/usr/share/gap/doc/ref/chap67.txt is in gap-online-help 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
[1X67 [33X[0;0YAlgebraic extensions of fields[133X[101X
[33X[0;0YIf we adjoin a root [22Xα[122X of an irreducible polynomial [22Xf ∈ K[x][122X to the field [22XK[122X
we get an [13Xalgebraic extension[113X [22XK(α)[122X, which is again a field. We call [22XK[122X the
[13Xbase field[113X of [22XK(α)[122X.[133X
[33X[0;0YBy Kronecker's construction, we may identify [22XK(α)[122X with the factor ring
[22XK[x]/(f)[122X, an identification that also provides a method for computing in
these extension fields.[133X
[33X[0;0YIt is important to note that different extensions of the same field are
entirely different (and its elements lie in different families), even if
mathematically one could be embedded in the other one.[133X
[33X[0;0YCurrently [5XGAP[105X only allows extension fields of fields [22XK[122X, when [22XK[122X itself is not
an extension field.[133X
[1X67.1 [33X[0;0YCreation of Algebraic Extensions[133X[101X
[1X67.1-1 AlgebraicExtension[101X
[33X[1;0Y[29X[2XAlgebraicExtension[102X( [3XK[103X, [3Xf[103X ) [32X operation[133X
[33X[0;0Yconstructs an extension [3XL[103X of the field [3XK[103X by one root of the irreducible
polynomial [3Xf[103X, using Kronecker's construction. [3XL[103X is a field whose
[2XLeftActingDomain[102X ([14X57.1-11[114X) value is [3XK[103X. The polynomial [3Xf[103X is the
[2XDefiningPolynomial[102X ([14X58.2-7[114X) value of [3XL[103X and the attribute
[2XRootOfDefiningPolynomial[102X ([14X58.2-8[114X) of [3XL[103X holds a root of [3Xf[103X in [3XL[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xx:=Indeterminate(Rationals,"x");;[127X[104X
[4X[25Xgap>[125X [27Xp:=x^4+3*x^2+1;;[127X[104X
[4X[25Xgap>[125X [27Xe:=AlgebraicExtension(Rationals,p);[127X[104X
[4X[28X<algebraic extension over the Rationals of degree 4>[128X[104X
[4X[25Xgap>[125X [27XIsField(e);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xa:=RootOfDefiningPolynomial(e);[127X[104X
[4X[28Xa[128X[104X
[4X[32X[104X
[1X67.1-2 IsAlgebraicExtension[101X
[33X[1;0Y[29X[2XIsAlgebraicExtension[102X( [3Xobj[103X ) [32X Category[133X
[33X[0;0Yis the category of algebraic extensions of fields.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XIsAlgebraicExtension(e);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsAlgebraicExtension(Rationals);[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X67.2 [33X[0;0YElements in Algebraic Extensions[133X[101X
[33X[0;0YAccording to Kronecker's construction, the elements of an algebraic
extension are considered to be polynomials in the primitive element. The
elements of the base field are represented as polynomials of degree zero.
[5XGAP[105X therefore displays elements of an algebraic extension as polynomials in
an indeterminate [21Xa[121X, which is a root of the defining polynomial of the
extension. Polynomials of degree zero are displayed with a leading
exclamation mark to indicate that they are different from elements of the
base field.[133X
[33X[0;0YThe usual field operations are applicable to algebraic elements.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xa^3/(a^2+a+1);[127X[104X
[4X[28X-1/2*a^3+1/2*a^2-1/2*a[128X[104X
[4X[25Xgap>[125X [27Xa*(1/a);[127X[104X
[4X[28X!1[128X[104X
[4X[32X[104X
[33X[0;0YThe external representation of algebraic extension elements are the
polynomial coefficients in the primitive element [10Xa[110X, the operations
[2XExtRepOfObj[102X ([14X79.16-1[114X) and [2XObjByExtRep[102X ([14X79.16-1[114X) can be used for conversion.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XExtRepOfObj(One(a));[127X[104X
[4X[28X[ 1, 0, 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XExtRepOfObj(a^3+2*a-9);[127X[104X
[4X[28X[ -9, 2, 0, 1 ][128X[104X
[4X[25Xgap>[125X [27XObjByExtRep(FamilyObj(a),[3,19,-27,433]);[127X[104X
[4X[28X433*a^3-27*a^2+19*a+3[128X[104X
[4X[32X[104X
[33X[0;0Y[5XGAP[105X does [13Xnot[113X embed the base field in its algebraic extensions and therefore
lists which contain elements of the base field and of the extension are not
homogeneous and thus cannot be used as polynomial coefficients or to form
matrices. The remedy is to multiply the list(s) with the value of the
attribute [2XOne[102X ([14X31.10-2[114X) of the extension which will embed all entries in the
extension.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xm:=[[1,a],[0,1]];[127X[104X
[4X[28X[ [ 1, a ], [ 0, 1 ] ][128X[104X
[4X[25Xgap>[125X [27XIsMatrix(m);[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27Xm:=m*One(e);[127X[104X
[4X[28X[ [ !1, a ], [ !0, !1 ] ][128X[104X
[4X[25Xgap>[125X [27XIsMatrix(m);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xm^2;[127X[104X
[4X[28X[ [ !1, 2*a ], [ !0, !1 ] ][128X[104X
[4X[32X[104X
[1X67.2-1 IsAlgebraicElement[101X
[33X[1;0Y[29X[2XIsAlgebraicElement[102X( [3Xobj[103X ) [32X Category[133X
[33X[0;0Yis the category for elements of an algebraic extension.[133X
|