This file is indexed.

/usr/share/gap/doc/ref/chap69.html is in gap-doc 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 69: The MeatAxe</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap69"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap68.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap70.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap69_mj.html">[MathJax on]</a></p>
<p><a id="X7BF9D3CB81A8F8F9" name="X7BF9D3CB81A8F8F9"></a></p>
<div class="ChapSects"><a href="chap69.html#X7BF9D3CB81A8F8F9">69 <span class="Heading">The MeatAxe</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X85B05BBA78ED7BE2">69.1 <span class="Heading">MeatAxe Modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X801022027B066497">69.1-1 <span class="Heading">GModuleByMats</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X87B82250801A1BD0">69.2 <span class="Heading">Module Constructions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X8233134A81D58DA3">69.2-1 PermutationGModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X80A50F717B206C98">69.2-2 TensorProductGModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7ABC0E98832FEA69">69.2-3 WedgeGModule</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X7C77D22782C98D4E">69.3 <span class="Heading">Selecting a Different MeatAxe</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7C2352A17B505AF6">69.3-1 MTX</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X84AB808B7C543377">69.4 <span class="Heading">Accessing a Module</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X78E61F7287BF1D0C">69.4-1 MTX.Generators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7DF2D6C07D7B09CD">69.4-2 MTX.Dimension</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X830C00887CE9323C">69.4-3 MTX.Field</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X84D04C7E8423EB5D">69.5 <span class="Heading">Irreducibility Tests</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X83BEDF86784A6491">69.5-1 MTX.IsIrreducible</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X876810D679926679">69.5-2 MTX.IsAbsolutelyIrreducible</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7E84E1927EBFD483">69.5-3 MTX.DegreeSplittingField</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X791BA495829669C4">69.6 <span class="Heading">Decomposition of modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7D9B5B4E7F5A5FBD">69.6-1 MTX.IsIndecomposable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X781772FD865B9F9C">69.6-2 MTX.Indecomposition</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7F00E49484FBA7B8">69.6-3 MTX.HomogeneousComponents</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X85A258567D96B9BE">69.7 <span class="Heading">Finding Submodules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X80FFB229852B24E9">69.7-1 MTX.SubmoduleGModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X81326D84845C206F">69.7-2 MTX.ProperSubmoduleBasis</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X84604D867983DD41">69.7-3 MTX.BasesSubmodules</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X871D9AF87FABFB00">69.7-4 MTX.BasesMinimalSubmodules</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X864527B77A359195">69.7-5 MTX.BasesMaximalSubmodules</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X830500CE7ABF6039">69.7-6 MTX.BasisRadical</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X86A5197D8154A63C">69.7-7 MTX.BasisSocle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7F7FB6687ADE3FD8">69.7-8 MTX.BasesMinimalSupermodules</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X79B704998400B9FC">69.7-9 MTX.BasesCompositionSeries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7E77F9A97EA855E2">69.7-10 MTX.CompositionFactors</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7E5038F384DBCAEC">69.7-11 MTX.CollectedFactors</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X7AE730FB81ED86FE">69.8 <span class="Heading">Induced Actions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X79EA05D4822C2668">69.8-1 MTX.NormedBasisAndBaseChange</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7812D644850D7AED">69.8-2 MTX.InducedActionSubmodule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7EAC61B381385A99">69.8-3 MTX.InducedActionFactorModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X843E80AD853CB1EE">69.8-4 MTX.InducedActionMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7B137BE5877A7FA1">69.8-5 MTX.InducedAction</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X8040270F791514C8">69.9 <span class="Heading">Module Homomorphisms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X8292535D8533671C">69.9-1 MTX.BasisModuleHomomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X78EE1274825D9E03">69.9-2 MTX.BasisModuleEndomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X8519B3C486AC8C7E">69.9-3 MTX.IsomorphismModules</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X8442D91F7C4D724F">69.9-4 MTX.ModuleAutomorphisms</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X850324FF7912A541">69.10 <span class="Heading">Module Homomorphisms for irreducible modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X858D2B0D7AE032D5">69.10-1 MTX.IsEquivalent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7E86F5B67CBD7C41">69.10-2 MTX.IsomorphismIrred</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X807AE3AC7E9B7CFF">69.10-3 MTX.Homomorphism</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7BC612D2860C582B">69.10-4 MTX.Homomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X81A6ECB078D4441C">69.10-5 MTX.Distinguish</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X7B426E4679C1AF25">69.11 <span class="Heading">MeatAxe Functionality for Invariant Forms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X78B114E78227EA37">69.11-1 MTX.InvariantBilinearForm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7E1F430278A334E1">69.11-2 MTX.InvariantSesquilinearForm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7ADE65997F16EE63">69.11-3 MTX.InvariantQuadraticForm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X78E60EFE802AEBC1">69.11-4 MTX.BasisInOrbit</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X8168EB348474046B">69.11-5 MTX.OrthogonalSign</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X87B0E3237BA056FC">69.12 <span class="Heading">The Smash MeatAxe</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7E78525883E715E1">69.12-1 SMTX.RandomIrreducibleSubGModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7EA698517A19D35B">69.12-2 SMTX.GoodElementGModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X811339547D341BBE">69.12-3 SMTX.SortHomGModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X86B6092681221D7A">69.12-4 SMTX.MinimalSubGModules</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X87E49FCD867983B5">69.12-5 SMTX.Setter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7E60EBC57FFDF7BD">69.12-6 SMTX.Getter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X808345D784E0AC85">69.12-7 SMTX.IrreducibilityTest</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7E692DC97AFB661E">69.12-8 SMTX.AbsoluteIrreducibilityTest</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X80BC392285994DA8">69.12-9 SMTX.MinimalSubGModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X79EF16677C2EE095">69.12-10 SMTX.MatrixSum</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7D1471077A774C81">69.12-11 SMTX.CompleteBasis</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap69.html#X7FDF8F3F83B83336">69.13 <span class="Heading">Smash MeatAxe Flags</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X84A93AC482A1946D">69.13-1 SMTX.Subbasis</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7ABCD69880772B2D">69.13-2 SMTX.AlgEl</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7D6C947A7C8C14B2">69.13-3 SMTX.AlgElMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X8417F86A7A20F128">69.13-4 SMTX.AlgElCharPol</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X79A82FED785BFB6D">69.13-5 SMTX.AlgElCharPolFac</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X8367B4A17EC39ABD">69.13-6 SMTX.AlgElNullspaceVec</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X877F1AB77DC1E12C">69.13-7 SMTX.AlgElNullspaceDimension</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X78A6B95686671067">69.13-8 SMTX.CentMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap69.html#X7D199DB6804F5D8F">69.13-9 SMTX.CentMatMinPoly</a></span>
</div></div>
</div>

