/usr/share/gap/doc/ref/chap65.txt is in gap-online-help 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
[1X65 [33X[0;0YMagma Rings[133X[101X
[33X[0;0YGiven a magma [22XM[122X then the [13Xfree magma ring[113X (or [13Xmagma ring[113X for short) [22XRM[122X of [22XM[122X
over a ring-with-one [22XR[122X is the set of finite sums [22X∑_{i ∈ I} r_i m_i[122X with [22Xr_i
∈ R[122X, and [22Xm_i ∈ M[122X. With the obvious addition and [22XR[122X-action from the left, [22XRM[122X
is a free [22XR[122X-module with [22XR[122X-basis [22XM[122X, and with the usual convolution product,
[22XRM[122X is a ring.[133X
[33X[0;0YTypical examples of free magma rings are[133X
[30X [33X[0;6Y(multivariate) polynomial rings (see [14X66.15[114X), where the magma is a free
abelian monoid generated by the indeterminates,[133X
[30X [33X[0;6Ygroup rings (see [2XIsGroupRing[102X ([14X65.1-5[114X)), where the magma is a group,[133X
[30X [33X[0;6YLaurent polynomial rings, which are group rings of the free abelian
groups generated by the indeterminates,[133X
[30X [33X[0;6Yfree algebras and free associative algebras, with or without one,
where the magma is a free magma or a free semigroup, or a free
magma-with-one or a free monoid, respectively.[133X
[33X[0;0YNote that formally, polynomial rings in [5XGAP[105X are not constructed as free
magma rings.[133X
[33X[0;0YFurthermore, a free Lie algebra is [13Xnot[113X a magma ring, because of the
additional relations given by the Jacobi identity; see [14X65.4[114X for a
generalization of magma rings that covers such structures.[133X
[33X[0;0YThe coefficient ring [22XR[122X and the magma [22XM[122X cannot be regarded as subsets of [22XRM[122X,
hence the natural [13Xembeddings[113X of [22XR[122X and [22XM[122X into [22XRM[122X must be handled via explicit
embedding maps (see [14X65.3[114X). Note that in a magma ring, the addition of
elements is in general different from an addition that may be defined
already for the elements of the magma; for example, the addition in the
group ring of a matrix group does in general [13Xnot[113X coincide with the addition
of matrices.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xa:= Algebra( GF(2), [ [ [ Z(2) ] ] ] );; Size( a );[127X[104X
[4X[28X2[128X[104X
[4X[25Xgap>[125X [27Xrm:= FreeMagmaRing( GF(2), a );;[127X[104X
[4X[25Xgap>[125X [27Xemb:= Embedding( a, rm );;[127X[104X
[4X[25Xgap>[125X [27Xz:= Zero( a );; o:= One( a );;[127X[104X
[4X[25Xgap>[125X [27Ximz:= z ^ emb; IsZero( imz );[127X[104X
[4X[28X(Z(2)^0)*[ [ 0*Z(2) ] ][128X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27Xim1:= ( z + o ) ^ emb;[127X[104X
[4X[28X(Z(2)^0)*[ [ Z(2)^0 ] ][128X[104X
[4X[25Xgap>[125X [27Xim2:= z ^ emb + o ^ emb;[127X[104X
[4X[28X(Z(2)^0)*[ [ 0*Z(2) ] ]+(Z(2)^0)*[ [ Z(2)^0 ] ][128X[104X
[4X[25Xgap>[125X [27Xim1 = im2;[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X65.1 [33X[0;0YFree Magma Rings[133X[101X
[1X65.1-1 FreeMagmaRing[101X
[33X[1;0Y[29X[2XFreeMagmaRing[102X( [3XR[103X, [3XM[103X ) [32X function[133X
[33X[0;0Yis a free magma ring over the ring [3XR[103X, free on the magma [3XM[103X.[133X
[1X65.1-2 GroupRing[101X
