/usr/share/doc/gcc-8-base/gcc.html is in gcc-8-doc 8-20180414-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330 46331 46332 46333 46334 46335 46336 46337 46338 46339 46340 46341 46342 46343 46344 46345 46346 46347 46348 46349 46350 46351 46352 46353 46354 46355 46356 46357 46358 46359 46360 46361 46362 46363 46364 46365 46366 46367 46368 46369 46370 46371 46372 46373 46374 46375 46376 46377 46378 46379 46380 46381 46382 46383 46384 46385 46386 46387 46388 46389 46390 46391 46392 46393 46394 46395 46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 46408 46409 46410 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420 46421 46422 46423 46424 46425 46426 46427 46428 46429 46430 46431 46432 46433 46434 46435 46436 46437 46438 46439 46440 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460 46461 46462 46463 46464 46465 46466 46467 46468 46469 46470 46471 46472 46473 46474 46475 46476 46477 46478 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 46498 46499 46500 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510 46511 46512 46513 46514 46515 46516 46517 46518 46519 46520 46521 46522 46523 46524 46525 46526 46527 46528 46529 46530 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540 46541 46542 46543 46544 46545 46546 46547 46548 46549 46550 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580 46581 46582 46583 46584 46585 46586 46587 46588 46589 46590 46591 46592 46593 46594 46595 46596 46597 46598 46599 46600 46601 46602 46603 46604 46605 46606 46607 46608 46609 46610 46611 46612 46613 46614 46615 46616 46617 46618 46619 46620 46621 46622 46623 46624 46625 46626 46627 46628 46629 46630 46631 46632 46633 46634 46635 46636 46637 46638 46639 46640 46641 46642 46643 46644 46645 46646 46647 46648 46649 46650 46651 46652 46653 46654 46655 46656 46657 46658 46659 46660 46661 46662 46663 46664 46665 46666 46667 46668 46669 46670 46671 46672 46673 46674 46675 46676 46677 46678 46679 46680 46681 46682 46683 46684 46685 46686 46687 46688 46689 46690 46691 46692 46693 46694 46695 46696 46697 46698 46699 46700 46701 46702 46703 46704 46705 46706 46707 46708 46709 46710 46711 46712 46713 46714 46715 46716 46717 46718 46719 46720 46721 46722 46723 46724 46725 46726 46727 46728 46729 46730 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740 46741 46742 46743 46744 46745 46746 46747 46748 46749 46750 46751 46752 46753 46754 46755 46756 46757 46758 46759 46760 46761 46762 46763 46764 46765 46766 46767 46768 46769 46770 46771 46772 46773 46774 46775 46776 46777 46778 46779 46780 46781 46782 46783 46784 46785 46786 46787 46788 46789 46790 46791 46792 46793 46794 46795 46796 46797 46798 46799 46800 46801 46802 46803 46804 46805 46806 46807 46808 46809 46810 46811 46812 46813 46814 46815 46816 46817 46818 46819 46820 46821 46822 46823 46824 46825 46826 46827 46828 46829 46830 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840 46841 46842 46843 46844 46845 46846 46847 46848 46849 46850 46851 46852 46853 46854 46855 46856 46857 46858 46859 46860 46861 46862 46863 46864 46865 46866 46867 46868 46869 46870 46871 46872 46873 46874 46875 46876 46877 46878 46879 46880 46881 46882 46883 46884 46885 46886 46887 46888 46889 46890 46891 46892 46893 46894 46895 46896 46897 46898 46899 46900 46901 46902 46903 46904 46905 46906 46907 46908 46909 46910 46911 46912 46913 46914 46915 46916 46917 46918 46919 46920 46921 46922 46923 46924 46925 46926 46927 46928 46929 46930 46931 46932 46933 46934 46935 46936 46937 46938 46939 46940 46941 46942 46943 46944 46945 46946 46947 46948 46949 46950 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960 46961 46962 46963 46964 46965 46966 46967 46968 46969 46970 46971 46972 46973 46974 46975 46976 46977 46978 46979 46980 46981 46982 46983 46984 46985 46986 46987 46988 46989 46990 46991 46992 46993 46994 46995 46996 46997 46998 46999 47000 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010 47011 47012 47013 47014 47015 47016 47017 47018 47019 47020 47021 47022 47023 47024 47025 47026 47027 47028 47029 47030 47031 47032 47033 47034 47035 47036 47037 47038 47039 47040 47041 47042 47043 47044 47045 47046 47047 47048 47049 47050 47051 47052 47053 47054 47055 47056 47057 47058 47059 47060 47061 47062 47063 47064 47065 47066 47067 47068 47069 47070 47071 47072 47073 47074 47075 47076 47077 47078 47079 47080 47081 47082 47083 47084 47085 47086 47087 47088 47089 47090 47091 47092 47093 47094 47095 47096 47097 47098 47099 47100 47101 47102 47103 47104 47105 47106 47107 47108 47109 47110 47111 47112 47113 47114 47115 47116 47117 47118 47119 47120 47121 47122 47123 47124 47125 47126 47127 47128 47129 47130 47131 47132 47133 47134 47135 47136 47137 47138 47139 47140 47141 47142 47143 47144 47145 47146 47147 47148 47149 47150 47151 47152 47153 47154 47155 47156 47157 47158 47159 47160 47161 47162 47163 47164 47165 47166 47167 47168 47169 47170 47171 47172 47173 47174 47175 47176 47177 47178 47179 47180 47181 47182 47183 47184 47185 47186 47187 47188 47189 47190 47191 47192 47193 47194 47195 47196 47197 47198 47199 47200 47201 47202 47203 47204 47205 47206 47207 47208 47209 47210 47211 47212 47213 47214 47215 47216 47217 47218 47219 47220 47221 47222 47223 47224 47225 47226 47227 47228 47229 47230 47231 47232 47233 47234 47235 47236 47237 47238 47239 47240 47241 47242 47243 47244 47245 47246 47247 47248 47249 47250 47251 47252 47253 47254 47255 47256 47257 47258 47259 47260 47261 47262 47263 47264 47265 47266 47267 47268 47269 47270 47271 47272 47273 47274 47275 47276 47277 47278 47279 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 47292 47293 47294 47295 47296 47297 47298 47299 47300 47301 47302 47303 47304 47305 47306 47307 47308 47309 47310 47311 47312 47313 47314 47315 47316 47317 47318 47319 47320 47321 47322 47323 47324 47325 47326 47327 47328 47329 47330 47331 47332 47333 47334 47335 47336 47337 47338 47339 47340 47341 47342 47343 47344 47345 47346 47347 47348 47349 47350 47351 47352 47353 47354 47355 47356 47357 47358 47359 47360 47361 47362 47363 47364 47365 47366 47367 47368 47369 47370 47371 47372 47373 47374 47375 47376 47377 47378 47379 47380 47381 47382 47383 47384 47385 47386 47387 47388 47389 47390 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400 47401 47402 47403 47404 47405 47406 47407 47408 47409 47410 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420 47421 47422 47423 47424 47425 47426 47427 47428 47429 47430 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480 47481 47482 47483 47484 47485 47486 47487 47488 47489 47490 47491 47492 47493 47494 47495 47496 47497 47498 47499 47500 47501 47502 47503 47504 47505 47506 47507 47508 47509 47510 47511 47512 47513 47514 47515 47516 47517 47518 47519 47520 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530 47531 47532 47533 47534 47535 47536 47537 47538 47539 47540 47541 47542 47543 47544 47545 47546 47547 47548 47549 47550 47551 47552 47553 47554 47555 47556 47557 47558 47559 47560 47561 47562 47563 47564 47565 47566 47567 47568 47569 47570 47571 47572 47573 47574 47575 47576 47577 47578 47579 47580 47581 47582 47583 47584 47585 47586 47587 47588 47589 47590 47591 47592 47593 47594 47595 47596 47597 47598 47599 47600 47601 47602 47603 47604 47605 47606 47607 47608 47609 47610 47611 47612 47613 47614 47615 47616 47617 47618 47619 47620 47621 47622 47623 47624 47625 47626 47627 47628 47629 47630 47631 47632 47633 47634 47635 47636 47637 47638 47639 47640 47641 47642 47643 47644 47645 47646 47647 47648 47649 47650 47651 47652 47653 47654 47655 47656 47657 47658 47659 47660 47661 47662 47663 47664 47665 47666 47667 47668 47669 47670 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680 47681 47682 47683 47684 47685 47686 47687 47688 47689 47690 47691 47692 47693 47694 47695 47696 47697 47698 47699 47700 47701 47702 47703 47704 47705 47706 47707 47708 47709 47710 47711 47712 47713 47714 47715 47716 47717 47718 47719 47720 47721 47722 47723 47724 47725 47726 47727 47728 47729 47730 47731 47732 47733 47734 47735 47736 47737 47738 47739 47740 47741 47742 47743 47744 47745 47746 47747 47748 47749 47750 47751 47752 47753 47754 47755 47756 47757 47758 47759 47760 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910 47911 47912 47913 47914 47915 47916 47917 47918 47919 47920 47921 47922 47923 47924 47925 47926 47927 47928 47929 47930 47931 47932 47933 47934 47935 47936 47937 47938 47939 47940 47941 47942 47943 47944 47945 47946 47947 47948 47949 47950 47951 47952 47953 47954 47955 47956 47957 47958 47959 47960 47961 47962 47963 47964 47965 47966 47967 47968 47969 47970 47971 47972 47973 47974 47975 47976 47977 47978 47979 47980 47981 47982 47983 47984 47985 47986 47987 47988 47989 47990 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000 48001 48002 48003 48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 48025 48026 48027 48028 48029 48030 48031 48032 48033 48034 48035 48036 48037 48038 48039 48040 48041 48042 48043 48044 48045 48046 48047 48048 48049 48050 48051 48052 48053 48054 48055 48056 48057 48058 48059 48060 48061 48062 48063 48064 48065 48066 48067 48068 48069 48070 48071 48072 48073 48074 48075 48076 48077 48078 48079 48080 48081 48082 48083 48084 48085 48086 48087 48088 48089 48090 48091 48092 48093 48094 48095 48096 48097 48098 48099 48100 48101 48102 48103 48104 48105 48106 48107 48108 48109 48110 48111 48112 48113 48114 48115 48116 48117 48118 48119 48120 48121 48122 48123 48124 48125 48126 48127 48128 48129 48130 48131 48132 48133 48134 48135 48136 48137 48138 48139 48140 48141 48142 48143 48144 48145 48146 48147 48148 48149 48150 48151 48152 48153 48154 48155 48156 48157 48158 48159 48160 48161 48162 48163 48164 48165 48166 48167 48168 48169 48170 48171 48172 48173 48174 48175 48176 48177 48178 48179 48180 48181 48182 48183 48184 48185 48186 48187 48188 48189 48190 48191 48192 48193 48194 48195 48196 48197 48198 48199 48200 48201 48202 48203 48204 48205 48206 48207 48208 48209 48210 48211 48212 48213 48214 48215 48216 48217 48218 48219 48220 48221 48222 48223 48224 48225 48226 48227 48228 48229 48230 48231 48232 48233 48234 48235 48236 48237 48238 48239 48240 48241 48242 48243 48244 48245 48246 48247 48248 48249 48250 48251 48252 48253 48254 48255 48256 48257 48258 48259 48260 48261 48262 48263 48264 48265 48266 48267 48268 48269 48270 48271 48272 48273 48274 48275 48276 48277 48278 48279 48280 48281 48282 48283 48284 48285 48286 48287 48288 48289 48290 48291 48292 48293 48294 48295 48296 48297 48298 48299 48300 48301 48302 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312 48313 48314 48315 48316 48317 48318 48319 48320 48321 48322 48323 48324 48325 48326 48327 48328 48329 48330 48331 48332 48333 48334 48335 48336 48337 48338 48339 48340 48341 48342 48343 48344 48345 48346 48347 48348 48349 48350 48351 48352 48353 48354 48355 48356 48357 48358 48359 48360 48361 48362 48363 48364 48365 48366 48367 48368 48369 48370 48371 48372 48373 48374 48375 48376 48377 48378 48379 48380 48381 48382 48383 48384 48385 48386 48387 48388 48389 48390 48391 48392 48393 48394 48395 48396 48397 48398 48399 48400 48401 48402 48403 48404 48405 48406 48407 48408 48409 48410 48411 48412 48413 48414 48415 48416 48417 48418 48419 48420 48421 48422 48423 48424 48425 48426 48427 48428 48429 48430 48431 48432 48433 48434 48435 48436 48437 48438 48439 48440 48441 48442 48443 48444 48445 48446 48447 48448 48449 48450 48451 48452 48453 48454 48455 48456 48457 48458 48459 48460 48461 48462 48463 48464 48465 48466 48467 48468 48469 48470 48471 48472 48473 48474 48475 48476 48477 48478 48479 48480 48481 48482 48483 48484 48485 48486 48487 48488 48489 48490 48491 48492 48493 48494 48495 48496 48497 48498 48499 48500 48501 48502 48503 48504 48505 48506 48507 48508 48509 48510 48511 48512 48513 48514 48515 48516 48517 48518 48519 48520 48521 48522 48523 48524 48525 48526 48527 48528 48529 48530 48531 48532 48533 48534 48535 48536 48537 48538 48539 48540 48541 48542 48543 48544 48545 48546 48547 48548 48549 48550 48551 48552 48553 48554 48555 48556 48557 48558 48559 48560 48561 48562 48563 48564 48565 48566 48567 48568 48569 48570 48571 48572 48573 48574 48575 48576 48577 48578 48579 48580 48581 48582 48583 48584 48585 48586 48587 48588 48589 48590 48591 48592 48593 48594 48595 48596 48597 48598 48599 48600 48601 48602 48603 48604 48605 48606 48607 48608 48609 48610 48611 48612 48613 48614 48615 48616 48617 48618 48619 48620 48621 48622 48623 48624 48625 48626 48627 48628 48629 48630 48631 48632 48633 48634 48635 48636 48637 48638 48639 48640 48641 48642 48643 48644 48645 48646 48647 48648 48649 48650 48651 48652 48653 48654 48655 48656 48657 48658 48659 48660 48661 48662 48663 48664 48665 48666 48667 48668 48669 48670 48671 48672 48673 48674 48675 48676 48677 48678 48679 48680 48681 48682 48683 48684 48685 48686 48687 48688 48689 48690 48691 48692 48693 48694 48695 48696 48697 48698 48699 48700 48701 48702 48703 48704 48705 48706 48707 48708 48709 48710 48711 48712 48713 48714 48715 48716 48717 48718 48719 48720 48721 48722 48723 48724 48725 48726 48727 48728 48729 48730 48731 48732 48733 48734 48735 48736 48737 48738 48739 48740 48741 48742 48743 48744 48745 48746 48747 48748 48749 48750 48751 48752 48753 48754 48755 48756 48757 48758 48759 48760 48761 48762 48763 48764 48765 48766 48767 48768 48769 48770 48771 48772 48773 48774 48775 48776 48777 48778 48779 48780 48781 48782 48783 48784 48785 48786 48787 48788 48789 48790 48791 48792 48793 48794 48795 48796 48797 48798 48799 48800 48801 48802 48803 48804 48805 48806 48807 48808 48809 48810 48811 48812 48813 48814 48815 48816 48817 48818 48819 48820 48821 48822 48823 48824 48825 48826 48827 48828 48829 48830 48831 48832 48833 48834 48835 48836 48837 48838 48839 48840 48841 48842 48843 48844 48845 48846 48847 48848 48849 48850 48851 48852 48853 48854 48855 48856 48857 48858 48859 48860 48861 48862 48863 48864 48865 48866 48867 48868 48869 48870 48871 48872 48873 48874 48875 48876 48877 48878 48879 48880 48881 48882 48883 48884 48885 48886 48887 48888 48889 48890 48891 48892 48893 48894 48895 48896 48897 48898 48899 48900 48901 48902 48903 48904 48905 48906 48907 48908 48909 48910 48911 48912 48913 48914 48915 48916 48917 48918 48919 48920 48921 48922 48923 48924 48925 48926 48927 48928 48929 48930 48931 48932 48933 48934 48935 48936 48937 48938 48939 48940 48941 48942 48943 48944 48945 48946 48947 48948 48949 48950 48951 48952 48953 48954 48955 48956 48957 48958 48959 48960 48961 48962 48963 48964 48965 48966 48967 48968 48969 48970 48971 48972 48973 48974 48975 48976 48977 48978 48979 48980 48981 48982 48983 48984 48985 48986 48987 48988 48989 48990 48991 48992 48993 48994 48995 48996 48997 48998 48999 49000 49001 49002 49003 49004 49005 49006 49007 49008 49009 49010 49011 49012 49013 49014 49015 49016 49017 49018 49019 49020 49021 49022 49023 49024 49025 49026 49027 49028 49029 49030 49031 49032 49033 49034 49035 49036 49037 49038 49039 49040 49041 49042 49043 49044 49045 49046 49047 49048 49049 49050 49051 49052 49053 49054 49055 49056 49057 49058 49059 49060 49061 49062 49063 49064 49065 49066 49067 49068 49069 49070 49071 49072 49073 49074 49075 49076 49077 49078 49079 49080 49081 49082 49083 49084 49085 49086 49087 49088 49089 49090 49091 49092 49093 49094 49095 49096 49097 49098 49099 49100 49101 49102 49103 49104 49105 49106 49107 49108 49109 49110 49111 49112 49113 49114 49115 49116 49117 49118 49119 49120 49121 49122 49123 49124 49125 49126 49127 49128 49129 49130 49131 49132 49133 49134 49135 49136 49137 49138 49139 49140 49141 49142 49143 49144 49145 49146 49147 49148 49149 49150 49151 49152 49153 49154 49155 49156 49157 49158 49159 49160 49161 49162 49163 49164 49165 49166 49167 49168 49169 49170 49171 49172 49173 49174 49175 49176 49177 49178 49179 49180 49181 49182 49183 49184 49185 49186 49187 49188 49189 49190 49191 49192 49193 49194 49195 49196 49197 49198 49199 49200 49201 49202 49203 49204 49205 49206 49207 49208 49209 49210 49211 49212 49213 49214 49215 49216 49217 49218 49219 49220 49221 49222 49223 49224 49225 49226 49227 49228 49229 49230 49231 49232 49233 49234 49235 49236 49237 49238 49239 49240 49241 49242 49243 49244 49245 49246 49247 49248 49249 49250 49251 49252 49253 49254 49255 49256 49257 49258 49259 49260 49261 49262 49263 49264 49265 49266 49267 49268 49269 49270 49271 49272 49273 49274 49275 49276 49277 49278 49279 49280 49281 49282 49283 49284 49285 49286 49287 49288 49289 49290 49291 49292 49293 49294 49295 49296 49297 49298 49299 49300 49301 49302 49303 49304 49305 49306 49307 49308 49309 49310 49311 49312 49313 49314 49315 49316 49317 49318 49319 49320 49321 49322 49323 49324 49325 49326 49327 49328 49329 49330 49331 49332 49333 49334 49335 49336 49337 49338 49339 49340 49341 49342 49343 49344 49345 49346 49347 49348 49349 49350 49351 49352 49353 49354 49355 49356 49357 49358 49359 49360 49361 49362 49363 49364 49365 49366 49367 49368 49369 49370 49371 49372 49373 49374 49375 49376 49377 49378 49379 49380 49381 49382 49383 49384 49385 49386 49387 49388 49389 49390 49391 49392 49393 49394 49395 49396 49397 49398 49399 49400 49401 49402 49403 49404 49405 49406 49407 49408 49409 49410 49411 49412 49413 49414 49415 49416 49417 49418 49419 49420 49421 49422 49423 49424 49425 49426 49427 49428 49429 49430 49431 49432 49433 49434 49435 49436 49437 49438 49439 49440 49441 49442 49443 49444 49445 49446 49447 49448 49449 49450 49451 49452 49453 49454 49455 49456 49457 49458 49459 49460 49461 49462 49463 49464 49465 49466 49467 49468 49469 49470 49471 49472 49473 49474 49475 49476 49477 49478 49479 49480 49481 49482 49483 49484 49485 49486 49487 49488 49489 49490 49491 49492 49493 49494 49495 49496 49497 49498 49499 49500 49501 49502 49503 49504 49505 49506 49507 49508 49509 49510 49511 49512 49513 49514 49515 49516 49517 49518 49519 49520 49521 49522 49523 49524 49525 49526 49527 49528 49529 49530 49531 49532 49533 49534 49535 49536 49537 49538 49539 49540 49541 49542 49543 49544 49545 49546 49547 49548 49549 49550 49551 49552 49553 49554 49555 49556 49557 49558 49559 49560 49561 49562 49563 49564 49565 49566 49567 49568 49569 49570 49571 49572 49573 49574 49575 49576 49577 49578 49579 49580 49581 49582 49583 49584 49585 49586 49587 49588 49589 49590 49591 49592 49593 49594 49595 49596 49597 49598 49599 49600 49601 49602 49603 49604 49605 49606 49607 49608 49609 49610 49611 49612 49613 49614 49615 49616 49617 49618 49619 49620 49621 49622 49623 49624 49625 49626 49627 49628 49629 49630 49631 49632 49633 49634 49635 49636 49637 49638 49639 49640 49641 49642 49643 49644 49645 49646 49647 49648 49649 49650 49651 49652 49653 49654 49655 49656 49657 49658 49659 49660 49661 49662 49663 49664 49665 49666 49667 49668 49669 49670 49671 49672 49673 49674 49675 49676 49677 49678 49679 49680 49681 49682 49683 49684 49685 49686 49687 49688 49689 49690 49691 49692 49693 49694 49695 49696 49697 49698 49699 49700 49701 49702 49703 49704 49705 49706 49707 49708 49709 49710 49711 49712 49713 49714 49715 49716 49717 49718 49719 49720 49721 49722 49723 49724 49725 49726 49727 49728 49729 49730 49731 49732 49733 49734 49735 49736 49737 49738 49739 49740 49741 49742 49743 49744 49745 49746 49747 49748 49749 49750 49751 49752 49753 49754 49755 49756 49757 49758 49759 49760 49761 49762 49763 49764 49765 49766 49767 49768 49769 49770 49771 49772 49773 49774 49775 49776 49777 49778 49779 49780 49781 49782 49783 49784 49785 49786 49787 49788 49789 49790 49791 49792 49793 49794 49795 49796 49797 49798 49799 49800 49801 49802 49803 49804 49805 49806 49807 49808 49809 49810 49811 49812 49813 49814 49815 49816 49817 49818 49819 49820 49821 49822 49823 49824 49825 49826 49827 49828 49829 49830 49831 49832 49833 49834 49835 49836 49837 49838 49839 49840 49841 49842 49843 49844 49845 49846 49847 49848 49849 49850 49851 49852 49853 49854 49855 49856 49857 49858 49859 49860 49861 49862 49863 49864 49865 49866 49867 49868 49869 49870 49871 49872 49873 49874 49875 49876 49877 49878 49879 49880 49881 49882 49883 49884 49885 49886 49887 49888 49889 49890 49891 49892 49893 49894 49895 49896 49897 49898 49899 49900 49901 49902 49903 49904 49905 49906 49907 49908 49909 49910 49911 49912 49913 49914 49915 49916 49917 49918 49919 49920 49921 49922 49923 49924 49925 49926 49927 49928 49929 49930 49931 49932 49933 49934 49935 49936 49937 49938 49939 49940 49941 49942 49943 49944 49945 49946 49947 49948 49949 49950 49951 49952 49953 49954 49955 49956 49957 49958 49959 49960 49961 49962 49963 49964 49965 49966 49967 49968 49969 49970 49971 49972 49973 49974 49975 49976 49977 49978 49979 49980 49981 49982 49983 49984 49985 49986 49987 49988 49989 49990 49991 49992 49993 49994 49995 49996 49997 49998 49999 50000 50001 50002 50003 50004 50005 50006 50007 50008 50009 50010 50011 50012 50013 50014 50015 50016 50017 50018 50019 50020 50021 50022 50023 50024 50025 50026 50027 50028 50029 50030 50031 50032 50033 50034 50035 50036 50037 50038 50039 50040 50041 50042 50043 50044 50045 50046 50047 50048 50049 50050 50051 50052 50053 50054 50055 50056 50057 50058 50059 50060 50061 50062 50063 50064 50065 50066 50067 50068 50069 50070 50071 50072 50073 50074 50075 50076 50077 50078 50079 50080 50081 50082 50083 50084 50085 50086 50087 50088 50089 50090 50091 50092 50093 50094 50095 50096 50097 50098 50099 50100 50101 50102 50103 50104 50105 50106 50107 50108 50109 50110 50111 50112 50113 50114 50115 50116 50117 50118 50119 50120 50121 50122 50123 50124 50125 50126 50127 50128 50129 50130 50131 50132 50133 50134 50135 50136 50137 50138 50139 50140 50141 50142 50143 50144 50145 50146 50147 50148 50149 50150 50151 50152 50153 50154 50155 50156 50157 50158 50159 50160 50161 50162 50163 50164 50165 50166 50167 50168 50169 50170 50171 50172 50173 50174 50175 50176 50177 50178 50179 50180 50181 50182 50183 50184 50185 50186 50187 50188 50189 50190 50191 50192 50193 50194 50195 50196 50197 50198 50199 50200 50201 50202 50203 50204 50205 50206 50207 50208 50209 50210 50211 50212 50213 50214 50215 50216 50217 50218 50219 50220 50221 50222 50223 50224 50225 50226 50227 50228 50229 50230 50231 50232 50233 50234 50235 50236 50237 50238 50239 50240 50241 50242 50243 50244 50245 50246 50247 50248 50249 50250 50251 50252 50253 50254 50255 50256 50257 50258 50259 50260 50261 50262 50263 50264 50265 50266 50267 50268 50269 50270 50271 50272 50273 50274 50275 50276 50277 50278 50279 50280 50281 50282 50283 50284 50285 50286 50287 50288 50289 50290 50291 50292 50293 50294 50295 50296 50297 50298 50299 50300 50301 50302 50303 50304 50305 50306 50307 50308 50309 50310 50311 50312 50313 50314 50315 50316 50317 50318 50319 50320 50321 50322 50323 50324 50325 50326 50327 50328 50329 50330 50331 50332 50333 50334 50335 50336 50337 50338 50339 50340 50341 50342 50343 50344 50345 50346 50347 50348 50349 50350 50351 50352 50353 50354 50355 50356 50357 50358 50359 50360 50361 50362 50363 50364 50365 50366 50367 50368 50369 50370 50371 50372 50373 50374 50375 50376 50377 50378 50379 50380 50381 50382 50383 50384 50385 50386 50387 50388 50389 50390 50391 50392 50393 50394 50395 50396 50397 50398 50399 50400 50401 50402 50403 50404 50405 50406 50407 50408 50409 50410 50411 50412 50413 50414 50415 50416 50417 50418 50419 50420 50421 50422 50423 50424 50425 50426 50427 50428 50429 50430 50431 50432 50433 50434 50435 50436 50437 50438 50439 50440 50441 50442 50443 50444 50445 50446 50447 50448 50449 50450 50451 50452 50453 50454 50455 50456 50457 50458 50459 50460 50461 50462 50463 50464 50465 50466 50467 50468 50469 50470 50471 50472 50473 50474 50475 50476 50477 50478 50479 50480 50481 50482 50483 50484 50485 50486 50487 50488 50489 50490 50491 50492 50493 50494 50495 50496 50497 50498 50499 50500 50501 50502 50503 50504 50505 50506 50507 50508 50509 50510 50511 50512 50513 50514 50515 50516 50517 50518 50519 50520 50521 50522 50523 50524 50525 50526 50527 50528 50529 50530 50531 50532 50533 50534 50535 50536 50537 50538 50539 50540 50541 50542 50543 50544 50545 50546 50547 50548 50549 50550 50551 50552 50553 50554 50555 50556 50557 50558 50559 50560 50561 50562 50563 50564 50565 50566 50567 50568 50569 50570 50571 50572 50573 50574 50575 50576 50577 50578 50579 50580 50581 50582 50583 50584 50585 50586 50587 50588 50589 50590 50591 50592 50593 50594 50595 50596 50597 50598 50599 50600 50601 50602 50603 50604 50605 50606 50607 50608 50609 50610 50611 50612 50613 50614 50615 50616 50617 50618 50619 50620 50621 50622 50623 50624 50625 50626 50627 50628 50629 50630 50631 50632 50633 50634 50635 50636 50637 50638 50639 50640 50641 50642 50643 50644 50645 50646 50647 50648 50649 50650 50651 50652 50653 50654 50655 50656 50657 50658 50659 50660 50661 50662 50663 50664 50665 50666 50667 50668 50669 50670 50671 50672 50673 50674 50675 50676 50677 50678 50679 50680 50681 50682 50683 50684 50685 50686 50687 50688 50689 50690 50691 50692 50693 50694 50695 50696 50697 50698 50699 50700 50701 50702 50703 50704 50705 50706 50707 50708 50709 50710 50711 50712 50713 50714 50715 50716 50717 50718 50719 50720 50721 50722 50723 50724 50725 50726 50727 50728 50729 50730 50731 50732 50733 50734 50735 50736 50737 50738 50739 50740 50741 50742 50743 50744 50745 50746 50747 50748 50749 50750 50751 50752 50753 50754 50755 50756 50757 50758 50759 50760 50761 50762 50763 50764 50765 50766 50767 50768 50769 50770 50771 50772 50773 50774 50775 50776 50777 50778 50779 50780 50781 50782 50783 50784 50785 50786 50787 50788 50789 50790 50791 50792 50793 50794 50795 50796 50797 50798 50799 50800 50801 50802 50803 50804 50805 50806 50807 50808 50809 50810 50811 50812 50813 50814 50815 50816 50817 50818 50819 50820 50821 50822 50823 50824 50825 50826 50827 50828 50829 50830 50831 50832 50833 50834 50835 50836 50837 50838 50839 50840 50841 50842 50843 50844 50845 50846 50847 50848 50849 50850 50851 