<h3>69 <span class="Heading">The MeatAxe</span></h3>

<p>The MeatAxe <a href="chapBib.html#biBPar84">[Par84]</a> is a tool for the examination of submodules of a group algebra. It is a basic tool for the examination of group actions on finite-dimensional modules.</p>

<p><strong class="pkg">GAP</strong> uses the improved MeatAxe of Derek Holt and Sarah Rees, and also incorporates further improvements of Ivanyos and Lux.</p>

<p>Please note that, consistently with the convention for group actions, the action of the <strong class="pkg">GAP</strong> MeatAxe is always that of matrices on row vectors by multiplication on the right. If you want to investigate left modules you will have to transpose the matrices.</p>

<p><a id="X85B05BBA78ED7BE2" name="X85B05BBA78ED7BE2"></a></p>

<h4>69.1 <span class="Heading">MeatAxe Modules</span></h4>

<p><a id="X801022027B066497" name="X801022027B066497"></a></p>

<h5>69.1-1 <span class="Heading">GModuleByMats</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GModuleByMats</code>( <var class="Arg">gens</var>, <var class="Arg">field</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GModuleByMats</code>( <var class="Arg">emptygens</var>, <var class="Arg">dim</var>, <var class="Arg">field</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>creates a MeatAxe module over <var class="Arg">field</var> from a list of invertible matrices <var class="Arg">gens</var> which reflect a group's action. If the list of generators is empty, the dimension must be given as second argument.</p>

<p>MeatAxe routines are on a level with Gaussian elimination. Therefore they do not deal with <strong class="pkg">GAP</strong> modules but essentially with lists of matrices. For the MeatAxe, a module is a record with components</p>


<dl>
<dt><strong class="Mark"><code class="code">generators</code></strong></dt>
<dd><p>A list of matrices which represent a group operation on a finite dimensional row vector space.</p>

</dd>
<dt><strong class="Mark"><code class="code">dimension</code></strong></dt>
<dd><p>The dimension of the vector space (this is the common length of the row vectors (see <code class="func">DimensionOfVectors</code> (<a href="chap61.html#X8534A750878478D0"><span class="RefLink">61.9-6</span></a>))).</p>

</dd>
<dt><strong class="Mark"><code class="code">field</code></strong></dt>
<dd><p>The field over which the vector space is defined.</p>

</dd>
</dl>
<p>Once a module has been created its entries may not be changed. A MeatAxe may create a new component <var class="Arg">NameOfMeatAxe</var> in which it can store private information. By a MeatAxe "submodule" or "factor module" we denote actually the <em>induced action</em> on the submodule, respectively factor module. Therefore the submodules or factor modules are again MeatAxe modules. The arrangement of <code class="code">generators</code> is guaranteed to be the same for the induced modules, but to obtain the complete relation to the original module, the bases used are needed as well.</p>