[33X[1;0Y[29X[2XGroupRing[102X( [3XR[103X, [3XG[103X ) [32X function[133X
[33X[0;0Yis the group ring of the group [3XG[103X, over the ring [3XR[103X.[133X
[1X65.1-3 IsFreeMagmaRing[101X
[33X[1;0Y[29X[2XIsFreeMagmaRing[102X( [3XD[103X ) [32X Category[133X
[33X[0;0YA domain lies in the category [2XIsFreeMagmaRing[102X if it has been constructed as
a free magma ring. In particular, if [3XD[103X lies in this category then the
operations [2XLeftActingDomain[102X ([14X57.1-11[114X) and [2XUnderlyingMagma[102X ([14X65.1-6[114X) are
applicable to [3XD[103X, and yield the ring [22XR[122X and the magma [22XM[122X such that [3XD[103X is the
magma ring [22XRM[122X.[133X
[33X[0;0YSo being a magma ring in [5XGAP[105X includes the knowledge of the ring and the
magma. Note that a magma ring [22XRM[122X may abstractly be generated as a magma ring
by a magma different from the underlying magma [22XM[122X. For example, the group
ring of the dihedral group of order [22X8[122X over the field with [22X3[122X elements is also
spanned by a quaternion group of order [22X8[122X over the same field.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xd8:= DihedralGroup( 8 );[127X[104X
[4X[28X<pc group of size 8 with 3 generators>[128X[104X
[4X[25Xgap>[125X [27Xrm:= FreeMagmaRing( GF(3), d8 );[127X[104X
[4X[28X<algebra-with-one over GF(3), with 3 generators>[128X[104X
[4X[25Xgap>[125X [27Xemb:= Embedding( d8, rm );;[127X[104X
[4X[25Xgap>[125X [27Xgens:= List( GeneratorsOfGroup( d8 ), x -> x^emb );;[127X[104X
[4X[25Xgap>[125X [27Xx1:= gens[1] + gens[2];;[127X[104X
[4X[25Xgap>[125X [27Xx2:= ( gens[1] - gens[2] ) * gens[3];;[127X[104X
[4X[25Xgap>[125X [27Xx3:= gens[1] * gens[2] * ( One( rm ) - gens[3] );;[127X[104X
[4X[25Xgap>[125X [27Xg1:= x1 - x2 + x3;;[127X[104X
[4X[25Xgap>[125X [27Xg2:= x1 + x2;;[127X[104X
[4X[25Xgap>[125X [27Xq8:= Group( g1, g2 );;[127X[104X
[4X[25Xgap>[125X [27XSize( q8 );[127X[104X
[4X[28X8[128X[104X
[4X[25Xgap>[125X [27XForAny( [ d8, q8 ], IsAbelian );[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27XList( [ d8, q8 ], g -> Number( AsList( g ), x -> Order( x ) = 2 ) );[127X[104X
[4X[28X[ 5, 1 ][128X[104X
[4X[25Xgap>[125X [27XDimension( Subspace( rm, q8 ) );[127X[104X
[4X[28X8[128X[104X
[4X[32X[104X
[1X65.1-4 IsFreeMagmaRingWithOne[101X
[33X[1;0Y[29X[2XIsFreeMagmaRingWithOne[102X( [3Xobj[103X ) [32X Category[133X
[33X[0;0Y[2XIsFreeMagmaRingWithOne[102X is just a synonym for the meet of [2XIsFreeMagmaRing[102X
([14X65.1-3[114X) and [2XIsMagmaWithOne[102X ([14X35.1-2[114X).[133X
[1X65.1-5 IsGroupRing[101X
[33X[1;0Y[29X[2XIsGroupRing[102X( [3Xobj[103X ) [32X property[133X
[33X[0;0YA [13Xgroup ring[113X is a magma ring where the underlying magma is a group.[133X
[1X65.1-6 UnderlyingMagma[101X
[33X[1;0Y[29X[2XUnderlyingMagma[102X( [3XRM[103X ) [32X attribute[133X
[33X[0;0Ystores the underlying magma of a free magma ring.[133X
[1X65.1-7 AugmentationIdeal[101X
[33X[1;0Y[29X[2XAugmentationIdeal[102X( [3XRG[103X ) [32X attribute[133X
[33X[0;0Yis the augmentation ideal of the group ring [3XRG[103X, i.e., the kernel of the
trivial representation of [3XRG[103X.[133X
[1X65.2 [33X[0;0YElements of Free Magma Rings[133X[101X