50852 50853 50854 50855 50856 50857 50858 50859 50860 50861 50862 50863 50864 50865 50866 50867 50868 50869 50870 50871 50872 50873 50874 50875 50876 50877 50878 50879 50880 50881 50882 50883 50884 50885 50886 50887 50888 50889 50890 50891 50892 50893 50894 50895 50896 50897 50898 50899 50900 50901 50902 50903 50904 50905 50906 50907 50908 50909 50910 50911 50912 50913 50914 50915 50916 50917 50918 50919 50920 50921 50922 50923 50924 50925 50926 50927 50928 50929 50930 50931 50932 50933 50934 50935 50936 50937 50938 50939 50940 50941 50942 50943 50944 50945 50946 50947 50948 50949 50950 50951 50952 50953 50954 50955 50956 50957 50958 50959 50960 50961 50962 50963 50964 50965 50966 50967 50968 50969 50970 50971 50972 50973 50974 50975 50976 50977 50978 50979 50980 50981 50982 50983 50984 50985 50986 50987 50988 50989 50990 50991 50992 50993 50994 50995 50996 50997 50998 50999 51000 51001 51002 51003 51004 51005 51006 51007 51008 51009 51010 51011 51012 51013 51014 51015 51016 51017 51018 51019 51020 51021 51022 51023 51024 51025 51026 51027 51028 51029 51030 51031 51032 51033 51034 51035 51036 51037 51038 51039 51040 51041 51042 51043 51044 51045 51046 51047 51048 51049 51050 51051 51052 51053 51054 51055 51056 51057 51058 51059 51060 51061 51062 51063 51064 51065 51066 51067 51068 51069 51070 51071 51072 51073 51074 51075 51076 51077 51078 51079 51080 51081 51082 51083 51084 51085 51086 51087 51088 51089 51090 51091 51092 51093 51094 51095 51096 51097 51098 51099 51100 51101 51102 51103 51104 51105 51106 51107 51108 51109 51110 51111 51112 51113 51114 51115 51116 51117 51118 51119 51120 51121 51122 51123 51124 51125 51126 51127 51128 51129 51130 51131 51132 51133 51134 51135 51136 51137 51138 51139 51140 51141 51142 51143 51144 51145 51146 51147 51148 51149 51150 51151 51152 51153 51154 51155 51156 51157 51158 51159 51160 51161 51162 51163 51164 51165 51166 51167 51168 51169 51170 51171 51172 51173 51174 51175 51176 51177 51178 51179 51180 51181 51182 51183 51184 51185 51186 51187 51188 51189 51190 51191 51192 51193 51194 51195 51196 51197 51198 51199 51200 51201 51202 51203 51204 51205 51206 51207 51208 51209 51210 51211 51212 51213 51214 51215 51216 51217 51218 51219 51220 51221 51222 51223 51224 51225 51226 51227 51228 51229 51230 51231 51232 51233 51234 51235 51236 51237 51238 51239 51240 51241 51242 51243 51244 51245 51246 51247 51248 51249 51250 51251 51252 51253 51254 51255 51256 51257 51258 51259 51260 51261 51262 51263 51264 51265 51266 51267 51268 51269 51270 51271 51272 51273 51274 51275 51276 51277 51278 51279 51280 51281 51282 51283 51284 51285 51286 51287 51288 51289 51290 51291 51292 51293 51294 51295 51296 51297 51298 51299 51300 51301 51302 51303 51304 51305 51306 51307 51308 51309 51310 51311 51312 51313 51314 51315 51316 51317 51318 51319 51320 51321 51322 51323 51324 51325 51326 51327 51328 51329 51330 51331 51332 51333 51334 51335 51336 51337 51338 51339 51340 51341 51342 51343 51344 51345 51346 51347 51348 51349 51350 51351 51352 51353 51354 51355 51356 51357 51358 51359 51360 51361 51362 51363 51364 51365 51366 51367 51368 51369 51370 51371 51372 51373 51374 51375 51376 51377 51378 51379 51380 51381 51382 51383 51384 51385 51386 51387 51388 51389 51390 51391 51392 51393 51394 51395 51396 51397 51398 51399 51400 51401 51402 51403 51404 51405 51406 51407 51408 51409 51410 51411 51412 51413 51414 51415 51416 51417 51418 51419 51420 51421 51422 51423 51424 51425 51426 51427 51428 51429 51430 51431 51432 51433 51434 51435 51436 51437 51438 51439 51440 51441 51442 51443 51444 51445 51446 51447 51448 51449 51450 51451 51452 51453 51454 51455 51456 51457 51458 51459 51460 51461 51462 51463 51464 51465 51466 51467 51468 51469 51470 51471 51472 51473 51474 51475 51476 51477 51478 51479 51480 51481 51482 51483 51484 51485 51486 51487 51488 51489 51490 51491 51492 51493 51494 51495 51496 51497 51498 51499 51500 51501 51502 51503 51504 51505 51506 51507 51508 51509 51510 51511 51512 51513 51514 51515 51516 51517 51518 51519 51520 51521 51522 51523 51524 51525 51526 51527 51528 51529 51530 51531 51532 51533 51534 51535 51536 51537 51538 51539 51540 51541 51542 51543 51544 51545 51546 51547 51548 51549 51550 51551 51552 51553 51554 51555 51556 51557 51558 51559 51560 51561 51562 51563 51564 51565 51566 51567 51568 51569 51570 51571 51572 51573 51574 51575 51576 51577 51578 51579 51580 51581 51582 51583 51584 51585 51586 51587 51588 51589 51590 51591 51592 51593 51594 51595 51596 51597 51598 51599 51600 51601 51602 51603 51604 51605 51606 51607 51608 51609 51610 51611 51612 51613 51614 51615 51616 51617 51618 51619 51620 51621 51622 51623 51624 51625 51626 51627 51628 51629 51630 51631 51632 51633 51634 51635 51636 51637 51638 51639 51640 51641 51642 51643 51644 51645 51646 51647 51648 51649 51650 51651 51652 51653 51654 51655 51656 51657 51658 51659 51660 51661 51662 51663 51664 51665 51666 51667 51668 51669 51670 51671 51672 51673 51674 51675 51676 51677 51678 51679 51680 51681 51682 51683 51684 51685 51686 51687 51688 51689 51690 51691 51692 51693 51694 51695 51696 51697 51698 51699 51700 51701 51702 51703 51704 51705 51706 51707 51708 51709 51710 51711 51712 51713 51714 51715 51716 51717 51718 51719 51720 51721 51722 51723 51724 51725 51726 51727 51728 51729 51730 51731 51732 51733 51734 51735 51736 51737 51738 51739 51740 51741 51742 51743 51744 51745 51746 51747 51748 51749 51750 51751 51752 51753 51754 51755 51756 51757 51758 51759 51760 51761 51762 51763 51764 51765 51766 51767 51768 51769 51770 51771 51772 51773 51774 51775 51776 51777 51778 51779 51780 51781 51782 51783 51784 51785 51786 51787 51788 51789 51790 51791 51792 51793 51794 51795 51796 51797 51798 51799 51800 51801 51802 51803 51804 51805 51806 51807 51808 51809 51810 51811 51812 51813 51814 51815 51816 51817 51818 51819 51820 51821 51822 51823 51824 51825 51826 51827 51828 51829 51830 51831 51832 51833 51834 51835 51836 51837 51838 51839 51840 51841 51842 51843 51844 51845 51846 51847 51848 51849 51850 51851 51852 51853 51854 51855 51856 51857 51858 51859 51860 51861 51862 51863 51864 51865 51866 51867 51868 51869 51870 51871 51872 51873 51874 51875 51876 51877 51878 51879 51880 51881 51882 51883 51884 51885 51886 51887 51888 51889 51890 51891 51892 51893 51894 51895 51896 51897 51898 51899 51900 51901 51902 51903 51904 51905 51906 51907 51908 51909 51910 51911 51912 51913 51914 51915 51916 51917 51918 51919 51920 51921 51922 51923 51924 51925 51926 51927 51928 51929 51930 51931 51932 51933 51934 51935 51936 51937 51938 51939 51940 51941 51942 51943 51944 51945 51946 51947 51948 51949 51950 51951 51952 51953 51954 51955 51956 51957 51958 51959 51960 51961 51962 51963 51964 51965 51966 51967 51968 51969 51970 51971 51972 51973 51974 51975 51976 51977 51978 51979 51980 51981 51982 51983 51984 51985 51986 51987 51988 51989 51990 51991 51992 51993 51994 51995 51996 51997 51998 51999 52000 52001 52002 52003 52004 52005 52006 52007 52008 52009 52010 52011 52012 52013 52014 52015 52016 52017 52018 52019 52020 52021 52022 52023 52024 52025 52026 52027 52028 52029 52030 52031 52032 52033 52034 52035 52036 52037 52038 52039 52040 52041 52042 52043 52044 52045 52046 52047 52048 52049 52050 52051 52052 52053 52054 52055 52056 52057 52058 52059 52060 52061 52062 52063 52064 52065 52066 52067 52068 52069 52070 52071 52072 52073 52074 52075 52076 52077 52078 52079 52080 52081 52082 52083 52084 52085 52086 52087 52088 52089 52090 52091 52092 52093 52094 52095 52096 52097 52098 52099 52100 52101 52102 52103 52104 52105 52106 52107 52108 52109 52110 52111 52112 52113 52114 52115 52116 52117 52118 52119 52120 52121 52122 52123 52124 52125 52126 52127 52128 52129 52130 52131 52132 52133 52134 52135 52136 52137 52138 52139 52140 52141 52142 52143 52144 52145 52146 52147 52148 52149 52150 52151 52152 52153 52154 52155 52156 52157 52158 52159 52160 52161 52162 52163 52164 52165 52166 52167 52168 52169 52170 52171 52172 52173 52174 52175 52176 52177 52178 52179 52180 52181 52182 52183 52184 52185 52186 52187 52188 52189 52190 52191 52192 52193 52194 52195 52196 52197 52198 52199 52200 52201 52202 52203 52204 52205 52206 52207 52208 52209 52210 52211 52212 52213 52214 52215 52216 52217 52218 52219 52220 52221 52222 52223 52224 52225 52226 52227 52228 52229 52230 52231 52232 52233 52234 52235 52236 52237 52238 52239 52240 52241 52242 52243 52244 52245 52246 52247 52248 52249 52250 52251 52252 52253 52254 52255 52256 52257 52258 52259 52260 52261 52262 52263 52264 52265 52266 52267 52268 52269 52270 52271 52272 52273 52274 52275 52276 52277 52278 52279 52280 52281 52282 52283 52284 52285 52286 52287 52288 52289 52290 52291 52292 52293 52294 52295 52296 52297 52298 52299 52300 52301 52302 52303 52304 52305 52306 52307 52308 52309 52310 52311 52312 52313 52314 52315 52316 52317 52318 52319 52320 52321 52322 52323 52324 52325 52326 52327 52328 52329 52330 52331 52332 52333 52334 52335 52336 52337 52338 52339 52340 52341 52342 52343 52344 52345 52346 52347 52348 52349 52350 52351 52352 52353 52354 52355 52356 52357 52358 52359 52360 52361 52362 52363 52364 52365 52366 52367 52368 52369 52370 52371 52372 52373 52374 52375 52376 52377 52378 52379 52380 52381 52382 52383 52384 52385 52386 52387 52388 52389 52390 52391 52392 52393 52394 52395 52396 52397 52398 52399 52400 52401 52402 52403 52404 52405 52406 52407 52408 52409 52410 52411 52412 52413 52414 52415 52416 52417 52418 52419 52420 52421 52422 52423 52424 52425 52426 52427 52428 52429 52430 52431 52432 52433 52434 52435 52436 52437 52438 52439 52440 52441 52442 52443 52444 52445 52446 52447 52448 52449 52450 52451 52452 52453 52454 52455 52456 52457 52458 52459 52460 52461 52462 52463 52464 52465 52466 52467 52468 52469 52470 52471 52472 52473 52474 52475 52476 52477 52478 52479 52480 52481 52482 52483 52484 52485 52486 52487 52488 52489 52490 52491 52492 52493 52494 52495 52496 52497 52498 52499 52500 52501 52502 52503 52504 52505 52506 52507 52508 52509 52510 52511 52512 52513 52514 52515 52516 52517 52518 52519 52520 52521 52522 52523 52524 52525 52526 52527 52528 52529 52530 52531 52532 52533 52534 52535 52536 52537 52538 52539 52540 52541 52542 52543 52544 52545 52546 52547 52548 52549 52550 52551 52552 52553 52554 52555 52556 52557 52558 52559 52560 52561 52562 52563 52564 52565 52566 52567 52568 52569 52570 52571 52572 52573 52574 52575 52576 52577 52578 52579 52580 52581 52582 52583 52584 52585 52586 52587 52588 52589 52590 52591 52592 52593 52594 52595 52596 52597 52598 52599 52600 52601 52602 52603 52604 52605 52606 52607 52608 52609 52610 52611 52612 52613 52614 52615 52616 52617 52618 52619 52620 52621 52622 52623 52624 52625 52626 52627 52628 52629 52630 52631 52632 52633 52634 52635 52636 52637 52638 52639 52640 52641 52642 52643 52644 52645 52646 52647 52648 52649 52650 52651 52652 52653 52654 52655 52656 52657 52658 52659 52660 52661 52662 52663 52664 52665 52666 52667 52668 52669 52670 52671 52672 52673 52674 52675 52676 52677 52678 52679 52680 52681 52682 52683 52684 52685 52686 52687 52688 52689 52690 52691 52692 52693 52694 52695 52696 52697 52698 52699 52700 52701 52702 52703 52704 52705 52706 52707 52708 52709 52710 52711 52712 52713 52714 52715 52716 52717 52718 52719 52720 52721 52722 52723 52724 52725 52726 52727 52728 52729 52730 52731 52732 52733 52734 52735 52736 52737 52738 52739 52740 52741 52742 52743 52744 52745 52746 52747 52748 52749 52750 52751 52752 52753 52754 52755 52756 52757 52758 52759 52760 52761 52762 52763 52764 52765 52766 52767 52768 52769 52770 52771 52772 52773 52774 52775 52776 52777 52778 52779 52780 52781 52782 52783 52784 52785 52786 52787 52788 52789 52790 52791 52792 52793 52794 52795 52796 52797 52798 52799 52800 52801 52802 52803 52804 52805 52806 52807 52808 52809 52810 52811 52812 52813 52814 52815 52816 52817 52818 52819 52820 52821 52822 52823 52824 52825 52826 52827 52828 52829 52830 52831 52832 52833 52834 52835 52836 52837 52838 52839 52840 52841 52842 52843 52844 52845 52846 52847 52848 52849 52850 52851 52852 52853 52854 52855 52856 52857 52858 52859 52860 52861 52862 52863 52864 52865 52866 52867 52868 52869 52870 52871 52872 52873 52874 52875 52876 52877 52878 52879 52880 52881 52882 52883 52884 52885 52886 52887 52888 52889 52890 52891 52892 52893 52894 52895 52896 52897 52898 52899 52900 52901 52902 52903 52904 52905 52906 52907 52908 52909 52910 52911 52912 52913 52914 52915 52916 52917 52918 52919 52920 52921 52922 52923 52924 52925 52926 52927 52928 52929 52930 52931 52932 52933 52934 52935 52936 52937 52938 52939 52940 52941 52942 52943 52944 52945 52946 52947 52948 52949 52950 52951 52952 52953 52954 52955 52956 52957 52958 52959 52960 52961 52962 52963 52964 52965 52966 52967 52968 52969 52970 52971 52972 52973 52974 52975 52976 52977 52978 52979 52980 52981 52982 52983 52984 52985 52986 52987 52988 52989 52990 52991 52992 52993 52994 52995 52996 52997 52998 52999 53000 53001 53002 53003 53004 53005 53006 53007 53008 53009 53010 53011 53012 53013 53014 53015 53016 53017 53018 53019 53020 53021 53022 53023 53024 53025 53026 53027 53028 53029 53030 53031 53032 53033 53034 53035 53036 53037 53038 53039 53040 53041 53042 53043 53044 53045 53046 53047 53048 53049 53050 53051 53052 53053 53054 53055 53056 53057 53058 53059 53060 53061 53062 53063 53064 53065 53066 53067 53068 53069 53070 53071 53072 53073 53074 53075 53076 53077 53078 53079 53080 53081 53082 53083 53084 53085 53086 53087 53088 53089 53090 53091 53092 53093 53094 53095 53096 53097 53098 53099 53100 53101 53102 53103 53104 53105 53106 53107 53108 53109 53110 53111 53112 53113 53114 53115 53116 53117 53118 53119 53120 53121 53122 53123 53124 53125 53126 53127 53128 53129 53130 53131 53132 53133 53134 53135 53136 53137 53138 53139 53140 53141 53142 53143 53144 53145 53146 53147 53148 53149 53150 53151 53152 53153 53154 53155 53156 53157 53158 53159 53160 53161 53162 53163 53164 53165 53166 53167 53168 53169 53170 53171 53172 53173 53174 53175 53176 53177 53178 53179 53180 53181 53182 53183 53184 53185 53186 53187 53188 53189 53190 53191 53192 53193 53194 53195 53196 53197 53198 53199 53200 53201 53202 53203 53204 53205 53206 53207 53208 53209 53210 53211 53212 53213 53214 53215 53216 53217 53218 53219 53220 53221 53222 53223 53224 53225 53226 53227 53228 53229 53230 53231 53232 53233 53234 53235 53236 53237 53238 53239 53240 53241 53242 53243 53244 53245 53246 53247 53248 53249 53250 53251 53252 53253 53254 53255 53256 53257 53258 53259 53260 53261 53262 53263 53264 53265 53266 53267 53268 53269 53270 53271 53272 53273 53274 53275 53276 53277 53278 53279 53280 53281 53282 53283 53284 53285 53286 53287 53288 53289 53290 53291 53292 53293 53294 53295 53296 53297 53298 53299 53300 53301 53302 53303 53304 53305 53306 53307 53308 53309 53310 53311 53312 53313 53314 53315 53316 53317 53318 53319 53320 53321 53322 53323 53324 53325 53326 53327 53328 53329 53330 53331 53332 53333 53334 53335 53336 53337 53338 53339 53340 53341 53342 53343 53344 53345 53346 53347 53348 53349 53350 53351 53352 53353 53354 53355 53356 53357 53358 53359 53360 53361 53362 53363 53364 53365 53366 53367 53368 53369 53370 53371 53372 53373 53374 53375 53376 53377 53378 53379 53380 53381 53382 53383 53384 53385 53386 53387 53388 53389 53390 53391 53392 53393 53394 53395 53396 53397 53398 53399 53400 53401 53402 53403 53404 53405 53406 53407 53408 53409 53410 53411 53412 53413 53414 53415 53416 53417 53418 53419 53420 53421 53422 53423 53424 53425 53426 53427 53428 53429 53430 53431 53432 53433 53434 53435 53436 53437 53438 53439 53440 53441 53442 53443 53444 53445 53446 53447 53448 53449 53450 53451 53452 53453 53454 53455 53456 53457 53458 53459 53460 53461 53462 53463 53464 53465 53466 53467 53468 53469 53470 53471 53472 53473 53474 53475 53476 53477 53478 53479 53480 53481 53482 53483 53484 53485 53486 53487 53488 53489 53490 53491 53492 53493 53494 53495 53496 53497 53498 53499 53500 53501 53502 53503 53504 53505 53506 53507 53508 53509 53510 53511 53512 53513 53514 53515 53516 53517 53518 53519 53520 53521 53522 53523 53524 53525 53526 53527 53528 53529 53530 53531 53532 53533 53534 53535 53536 53537 53538 53539 53540 53541 53542 53543 53544 53545 53546 53547 53548 53549 53550 53551 53552 53553 53554 53555 53556 53557 53558 53559 53560 53561 53562 53563 53564 53565 53566 53567 53568 53569 53570 53571 53572 53573 53574 53575 53576 53577 53578 53579 53580 53581 53582 53583 53584 53585 53586 53587 53588 53589 53590 53591 53592 53593 53594 53595 53596 53597 53598 53599 53600 53601 53602 53603 53604 53605 53606 53607 53608 53609 53610 53611 53612 53613 53614 53615 53616 53617 53618 53619 53620 53621 53622 53623 53624 53625 53626 53627 53628 53629 53630 53631 53632 53633 53634 53635 53636 53637 53638 53639 53640 53641 53642 53643 53644 53645 53646 53647 53648 53649 53650 53651 53652 53653 53654 53655 53656 53657 53658 53659 53660 53661 53662 53663 53664 53665 53666 53667 53668 53669 53670 53671 53672 53673 53674 53675 53676 53677 53678 53679 53680 53681 53682 53683 53684 53685 53686 53687 53688 53689 53690 53691 53692 53693 53694 53695 53696 53697 53698 53699 53700 53701 53702 53703 53704 53705 53706 53707 53708 53709 53710 53711 53712 53713 53714 53715 53716 53717 53718 53719 53720 53721 53722 53723 53724 53725 53726 53727 53728 53729 53730 53731 53732 53733 53734 53735 53736 53737 53738 53739 53740 53741 53742 53743 53744 53745 53746 53747 53748 53749 53750 53751 53752 53753 53754 53755 53756 53757 53758 53759 53760 53761 53762 53763 53764 53765 53766 53767 53768 53769 53770 53771 53772 53773 53774 53775 53776 53777 53778 53779 53780 53781 53782 53783 53784 53785 53786 53787 53788 53789 53790 53791 53792 53793 53794 53795 53796 53797 53798 53799 53800 53801 53802 53803 53804 53805 53806 53807 53808 53809 53810 53811 53812 53813 53814 53815 53816 53817 53818 53819 53820 53821 53822 53823 53824 53825 53826 53827 53828 53829 53830 53831 53832 53833 53834 53835 53836 53837 53838 53839 53840 53841 53842 53843 53844 53845 53846 53847 53848 53849 53850 53851 53852 53853 53854 53855 53856 53857 53858 53859 53860 53861 53862 53863 53864 53865 53866 53867 53868 53869 53870 53871 53872 53873 53874 53875 53876 53877 53878 53879 53880 53881 53882 53883 53884 53885 53886 53887 53888 53889 53890 53891 53892 53893 53894 53895 53896 53897 53898 53899 53900 53901 53902 53903 53904 53905 53906 53907 53908 53909 53910 53911 53912 53913 53914 53915 53916 53917 53918 53919 53920 53921 53922 53923 53924 53925 53926 53927 53928 53929 53930 53931 53932 53933 53934 53935 53936 53937 53938 53939 53940 53941 53942 53943 53944 53945 53946 53947 53948 53949 53950 53951 53952 53953 53954 53955 53956 53957 53958 53959 53960 53961 53962 53963 53964 53965 53966 53967 53968 53969 53970 53971 53972 53973 53974 53975 53976 53977 53978 53979 53980 53981 53982 53983 53984 53985 53986 53987 53988 53989 53990 53991 53992 53993 53994 53995 53996 53997 53998 53999 54000 54001 54002 54003 54004 54005 54006 54007 54008 54009 54010 54011 54012 54013 54014 54015 54016 54017 54018 54019 54020 54021 54022 54023 54024 54025 54026 54027 54028 54029 54030 54031 54032 54033 54034 54035 54036 54037 54038 54039 54040 54041 54042 54043 54044 54045 54046 54047 54048 54049 54050 54051 54052 54053 54054 54055 54056 54057 54058 54059 54060 54061 54062 54063 54064 54065 54066 54067 54068 54069 54070 54071 54072 54073 54074 54075 54076 54077 54078 54079 54080 54081 54082 54083 54084 54085 54086 54087 54088 54089 54090 54091 54092 54093 54094 54095 54096 54097 54098 54099 54100 54101 54102 54103 54104 54105 54106 54107 54108 54109 54110 54111 54112 54113 54114 54115 54116 54117 54118 54119 54120 54121 54122 54123 54124 54125 54126 54127 54128 54129 54130 54131 54132 54133 54134 54135 54136 54137 54138 54139 54140 54141 54142 54143 54144 54145 54146 54147 54148 54149 54150 54151 54152 54153 54154 54155 54156 54157 54158 54159 54160 54161 54162 54163 54164 54165 54166 54167 54168 54169 54170 54171 54172 54173 54174 54175 54176 54177 54178 54179 54180 54181 54182 54183 54184 54185 54186 54187 54188 54189 54190 54191 54192 54193 54194 54195 54196 54197 54198 54199 54200 54201 54202 54203 54204 54205 54206 54207 54208 54209 54210 54211 54212 54213 54214 54215 54216 54217 54218 54219 54220 54221 54222 54223 54224 54225 54226 54227 54228 54229 54230 54231 54232 54233 54234 54235 54236 54237 54238 54239 54240 54241 54242 54243 54244 54245 54246 54247 54248 54249 54250 54251 54252 54253 54254 54255 54256 54257 54258 54259 54260 54261 54262 54263 54264 54265 54266 54267 54268 54269 54270 54271 54272 54273 54274 54275 54276 54277 54278 54279 54280 54281 54282 54283 54284 54285 54286 54287 54288 54289 54290 54291 54292 54293 54294 54295 54296 54297 54298 54299 54300 54301 54302 54303 54304 54305 54306 54307 54308 54309 54310 54311 54312 54313 54314 54315 54316 54317 54318 54319 54320 54321 54322 54323 54324 54325 54326 54327 54328 54329 54330 54331 54332 54333 54334 54335 54336 54337 54338 54339 54340 54341 54342 54343 54344 54345 54346 54347 54348 54349 54350 54351 54352 54353 54354 54355 54356 54357 54358 54359 54360 54361 54362 54363 54364 54365 54366 54367 54368 54369 54370 54371 54372 54373 54374 54375 54376 54377 54378 54379 54380 54381 54382 54383 54384 54385 54386 54387 54388 54389 54390 54391 54392 54393 54394 54395 54396 54397 54398 54399 54400 54401 54402 54403 54404 54405 54406 54407 54408 54409 54410 54411 54412 54413 54414 54415 54416 54417 54418 54419 54420 54421 54422 54423 54424 54425 54426 54427 54428 54429 54430 54431 54432 54433 54434 54435 54436 54437 54438 54439 54440 54441 54442 54443 54444 54445 54446 54447 54448 54449 54450 54451 54452 54453 54454 54455 54456 54457 54458 54459 54460 54461 54462 54463 54464 54465 54466 54467 54468 54469 54470 54471 54472 54473 54474 54475 54476 54477 54478 54479 54480 54481 54482 54483 54484 54485 54486 54487 54488 54489 54490 54491 54492 54493 54494 54495 54496 54497 54498 54499 54500 54501 54502 54503 54504 54505 54506 54507 54508 54509 54510 54511 54512 54513 54514 54515 54516 54517 54518 54519 54520 54521 54522 54523 54524 54525 54526 54527 54528 54529 54530 54531 54532 54533 54534 54535 54536 54537 54538 54539 54540 54541 54542 54543 54544 54545 54546 54547 54548 54549 54550 54551 54552 54553 54554 54555 54556 54557 54558 54559 54560 54561 54562 54563 54564 54565 54566 54567 54568 54569 54570 54571 54572 54573 54574 54575 54576 54577 54578 54579 54580 54581 54582 54583 54584 54585 54586 54587 54588 54589 54590 54591 54592 54593 54594 54595 54596 54597 54598 54599 54600 54601 54602 54603 54604 54605 54606 54607 54608 54609 54610 54611 54612 54613 54614 54615 54616 54617 54618 54619 54620 54621 54622 54623 54624 54625 54626 54627 54628 54629 54630 54631 54632 54633 54634 54635 54636 54637 54638 54639 54640 54641 54642 54643 54644 54645 54646 54647 54648 54649 54650 54651 54652 54653 54654 54655 54656 54657 54658 54659 54660 54661 54662 54663 54664 54665 54666 54667 54668 54669 54670 54671 54672 54673 54674 54675 54676 54677 54678 54679 54680 54681 54682 54683 54684 54685 54686 54687 54688 54689 54690 54691 54692 54693 54694 54695 54696 54697 54698 54699 54700 54701 54702 54703 54704 54705 54706 54707 54708 54709 54710 54711 54712 54713 54714 54715 54716 54717 54718 54719 54720 54721 54722 54723 54724 54725 54726 54727 54728 54729 54730 54731 54732 54733 54734 54735 54736 54737 54738 54739 54740 54741 54742 54743 54744 54745 54746 54747 54748 54749 54750 54751 54752 54753 54754 54755 54756 54757 54758 54759 54760 54761 54762 54763 54764 54765 54766 54767 54768 54769 54770 54771 54772 54773 54774 54775 54776 54777 54778 54779 54780 54781 54782 54783 54784 54785 54786 54787 54788 54789 54790 54791 54792 54793 54794 54795 54796 54797 54798 54799 54800 54801 54802 54803 54804 54805 54806 54807 54808 54809 54810 54811 54812 54813 54814 54815 54816 54817 54818 54819 54820 54821 54822 54823 54824 54825 54826 54827 54828 54829 54830 54831 54832 54833 54834 54835 54836 54837 54838 54839 54840 54841 54842 54843 54844 54845 54846 54847 54848 54849 54850 54851 54852 54853 54854 54855 54856 54857 54858 54859 54860 54861 54862 54863 54864 54865 54866 54867 54868 54869 54870 54871 54872 54873 54874 54875 54876 54877 54878 54879 54880 54881 54882 54883 54884 54885 54886 54887 54888 54889 54890 54891 54892 54893 54894 54895 54896 54897 54898 54899 54900 54901 54902 54903 54904 54905 54906 54907 54908 54909 54910 54911 54912 54913 54914 54915 54916 54917 54918 54919 54920 54921 54922 54923 54924 54925 54926 54927 54928 54929 54930 54931 54932 54933 54934 54935 54936 54937 54938 54939 54940 54941 54942 54943 54944 54945 54946 54947 54948 54949 54950 54951 54952 54953 54954 54955 54956 54957 54958 54959 54960 54961 54962 54963 54964 54965 54966 54967 54968 54969 54970 54971 54972 54973 54974 54975 54976 54977 54978 54979 54980 54981 54982 54983 54984 54985 54986 54987 54988 54989 54990 54991 54992 54993 54994 54995 54996 54997 54998 54999 55000 55001 55002 55003 55004 55005 55006 55007 55008 55009 55010 55011 55012 55013 55014 55015 55016 55017 55018 55019 55020 55021 55022 55023 55024 55025 55026 55027 55028 55029 55030 55031 55032 55033 55034 55035 55036 55037 55038 55039 55040 55041 55042 55043 55044 55045 55046 55047 55048 55049 55050 55051 55052 55053 55054 55055 55056 55057 55058 55059 55060 55061 55062 55063 55064 55065 55066 55067 55068 55069 55070 55071 55072 55073 55074 55075 55076 55077 55078 55079 55080 55081 55082 55083 55084 55085 55086 55087 55088 55089 55090 55091 55092 55093 55094 55095 55096 55097 55098 55099 55100 55101 55102 55103 55104 55105 55106 55107 55108 55109 55110 55111 55112 55113 55114 55115 55116 55117 55118 55119 55120 55121 55122 55123 55124 55125 55126 55127 55128 55129 55130 55131 55132 55133 55134 55135 55136 55137 55138 55139 55140 55141 55142 55143 55144 55145 