<p><a id="X87B82250801A1BD0" name="X87B82250801A1BD0"></a></p>

<h4>69.2 <span class="Heading">Module Constructions</span></h4>

<p><a id="X8233134A81D58DA3" name="X8233134A81D58DA3"></a></p>

<h5>69.2-1 PermutationGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermutationGModule</code>( <var class="Arg">G</var>, <var class="Arg">F</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Called with a permutation group <var class="Arg">G</var> and a finite field <var class="Arg">F</var>, <code class="func">PermutationGModule</code> returns the natural permutation module <span class="SimpleMath">M</span> over <var class="Arg">F</var> for the group of permutation matrices that acts on the canonical basis of <span class="SimpleMath">M</span> in the same way as <var class="Arg">G</var> acts on the points up to its largest moved point (see <code class="func">LargestMovedPoint</code> (<a href="chap42.html#X84AA603987C94AC0"><span class="RefLink">42.3-2</span></a>)).</p>

<p><a id="X80A50F717B206C98" name="X80A50F717B206C98"></a></p>

<h5>69.2-2 TensorProductGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorProductGModule</code>( <var class="Arg">m1</var>, <var class="Arg">m2</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">TensorProductGModule</code> calculates the tensor product of the modules <var class="Arg">m1</var> and <var class="Arg">m2</var>. They are assumed to be modules over the same algebra so, in particular, they should have the same number of generators.</p>

<p><a id="X7ABC0E98832FEA69" name="X7ABC0E98832FEA69"></a></p>

<h5>69.2-3 WedgeGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; WedgeGModule</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">WedgeGModule</code> calculates the wedge product of a <var class="Arg">G</var>-module. That is the action on antisymmetric tensors.</p>

<p><a id="X7C77D22782C98D4E" name="X7C77D22782C98D4E"></a></p>

<h4>69.3 <span class="Heading">Selecting a Different MeatAxe</span></h4>

<p><a id="X7C2352A17B505AF6" name="X7C2352A17B505AF6"></a></p>

<h5>69.3-1 MTX</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>All MeatAxe routines are accessed via the global variable <code class="func">MTX</code>, which is a record whose components hold the various functions. It is possible to have several implementations of a MeatAxe available. Each MeatAxe represents its routines in an own global variable and assigning <code class="func">MTX</code> to this variable selects the corresponding MeatAxe.</p>

<p><a id="X84AB808B7C543377" name="X84AB808B7C543377"></a></p>

<h4>69.4 <span class="Heading">Accessing a Module</span></h4>

<p>Even though a MeatAxe module is a record, its components should never be accessed outside of MeatAxe functions. Instead the following operations should be used:</p>

<p><a id="X78E61F7287BF1D0C" name="X78E61F7287BF1D0C"></a></p>

<h5>69.4-1 MTX.Generators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.Generators</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list of matrix generators of <var class="Arg">module</var>.</p>

<p><a id="X7DF2D6C07D7B09CD" name="X7DF2D6C07D7B09CD"></a></p>

<h5>69.4-2 MTX.Dimension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.Dimension</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the dimension in which the matrices act.</p>

<p><a id="X830C00887CE9323C" name="X830C00887CE9323C"></a></p>

<h5>69.4-3 MTX.Field</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.Field</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the field over which <var class="Arg">module</var> is defined.</p>

<p><a id="X84D04C7E8423EB5D" name="X84D04C7E8423EB5D"></a></p>

<h4>69.5 <span class="Heading">Irreducibility Tests</span></h4>

<p><a id="X83BEDF86784A6491" name="X83BEDF86784A6491"></a></p>

<h5>69.5-1 MTX.IsIrreducible</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.IsIrreducible</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>tests whether the module <var class="Arg">module</var> is irreducible (i.e. contains no proper submodules.)</p>

<p><a id="X876810D679926679" name="X876810D679926679"></a></p>

<h5>69.5-2 MTX.IsAbsolutelyIrreducible</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.IsAbsolutelyIrreducible</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>A module is absolutely irreducible if it remains irreducible over the algebraic closure of the field. (Formally: If the tensor product <span class="SimpleMath">L ⊗_K M</span> is irreducible where <span class="SimpleMath">M</span> is the module defined over <span class="SimpleMath">K</span> and <span class="SimpleMath">L</span> is the algebraic closure of <span class="SimpleMath">K</span>.)</p>

<p><a id="X7E84E1927EBFD483" name="X7E84E1927EBFD483"></a></p>

<h5>69.5-3 MTX.DegreeSplittingField</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.DegreeSplittingField</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the degree of the splitting field as extension of the prime field.</p>

<p><a id="X791BA495829669C4" name="X791BA495829669C4"></a></p>

<h4>69.6 <span class="Heading">Decomposition of modules</span></h4>

<p>A module is <em>decomposable</em> if it can be written as the direct sum of two proper submodules (and <em>indecomposable</em> if not). Obviously every finite dimensional module is a direct sum of its indecomposable parts. The <em>homogeneous components</em> of a module are the direct sums of isomorphic indecomposable components. They are uniquely determined.</p>

<p><a id="X7D9B5B4E7F5A5FBD" name="X7D9B5B4E7F5A5FBD"></a></p>

<h5>69.6-1 MTX.IsIndecomposable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.IsIndecomposable</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns whether <var class="Arg">module</var> is indecomposable.</p>