[33X[0;0YIn order to treat elements of free magma rings uniformly, also without an
external representation, the attributes [2XCoefficientsAndMagmaElements[102X
([14X65.2-4[114X) and [2XZeroCoefficient[102X ([14X65.2-5[114X) were introduced that allow one to [21Xtake
an element of an arbitrary magma ring into pieces[121X.[133X
[33X[0;0YConversely, for constructing magma ring elements from coefficients and magma
elements, [2XElementOfMagmaRing[102X ([14X65.2-6[114X) can be used. (Of course one can also
embed each magma element into the magma ring, see [14X65.3[114X, and then form the
linear combination, but many unnecessary intermediate elements are created
this way.)[133X
[1X65.2-1 IsMagmaRingObjDefaultRep[101X
[33X[1;0Y[29X[2XIsMagmaRingObjDefaultRep[102X( [3Xobj[103X ) [32X Representation[133X
[33X[0;0YThe default representation of a magma ring element is a list of length 2, at
first position the zero coefficient, at second position a list with the
coefficients at the even positions, and the magma elements at the odd
positions, with the ordering as defined for the magma elements.[133X
[33X[0;0YIt is assumed that arithmetic operations on magma rings produce only
normalized elements.[133X
[1X65.2-2 IsElementOfFreeMagmaRing[101X
[33X[1;0Y[29X[2XIsElementOfFreeMagmaRing[102X( [3Xobj[103X ) [32X Category[133X
[33X[1;0Y[29X[2XIsElementOfFreeMagmaRingCollection[102X( [3Xobj[103X ) [32X Category[133X
[33X[0;0YThe category of elements of a free magma ring (See [2XIsFreeMagmaRing[102X
([14X65.1-3[114X)).[133X
[1X65.2-3 IsElementOfFreeMagmaRingFamily[101X
[33X[1;0Y[29X[2XIsElementOfFreeMagmaRingFamily[102X( [3XFam[103X ) [32X Category[133X
[33X[0;0YElements of families in this category have trivial normalisation, i.e.,
efficient methods for [10X\=[110X and [10X\<[110X.[133X
[1X65.2-4 CoefficientsAndMagmaElements[101X
[33X[1;0Y[29X[2XCoefficientsAndMagmaElements[102X( [3Xelm[103X ) [32X attribute[133X
[33X[0;0Yis a list that contains at the odd positions the magma elements, and at the
even positions their coefficients in the element [3Xelm[103X.[133X
[1X65.2-5 ZeroCoefficient[101X
[33X[1;0Y[29X[2XZeroCoefficient[102X( [3Xelm[103X ) [32X attribute[133X
[33X[0;0YFor an element [3Xelm[103X of a magma ring (modulo relations) [22XRM[122X, [2XZeroCoefficient[102X
returns the zero element of the coefficient ring [22XR[122X.[133X
[1X65.2-6 ElementOfMagmaRing[101X
[33X[1;0Y[29X[2XElementOfMagmaRing[102X( [3XFam[103X, [3Xzerocoeff[103X, [3Xcoeffs[103X, [3Xmgmelms[103X ) [32X operation[133X
[33X[0;0Y[2XElementOfMagmaRing[102X returns the element [22X∑_{i = 1}^n c_i m_i'[122X, where [22X[3Xcoeffs[103X =
[ c_1, c_2, ..., c_n ][122X is a list of coefficients, [22X[3Xmgmelms[103X = [ m_1, m_2, ...,
m_n ][122X is a list of magma elements, and [22Xm_i'[122X is the image of [22Xm_i[122X under an
embedding of a magma containing [22Xm_i[122X into a magma ring whose elements lie in
the family [3XFam[103X. [3Xzerocoeff[103X must be the zero of the coefficient ring
containing the [22Xc_i[122X.[133X
[1X65.3 [33X[0;0YNatural Embeddings related to Magma Rings[133X[101X
[33X[0;0YNeither the coefficient ring [22XR[122X nor the magma [22XM[122X are regarded as subsets of