55146 55147 55148 55149 55150 55151 55152 55153 55154 55155 55156 55157 55158 55159 55160 55161 55162 55163 55164 55165 55166 55167 55168 55169 55170 55171 55172 55173 55174 55175 55176 55177 55178 55179 55180 55181 55182 55183 55184 55185 55186 55187 55188 55189 55190 55191 55192 55193 55194 55195 55196 55197 55198 55199 55200 55201 55202 55203 55204 55205 55206 55207 55208 55209 55210 55211 55212 55213 55214 55215 55216 55217 55218 55219 55220 55221 55222 55223 55224 55225 55226 55227 55228 55229 55230 55231 55232 55233 55234 55235 55236 55237 55238 55239 55240 55241 55242 55243 55244 55245 55246 55247 55248 55249 55250 55251 55252 55253 55254 55255 55256 55257 55258 55259 55260 55261 55262 55263 55264 55265 55266 55267 55268 55269 55270 55271 55272 55273 55274 55275 55276 55277 55278 55279 55280 55281 55282 55283 55284 55285 55286 55287 55288 55289 55290 55291 55292 55293 55294 55295 55296 55297 55298 55299 55300 55301 55302 55303 55304 55305 55306 55307 55308 55309 55310 55311 55312 55313 55314 55315 55316 55317 55318 55319 55320 55321 55322 55323 55324 55325 55326 55327 55328 55329 55330 55331 55332 55333 55334 55335 55336 55337 55338 55339 55340 55341 55342 55343 55344 55345 55346 55347 55348 55349 55350 55351 55352 55353 55354 55355 55356 55357 55358 55359 55360 55361 55362 55363 55364 55365 55366 55367 55368 55369 55370 55371 55372 55373 55374 55375 55376 55377 55378 55379 55380 55381 55382 55383 55384 55385 55386 55387 55388 55389 55390 55391 55392 55393 55394 55395 55396 55397 55398 55399 55400 55401 55402 55403 55404 55405 55406 55407 55408 55409 55410 55411 55412 55413 55414 55415 55416 55417 55418 55419 55420 55421 55422 55423 55424 55425 55426 55427 55428 55429 55430 55431 55432 55433 55434 55435 55436 55437 55438 55439 55440 55441 55442 55443 55444 55445 55446 55447 55448 55449 55450 55451 55452 55453 55454 55455 55456 55457 55458 55459 55460 55461 55462 55463 55464 55465 55466 55467 55468 55469 55470 55471 55472 55473 55474 55475 55476 55477 55478 55479 55480 55481 55482 55483 55484 55485 55486 55487 55488 55489 55490 55491 55492 55493 55494 55495 55496 55497 55498 55499 55500 55501 55502 55503 55504 55505 55506 55507 55508 55509 55510 55511 55512 55513 55514 55515 55516 55517 55518 55519 55520 55521 55522 55523 55524 55525 55526 55527 55528 55529 55530 55531 55532 55533 55534 55535 55536 55537 55538 55539 55540 55541 55542 55543 55544 55545 55546 55547 55548 55549 55550 55551 55552 55553 55554 55555 55556 55557 55558 55559 55560 55561 55562 55563 55564 55565 55566 55567 55568 55569 55570 55571 55572 55573 55574 55575 55576 55577 55578 55579 55580 55581 55582 55583 55584 55585 55586 55587 55588 55589 55590 55591 55592 55593 55594 55595 55596 55597 55598 55599 55600 55601 55602 55603 55604 55605 55606 55607 55608 55609 55610 55611 55612 55613 55614 55615 55616 55617 55618 55619 55620 55621 55622 55623 55624 55625 55626 55627 55628 55629 55630 55631 55632 55633 55634 55635 55636 55637 55638 55639 55640 55641 55642 55643 55644 55645 55646 55647 55648 55649 55650 55651 55652 55653 55654 55655 55656 55657 55658 55659 55660 55661 55662 55663 55664 55665 55666 55667 55668 55669 55670 55671 55672 55673 55674 55675 55676 55677 55678 55679 55680 55681 55682 55683 55684 55685 55686 55687 55688 55689 55690 55691 55692 55693 55694 55695 55696 55697 55698 55699 55700 55701 55702 55703 55704 55705 55706 55707 55708 55709 55710 55711 55712 55713 55714 55715 55716 55717 55718 55719 55720 55721 55722 55723 55724 55725 55726 55727 55728 55729 55730 55731 55732 55733 55734 55735 55736 55737 55738 55739 55740 55741 55742 55743 55744 55745 55746 55747 55748 55749 55750 55751 55752 55753 55754 55755 55756 55757 55758 55759 55760 55761 55762 55763 55764 55765 55766 55767 55768 55769 55770 55771 55772 55773 55774 55775 55776 55777 55778 55779 55780 55781 55782 55783 55784 55785 55786 55787 55788 55789 55790 55791 55792 55793 55794 55795 55796 55797 55798 55799 55800 55801 55802 55803 55804 55805 55806 55807 55808 55809 55810 55811 55812 55813 55814 55815 55816 55817 55818 55819 55820 55821 55822 55823 55824 55825 55826 55827 55828 55829 55830 55831 55832 55833 55834 55835 55836 55837 55838 55839 55840 55841 55842 55843 55844 55845 55846 55847 55848 55849 55850 55851 55852 55853 55854 55855 55856 55857 55858 55859 55860 55861 55862 55863 55864 55865 55866 55867 55868 55869 55870 55871 55872 55873 55874 55875 55876 55877 55878 55879 55880 55881 55882 55883 55884 55885 55886 55887 55888 55889 55890 55891 55892 55893 55894 55895 55896 55897 55898 55899 55900 55901 55902 55903 55904 55905 55906 55907 55908 55909 55910 55911 55912 55913 55914 55915 55916 55917 55918 55919 55920 55921 55922 55923 55924 55925 55926 55927 55928 55929 55930 55931 55932 55933 55934 55935 55936 55937 55938 55939 55940 55941 55942 55943 55944 55945 55946 55947 55948 55949 55950 55951 55952 55953 55954 55955 55956 55957 55958 55959 55960 55961 55962 55963 55964 55965 55966 55967 55968 55969 55970 55971 55972 55973 55974 55975 55976 55977 55978 55979 55980 55981 55982 55983 55984 55985 55986 55987 55988 55989 55990 55991 55992 55993 55994 55995 55996 55997 55998 55999 56000 56001 56002 56003 56004 56005 56006 56007 56008 56009 56010 56011 56012 56013 56014 56015 56016 56017 56018 56019 56020 56021 56022 56023 56024 56025 56026 56027 56028 56029 56030 56031 56032 56033 56034 56035 56036 56037 56038 56039 56040 56041 56042 56043 56044 56045 56046 56047 56048 56049 56050 56051 56052 56053 56054 56055 56056 56057 56058 56059 56060 56061 56062 56063 56064 56065 56066 56067 56068 56069 56070 56071 56072 56073 56074 56075 56076 56077 56078 56079 56080 56081 56082 56083 56084 56085 56086 56087 56088 56089 56090 56091 56092 56093 56094 56095 56096 56097 56098 56099 56100 56101 56102 56103 56104 56105 56106 56107 56108 56109 56110 56111 56112 56113 56114 56115 56116 56117 56118 56119 56120 56121 56122 56123 56124 56125 56126 56127 56128 56129 56130 56131 56132 56133 56134 56135 56136 56137 56138 56139 56140 56141 56142 56143 56144 56145 56146 56147 56148 56149 56150 56151 56152 56153 56154 56155 56156 56157 56158 56159 56160 56161 56162 56163 56164 56165 56166 56167 56168 56169 56170 56171 56172 56173 56174 56175 56176 56177 56178 56179 56180 56181 56182 56183 56184 56185 56186 56187 56188 56189 56190 56191 56192 56193 56194 56195 56196 56197 56198 56199 56200 56201 56202 56203 56204 56205 56206 56207 56208 56209 56210 56211 56212 56213 56214 56215 56216 56217 56218 56219 56220 56221 56222 56223 56224 56225 56226 56227 56228 56229 56230 56231 56232 56233 56234 56235 56236 56237 56238 56239 56240 56241 56242 56243 56244 56245 56246 56247 56248 56249 56250 56251 56252 56253 56254 56255 56256 56257 56258 56259 56260 56261 56262 56263 56264 56265 56266 56267 56268 56269 56270 56271 56272 56273 56274 56275 56276 56277 56278 56279 56280 56281 56282 56283 56284 56285 56286 56287 56288 56289 56290 56291 56292 56293 56294 56295 56296 56297 56298 56299 56300 56301 56302 56303 56304 56305 56306 56307 56308 56309 56310 56311 56312 56313 56314 56315 56316 56317 56318 56319 56320 56321 56322 56323 56324 56325 56326 56327 56328 56329 56330 56331 56332 56333 56334 56335 56336 56337 56338 56339 56340 56341 56342 56343 56344 56345 56346 56347 56348 56349 56350 56351 56352 56353 56354 56355 56356 56357 56358 56359 56360 56361 56362 56363 56364 56365 56366 56367 56368 56369 56370 56371 56372 56373 56374 56375 56376 56377 56378 56379 56380 56381 56382 56383 56384 56385 56386 56387 56388 56389 56390 56391 56392 56393 56394 56395 56396 56397 56398 56399 56400 56401 56402 56403 56404 56405 56406 56407 56408 56409 56410 56411 56412 56413 56414 56415 56416 56417 56418 56419 56420 56421 56422 56423 56424 56425 56426 56427 56428 56429 56430 56431 56432 56433 56434 56435 56436 56437 56438 56439 56440 56441 56442 56443 56444 56445 56446 56447 56448 56449 56450 56451 56452 56453 56454 56455 56456 56457 56458 56459 56460 56461 56462 56463 56464 56465 56466 56467 56468 56469 56470 56471 56472 56473 56474 56475 56476 56477 56478 56479 56480 56481 56482 56483 56484 56485 56486 56487 56488 56489 56490 56491 56492 56493 56494 56495 56496 56497 56498 56499 56500 56501 56502 56503 56504 56505 56506 56507 56508 56509 56510 56511 56512 56513 56514 56515 56516 56517 56518 56519 56520 56521 56522 56523 56524 56525 56526 56527 56528 56529 56530 56531 56532 56533 56534 56535 56536 56537 56538 56539 56540 56541 56542 56543 56544 56545 56546 56547 56548 56549 56550 56551 56552 56553 56554 56555 56556 56557 56558 56559 56560 56561 56562 56563 56564 56565 56566 56567 56568 56569 56570 56571 56572 56573 56574 56575 56576 56577 56578 56579 56580 56581 56582 56583 56584 56585 56586 56587 56588 56589 56590 56591 56592 56593 56594 56595 56596 56597 56598 56599 56600 56601 56602 56603 56604 56605 56606 56607 56608 56609 56610 56611 56612 56613 56614 56615 56616 56617 56618 56619 56620 56621 56622 56623 56624 56625 56626 56627 56628 56629 56630 56631 56632 56633 56634 56635 56636 56637 56638 56639 56640 56641 56642 56643 56644 56645 56646 56647 56648 56649 56650 56651 56652 56653 56654 56655 56656 56657 56658 56659 56660 56661 56662 56663 56664 56665 56666 56667 56668 56669 56670 56671 56672 56673 56674 56675 56676 56677 56678 56679 56680 56681 56682 56683 56684 56685 56686 56687 56688 56689 56690 56691 56692 56693 56694 56695 56696 56697 56698 56699 56700 56701 56702 56703 56704 56705 56706 56707 56708 56709 56710 56711 56712 56713 56714 56715 56716 56717 56718 56719 56720 56721 56722 56723 56724 56725 56726 56727 56728 56729 56730 56731 56732 56733 56734 56735 56736 56737 56738 56739 56740 56741 56742 56743 56744 56745 56746 56747 56748 56749 56750 56751 56752 56753 56754 56755 56756 56757 56758 56759 56760 56761 56762 56763 56764 56765 56766 56767 56768 56769 56770 56771 56772 56773 56774 56775 56776 56777 56778 56779 56780 56781 56782 56783 56784 56785 56786 56787 56788 56789 56790 56791 56792 56793 56794 56795 56796 56797 56798 56799 56800 56801 56802 56803 56804 56805 56806 56807 56808 56809 56810 56811 56812 56813 56814 56815 56816 56817 56818 56819 56820 56821 56822 56823 56824 56825 56826 56827 56828 56829 56830 56831 56832 56833 56834 56835 56836 56837 56838 56839 56840 56841 56842 56843 56844 56845 56846 56847 56848 56849 56850 56851 56852 56853 56854 56855 56856 56857 56858 56859 56860 56861 56862 56863 56864 56865 56866 56867 56868 56869 56870 56871 56872 56873 56874 56875 56876 56877 56878 56879 56880 56881 56882 56883 56884 56885 56886 56887 56888 56889 56890 56891 56892 56893 56894 56895 56896 56897 56898 56899 56900 56901 56902 56903 56904 56905 56906 56907 56908 56909 56910 56911 56912 56913 56914 56915 56916 56917 56918 56919 56920 56921 56922 56923 56924 56925 56926 56927 56928 56929 56930 56931 56932 56933 56934 56935 56936 56937 56938 56939 56940 56941 56942 56943 56944 56945 56946 56947 56948 56949 56950 56951 56952 56953 56954 56955 56956 56957 56958 56959 56960 56961 56962 56963 56964 56965 56966 56967 56968 56969 56970 56971 56972 56973 56974 56975 56976 56977 56978 56979 56980 56981 56982 56983 56984 56985 56986 56987 56988 56989 56990 56991 56992 56993 56994 56995 56996 56997 56998 56999 57000 57001 57002 57003 57004 57005 57006 57007 57008 57009 57010 57011 57012 57013 57014 57015 57016 57017 57018 57019 57020 57021 57022 57023 57024 57025 57026 57027 57028 57029 57030 57031 57032 57033 57034 57035 57036 57037 57038 57039 57040 57041 57042 57043 57044 57045 57046 57047 57048 57049 57050 57051 57052 57053 57054 57055 57056 57057 57058 57059 57060 57061 57062 57063 57064 57065 57066 57067 57068 57069 57070 57071 57072 57073 57074 57075 57076 57077 57078 57079 57080 57081 57082 57083 57084 57085 57086 57087 57088 57089 57090 57091 57092 57093 57094 57095 57096 57097 57098 57099 57100 57101 57102 57103 57104 57105 57106 57107 57108 57109 57110 57111 57112 57113 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57129 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57153 57154 57155 57156 57157 57158 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57169 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57186 57187 57188 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57230 57231 57232 57233 57234 57235 57236 57237 57238 57239 57240 57241 57242 57243 57244 57245 57246 57247 57248 57249 57250 57251 57252 57253 57254 57255 57256 57257 57258 57259 57260 57261 57262 57263 57264 57265 57266 57267 57268 57269 57270 57271 57272 57273 57274 57275 57276 57277 57278 57279 57280 57281 57282 57283 57284 57285 57286 57287 57288 57289 57290 57291 57292 57293 57294 57295 57296 57297 57298 57299 57300 57301 57302 57303 57304 57305 57306 57307 57308 57309 57310 57311 57312 57313 57314 57315 57316 57317 57318 57319 57320 57321 57322 57323 57324 57325 57326 57327 57328 57329 57330 57331 57332 57333 57334 57335 57336 57337 57338 57339 57340 57341 57342 57343 57344 57345 57346 57347 57348 57349 57350 57351 57352 57353 57354 57355 57356 57357 57358 57359 57360 57361 57362 57363 57364 57365 57366 57367 57368 57369 57370 57371 57372 57373 57374 57375 57376 57377 57378 57379 57380 57381 57382 57383 57384 57385 57386 57387 57388 57389 57390 57391 57392 57393 57394 57395 57396 57397 57398 57399 57400 57401 57402 57403 57404 57405 57406 57407 57408 57409 57410 57411 57412 57413 57414 57415 57416 57417 57418 57419 57420 57421 57422 57423 57424 57425 57426 57427 57428 57429 57430 57431 57432 57433 57434 57435 57436 57437 57438 57439 57440 57441 57442 57443 57444 57445 57446 57447 57448 57449 57450 57451 57452 57453 57454 57455 57456 57457 57458 57459 57460 57461 57462 57463 57464 57465 57466 57467 57468 57469 57470 57471 57472 57473 57474 57475 57476 57477 57478 57479 57480 57481 57482 57483 57484 57485 57486 57487 57488 57489 57490 57491 57492 57493 57494 57495 57496 57497 57498 57499 57500 57501 57502 57503 57504 57505 57506 57507 57508 57509 57510 57511 57512 57513 57514 57515 57516 57517 57518 57519 57520 57521 57522 57523 57524 57525 57526 57527 57528 57529 57530 57531 57532 57533 57534 57535 57536 57537 57538 57539 57540 57541 57542 57543 57544 57545 57546 57547 57548 57549 57550 57551 57552 57553 57554 57555 57556 57557 57558 57559 57560 57561 57562 57563 57564 57565 57566 57567 57568 57569 57570 57571 57572 57573 57574 57575 57576 57577 57578 57579 57580 57581 57582 57583 57584 57585 57586 57587 57588 57589 57590 57591 57592 57593 57594 57595 57596 57597 57598 57599 57600 57601 57602 57603 57604 57605 57606 57607 57608 57609 57610 57611 57612 57613 57614 57615 57616 57617 57618 57619 57620 57621 57622 57623 57624 57625 57626 57627 57628 57629 57630 57631 57632 57633 57634 57635 57636 57637 57638 57639 57640 57641 57642 57643 57644 57645 57646 57647 57648 57649 57650 57651 57652 57653 57654 57655 57656 57657 57658 57659 57660 57661 57662 57663 57664 57665 57666 57667 57668 57669 57670 57671 57672 57673 57674 57675 57676 57677 57678 57679 57680 57681 57682 57683 57684 57685 57686 57687 57688 57689 57690 57691 57692 57693 57694 57695 57696 57697 57698 57699 57700 57701 57702 57703 57704 57705 57706 57707 57708 57709 57710 57711 57712 57713 57714 57715 57716 57717 57718 57719 57720 57721 57722 57723 57724 57725 57726 57727 57728 57729 57730 57731 57732 57733 57734 57735 57736 57737 57738 57739 57740 57741 57742 57743 57744 57745 57746 57747 57748 57749 57750 57751 57752 57753 57754 57755 57756 57757 57758 57759 57760 57761 57762 57763 57764 57765 57766 57767 57768 57769 57770 57771 57772 57773 57774 57775 57776 57777 57778 57779 57780 57781 57782 57783 57784 57785 57786 57787 57788 57789 57790 57791 57792 57793 57794 57795 57796 57797 57798 57799 57800 57801 57802 57803 57804 57805 57806 57807 57808 57809 57810 57811 57812 57813 57814 57815 57816 57817 57818 57819 57820 57821 57822 57823 57824 57825 57826 57827 57828 57829 57830 57831 57832 57833 57834 57835 57836 57837 57838 57839 57840 57841 57842 57843 57844 57845 57846 57847 57848 57849 57850 57851 57852 57853 57854 57855 57856 57857 57858 57859 57860 57861 57862 57863 57864 57865 57866 57867 57868 57869 57870 57871 57872 57873 57874 57875 57876 57877 57878 57879 57880 57881 57882 57883 57884 57885 57886 57887 57888 57889 57890 57891 57892 57893 57894 57895 57896 57897 57898 57899 57900 57901 57902 57903 57904 57905 57906 57907 57908 57909 57910 57911 57912 57913 57914 57915 57916 57917 57918 57919 57920 57921 57922 57923 57924 57925 57926 57927 57928 57929 57930 57931 57932 57933 57934 57935 57936 57937 57938 57939 57940 57941 57942 57943 57944 57945 57946 57947 57948 57949 57950 57951 57952 57953 57954 57955 57956 57957 57958 57959 57960 57961 57962 57963 57964 57965 57966 57967 57968 57969 57970 57971 57972 57973 57974 57975 57976 57977 57978 57979 57980 57981 57982 57983 57984 57985 57986 57987 57988 57989 57990 57991 57992 57993 57994 57995 57996 57997 57998 57999 58000 58001 58002 58003 58004 58005 58006 58007 58008 58009 58010 58011 58012 58013 58014 58015 58016 58017 58018 58019 58020 58021 58022 58023 58024 58025 58026 58027 58028 58029 58030 58031 58032 58033 58034 58035 58036 58037 58038 58039 58040 58041 58042 58043 58044 58045 58046 58047 58048 58049 58050 58051 58052 58053 58054 58055 58056 58057 58058 58059 58060 58061 58062 58063 58064 58065 58066 58067 58068 58069 58070 58071 58072 58073 58074 58075 58076 58077 58078 58079 58080 58081 58082 58083 58084 58085 58086 58087 58088 58089 58090 58091 58092 58093 58094 58095 58096 58097 58098 58099 58100 58101 58102 58103 58104 58105 58106 58107 58108 58109 58110 58111 58112 58113 58114 58115 58116 58117 58118 58119 58120 58121 58122 58123 58124 58125 58126 58127 58128 58129 58130 58131 58132 58133 58134 58135 58136 58137 58138 58139 58140 58141 58142 58143 58144 58145 58146 58147 58148 58149 58150 58151 58152 58153 58154 58155 58156 58157 58158 58159 58160 58161 58162 58163 58164 58165 58166 58167 58168 58169 58170 58171 58172 58173 58174 58175 58176 58177 58178 58179 58180 58181 58182 58183 58184 58185 58186 58187 58188 58189 58190 58191 58192 58193 58194 58195 58196 58197 58198 58199 58200 58201 58202 58203 58204 58205 58206 58207 58208 58209 58210 58211 58212 58213 58214 58215 58216 58217 58218 58219 58220 58221 58222 58223 58224 58225 58226 58227 58228 58229 58230 58231 58232 58233 58234 58235 58236 58237 58238 58239 58240 58241 58242 58243 58244 58245 58246 58247 58248 58249 58250 58251 58252 58253 58254 58255 58256 58257 58258 58259 58260 58261 58262 58263 58264 58265 58266 58267 58268 58269 58270 58271 58272 58273 58274 58275 58276 58277 58278 58279 58280 58281 58282 58283 58284 58285 58286 58287 58288 58289 58290 58291 58292 58293 58294 58295 58296 58297 58298 58299 58300 58301 58302 58303 58304 58305 58306 58307 58308 58309 58310 58311 58312 58313 58314 58315 58316 58317 58318 58319 58320 58321 58322 58323 58324 58325 58326 58327 58328 58329 58330 58331 58332 58333 58334 58335 58336 58337 58338 58339 58340 58341 58342 58343 58344 58345 58346 58347 58348 58349 58350 58351 58352 58353 58354 58355 58356 58357 58358 58359 58360 58361 58362 58363 58364 58365 58366 58367 58368 58369 58370 58371 58372 58373 58374 58375 58376 58377 58378 58379 58380 58381 58382 58383 58384 58385 58386 58387 58388 58389 58390 58391 58392 58393 58394 58395 58396 58397 58398 58399 58400 58401 58402 58403 58404 58405 58406 58407 58408 58409 58410 58411 58412 58413 58414 58415 58416 58417 58418 58419 58420 58421 58422 58423 58424 58425 58426 58427 58428 58429 58430 58431 58432 58433 58434 58435 58436 58437 58438 58439 58440 58441 58442 58443 58444 58445 58446 58447 58448 58449 58450 58451 58452 58453 58454 58455 58456 58457 58458 58459 58460 58461 58462 58463 58464 58465 58466 58467 58468 58469 58470 58471 58472 58473 58474 58475 58476 58477 58478 58479 58480 58481 58482 58483 58484 58485 58486 58487 58488 58489 58490 58491 58492 58493 58494 58495 58496 58497 58498 58499 58500 58501 58502 58503 58504 58505 58506 58507 58508 58509 58510 58511 58512 58513 58514 58515 58516 58517 58518 58519 58520 58521 58522 58523 58524 58525 58526 58527 58528 58529 58530 58531 58532 58533 58534 58535 58536 58537 58538 58539 58540 58541 58542 58543 58544 58545 58546 58547 58548 58549 58550 58551 58552 58553 58554 58555 58556 58557 58558 58559 58560 58561 58562 58563 58564 58565 58566 58567 58568 58569 58570 58571 58572 58573 58574 58575 58576 58577 58578 58579 58580 58581 58582 58583 58584 58585 58586 58587 58588 58589 58590 58591 58592 58593 58594 58595 58596 58597 58598 58599 58600 58601 58602 58603 58604 58605 58606 58607 58608 58609 58610 58611 58612 58613 58614 58615 58616 58617 58618 58619 58620 58621 58622 58623 58624 58625 58626 58627 58628 58629 58630 58631 58632 58633 58634 58635 58636 58637 58638 58639 58640 58641 58642 58643 58644 58645 58646 58647 58648 58649 58650 58651 58652 58653 58654 58655 58656 58657 58658 58659 58660 58661 58662 58663 58664 58665 58666 58667 58668 58669 58670 58671 58672 58673 58674 58675 58676 58677 58678 58679 58680 58681 58682 58683 58684 58685 58686 58687 58688 58689 58690 58691 58692 58693 58694 58695 58696 58697 58698 58699 58700 58701 58702 58703 58704 58705 58706 58707 58708 58709 58710 58711 58712 58713 58714 58715 58716 58717 58718 58719 58720 58721 58722 58723 58724 58725 58726 58727 58728 58729 58730 58731 58732 58733 58734 58735 58736 58737 58738 58739 58740 58741 58742 58743 58744 58745 58746 58747 58748 58749 58750 58751 58752 58753 58754 58755 58756 58757 58758 58759 58760 58761 58762 58763 58764 58765 58766 58767 58768 58769 58770 58771 58772 58773 58774 58775 58776 58777 58778 58779 58780 58781 58782 58783 58784 58785 58786 58787 58788 58789 58790 58791 58792 58793 58794 58795 58796 58797 58798 58799 58800 58801 58802 58803 58804 58805 58806 58807 58808 58809 58810 58811 58812 58813 58814 58815 58816 58817 58818 58819 58820 58821 58822 58823 58824 58825 58826 58827 58828 58829 58830 58831 58832 58833 58834 58835 58836 58837 58838 58839 58840 58841 58842 58843 58844 58845 58846 58847 58848 58849 58850 58851 58852 58853 58854 58855 58856 58857 58858 58859 58860 58861 58862 58863 58864 58865 58866 58867 58868 58869 58870 58871 58872 58873 58874 58875 58876 58877 58878 58879 58880 58881 58882 58883 58884 58885 58886 58887 58888 58889 58890 58891 58892 58893 58894 58895 58896 58897 58898 58899 58900 58901 58902 58903 58904 58905 58906 58907 58908 58909 58910 58911 58912 58913 58914 58915 58916 58917 58918 58919 58920 58921 58922 58923 58924 58925 58926 58927 58928 58929 58930 58931 58932 58933 58934 58935 58936 58937 58938 58939 58940 58941 58942 58943 58944 58945 58946 58947 58948 58949 58950 58951 58952 58953 58954 58955 58956 58957 58958 58959 58960 58961 58962 58963 58964 58965 58966 58967 58968 58969 58970 58971 58972 58973 58974 58975 58976 58977 58978 58979 58980 58981 58982 58983 58984 58985 58986 58987 58988 58989 58990 58991 58992 58993 58994 58995 58996 58997 58998 58999 59000 59001 59002 59003 59004 59005 59006 59007 59008 59009 59010 59011 59012 59013 59014 59015 59016 59017 59018 59019 59020 59021 59022 59023 59024 59025 59026 59027 59028 59029 59030 59031 59032 59033 59034 59035 59036 59037 59038 59039 59040 59041 59042 59043 59044 59045 59046 59047 59048 59049 59050 59051 59052 59053 59054 59055 59056 59057 59058 59059 59060 59061 59062 59063 59064 59065 59066 59067 59068 59069 59070 59071 59072 59073 59074 59075 59076 59077 59078 59079 59080 59081 59082 59083 59084 59085 59086 59087 59088 59089 59090 59091 59092 59093 59094 59095 59096 59097 59098 59099 59100 59101 59102 59103 59104 59105 59106 59107 59108 59109 59110 59111 59112 59113 59114 59115 59116 59117 59118 59119 59120 59121 59122 59123 59124 59125 59126 59127 59128 59129 59130 59131 59132 59133 59134 59135 59136 59137 59138 59139 59140 59141 59142 59143 59144 59145 59146 59147 59148 59149 59150 59151 59152 59153 59154 59155 59156 59157 59158 59159 59160 59161 59162 59163 59164 59165 59166 59167 59168 59169 59170 59171 59172 59173 59174 59175 59176 59177 59178 59179 59180 59181 59182 59183 59184 59185 59186 59187 59188 59189 59190 59191 59192 59193 59194 59195 59196 59197 59198 59199 59200 59201 59202 59203 59204 59205 59206 59207 59208 59209 59210 59211 59212 59213 59214 59215 59216 59217 59218 59219 59220 59221 59222 59223 59224 59225 59226 59227 59228 59229 59230 59231 59232 59233 59234 59235 59236 59237 59238 59239 59240 59241 59242 59243 59244 59245 59246 59247 59248 59249 59250 59251 59252 59253 59254 59255 59256 59257 59258 59259 59260 59261 59262 59263 59264 59265 59266 59267 59268 59269 59270 59271 59272 59273 59274 59275 59276 59277 59278 59279 59280 59281 59282 59283 59284 59285 59286 59287 59288 59289 59290 59291 59292 59293 59294 59295 59296 59297 59298 59299 59300 59301 59302 59303 59304 59305 59306 59307 59308 59309 59310 59311 59312 59313 59314 59315 59316 59317 59318 59319 59320 59321 59322 59323 59324 59325 59326 59327 59328 59329 59330 59331 59332 59333 59334 59335 59336 59337 59338 59339 59340 59341 59342 59343 59344 59345 59346 59347 59348 59349 59350 59351 59352 59353 59354 59355 59356 59357 59358 59359 59360 59361 59362 59363 59364 59365 59366 59367 59368 59369 59370 59371 59372 59373 59374 59375 59376 59377 59378 59379 59380 59381 59382 59383 59384 59385 59386 59387 59388 59389 59390 59391 59392 59393 59394 59395 59396 59397 59398 59399 59400 59401 59402 59403 59404 59405 59406 59407 59408 59409 59410 59411 59412 59413 59414 59415 59416 59417 59418 59419 59420 59421 59422 59423 59424 59425 59426 59427 59428 59429 59430 59431 59432 59433 59434 59435 59436 59437 59438 59439 59440 59441 59442 59443 59444 59445 59446 59447 59448 59449 59450 59451 59452 59453 59454 59455 59456 59457 59458 59459 59460 59461 59462 59463 59464 59465 59466 59467 59468 59469 59470 59471 59472 59473 59474 59475 59476 59477 59478 59479 59480 59481 59482 59483 59484 59485 59486 59487 59488 59489 59490 59491 59492 59493 59494 59495 59496 59497 59498 59499 59500 59501 