<p><a id="X781772FD865B9F9C" name="X781772FD865B9F9C"></a></p>

<h5>69.6-2 MTX.Indecomposition</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.Indecomposition</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a decomposition of <var class="Arg">module</var> as a direct sum of indecomposable modules. It returns a list, each entry is a list of form [<var class="Arg">B</var>,<var class="Arg">ind</var>] where <var class="Arg">B</var> is a list of basis vectors for the indecomposable component and <var class="Arg">ind</var> the induced module action on this component. (Such a decomposition is not unique.)</p>

<p><a id="X7F00E49484FBA7B8" name="X7F00E49484FBA7B8"></a></p>

<h5>69.6-3 MTX.HomogeneousComponents</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.HomogeneousComponents</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>computes the homogeneous components of <var class="Arg">module</var> given as sums of indecomposable components. The function returns a list, each entry of which is a record corresponding to one isomorphism type of indecomposable components. The record has the following components.</p>


<dl>
<dt><strong class="Mark"><code class="code">indices</code></strong></dt>
<dd><p>the index numbers of the indecomposable components, as given by <code class="func">MTX.Indecomposition</code> (<a href="chap69.html#X781772FD865B9F9C"><span class="RefLink">69.6-2</span></a>), that are in the homogeneous component,</p>

</dd>
<dt><strong class="Mark"><code class="code">component</code></strong></dt>
<dd><p>one of the indecomposable components,</p>

</dd>
<dt><strong class="Mark"><code class="code">images</code></strong></dt>
<dd><p>a list of the remaining indecomposable components, each given as a record with the components <code class="code">component</code> (the component itself) and <code class="code">isomorphism</code> (an isomorphism from the defining component to this one).</p>

</dd>
</dl>
<p><a id="X85A258567D96B9BE" name="X85A258567D96B9BE"></a></p>

<h4>69.7 <span class="Heading">Finding Submodules</span></h4>

<p><a id="X80FFB229852B24E9" name="X80FFB229852B24E9"></a></p>

<h5>69.7-1 MTX.SubmoduleGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.SubmoduleGModule</code>( <var class="Arg">module</var>, <var class="Arg">subspace</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.SubGModule</code>( <var class="Arg">module</var>, <var class="Arg">subspace</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><var class="Arg">subspace</var> should be a subspace of (or a vector in) the underlying vector space of <var class="Arg">module</var> i.e. the full row space of the same dimension and over the same field as <var class="Arg">module</var>. A normalized basis of the submodule of <var class="Arg">module</var> generated by <var class="Arg">subspace</var> is returned.</p>

<p><a id="X81326D84845C206F" name="X81326D84845C206F"></a></p>

<h5>69.7-2 MTX.ProperSubmoduleBasis</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.ProperSubmoduleBasis</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the basis of a proper submodule of <var class="Arg">module</var> and <code class="keyw">fail</code> if no proper submodule exists.</p>

<p><a id="X84604D867983DD41" name="X84604D867983DD41"></a></p>

<h5>69.7-3 MTX.BasesSubmodules</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasesSubmodules</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list containing a basis for every submodule.</p>

<p><a id="X871D9AF87FABFB00" name="X871D9AF87FABFB00"></a></p>

<h5>69.7-4 MTX.BasesMinimalSubmodules</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasesMinimalSubmodules</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list of bases of all minimal submodules.</p>

<p><a id="X864527B77A359195" name="X864527B77A359195"></a></p>

<h5>69.7-5 MTX.BasesMaximalSubmodules</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasesMaximalSubmodules</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list of bases of all maximal submodules.</p>

<p><a id="X830500CE7ABF6039" name="X830500CE7ABF6039"></a></p>

<h5>69.7-6 MTX.BasisRadical</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasisRadical</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a basis of the radical of <var class="Arg">module</var>.</p>

<p><a id="X86A5197D8154A63C" name="X86A5197D8154A63C"></a></p>

<h5>69.7-7 MTX.BasisSocle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasisSocle</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a basis of the socle of <var class="Arg">module</var>.</p>

<p><a id="X7F7FB6687ADE3FD8" name="X7F7FB6687ADE3FD8"></a></p>

<h5>69.7-8 MTX.BasesMinimalSupermodules</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasesMinimalSupermodules</code>( <var class="Arg">module</var>, <var class="Arg">sub</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list of bases of all minimal supermodules of the submodule given by the basis <var class="Arg">sub</var>.</p>

<p><a id="X79B704998400B9FC" name="X79B704998400B9FC"></a></p>

<h5>69.7-9 MTX.BasesCompositionSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasesCompositionSeries</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list of bases of submodules in a composition series in ascending order.</p>

<p><a id="X7E77F9A97EA855E2" name="X7E77F9A97EA855E2"></a></p>

<h5>69.7-10 MTX.CompositionFactors</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.CompositionFactors</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list of composition factors of <var class="Arg">module</var> in ascending order.</p>