the magma ring [22XRM[122X, so one has to use [13Xembeddings[113X (see [2XEmbedding[102X ([14X32.2-10[114X))
explicitly whenever one needs for example the magma ring element
corresponding to a given magma element.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xf:= Rationals;; g:= SymmetricGroup( 3 );;[127X[104X
[4X[25Xgap>[125X [27Xfg:= FreeMagmaRing( f, g );[127X[104X
[4X[28X<algebra-with-one over Rationals, with 2 generators>[128X[104X
[4X[25Xgap>[125X [27XDimension( fg );[127X[104X
[4X[28X6[128X[104X
[4X[25Xgap>[125X [27Xgens:= GeneratorsOfAlgebraWithOne( fg );[127X[104X
[4X[28X[ (1)*(1,2,3), (1)*(1,2) ][128X[104X
[4X[25Xgap>[125X [27X( 3*gens[1] - 2*gens[2] ) * ( gens[1] + gens[2] );[127X[104X
[4X[28X(-2)*()+(3)*(2,3)+(3)*(1,3,2)+(-2)*(1,3)[128X[104X
[4X[25Xgap>[125X [27XOne( fg );[127X[104X
[4X[28X(1)*()[128X[104X
[4X[25Xgap>[125X [27Xemb:= Embedding( g, fg );;[127X[104X
[4X[25Xgap>[125X [27Xelm:= (1,2,3)^emb; elm in fg;[127X[104X
[4X[28X(1)*(1,2,3)[128X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xnew:= elm + One( fg );[127X[104X
[4X[28X(1)*()+(1)*(1,2,3)[128X[104X
[4X[25Xgap>[125X [27Xnew^2;[127X[104X
[4X[28X(1)*()+(2)*(1,2,3)+(1)*(1,3,2)[128X[104X
[4X[25Xgap>[125X [27Xemb2:= Embedding( f, fg );;[127X[104X
[4X[25Xgap>[125X [27Xelm:= One( f )^emb2; elm in fg;[127X[104X
[4X[28X(1)*()[128X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
[1X65.4 [33X[0;0YMagma Rings modulo Relations[133X[101X
[33X[0;0YA more general construction than that of free magma rings allows one to
create rings that are not free [22XR[122X-modules on a given magma [22XM[122X but arise from
the magma ring [22XRM[122X by factoring out certain identities. Examples for such
structures are finitely presented (associative) algebras and free Lie
algebras (see [2XFreeLieAlgebra[102X ([14X64.2-4[114X)).[133X
[33X[0;0YIn [5XGAP[105X, the use of magma rings modulo relations is limited to situations
where a normal form of the elements is known and where one wants to
guarantee that all elements actually constructed are in normal form. (In
particular, the computation of the normal form must be cheap.) This is
because the methods for comparing elements in magma rings modulo relations
via [10X\=[110X and [10X\<[110X just compare the involved coefficients and magma elements, and
also the vector space functions regard those monomials as linearly
independent over the coefficients ring that actually occur in the
representation of an element of a magma ring modulo relations.[133X
[33X[0;0YThus only very special finitely presented algebras will be represented as
magma rings modulo relations, in general finitely presented algebras are
dealt with via the mechanism described in Chapter [14X63[114X.[133X
[1X65.4-1 IsElementOfMagmaRingModuloRelations[101X
[33X[1;0Y[29X[2XIsElementOfMagmaRingModuloRelations[102X( [3Xobj[103X ) [32X Category[133X
[33X[1;0Y[29X[2XIsElementOfMagmaRingModuloRelationsCollection[102X( [3Xobj[103X ) [32X Category[133X
[33X[0;0YThis category is used, e. g., for elements of free Lie algebras.[133X
[1X65.4-2 IsElementOfMagmaRingModuloRelationsFamily[101X