59502 59503 59504 59505 59506 59507 59508 59509 59510 59511 59512 59513 59514 59515 59516 59517 59518 59519 59520 59521 59522 59523 59524 59525 59526 59527 59528 59529 59530 59531 59532 59533 59534 59535 59536 59537 59538 59539 59540 59541 59542 59543 59544 59545 59546 59547 59548 59549 59550 59551 59552 59553 59554 59555 59556 59557 59558 59559 59560 59561 59562 59563 59564 59565 59566 59567 59568 59569 59570 59571 59572 59573 59574 59575 59576 59577 59578 59579 59580 59581 59582 59583 59584 59585 59586 59587 59588 59589 59590 59591 59592 59593 59594 59595 59596 59597 59598 59599 59600 59601 59602 59603 59604 59605 59606 59607 59608 59609 59610 59611 59612 59613 59614 59615 59616 59617 59618 59619 59620 59621 59622 59623 59624 59625 59626 59627 59628 59629 59630 59631 59632 59633 59634 59635 59636 59637 59638 59639 59640 59641 59642 59643 59644 59645 59646 59647 59648 59649 59650 59651 59652 59653 59654 59655 59656 59657 59658 59659 59660 59661 59662 59663 59664 59665 59666 59667 59668 59669 59670 59671 59672 59673 59674 59675 59676 59677 59678 59679 59680 59681 59682 59683 59684 59685 59686 59687 59688 59689 59690 59691 59692 59693 59694 59695 59696 59697 59698 59699 59700 59701 59702 59703 59704 59705 59706 59707 59708 59709 59710 59711 59712 59713 59714 59715 59716 59717 59718 59719 59720 59721 59722 59723 59724 59725 59726 59727 59728 59729 59730 59731 59732 59733 59734 59735 59736 59737 59738 59739 59740 59741 59742 59743 59744 59745 59746 59747 59748 59749 59750 59751 59752 59753 59754 59755 59756 59757 59758 59759 59760 59761 59762 59763 59764 59765 59766 59767 59768 59769 59770 59771 59772 59773 59774 59775 59776 59777 59778 59779 59780 59781 59782 59783 59784 59785 59786 59787 59788 59789 59790 59791 59792 59793 59794 59795 59796 59797 59798 59799 59800 59801 59802 59803 59804 59805 59806 59807 59808 59809 59810 59811 59812 59813 59814 59815 59816 59817 59818 59819 59820 59821 59822 59823 59824 59825 59826 59827 59828 59829 59830 59831 59832 59833 59834 59835 59836 59837 59838 59839 59840 59841 59842 59843 59844 59845 59846 59847 59848 59849 59850 59851 59852 59853 59854 59855 59856 59857 59858 59859 59860 59861 59862 59863 59864 59865 59866 59867 59868 59869 59870 59871 59872 59873 59874 59875 59876 59877 59878 59879 59880 59881 59882 59883 59884 59885 59886 59887 59888 59889 59890 59891 59892 59893 59894 59895 59896 59897 59898 59899 59900 59901 59902 59903 59904 59905 59906 59907 59908 59909 59910 59911 59912 59913 59914 59915 59916 59917 59918 59919 59920 59921 59922 59923 59924 59925 59926 59927 59928 59929 59930 59931 59932 59933 59934 59935 59936 59937 59938 59939 59940 59941 59942 59943 59944 59945 59946 59947 59948 59949 59950 59951 59952 59953 59954 59955 59956 59957 59958 59959 59960 59961 59962 59963 59964 59965 59966 59967 59968 59969 59970 59971 59972 59973 59974 59975 59976 59977 59978 59979 59980 59981 59982 59983 59984 59985 59986 59987 59988 59989 59990 59991 59992 59993 59994 59995 59996 59997 59998 59999 60000 60001 60002 60003 60004 60005 60006 60007 60008 60009 60010 60011 60012 60013 60014 60015 60016 60017 60018 60019 60020 60021 60022 60023 60024 60025 60026 60027 60028 60029 60030 60031 60032 60033 60034 60035 60036 60037 60038 60039 60040 60041 60042 60043 60044 60045 60046 60047 60048 60049 60050 60051 60052 60053 60054 60055 60056 60057 60058 60059 60060 60061 60062 60063 60064 60065 60066 60067 60068 60069 60070 60071 60072 60073 60074 60075 60076 60077 60078 60079 60080 60081 60082 60083 60084 60085 60086 60087 60088 60089 60090 60091 60092 60093 60094 60095 60096 60097 60098 60099 60100 60101 60102 60103 60104 60105 60106 60107 60108 60109 60110 60111 60112 60113 60114 60115 60116 60117 60118 60119 60120 60121 60122 60123 60124 60125 60126 60127 60128 60129 60130 60131 60132 60133 60134 60135 60136 60137 60138 60139 60140 60141 60142 60143 60144 60145 60146 60147 60148 60149 60150 60151 60152 60153 60154 60155 60156 60157 60158 60159 60160 60161 60162 60163 60164 60165 60166 60167 60168 60169 60170 60171 60172 60173 60174 60175 60176 60177 60178 60179 60180 60181 60182 60183 60184 60185 60186 60187 60188 60189 60190 60191 60192 60193 60194 60195 60196 60197 60198 60199 60200 60201 60202 60203 60204 60205 60206 60207 60208 60209 60210 60211 60212 60213 60214 60215 60216 60217 60218 60219 60220 60221 60222 60223 60224 60225 60226 60227 60228 60229 60230 60231 60232 60233 60234 60235 60236 60237 60238 60239 60240 60241 60242 60243 60244 60245 60246 60247 60248 60249 60250 60251 60252 60253 60254 60255 60256 60257 60258 60259 60260 60261 60262 60263 60264 60265 60266 60267 60268 60269 60270 60271 60272 60273 60274 60275 60276 60277 60278 60279 60280 60281 60282 60283 60284 60285 60286 60287 60288 60289 60290 60291 60292 60293 60294 60295 60296 60297 60298 60299 60300 60301 60302 60303 60304 60305 60306 60307 60308 60309 60310 60311 60312 60313 60314 60315 60316 60317 60318 60319 60320 60321 60322 60323 60324 60325 60326 60327 60328 60329 60330 60331 60332 60333 60334 60335 60336 60337 60338 60339 60340 60341 60342 60343 60344 60345 60346 60347 60348 60349 60350 60351 60352 60353 60354 60355 60356 60357 60358 60359 60360 60361 60362 60363 60364 60365 60366 60367 60368 60369 60370 60371 60372 60373 60374 60375 60376 60377 60378 60379 60380 60381 60382 60383 60384 60385 60386 60387 60388 60389 60390 60391 60392 60393 60394 60395 60396 60397 60398 60399 60400 60401 60402 60403 60404 60405 60406 60407 60408 60409 60410 60411 60412 60413 60414 60415 60416 60417 60418 60419 60420 60421 60422 60423 60424 60425 60426 60427 60428 60429 60430 60431 60432 60433 60434 60435 60436 60437 60438 60439 60440 60441 60442 60443 60444 60445 60446 60447 60448 60449 60450 60451 60452 60453 60454 60455 60456 60457 60458 60459 60460 60461 60462 60463 60464 60465 60466 60467 60468 60469 60470 60471 60472 60473 60474 60475 60476 60477 60478 60479 60480 60481 60482 60483 60484 60485 60486 60487 60488 60489 60490 60491 60492 60493 60494 60495 60496 60497 60498 60499 60500 60501 60502 60503 60504 60505 60506 60507 60508 60509 60510 60511 60512 60513 60514 60515 60516 60517 60518 60519 60520 60521 60522 60523 60524 60525 60526 60527 60528 60529 60530 60531 60532 60533 60534 60535 60536 60537 60538 60539 60540 60541 60542 60543 60544 60545 60546 60547 60548 60549 60550 60551 60552 60553 60554 60555 60556 60557 60558 60559 60560 60561 60562 60563 60564 60565 60566 60567 60568 60569 60570 60571 60572 60573 60574 60575 60576 60577 60578 60579 60580 60581 60582 60583 60584 60585 60586 60587 60588 60589 60590 60591 60592 60593 60594 60595 60596 60597 60598 60599 60600 60601 60602 60603 60604 60605 60606 60607 60608 60609 60610 60611 60612 60613 60614 60615 60616 60617 60618 60619 60620 60621 60622 60623 60624 60625 60626 60627 60628 60629 60630 60631 60632 60633 60634 60635 60636 60637 60638 60639 60640 60641 60642 60643 60644 60645 60646 60647 60648 60649 60650 60651 60652 60653 60654 60655 60656 60657 60658 60659 60660 60661 60662 60663 60664 60665 60666 60667 60668 60669 60670 60671 60672 60673 60674 60675 60676 60677 60678 60679 60680 60681 60682 60683 60684 60685 60686 60687 60688 60689 60690 60691 60692 60693 60694 60695 60696 60697 60698 60699 60700 60701 60702 60703 60704 60705 60706 60707 60708 60709 60710 60711 60712 60713 60714 60715 60716 60717 60718 60719 60720 60721 60722 60723 60724 60725 60726 60727 60728 60729 60730 60731 60732 60733 60734 60735 60736 60737 60738 60739 60740 60741 60742 60743 60744 60745 60746 60747 60748 60749 60750 60751 60752 60753 60754 60755 60756 60757 60758 60759 60760 60761 60762 60763 60764 60765 60766 60767 60768 60769 60770 60771 60772 60773 60774 60775 60776 60777 60778 60779 60780 60781 60782 60783 60784 60785 60786 60787 60788 60789 60790 60791 60792 60793 60794 60795 60796 60797 60798 60799 60800 60801 60802 60803 60804 60805 60806 60807 60808 60809 60810 60811 60812 60813 60814 60815 60816 60817 60818 60819 60820 60821 60822 60823 60824 60825 60826 60827 60828 60829 60830 60831 60832 60833 60834 60835 60836 60837 60838 60839 60840 60841 60842 60843 60844 60845 60846 60847 60848 60849 60850 60851 60852 60853 60854 60855 60856 60857 60858 60859 60860 60861 60862 60863 60864 60865 60866 60867 60868 60869 60870 60871 60872 60873 60874 60875 60876 60877 60878 60879 60880 60881 60882 60883 60884 60885 60886 60887 60888 60889 60890 60891 60892 60893 60894 60895 60896 60897 60898 60899 60900 60901 60902 60903 60904 60905 60906 60907 60908 60909 60910 60911 60912 60913 60914 60915 60916 60917 60918 60919 60920 60921 60922 60923 60924 60925 60926 60927 60928 60929 60930 60931 60932 60933 60934 60935 60936 60937 60938 60939 60940 60941 60942 60943 60944 60945 60946 60947 60948 60949 60950 60951 60952 60953 60954 60955 60956 60957 60958 60959 60960 60961 60962 60963 60964 60965 60966 60967 60968 60969 60970 60971 60972 60973 60974 60975 60976 60977 60978 60979 60980 60981 60982 60983 60984 60985 60986 60987 60988 60989 60990 60991 60992 60993 60994 60995 60996 60997 60998 60999 61000 61001 61002 61003 61004 61005 61006 61007 61008 61009 61010 61011 61012 61013 61014 61015 61016 61017 61018 61019 61020 61021 61022 61023 61024 61025 61026 61027 61028 61029 61030 61031 61032 61033 61034 61035 61036 61037 61038 61039 61040 61041 61042 61043 61044 61045 61046 61047 61048 61049 61050 61051 61052 61053 61054 61055 61056 61057 61058 61059 61060 61061 61062 61063 61064 61065 61066 61067 61068 61069 61070 61071 61072 61073 61074 61075 61076 61077 61078 61079 61080 61081 61082 61083 61084 61085 61086 61087 61088 61089 61090 61091 61092 61093 61094 61095 61096 61097 61098 61099 61100 61101 61102 61103 61104 61105 61106 61107 61108 61109 61110 61111 61112 61113 61114 61115 61116 61117 61118 61119 61120 61121 61122 61123 61124 61125 61126 61127 61128 61129 61130 61131 61132 61133 61134 61135 61136 61137 61138 61139 61140 61141 61142 61143 61144 61145 61146 61147 61148 61149 61150 61151 61152 61153 61154 61155 61156 61157 61158 61159 61160 61161 61162 61163 61164 61165 61166 61167 61168 61169 61170 61171 61172 61173 61174 61175 61176 61177 61178 61179 61180 61181 61182 61183 61184 61185 61186 61187 61188 61189 61190 61191 61192 61193 61194 61195 61196 61197 61198 61199 61200 61201 61202 61203 61204 61205 61206 61207 61208 61209 61210 61211 61212 61213 61214 61215 61216 61217 61218 61219 61220 61221 61222 61223 61224 61225 61226 61227 61228 61229 61230 61231 61232 61233 61234 61235 61236 61237 61238 61239 61240 61241 61242 61243 61244 61245 61246 61247 61248 61249 61250 61251 61252 61253 61254 61255 61256 61257 61258 61259 61260 61261 61262 61263 61264 61265 61266 61267 61268 61269 61270 61271 61272 61273 61274 61275 61276 61277 61278 61279 61280 61281 61282 61283 61284 61285 61286 61287 61288 61289 61290 61291 61292 61293 61294 61295 61296 61297 61298 61299 61300 61301 61302 61303 61304 61305 61306 61307 61308 61309 61310 61311 61312 61313 61314 61315 61316 61317 61318 61319 61320 61321 61322 61323 61324 61325 61326 61327 61328 61329 61330 61331 61332 61333 61334 61335 61336 61337 61338 61339 61340 61341 61342 61343 61344 61345 61346 61347 61348 61349 61350 61351 61352 61353 61354 61355 61356 61357 61358 61359 61360 61361 61362 61363 61364 61365 61366 61367 61368 61369 61370 61371 61372 61373 61374 61375 61376 61377 61378 61379 61380 61381 61382 61383 61384 61385 61386 61387 61388 61389 61390 61391 61392 61393 61394 61395 61396 61397 61398 61399 61400 61401 61402 61403 61404 61405 61406 61407 61408 61409 61410 61411 61412 61413 61414 61415 61416 61417 61418 61419 61420 61421 61422 61423 61424 61425 61426 61427 61428 61429 61430 61431 61432 61433 61434 61435 61436 61437 61438 61439 61440 61441 61442 61443 61444 61445 61446 61447 61448 61449 61450 61451 61452 61453 61454 61455 61456 61457 61458 61459 61460 61461 61462 61463 61464 61465 61466 61467 61468 61469 61470 61471 61472 61473 61474 61475 61476 61477 61478 61479 61480 61481 61482 61483 61484 61485 61486 61487 61488 61489 61490 61491 61492 61493 61494 61495 61496 61497 61498 61499 61500 61501 61502 61503 61504 61505 61506 61507 61508 61509 61510 61511 61512 61513 61514 61515 61516 61517 61518 61519 61520 61521 61522 61523 61524 61525 61526 61527 61528 61529 61530 61531 61532 61533 61534 61535 61536 61537 61538 61539 61540 61541 61542 61543 61544 61545 61546 61547 61548 61549 61550 61551 61552 61553 61554 61555 61556 61557 61558 61559 61560 61561 61562 61563 61564 61565 61566 61567 61568 61569 61570 61571 61572 61573 61574 61575 61576 61577 61578 61579 61580 61581 61582 61583 61584 61585 61586 61587 61588 61589 61590 61591 61592 61593 61594 61595 61596 61597 61598 61599 61600 61601 61602 61603 61604 61605 61606 61607 61608 61609 61610 61611 61612 61613 61614 61615 61616 61617 61618 61619 61620 61621 61622 61623 61624 61625 61626 61627 61628 61629 61630 61631 61632 61633 61634 61635 61636 61637 61638 61639 61640 61641 61642 61643 61644 61645 61646 61647 61648 61649 61650 61651 61652 61653 61654 61655 61656 61657 61658 61659 61660 61661 61662 61663 61664 61665 61666 61667 61668 61669 61670 61671 61672 61673 61674 61675 61676 61677 61678 61679 61680 61681 61682 61683 61684 61685 61686 61687 61688 61689 61690 61691 61692 61693 61694 61695 61696 61697 61698 61699 61700 61701 61702 61703 61704 61705 61706 61707 61708 61709 61710 61711 61712 61713 61714 61715 61716 61717 61718 61719 61720 61721 61722 61723 61724 61725 61726 61727 61728 61729 61730 61731 61732 61733 61734 61735 61736 61737 61738 61739 61740 61741 61742 61743 61744 61745 61746 61747 61748 61749 61750 61751 61752 61753 61754 61755 61756 61757 61758 61759 61760 61761 61762 61763 61764 61765 61766 61767 61768 61769 61770 61771 61772 61773 61774 61775 61776 61777 61778 61779 61780 61781 61782 61783 61784 61785 61786 61787 61788 61789 61790 61791 61792 61793 61794 61795 61796 61797 61798 61799 61800 61801 61802 61803 61804 61805 61806 61807 61808 61809 61810 61811 61812 61813 61814 61815 61816 61817 61818 61819 61820 61821 61822 61823 61824 61825 61826 61827 61828 61829 61830 61831 61832 61833 61834 61835 61836 61837 61838 61839 61840 61841 61842 61843 61844 61845 61846 61847 61848 61849 61850 61851 61852 61853 61854 61855 61856 61857 61858 61859 61860 61861 61862 61863 61864 61865 61866 61867 61868 61869 61870 61871 61872 61873 61874 61875 61876 61877 61878 61879 61880 61881 61882 61883 61884 61885 61886 61887 61888 61889 61890 61891 61892 61893 61894 61895 61896 61897 61898 61899 61900 61901 61902 61903 61904 61905 61906 61907 61908 61909 61910 61911 61912 61913 61914 61915 61916 61917 61918 61919 61920 61921 61922 61923 61924 61925 61926 61927 61928 61929 61930 61931 61932 61933 61934 61935 61936 61937 61938 61939 61940 61941 61942 61943 61944 61945 61946 61947 61948 61949 61950 61951 61952 61953 61954 61955 61956 61957 61958 61959 61960 61961 61962 61963 61964 61965 61966 61967 61968 61969 61970 61971 61972 61973 61974 61975 61976 61977 61978 61979 61980 61981 61982 61983 61984 61985 61986 61987 61988 61989 61990 61991 61992 61993 61994 61995 61996 61997 61998 61999 62000 62001 62002 62003 62004 62005 62006 62007 62008 62009 62010 62011 62012 62013 62014 62015 62016 62017 62018 62019 62020 62021 62022 62023 62024 62025 62026 62027 62028 62029 62030 62031 62032 62033 62034 62035 62036 62037 62038 62039 62040 62041 62042 62043 62044 62045 62046 62047 62048 62049 62050 62051 62052 62053 62054 62055 62056 62057 62058 62059 62060 62061 62062 62063 62064 62065 62066 62067 62068 62069 62070 62071 62072 62073 62074 62075 62076 62077 62078 62079 62080 62081 62082 62083 62084 62085 62086 62087 62088 62089 62090 62091 62092 62093 62094 62095 62096 62097 62098 62099 62100 62101 62102 62103 62104 62105 62106 62107 62108 62109 62110 62111 62112 62113 62114 62115 62116 62117 62118 62119 62120 62121 62122 62123 62124 62125 62126 62127 62128 62129 62130 62131 62132 62133 62134 62135 62136 62137 62138 62139 62140 62141 62142 62143 62144 62145 62146 62147 62148 62149 62150 62151 62152 62153 62154 62155 62156 62157 62158 62159 62160 62161 62162 62163 62164 62165 62166 62167 62168 62169 62170 62171 62172 62173 62174 62175 62176 62177 62178 62179 62180 62181 62182 62183 62184 62185 62186 62187 62188 62189 62190 62191 62192 62193 62194 62195 62196 62197 62198 62199 62200 62201 62202 62203 62204 62205 62206 62207 62208 62209 62210 62211 62212 62213 62214 62215 62216 62217 62218 62219 62220 62221 62222 62223 62224 62225 62226 62227 62228 62229 62230 62231 62232 62233 62234 62235 62236 62237 62238 62239 62240 62241 62242 62243 62244 62245 62246 62247 62248 62249 62250 62251 62252 62253 62254 62255 62256 62257 62258 62259 62260 62261 62262 62263 62264 62265 62266 62267 62268 62269 62270 62271 62272 62273 62274 62275 62276 62277 62278 62279 62280 62281 62282 62283 62284 62285 62286 62287 62288 62289 62290 62291 62292 62293 62294 62295 62296 62297 62298 62299 62300 62301 62302 62303 62304 62305 62306 62307 62308 62309 62310 62311 62312 62313 62314 62315 62316 62317 62318 62319 62320 62321 62322 62323 62324 62325 62326 62327 62328 62329 62330 62331 62332 62333 62334 62335 62336 62337 62338 62339 62340 62341 62342 62343 62344 62345 62346 62347 62348 62349 62350 62351 62352 62353 62354 62355 62356 62357 62358 62359 62360 62361 62362 62363 62364 62365 62366 62367 62368 62369 62370 62371 62372 62373 62374 62375 62376 62377 62378 62379 62380 62381 62382 62383 62384 62385 62386 62387 62388 62389 62390 62391 62392 62393 62394 62395 62396 62397 62398 62399 62400 62401 62402 62403 62404 62405 62406 62407 62408 62409 62410 62411 62412 62413 62414 62415 62416 62417 62418 62419 62420 62421 62422 62423 62424 62425 62426 62427 62428 62429 62430 62431 62432 62433 62434 62435 62436 62437 62438 62439 62440 62441 62442 62443 62444 62445 62446 62447 62448 62449 62450 62451 62452 62453 62454 62455 62456 62457 62458 62459 62460 62461 62462 62463 62464 62465 62466 62467 62468 62469 62470 62471 62472 62473 62474 62475 62476 62477 62478 62479 62480 62481 62482 62483 62484 62485 62486 62487 62488 62489 62490 62491 62492 62493 62494 62495 62496 62497 62498 62499 62500 62501 62502 62503 62504 62505 62506 62507 62508 62509 62510 62511 62512 62513 62514 62515 62516 62517 62518 62519 62520 62521 62522 62523 62524 62525 62526 62527 62528 62529 62530 62531 62532 62533 62534 62535 62536 62537 62538 62539 62540 62541 62542 62543 62544 62545 62546 62547 62548 62549 62550 62551 62552 62553 62554 62555 62556 62557 62558 62559 62560 62561 62562 62563 62564 62565 62566 62567 62568 62569 62570 62571 62572 62573 62574 62575 62576 62577 62578 62579 62580 62581 62582 62583 62584 62585 62586 62587 62588 62589 62590 62591 62592 62593 62594 62595 62596 62597 62598 62599 62600 62601 62602 62603 62604 62605 62606 62607 62608 62609 62610 62611 62612 62613 62614 62615 62616 62617 62618 62619 62620 62621 62622 62623 62624 62625 62626 62627 62628 62629 62630 62631 62632 62633 62634 62635 62636 62637 62638 62639 62640 62641 62642 62643 62644 62645 62646 62647 62648 62649 62650 62651 62652 62653 62654 62655 62656 62657 62658 62659 62660 62661 62662 62663 62664 62665 62666 62667 62668 62669 62670 62671 62672 62673 62674 62675 62676 62677 62678 62679 62680 62681 62682 62683 62684 62685 62686 62687 62688 62689 62690 62691 62692 62693 62694 62695 62696 62697 62698 62699 62700 62701 62702 62703 62704 62705 62706 62707 62708 62709 62710 62711 62712 62713 62714 62715 62716 62717 62718 62719 62720 62721 62722 62723 62724 62725 62726 62727 62728 62729 62730 62731 62732 62733 62734 62735 62736 62737 62738 62739 62740 62741 62742 62743 62744 62745 62746 62747 62748 62749 62750 62751 62752 62753 62754 62755 62756 62757 62758 62759 62760 62761 62762 62763 62764 62765 62766 62767 62768 62769 62770 62771 62772 62773 62774 62775 62776 62777 62778 62779 62780 62781 62782 62783 62784 62785 62786 62787 62788 62789 62790 62791 62792 62793 62794 62795 62796 62797 62798 62799 62800 62801 62802 62803 62804 62805 62806 62807 62808 62809 62810 62811 62812 62813 62814 62815 62816 62817 62818 62819 62820 62821 62822 62823 62824 62825 62826 62827 62828 62829 62830 62831 62832 62833 62834 62835 62836 62837 62838 62839 62840 62841 62842 62843 62844 62845 62846 62847 62848 62849 62850 62851 62852 62853 62854 62855 62856 62857 62858 62859 62860 62861 62862 62863 62864 62865 62866 62867 62868 62869 62870 62871 62872 62873 62874 62875 62876 62877 62878 62879 62880 62881 62882 62883 62884 62885 62886 62887 62888 62889 62890 62891 62892 62893 62894 62895 62896 62897 62898 62899 62900 62901 62902 62903 62904 62905 62906 62907 62908 62909 62910 62911 62912 62913 62914 62915 62916 62917 62918 62919 62920 62921 62922 62923 62924 62925 62926 62927 62928 62929 62930 62931 62932 62933 62934 62935 62936 62937 62938 62939 62940 62941 62942 62943 62944 62945 62946 62947 62948 62949 62950 62951 62952 62953 62954 62955 62956 62957 62958 62959 62960 62961 62962 62963 62964 62965 62966 62967 62968 62969 62970 62971 62972 62973 62974 62975 62976 62977 62978 62979 62980 62981 62982 62983 62984 62985 62986 62987 62988 62989 62990 62991 62992 62993 62994 62995 62996 62997 62998 62999 63000 63001 63002 63003 63004 63005 63006 63007 63008 63009 63010 63011 63012 63013 63014 63015 63016 63017 63018 63019 63020 63021 63022 63023 63024 63025 63026 63027 63028 63029 63030 63031 63032 63033 63034 63035 63036 63037 63038 63039 63040 63041 63042 63043 63044 63045 63046 63047 63048 63049 63050 63051 63052 63053 63054 63055 63056 63057 63058 63059 63060 63061 63062 63063 63064 63065 63066 63067 63068 63069 63070 63071 63072 63073 63074 63075 63076 63077 63078 63079 63080 63081 63082 63083 63084 63085 63086 63087 63088 63089 63090 63091 63092 63093 63094 63095 63096 63097 63098 63099 63100 63101 63102 63103 63104 63105 63106 63107 63108 63109 63110 63111 63112 63113 63114 63115 63116 63117 63118 63119 63120 63121 63122 63123 63124 63125 63126 63127 63128 63129 63130 63131 63132 63133 63134 63135 63136 63137 63138 63139 63140 63141 63142 63143 63144 63145 63146 63147 63148 63149 63150 63151 63152 63153 63154 63155 63156 63157 63158 63159 63160 63161 63162 63163 63164 63165 63166 63167 63168 63169 63170 63171 63172 63173 63174 63175 63176 63177 63178 63179 63180 63181 63182 63183 63184 63185 63186 63187 63188 63189 63190 63191 63192 63193 63194 63195 63196 63197 63198 63199 63200 63201 63202 63203 63204 63205 63206 63207 63208 63209 63210 63211 63212 63213 63214 63215 63216 63217 63218 63219 63220 63221 63222 63223 63224 63225 63226 63227 63228 63229 63230 63231 63232 63233 63234 63235 63236 63237 63238 63239 63240 63241 63242 63243 63244 63245 63246 63247 63248 63249 63250 63251 63252 63253 63254 63255 63256 63257 63258 63259 63260 63261 63262 63263 63264 63265 63266 63267 63268 63269 63270 63271 63272 63273 63274 63275 63276 63277 63278 63279 63280 63281 63282 63283 63284 63285 63286 63287 63288 63289 63290 63291 63292 63293 63294 63295 63296 63297 63298 63299 63300 63301 63302 63303 63304 63305 63306 63307 63308 63309 63310 63311 63312 63313 63314 63315 63316 63317 63318 63319 63320 63321 63322 63323 63324 63325 63326 63327 63328 63329 63330 63331 63332 63333 63334 63335 63336 63337 63338 63339 63340 63341 63342 63343 63344 63345 63346 63347 63348 63349 63350 63351 63352 63353 63354 63355 63356 63357 63358 63359 63360 63361 63362 63363 63364 63365 63366 63367 63368 63369 63370 63371 63372 63373 63374 63375 63376 63377 63378 63379 63380 63381 63382 63383 63384 63385 63386 63387 63388 63389 63390 63391 63392 63393 63394 63395 63396 63397 63398 63399 63400 63401 63402 63403 63404 63405 63406 63407 63408 63409 63410 63411 63412 63413 63414 63415 63416 63417 63418 63419 63420 63421 63422 63423 63424 63425 63426 63427 63428 63429 63430 63431 63432 63433 63434 63435 63436 63437 63438 63439 63440 63441 63442 63443 63444 63445 63446 63447 63448 63449 63450 63451 63452 63453 63454 63455 63456 63457 63458 63459 63460 63461 63462 63463 63464 63465 63466 63467 63468 63469 63470 63471 63472 63473 63474 63475 63476 63477 63478 63479 63480 63481 63482 63483 63484 63485 63486 63487 63488 63489 63490 63491 63492 63493 63494 63495 63496 63497 63498 63499 63500 63501 63502 63503 63504 63505 63506 63507 63508 63509 63510 63511 63512 63513 63514 63515 63516 63517 63518 63519 63520 63521 63522 63523 63524 63525 63526 63527 63528 63529 63530 63531 63532 63533 63534 63535 63536 63537 63538 63539 63540 63541 63542 63543 63544 63545 63546 63547 63548 63549 63550 63551 63552 63553 63554 63555 63556 63557 63558 63559 63560 63561 63562 63563 63564 63565 63566 63567 63568 63569 63570 63571 63572 63573 63574 63575 63576 63577 63578 63579 63580 63581 63582 63583 63584 63585 63586 63587 63588 63589 63590 63591 63592 63593 63594 63595 63596 63597 63598 63599 63600 63601 63602 63603 63604 63605 63606 63607 63608 63609 63610 63611 63612 63613 63614 63615 63616 63617 63618 63619 63620 63621 63622 63623 63624 63625 63626 63627 63628 63629 63630 63631 63632 63633 63634 63635 63636 63637 63638 63639 63640 63641 63642 63643 63644 63645 63646 63647 63648 63649 63650 63651 63652 63653 63654 63655 63656 63657 63658 63659 63660 63661 63662 63663 63664 63665 63666 63667 63668 63669 63670 63671 63672 63673 63674 63675 63676 63677 63678 63679 63680 63681 63682 63683 63684 63685 63686 63687 63688 63689 63690 63691 63692 63693 63694 63695 63696 63697 63698 63699 63700 63701 63702 63703 63704 63705 63706 63707 63708 63709 63710 63711 63712 63713 63714 63715 63716 63717 63718 63719 63720 63721 63722 63723 63724 63725 63726 63727 63728 63729 63730 63731 63732 63733 63734 63735 63736 63737 63738 63739 63740 63741 63742 63743 63744 63745 63746 63747 63748 63749 63750 63751 63752 63753 63754 63755 63756 63757 63758 63759 63760 63761 63762 63763 63764 63765 63766 63767 63768 63769 63770 63771 63772 63773 63774 63775 63776 63777 63778 63779 63780 63781 63782 63783 63784 63785 63786 63787 63788 63789 63790 63791 63792 63793 63794 63795 63796 