<p><a id="X7E5038F384DBCAEC" name="X7E5038F384DBCAEC"></a></p>

<h5>69.7-11 MTX.CollectedFactors</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.CollectedFactors</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list giving all irreducible composition factors with their frequencies.</p>

<p><a id="X7AE730FB81ED86FE" name="X7AE730FB81ED86FE"></a></p>

<h4>69.8 <span class="Heading">Induced Actions</span></h4>

<p><a id="X79EA05D4822C2668" name="X79EA05D4822C2668"></a></p>

<h5>69.8-1 MTX.NormedBasisAndBaseChange</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.NormedBasisAndBaseChange</code>( <var class="Arg">sub</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a list <code class="code">[<var class="Arg">bas</var>, <var class="Arg">change</var> ]</code> where <var class="Arg">bas</var> is a normed basis (i.e. in echelon form with pivots normed to 1) for <var class="Arg">sub</var> and <var class="Arg">change</var> is the base change from <var class="Arg">bas</var> to <var class="Arg">sub</var> (the basis vectors of <var class="Arg">bas</var> expressed in coefficients for <var class="Arg">sub</var>).</p>

<p><a id="X7812D644850D7AED" name="X7812D644850D7AED"></a></p>

<h5>69.8-2 MTX.InducedActionSubmodule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InducedActionSubmodule</code>( <var class="Arg">module</var>, <var class="Arg">sub</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InducedActionSubmoduleNB</code>( <var class="Arg">module</var>, <var class="Arg">sub</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>creates a new module corresponding to the action of <var class="Arg">module</var> on <var class="Arg">sub</var>. In the <code class="code">NB</code> version the basis <var class="Arg">sub</var> must be normed. (That is it must be in echelon form with pivots normed to 1, see <code class="func">MTX.NormedBasisAndBaseChange</code> (<a href="chap69.html#X79EA05D4822C2668"><span class="RefLink">69.8-1</span></a>).)</p>

<p><a id="X7EAC61B381385A99" name="X7EAC61B381385A99"></a></p>

<h5>69.8-3 MTX.InducedActionFactorModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InducedActionFactorModule</code>( <var class="Arg">module</var>, <var class="Arg">sub</var>[, <var class="Arg">compl</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>creates a new module corresponding to the action of <var class="Arg">module</var> on the factor of <var class="Arg">sub</var>. If <var class="Arg">compl</var> is given, it has to be a basis of a (vector space-)complement of <var class="Arg">sub</var>. The action then will correspond to <var class="Arg">compl</var>.</p>

<p>The basis <var class="Arg">sub</var> has to be given in normed form. (That is it must be in echelon form with pivots normed to 1, see <code class="func">MTX.NormedBasisAndBaseChange</code> (<a href="chap69.html#X79EA05D4822C2668"><span class="RefLink">69.8-1</span></a>))</p>

<p><a id="X843E80AD853CB1EE" name="X843E80AD853CB1EE"></a></p>

<h5>69.8-4 MTX.InducedActionMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InducedActionMatrix</code>( <var class="Arg">mat</var>, <var class="Arg">sub</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InducedActionMatrixNB</code>( <var class="Arg">mat</var>, <var class="Arg">sub</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InducedActionFactorMatrix</code>( <var class="Arg">mat</var>, <var class="Arg">sub</var>[, <var class="Arg">compl</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>work the same way as the above functions for modules, but take as input only a single matrix.</p>

<p><a id="X7B137BE5877A7FA1" name="X7B137BE5877A7FA1"></a></p>

<h5>69.8-5 MTX.InducedAction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InducedAction</code>( <var class="Arg">module</var>, <var class="Arg">sub</var>[, <var class="Arg">type</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Computes induced actions on submodules or factor modules and also returns the corresponding bases. The action taken is binary encoded in <var class="Arg">type</var>: <code class="code">1</code> stands for subspace action, <code class="code">2</code> for factor action, and <code class="code">4</code> for action of the full module on a subspace adapted basis. The routine returns the computed results in a list in sequence (<var class="Arg">sub</var>,<var class="Arg">quot</var>,<var class="Arg">both</var>,<var class="Arg">basis</var>) where <var class="Arg">basis</var> is a basis for the whole space, extending <var class="Arg">sub</var>. (Actions which are not computed are omitted, so the returned list may be shorter.) If no <var class="Arg">type</var> is given, it is assumed to be <code class="code">7</code>. The basis given in <var class="Arg">sub</var> must be normed!</p>

<p>All these routines return <code class="keyw">fail</code> if <var class="Arg">sub</var> is not a proper subspace.</p>