[33X[1;0Y[29X[2XIsElementOfMagmaRingModuloRelationsFamily[102X( [3XFam[103X ) [32X Category[133X
[33X[0;0YThe family category for the category [2XIsElementOfMagmaRingModuloRelations[102X
([14X65.4-1[114X).[133X
[1X65.4-3 NormalizedElementOfMagmaRingModuloRelations[101X
[33X[1;0Y[29X[2XNormalizedElementOfMagmaRingModuloRelations[102X( [3XF[103X, [3Xdescr[103X ) [32X operation[133X
[33X[0;0YLet [3XF[103X be a family of magma ring elements modulo relations, and [3Xdescr[103X the
description of an element in a magma ring modulo relations.
[2XNormalizedElementOfMagmaRingModuloRelations[102X returns a description of the
same element, but normalized w.r.t. the relations. So two elements are equal
if and only if the result of [2XNormalizedElementOfMagmaRingModuloRelations[102X is
equal for their internal data, that is, [2XCoefficientsAndMagmaElements[102X
([14X65.2-4[114X) will return the same for the corresponding two elements.[133X
[33X[0;0Y[2XNormalizedElementOfMagmaRingModuloRelations[102X is allowed to return [3Xdescr[103X
itself, it need not make a copy. This is the case for example in the case of
free magma rings.[133X
[1X65.4-4 IsMagmaRingModuloRelations[101X
[33X[1;0Y[29X[2XIsMagmaRingModuloRelations[102X( [3Xobj[103X ) [32X Category[133X
[33X[0;0YA [5XGAP[105X object lies in the category [2XIsMagmaRingModuloRelations[102X if it has been
constructed as a magma ring modulo relations. Each element of such a ring
has a unique normal form, so [2XCoefficientsAndMagmaElements[102X ([14X65.2-4[114X) is
well-defined for it.[133X
[33X[0;0YThis category is not inherited to factor structures, which are in general
best described as finitely presented algebras, see Chapter [14X63[114X.[133X
[1X65.5 [33X[0;0YMagma Rings modulo the Span of a Zero Element[133X[101X
[1X65.5-1 IsElementOfMagmaRingModuloSpanOfZeroFamily[101X
[33X[1;0Y[29X[2XIsElementOfMagmaRingModuloSpanOfZeroFamily[102X( [3XFam[103X ) [32X Category[133X
[33X[0;0YWe need this for the normalization method, which takes a family as first
argument.[133X
[1X65.5-2 IsMagmaRingModuloSpanOfZero[101X
[33X[1;0Y[29X[2XIsMagmaRingModuloSpanOfZero[102X( [3XRM[103X ) [32X Category[133X
[33X[0;0YThe category of magma rings modulo the span of a zero element.[133X
[1X65.5-3 MagmaRingModuloSpanOfZero[101X
[33X[1;0Y[29X[2XMagmaRingModuloSpanOfZero[102X( [3XR[103X, [3XM[103X, [3Xz[103X ) [32X function[133X
[33X[0;0YLet [3XR[103X be a ring, [3XM[103X a magma, and [3Xz[103X an element of [3XM[103X with the property that [22X[3Xz[103X *
m = [3Xz[103X[122X holds for all [22Xm ∈ M[122X. The element [3Xz[103X could be called a [21Xzero element[121X of
[3XM[103X, but note that in general [3Xz[103X cannot be obtained as [10XZero( [110X[22Xm[122X[10X )[110X for each [22Xm ∈
M[122X, so this situation does not match the definition of [2XZero[102X ([14X31.10-3[114X).[133X
[33X[0;0Y[2XMagmaRingModuloSpanOfZero[102X returns the magma ring [22X[3XR[103X[3XM[103X[122X modulo the relation
given by the identification of [3Xz[103X with zero. This is an example of a magma
ring modulo relations, see [14X65.4[114X.[133X
[1X65.6 [33X[0;0YTechnical Details about the Implementation of Magma Rings[133X[101X
