var> on the elements of the family of <var class="Arg">el1</var> and <var class="Arg">el2</var>, returns <code class="keyw">true</code> if <var class="Arg">el1</var> <span class="SimpleMath">≠</span> <var class="Arg">el2</var> and <code class="code">IsLessThanUnder</code>(<var class="Arg">ord</var>,<var class="Arg">el1</var>,<var class="Arg">el2</var>), <code class="code">IsLessThanUnder</code>(<var class="Arg">ord</var>,<var class="Arg">el2</var>,<var class="Arg">el1</var>) are both <code class="keyw">false</code>; and returns <code class="keyw">false</code> otherwise.</p>

<p><a id="X872497B9782B97B4" name="X872497B9782B97B4"></a></p>

<h5>34.3-4 FamilyForOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FamilyForOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var>, returns the family of elements that the ordering <var class="Arg">ord</var> compares.</p>

<p><a id="X7D08ED6882015BFB" name="X7D08ED6882015BFB"></a></p>

<h5>34.3-5 LessThanFunction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LessThanFunction</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var>, returns a function <span class="SimpleMath">f</span> which takes two elements <span class="SimpleMath">el1</span>, <span class="SimpleMath">el2</span> in <code class="code">FamilyForOrdering</code>(<var class="Arg">ord</var>) and returns <code class="keyw">true</code> if <span class="SimpleMath">el1</span> is strictly less than <span class="SimpleMath">el2</span> (with respect to <var class="Arg">ord</var>), and returns <code class="keyw">false</code> otherwise.</p>

<p><a id="X857E800583E9026D" name="X857E800583E9026D"></a></p>

<h5>34.3-6 LessThanOrEqualFunction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LessThanOrEqualFunction</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var>, returns a function that takes two elements <span class="SimpleMath">el1</span>, <span class="SimpleMath">el2</span> in <code class="code">FamilyForOrdering</code>(<var class="Arg">ord</var>) and returns <code class="keyw">true</code> if <span class="SimpleMath">el1</span> is less than <em>or equal to</em> <span class="SimpleMath">el2</span> (with respect to <var class="Arg">ord</var>), and returns <code class="keyw">false</code> otherwise.</p>

<p><a id="X87F51D737C695D41" name="X87F51D737C695D41"></a></p>

<h5>34.3-7 IsLessThanUnder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLessThanUnder</code>( <var class="Arg">ord</var>, <var class="Arg">el1</var>, <var class="Arg">el2</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var> on the elements of the family of <var class="Arg">el1</var> and <var class="Arg">el2</var>, returns <code class="keyw">true</code> if <var class="Arg">el1</var> is (strictly) less than <var class="Arg">el2</var> with respect to <var class="Arg">ord</var>, and <code class="keyw">false</code> otherwise.</p>

<p><a id="X8308B7DF7AAF6D9C" name="X8308B7DF7AAF6D9C"></a></p>

<h5>34.3-8 IsLessThanOrEqualUnder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLessThanOrEqualUnder</code>( <var class="Arg">ord</var>, <var class="Arg">el1</var>, <var class="Arg">el2</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var> on the elements of the family of <var class="Arg">el1</var> and <var class="Arg">el2</var>, returns <code class="keyw">true</code> if <var class="Arg">el1</var> is less than or equal to <var class="Arg">el2</var> with respect to <var class="Arg">ord</var>, and <code class="keyw">false</code> otherwise.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(ord,a,a*b);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanOrEqualUnder(ord,a*b,a*b);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIncomparableUnder(ord,a,b);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FamilyForOrdering(ord) = FamilyObj(a);</span>
true
</pre></div>

<p><a id="X834CD021878745BC" name="X834CD021878745BC"></a></p>

<h4>34.4 <span class="Heading">Orderings on families of associative words</span></h4>

<p>We now consider orderings on families of associative words.</p>

<p>Examples of families of associative words are the families of elements of a free semigroup or a free monoid; these are the two cases that we consider mostly. Associated with those families is an alphabet, which is the semigroup (resp. monoid) generating set of the correspondent free semigroup (resp. free monoid). For definitions of the orderings considered, see Sims <a href="chapBib.html#biBSims94">[Sim94]</a>.</p>

<p><a id="X7C1808AE84B989AE" name="X7C1808AE84B989AE"></a></p>

<h5>34.4-1 IsOrderingOnFamilyOfAssocWords</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsOrderingOnFamilyOfAssocWords</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var>, returns true if <var class="Arg">ord</var> is an ordering over a family of associative words.</p>

<p><a id="X8175B8887868F29A" name="X8175B8887868F29A"></a></p>

<h5>34.4-2 IsTranslationInvariantOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTranslationInvariantOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var> on a family of associative words, returns <code class="keyw">true</code> if and only if the ordering is translation invariant.</p>