<p><a id="X8040270F791514C8" name="X8040270F791514C8"></a></p>

<h4>69.9 <span class="Heading">Module Homomorphisms</span></h4>

<p><a id="X8292535D8533671C" name="X8292535D8533671C"></a></p>

<h5>69.9-1 MTX.BasisModuleHomomorphisms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasisModuleHomomorphisms</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a basis of all module homomorphisms from <var class="Arg">module1</var> to <var class="Arg">module2</var>. Homomorphisms are by matrices, whose rows give the images of the standard basis vectors of <var class="Arg">module1</var> in the standard basis of <var class="Arg">module2</var>.</p>

<p><a id="X78EE1274825D9E03" name="X78EE1274825D9E03"></a></p>

<h5>69.9-2 MTX.BasisModuleEndomorphisms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasisModuleEndomorphisms</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a basis of all module homomorphisms from <var class="Arg">module</var> to <var class="Arg">module</var>.</p>

<p><a id="X8519B3C486AC8C7E" name="X8519B3C486AC8C7E"></a></p>

<h5>69.9-3 MTX.IsomorphismModules</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.IsomorphismModules</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>If <var class="Arg">module1</var> and <var class="Arg">module2</var> are isomorphic modules, this function returns an isomorphism from <var class="Arg">module1</var> to <var class="Arg">module2</var> in form of a matrix. It returns <code class="keyw">fail</code> if the modules are not isomorphic.</p>

<p><a id="X8442D91F7C4D724F" name="X8442D91F7C4D724F"></a></p>

<h5>69.9-4 MTX.ModuleAutomorphisms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.ModuleAutomorphisms</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the module automorphisms of <var class="Arg">module</var> (the set of all isomorphisms from <var class="Arg">module</var> to itself) as a matrix group.</p>

<p><a id="X850324FF7912A541" name="X850324FF7912A541"></a></p>

<h4>69.10 <span class="Heading">Module Homomorphisms for irreducible modules</span></h4>

<p>The following are lower-level functions that provide homomorphism functionality for irreducible modules. Generic code should use the functions in Section <a href="chap69.html#X8040270F791514C8"><span class="RefLink">69.9</span></a> instead.</p>

<p><a id="X858D2B0D7AE032D5" name="X858D2B0D7AE032D5"></a></p>

<h5>69.10-1 MTX.IsEquivalent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.IsEquivalent</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>tests two irreducible modules for equivalence.</p>

<p><a id="X7E86F5B67CBD7C41" name="X7E86F5B67CBD7C41"></a></p>

<h5>69.10-2 MTX.IsomorphismIrred</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.IsomorphismIrred</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns an isomorphism from <var class="Arg">module1</var> to <var class="Arg">module2</var> (if one exists), and <code class="keyw">fail</code> otherwise. It requires that one of the modules is known to be irreducible. It implicitly assumes that the same group is acting, otherwise the results are unpredictable. The isomorphism is given by a matrix <span class="SimpleMath">M</span>, whose rows give the images of the standard basis vectors of <var class="Arg">module1</var> in the standard basis of <var class="Arg">module2</var>. That is, conjugation of the generators of <var class="Arg">module2</var> with <span class="SimpleMath">M</span> yields the generators of <var class="Arg">module1</var>.</p>

<p><a id="X807AE3AC7E9B7CFF" name="X807AE3AC7E9B7CFF"></a></p>

<h5>69.10-3 MTX.Homomorphism</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.Homomorphism</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var>, <var class="Arg">mat</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><var class="Arg">mat</var> should be a <var class="Arg">dim1</var> <span class="SimpleMath">×</span> <var class="Arg">dim2</var> matrix defining a homomorphism from <var class="Arg">module1</var> to <var class="Arg">module2</var>. This function verifies that <var class="Arg">mat</var> really does define a module homomorphism, and then returns the corresponding homomorphism between the underlying row spaces of the modules. This can be used for computing kernels, images and pre-images.</p>

<p><a id="X7BC612D2860C582B" name="X7BC612D2860C582B"></a></p>

<h5>69.10-4 MTX.Homomorphisms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.Homomorphisms</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a basis of the space of all homomorphisms from the irreducible module <var class="Arg">module1</var> to <var class="Arg">module2</var>.</p>

<p><a id="X81A6ECB078D4441C" name="X81A6ECB078D4441C"></a></p>

<h5>69.10-5 MTX.Distinguish</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.Distinguish</code>( <var class="Arg">cf</var>, <var class="Arg">nr</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">cf</var> be the output of <code class="func">MTX.CollectedFactors</code> (<a href="chap69.html#X7E5038F384DBCAEC"><span class="RefLink">69.7-11</span></a>). This routine tries to find a group algebra element that has nullity zero on all composition factors except number <var class="Arg">nr</var>.</p>

<p><a id="X7B426E4679C1AF25" name="X7B426E4679C1AF25"></a></p>

<h4>69.11 <span class="Heading">MeatAxe Functionality for Invariant Forms</span></h4>

<p>The functions in this section can only be applied to an absolutely irreducible MeatAxe module.</p>

<p><a id="X78B114E78227EA37" name="X78B114E78227EA37"></a></p>

<h5>69.11-1 MTX.InvariantBilinearForm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InvariantBilinearForm</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns an invariant bilinear form, which may be symmetric or anti-symmetric, of <var class="Arg">module</var>, or <code class="keyw">fail</code> if no such form exists.</p>