63797 63798 63799 63800 63801 63802 63803 63804 63805 63806 63807 63808 63809 63810 63811 63812 63813 63814 63815 63816 63817 63818 63819 63820 63821 63822 63823 63824 63825 63826 63827 63828 63829 63830 63831 63832 63833 63834 63835 63836 63837 63838 63839 63840 63841 63842 63843 63844 63845 63846 63847 63848 63849 63850 63851 63852 63853 63854 63855 63856 63857 63858 63859 63860 63861 63862 63863 63864 63865 63866 63867 63868 63869 63870 63871 63872 63873 63874 63875 63876 63877 63878 63879 63880 63881 63882 63883 63884 63885 63886 63887 63888 63889 63890 63891 63892 63893 63894 63895 63896 63897 63898 63899 63900 63901 63902 63903 63904 63905 63906 63907 63908 63909 63910 63911 63912 63913 63914 63915 63916 63917 63918 63919 63920 63921 63922 63923 63924 63925 63926 63927 63928 63929 63930 63931 63932 63933 63934 63935 63936 63937 63938 63939 63940 63941 63942 63943 63944 63945 63946 63947 63948 63949 63950 63951 63952 63953 63954 63955 63956 63957 63958 63959 63960 63961 63962 63963 63964 63965 63966 63967 63968 63969 63970 63971 63972 63973 63974 63975 63976 63977 63978 63979 63980 63981 63982 63983 63984 63985 63986 63987 63988 63989 63990 63991 63992 63993 63994 63995 63996 63997 63998 63999 64000 64001 64002 64003 64004 64005 64006 64007 64008 64009 64010 64011 64012 64013 64014 64015 64016 64017 64018 64019 64020 64021 64022 64023 64024 64025 64026 64027 64028 64029 64030 64031 64032 64033 64034 64035 64036 64037 64038 64039 64040 64041 64042 64043 64044 64045 64046 64047 64048 64049 64050 64051 64052 64053 64054 64055 64056 64057 64058 64059 64060 64061 64062 64063 64064 64065 64066 64067 64068 64069 64070 64071 64072 64073 64074 64075 64076 64077 64078 64079 64080 64081 64082 64083 64084 64085 64086 64087 64088 64089 64090 64091 64092 64093 64094 64095 64096 64097 64098 64099 64100 64101 64102 64103 64104 64105 64106 64107 64108 64109 64110 64111 64112 64113 64114 64115 64116 64117 64118 64119 64120 64121 64122 64123 64124 64125 64126 64127 64128 64129 64130 64131 64132 64133 64134 64135 64136 64137 64138 64139 64140 64141 64142 64143 64144 64145 64146 64147 64148 64149 64150 64151 64152 64153 64154 64155 64156 64157 64158 64159 64160 64161 64162 64163 64164 64165 64166 64167 64168 64169 64170 64171 64172 64173 64174 64175 64176 64177 64178 64179 64180 64181 64182 64183 64184 64185 64186 64187 64188 64189 64190 64191 64192 64193 64194 64195 64196 64197 64198 64199 64200 64201 64202 64203 64204 64205 64206 64207 64208 64209 64210 64211 64212 64213 64214 64215 64216 64217 64218 64219 64220 64221 64222 64223 64224 64225 64226 64227 64228 64229 64230 64231 64232 64233 64234 64235 64236 64237 64238 64239 64240 64241 64242 64243 64244 64245 64246 64247 64248 64249 64250 64251 64252 64253 64254 64255 64256 64257 64258 64259 64260 64261 64262 64263 64264 64265 64266 64267 64268 64269 64270 64271 64272 64273 64274 64275 64276 64277 64278 64279 64280 64281 64282 64283 64284 64285 64286 64287 64288 64289 64290 64291 64292 64293 64294 64295 64296 64297 64298 64299 64300 64301 64302 64303 64304 64305 64306 64307 64308 64309 64310 64311 64312 64313 64314 64315 64316 64317 64318 64319 64320 64321 64322 64323 64324 64325 64326 64327 64328 64329 64330 64331 64332 64333 64334 64335 64336 64337 64338 64339 64340 64341 64342 64343 64344 64345 64346 64347 64348 64349 64350 64351 64352 64353 64354 64355 64356 64357 64358 64359 64360 64361 64362 64363 64364 64365 64366 64367 64368 64369 64370 64371 64372 64373 64374 64375 64376 64377 64378 64379 64380 64381 64382 64383 64384 64385 64386 64387 64388 64389 64390 64391 64392 64393 64394 64395 64396 64397 64398 64399 64400 64401 64402 64403 64404 64405 64406 64407 64408 64409 64410 64411 64412 64413 64414 64415 64416 64417 64418 64419 64420 64421 64422 64423 64424 64425 64426 64427 64428 64429 64430 64431 64432 64433 64434 64435 64436 64437 64438 64439 64440 64441 64442 64443 64444 64445 64446 64447 64448 64449 64450 64451 64452 64453 64454 64455 64456 64457 64458 64459 64460 64461 64462 64463 64464 64465 64466 64467 64468 64469 64470 64471 64472 64473 64474 64475 64476 64477 64478 64479 64480 64481 64482 64483 64484 64485 64486 64487 64488 64489 64490 64491 64492 64493 64494 64495 64496 64497 64498 64499 64500 64501 64502 64503 64504 64505 64506 64507 64508 64509 64510 64511 64512 64513 64514 64515 64516 64517 64518 64519 64520 64521 64522 64523 64524 64525 64526 64527 64528 64529 64530 64531 64532 64533 64534 64535 64536 64537 64538 64539 64540 64541 64542 64543 64544 64545 64546 64547 64548 64549 64550 64551 64552 64553 64554 64555 64556 64557 64558 64559 64560 64561 64562 64563 64564 64565 64566 64567 64568 64569 64570 64571 64572 64573 64574 64575 64576 64577 64578 64579 64580 64581 64582 64583 64584 64585 64586 64587 64588 64589 64590 64591 64592 64593 64594 64595 64596 64597 64598 64599 64600 64601 64602 64603 64604 64605 64606 64607 64608 64609 64610 64611 64612 64613 64614 64615 64616 64617 64618 64619 64620 64621 64622 64623 64624 64625 64626 64627 64628 64629 64630 64631 64632 64633 64634 64635 64636 64637 64638 64639 64640 64641 64642 64643 64644 64645 64646 64647 64648 64649 64650 64651 64652 64653 64654 64655 64656 64657 64658 64659 64660 64661 64662 64663 64664 64665 64666 64667 64668 64669 64670 64671 64672 64673 64674 64675 64676 64677 64678 64679 64680 64681 64682 64683 64684 64685 64686 64687 64688 64689 64690 64691 64692 64693 64694 64695 64696 64697 64698 64699 64700 64701 64702 64703 64704 64705 64706 64707 64708 64709 64710 64711 64712 64713 64714 64715 64716 64717 64718 64719 64720 64721 64722 64723 64724 64725 64726 64727 64728 64729 64730 64731 64732 64733 64734 64735 64736 64737 64738 64739 64740 64741 64742 64743 64744 64745 64746 64747 64748 64749 64750 64751 64752 64753 64754 64755 64756 64757 64758 64759 64760 64761 64762 64763 64764 64765 64766 64767 64768 64769 64770 64771 64772 64773 64774 64775 64776 64777 64778 64779 64780 64781 64782 64783 64784 64785 64786 64787 64788 64789 64790 64791 64792 64793 64794 64795 64796 64797 64798 64799 64800 64801 64802 64803 64804 64805 64806 64807 64808 64809 64810 64811 64812 64813 64814 64815 64816 64817 64818 64819 64820 64821 64822 64823 64824 64825 64826 64827 64828 64829 64830 64831 64832 64833 64834 64835 64836 64837 64838 64839 64840 64841 64842 64843 64844 64845 64846 64847 64848 64849 64850 64851 64852 64853 64854 64855 64856 64857 64858 64859 64860 64861 64862 64863 64864 64865 64866 64867 64868 64869 64870 64871 64872 64873 64874 64875 64876 64877 64878 64879 64880 64881 64882 64883 64884 64885 64886 64887 64888 64889 64890 64891 64892 64893 64894 64895 64896 64897 64898 64899 64900 64901 64902 64903 64904 64905 64906 64907 64908 64909 64910 64911 64912 64913 64914 64915 64916 64917 64918 64919 64920 64921 64922 64923 64924 64925 64926 64927 64928 64929 64930 64931 64932 64933 64934 64935 64936 64937 64938 64939 64940 64941 64942 64943 64944 64945 64946 64947 64948 64949 64950 64951 64952 64953 64954 64955 64956 64957 64958 64959 64960 64961 64962 64963 64964 64965 64966 64967 64968 64969 64970 64971 64972 64973 64974 64975 64976 64977 64978 64979 64980 64981 64982 64983 64984 64985 64986 64987 64988 64989 64990 64991 64992 64993 64994 64995 64996 64997 64998 64999 65000 65001 65002 65003 65004 65005 65006 65007 65008 65009 65010 65011 65012 65013 65014 65015 65016 65017 65018 65019 65020 65021 65022 65023 65024 65025 65026 65027 65028 65029 65030 65031 65032 65033 65034 65035 65036 65037 65038 65039 65040 65041 65042 65043 65044 65045 65046 65047 65048 65049 65050 65051 65052 65053 65054 65055 65056 65057 65058 65059 65060 65061 65062 65063 65064 65065 65066 65067 65068 65069 65070 65071 65072 65073 65074 65075 65076 65077 65078 65079 65080 65081 65082 65083 65084 65085 65086 65087 65088 65089 65090 65091 65092 65093 65094 65095 65096 65097 65098 65099 65100 65101 65102 65103 65104 65105 65106 65107 65108 65109 65110 65111 65112 65113 65114 65115 65116 65117 65118 65119 65120 65121 65122 65123 65124 65125 65126 65127 65128 65129 65130 65131 65132 65133 65134 65135 65136 65137 65138 65139 65140 65141 65142 65143 65144 65145 65146 65147 65148 65149 65150 65151 65152 65153 65154 65155 65156 65157 65158 65159 65160 65161 65162 65163 65164 65165 65166 65167 65168 65169 65170 65171 65172 65173 65174 65175 65176 65177 65178 65179 65180 65181 65182 65183 65184 65185 65186 65187 65188 65189 65190 65191 65192 65193 65194 65195 65196 65197 65198 65199 65200 65201 65202 65203 65204 65205 65206 65207 65208 65209 65210 65211 65212 65213 65214 65215 65216 65217 65218 65219 65220 65221 65222 65223 65224 65225 65226 65227 65228 65229 65230 65231 65232 65233 65234 65235 65236 65237 65238 65239 65240 65241 65242 65243 65244 65245 65246 65247 65248 65249 65250 65251 65252 65253 65254 65255 65256 65257 65258 65259 65260 65261 65262 65263 65264 65265 65266 65267 65268 65269 65270 65271 65272 65273 65274 65275 65276 65277 65278 65279 65280 65281 65282 65283 65284 65285 65286 65287 65288 65289 65290 65291 65292 65293 65294 65295 65296 65297 65298 65299 65300 65301 65302 65303 65304 65305 65306 65307 65308 65309 65310 65311 65312 65313 65314 65315 65316 65317 65318 65319 65320 65321 65322 65323 65324 65325 65326 65327 65328 65329 65330 65331 65332 65333 65334 65335 65336 65337 65338 65339 65340 65341 65342 65343 65344 65345 65346 65347 65348 65349 65350 65351 65352 65353 65354 65355 65356 65357 65358 65359 65360 65361 65362 65363 65364 65365 65366 65367 65368 65369 65370 65371 65372 65373 65374 65375 65376 65377 65378 65379 65380 65381 65382 65383 65384 65385 65386 65387 65388 65389 65390 65391 65392 65393 65394 65395 65396 65397 65398 65399 65400 65401 65402 65403 65404 65405 65406 65407 65408 65409 65410 65411 65412 65413 65414 65415 65416 65417 65418 65419 65420 65421 65422 65423 65424 65425 65426 65427 65428 65429 65430 65431 65432 65433 65434 65435 65436 65437 65438 65439 65440 65441 65442 65443 65444 65445 65446 65447 65448 65449 65450 65451 65452 65453 65454 65455 65456 65457 65458 65459 65460 65461 65462 65463 65464 65465 65466 65467 65468 65469 65470 65471 65472 65473 65474 65475 65476 65477 65478 65479 65480 65481 65482 65483 65484 65485 65486 65487 65488 65489 65490 65491 65492 65493 65494 65495 65496 65497 65498 65499 65500 65501 65502 65503 65504 65505 65506 65507 65508 65509 65510 65511 65512 65513 65514 65515 65516 65517 65518 65519 65520 65521 65522 65523 65524 65525 65526 65527 65528 65529 65530 65531 65532 65533 65534 65535 65536 65537 65538 65539 65540 65541 65542 65543 65544 65545 65546 65547 65548 65549 65550 65551 65552 65553 65554 65555 65556 65557 65558 65559 65560 65561 65562 65563 65564 65565 65566 65567 65568 65569 65570 65571 65572 65573 65574 65575 65576 65577 65578 65579 65580 65581 65582 65583 65584 65585 65586 65587 65588 65589 65590 65591 65592 65593 65594 65595 65596 65597 65598 65599 65600 65601 65602 65603 65604 65605 65606 65607 65608 65609 65610 65611 65612 65613 65614 65615 65616 65617 65618 65619 65620 65621 65622 65623 65624 65625 65626 65627 65628 65629 65630 65631 65632 65633 65634 65635 65636 65637 65638 65639 65640 65641 65642 65643 65644 65645 65646 65647 65648 65649 65650 65651 65652 65653 65654 65655 65656 65657 65658 65659 65660 65661 65662 65663 65664 65665 65666 65667 65668 65669 65670 65671 65672 65673 65674 65675 65676 65677 65678 65679 65680 65681 65682 65683 65684 65685 65686 65687 65688 65689 65690 65691 65692 65693 65694 65695 65696 65697 65698 65699 65700 65701 65702 65703 65704 65705 65706 65707 65708 65709 65710 65711 65712 65713 65714 65715 65716 65717 65718 65719 65720 65721 65722 65723 65724 65725 65726 65727 65728 65729 65730 65731 65732 65733 65734 65735 65736 65737 65738 65739 65740 65741 65742 65743 65744 65745 65746 65747 65748 65749 65750 65751 65752 65753 65754 65755 65756 65757 65758 65759 65760 65761 65762 65763 65764 65765 65766 65767 65768 65769 65770 65771 65772 65773 65774 65775 65776 65777 65778 65779 65780 65781 65782 65783 65784 65785 65786 65787 65788 65789 65790 65791 65792 65793 65794 65795 65796 65797 65798 65799 65800 65801 65802 65803 65804 65805 65806 65807 65808 65809 65810 65811 65812 65813 65814 65815 65816 65817 65818 65819 65820 65821 65822 65823 65824 65825 65826 65827 65828 65829 65830 65831 65832 65833 65834 65835 65836 65837 65838 65839 65840 65841 65842 65843 65844 65845 65846 65847 65848 65849 65850 65851 65852 65853 65854 65855 65856 65857 65858 65859 65860 65861 65862 65863 65864 65865 65866 65867 65868 65869 65870 65871 65872 65873 65874 65875 65876 65877 65878 65879 65880 65881 65882 65883 65884 65885 65886 65887 65888 65889 65890 65891 65892 65893 65894 65895 65896 65897 65898 65899 65900 65901 65902 65903 65904 65905 65906 65907 65908 65909 65910 65911 65912 65913 65914 65915 65916 65917 65918 65919 65920 65921 65922 65923 65924 65925 65926 65927 65928 65929 65930 65931 65932 65933 65934 65935 65936 65937 65938 65939 65940 65941 65942 65943 65944 65945 65946 65947 65948 65949 65950 65951 65952 65953 65954 65955 65956 65957 65958 65959 65960 65961 65962 65963 65964 65965 65966 65967 65968 65969 65970 65971 65972 65973 65974 65975 65976 65977 65978 65979 65980 65981 65982 65983 65984 65985 65986 65987 65988 65989 65990 65991 65992 65993 65994 65995 65996 65997 65998 65999 66000 66001 66002 66003 66004 66005 66006 66007 66008 66009 66010 66011 66012 66013 66014 66015 66016 66017 66018 66019 66020 66021 66022 66023 66024 66025 66026 66027 66028 66029 66030 66031 66032 66033 66034 66035 66036 66037 66038 66039 66040 66041 66042 66043 66044 66045 66046 66047 66048 66049 66050 66051 66052 66053 66054 66055 66056 66057 66058 66059 66060 66061 66062 66063 66064 66065 66066 66067 66068 66069 66070 66071 66072 66073 66074 66075 66076 66077 66078 66079 66080 66081 66082 66083 66084 66085 66086 66087 66088 66089 66090 66091 66092 66093 66094 66095 66096 66097 66098 66099 66100 66101 66102 66103 66104 66105 66106 66107 66108 66109 66110 66111 66112 66113 66114 66115 66116 66117 66118 66119 66120 66121 66122 66123 66124 66125 66126 66127 66128 66129 66130 66131 66132 66133 66134 66135 66136 66137 66138 66139 66140 66141 66142 66143 66144 66145 66146 66147 66148 66149 66150 66151 66152 66153 66154 66155 66156 66157 66158 66159 66160 66161 66162 66163 66164 66165 66166 66167 66168 66169 66170 66171 66172 66173 66174 66175 66176 66177 66178 66179 66180 66181 66182 66183 66184 66185 66186 66187 66188 66189 66190 66191 66192 66193 66194 66195 66196 66197 66198 66199 66200 66201 66202 66203 66204 66205 66206 66207 66208 66209 66210 66211 66212 66213 66214 66215 66216 66217 66218 66219 66220 66221 66222 66223 66224 66225 66226 66227 66228 66229 66230 66231 66232 66233 66234 66235 66236 66237 66238 66239 66240 66241 66242 66243 66244 66245 66246 66247 66248 66249 66250 66251 66252 66253 66254 66255 66256 66257 66258 66259 66260 66261 66262 66263 66264 66265 66266 66267 66268 66269 66270 66271 66272 66273 66274 66275 66276 66277 66278 66279 66280 66281 66282 66283 66284 66285 66286 66287 66288 66289 66290 66291 66292 66293 66294 66295 66296 66297 66298 66299 66300 66301 66302 66303 66304 66305 66306 66307 66308 66309 66310 66311 66312 66313 66314 66315 66316 66317 66318 66319 66320 66321 66322 66323 66324 66325 66326 66327 66328 66329 66330 66331 66332 66333 66334 66335 66336 66337 66338 66339 66340 66341 66342 66343 66344 66345 66346 66347 66348 66349 66350 66351 66352 66353 66354 66355 66356 66357 66358 66359 66360 66361 66362 66363 66364 66365 66366 66367 66368 66369 66370 66371 66372 66373 66374 66375 66376 66377 66378 66379 66380 66381 66382 66383 66384 66385 66386 66387 66388 66389 66390 66391 66392 66393 66394 66395 66396 66397 66398 66399 66400 66401 66402 66403 66404 66405 66406 66407 66408 66409 66410 66411 66412 66413 66414 66415 66416 66417 66418 66419 66420 66421 66422 66423 66424 66425 66426 66427 66428 66429 66430 66431 66432 66433 66434 66435 66436 66437 66438 66439 66440 66441 66442 66443 66444 66445 66446 66447 66448 66449 66450 66451 66452 66453 66454 66455 66456 66457 66458 66459 66460 66461 66462 66463 66464 66465 66466 66467 66468 66469 66470 66471 66472 66473 66474 66475 66476 66477 66478 66479 66480 66481 66482 66483 66484 66485 66486 66487 66488 66489 66490 66491 66492 66493 66494 66495 66496 66497 66498 66499 66500 66501 66502 66503 66504 66505 66506 66507 66508 66509 66510 66511 66512 66513 66514 66515 66516 66517 66518 66519 66520 66521 66522 66523 66524 66525 66526 66527 66528 66529 66530 66531 66532 66533 66534 66535 66536 66537 66538 66539 66540 66541 66542 66543 66544 66545 66546 66547 66548 66549 66550 66551 66552 66553 66554 66555 66556 66557 66558 66559 66560 66561 66562 66563 66564 66565 66566 66567 66568 66569 66570 66571 66572 66573 66574 66575 66576 66577 66578 66579 66580 66581 66582 66583 66584 66585 66586 66587 66588 66589 66590 66591 66592 66593 66594 66595 66596 66597 66598 66599 66600 66601 66602 66603 66604 66605 66606 66607 66608 66609 66610 66611 66612 66613 66614 66615 66616 66617 66618 66619 66620 66621 66622 66623 66624 66625 66626 66627 66628 66629 66630 66631 66632 66633 66634 66635 66636 66637 66638 66639 66640 66641 66642 66643 66644 66645 66646 66647 66648 66649 66650 66651 66652 66653 66654 66655 66656 66657 66658 66659 66660 66661 66662 66663 66664 66665 66666 66667 66668 66669 66670 66671 66672 66673 66674 66675 66676 66677 66678 66679 66680 66681 66682 66683 66684 66685 66686 66687 66688 66689 66690 66691 66692 66693 66694 66695 66696 66697 66698 66699 66700 66701 66702 66703 66704 66705 66706 66707 66708 66709 66710 66711 66712 66713 66714 66715 66716 66717 66718 66719 66720 66721 66722 66723 66724 66725 66726 66727 66728 66729 66730 66731 66732 66733 66734 66735 66736 66737 66738 66739 66740 66741 66742 66743 66744 66745 66746 66747 66748 66749 66750 66751 66752 66753 66754 66755 66756 66757 66758 66759 66760 66761 66762 66763 66764 66765 66766 66767 66768 66769 66770 66771 66772 66773 66774 66775 66776 66777 66778 66779 66780 66781 66782 66783 66784 66785 66786 66787 66788 66789 66790 66791 66792 66793 66794 66795 66796 66797 66798 66799 66800 66801 66802 66803 66804 66805 66806 66807 66808 66809 66810 66811 66812 66813 66814 66815 66816 66817 66818 66819 66820 66821 66822 66823 66824 66825 66826 66827 66828 66829 66830 66831 66832 66833 66834 66835 66836 66837 66838 66839 66840 66841 66842 66843 66844 66845 66846 66847 66848 66849 66850 66851 66852 66853 66854 66855 66856 66857 66858 66859 66860 66861 66862 66863 66864 66865 66866 66867 66868 66869 66870 66871 66872 66873 66874 66875 66876 66877 66878 66879 66880 66881 66882 66883 66884 66885 66886 66887 66888 66889 66890 66891 66892 66893 66894 66895 66896 66897 66898 66899 66900 66901 66902 66903 66904 66905 66906 66907 66908 66909 66910 66911 66912 66913 66914 66915 66916 66917 66918 66919 66920 66921 66922 66923 66924 66925 66926 66927 66928 66929 66930 66931 66932 66933 66934 66935 66936 66937 66938 66939 66940 66941 66942 66943 66944 66945 66946 66947 66948 66949 66950 66951 66952 66953 66954 66955 66956 66957 66958 66959 66960 66961 66962 66963 66964 66965 66966 66967 66968 66969 66970 66971 66972 66973 66974 66975 66976 66977 66978 66979 66980 66981 66982 66983 66984 66985 66986 66987 66988 66989 66990 66991 66992 66993 66994 66995 66996 66997 66998 66999 67000 67001 67002 67003 67004 67005 67006 67007 67008 67009 67010 67011 67012 67013 67014 67015 67016 67017 67018 67019 67020 67021 67022 67023 67024 67025 67026 67027 67028 67029 67030 67031 67032 67033 67034 67035 67036 67037 67038 67039 67040 67041 67042 67043 67044 67045 67046 67047 67048 67049 67050 67051 67052 67053 67054 67055 67056 67057 67058 67059 67060 67061 67062 67063 67064 67065 67066 67067 67068 67069 67070 67071 67072 67073 67074 67075 67076 67077 67078 67079 67080 67081 67082 67083 67084 67085 67086 67087 67088 67089 67090 67091 67092 67093 67094 67095 67096 67097 67098 67099 67100 67101 67102 67103 67104 67105 67106 67107 67108 67109 67110 67111 67112 67113 67114 67115 67116 67117 67118 67119 67120 67121 67122 67123 67124 67125 67126 67127 67128 67129 67130 67131 67132 67133 67134 67135 67136 67137 67138 67139 67140 67141 67142 67143 67144 67145 67146 67147 67148 67149 67150 67151 67152 67153 67154 67155 67156 67157 67158 67159 67160 67161 67162 67163 67164 67165 67166 67167 67168 67169 67170 67171 67172 67173 67174 67175 67176 67177 67178 67179 67180 67181 67182 67183 67184 67185 67186 67187 67188 67189 67190 67191 67192 67193 67194 67195 67196 67197 67198 67199 67200 67201 67202 67203 67204 67205 67206 67207 67208 67209 67210 67211 67212 67213 67214 67215 67216 67217 67218 67219 67220 67221 67222 67223 67224 67225 67226 67227 67228 67229 67230 67231 67232 67233 67234 67235 67236 67237 67238 67239 67240 67241 67242 67243 67244 67245 67246 67247 67248 67249 67250 67251 67252 67253 67254 67255 67256 67257 67258 67259 67260 67261 67262 67263 67264 67265 67266 67267 67268 67269 67270 67271 67272 67273 67274 67275 67276 67277 67278 67279 67280 67281 67282 67283 67284 67285 67286 67287 67288 67289 67290 67291 67292 67293 67294 67295 67296 67297 67298 67299 67300 67301 67302 67303 67304 67305 67306 67307 67308 67309 67310 67311 67312 67313 67314 67315 67316 67317 67318 67319 67320 67321 67322 67323 67324 67325 67326 67327 67328 67329 67330 67331 67332 67333 67334 67335 67336 67337 67338 67339 67340 67341 67342 67343 67344 67345 67346 67347 67348 67349 67350 67351 67352 67353 67354 67355 67356 67357 67358 67359 67360 67361 67362 67363 67364 67365 67366 67367 67368 67369 67370 67371 67372 67373 67374 67375 67376 67377 67378 67379 67380 67381 67382 67383 67384 67385 67386 67387 67388 67389 67390 67391 67392 67393 67394 67395 67396 67397 67398 67399 67400 67401 67402 67403 67404 67405 67406 67407 67408 67409 67410 67411 67412 67413 67414 67415 67416 67417 67418 67419 67420 67421 67422 67423 67424 67425 67426 67427 67428 67429 67430 67431 67432 67433 67434 67435 67436 67437 67438 67439 67440 67441 67442 67443 67444 67445 67446 67447 67448 67449 67450 67451 67452 67453 67454 67455 67456 67457 67458 67459 67460 67461 67462 67463 67464 67465 67466 67467 67468 67469 67470 67471 67472 67473 67474 67475 67476 67477 67478 67479 67480 67481 67482 67483 67484 67485 67486 67487 67488 67489 67490 67491 67492 67493 67494 67495 67496 67497 67498 67499 67500 67501 67502 67503 67504 67505 67506 67507 67508 67509 67510 67511 67512 67513 67514 67515 67516 67517 67518 67519 67520 67521 67522 67523 67524 67525 67526 67527 67528 67529 67530 67531 67532 67533 67534 67535 67536 67537 67538 67539 67540 67541 67542 67543 67544 67545 67546 67547 67548 67549 67550 67551 67552 67553 67554 67555 67556 67557 67558 67559 67560 67561 67562 67563 67564 67565 67566 67567 67568 67569 67570 67571 67572 67573 67574 67575 67576 67577 67578 67579 67580 67581 67582 67583 67584 67585 67586 67587 67588 67589 67590 67591 67592 67593 67594 67595 67596 67597 67598 67599 67600 67601 67602 67603 67604 67605 67606 67607 67608 67609 67610 67611 67612 67613 67614 67615 67616 67617 67618 67619 67620 67621 67622 67623 67624 67625 67626 67627 67628 67629 67630 67631 67632 67633 67634 67635 67636 67637 67638 67639 67640 67641 67642 67643 67644 67645 67646 67647 67648 67649 67650 67651 67652 67653 67654 67655 67656 67657 67658 67659 67660 67661 67662 67663 67664 67665 67666 67667 67668 67669 67670 67671 67672 67673 67674 67675 67676 67677 67678 67679 67680 67681 67682 67683 67684 67685 67686 67687 67688 67689 67690 67691 67692 67693 67694 67695 67696 67697 67698 67699 67700 67701 67702 67703 67704 67705 67706 67707 67708 67709 67710 67711 67712 67713 67714 67715 67716 67717 67718 67719 67720 67721 67722 67723 67724 67725 67726 67727 67728 67729 67730 67731 67732 67733 67734 67735 67736 67737 67738 67739 67740 67741 67742 67743 67744 67745 67746 67747 67748 67749 67750 67751 67752 67753 67754 67755 67756 67757 67758 67759 67760 67761 67762 67763 67764 67765 67766 67767 67768 67769 67770 67771 67772 67773 67774 67775 67776 67777 67778 67779 67780 67781 67782 67783 67784 67785 67786 67787 67788 67789 67790 67791 67792 67793 67794 67795 67796 67797 67798 67799 67800 67801 67802 67803 67804 67805 67806 67807 67808 67809 67810 67811 67812 67813 67814 67815 67816 67817 67818 67819 67820 67821 67822 67823 67824 67825 67826 67827 67828 67829 67830 67831 67832 67833 67834 67835 67836 67837 67838 67839 67840 67841 67842 67843 67844 67845 67846 67847 67848 67849 67850 67851 67852 67853 67854 67855 67856 67857 67858 67859 67860 67861 67862 67863 67864 67865 67866 67867 67868 67869 67870 67871 67872 67873 67874 67875 67876 67877 67878 67879 67880 67881 67882 67883 67884 67885 67886 67887 67888 67889 67890 67891 67892 67893 67894 67895 67896 67897 67898 67899 67900 67901 67902 67903 67904 67905 67906 67907 67908 67909 67910 67911 67912 67913 67914 67915 67916 67917 67918 67919 67920 67921 67922 67923 67924 67925 67926 67927 67928 67929 67930 67931 67932 67933 67934 67935 67936 67937 67938 67939 67940 67941 67942 67943 67944 67945 67946 67947 67948 67949 67950 67951 67952 67953 67954 67955 67956 67957 67958 67959 67960 67961 67962 67963 67964 67965 67966 67967 67968 67969 67970 67971 67972 67973 67974 67975 67976 67977 67978 67979 67980 67981 67982 67983 67984 67985 67986 67987 67988 67989 67990 67991 67992 67993 67994 67995 67996 67997 67998 67999 68000 68001 68002 68003 68004 68005 68006 68007 68008 68009 68010 68011 68012 68013 68014 68015 68016 68017 68018 68019 68020 68021 68022 68023 68024 68025 68026 68027 68028 68029 68030 68031 68032 68033 68034 68035 68036 68037 68038 68039 68040 68041 68042 68043 68044 68045 68046 68047 68048 68049 68050 68051 68052 68053 68054 68055 68056 68057 68058 68059 68060 68061 68062 68063 68064 68065 68066 68067 68068 68069 68070 68071 68072 68073 68074 68075 68076 68077 68078 68079 68080 68081 68082 68083 68084 68085 68086 68087 68088 68089 68090 