[33X[0;0YThe [13Xfamily[113X containing elements in the magma ring [22XRM[122X in fact contains all
elements with coefficients in the family of elements of [22XR[122X and magma elements
in the family of elements of [22XM[122X. So arithmetic operations with coefficients
outside [22XR[122X or with magma elements outside [22XM[122X might create elements outside [22XRM[122X.[133X
[33X[0;0YIt should be mentioned that each call of [2XFreeMagmaRing[102X ([14X65.1-1[114X) creates a
new family of elements, so for example the elements of two group rings of
permutation groups over the same ring lie in different families and
therefore are regarded as different.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xg:= SymmetricGroup( 3 );;[127X[104X
[4X[25Xgap>[125X [27Xh:= AlternatingGroup( 3 );;[127X[104X
[4X[25Xgap>[125X [27XIsSubset( g, h );[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xf:= GF(2);;[127X[104X
[4X[25Xgap>[125X [27Xfg:= GroupRing( f, g );[127X[104X
[4X[28X<algebra-with-one over GF(2), with 2 generators>[128X[104X
[4X[25Xgap>[125X [27Xfh:= GroupRing( f, h );[127X[104X
[4X[28X<algebra-with-one over GF(2), with 1 generators>[128X[104X
[4X[25Xgap>[125X [27XIsSubset( fg, fh );[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27Xo1:= One( fh ); o2:= One( fg ); o1 = o2;[127X[104X
[4X[28X(Z(2)^0)*()[128X[104X
[4X[28X(Z(2)^0)*()[128X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27Xemb:= Embedding( g, fg );;[127X[104X
[4X[25Xgap>[125X [27Xim:= Image( emb, h );[127X[104X
[4X[28X<group of size 3 with 1 generators>[128X[104X
[4X[25Xgap>[125X [27XIsSubset( fg, im );[127X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
[33X[0;0YThere is [13Xno[113X generic [13Xexternal representation[113X for elements in an arbitrary
free magma ring. For example, polynomials are elements of a free magma ring,
and they have an external representation relying on the special form of the
underlying monomials. On the other hand, elements in a group ring of a
permutation group do not admit such an external representation.[133X
[33X[0;0YFor convenience, magma rings constructed with [2XFreeAlgebra[102X ([14X62.3-1[114X),
[2XFreeAssociativeAlgebra[102X ([14X62.3-3[114X), [2XFreeAlgebraWithOne[102X ([14X62.3-2[114X), and
[2XFreeAssociativeAlgebraWithOne[102X ([14X62.3-4[114X) support an external representation of
their elements, which is defined as a list of length 2, the first entry
being the zero coefficient, the second being a list with the external
representations of the magma elements at the odd positions and the
corresponding coefficients at the even positions.[133X
[33X[0;0YAs the above examples show, there are several possible representations of
magma ring elements, the representations used for polynomials (see Chapter
[14X66[114X) as well as the default representation [2XIsMagmaRingObjDefaultRep[102X ([14X65.2-1[114X)
of magma ring elements. The latter simply stores the zero coefficient and a
list containing the coefficients of the element at the even positions and
the corresponding magma elements at the odd positions, where the succession
is compatible with the ordering of magma elements via [10X\<[110X.[133X
|