<p><a id="X7E1F430278A334E1" name="X7E1F430278A334E1"></a></p>

<h5>69.11-2 MTX.InvariantSesquilinearForm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InvariantSesquilinearForm</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns an invariant hermitian (= self-adjoint) sesquilinear form of <var class="Arg">module</var>, which must be defined over a finite field whose order is a square, or <code class="keyw">fail</code> if no such form exists.</p>

<p><a id="X7ADE65997F16EE63" name="X7ADE65997F16EE63"></a></p>

<h5>69.11-3 MTX.InvariantQuadraticForm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.InvariantQuadraticForm</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns an invariant quadratic form of <var class="Arg">module</var>, or <code class="keyw">fail</code> if no such form exists. If the characteristic of the field over which <var class="Arg">module</var> is defined is not 2, then the invariant bilinear form (if any) divided by two will be returned. In characteristic 2, the form returned will be lower triangular.</p>

<p><a id="X78E60EFE802AEBC1" name="X78E60EFE802AEBC1"></a></p>

<h5>69.11-4 MTX.BasisInOrbit</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.BasisInOrbit</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a basis of the underlying vector space of <var class="Arg">module</var> which is contained in an orbit of the action of the generators of module on that space. This is used by <code class="func">MTX.InvariantQuadraticForm</code> (<a href="chap69.html#X7ADE65997F16EE63"><span class="RefLink">69.11-3</span></a>) in characteristic 2.</p>

<p><a id="X8168EB348474046B" name="X8168EB348474046B"></a></p>

<h5>69.11-5 MTX.OrthogonalSign</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MTX.OrthogonalSign</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>for an even dimensional module, returns 1 or -1, according as <code class="code">MTX.InvariantQuadraticForm(<var class="Arg">module</var>)</code> is of + or - type. For an odd dimensional module, returns 0. For a module with no invariant quadratic form, returns <code class="keyw">fail</code>. This calculation uses an algorithm due to Jon Thackray.</p>

<p><a id="X87B0E3237BA056FC" name="X87B0E3237BA056FC"></a></p>

<h4>69.12 <span class="Heading">The Smash MeatAxe</span></h4>

<p>The standard MeatAxe provided in the <strong class="pkg">GAP</strong> library is based on the MeatAxe in the <strong class="pkg">GAP</strong> 3 package <strong class="pkg">Smash</strong>, originally written by Derek Holt and Sarah Rees <a href="chapBib.html#biBHR94">[HR94]</a>. It is accessible via the variable <code class="code">SMTX</code> to which <code class="func">MTX</code> (<a href="chap69.html#X7C2352A17B505AF6"><span class="RefLink">69.3-1</span></a>) is assigned by default. For the sake of completeness the remaining sections document more technical functions of this MeatAxe.</p>

<p><a id="X7E78525883E715E1" name="X7E78525883E715E1"></a></p>

<h5>69.12-1 SMTX.RandomIrreducibleSubGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.RandomIrreducibleSubGModule</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the module action on a random irreducible submodule.</p>

<p><a id="X7EA698517A19D35B" name="X7EA698517A19D35B"></a></p>

<h5>69.12-2 SMTX.GoodElementGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.GoodElementGModule</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>finds an element with minimal possible nullspace dimension if <var class="Arg">module</var> is known to be irreducible.</p>

<p><a id="X811339547D341BBE" name="X811339547D341BBE"></a></p>

<h5>69.12-3 SMTX.SortHomGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.SortHomGModule</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var>, <var class="Arg">homs</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Function to sort the output of <code class="code">Homomorphisms</code>.</p>

<p><a id="X86B6092681221D7A" name="X86B6092681221D7A"></a></p>

<h5>69.12-4 SMTX.MinimalSubGModules</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.MinimalSubGModules</code>( <var class="Arg">module1</var>, <var class="Arg">module2</var>[, <var class="Arg">max</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns (at most <var class="Arg">max</var>) bases of submodules of <var class="Arg">module2</var> which are isomorphic to the irreducible module <var class="Arg">module1</var>.</p>

<p><a id="X87E49FCD867983B5" name="X87E49FCD867983B5"></a></p>

<h5>69.12-5 SMTX.Setter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.Setter</code>( <var class="Arg">string</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a setter function for the component <code class="code">smashMeataxe.(string)</code>.</p>

<p><a id="X7E60EBC57FFDF7BD" name="X7E60EBC57FFDF7BD"></a></p>

<h5>69.12-6 SMTX.Getter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.Getter</code>( <var class="Arg">string</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns a getter function for the component <code class="code">smashMeataxe.(string)</code>.</p>

<p><a id="X808345D784E0AC85" name="X808345D784E0AC85"></a></p>

<h5>69.12-7 SMTX.IrreducibilityTest</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.IrreducibilityTest</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Tests for irreducibility and sets a subbasis if reducible. It neither sets an irreducibility flag, nor tests it. Thus the routine also can simply be called to obtain a random submodule.</p>