<p>This is a property of orderings on families of associative words. An ordering <var class="Arg">ord</var> over a family <span class="SimpleMath">F</span>, with alphabet <span class="SimpleMath">X</span> is translation invariant if <code class="code">IsLessThanUnder(</code> <var class="Arg">ord</var>, <span class="SimpleMath">u</span>, <span class="SimpleMath">v</span> <code class="code">)</code> implies that for any <span class="SimpleMath">a, b ∈ X^*</span>, <code class="code">IsLessThanUnder(</code> <var class="Arg">ord</var>, <span class="SimpleMath">a*u*b</span>, <span class="SimpleMath">a*v*b</span> <code class="code">)</code>.</p>

<p><a id="X816CD4BD82D41ED0" name="X816CD4BD82D41ED0"></a></p>

<h5>34.4-3 IsReductionOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReductionOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var> on a family of associative words, returns <code class="keyw">true</code> if and only if the ordering is a reduction ordering. An ordering <var class="Arg">ord</var> is a reduction ordering if it is well founded and translation invariant.</p>

<p><a id="X7B6051C282EA88D5" name="X7B6051C282EA88D5"></a></p>

<h5>34.4-4 OrderingOnGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrderingOnGenerators</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var> on a family of associative words, returns a list in which the generators are considered. This could be indeed the ordering of the generators in the ordering, but, for example, if a weight is associated to each generator then this is not true anymore. See the example for <code class="func">WeightLexOrdering</code> (<a href="chap34.html#X849DD7C6782333D5"><span class="RefLink">34.4-8</span></a>).</p>

<p><a id="X79B2DEB786680F51" name="X79B2DEB786680F51"></a></p>

<h5>34.4-5 LexicographicOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LexicographicOrdering</code>( <var class="Arg">D</var>[, <var class="Arg">gens</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a free semigroup, a free monoid, or the elements family of such a domain. Called with only argument <var class="Arg">D</var>, <code class="func">LexicographicOrdering</code> returns the lexicographic ordering on the elements of <var class="Arg">D</var>.</p>

<p>The optional argument <var class="Arg">gens</var> can be either the list of free generators of <var class="Arg">D</var>, in the desired order, or a list of the positions of these generators, in the desired order, and <code class="func">LexicographicOrdering</code> returns the lexicographic ordering on the elements of <var class="Arg">D</var> with the ordering on the generators as given.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := FreeSemigroup(3);</span>
&lt;free semigroup on the generators [ s1, s2, s3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lex := LexicographicOrdering(f,[2,3,1]);</span>
Ordering
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(lex,f.2*f.3,f.3);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(lex,f.3,f.2);</span>
false
</pre></div>

<p><a id="X802EB44B7E7B1F57" name="X802EB44B7E7B1F57"></a></p>

<h5>34.4-6 ShortLexOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ShortLexOrdering</code>( <var class="Arg">D</var>[, <var class="Arg">gens</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a free semigroup, a free monoid, or the elements family of such a domain. Called with only argument <var class="Arg">D</var>, <code class="func">ShortLexOrdering</code> returns the shortlex ordering on the elements of <var class="Arg">D</var>.</p>

<p>The optional argument <var class="Arg">gens</var> can be either the list of free generators of <var class="Arg">D</var>, in the desired order, or a list of the positions of these generators, in the desired order, and <code class="func">ShortLexOrdering</code> returns the shortlex ordering on the elements of <var class="Arg">D</var> with the ordering on the generators as given.</p>

<p><a id="X7B6ED9327E0A2099" name="X7B6ED9327E0A2099"></a></p>

<h5>34.4-7 IsShortLexOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsShortLexOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var> of a family of associative words, returns <code class="keyw">true</code> if and only if <var class="Arg">ord</var> is a shortlex ordering.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := FreeSemigroup(3);</span>
&lt;free semigroup on the generators [ s1, s2, s3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sl := ShortLexOrdering(f,[2,3,1]);</span>
Ordering
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(sl,f.1,f.2);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(sl,f.3,f.2);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(sl,f.3,f.1);</span>
true
</pre></div>

<p><a id="X849DD7C6782333D5" name="X849DD7C6782333D5"></a></p>

<h5>34.4-8 WeightLexOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; WeightLexOrdering</code>( <var class="Arg">D</var>, <var class="Arg">gens</var>, <var class="Arg">wt</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a free semigroup, a free monoid, or the elements family of such a domain. <var class="Arg">gens</var> can be either the list of free generators of <var class="Arg">D</var>, in the desired order, or a list of the positions of these generators, in the desired order. Let <var class="Arg">wt</var> be a list of weights. <code class="func">WeightLexOrdering</code> returns the weightlex ordering on the elements of <var class="Arg">D</var> with the ordering on the generators and weights of the generators as given.</p>

