/usr/share/gap/doc/ref/chapBib.txt is in gap-online-help 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
[1XReferences[101X
[[20XAMW82[120X] [16XArrell, D. G., Manrai, S. and Worboys, M. F.[116X ([1m[31mCampbell, C. M. and
Robertson, E. F.[15X, Eds.), [17XA procedure for obtaining simplified defining
relations for a subgroup[117X, in Groups–St Andrews 1981 (St Andrews, 1981),
Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., [19X71[119X, Cambridge
(1982), 155–159.
[[20XAR84[120X] [16XArrell, D. G. and Robertson, E. F.[116X ([1m[31mAtkinson, M. D.[15X, Ed.), [17XA modified
Todd-Coxeter algorithm[117X, in Computational group theory (Durham, 1982),
Academic Press, London (1984), 27–32.
[[20XArt73[120X] [16XArtin, E.[116X, [17XGaloissche Theorie[117X, Verlag Harri Deutsch, Zurich (1973),
86 pages, ((Übersetzung nach der zweiten englischen Auflage besorgt von
Viktor Ziegler, Mit einem Anhang von N. A. Milgram, Zweite, unveränderte
Auflage, Deutsch-Taschenbücher, No. 21)).
[[20XBak84[120X] [16XBaker, A.[116X, [17XA concise introduction to the theory of numbers[117X,
Cambridge University Press, Cambridge (1984), xiii+95 pages.
[[20XBC76[120X] [16XBeetham, M. J. and Campbell, C. M.[116X, [17XA note on the Todd-Coxeter coset
enumeration algorithm[117X, [18XProc. Edinburgh Math. Soc. (2)[118X, [19X20[119X, 1 (1976), 73–79.
[[20XBC89[120X] [16XBrent, R. P. and Cohen, G. L.[116X, [17XA new lower bound for odd perfect
numbers[117X, [18XMath. Comp.[118X, [19X53[119X, 187 (1989), 431–437, S7–S24.
[[20XBC94[120X] [16XBaum, U. and Clausen, M.[116X, [17XComputing irreducible representations of
supersolvable groups[117X, [18XMath. Comp.[118X, [19X63[119X, 207 (1994), 351–359.
[[20XBCFS91[120X] [16XBabai, L., Cooperman, G., Finkelstein, L. and Seress, Á.[116X, [17XNearly
Linear Time Algorithms for Permutation Groups with a Small Base[117X, in
Proceedings of the International Symposium on Symbolic and Algebraic
Computation (ISSAC'91), Bonn 1991, ACM Press (1991), 200–209.
[[20XBE99a[120X] [16XBesche, H. U. and Eick, B.[116X, [17XConstruction of finite groups[117X, [18XJ.
Symbolic Comput.[118X, [19X27[119X, 4 (1999), 387–404.
[[20XBE99b[120X] [16XBesche, H. U. and Eick, B.[116X, [17XThe groups of order at most 1000 except
512 and 768[117X, [18XJ. Symbolic Comput.[118X, [19X27[119X, 4 (1999), 405–413.
[[20XBE01[120X] [16XBesche, H. U. and Eick, B.[116X, [17XThe groups of order q^n ⋅ p[117X, [18XComm.
Algebra[118X, [19X29[119X, 4 (2001), 1759–1772.
[[20XBEO01[120X] [16XBesche, H. U., Eick, B. and O'Brien, E. A.[116X, [17XThe groups of order at
most 2000[117X, [18XElectron. Res. Announc. Amer. Math. Soc.[118X, [19X7[119X (2001), 1–4
(electronic).
[[20XBEO02[120X] [16XBesche, H. U., Eick, B. and O'Brien, E. A.[116X, [17XA millennium project:
constructing small groups[117X, [18XInternat. J. Algebra Comput.[118X, [19X12[119X, 5 (2002),
623–644.
[[20XBer76[120X] [16XBerger, T. R.[116X, [17XCharacters and derived length in groups of odd order[117X,
[18XJ. Algebra[118X, [19X39[119X, 1 (1976), 199–207.
[[20XBes92[120X] [16XBesche, H. U.[116X, [17XDie Berechnung von Charaktergraden und Charakteren
endlicher auflösbarer Gruppen im Computeralgebrasystem GAP[117X, Diplomarbeit,
Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany (1992).
[[20XBFS79[120X] [16XBeyl, F. R., Felgner, U. and Schmid, P.[116X, [17XOn groups occurring as
center factor groups[117X, [18XJ. Algebra[118X, [19X61[119X, 1 (1979), 161–177.
[[20XBJR87[120X] [16XBrown, R., Johnson, D. L. and Robertson, E. F.[116X, [17XSome computations of
nonabelian tensor products of groups[117X, [18XJ. Algebra[118X, [19X111[119X, 1 (1987), 177–202.