<p><a id="X7E692DC97AFB661E" name="X7E692DC97AFB661E"></a></p>

<h5>69.12-8 SMTX.AbsoluteIrreducibilityTest</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.AbsoluteIrreducibilityTest</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Tests for absolute irreducibility and sets splitting field degree. It neither sets an absolute irreducibility flag, nor tests it.</p>

<p><a id="X80BC392285994DA8" name="X80BC392285994DA8"></a></p>

<h5>69.12-9 SMTX.MinimalSubGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.MinimalSubGModule</code>( <var class="Arg">module</var>, <var class="Arg">cf</var>, <var class="Arg">nr</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>returns the basis of a minimal submodule of <var class="Arg">module</var> containing the indicated composition factor. It assumes <code class="code">Distinguish</code> has been called already.</p>

<p><a id="X79EF16677C2EE095" name="X79EF16677C2EE095"></a></p>

<h5>69.12-10 SMTX.MatrixSum</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.MatrixSum</code>( <var class="Arg">matrices1</var>, <var class="Arg">matrices2</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>creates the direct sum of two matrix lists.</p>

<p><a id="X7D1471077A774C81" name="X7D1471077A774C81"></a></p>

<h5>69.12-11 SMTX.CompleteBasis</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.CompleteBasis</code>( <var class="Arg">module</var>, <var class="Arg">pbasis</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>extends the partial basis <var class="Arg">pbasis</var> to a basis of the full space by action of <var class="Arg">module</var>. It returns whether it succeeded.</p>

<p><a id="X7FDF8F3F83B83336" name="X7FDF8F3F83B83336"></a></p>

<h4>69.13 <span class="Heading">Smash MeatAxe Flags</span></h4>

<p>The following getter routines access internal flags. For each routine, the appropriate setter's name is prefixed with <code class="code">Set</code>.</p>

<p><a id="X84A93AC482A1946D" name="X84A93AC482A1946D"></a></p>

<h5>69.13-1 SMTX.Subbasis</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.Subbasis</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Basis of a submodule.</p>

<p><a id="X7ABCD69880772B2D" name="X7ABCD69880772B2D"></a></p>

<h5>69.13-2 SMTX.AlgEl</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.AlgEl</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>list <code class="code">[newgens,coefflist]</code> giving an algebra element used for chopping.</p>

<p><a id="X7D6C947A7C8C14B2" name="X7D6C947A7C8C14B2"></a></p>

<h5>69.13-3 SMTX.AlgElMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.AlgElMat</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>matrix of <code class="func">SMTX.AlgEl</code> (<a href="chap69.html#X7ABCD69880772B2D"><span class="RefLink">69.13-2</span></a>).</p>

<p><a id="X8417F86A7A20F128" name="X8417F86A7A20F128"></a></p>

<h5>69.13-4 SMTX.AlgElCharPol</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.AlgElCharPol</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>minimal polynomial of <code class="func">SMTX.AlgEl</code> (<a href="chap69.html#X7ABCD69880772B2D"><span class="RefLink">69.13-2</span></a>).</p>

<p><a id="X79A82FED785BFB6D" name="X79A82FED785BFB6D"></a></p>

<h5>69.13-5 SMTX.AlgElCharPolFac</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.AlgElCharPolFac</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>uses factor of <code class="func">SMTX.AlgEl</code> (<a href="chap69.html#X7ABCD69880772B2D"><span class="RefLink">69.13-2</span></a>).</p>

<p><a id="X8367B4A17EC39ABD" name="X8367B4A17EC39ABD"></a></p>

<h5>69.13-6 SMTX.AlgElNullspaceVec</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.AlgElNullspaceVec</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>nullspace of the matrix evaluated under this factor.</p>

<p><a id="X877F1AB77DC1E12C" name="X877F1AB77DC1E12C"></a></p>

<h5>69.13-7 SMTX.AlgElNullspaceDimension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.AlgElNullspaceDimension</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>dimension of the nullspace.</p>

<p><a id="X78A6B95686671067" name="X78A6B95686671067"></a></p>

<h5>69.13-8 SMTX.CentMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.CentMat</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>matrix centralising all generators which is computed as a byproduct of <code class="func">SMTX.AbsoluteIrreducibilityTest</code> (<a href="chap69.html#X7E692DC97AFB661E"><span class="RefLink">69.12-8</span></a>).</p>

<p><a id="X7D199DB6804F5D8F" name="X7D199DB6804F5D8F"></a></p>

<h5>69.13-9 SMTX.CentMatMinPoly</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SMTX.CentMatMinPoly</code>( <var class="Arg">module</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>minimal polynomial of <code class="func">SMTX.CentMat</code> (<a href="chap69.html#X78A6B95686671067"><span class="RefLink">69.13-8</span></a>).</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap68.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap70.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>