68091 68092 68093 68094 68095 68096 68097 68098 68099 68100 68101 68102 68103 68104 68105 68106 68107 68108 68109 68110 68111 68112 68113 68114 68115 68116 68117 68118 68119 68120 68121 68122 68123 68124 68125 68126 68127 68128 68129 68130 68131 68132 68133 68134 68135 68136 68137 68138 68139 68140 68141 68142 68143 68144 68145 68146 68147 68148 68149 68150 68151 68152 68153 68154 68155 68156 68157 68158 68159 68160 68161 68162 68163 68164 68165 68166 68167 68168 68169 68170 68171 68172 68173 68174 68175 68176 68177 68178 68179 68180 68181 68182 68183 68184 68185 68186 68187 68188 68189 68190 68191 68192 68193 68194 68195 68196 68197 68198 68199 68200 68201 68202 68203 68204 68205 68206 68207 68208 68209 68210 68211 68212 68213 68214 68215 68216 68217 68218 68219 68220 68221 68222 68223 68224 68225 68226 68227 68228 68229 68230 68231 68232 68233 68234 68235 68236 68237 68238 68239 68240 68241 68242 68243 68244 68245 68246 68247 68248 68249 68250 68251 68252 68253 68254 68255 68256 68257 68258 68259 68260 68261 68262 68263 68264 68265 68266 68267 68268 68269 68270 68271 68272 68273 68274 68275 68276 68277 68278 68279 68280 68281 68282 68283 68284 68285 68286 68287 68288 68289 68290 68291 68292 68293 68294 68295 68296 68297 68298 68299 68300 68301 68302 68303 68304 68305 68306 68307 68308 68309 68310 68311 68312 68313 68314 68315 68316 68317 68318 68319 68320 68321 68322 68323 68324 68325 68326 68327 68328 68329 68330 68331 68332 68333 68334 68335 68336 68337 68338 68339 68340 68341 68342 68343 68344 68345 68346 68347 68348 68349 68350 68351 68352 68353 68354 68355 68356 68357 68358 68359 68360 68361 68362 68363 68364 68365 68366 68367 68368 68369 68370 68371 68372 68373 68374 68375 68376 68377 68378 68379 68380 68381 68382 68383 68384 68385 68386 68387 68388 68389 68390 68391 68392 68393 68394 68395 68396 68397 68398 68399 68400 68401 68402 68403 68404 68405 68406 68407 68408 68409 68410 68411 68412 68413 68414 68415 68416 68417 68418 68419 68420 68421 68422 68423 68424 68425 68426 68427 68428 68429 68430 68431 68432 68433 68434 68435 68436 68437 68438 68439 68440 68441 68442 68443 68444 68445 68446 68447 68448 68449 68450 68451 68452 68453 68454 68455 68456 68457 68458 68459 68460 68461 68462 68463 68464 68465 68466 68467 68468 68469 68470 68471 68472 68473 68474 68475 68476 68477 68478 68479 68480 68481 68482 68483 68484 68485 68486 68487 68488 68489 68490 68491 68492 68493 68494 68495 68496 68497 68498 68499 68500 68501 68502 68503 68504 68505 68506 68507 68508 68509 68510 68511 68512 68513 68514 68515 68516 68517 68518 68519 68520 68521 68522 68523 68524 68525 68526 68527 68528 68529 68530 68531 68532 68533 68534 68535 68536 68537 68538 68539 68540 68541 68542 68543 68544 68545 68546 68547 68548 68549 68550 68551 68552 68553 68554 68555 68556 68557 68558 68559 68560 68561 68562 68563 68564 68565 68566 68567 68568 68569 68570 68571 68572 68573 68574 68575 68576 68577 68578 68579 68580 68581 68582 68583 68584 68585 68586 68587 68588 68589 68590 68591 68592 68593 68594 68595 68596 68597 68598 68599 68600 68601 68602 68603 68604 68605 68606 68607 68608 68609 68610 68611 68612 68613 68614 68615 68616 68617 68618 68619 68620 68621 68622 68623 68624 68625 68626 68627 68628 68629 68630 68631 68632 68633 68634 68635 68636 68637 68638 68639 68640 68641 68642 68643 68644 68645 68646 68647 68648 68649 68650 68651 68652 68653 68654 68655 68656 68657 68658 68659 68660 68661 68662 68663 68664 68665 68666 68667 68668 68669 68670 68671 68672 68673 68674 68675 68676 68677 68678 68679 68680 68681 68682 68683 68684 68685 68686 68687 68688 68689 68690 68691 68692 68693 68694 68695 68696 68697 68698 68699 68700 68701 68702 68703 68704 68705 68706 68707 68708 68709 68710 68711 68712 68713 68714 68715 68716 68717 68718 68719 68720 68721 68722 68723 68724 68725 68726 68727 68728 68729 68730 68731 68732 68733 68734 68735 68736 68737 68738 68739 68740 68741 68742 68743 68744 68745 68746 68747 68748 68749 68750 68751 68752 68753 68754 68755 68756 68757 68758 68759 68760 68761 68762 68763 68764 68765 68766 68767 68768 68769 68770 68771 68772 68773 68774 68775 68776 68777 68778 68779 68780 68781 68782 68783 68784 68785 68786 68787 68788 68789 68790 68791 68792 68793 68794 68795 68796 68797 68798 68799 68800 68801 68802 68803 68804 68805 68806 68807 68808 68809 68810 68811 68812 68813 68814 68815 68816 68817 68818 68819 68820 68821 68822 68823 68824 68825 68826 68827 68828 68829 68830 68831 68832 68833 68834 68835 68836 68837 68838 68839 68840 68841 68842 68843 68844 68845 68846 68847 68848 68849 68850 68851 68852 68853 68854 68855 68856 68857 68858 68859 68860 68861 68862 68863 68864 68865 68866 68867 68868 68869 68870 68871 68872 68873 68874 68875 68876 68877 68878 68879 68880 68881 68882 68883 68884 68885 68886 68887 68888 68889 68890 68891 68892 68893 68894 68895 68896 68897 68898 68899 68900 68901 68902 68903 68904 68905 68906 68907 68908 68909 68910 68911 68912 68913 68914 68915 68916 68917 68918 68919 68920 68921 68922 68923 68924 68925 68926 68927 68928 68929 68930 68931 68932 68933 68934 68935 68936 68937 68938 68939 68940 68941 68942 68943 68944 68945 68946 68947 68948 68949 68950 68951 68952 68953 68954 68955 68956 68957 68958 68959 68960 68961 68962 68963 68964 68965 68966 68967 68968 68969 68970 68971 68972 68973 68974 68975 68976 68977 68978 68979 68980 68981 68982 68983 68984 68985 68986 68987 68988 68989 68990 68991 68992 68993 68994 68995 68996 68997 68998 68999 69000 69001 69002 69003 69004 69005 69006 69007 69008 69009 69010 69011 69012 69013 69014 69015 69016 69017 69018 69019 69020 69021 69022 69023 69024 69025 69026 69027 69028 69029 69030 69031 69032 69033 69034 69035 69036 69037 69038 69039 69040 69041 69042 69043 69044 69045 69046 69047 69048 69049 69050 69051 69052 69053 69054 69055 69056 69057 69058 69059 69060 69061 69062 69063 69064 69065 69066 69067 69068 69069 69070 69071 69072 69073 69074 69075 69076 69077 69078 69079 69080 69081 69082 69083 69084 69085 69086 69087 69088 69089 69090 69091 69092 69093 69094 69095 69096 69097 69098 69099 69100 69101 69102 69103 69104 69105 69106 69107 69108 69109 69110 69111 69112 69113 69114 69115 69116 69117 69118 69119 69120 69121 69122 69123 69124 69125 69126 69127 69128 69129 69130 69131 69132 69133 69134 69135 69136 69137 69138 69139 69140 69141 69142 69143 69144 69145 69146 69147 69148 69149 69150 69151 69152 69153 69154 69155 69156 69157 69158 69159 69160 69161 69162 69163 69164 69165 69166 69167 69168 69169 69170 69171 69172 69173 69174 69175 69176 69177 69178 69179 69180 69181 69182 69183 69184 69185 69186 69187 69188 69189 69190 69191 69192 69193 69194 69195 69196 69197 69198 69199 69200 69201 69202 69203 69204 69205 69206 69207 69208 69209 69210 69211 69212 69213 69214 69215 69216 69217 69218 69219 69220 69221 69222 69223 69224 69225 69226 69227 69228 69229 69230 69231 69232 69233 69234 69235 69236 69237 69238 69239 69240 69241 69242 69243 69244 69245 69246 69247 69248 69249 69250 69251 69252 69253 69254 69255 69256 69257 69258 69259 69260 69261 69262 69263 69264 69265 69266 69267 69268 69269 69270 69271 69272 69273 69274 69275 69276 69277 69278 69279 69280 69281 69282 69283 69284 69285 69286 69287 69288 69289 69290 69291 69292 69293 69294 69295 69296 69297 69298 69299 69300 69301 69302 69303 69304 69305 69306 69307 69308 69309 69310 69311 69312 69313 69314 69315 69316 69317 69318 69319 69320 69321 69322 69323 69324 69325 69326 69327 69328 69329 69330 69331 69332 69333 69334 69335 69336 69337 69338 69339 69340 69341 69342 69343 69344 69345 69346 69347 69348 69349 69350 69351 69352 69353 69354 69355 69356 69357 69358 69359 69360 69361 69362 69363 69364 69365 69366 69367 69368 69369 69370 69371 69372 69373 69374 69375 69376 69377 69378 69379 69380 69381 69382 69383 69384 69385 69386 69387 69388 69389 69390 69391 69392 69393 69394 69395 69396 69397 69398 69399 69400 69401 69402 69403 69404 69405 69406 69407 69408 69409 69410 69411 69412 69413 69414 69415 69416 69417 69418 69419 69420 69421 69422 69423 69424 69425 69426 69427 69428 69429 69430 69431 69432 69433 69434 69435 69436 69437 69438 69439 69440 69441 69442 69443 69444 69445 69446 69447 69448 69449 69450 69451 69452 69453 69454 69455 69456 69457 69458 69459 69460 69461 69462 69463 69464 69465 69466 69467 69468 69469 69470 69471 69472 69473 69474 69475 69476 69477 69478 69479 69480 69481 69482 69483 69484 69485 69486 69487 69488 69489 69490 69491 69492 69493 69494 69495 69496 69497 69498 69499 69500 69501 69502 69503 69504 69505 69506 69507 69508 69509 69510 69511 69512 69513 69514 69515 69516 69517 69518 69519 69520 69521 69522 69523 69524 69525 69526 69527 69528 69529 69530 69531 69532 69533 69534 69535 69536 69537 69538 69539 69540 69541 69542 69543 69544 69545 69546 69547 69548 69549 69550 69551 69552 69553 69554 69555 69556 69557 69558 69559 69560 69561 69562 69563 69564 69565 69566 69567 69568 69569 69570 69571 69572 69573 69574 69575 69576 69577 69578 69579 69580 69581 69582 69583 69584 69585 69586 69587 69588 69589 69590 69591 69592 69593 69594 69595 69596 69597 69598 69599 69600 69601 69602 69603 69604 69605 69606 69607 69608 69609 69610 69611 69612 69613 69614 69615 69616 69617 69618 69619 69620 69621 69622 69623 69624 69625 69626 69627 69628 69629 69630 69631 69632 69633 69634 69635 69636 69637 69638 69639 69640 69641 69642 69643 69644 69645 69646 69647 69648 69649 69650 69651 69652 69653 69654 69655 69656 69657 69658 69659 69660 69661 69662 69663 69664 69665 69666 69667 69668 69669 69670 69671 69672 69673 69674 69675 69676 69677 69678 69679 69680 69681 69682 69683 69684 69685 69686 69687 69688 69689 69690 69691 69692 69693 69694 69695 69696 69697 69698 69699 69700 69701 69702 69703 69704 69705 69706 69707 69708 69709 69710 69711 69712 69713 69714 69715 69716 69717 69718 69719 69720 69721 69722 69723 69724 69725 69726 69727 69728 69729 69730 69731 69732 69733 69734 69735 69736 69737 69738 69739 69740 69741 69742 69743 69744 69745 69746 69747 69748 69749 69750 69751 69752 69753 69754 69755 69756 69757 69758 69759 69760 69761 69762 69763 69764 69765 69766 69767 69768 69769 69770 69771 69772 69773 69774 69775 69776 69777 69778 69779 69780 69781 69782 69783 69784 69785 69786 69787 69788 69789 69790 69791 69792 69793 69794 69795 69796 69797 69798 69799 69800 69801 69802 69803 69804 69805 69806 69807 69808 69809 69810 69811 69812 69813 69814 69815 69816 69817 69818 69819 69820 69821 69822 69823 69824 69825 69826 69827 69828 69829 69830 69831 69832 69833 69834 69835 69836 69837 69838 69839 69840 69841 69842 69843 69844 69845 69846 69847 69848 69849 69850 69851 69852 69853 69854 69855 69856 69857 69858 69859 69860 69861 69862 69863 69864 69865 69866 69867 69868 69869 69870 69871 69872 69873 69874 69875 69876 69877 69878 69879 69880 69881 69882 69883 69884 69885 69886 69887 69888 69889 69890 69891 69892 69893 69894 69895 69896 69897 69898 69899 69900 69901 69902 69903 69904 69905 69906 69907 69908 69909 69910 69911 69912 69913 69914 69915 69916 69917 69918 69919 69920 69921 69922 69923 69924 69925 69926 69927 69928 69929 69930 69931 69932 69933 69934 69935 69936 69937 69938 69939 69940 69941 69942 69943 69944 69945 69946 69947 69948 69949 69950 69951 69952 69953 69954 69955 69956 69957 69958 69959 69960 69961 69962 69963 69964 69965 69966 69967 69968 69969 69970 69971 69972 69973 69974 69975 69976 69977 69978 69979 69980 69981 69982 69983 69984 69985 69986 69987 69988 69989 69990 69991 69992 69993 69994 69995 69996 69997 69998 69999 70000 70001 70002 70003 70004 70005 70006 70007 70008 70009 70010 70011 70012 70013 70014 70015 70016 70017 70018 70019 70020 70021 70022 70023 70024 70025 70026 70027 70028 70029 70030 70031 70032 70033 70034 70035 70036 70037 70038 70039 70040 70041 70042 70043 70044 70045 70046 70047 70048 70049 70050 70051 70052 70053 70054 70055 70056 70057 70058 70059 70060 70061 70062 70063 70064 70065 70066 70067 70068 70069 70070 70071 70072 70073 70074 70075 70076 70077 70078 70079 70080 70081 70082 70083 70084 70085 70086 70087 70088 70089 70090 70091 70092 70093 70094 70095 70096 70097 70098 70099 70100 70101 70102 70103 70104 70105 70106 70107 70108 70109 70110 70111 70112 70113 70114 70115 70116 70117 70118 70119 70120 70121 70122 70123 70124 70125 70126 70127 70128 70129 70130 70131 70132 70133 70134 70135 70136 70137 70138 70139 70140 70141 70142 70143 70144 70145 70146 70147 70148 70149 70150 70151 70152 70153 70154 70155 70156 70157 70158 70159 70160 70161 70162 70163 70164 70165 70166 70167 70168 70169 70170 70171 70172 70173 70174 70175 70176 70177 70178 70179 70180 70181 70182 70183 70184 70185 70186 70187 70188 70189 70190 70191 70192 70193 70194 70195 70196 70197 70198 70199 70200 70201 70202 70203 70204 70205 70206 70207 70208 70209 70210 70211 70212 70213 70214 70215 70216 70217 70218 70219 70220 70221 70222 70223 70224 70225 70226 70227 70228 70229 70230 70231 70232 70233 70234 70235 70236 70237 70238 70239 70240 70241 70242 70243 70244 70245 70246 70247 70248 70249 70250 70251 70252 70253 70254 70255 70256 70257 70258 70259 70260 70261 70262 70263 70264 70265 70266 70267 70268 70269 70270 70271 70272 70273 70274 70275 70276 70277 70278 70279 70280 70281 70282 70283 70284 70285 70286 70287 70288 70289 70290 70291 70292 70293 70294 70295 70296 70297 70298 70299 70300 70301 70302 70303 70304 70305 70306 70307 70308 70309 70310 70311 70312 70313 70314 70315 70316 70317 70318 70319 70320 70321 70322 70323 70324 70325 70326 70327 70328 70329 70330 70331 70332 70333 70334 70335 70336 70337 70338 70339 70340 70341 70342 70343 70344 70345 70346 70347 70348 70349 70350 70351 70352 70353 70354 70355 70356 70357 70358 70359 70360 70361 70362 70363 70364 70365 70366 70367 70368 70369 70370 70371 70372 70373 70374 70375 70376 70377 70378 70379 70380 70381 70382 70383 70384 70385 70386 70387 70388 70389 70390 70391 70392 70393 70394 70395 70396 70397 70398 70399 70400 70401 70402 70403 70404 70405 70406 70407 70408 70409 70410 70411 70412 70413 70414 70415 70416 70417 70418 70419 70420 70421 70422 70423 70424 70425 70426 70427 70428 70429 70430 70431 70432 70433 70434 70435 70436 70437 70438 70439 70440 70441 70442 70443 70444 70445 70446 70447 70448 70449 70450 70451 70452 70453 70454 70455 70456 70457 70458 70459 70460 70461 70462 70463 70464 70465 70466 70467 70468 70469 70470 70471 70472 70473 70474 70475 70476 70477 70478 70479 70480 70481 70482 70483 70484 70485 70486 70487 70488 70489 70490 70491 70492 70493 70494 70495 70496 70497 70498 70499 70500 70501 70502 70503 70504 70505 70506 70507 70508 70509 70510 70511 70512 70513 70514 70515 70516 70517 70518 70519 70520 70521 70522 70523 70524 70525 70526 70527 70528 70529 70530 70531 70532 70533 70534 70535 70536 70537 70538 70539 70540 70541 70542 70543 70544 70545 70546 70547 70548 70549 70550 70551 70552 70553 70554 70555 70556 70557 70558 70559 70560 70561 70562 70563 70564 70565 70566 70567 70568 70569 70570 70571 70572 70573 70574 70575 70576 70577 70578 70579 70580 70581 70582 70583 70584 70585 70586 70587 70588 70589 70590 70591 70592 70593 70594 70595 70596 70597 70598 70599 70600 70601 70602 70603 70604 70605 70606 70607 70608 70609 70610 70611 70612 70613 70614 70615 70616 70617 70618 70619 70620 70621 70622 70623 70624 70625 70626 70627 70628 70629 70630 70631 70632 70633 70634 70635 70636 70637 70638 70639 70640 70641 70642 70643 70644 70645 70646 70647 70648 70649 70650 70651 70652 70653 70654 70655 70656 70657 70658 70659 70660 70661 70662 70663 70664 70665 70666 70667 70668 70669 70670 70671 70672 70673 70674 70675 70676 70677 70678 70679 70680 70681 70682 70683 70684 70685 70686 70687 70688 70689 70690 70691 70692 70693 70694 70695 70696 70697 70698 70699 70700 70701 70702 70703 70704 70705 70706 70707 70708 70709 70710 70711 70712 70713 70714 70715 70716 70717 70718 70719 70720 70721 70722 70723 70724 70725 70726 70727 70728 70729 70730 70731 70732 70733 70734 70735 70736 70737 70738 70739 70740 70741 70742 70743 70744 70745 70746 70747 70748 70749 70750 70751 70752 70753 70754 70755 70756 70757 70758 70759 70760 70761 70762 70763 70764 70765 70766 70767 70768 70769 70770 70771 70772 70773 70774 70775 70776 70777 70778 70779 70780 70781 70782 70783 70784 70785 70786 70787 70788 70789 70790 70791 70792 70793 70794 70795 70796 70797 70798 70799 70800 70801 70802 70803 70804 70805 70806 70807 70808 70809 70810 70811 70812 70813 70814 70815 70816 70817 70818 70819 70820 70821 70822 70823 70824 70825 70826 70827 70828 70829 70830 70831 70832 70833 70834 70835 70836 70837 70838 70839 70840 70841 70842 70843 70844 70845 70846 70847 70848 70849 70850 70851 70852 70853 70854 70855 70856 70857 70858 70859 70860 70861 70862 70863 70864 70865 70866 70867 70868 70869 70870 70871 70872 70873 70874 70875 70876 70877 70878 70879 70880 70881 70882 70883 70884 70885 70886 70887 70888 70889 70890 70891 70892 70893 70894 70895 70896 70897 70898 70899 70900 70901 70902 70903 70904 70905 70906 70907 70908 70909 70910 70911 70912 70913 70914 70915 70916 70917 70918 70919 70920 70921 70922 70923 70924 70925 70926 70927 70928 70929 70930 70931 70932 70933 70934 70935 70936 70937 70938 70939 70940 70941 70942 70943 70944 70945 70946 70947 70948 70949 70950 70951 70952 70953 70954 70955 70956 70957 70958 70959 70960 70961 70962 70963 70964 70965 70966 70967 70968 70969 70970 70971 70972 70973 70974 70975 70976 70977 70978 70979 70980 70981 70982 70983 70984 70985 70986 70987 70988 70989 70990 70991 70992 70993 70994 70995 70996 70997 70998 70999 71000 71001 71002 71003 71004 71005 71006 71007 71008 71009 71010 71011 71012 71013 71014 71015 71016 71017 71018 71019 71020 71021 71022 71023 71024 71025 71026 71027 71028 71029 71030 71031 71032 71033 71034 71035 71036 71037 71038 71039 71040 71041 71042 71043 71044 71045 71046 71047 71048 71049 71050 71051 71052 71053 71054 71055 71056 71057 71058 71059 71060 71061 71062 71063 71064 71065 71066 71067 71068 71069 71070 71071 71072 71073 71074 71075 71076 71077 71078 71079 71080 71081 71082 71083 71084 71085 71086 71087 71088 71089 71090 71091 71092 71093 71094 71095 71096 71097 71098 71099 71100 71101 71102 71103 71104 71105 71106 71107 71108 71109 71110 71111 71112 71113 71114 71115 71116 71117 71118 71119 71120 71121 71122 71123 71124 71125 71126 71127 71128 71129 71130 71131 71132 71133 71134 71135 71136 71137 71138 71139 71140 71141 71142 71143 71144 71145 71146 71147 71148 71149 71150 71151 71152 71153 71154 71155 71156 71157 71158 71159 71160 71161 71162 71163 71164 71165 71166 71167 71168 71169 71170 71171 71172 71173 71174 71175 71176 71177 71178 71179 71180 71181 71182 71183 71184 71185 71186 71187 71188 71189 71190 71191 71192 71193 71194 71195 71196 71197 71198 71199 71200 71201 71202 71203 71204 71205 71206 71207 71208 71209 71210 71211 71212 71213 71214 71215 71216 71217 71218 71219 71220 71221 71222 71223 71224 71225 71226 71227 71228 71229 71230 71231 71232 71233 71234 71235 71236 71237 71238 71239 71240 71241 71242 71243 71244 71245 71246 71247 71248 71249 71250 71251 71252 71253 71254 71255 71256 71257 71258 71259 71260 71261 71262 71263 71264 71265 71266 71267 71268 71269 71270 71271 71272 71273 71274 71275 71276 71277 71278 71279 71280 71281 71282 71283 71284 71285 71286 71287 71288 71289 71290 71291 71292 71293 71294 71295 71296 71297 71298 71299 71300 71301 71302 71303 71304 71305 71306 71307 71308 71309 71310 71311 71312 71313 71314 71315 71316 71317 71318 71319 71320 71321 71322 71323 71324 71325 71326 71327 71328 71329 71330 71331 71332 71333 71334 71335 71336 71337 71338 71339 71340 71341 71342 71343 71344 71345 71346 71347 71348 71349 71350 71351 71352 71353 71354 71355 71356 71357 71358 71359 71360 71361 71362 71363 71364 71365 71366 71367 71368 71369 71370 71371 71372 71373 71374 71375 71376 71377 71378 71379 71380 71381 71382 71383 71384 71385 71386 71387 71388 71389 71390 71391 71392 71393 71394 71395 71396 71397 71398 71399 71400 71401 71402 71403 71404 71405 71406 71407 71408 71409 71410 71411 71412 71413 71414 71415 71416 71417 71418 71419 71420 71421 71422 71423 71424 71425 71426 71427 71428 71429 71430 71431 71432 71433 71434 71435 71436 71437 71438 71439 71440 71441 71442 71443 71444 71445 71446 71447 71448 71449 71450 71451 71452 71453 71454 71455 71456 71457 71458 71459 71460 71461 71462 71463 71464 71465 71466 71467 71468 71469 71470 71471 71472 71473 71474 71475 71476 71477 71478 71479 71480 71481 71482 71483 71484 71485 71486 71487 71488 71489 71490 71491 71492 71493 71494 71495 71496 71497 71498 71499 71500 71501 71502 71503 71504 71505 71506 71507 71508 71509 71510 71511 71512 71513 71514 71515 71516 71517 71518 71519 71520 71521 71522 71523 71524 71525 71526 71527 71528 71529 71530 71531 71532 71533 71534 71535 71536 71537 71538 71539 71540 71541 71542 71543 71544 71545 71546 71547 71548 71549 71550 71551 71552 71553 71554 71555 71556 71557 71558 71559 71560 71561 71562 71563 71564 71565 71566 71567 71568 71569 71570 71571 71572 71573 71574 71575 71576 71577 71578 71579 71580 71581 71582 71583 71584 71585 71586 71587 71588 71589 71590 71591 71592 71593 71594 71595 71596 71597 71598 71599 71600 71601 71602 71603 71604 71605 71606 71607 71608 71609 71610 71611 71612 71613 71614 71615 71616 71617 71618 71619 71620 71621 71622 71623 71624 71625 71626 71627 71628 71629 71630 71631 71632 71633 71634 71635 71636 71637 71638 71639 71640 71641 71642 71643 71644 71645 71646 71647 71648 71649 71650 71651 71652 71653 71654 71655 71656 71657 71658 71659 71660 71661 71662 71663 71664 71665 71666 71667 71668 71669 71670 71671 71672 71673 71674 71675 71676 71677 71678 71679 71680 71681 71682 71683 71684 71685 71686 71687 71688 71689 71690 71691 71692 71693 71694 71695 71696 71697 71698 71699 71700 71701 71702 71703 71704 71705 71706 71707 71708 71709 71710 71711 71712 71713 71714 71715 71716 71717 71718 71719 71720 71721 71722 71723 71724 71725 71726 71727 71728 71729 71730 71731 71732 71733 71734 71735 71736 71737 71738 71739 71740 71741 71742 71743 71744 71745 71746 71747 71748 71749 71750 71751 71752 71753 71754 71755 71756 71757 71758 71759 71760 71761 71762 71763 71764 71765 71766 71767 71768 71769 71770 71771 71772 71773 71774 71775 71776 71777 71778 71779 71780 71781 71782 71783 71784 71785 71786 71787 71788 71789 71790 71791 71792 71793 71794 71795 71796 71797 71798 71799 71800 71801 71802 71803 71804 71805 71806 71807 71808 71809 71810 71811 71812 71813 71814 71815 71816 71817 71818 71819 71820 71821 71822 71823 71824 71825 71826 71827 71828 71829 71830 71831 71832 71833 71834 71835 71836 71837 71838 71839 71840 71841 71842 71843 71844 71845 71846 71847 71848 71849 71850 71851 71852 71853 71854 71855 71856 71857 71858 71859 71860 71861 71862 71863 71864 71865 71866 71867 71868 71869 71870 71871 71872 71873 71874 71875 71876 71877 71878 71879 71880 71881 71882 71883 71884 71885 71886 71887 71888 71889 71890 71891 71892 71893 71894 71895 71896 71897 71898 71899 71900 71901 71902 71903 71904 71905 71906 71907 71908 71909 71910 71911 71912 71913 71914 71915 71916 71917 71918 71919 71920 71921 71922 71923 71924 71925 71926 71927 71928 71929 71930 71931 71932 71933 71934 71935 71936 71937 71938 71939 71940 71941 71942 71943 71944 71945 71946 71947 71948 71949 71950 71951 71952 71953 71954 71955 71956 71957 71958 71959 71960 71961 71962 71963 71964 71965 71966 71967 71968 71969 71970 71971 71972 71973 71974 71975 71976 71977 71978 71979 71980 71981 71982 71983 71984 71985 71986 71987 71988 71989 71990 71991 71992 71993 71994 71995 71996 71997 71998 71999 72000 72001 72002 72003 72004 72005 72006 72007 72008 72009 72010 72011 72012 72013 72014 72015 72016 72017 72018 72019 72020 72021 72022 72023 72024 72025 72026 72027 72028 72029 72030 72031 72032 72033 72034 72035 72036 72037 72038 72039 72040 72041 72042 72043 72044 72045 72046 72047 72048 72049 72050 72051 72052 72053 72054 72055 72056 72057 72058 72059 72060 72061 72062 72063 72064 72065 72066 72067 72068 72069 72070 72071 72072 72073 72074 72075 72076 72077 72078 72079 72080 72081 72082 72083 72084 72085 72086 72087 72088 72089 72090 72091 72092 72093 72094 72095 72096 72097 72098 72099 72100 72101 72102 72103 72104 72105 72106 72107 72108 72109 72110 72111 72112 72113 72114 72115 72116 72117 72118 72119 72120 72121 72122 72123 72124 72125 72126 72127 72128 72129 72130 72131 72132 72133 72134 72135 72136 72137 72138 72139 72140 72141 72142 72143 72144 72145 72146 72147 72148 72149 72150 72151 72152 72153 72154 72155 72156 72157 72158 72159 72160 72161 72162 72163 72164 72165 72166 72167 72168 72169 72170 72171 72172 72173 72174 72175 72176 72177 72178 72179 72180 72181 72182 72183 72184 72185 72186 72187 72188 72189 72190 72191 72192 72193 72194 72195 72196 72197 72198 72199 72200 72201 72202 72203 72204 72205 72206 72207 72208 72209 72210 72211 72212 72213 72214 72215 72216 72217 72218 72219 72220 72221 72222 72223 72224 72225 72226 72227 72228 72229 72230 72231 72232 72233 72234 72235 72236 72237 72238 72239 72240 72241 72242 72243 72244 72245 72246 72247 72248 72249 72250 72251 72252 72253 72254 72255 72256 72257 72258 72259 72260 72261 72262 72263 72264 72265 72266 72267 72268 72269 72270 72271 72272 72273 72274 72275 72276 72277 72278 72279 72280 72281 72282 72283 72284 72285 72286 72287 72288 72289 72290 72291 72292 72293 72294 72295 72296 72297 72298 72299 72300 72301 72302 72303 72304 72305 72306 72307 72308 72309 72310 72311 72312 72313 72314 72315 72316 72317 72318 72319 72320 72321 72322 72323 72324 72325 72326 72327 72328 72329 72330 72331 72332 72333 72334 72335 72336 72337 72338 72339 72340 72341 72342 72343 72344 72345 72346 72347 72348 72349 72350 72351 72352 72353 72354 72355 72356 72357 72358 72359 72360 72361 72362 72363 72364 72365 72366 72367 72368 72369 72370 72371 72372 72373 72374 72375 72376 72377 72378 72379 72380 72381 72382 72383 72384 72385 