[[20XBL98[120X] [16XBreuer, T. and Linton, S.[116X, [17XThe GAP 4 Type System. Organizing
Algebraic Algorithms[117X, in ISSAC '98: Proceedings of the 1998 international
symposium on Symbolic and algebraic computation, ACM Press, New York, NY,
USA (1998), 38–45, ((Chairman: Volker Weispfenning and Barry Trager)).
[[20XBLS75[120X] [16XBrillhart, J., Lehmer, D. and Selfridge, J.[116X, [17XNew primality criteria
and factorizations of 2^m ± 1[117X, [18XMathematics of Computation[118X, [19X29[119X (1975),
620–647.
[[20XBM83[120X] [16XButler, G. and McKay, J.[116X, [17XThe transitive groups of degree up to
eleven[117X, [18XComm. Algebra[118X, [19X11[119X, 8 (1983), 863–911.
[[20XBou70[120X] [16XBourbaki, N.[116X, [17XÉléments de mathématique. Algèbre. Chapitres 1 à 3[117X,
Hermann, Paris (1970), xiii+635 pp. (not consecutively paged) pages.
[[20XBP98[120X] [16XBreuer, T. and Pfeiffer, G.[116X, [17XFinding possible permutation characters[117X,
[18XJ. Symbolic Comput.[118X, [19X26[119X, 3 (1998), 343–354.
[[20XBre91[120X] [16XBreuer, T.[116X, [17XPotenzabbildungen, Untergruppenfusionen,
Tafel-Automorphismen[117X, Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany (1991).
[[20XBre97[120X] [16XBreuer, T.[116X, [17XIntegral bases for subfields of cyclotomic fields[117X, [18XAppl.
Algebra Engrg. Comm. Comput.[118X, [19X8[119X, 4 (1997), 279–289.
[[20XBre99[120X] [16XBreuer, T.[116X, [17XComputing possible class fusions from character tables[117X,
[18XComm. Algebra[118X, [19X27[119X, 6 (1999), 2733–2748.
[[20XBTW93[120X] [16XBeauzamy, B., Trevisan, V. and Wang, P. S.[116X, [17XPolynomial
factorization: sharp bounds, efficient algorithms[117X, [18XJ. Symbolic Comput.[118X, [19X15[119X,
4 (1993), 393–413.
[[20XBur55[120X] [16XBurnside, W.[116X, [17XTheory of groups of finite order[117X, Dover Publications
Inc., New York (1955), xxiv+512 pages, ((Unabridged republication of the
second edition, published in 1911)).
[[20XBut93[120X] [16XButler, G.[116X, [17XThe transitive groups of degree fourteen and fifteen[117X, [18XJ.
Symbolic Comput.[118X, [19X16[119X, 5 (1993), 413–422.
[[20XCan73[120X] [16XCannon, J. J.[116X, [17XConstruction of defining relators for finite groups[117X,
[18XDiscrete Math.[118X, [19X5[119X (1973), 105–129.
[[20XCar72[120X] [16XCarter, R. W.[116X, [17XSimple groups of Lie type[117X, John Wiley & Sons,
London-New York-Sydney (1972), viii+331 pages, ((Pure and Applied
Mathematics, Vol. 28)).
[[20XCCN+85[120X] [16XConway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and
Wilson, R. A.[116X, [17XAtlas of finite groups[117X, Oxford University Press, Eynsham
(1985), xxxiv+252 pages, ((Maximal subgroups and ordinary characters for
simple groups, With computational assistance from J. G. Thackray)).
[[20XCHM98[120X] [16XConway, J. H., Hulpke, A. and McKay, J.[116X, [17XOn transitive permutation
groups[117X, [18XLMS J. Comput. Math.[118X, [19X1[119X (1998), 1–8 (electronic).
[[20XCLO97[120X] [16XCox, D., Little, J. and O'Shea, D.[116X, [17XIdeals, varieties, and
algorithms[117X, Springer-Verlag, Second edition, Undergraduate Texts in
Mathematics, New York (1997), xiv+536 pages, ((An introduction to
computational algebraic geometry and commutative algebra)).
[[20XCoh93[120X] [16XCohen, H.[116X, [17XA course in computational algebraic number theory[117X,
Springer-Verlag, Graduate Texts in Mathematics, [19X138[119X, Berlin (1993), xii+534
pages.
[[20XCon90a[120X] [16XConlon, S. B.[116X, [17XCalculating characters of p-groups[117X, [18XJ. Symbolic
Comput.[118X, [19X9[119X, 5-6 (1990), 535–550, ((Computational group theory, Part 1)).
[[20XCon90b[120X] [16XConlon, S. B.[116X, [17XComputing modular and projective character degrees
of soluble groups[117X, [18XJ. Symbolic Comput.[118X, [19X9[119X, 5-6 (1990), 551–570,
((Computational group theory, Part 1)).