<p><a id="X7C7D7954784F5C73" name="X7C7D7954784F5C73"></a></p>

<h5>34.4-9 IsWeightLexOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsWeightLexOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>for an ordering <var class="Arg">ord</var> on a family of associative words, returns <code class="keyw">true</code> if and only if <var class="Arg">ord</var> is a weightlex ordering.</p>

<p><a id="X7E7FAEA484148947" name="X7E7FAEA484148947"></a></p>

<h5>34.4-10 WeightOfGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; WeightOfGenerators</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>for a weightlex ordering <var class="Arg">ord</var>, returns a list with length the size of the alphabet of the family. This list gives the weight of each of the letters of the alphabet which are used for weightlex orderings with respect to the ordering given by <code class="func">OrderingOnGenerators</code> (<a href="chap34.html#X7B6051C282EA88D5"><span class="RefLink">34.4-4</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := FreeSemigroup(3);</span>
&lt;free semigroup on the generators [ s1, s2, s3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">wtlex := WeightLexOrdering(f,[f.2,f.3,f.1],[3,2,1]);</span>
Ordering
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(wtlex,f.1,f.2);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(wtlex,f.3,f.2);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(wtlex,f.3,f.1);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrderingOnGenerators(wtlex);</span>
[ s2, s3, s1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">WeightOfGenerators(wtlex);</span>
[ 3, 2, 1 ]
</pre></div>

<p><a id="X79D1019E7C3E575E" name="X79D1019E7C3E575E"></a></p>

<h5>34.4-11 BasicWreathProductOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BasicWreathProductOrdering</code>( <var class="Arg">D</var>[, <var class="Arg">gens</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a free semigroup, a free monoid, or the elements family of such a domain. Called with only argument <var class="Arg">D</var>, <code class="func">BasicWreathProductOrdering</code> returns the basic wreath product ordering on the elements of <var class="Arg">D</var>.</p>

<p>The optional argument <var class="Arg">gens</var> can be either the list of free generators of <var class="Arg">D</var>, in the desired order, or a list of the positions of these generators, in the desired order, and <code class="func">BasicWreathProductOrdering</code> returns the lexicographic ordering on the elements of <var class="Arg">D</var> with the ordering on the generators as given.</p>

<p><a id="X7CB765477FBC3383" name="X7CB765477FBC3383"></a></p>

<h5>34.4-12 IsBasicWreathProductOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsBasicWreathProductOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := FreeSemigroup(3);</span>
&lt;free semigroup on the generators [ s1, s2, s3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">basic := BasicWreathProductOrdering(f,[2,3,1]);</span>
Ordering
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(basic,f.3,f.1);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(basic,f.3*f.2,f.1);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(basic,f.3*f.2*f.1,f.1*f.3);</span>
false
</pre></div>

<p><a id="X7E6DF1B17F53642E" name="X7E6DF1B17F53642E"></a></p>

<h5>34.4-13 WreathProductOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; WreathProductOrdering</code>( <var class="Arg">D</var>[, <var class="Arg">gens</var>], <var class="Arg">levels</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a free semigroup, a free monoid, or the elements family of such a domain, let <var class="Arg">gens</var> be either the list of free generators of <var class="Arg">D</var>, in the desired order, or a list of the positions of these generators, in the desired order, and let <var class="Arg">levels</var> be a list of levels for the generators. If <var class="Arg">gens</var> is omitted then the default ordering is taken. <code class="func">WreathProductOrdering</code> returns the wreath product ordering on the elements of <var class="Arg">D</var> with the ordering on the generators as given.</p>

<p><a id="X7F0EE6E987148C96" name="X7F0EE6E987148C96"></a></p>

<h5>34.4-14 IsWreathProductOrdering</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsWreathProductOrdering</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>specifies whether an ordering is a wreath product ordering (see <code class="func">WreathProductOrdering</code> (<a href="chap34.html#X7E6DF1B17F53642E"><span class="RefLink">34.4-13</span></a>)).</p>

<p><a id="X7901AA4479EDBE72" name="X7901AA4479EDBE72"></a></p>

<h5>34.4-15 LevelsOfGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LevelsOfGenerators</code>( <var class="Arg">ord</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>for a wreath product ordering <var class="Arg">ord</var>, returns the levels of the generators as given at creation (with respect to <code class="func">OrderingOnGenerators</code> (<a href="chap34.html#X7B6051C282EA88D5"><span class="RefLink">34.4-4</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := FreeSemigroup(3);</span>
&lt;free semigroup on the generators [ s1, s2, s3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">wrp := WreathProductOrdering(f,[1,2,3],[1,1,2,]);</span>
Ordering
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(wrp,f.3,f.1);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(wrp,f.3,f.2);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsLessThanUnder(wrp,f.1,f.2);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LevelsOfGenerators(wrp);</span>
[ 1, 1, 2 ]
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap33.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap35.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>