72386 72387 72388 72389 72390 72391 72392 72393 72394 72395 72396 72397 72398 72399 72400 72401 72402 72403 72404 72405 72406 72407 72408 72409 72410 72411 72412 72413 72414 72415 72416 72417 72418 72419 72420 72421 72422 72423 72424 72425 72426 72427 72428 72429 72430 72431 72432 72433 72434 72435 72436 72437 72438 72439 72440 72441 72442 72443 72444 72445 72446 72447 72448 72449 72450 72451 72452 72453 72454 72455 72456 72457 72458 72459 72460 72461 72462 72463 72464 72465 72466 72467 72468 72469 72470 72471 72472 72473 72474 72475 72476 72477 72478 72479 72480 72481 72482 72483 72484 72485 72486 72487 72488 72489 72490 72491 72492 72493 72494 72495 72496 72497 72498 72499 72500 72501 72502 72503 72504 72505 72506 72507 72508 72509 72510 72511 72512 72513 72514 72515 72516 72517 72518 72519 72520 72521 72522 72523 72524 72525 72526 72527 72528 72529 72530 72531 72532 72533 72534 72535 72536 72537 72538 72539 72540 72541 72542 72543 72544 72545 72546 72547 72548 72549 72550 72551 72552 72553 72554 72555 72556 72557 72558 72559 72560 72561 72562 72563 72564 72565 72566 72567 72568 72569 72570 72571 72572 72573 72574 72575 72576 72577 72578 72579 72580 72581 72582 72583 72584 72585 72586 72587 72588 72589 72590 72591 72592 72593 72594 72595 72596 72597 72598 72599 72600 72601 72602 72603 72604 72605 72606 72607 72608 72609 72610 72611 72612 72613 72614 72615 72616 72617 72618 72619 72620 72621 72622 72623 72624 72625 72626 72627 72628 72629 72630 72631 72632 72633 72634 72635 72636 72637 72638 72639 72640 72641 72642 72643 72644 72645 72646 72647 72648 72649 72650 72651 72652 72653 72654 72655 72656 72657 72658 72659 72660 72661 72662 72663 72664 72665 72666 72667 72668 72669 72670 72671 72672 72673 72674 72675 72676 72677 72678 72679 72680 72681 72682 72683 72684 72685 72686 72687 72688 72689 72690 72691 72692 72693 72694 72695 72696 72697 72698 72699 72700 72701 72702 72703 72704 72705 72706 72707 72708 72709 72710 72711 72712 72713 72714 72715 72716 72717 72718 72719 72720 72721 72722 72723 72724 72725 72726 72727 72728 72729 72730 72731 72732 72733 72734 72735 72736 72737 72738 72739 72740 72741 72742 72743 72744 72745 72746 72747 72748 72749 72750 72751 72752 72753 72754 72755 72756 72757 72758 72759 72760 72761 72762 72763 72764 72765 72766 72767 72768 72769 72770 72771 72772 72773 72774 72775 72776 72777 72778 72779 72780 72781 72782 72783 72784 72785 72786 72787 72788 72789 72790 72791 72792 72793 72794 72795 72796 72797 72798 72799 72800 72801 72802 72803 72804 72805 72806 72807 72808 72809 72810 72811 72812 72813 72814 72815 72816 72817 72818 72819 72820 72821 72822 72823 72824 72825 72826 72827 72828 72829 72830 72831 72832 72833 72834 72835 72836 72837 72838 72839 72840 72841 72842 72843 72844 72845 72846 72847 72848 72849 72850 72851 72852 72853 72854 72855 72856 72857 72858 72859 72860 72861 72862 72863 72864 72865 72866 72867 72868 72869 72870 72871 72872 72873 72874 72875 72876 72877 72878 72879 72880 72881 72882 72883 72884 72885 72886 72887 72888 72889 72890 72891 72892 72893 72894 72895 72896 72897 72898 72899 72900 72901 72902 72903 72904 72905 72906 72907 72908 72909 72910 72911 72912 72913 72914 72915 72916 72917 72918 72919 72920 72921 72922 72923 72924 72925 72926 72927 72928 72929 72930 72931 72932 72933 72934 72935 72936 72937 72938 72939 72940 72941 72942 72943 72944 72945 72946 72947 72948 72949 72950 72951 72952 72953 72954 72955 72956 72957 72958 72959 72960 72961 72962 72963 72964 72965 72966 72967 72968 72969 72970 72971 72972 72973 72974 72975 72976 72977 72978 72979 72980 72981 72982 72983 72984 72985 72986 72987 72988 72989 72990 72991 72992 72993 72994 72995 72996 72997 72998 72999 73000 73001 73002 73003 73004 73005 73006 73007 73008 73009 73010 73011 73012 73013 73014 73015 73016 73017 73018 73019 73020 73021 73022 73023 73024 73025 73026 73027 73028 73029 73030 73031 73032 73033 73034 73035 73036 73037 73038 73039 73040 73041 73042 73043 73044 73045 73046 73047 73048 73049 73050 73051 73052 73053 73054 73055 73056 73057 73058 73059 73060 73061 73062 73063 73064 73065 73066 73067 73068 73069 73070 73071 73072 73073 73074 73075 73076 73077 73078 73079 73080 73081 73082 73083 73084 73085 73086 73087 73088 73089 73090 73091 73092 73093 73094 73095 73096 73097 73098 73099 73100 73101 73102 73103 73104 73105 73106 73107 73108 73109 73110 73111 73112 73113 73114 73115 73116 73117 73118 73119 73120 73121 73122 73123 73124 73125 73126 73127 73128 73129 73130 73131 73132 73133 73134 73135 73136 73137 73138 73139 73140 73141 73142 73143 73144 73145 73146 73147 73148 73149 73150 73151 73152 73153 73154 73155 73156 73157 73158 73159 73160 73161 73162 73163 73164 73165 73166 73167 73168 73169 73170 73171 73172 73173 73174 73175 73176 73177 73178 73179 73180 73181 73182 73183 73184 73185 73186 73187 73188 73189 73190 73191 73192 73193 73194 73195 73196 73197 73198 73199 73200 73201 73202 73203 73204 73205 73206 73207 73208 73209 73210 73211 73212 73213 73214 73215 73216 73217 73218 73219 73220 73221 73222 73223 73224 73225 73226 73227 73228 73229 73230 73231 73232 73233 73234 73235 73236 73237 73238 73239 73240 73241 73242 73243 73244 73245 73246 73247 73248 73249 73250 73251 73252 73253 73254 73255 73256 73257 73258 73259 73260 73261 73262 73263 73264 73265 73266 73267 73268 73269 73270 73271 73272 73273 73274 73275 73276 73277 73278 73279 73280 73281 73282 73283 73284 73285 73286 73287 73288 73289 73290 73291 73292 73293 73294 73295 73296 73297 73298 73299 73300 73301 73302 73303 73304 73305 73306 73307 73308 73309 73310 73311 73312 73313 73314 73315 73316 73317 73318 73319 73320 73321 73322 73323 73324 73325 73326 73327 73328 73329 73330 73331 73332 73333 73334 73335 73336 73337 73338 73339 73340 73341 73342 73343 73344 73345 73346 73347 73348 73349 73350 73351 73352 73353 73354 73355 73356 73357 73358 73359 73360 73361 73362 73363 73364 73365 73366 73367 73368 73369 73370 73371 73372 73373 73374 73375 73376 73377 73378 73379 73380 73381 73382 73383 73384 73385 73386 73387 73388 73389 73390 73391 73392 73393 73394 73395 73396 73397 73398 73399 73400 73401 73402 73403 73404 73405 73406 73407 73408 73409 73410 73411 73412 73413 73414 73415 73416 73417 73418 73419 73420 73421 73422 73423 73424 73425 73426 73427 73428 73429 73430 73431 73432 73433 73434 73435 73436 73437 73438 73439 73440 73441 73442 73443 73444 73445 73446 73447 73448 73449 73450 73451 73452 73453 73454 73455 73456 73457 73458 73459 73460 73461 73462 73463 73464 73465 73466 73467 73468 73469 73470 73471 73472 73473 73474 73475 73476 73477 73478 73479 73480 73481 73482 73483 73484 73485 73486 73487 73488 73489 73490 73491 73492 73493 73494 73495 73496 73497 73498 73499 73500 73501 73502 73503 73504 73505 73506 73507 73508 73509 73510 73511 73512 73513 73514 73515 73516 73517 73518 73519 73520 73521 73522 73523 73524 73525 73526 73527 73528 73529 73530 73531 73532 73533 73534 73535 73536 73537 73538 73539 73540 73541 73542 73543 73544 73545 73546 73547 73548 73549 73550 73551 73552 73553 73554 73555 73556 73557 73558 73559 73560 73561 73562 73563 73564 73565 73566 73567 73568 73569 73570 73571 73572 73573 73574 73575 73576 73577 73578 73579 73580 73581 73582 73583 73584 73585 73586 73587 73588 73589 73590 73591 73592 73593 73594 73595 73596 73597 73598 73599 73600 73601 73602 73603 73604 73605 73606 73607 73608 73609 73610 73611 73612 73613 73614 73615 73616 73617 73618 73619 73620 73621 73622 73623 73624 73625 73626 73627 73628 73629 73630 73631 73632 73633 73634 73635 73636 73637 73638 73639 73640 73641 73642 73643 73644 73645 73646 73647 73648 73649 73650 73651 73652 73653 73654 73655 73656 73657 73658 73659 73660 73661 73662 73663 73664 73665 73666 73667 73668 73669 73670 73671 73672 73673 73674 73675 73676 73677 73678 73679 73680 73681 73682 73683 73684 73685 73686 73687 73688 73689 73690 73691 73692 73693 73694 73695 73696 73697 73698 73699 73700 73701 73702 73703 73704 73705 73706 73707 73708 73709 73710 73711 73712 73713 73714 73715 73716 73717 73718 73719 73720 73721 73722 73723 73724 73725 73726 73727 73728 73729 73730 73731 73732 73733 73734 73735 73736 73737 73738 73739 73740 73741 73742 73743 73744 73745 73746 73747 73748 73749 73750 73751 73752 73753 73754 73755 73756 73757 73758 73759 73760 73761 73762 73763 73764 73765 73766 73767 73768 73769 73770 73771 73772 73773 73774 73775 73776 73777 73778 73779 73780 73781 73782 73783 73784 73785 73786 73787 73788 73789 73790 73791 73792 73793 73794 73795 73796 73797 73798 73799 73800 73801 73802 73803 73804 73805 73806 73807 73808 73809 73810 73811 73812 73813 73814 73815 73816 73817 73818 73819 73820 73821 73822 73823 73824 73825 73826 73827 73828 73829 73830 73831 73832 73833 73834 73835 73836 73837 73838 73839 73840 73841 73842 73843 73844 73845 73846 73847 73848 73849 73850 73851 73852 73853 73854 73855 73856 73857 73858 73859 73860 73861 73862 73863 73864 73865 73866 73867 73868 73869 73870 73871 73872 73873 73874 73875 73876 73877 73878 73879 73880 73881 73882 73883 73884 73885 73886 73887 73888 73889 73890 73891 73892 73893 73894 73895 73896 73897 73898 73899 73900 73901 73902 73903 73904 73905 73906 73907 73908 73909 73910 73911 73912 73913 73914 73915 73916 73917 73918 73919 73920 73921 73922 73923 73924 73925 73926 73927 73928 73929 73930 73931 73932 73933 73934 73935 73936 73937 73938 73939 73940 73941 73942 73943 73944 73945 73946 73947 73948 73949 73950 73951 73952 73953 73954 73955 73956 73957 73958 73959 73960 73961 73962 73963 73964 73965 73966 73967 73968 73969 73970 73971 73972 73973 73974 73975 73976 73977 73978 73979 73980 73981 73982 73983 73984 73985 73986 73987 73988 73989 73990 73991 73992 73993 73994 73995 73996 73997 73998 73999 74000 74001 74002 74003 74004 74005 74006 74007 74008 74009 74010 74011 74012 74013 74014 74015 74016 74017 74018 74019 74020 74021 74022 74023 74024 74025 74026 74027 74028 74029 74030 74031 74032 74033 74034 74035 74036 74037 74038 74039 74040 74041 74042 74043 74044 74045 74046 74047 74048 74049 74050 74051 74052 74053 74054 74055 74056 74057 74058 74059 74060 74061 74062 74063 74064 74065 74066 74067 74068 74069 74070 74071 74072 74073 74074 74075 74076 74077 74078 74079 74080 74081 74082 74083 74084 74085 74086 74087 74088 74089 74090 74091 74092 74093 74094 74095 74096 74097 74098 74099 74100 74101 74102 74103 74104 74105 74106 74107 74108 74109 74110 74111 74112 74113 74114 74115 74116 74117 74118 74119 74120 74121 74122 74123 74124 74125 74126 74127 74128 74129 74130 74131 74132 74133 74134 74135 74136 74137 74138 74139 74140 74141 74142 74143 74144 74145 74146 74147 74148 74149 74150 74151 74152 74153 74154 74155 74156 74157 74158 74159 74160 74161 74162 74163 74164 74165 74166 74167 74168 74169 74170 74171 74172 74173 74174 74175 74176 74177 74178 74179 74180 74181 74182 74183 74184 74185 74186 74187 74188 74189 74190 74191 74192 74193 74194 74195 74196 74197 74198 74199 74200 74201 74202 74203 74204 74205 74206 74207 74208 74209 74210 74211 74212 74213 74214 74215 74216 74217 74218 74219 74220 74221 74222 74223 74224 74225 74226 74227 74228 74229 74230 74231 74232 74233 74234 74235 74236 74237 74238 74239 74240 74241 74242 74243 74244 74245 74246 74247 74248 74249 74250 74251 74252 74253 74254 74255 74256 74257 74258 74259 74260 74261 74262 74263 74264 74265 74266 74267 74268 74269 74270 74271 74272 74273 74274 74275 74276 74277 74278 74279 74280 74281 74282 74283 74284 74285 74286 74287 74288 74289 74290 74291 74292 74293 74294 74295 74296 74297 74298 74299 74300 74301 74302 74303 74304 74305 74306 74307 74308 74309 74310 74311 74312 74313 74314 74315 74316 74317 74318 74319 74320 74321 74322 74323 74324 74325 74326 74327 74328 74329 74330 74331 74332 74333 74334 74335 74336 74337 74338 74339 74340 74341 74342 74343 74344 74345 74346 74347 74348 74349 74350 74351 74352 74353 74354 74355 74356 74357 74358 74359 74360 74361 74362 74363 74364 74365 74366 74367 74368 74369 74370 74371 74372 74373 74374 74375 74376 74377 74378 74379 74380 74381 74382 74383 74384 74385 74386 74387 74388 74389 74390 74391 74392 74393 74394 74395 74396 74397 74398 74399 74400 74401 74402 74403 74404 74405 74406 74407 74408 74409 74410 74411 74412 74413 74414 74415 74416 74417 74418 74419 74420 74421 74422 74423 74424 74425 74426 74427 74428 74429 74430 74431 74432 74433 74434 74435 74436 74437 74438 74439 74440 74441 74442 74443 74444 74445 74446 74447 74448 74449 74450 74451 74452 74453 74454 74455 74456 74457 74458 74459 74460 74461 74462 74463 74464 74465 74466 74467 74468 74469 74470 74471 74472 74473 74474 74475 74476 74477 74478 74479 74480 74481 74482 74483 74484 74485 74486 74487 74488 74489 74490 74491 74492 74493 74494 74495 74496 74497 74498 74499 74500 74501 74502 74503 74504 74505 74506 74507 74508 74509 74510 74511 74512 74513 74514 74515 74516 74517 74518 74519 74520 74521 74522 74523 74524 74525 74526 74527 74528 74529 74530 74531 74532 74533 74534 74535 74536 74537 74538 74539 74540 74541 74542 74543 74544 74545 74546 74547 74548 74549 74550 74551 74552 74553 74554 74555 74556 74557 74558 74559 74560 74561 74562 74563 74564 74565 74566 74567 74568 74569 74570 74571 74572 74573 74574 74575 74576 74577 74578 74579 74580 74581 74582 74583 74584 74585 74586 74587 74588 74589 74590 74591 74592 74593 74594 74595 74596 74597 74598 74599 74600 74601 74602 74603 74604 74605 74606 74607 74608 74609 74610 74611 74612 74613 74614 74615 74616 74617 74618 74619 74620 74621 74622 74623 74624 74625 74626 74627 74628 74629 74630 74631 74632 74633 74634 74635 74636 74637 74638 74639 74640 74641 74642 74643 74644 74645 74646 74647 74648 74649 74650 74651 74652 74653 74654 74655 74656 74657 74658 74659 74660 74661 74662 74663 74664 74665 74666 74667 74668 74669 74670 74671 74672 74673 74674 74675 74676 74677 74678 74679 74680 74681 74682 74683 74684 74685 74686 74687 74688 74689 74690 74691 74692 74693 74694 74695 74696 74697 74698 74699 74700 74701 74702 74703 74704 74705 74706 74707 74708 74709 74710 74711 74712 74713 74714 74715 74716 74717 74718 74719 74720 74721 74722 74723 74724 74725 74726 74727 74728 74729 74730 74731 74732 74733 74734 74735 74736 74737 74738 74739 74740 74741 74742 74743 74744 74745 74746 74747 74748 74749 74750 74751 74752 74753 74754 74755 74756 74757 74758 74759 74760 74761 74762 74763 74764 74765 74766 74767 74768 74769 74770 74771 74772 74773 74774 74775 74776 74777 74778 74779 74780 74781 74782 74783 74784 74785 74786 74787 74788 74789 74790 74791 74792 74793 74794 74795 74796 74797 74798 74799 74800 74801 74802 74803 74804 74805 74806 74807 74808 74809 74810 74811 74812 74813 74814 74815 74816 74817 74818 74819 74820 74821 74822 74823 74824 74825 74826 74827 74828 74829 74830 74831 74832 74833 74834 74835 74836 74837 74838 74839 74840 74841 74842 74843 74844 74845 74846 74847 74848 74849 74850 74851 74852 74853 74854 74855 74856 74857 74858 74859 74860 74861 74862 74863 74864 74865 74866 74867 74868 74869 74870 74871 74872 74873 74874 74875 74876 74877 74878 74879 74880 74881 74882 74883 74884 74885 74886 74887 74888 74889 74890 74891 74892 74893 74894 74895 74896 74897 74898 74899 74900 74901 74902 74903 74904 74905 74906 74907 74908 74909 74910 74911 74912 74913 74914 74915 74916 74917 74918 74919 74920 74921 74922 74923 74924 74925 74926 74927 74928 74929 74930 74931 74932 74933 74934 74935 74936 74937 74938 74939 74940 74941 74942 74943 74944 74945 74946 74947 74948 74949 74950 74951 74952 74953 74954 74955 74956 74957 74958 74959 74960 74961 74962 74963 74964 74965 74966 74967 74968 74969 74970 74971 74972 74973 74974 74975 74976 74977 74978 74979 74980 74981 74982 74983 74984 74985 74986 74987 74988 74989 74990 74991 74992 74993 74994 74995 74996 74997 74998 74999 75000 75001 75002 75003 75004 75005 75006 75007 75008 75009 75010 75011 75012 75013 75014 75015 75016 75017 75018 75019 75020 75021 75022 75023 75024 75025 75026 75027 75028 75029 75030 75031 75032 75033 75034 75035 75036 75037 75038 75039 75040 75041 75042 75043 75044 75045 75046 75047 75048 75049 75050 75051 75052 75053 75054 75055 75056 75057 75058 75059 75060 75061 75062 75063 75064 75065 75066 75067 75068 75069 75070 75071 75072 75073 75074 75075 75076 75077 75078 75079 75080 75081 75082 75083 75084 75085 75086 75087 75088 75089 75090 75091 75092 75093 75094 75095 75096 75097 75098 75099 75100 75101 75102 75103 75104 75105 75106 75107 75108 75109 75110 75111 75112 75113 75114 75115 75116 75117 75118 75119 75120 75121 75122 75123 75124 75125 75126 75127 75128 75129 75130 75131 75132 75133 75134 75135 75136 75137 75138 75139 75140 75141 75142 75143 75144 75145 75146 75147 75148 75149 75150 75151 75152 75153 75154 75155 75156 75157 75158 75159 75160 75161 75162 75163 75164 75165 75166 75167 75168 75169 75170 75171 75172 75173 75174 75175 75176 75177 75178 75179 75180 75181 75182 75183 75184 75185 75186 75187 75188 75189 75190 75191 75192 75193 75194 75195 75196 75197 75198 75199 75200 75201 75202 75203 75204 75205 75206 75207 75208 75209 75210 75211 75212 75213 75214 75215 75216 75217 75218 75219 75220 75221 75222 75223 75224 75225 75226 75227 75228 75229 75230 75231 75232 75233 75234 75235 75236 75237 75238 75239 75240 75241 75242 75243 75244 75245 75246 75247 75248 75249 75250 75251 75252 75253 75254 75255 75256 75257 75258 75259 75260 75261 75262 75263 75264 75265 75266 75267 75268 75269 75270 75271 75272 75273 75274 75275 75276 75277 75278 75279 75280 75281 75282 75283 75284 75285 75286 75287 75288 75289 75290 75291 75292 75293 75294 75295 75296 75297 75298 75299 75300 75301 75302 75303 75304 75305 75306 75307 75308 75309 75310 75311 75312 75313 75314 75315 75316 75317 75318 75319 75320 75321 75322 75323 75324 75325 75326 75327 75328 75329 75330 75331 75332 75333 75334 75335 75336 75337 75338 75339 75340 75341 75342 75343 75344 75345 75346 75347 75348 75349 75350 75351 75352 75353 75354 75355 75356 75357 75358 75359 75360 75361 75362 75363 75364 75365 75366 75367 75368 75369 75370 75371 75372 75373 75374 75375 75376 75377 75378 75379 75380 75381 75382 75383 75384 75385 75386 75387 75388 75389 75390 75391 75392 75393 75394 75395 75396 75397 75398 75399 75400 75401 75402 75403 75404 75405 75406 75407 75408 75409 75410 75411 75412 75413 75414 75415 75416 75417 75418 75419 75420 75421 75422 75423 75424 75425 75426 75427 75428 75429 75430 75431 75432 75433 75434 75435 75436 75437 75438 75439 75440 75441 75442 75443 75444 75445 75446 75447 75448 75449 75450 75451 75452 75453 75454 75455 75456 75457 75458 75459 75460 75461 75462 75463 75464 75465 75466 75467 75468 75469 75470 75471 75472 75473 75474 75475 75476 75477 75478 75479 75480 75481 75482 75483 75484 75485 75486 75487 75488 75489 75490 75491 75492 75493 75494 75495 75496 75497 75498 75499 75500 75501 75502 75503 75504 75505 75506 75507 75508 75509 75510 75511 75512 75513 75514 75515 75516 75517 75518 75519 75520 75521 75522 75523 75524 75525 75526 75527 75528 75529 75530 75531 75532 75533 75534 75535 75536 75537 75538 75539 75540 75541 75542 75543 75544 75545 75546 75547 75548 75549 75550 75551 75552 75553 75554 75555 75556 75557 75558 75559 75560 75561 75562 75563 75564 75565 75566 75567 75568 75569 75570 75571 75572 75573 75574 75575 75576 75577 75578 75579 75580 75581 75582 75583 75584 75585 75586 75587 75588 75589 75590 75591 75592 75593 75594 75595 75596 75597 75598 75599 75600 75601 75602 75603 75604 75605 75606 75607 75608 75609 75610 75611 75612 75613 75614 75615 75616 75617 75618 75619 75620 75621 75622 75623 75624 75625 75626 75627 75628 75629 75630 75631 75632 75633 75634 75635 75636 75637 75638 75639 75640 75641 75642 75643 75644 75645 75646 75647 75648 75649 75650 75651 75652 75653 75654 75655 75656 75657 75658 75659 75660 75661 75662 75663 75664 75665 75666 75667 75668 75669 75670 75671 75672 75673 75674 75675 75676 75677 75678 75679 75680 75681 75682 75683 75684 75685 75686 75687 75688 75689 75690 75691 75692 75693 75694 75695 75696 75697 75698 75699 75700 75701 75702 75703 75704 75705 75706 75707 75708 75709 75710 75711 75712 75713 75714 75715 75716 75717 75718 75719 75720 75721 75722 75723 75724 75725 75726 75727 75728 75729 75730 75731 75732 75733 75734 75735 75736 75737 75738 75739 75740 75741 75742 75743 75744 75745 75746 75747 75748 75749 75750 75751 75752 75753 75754 75755 75756 75757 75758 75759 75760 75761 75762 75763 75764 75765 75766 75767 75768 75769 75770 75771 75772 75773 75774 75775 75776 75777 75778 75779 75780 75781 75782 75783 75784 75785 75786 75787 75788 75789 75790 75791 75792 75793 75794 75795 75796 75797 75798 75799 75800 75801 75802 75803 75804 75805 75806 75807 75808 75809 75810 75811 75812 75813 75814 75815 75816 75817 75818 75819 75820 75821 75822 75823 75824 75825 75826 75827 75828 75829 75830 75831 75832 75833 75834 75835 75836 75837 75838 75839 75840 75841 75842 75843 75844 75845 75846 75847 75848 75849 75850 75851 75852 75853 75854 75855 75856 75857 75858 75859 75860 75861 75862 75863 75864 75865 75866 75867 75868 75869 75870 75871 75872 75873 75874 75875 75876 75877 75878 75879 75880 75881 75882 75883 75884 75885 75886 75887 75888 75889 75890 75891 75892 75893 75894 75895 75896 75897 75898 75899 75900 75901 75902 75903 75904 75905 75906 75907 75908 75909 75910 75911 75912 75913 75914 75915 75916 75917 75918 75919 75920 75921 75922 75923 75924 75925 75926 75927 75928 75929 75930 75931 75932 75933 75934 75935 75936 75937 75938 75939 75940 75941 75942 75943 75944 75945 75946 75947 75948 75949 75950 75951 75952 75953 75954 75955 75956 75957 75958 75959 75960 75961 75962 75963 75964 75965 75966 75967 75968 75969 75970 75971 75972 75973 75974 75975 75976 75977 75978 75979 75980 75981 75982 75983 75984 75985 75986 75987 75988 75989 75990 75991 75992 75993 75994 75995 75996 75997 75998 75999 76000 76001 76002 76003 76004 76005 76006 76007 76008 76009 76010 76011 76012 76013 76014 76015 76016 76017 76018 76019 76020 76021 76022 76023 76024 76025 76026 76027 76028 76029 76030 76031 76032 76033 76034 76035 76036 76037 76038 76039 76040 76041 76042 76043 76044 76045 76046 76047 76048 76049 76050 76051 76052 76053 76054 76055 76056 76057 76058 76059 76060 76061 76062 76063 76064 76065 76066 76067 76068 76069 76070 76071 76072 76073 76074 76075 76076 76077 76078 76079 76080 76081 76082 76083 76084 76085 76086 76087 76088 76089 76090 76091 76092 76093 76094 76095 76096 76097 76098 76099 76100 76101 76102 76103 76104 76105 76106 76107 76108 76109 76110 76111 76112 76113 76114 76115 76116 76117 76118 76119 76120 76121 76122 76123 76124 76125 76126 76127 76128 76129 76130 76131 76132 76133 76134 76135 76136 76137 76138 76139 76140 76141 76142 76143 76144 76145 76146 76147 76148 76149 76150 76151 76152 76153 76154 76155 76156 76157 76158 76159 76160 76161 76162 76163 76164 76165 76166 76167 76168 76169 76170 76171 76172 76173 76174 76175 76176 76177 76178 76179 76180 76181 76182 76183 76184 76185 76186 76187 76188 76189 76190 76191 76192 76193 76194 76195 76196 76197 76198 76199 76200 76201 76202 76203 76204 76205 76206 76207 76208 76209 76210 76211 76212 76213 76214 76215 76216 76217 76218 76219 76220 76221 76222 76223 76224 76225 76226 76227 76228 76229 76230 76231 76232 76233 76234 76235 76236 76237 76238 76239 76240 76241 76242 76243 76244 76245 76246 76247 76248 76249 76250 76251 76252 76253 76254 76255 76256 76257 76258 76259 76260 76261 76262 76263 76264 76265 76266 76267 76268 76269 76270 76271 76272 76273 76274 76275 76276 76277 76278 76279 76280 76281 76282 76283 76284 76285 76286 76287 76288 76289 76290 76291 76292 76293 76294 76295 76296 76297 76298 76299 76300 76301 76302 76303 76304 76305 76306 76307 76308 76309 76310 76311 76312 76313 76314 76315 76316 76317 76318 76319 76320 76321 76322 76323 76324 76325 76326 76327 76328 76329 76330 76331 76332 76333 76334 76335 76336 76337 76338 76339 76340 76341 76342 76343 76344 76345 76346 76347 76348 76349 76350 76351 76352 76353 76354 76355 76356 76357 76358 76359 76360 76361 76362 76363 76364 76365 76366 76367 76368 76369 76370 76371 76372 76373 76374 76375 76376 76377 76378 76379 76380 76381 76382 76383 76384 76385 76386 76387 76388 76389 76390 76391 76392 76393 76394 76395 76396 76397 76398 76399 76400 76401 76402 76403 76404 76405 76406 76407 76408 76409 76410 76411 76412 76413 76414 76415 76416 76417 76418 76419 76420 76421 76422 76423 76424 76425 76426 76427 76428 76429 76430 76431 76432 76433 76434 76435 76436 76437 76438 76439 76440 76441 76442 76443 76444 76445 76446 76447 76448 76449 76450 76451 76452 76453 76454 76455 76456 76457 76458 76459 76460 76461 76462 76463 76464 76465 76466 76467 76468 76469 76470 76471 76472 76473 76474 76475 76476 76477 76478 76479 76480 76481 76482 76483 76484 76485 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1988-2018 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Funding Free Software", the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the section entitled
"GNU Free Documentation License".
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Using the GNU Compiler Collection (GCC)</title>
<meta name="description" content="Using the GNU Compiler Collection (GCC)">
<meta name="keywords" content="Using the GNU Compiler Collection (GCC)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="#Top" rel="start" title="Top">
<link href="#Option-Index" rel="index" title="Option Index">
<link href="#SEC_Contents" rel="contents" title="Table of Contents">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<h1 class="settitle" align="center">Using the GNU Compiler Collection (GCC)</h1>
<p>This file documents the use of the GNU compilers.
</p><br>
<p>Copyright © 1988-2018 Free Software Foundation, Inc.
</p>
<p>Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being “Funding Free Software”, the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the section entitled
“GNU Free Documentation License”.