[[20XDE05[120X] [16XDietrich, H. and Eick, B.[116X, [17XOn the groups of cube-free order[117X, [18XJ.
Algebra[118X, [19X292[119X, 1 (2005), 122–137.
[[20XDix67[120X] [16XDixon, J. D.[116X, [17XHigh speed computation of group characters[117X, [18XNumer.
Math.[118X, [19X10[119X (1967), 446–450.
[[20XDix93[120X] [16XDixon, J. D.[116X ([1m[31mFinkelstein, L. and Kantor, W. M.[15X, Eds.), [17XConstructing
representations of finite groups[117X, in Groups and computation (New Brunswick,
NJ, 1991), Amer. Math. Soc., DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., [19X11[119X, Providence, RI (1993), 105–112.
[[20XDM88[120X] [16XDixon, J. D. and Mortimer, B.[116X, [17XThe primitive permutation groups of
degree less than 1000[117X, [18XMath. Proc. Cambridge Philos. Soc.[118X, [19X103[119X, 2 (1988),
213–238.
[[20XDre69[120X] [16XDress, A.[116X, [17XA characterisation of solvable groups[117X, [18XMath. Z.[118X, [19X110[119X
(1969), 213–217.
[[20XEH01[120X] [16XEick, B. and Hulpke, A.[116X, [17XComputing the maximal subgroups of a
permutation group I[117X, 155–168.
[[20XEH03[120X] [16XEick, B. and Höfling, B.[116X, [17XThe solvable primitive permutation groups
of degree at most 6560[117X, [18XLMS J. Comput. Math.[118X, [19X6[119X (2003), 29–39 (electronic).
[[20XEic97[120X] [16XEick, B.[116X ([1m[31mFinkelstein, L. and Kantor, W. M.[15X, Eds.), [17XSpecial
presentations for finite soluble groups and computing (pre-)Frattini
subgroups[117X, in Groups and computation, II (New Brunswick, NJ, 1995), Amer.
Math. Soc., DIMACS Ser. Discrete Math. Theoret. Comput. Sci., [19X28[119X,
Providence, RI (1997), 101–112.
[[20XEll98[120X] [16XEllis, G.[116X, [17XOn the capability of groups[117X, [18XProc. Edinburgh Math. Soc.
(2)[118X, [19X41[119X, 3 (1998), 487–495.
[[20XEO99a[120X] [16XEick, B. and O'Brien, E. A.[116X, [17XEnumerating p-groups[117X, [18XJ. Austral. Math.
Soc. Ser. A[118X, [19X67[119X, 2 (1999), 191–205, ((Group theory)).
[[20XEO99b[120X] [16XEick, B. and O'Brien, E. A.[116X ([1m[31mMatzat, B. H., Greuel, G.-M. and Hiss,
G.[15X, Eds.), [17XThe groups of order 512[117X, in Algorithmic algebra and number theory
(Heidelberg, 1997), Springer, Berlin (1999), 379–380, ((Proceedings of
Abschlusstagung des DFG Schwerpunktes Algorithmische Algebra und
Zahlentheorie in Heidelberg)).
[[20XFJNT95[120X] [16XFelsch, V., Johnson, D. L., Neubüser, J. and Tsaranov, S. V.[116X, [17XThe
structure of certain Coxeter groups[117X, in Groups '93 Galway/St Andrews, Vol. 1
(Galway, 1993), Cambridge Univ. Press, London Math. Soc. Lecture Note Ser.,
[19X211[119X, Cambridge (1995), 177–190.
[[20XFN79[120X] [16XFelsch, V. and Neubüser, J.[116X ([1m[31mNg, E. W.[15X, Ed.), [17XAn algorithm for the
computation of conjugacy classes and centralizers in p-groups[117X, in Symbolic
and algebraic computation (EUROSAM '79, Internat. Sympos., Marseille, 1979),
Springer, Lecture Notes in Comput. Sci., [19X72[119X, Berlin (1979), 452–465,
((EUROSAM '79, an International Symposium held in Marseille, June 1979)).
[[20XFra82[120X] [16XFrame, J. S.[116X, [17XRecursive computation of tensor power components[117X,
[18XBayreuth. Math. Schr.[118X, [19X10[119X (1982), 153–159.
[[20XGir03[120X] [16XGirnat, B.[116X, [17XKlassifikation der Gruppen bis zur Ordnung p^5[117X,
Staatsexamensarbeit, TU Braunschweig, Braunschweig, Germany (2003).
[[20XHal36[120X] [16XHall, P.[116X, [17XThe Eulerian functions of a group[117X, [18XQuarterly J. Of
Mathematics[118X, [19Xos-7[119X, 1 (1936), 134–151.
[[20XHav69[120X] [16XHavas, G.[116X, [17XSymbolic and Algebraic Calculation[117X, Basser Computing
Dept., Technical Report, Basser Department of Computer Science, University
of Sydney, 89, Sydney, Australia (1969).
[[20XHav74[120X] [16XHavas, G.[116X ([1m[31mNewman, M. F.[15X, Ed.), [17XA Reidemeister-Schreier program[117X, in
Proceedings of the Second International Conference on the Theory of Groups
(Australian Nat. Univ., Canberra, 1973), Springer, Lecture Notes in Math.,
[19X372[119X, Berlin (1974), 347–356. Lecture Notes in Math., Vol. 372, ((Held at the
Australian National University, Canberra, August 13–24, 1973, With an
introduction by B. H. Neumann, Lecture Notes in Mathematics, Vol. 372)).
[[20XHB82[120X] [16XHuppert, B. and Blackburn, N.[116X, [17XFinite groups. II[117X, Springer-Verlag,
Grundlehren Math. Wiss., [19X242[119X, Berlin (1982), xiii+531 pages.
[[20XHIÖ89[120X] [16XHawkes, T., Isaacs, I. M. and Özaydin, M.[116X, [17XOn the Möbius function of
a finite group[117X, [18XRocky Mountain J. Math.[118X, [19X19[119X, 4 (1989), 1003–1034.
[[20XHJ59[120X] [16XHall Jr., M.[116X, [17XThe theory of groups[117X, The Macmillan Co., New York, N.Y.
(1959), xiii+434 pages.
[[20XHJLP[120X] [16XHiss, G., Jansen, C., Lux, K. and Parker, R. A.[116X, [17XComputational
Modular Character Theory[117X, http://www.math.rwth-aachen.de/~MOC/CoMoChaT/.
[[20XHKRR84[120X] [16XHavas, G., Kenne, P. E., Richardson, J. S. and Robertson, E. F.[116X
([1m[31mAtkinson, M. D.[15X, Ed.), [17XA Tietze transformation program[117X, in Computational
group theory (Durham, 1982), Academic Press, London (1984), 69–73.
[[20XHow76[120X] [16XHowie, J. M.[116X, [17XAn introduction to semigroup theory[117X, Academic Press
[Harcourt Brace Jovanovich Publishers], London (1976), x+272 pages, ((L.M.S.
Monographs, No. 7)).
[[20XHP89[120X] [16XHolt, D. F. and Plesken, W.[116X, [17XPerfect groups[117X, The Clarendon Press
Oxford University Press, Oxford Mathematical Monographs, New York (1989),
xii+364 pages, ((With an appendix by W. Hanrath, Oxford Science
Publications)).
[[20XHR94[120X] [16XHolt, D. F. and Rees, S.[116X, [17XTesting modules for irreducibility[117X, [18XJ.
Austral. Math. Soc. Ser. A[118X, [19X57[119X, 1 (1994), 1–16.
[[20XHul93[120X] [16XHulpke, A.[116X, [17XZur Berechnung von Charaktertafeln[117X, Diplomarbeit,
Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule
(1993).
[[20XHul96[120X] [16XHulpke, A.[116X, [17XKonstruktion transitiver Permutationsgruppen[117X,
Dissertation, Verlag der Augustinus Buchhandlung, Aachen, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany (1996).
[[20XHul98[120X] [16XHulpke, A.[116X, [17XComputing normal subgroups[117X, in Proceedings of the 1998
International Symposium on Symbolic and Algebraic Computation (Rostock),
ACM, New York (1998), 194–198 (electronic), ((Chairman: Volker Weispfenning
and Barry Trager)).
[[20XHul99[120X] [16XHulpke, A.[116X, [17XComputing subgroups invariant under a set of
automorphisms[117X, [18XJ. Symbolic Comput.[118X, [19X27[119X, 4 (1999), 415–427.
[[20XHul00[120X] [16XHulpke, A.[116X, [17XConjugacy classes in finite permutation groups via
homomorphic images[117X, [18XMath. Comp.[118X, [19X69[119X, 232 (2000), 1633–1651.
[[20XHul01[120X] [16XHulpke, A.[116X, [17XRepresenting subgroups of finitely presented groups by
quotient subgroups[117X, [18XExperiment. Math.[118X, [19X10[119X, 3 (2001), 369–381.
[[20XHul05[120X] [16XHulpke, A.[116X, [17XConstructing transitive permutation groups[117X, [18XJ. Symbolic
Comput.[118X, [19X39[119X, 1 (2005), 1–30.
[[20XHum72[120X] [16XHumphreys, J. E.[116X, [17XIntroduction to Lie algebras and representation
theory[117X, Springer-Verlag, New York (1972), xii+169 pages, ((Graduate Texts in
Mathematics, Vol. 9)).
[[20XHum78[120X] [16XHumphreys, J. E.[116X, [17XIntroduction to Lie algebras and representation
theory[117X, Springer-Verlag, Graduate Texts in Mathematics, [19X9[119X, New York (1978),
xii+171 pages, ((Second printing, revised)).
[[20XHup67[120X] [16XHuppert, B.[116X, [17XEndliche Gruppen. I[117X, Springer-Verlag, Die Grundlehren
der Mathematischen Wissenschaften, Band 134, Berlin (1967), xii+793 pages.
[[20XIE94[120X] [16XIshibashi, H. and Earnest, A. G.[116X, [17XTwo-element generation of
orthogonal groups over finite fields[117X, [18XJ. Algebra[118X, [19X165[119X, 1 (1994), 164–171.
[[20XIsa76[120X] [16XIsaacs, I. M.[116X, [17XCharacter theory of finite groups[117X, Academic Press
[Harcourt Brace Jovanovich Publishers], New York (1976), xii+303 pages,
((Pure and Applied Mathematics, No. 69)).
[[20XJLPW95[120X] [16XJansen, C., Lux, K., Parker, R. and Wilson, R.[116X, [17XAn atlas of Brauer
characters[117X, The Clarendon Press Oxford University Press, London Mathematical
Society Monographs. New Series, [19X11[119X, New York (1995), xviii+327 pages,
((Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications)).
[[20XJoh97[120X] [16XJohnson, D. L.[116X, [17XPresentations of groups[117X, Cambridge University Press,
Second edition, London Mathematical Society Student Texts, [19X15[119X, Cambridge
(1997), xii+216 pages.
[[20XKau92[120X] [16XKaup, A.[116X, [17XGitterbasen und Charaktere endlicher Gruppen[117X,
Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische
Hochschule, Aachen, Germany (1992).
[[20XKL90[120X] [16XKleidman, P. and Liebeck, M.[116X, [17XThe subgroup structure of the finite
classical groups[117X, Cambridge University Press, London Mathematical Society
Lecture Note Series, [19X129[119X, Cambridge (1990), x+303 pages.
[[20XKli66[120X] [16XKlimyk, A. U.[116X, [17XDecomposition of the direct product of irreducible
representations of semisimple Lie algebras into irreducible representations[117X,
[18XUkrain. Mat. Ž.[118X, [19X18[119X, 5 (1966), 19–27.
[[20XKli68[120X] [16XKlimyk, A. U.[116X, [17XDecomposition of a direct product of irreducible
representations of a semisimple Lie algebra into irreducible
representations[117X, in American Mathematical Society Translations. Series 2,
American Mathematical Society, [19X76[119X, Providence, R.I. (1968), 63–73.
[[20XKLM01[120X] [16XKemper, G., Lübeck, F. and Magaard, K.[116X, [17XMatrix generators for the
Ree groups ^2G_2(q)[117X, [18XComm. Algebra[118X, [19X29[119X, 1 (2001), 407–413.
[[20XKnu98[120X] [16XKnuth, D. E.[116X, [17XThe Art of Computer Programming, Volume 2:
Seminumerical Algorithms[117X, Addison-Wesley, third edition (1998).
[[20XLeo91[120X] [16XLeon, J. S.[116X, [17XPermutation group algorithms based on partitions. I.
Theory and algorithms[117X, [18XJ. Symbolic Comput.[118X, [19X12[119X, 4-5 (1991), 533–583,
((Computational group theory, Part 2)).
[[20XLLJL82[120X] [16XLenstra, A. K., Lenstra Jr., H. W. and Lovász, L.[116X, [17XFactoring
polynomials with rational coefficients[117X, [18XMath. Ann.[118X, [19X261[119X, 4 (1982), 515–534.
[[20XLNS84[120X] [16XLaue, R., Neubüser, J. and Schoenwaelder, U.[116X ([1m[31mAtkinson, M. D.[15X, Ed.),
[17XAlgorithms for finite soluble groups and the SOGOS system[117X, in Computational
group theory (Durham, 1982), Academic Press, London (1984), 105–135.
[[20XLP91[120X] [16XLux, K. and Pahlings, H.[116X ([1m[31mMichler, G. O. and Ringel, C. M.[15X, Eds.),
[17XComputational aspects of representation theory of finite groups[117X, in
Representation theory of finite groups and finite-dimensional algebras
(Bielefeld, 1991), Birkhäuser, Progr. Math., [19X95[119X, Basel (1991), 37–64.
[[20XLRW97[120X] [16XLuks, E. M., Rákóczi, F. and Wright, C. R. B.[116X, [17XSome algorithms for
nilpotent permutation groups[117X, [18XJ. Symbolic Comput.[118X, [19X23[119X, 4 (1997), 335–354.
[[20XLüb03[120X] [16XLübeck, F.[116X, [17XConway polynomials for finite fields[117X (2003),
http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol.
[[20XMaa10[120X] [16XMaas, L.[116X, [17XOn a construction of the basic spin representations of
symmetric groups[117X, [18XCommunications in Algebra[118X, [19X38[119X (2010), 4545–4552.
[[20XMac81[120X] [16XMacdonald, I. G.[116X, [17XNumbers of conjugacy classes in some finite
classical groups[117X, [18XBull. Austral. Math. Soc.[118X, [19X23[119X, 1 (1981), 23–48.
[[20XMN89[120X] [16XMecky, M. and Neubüser, J.[116X, [17XSome remarks on the computation of
conjugacy classes of soluble groups[117X, [18XBull. Austral. Math. Soc.[118X, [19X40[119X, 2
(1989), 281–292.
[[20XMur58[120X] [16XMurnaghan, F. D.[116X, [17XThe orthogonal and symplectic groups[117X, [18XComm. Dublin
Inst. Adv. Studies. Ser. A, no.[118X, [19X13[119X (1958), 146.
[[20XMV97[120X] [16XMahajan, M. and Vinay, V.[116X, [17XDeterminant: combinatorics, algorithms,
and complexity[117X, [18XChicago J. Theoret. Comput. Sci.[118X (1997), Article 5, 26 pp.
(electronic).
[[20XMY79[120X] [16XMcKay, J. and Young, K. C.[116X, [17XThe nonabelian simple groups G, |G| <
10^6–minimal generating pairs[117X, [18XMath. Comp.[118X, [19X33[119X, 146 (1979), 812–814.
[[20XNeb95[120X] [16XNebe, G.[116X, [17XEndliche rationale Matrixgruppen vom Grad 24[117X,
Dissertation, Rheinisch Westfälische Technische Hochschule, Aachener
Beiträge zur Mathematik, [19X12[119X, Aachen, Germany (1995).
[[20XNeb96[120X] [16XNebe, G.[116X, [17XFinite subgroups of GL_n(Q) for 25 ≤ n ≤ 31[117X, [18XComm.
Algebra[118X, [19X24[119X, 7 (1996), 2341–2397.
[[20XNeu82[120X] [16XNeubüser, J.[116X ([1m[31mCampbell, C. M. and Robertson, E. F.[15X, Eds.), [17XAn
elementary introduction to coset table methods in computational group
theory[117X, in Groups–St Andrews 1981 (St Andrews, 1981), Cambridge Univ. Press,
London Math. Soc. Lecture Note Ser., [19X71[119X, Cambridge (1982), 1–45.
[[20XNeu92[120X] [16XNeukirch, J.[116X, [17XAlgebraische Zahlentheorie[117X, Springer, Berlin,
Heidelberg and New York (1992).
[[20XNew77[120X] [16XNewman, M. F.[116X ([1m[31mBryce, R. A., Cossey, J. and Newman, M. F.[15X, Eds.),
[17XDetermination of groups of prime-power order[117X, in Group theory (Proc.
Miniconf., Australian Nat. Univ., Canberra, 1975), Springer, Lecture Notes
in Math., [19X573[119X, Berlin (1977), 73–84. Lecture Notes in Math., Vol. 573,
((Lecture Notes in Mathematics, Vol. 573)).
[[20XNew90[120X] [16XNewman, M. F.[116X, [17XProving a group infinite[117X, [18XArch. Math. (Basel)[118X, [19X54[119X, 3
(1990), 209–211.
[[20XNOVL04[120X] [16XNewman, M. F., O'Brien, E. A. and Vaughan-Lee, M. R.[116X, [17XGroups and
nilpotent Lie rings whose order is the sixth power of a prime[117X, [18XJ. Algebra[118X,
[19X278[119X, 1 (2004), 383–401.
[[20XNP95b[120X] [16XNebe, G. and Plesken, W.[116X, [17XFinite rational matrix groups of degree
16[117X, [18XMem. Amer. Math. Soc.[118X, AMS, 556 (1995), 74–144, ((vol. 116)).
[[20XNPP84[120X] [16XNeubüser, J., Pahlings, H. and Plesken, W.[116X ([1m[31mAtkinson, M. D.[15X, Ed.),
[17XCAS; design and use of a system for the handling of characters of finite
groups[117X, in Computational group theory (Durham, 1982), Academic Press, London
(1984), 195–247.
[[20XO'B90[120X] [16XO'Brien, E. A.[116X, [17XThe p-group generation algorithm[117X, [18XJ. Symbolic
Comput.[118X, [19X9[119X, 5-6 (1990), 677–698, ((Computational group theory, Part 1)).
[[20XO'B91[120X] [16XO'Brien, E. A.[116X, [17XThe groups of order 256[117X, [18XJ. Algebra[118X, [19X143[119X, 1 (1991),
219–235.
[[20XOVL05[120X] [16XO'Brien, E. A. and Vaughan-Lee, M. R.[116X, [17XThe groups with order p^7 for
odd prime p[117X, [18XJ. Algebra[118X, [19X292[119X, 1 (2005), 243–258.
[[20XPah93[120X] [16XPahlings, H.[116X, [17XOn the Möbius function of a finite group[117X, [18XArch. Math.
(Basel)[118X, [19X60[119X, 1 (1993), 7–14.
[[20XPar84[120X] [16XParker, R. A.[116X ([1m[31mAtkinson, M. D.[15X, Ed.), [17XThe computer calculation of
modular characters (the meat-axe)[117X, in Computational group theory (Durham,
1982), Academic Press, London (1984), 267–274.
[[20XPfe91[120X] [16XPfeiffer, G.[116X, [17XVon Permutationscharakteren und Markentafeln[117X,
Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische
Hochschule, Aachen, Germany (1991).
[[20XPfe97[120X] [16XPfeiffer, G.[116X, [17XThe subgroups of M_24, or how to compute the table of
marks of a finite group[117X, [18XExperiment. Math.[118X, [19X6[119X, 3 (1997), 247–270.
[[20XPle85[120X] [16XPlesken, W.[116X, [17XFinite unimodular groups of prime degree and
circulants[117X, [18XJ. Algebra[118X, [19X97[119X, 1 (1985), 286–312.
[[20XPle95[120X] [16XPlesken, W.[116X, [17XSolving XX^ tr = A over the integers[117X, [18XLinear Algebra
Appl.[118X, [19X226/228[119X (1995), 331--344.
[[20XPN95[120X] [16XPlesken, W. and Nebe, G.[116X, [17XFinite rational matrix groups[117X, [18XMem. Amer.
Math. Soc.[118X, AMS, 556 (1995), 1–73, ((vol. 116)).
[[20XPoh87[120X] [16XPohst, M.[116X, [17XA modification of the LLL reduction algorithm[117X, [18XJ.
Symbolic Comput.[118X, [19X4[119X, 1 (1987), 123–127.
[[20XPP77[120X] [16XPlesken, W. and Pohst, M.[116X, [17XOn maximal finite irreducible Subgroups of
GL(n,Z). I. The five and seven dimensional cases, II. The six dimensional
case[117X, [18XMath. Comp.[118X, [19X31[119X (1977), 536–576.
[[20XPP80[120X] [16XPlesken, W. and Pohst, M.[116X, [17XOn maximal finite irreducible Subgroups of
GL(n,Z). III. The nine dimensional case, IV. Remarks on even dimensions with
application to n = 8, V. The eight dimensional case and a complete
description of dimensions less than ten[117X, [18XMath. Comp.[118X, [19X34[119X (1980), 245–301.
[[20XRD05[120X] [16XRoney-Dougal, C. M.[116X, [17XThe primitive permutation groups of degree less
than 2500[117X, [18XJ. Algebra[118X, [19X292[119X, 1 (2005), 154–183.
[[20XRDU03[120X] [16XRoney-Dougal, C. M. and Unger, W. R.[116X, [17XThe affine primitive
permutation groups of degree less than 1000[117X, [18XJ. Symbolic Comput.[118X, [19X35[119X, 4
(2003), 421–439.
[[20XRin93[120X] [16XRinge, M.[116X, [17XThe C MeatAxe, Release 1.5[117X, Lehrstuhl D für Mathematik,
Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1993).
[[20XRob88[120X] [16XRobertson, E. F.[116X, [17XTietze transformations with weighted substring
search[117X, [18XJ. Symbolic Comput.[118X, [19X6[119X, 1 (1988), 59–64.
[[20XRoy87[120X] [16XRoyle, G. F.[116X, [17XThe transitive groups of degree twelve[117X, [18XJ. Symbolic
Comput.[118X, [19X4[119X, 2 (1987), 255–268.
[[20XRT98[120X] [16XRylands, L. J. and Taylor, D. E.[116X, [17XMatrix generators for the
orthogonal groups[117X, [18XJ. Symbolic Comput.[118X, [19X25[119X, 3 (1998), 351–360.
[[20XSch11[120X] [16XSchur, J.[116X, [17XÜber die Darstellung der symmetrischen und der
alternierenden Gruppe durch gebrochene lineare Substitutionen[117X, [18XJournal für
die reine und angewandte Mathematik[118X, [19X139[119X (1911), 155–250.
[[20XSch90[120X] [16XSchneider, G. J. A.[116X, [17XDixon's character table algorithm revisited[117X, [18XJ.
Symbolic Comput.[118X, [19X9[119X, 5-6 (1990), 601–606, ((Computational group theory, Part
1)).
[[20XSch92[120X] [16XScherner, M.[116X, [17XErweiterung einer Arithmetik von Kreisteilungskörpern
auf deren Teilkörper und deren Implementation in GAP[117X, Diplomarbeit,
Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany (1992).
[[20XSch94[120X] [16XSchiffer, U.[116X, [17XCliffordmatrizen[117X, Diplomarbeit, Lehrstuhl D für
Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany
(1994).
[[20XSco73[120X] [16XScott, L. L.[116X, [17XModular permutation representations[117X, [18XTrans. Amer.
Math. Soc.[118X, [19X175[119X (1973), 101–121.
[[20XSer03[120X] [16XSeress, Á.[116X, [17XPermutation Group Algorithms[117X, Cambridge University Press
(2003).
[[20XSho92[120X] [16XShort, M. W.[116X, [17XThe primitive soluble permutation groups of degree
less than 256[117X, Springer-Verlag, Lecture Notes in Mathematics, [19X1519[119X, Berlin
(1992), x+145 pages.
[[20XSim70[120X] [16XSims, C. C.[116X ([1m[31mLeech, J.[15X, Ed.), [17XComputational methods in the study of
permutation groups[117X, in Computational Problems in Abstract Algebra (Proc.
Conf., Oxford, 1967) , Pergamon, Proceedings of a Conference held at Oxford
under the auspices of the Science Research Council, Atlas Computer
Laboratory, [19X29[119X, Oxford (1970), 169–183, (RUSSIAN translation in:
Computations in algebra and number theory (Russian), edited by B. B. Venkov
and D. K. Faddeev, pp. 129–147, Matematika, Novoie v Zarubeznoi Naukie, vol.
2, Izdat. MIR, Moscow, 1976).
[[20XSim90[120X] [16XSims, C. C.[116X, [17XComputing the order of a solvable permutation group[117X, [18XJ.
Symbolic Comput.[118X, [19X9[119X, 5-6 (1990), 699–705, ((Computational group theory, Part
1)).
[[20XSim94[120X] [16XSims, C. C.[116X, [17XComputation with finitely presented groups[117X, Cambridge
University Press, Encyclopedia of Mathematics and its Applications, [19X48[119X,
Cambridge (1994), xiii+604 pages.
[[20XSim97[120X] [16XSims, C. C.[116X ([1m[31mKüchlin, W.[15X, Ed.), [17XComputing with subgroups of
automorphism groups of finite groups[117X, in Proceedings of the 1997
International Symposium on Symbolic and Algebraic Computation (Kihei, HI),
The Association for Computing Machinery, ACM, New York (1997), 400–403
(electronic), ((Held in Kihei, HI, July 21–23, 1997)).
[[20XSM85[120X] [16XSoicher, L. and McKay, J.[116X, [17XComputing Galois groups over the
rationals[117X, [18XJ. Number Theory[118X, [19X20[119X, 3 (1985), 273–281.
[[20XSou94[120X] [16XSouvignier, B.[116X, [17XIrreducible finite integral matrix groups of degree
8 and 10[117X, [18XMath. Comp.[118X, [19X63[119X, 207 (1994), 335–350, ((With microfiche
supplement)).
[[20XSPA89[120X] [17XSPAS - Subgroup Presentation Algorithms System, version 2.5, User's
reference manual[117X, Lehrstuhl D für Mathematik, Rheinisch Westfälische
Technische Hochschule, Aachen, Germany (1989).
[[20XTay87[120X] [16XTaylor, D. E.[116X, [17XPairs of Generators for Matrix Groups. I[117X, [18XThe Cayley
Bulletin[118X, [19X3[119X (1987).
[[20XThe93[120X] [16XTheißen, H.[116X, [17XMethoden zur Bestimmung der rationalen Konjugiertheit
in endlichen Gruppen[117X, Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany (1993).
[[20XThe97[120X] [16XTheißen, H.[116X, [17XEine Methode zur Normalisatorberechnung in
Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen[117X,
Dissertation, Rheinisch Westfälische Technische Hochschule, Aachen, Germany
(1997).
[[20XvdW76[120X] [16Xvan der Waall, R. W.[116X, [17XOn symplectic primitive modules and monomial
groups[117X, [18XNederl. Akad. Wetensch. Proc. Ser. A 79, Indag. Math.[118X, [19X38[119X, 4 (1976),
362–375.
[[20XWag90[120X] [16XWagon, S.[116X, [17XEditor's corner: the Euclidean algorithm strikes again[117X,
[18XAmer. Math. Monthly[118X, [19X97[119X, 2 (1990), 125–129.
[[20XWie69[120X] [16XWielandt, H.[116X, [17XPermutation groups through invariant relations and
invariant functions[117X, Lecture Notes, Department of Mathematics, The Ohio
State University (1969).
[[20XZag90[120X] [16XZagier, D.[116X, [17XA one-sentence proof that every prime p ≡ 1 mod 4 is a
sum of two squares[117X, [18XAmer. Math. Monthly[118X, [19X97[119X, 2 (1990), 144.
[[20XZum89[120X] [16XZumbroich, M.[116X, [17XGrundlagen einer Arithmetik in Kreisteilungskörpern
und ihre Implementation in CAS[117X, Diplomarbeit, Lehrstuhl D für Mathematik,
Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1989).
[32X
|