</p>
<p>(a) The FSF’s Front-Cover Text is:
</p>
<p>A GNU Manual
</p>
<p>(b) The FSF’s Back-Cover Text is:
</p>
<p>You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
</p>
<br>
<a name="SEC_Overview"></a>
<h2 class="shortcontents-heading">Short Table of Contents</h2>
<div class="shortcontents">
<ul class="no-bullet">
<li><a name="stoc-Programming-Languages-Supported-by-GCC" href="#toc-Programming-Languages-Supported-by-GCC">1 Programming Languages Supported by GCC</a></li>
<li><a name="stoc-Language-Standards-Supported-by-GCC" href="#toc-Language-Standards-Supported-by-GCC">2 Language Standards Supported by GCC</a></li>
<li><a name="stoc-GCC-Command-Options" href="#toc-GCC-Command-Options">3 GCC Command Options</a></li>
<li><a name="stoc-C-Implementation_002dDefined-Behavior" href="#toc-C-Implementation_002dDefined-Behavior">4 C Implementation-Defined Behavior</a></li>
<li><a name="stoc-C_002b_002b-Implementation_002dDefined-Behavior" href="#toc-C_002b_002b-Implementation_002dDefined-Behavior">5 C++ Implementation-Defined Behavior</a></li>
<li><a name="stoc-Extensions-to-the-C-Language-Family" href="#toc-Extensions-to-the-C-Language-Family">6 Extensions to the C Language Family</a></li>
<li><a name="stoc-Extensions-to-the-C_002b_002b-Language" href="#toc-Extensions-to-the-C_002b_002b-Language">7 Extensions to the C++ Language</a></li>
<li><a name="stoc-GNU-Objective_002dC-Features" href="#toc-GNU-Objective_002dC-Features">8 GNU Objective-C Features</a></li>
<li><a name="stoc-Binary-Compatibility" href="#toc-Binary-Compatibility">9 Binary Compatibility</a></li>
<li><a name="stoc-gcov_002d_002d_002da-Test-Coverage-Program" href="#toc-gcov_002d_002d_002da-Test-Coverage-Program">10 <code>gcov</code>—a Test Coverage Program</a></li>
<li><a name="stoc-gcov_002dtool_002d_002d_002dan-Offline-Gcda-Profile-Processing-Tool" href="#toc-gcov_002dtool_002d_002d_002dan-Offline-Gcda-Profile-Processing-Tool">11 <code>gcov-tool</code>—an Offline Gcda Profile Processing Tool</a></li>
<li><a name="stoc-gcov_002ddump_002d_002d_002dan-Offline-Gcda-and-Gcno-Profile-Dump-Tool" href="#toc-gcov_002ddump_002d_002d_002dan-Offline-Gcda-and-Gcno-Profile-Dump-Tool">12 <code>gcov-dump</code>—an Offline Gcda and Gcno Profile Dump Tool</a></li>
<li><a name="stoc-Known-Causes-of-Trouble-with-GCC" href="#toc-Known-Causes-of-Trouble-with-GCC">13 Known Causes of Trouble with GCC</a></li>
<li><a name="stoc-Reporting-Bugs" href="#toc-Reporting-Bugs">14 Reporting Bugs</a></li>
<li><a name="stoc-How-To-Get-Help-with-GCC" href="#toc-How-To-Get-Help-with-GCC">15 How To Get Help with GCC</a></li>
<li><a name="stoc-Contributing-to-GCC-Development" href="#toc-Contributing-to-GCC-Development">16 Contributing to GCC Development</a></li>
<li><a name="stoc-Funding-Free-Software" href="#toc-Funding-Free-Software">Funding Free Software</a></li>
<li><a name="stoc-The-GNU-Project-and-GNU_002fLinux" href="#toc-The-GNU-Project-and-GNU_002fLinux">The GNU Project and GNU/Linux</a></li>
<li><a name="stoc-GNU-General-Public-License" href="#toc-GNU-General-Public-License">GNU General Public License</a></li>
<li><a name="stoc-GNU-Free-Documentation-License-1" href="#toc-GNU-Free-Documentation-License-1">GNU Free Documentation License</a></li>
<li><a name="stoc-Contributors-to-GCC" href="#toc-Contributors-to-GCC">Contributors to GCC</a></li>
<li><a name="stoc-Option-Index-1" href="#toc-Option-Index-1">Option Index</a></li>
<li><a name="stoc-Keyword-Index-1" href="#toc-Keyword-Index-1">Keyword Index</a></li>
</ul>
</div>
<a name="SEC_Contents"></a>
<h2 class="contents-heading">Table of Contents</h2>
<div class="contents">
<ul class="no-bullet">
<li><a name="toc-Programming-Languages-Supported-by-GCC" href="#G_002b_002b-and-GCC">1 Programming Languages Supported by GCC</a></li>
<li><a name="toc-Language-Standards-Supported-by-GCC" href="#Standards">2 Language Standards Supported by GCC</a>
<ul class="no-bullet">
<li><a name="toc-C-Language" href="#C-Language">2.1 C Language</a></li>
<li><a name="toc-C_002b_002b-Language" href="#C_002b_002b-Language">2.2 C++ Language</a></li>
<li><a name="toc-Objective_002dC-and-Objective_002dC_002b_002b-Languages" href="#Objective_002dC-and-Objective_002dC_002b_002b-Languages">2.3 Objective-C and Objective-C++ Languages</a></li>
<li><a name="toc-Go-Language" href="#Go-Language">2.4 Go Language</a></li>
<li><a name="toc-HSA-Intermediate-Language-_0028HSAIL_0029" href="#HSA-Intermediate-Language-_0028HSAIL_0029">2.5 HSA Intermediate Language (HSAIL)</a></li>
<li><a name="toc-D-language" href="#D-language">2.6 D language</a></li>
<li><a name="toc-References-for-Other-Languages" href="#References-for-Other-Languages">2.7 References for Other Languages</a></li>
</ul></li>
<li><a name="toc-GCC-Command-Options" href="#Invoking-GCC">3 GCC Command Options</a>
<ul class="no-bullet">
<li><a name="toc-Option-Summary-1" href="#Option-Summary">3.1 Option Summary</a></li>
<li><a name="toc-Options-Controlling-the-Kind-of-Output" href="#Overall-Options">3.2 Options Controlling the Kind of Output</a></li>
<li><a name="toc-Compiling-C_002b_002b-Programs" href="#Invoking-G_002b_002b">3.3 Compiling C++ Programs</a></li>
<li><a name="toc-Options-Controlling-C-Dialect" href="#C-Dialect-Options">3.4 Options Controlling C Dialect</a></li>
<li><a name="toc-Options-Controlling-C_002b_002b-Dialect" href="#C_002b_002b-Dialect-Options">3.5 Options Controlling C++ Dialect</a></li>
<li><a name="toc-Options-Controlling-Objective_002dC-and-Objective_002dC_002b_002b-Dialects" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">3.6 Options Controlling Objective-C and Objective-C++ Dialects</a></li>
<li><a name="toc-Options-to-Control-Diagnostic-Messages-Formatting" href="#Diagnostic-Message-Formatting-Options">3.7 Options to Control Diagnostic Messages Formatting</a></li>
<li><a name="toc-Options-to-Request-or-Suppress-Warnings" href="#Warning-Options">3.8 Options to Request or Suppress Warnings</a></li>
<li><a name="toc-Options-for-Debugging-Your-Program" href="#Debugging-Options">3.9 Options for Debugging Your Program</a></li>
<li><a name="toc-Options-That-Control-Optimization" href="#Optimize-Options">3.10 Options That Control Optimization</a></li>
<li><a name="toc-Program-Instrumentation-Options" href="#Instrumentation-Options">3.11 Program Instrumentation Options</a></li>
<li><a name="toc-Options-Controlling-the-Preprocessor" href="#Preprocessor-Options">3.12 Options Controlling the Preprocessor</a></li>
<li><a name="toc-Passing-Options-to-the-Assembler" href="#Assembler-Options">3.13 Passing Options to the Assembler</a></li>
<li><a name="toc-Options-for-Linking" href="#Link-Options">3.14 Options for Linking</a></li>
<li><a name="toc-Options-for-Directory-Search" href="#Directory-Options">3.15 Options for Directory Search</a></li>
<li><a name="toc-Options-for-Code-Generation-Conventions" href="#Code-Gen-Options">3.16 Options for Code Generation Conventions</a></li>
<li><a name="toc-GCC-Developer-Options" href="#Developer-Options">3.17 GCC Developer Options</a></li>
<li><a name="toc-Machine_002dDependent-Options" href="#Submodel-Options">3.18 Machine-Dependent Options</a>
<ul class="no-bullet">
<li><a name="toc-AArch64-Options-1" href="#AArch64-Options">3.18.1 AArch64 Options</a>
<ul class="no-bullet">
<li><a name="toc-_002dmarch-and-_002dmcpu-Feature-Modifiers" href="#g_t_002dmarch-and-_002dmcpu-Feature-Modifiers">3.18.1.1 <samp>-march</samp> and <samp>-mcpu</samp> Feature Modifiers</a></li>
</ul></li>
<li><a name="toc-Adapteva-Epiphany-Options-1" href="#Adapteva-Epiphany-Options">3.18.2 Adapteva Epiphany Options</a></li>
<li><a name="toc-ARC-Options-1" href="#ARC-Options">3.18.3 ARC Options</a></li>
<li><a name="toc-ARM-Options-1" href="#ARM-Options">3.18.4 ARM Options</a></li>
<li><a name="toc-AVR-Options-1" href="#AVR-Options">3.18.5 AVR Options</a>
<ul class="no-bullet">
<li><a name="toc-EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash" href="#EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash">3.18.5.1 <code>EIND</code> and Devices with More Than 128 Ki Bytes of Flash</a></li>
<li><a name="toc-Handling-of-the-RAMPD_002c-RAMPX_002c-RAMPY-and-RAMPZ-Special-Function-Registers" href="#Handling-of-the-RAMPD_002c-RAMPX_002c-RAMPY-and-RAMPZ-Special-Function-Registers">3.18.5.2 Handling of the <code>RAMPD</code>, <code>RAMPX</code>, <code>RAMPY</code> and <code>RAMPZ</code> Special Function Registers</a></li>
<li><a name="toc-AVR-Built_002din-Macros" href="#AVR-Built_002din-Macros">3.18.5.3 AVR Built-in Macros</a></li>
</ul></li>
<li><a name="toc-Blackfin-Options-1" href="#Blackfin-Options">3.18.6 Blackfin Options</a></li>
<li><a name="toc-C6X-Options-1" href="#C6X-Options">3.18.7 C6X Options</a></li>
<li><a name="toc-CRIS-Options-1" href="#CRIS-Options">3.18.8 CRIS Options</a></li>
<li><a name="toc-CR16-Options-1" href="#CR16-Options">3.18.9 CR16 Options</a></li>
<li><a name="toc-Darwin-Options-1" href="#Darwin-Options">3.18.10 Darwin Options</a></li>
<li><a name="toc-DEC-Alpha-Options-1" href="#DEC-Alpha-Options">3.18.11 DEC Alpha Options</a></li>
<li><a name="toc-FR30-Options-1" href="#FR30-Options">3.18.12 FR30 Options</a></li>
<li><a name="toc-FT32-Options-1" href="#FT32-Options">3.18.13 FT32 Options</a></li>
<li><a name="toc-FRV-Options-1" href="#FRV-Options">3.18.14 FRV Options</a></li>
<li><a name="toc-GNU_002fLinux-Options-1" href="#GNU_002fLinux-Options">3.18.15 GNU/Linux Options</a></li>
<li><a name="toc-H8_002f300-Options-1" href="#H8_002f300-Options">3.18.16 H8/300 Options</a></li>
<li><a name="toc-HPPA-Options-1" href="#HPPA-Options">3.18.17 HPPA Options</a></li>
<li><a name="toc-IA_002d64-Options-1" href="#IA_002d64-Options">3.18.18 IA-64 Options</a></li>
<li><a name="toc-LM32-Options-1" href="#LM32-Options">3.18.19 LM32 Options</a></li>
<li><a name="toc-M32C-Options-1" href="#M32C-Options">3.18.20 M32C Options</a></li>
<li><a name="toc-M32R_002fD-Options-1" href="#M32R_002fD-Options">3.18.21 M32R/D Options</a></li>
<li><a name="toc-M680x0-Options-1" href="#M680x0-Options">3.18.22 M680x0 Options</a></li>
<li><a name="toc-MCore-Options-1" href="#MCore-Options">3.18.23 MCore Options</a></li>
<li><a name="toc-MeP-Options-1" href="#MeP-Options">3.18.24 MeP Options</a></li>
<li><a name="toc-MicroBlaze-Options-1" href="#MicroBlaze-Options">3.18.25 MicroBlaze Options</a></li>
<li><a name="toc-MIPS-Options-1" href="#MIPS-Options">3.18.26 MIPS Options</a></li>
<li><a name="toc-MMIX-Options-1" href="#MMIX-Options">3.18.27 MMIX Options</a></li>
<li><a name="toc-MN10300-Options-1" href="#MN10300-Options">3.18.28 MN10300 Options</a></li>
<li><a name="toc-Moxie-Options-1" href="#Moxie-Options">3.18.29 Moxie Options</a></li>
<li><a name="toc-MSP430-Options-1" href="#MSP430-Options">3.18.30 MSP430 Options</a></li>
<li><a name="toc-NDS32-Options-1" href="#NDS32-Options">3.18.31 NDS32 Options</a></li>
<li><a name="toc-Nios-II-Options-1" href="#Nios-II-Options">3.18.32 Nios II Options</a></li>
<li><a name="toc-Nvidia-PTX-Options-1" href="#Nvidia-PTX-Options">3.18.33 Nvidia PTX Options</a></li>
<li><a name="toc-PDP_002d11-Options-1" href="#PDP_002d11-Options">3.18.34 PDP-11 Options</a></li>
<li><a name="toc-picoChip-Options-1" href="#picoChip-Options">3.18.35 picoChip Options</a></li>
<li><a name="toc-PowerPC-Options-1" href="#PowerPC-Options">3.18.36 PowerPC Options</a></li>
<li><a name="toc-PowerPC-SPE-Options-1" href="#PowerPC-SPE-Options">3.18.37 PowerPC SPE Options</a></li>
<li><a name="toc-RISC_002dV-Options-1" href="#RISC_002dV-Options">3.18.38 RISC-V Options</a></li>
<li><a name="toc-RL78-Options-1" href="#RL78-Options">3.18.39 RL78 Options</a></li>
<li><a name="toc-IBM-RS_002f6000-and-PowerPC-Options" href="#RS_002f6000-and-PowerPC-Options">3.18.40 IBM RS/6000 and PowerPC Options</a></li>
<li><a name="toc-RX-Options-1" href="#RX-Options">3.18.41 RX Options</a></li>
<li><a name="toc-S_002f390-and-zSeries-Options-1" href="#S_002f390-and-zSeries-Options">3.18.42 S/390 and zSeries Options</a></li>
<li><a name="toc-Score-Options-1" href="#Score-Options">3.18.43 Score Options</a></li>
<li><a name="toc-SH-Options-1" href="#SH-Options">3.18.44 SH Options</a></li>
<li><a name="toc-Solaris-2-Options-1" href="#Solaris-2-Options">3.18.45 Solaris 2 Options</a></li>
<li><a name="toc-SPARC-Options-1" href="#SPARC-Options">3.18.46 SPARC Options</a></li>
<li><a name="toc-SPU-Options-1" href="#SPU-Options">3.18.47 SPU Options</a></li>
<li><a name="toc-Options-for-System-V" href="#System-V-Options">3.18.48 Options for System V</a></li>
<li><a name="toc-TILE_002dGx-Options-1" href="#TILE_002dGx-Options">3.18.49 TILE-Gx Options</a></li>
<li><a name="toc-TILEPro-Options-1" href="#TILEPro-Options">3.18.50 TILEPro Options</a></li>
<li><a name="toc-V850-Options-1" href="#V850-Options">3.18.51 V850 Options</a></li>
<li><a name="toc-VAX-Options-1" href="#VAX-Options">3.18.52 VAX Options</a></li>
<li><a name="toc-Visium-Options-1" href="#Visium-Options">3.18.53 Visium Options</a></li>
<li><a name="toc-VMS-Options-1" href="#VMS-Options">3.18.54 VMS Options</a></li>
<li><a name="toc-VxWorks-Options-1" href="#VxWorks-Options">3.18.55 VxWorks Options</a></li>
<li><a name="toc-x86-Options-1" href="#x86-Options">3.18.56 x86 Options</a></li>
<li><a name="toc-x86-Windows-Options-1" href="#x86-Windows-Options">3.18.57 x86 Windows Options</a></li>
<li><a name="toc-Xstormy16-Options-1" href="#Xstormy16-Options">3.18.58 Xstormy16 Options</a></li>
<li><a name="toc-Xtensa-Options-1" href="#Xtensa-Options">3.18.59 Xtensa Options</a></li>
<li><a name="toc-zSeries-Options-1" href="#zSeries-Options">3.18.60 zSeries Options</a></li>
</ul></li>
<li><a name="toc-Specifying-Subprocesses-and-the-Switches-to-Pass-to-Them" href="#Spec-Files">3.19 Specifying Subprocesses and the Switches to Pass to Them</a></li>
<li><a name="toc-Environment-Variables-Affecting-GCC" href="#Environment-Variables">3.20 Environment Variables Affecting GCC</a></li>
<li><a name="toc-Using-Precompiled-Headers" href="#Precompiled-Headers">3.21 Using Precompiled Headers</a></li>
</ul></li>
<li><a name="toc-C-Implementation_002dDefined-Behavior" href="#C-Implementation">4 C Implementation-Defined Behavior</a>
<ul class="no-bullet">
<li><a name="toc-Translation" href="#Translation-implementation">4.1 Translation</a></li>
<li><a name="toc-Environment" href="#Environment-implementation">4.2 Environment</a></li>
<li><a name="toc-Identifiers" href="#Identifiers-implementation">4.3 Identifiers</a></li>
<li><a name="toc-Characters" href="#Characters-implementation">4.4 Characters</a></li>
<li><a name="toc-Integers" href="#Integers-implementation">4.5 Integers</a></li>
<li><a name="toc-Floating-Point" href="#Floating-point-implementation">4.6 Floating Point</a></li>
<li><a name="toc-Arrays-and-Pointers" href="#Arrays-and-pointers-implementation">4.7 Arrays and Pointers</a></li>
<li><a name="toc-Hints" href="#Hints-implementation">4.8 Hints</a></li>
<li><a name="toc-Structures_002c-Unions_002c-Enumerations_002c-and-Bit_002dFields" href="#Structures-unions-enumerations-and-bit_002dfields-implementation">4.9 Structures, Unions, Enumerations, and Bit-Fields</a></li>
<li><a name="toc-Qualifiers" href="#Qualifiers-implementation">4.10 Qualifiers</a></li>
<li><a name="toc-Declarators" href="#Declarators-implementation">4.11 Declarators</a></li>
<li><a name="toc-Statements" href="#Statements-implementation">4.12 Statements</a></li>
<li><a name="toc-Preprocessing-Directives" href="#Preprocessing-directives-implementation">4.13 Preprocessing Directives</a></li>
<li><a name="toc-Library-Functions" href="#Library-functions-implementation">4.14 Library Functions</a></li>
<li><a name="toc-Architecture" href="#Architecture-implementation">4.15 Architecture</a></li>
<li><a name="toc-Locale_002dSpecific-Behavior" href="#Locale_002dspecific-behavior-implementation">4.16 Locale-Specific Behavior</a></li>
</ul></li>
<li><a name="toc-C_002b_002b-Implementation_002dDefined-Behavior" href="#C_002b_002b-Implementation">5 C++ Implementation-Defined Behavior</a>
<ul class="no-bullet">
<li><a name="toc-Conditionally_002dSupported-Behavior" href="#Conditionally_002dsupported-behavior">5.1 Conditionally-Supported Behavior</a></li>
<li><a name="toc-Exception-Handling" href="#Exception-handling">5.2 Exception Handling</a></li>
</ul></li>
<li><a name="toc-Extensions-to-the-C-Language-Family" href="#C-Extensions">6 Extensions to the C Language Family</a>
<ul class="no-bullet">
<li><a name="toc-Statements-and-Declarations-in-Expressions" href="#Statement-Exprs">6.1 Statements and Declarations in Expressions</a></li>
<li><a name="toc-Locally-Declared-Labels" href="#Local-Labels">6.2 Locally Declared Labels</a></li>
<li><a name="toc-Labels-as-Values-1" href="#Labels-as-Values">6.3 Labels as Values</a></li>
<li><a name="toc-Nested-Functions-1" href="#Nested-Functions">6.4 Nested Functions</a></li>
<li><a name="toc-Constructing-Function-Calls" href="#Constructing-Calls">6.5 Constructing Function Calls</a></li>
<li><a name="toc-Referring-to-a-Type-with-typeof" href="#Typeof">6.6 Referring to a Type with <code>typeof</code></a></li>
<li><a name="toc-Conditionals-with-Omitted-Operands" href="#Conditionals">6.7 Conditionals with Omitted Operands</a></li>
<li><a name="toc-128_002dbit-Integers" href="#g_t_005f_005fint128">6.8 128-bit Integers</a></li>
<li><a name="toc-Double_002dWord-Integers" href="#Long-Long">6.9 Double-Word Integers</a></li>
<li><a name="toc-Complex-Numbers" href="#Complex">6.10 Complex Numbers</a></li>
<li><a name="toc-Additional-Floating-Types" href="#Floating-Types">6.11 Additional Floating Types</a></li>
<li><a name="toc-Half_002dPrecision-Floating-Point" href="#Half_002dPrecision">6.12 Half-Precision Floating Point</a></li>
<li><a name="toc-Decimal-Floating-Types" href="#Decimal-Float">6.13 Decimal Floating Types</a></li>
<li><a name="toc-Hex-Floats-1" href="#Hex-Floats">6.14 Hex Floats</a></li>
<li><a name="toc-Fixed_002dPoint-Types" href="#Fixed_002dPoint">6.15 Fixed-Point Types</a></li>
<li><a name="toc-Named-Address-Spaces-1" href="#Named-Address-Spaces">6.16 Named Address Spaces</a>
<ul class="no-bullet">
<li><a name="toc-AVR-Named-Address-Spaces-1" href="#AVR-Named-Address-Spaces-1">6.16.1 AVR Named Address Spaces</a></li>
<li><a name="toc-M32C-Named-Address-Spaces" href="#M32C-Named-Address-Spaces">6.16.2 M32C Named Address Spaces</a></li>
<li><a name="toc-RL78-Named-Address-Spaces" href="#RL78-Named-Address-Spaces">6.16.3 RL78 Named Address Spaces</a></li>
<li><a name="toc-SPU-Named-Address-Spaces" href="#SPU-Named-Address-Spaces">6.16.4 SPU Named Address Spaces</a></li>
<li><a name="toc-x86-Named-Address-Spaces" href="#x86-Named-Address-Spaces">6.16.5 x86 Named Address Spaces</a></li>
</ul></li>
<li><a name="toc-Arrays-of-Length-Zero" href="#Zero-Length">6.17 Arrays of Length Zero</a></li>
<li><a name="toc-Structures-with-No-Members" href="#Empty-Structures">6.18 Structures with No Members</a></li>
<li><a name="toc-Arrays-of-Variable-Length" href="#Variable-Length">6.19 Arrays of Variable Length</a></li>
<li><a name="toc-Macros-with-a-Variable-Number-of-Arguments_002e" href="#Variadic-Macros">6.20 Macros with a Variable Number of Arguments.</a></li>
<li><a name="toc-Slightly-Looser-Rules-for-Escaped-Newlines" href="#Escaped-Newlines">6.21 Slightly Looser Rules for Escaped Newlines</a></li>
<li><a name="toc-Non_002dLvalue-Arrays-May-Have-Subscripts" href="#Subscripting">6.22 Non-Lvalue Arrays May Have Subscripts</a></li>
<li><a name="toc-Arithmetic-on-void_002d-and-Function_002dPointers" href="#Pointer-Arith">6.23 Arithmetic on <code>void</code>- and Function-Pointers</a></li>
<li><a name="toc-Pointers-to-Arrays-with-Qualifiers-Work-as-Expected" href="#Pointers-to-Arrays">6.24 Pointers to Arrays with Qualifiers Work as Expected</a></li>
<li><a name="toc-Non_002dConstant-Initializers" href="#Initializers">6.25 Non-Constant Initializers</a></li>
<li><a name="toc-Compound-Literals-1" href="#Compound-Literals">6.26 Compound Literals</a></li>
<li><a name="toc-Designated-Initializers" href="#Designated-Inits">6.27 Designated Initializers</a></li>
<li><a name="toc-Case-Ranges-1" href="#Case-Ranges">6.28 Case Ranges</a></li>
<li><a name="toc-Cast-to-a-Union-Type" href="#Cast-to-Union">6.29 Cast to a Union Type</a></li>
<li><a name="toc-Mixed-Declarations-and-Code" href="#Mixed-Declarations">6.30 Mixed Declarations and Code</a></li>
<li><a name="toc-Declaring-Attributes-of-Functions" href="#Function-Attributes">6.31 Declaring Attributes of Functions</a>
<ul class="no-bullet">
<li><a name="toc-Common-Function-Attributes-1" href="#Common-Function-Attributes">6.31.1 Common Function Attributes</a></li>
<li><a name="toc-AArch64-Function-Attributes-1" href="#AArch64-Function-Attributes">6.31.2 AArch64 Function Attributes</a>
<ul class="no-bullet">
<li><a name="toc-Inlining-rules" href="#Inlining-rules">6.31.2.1 Inlining rules</a></li>
</ul></li>
<li><a name="toc-ARC-Function-Attributes-1" href="#ARC-Function-Attributes">6.31.3 ARC Function Attributes</a></li>
<li><a name="toc-ARM-Function-Attributes-1" href="#ARM-Function-Attributes">6.31.4 ARM Function Attributes</a></li>
<li><a name="toc-AVR-Function-Attributes-1" href="#AVR-Function-Attributes">6.31.5 AVR Function Attributes</a></li>
<li><a name="toc-Blackfin-Function-Attributes-1" href="#Blackfin-Function-Attributes">6.31.6 Blackfin Function Attributes</a></li>
<li><a name="toc-CR16-Function-Attributes-1" href="#CR16-Function-Attributes">6.31.7 CR16 Function Attributes</a></li>
<li><a name="toc-Epiphany-Function-Attributes-1" href="#Epiphany-Function-Attributes">6.31.8 Epiphany Function Attributes</a></li>
<li><a name="toc-H8_002f300-Function-Attributes-1" href="#H8_002f300-Function-Attributes">6.31.9 H8/300 Function Attributes</a></li>
<li><a name="toc-IA_002d64-Function-Attributes-1" href="#IA_002d64-Function-Attributes">6.31.10 IA-64 Function Attributes</a></li>
<li><a name="toc-M32C-Function-Attributes-1" href="#M32C-Function-Attributes">6.31.11 M32C Function Attributes</a></li>
<li><a name="toc-M32R_002fD-Function-Attributes-1" href="#M32R_002fD-Function-Attributes">6.31.12 M32R/D Function Attributes</a></li>
<li><a name="toc-m68k-Function-Attributes-1" href="#m68k-Function-Attributes">6.31.13 m68k Function Attributes</a></li>
<li><a name="toc-MCORE-Function-Attributes-1" href="#MCORE-Function-Attributes">6.31.14 MCORE Function Attributes</a></li>
<li><a name="toc-MeP-Function-Attributes-1" href="#MeP-Function-Attributes">6.31.15 MeP Function Attributes</a></li>
<li><a name="toc-MicroBlaze-Function-Attributes-1" href="#MicroBlaze-Function-Attributes">6.31.16 MicroBlaze Function Attributes</a></li>
<li><a name="toc-Microsoft-Windows-Function-Attributes-1" href="#Microsoft-Windows-Function-Attributes">6.31.17 Microsoft Windows Function Attributes</a></li>
<li><a name="toc-MIPS-Function-Attributes-1" href="#MIPS-Function-Attributes">6.31.18 MIPS Function Attributes</a></li>
<li><a name="toc-MSP430-Function-Attributes-1" href="#MSP430-Function-Attributes">6.31.19 MSP430 Function Attributes</a></li>
<li><a name="toc-NDS32-Function-Attributes-1" href="#NDS32-Function-Attributes">6.31.20 NDS32 Function Attributes</a></li>
<li><a name="toc-Nios-II-Function-Attributes-1" href="#Nios-II-Function-Attributes">6.31.21 Nios II Function Attributes</a></li>
<li><a name="toc-Nvidia-PTX-Function-Attributes-1" href="#Nvidia-PTX-Function-Attributes">6.31.22 Nvidia PTX Function Attributes</a></li>
<li><a name="toc-PowerPC-Function-Attributes-1" href="#PowerPC-Function-Attributes">6.31.23 PowerPC Function Attributes</a></li>
<li><a name="toc-RISC_002dV-Function-Attributes-1" href="#RISC_002dV-Function-Attributes">6.31.24 RISC-V Function Attributes</a></li>
<li><a name="toc-RL78-Function-Attributes-1" href="#RL78-Function-Attributes">6.31.25 RL78 Function Attributes</a></li>
<li><a name="toc-RX-Function-Attributes-1" href="#RX-Function-Attributes">6.31.26 RX Function Attributes</a></li>
<li><a name="toc-S_002f390-Function-Attributes-1" href="#S_002f390-Function-Attributes">6.31.27 S/390 Function Attributes</a></li>
<li><a name="toc-SH-Function-Attributes-1" href="#SH-Function-Attributes">6.31.28 SH Function Attributes</a></li>
<li><a name="toc-SPU-Function-Attributes-1" href="#SPU-Function-Attributes">6.31.29 SPU Function Attributes</a></li>
<li><a name="toc-Symbian-OS-Function-Attributes-1" href="#Symbian-OS-Function-Attributes">6.31.30 Symbian OS Function Attributes</a></li>
<li><a name="toc-V850-Function-Attributes-1" href="#V850-Function-Attributes">6.31.31 V850 Function Attributes</a></li>
<li><a name="toc-Visium-Function-Attributes-1" href="#Visium-Function-Attributes">6.31.32 Visium Function Attributes</a></li>
<li><a name="toc-x86-Function-Attributes-1" href="#x86-Function-Attributes">6.31.33 x86 Function Attributes</a></li>
<li><a name="toc-Xstormy16-Function-Attributes-1" href="#Xstormy16-Function-Attributes">6.31.34 Xstormy16 Function Attributes</a></li>
</ul></li>
<li><a name="toc-Specifying-Attributes-of-Variables" href="#Variable-Attributes">6.32 Specifying Attributes of Variables</a>
<ul class="no-bullet">
<li><a name="toc-Common-Variable-Attributes-1" href="#Common-Variable-Attributes">6.32.1 Common Variable Attributes</a></li>
<li><a name="toc-ARC-Variable-Attributes-1" href="#ARC-Variable-Attributes">6.32.2 ARC Variable Attributes</a></li>
<li><a name="toc-AVR-Variable-Attributes-1" href="#AVR-Variable-Attributes">6.32.3 AVR Variable Attributes</a></li>
<li><a name="toc-Blackfin-Variable-Attributes-1" href="#Blackfin-Variable-Attributes">6.32.4 Blackfin Variable Attributes</a></li>
<li><a name="toc-H8_002f300-Variable-Attributes-1" href="#H8_002f300-Variable-Attributes">6.32.5 H8/300 Variable Attributes</a></li>
<li><a name="toc-IA_002d64-Variable-Attributes-1" href="#IA_002d64-Variable-Attributes">6.32.6 IA-64 Variable Attributes</a></li>
<li><a name="toc-M32R_002fD-Variable-Attributes-1" href="#M32R_002fD-Variable-Attributes">6.32.7 M32R/D Variable Attributes</a></li>
<li><a name="toc-MeP-Variable-Attributes-1" href="#MeP-Variable-Attributes">6.32.8 MeP Variable Attributes</a></li>
<li><a name="toc-Microsoft-Windows-Variable-Attributes-1" href="#Microsoft-Windows-Variable-Attributes">6.32.9 Microsoft Windows Variable Attributes</a></li>
<li><a name="toc-MSP430-Variable-Attributes-1" href="#MSP430-Variable-Attributes">6.32.10 MSP430 Variable Attributes</a></li>
<li><a name="toc-Nvidia-PTX-Variable-Attributes-1" href="#Nvidia-PTX-Variable-Attributes">6.32.11 Nvidia PTX Variable Attributes</a></li>
<li><a name="toc-PowerPC-Variable-Attributes-1" href="#PowerPC-Variable-Attributes">6.32.12 PowerPC Variable Attributes</a></li>
<li><a name="toc-RL78-Variable-Attributes-1" href="#RL78-Variable-Attributes">6.32.13 RL78 Variable Attributes</a></li>
<li><a name="toc-SPU-Variable-Attributes-1" href="#SPU-Variable-Attributes">6.32.14 SPU Variable Attributes</a></li>
<li><a name="toc-V850-Variable-Attributes-1" href="#V850-Variable-Attributes">6.32.15 V850 Variable Attributes</a></li>
<li><a name="toc-x86-Variable-Attributes-1" href="#x86-Variable-Attributes">6.32.16 x86 Variable Attributes</a></li>
<li><a name="toc-Xstormy16-Variable-Attributes-1" href="#Xstormy16-Variable-Attributes">6.32.17 Xstormy16 Variable Attributes</a></li>
</ul></li>
<li><a name="toc-Specifying-Attributes-of-Types" href="#Type-Attributes">6.33 Specifying Attributes of Types</a>
<ul class="no-bullet">
<li><a name="toc-Common-Type-Attributes-1" href="#Common-Type-Attributes">6.33.1 Common Type Attributes</a></li>
<li><a name="toc-ARC-Type-Attributes-1" href="#ARC-Type-Attributes">6.33.2 ARC Type Attributes</a></li>
<li><a name="toc-ARM-Type-Attributes-1" href="#ARM-Type-Attributes">6.33.3 ARM Type Attributes</a></li>
<li><a name="toc-MeP-Type-Attributes-1" href="#MeP-Type-Attributes">6.33.4 MeP Type Attributes</a></li>
<li><a name="toc-PowerPC-Type-Attributes-1" href="#PowerPC-Type-Attributes">6.33.5 PowerPC Type Attributes</a></li>
<li><a name="toc-SPU-Type-Attributes-1" href="#SPU-Type-Attributes">6.33.6 SPU Type Attributes</a></li>
<li><a name="toc-x86-Type-Attributes-1" href="#x86-Type-Attributes">6.33.7 x86 Type Attributes</a></li>
</ul></li>
<li><a name="toc-Label-Attributes-1" href="#Label-Attributes">6.34 Label Attributes</a></li>
<li><a name="toc-Enumerator-Attributes-1" href="#Enumerator-Attributes">6.35 Enumerator Attributes</a></li>
<li><a name="toc-Statement-Attributes-1" href="#Statement-Attributes">6.36 Statement Attributes</a></li>
<li><a name="toc-Attribute-Syntax-1" href="#Attribute-Syntax">6.37 Attribute Syntax</a></li>
<li><a name="toc-Prototypes-and-Old_002dStyle-Function-Definitions" href="#Function-Prototypes">6.38 Prototypes and Old-Style Function Definitions</a></li>
<li><a name="toc-C_002b_002b-Style-Comments" href="#C_002b_002b-Comments">6.39 C++ Style Comments</a></li>
<li><a name="toc-Dollar-Signs-in-Identifier-Names" href="#Dollar-Signs">6.40 Dollar Signs in Identifier Names</a></li>
<li><a name="toc-The-Character-ESC-in-Constants" href="#Character-Escapes">6.41 The Character <tt class="key">ESC</tt> in Constants</a></li>
<li><a name="toc-Inquiring-on-Alignment-of-Types-or-Variables" href="#Alignment">6.42 Inquiring on Alignment of Types or Variables</a></li>
<li><a name="toc-An-Inline-Function-is-As-Fast-As-a-Macro" href="#Inline">6.43 An Inline Function is As Fast As a Macro</a></li>
<li><a name="toc-When-is-a-Volatile-Object-Accessed_003f" href="#Volatiles">6.44 When is a Volatile Object Accessed?</a></li>
<li><a name="toc-How-to-Use-Inline-Assembly-Language-in-C-Code" href="#Using-Assembly-Language-with-C">6.45 How to Use Inline Assembly Language in C Code</a>
<ul class="no-bullet">
<li><a name="toc-Basic-Asm-_002d_002d_002d-Assembler-Instructions-Without-Operands" href="#Basic-Asm">6.45.1 Basic Asm — Assembler Instructions Without Operands</a></li>
<li><a name="toc-Extended-Asm-_002d-Assembler-Instructions-with-C-Expression-Operands" href="#Extended-Asm">6.45.2 Extended Asm - Assembler Instructions with C Expression Operands</a>
<ul class="no-bullet">
<li><a name="toc-Volatile-1" href="#Volatile-1">6.45.2.1 Volatile</a></li>
<li><a name="toc-Assembler-Template" href="#Assembler-Template">6.45.2.2 Assembler Template</a></li>
<li><a name="toc-Output-Operands" href="#Output-Operands">6.45.2.3 Output Operands</a></li>
<li><a name="toc-Flag-Output-Operands" href="#Flag-Output-Operands">6.45.2.4 Flag Output Operands</a></li>
<li><a name="toc-Input-Operands" href="#Input-Operands">6.45.2.5 Input Operands</a></li>
<li><a name="toc-Clobbers-and-Scratch-Registers-1" href="#Clobbers-and-Scratch-Registers-1">6.45.2.6 Clobbers and Scratch Registers</a></li>
<li><a name="toc-Goto-Labels" href="#Goto-Labels">6.45.2.7 Goto Labels</a></li>
<li><a name="toc-x86-Operand-Modifiers" href="#x86-Operand-Modifiers">6.45.2.8 x86 Operand Modifiers</a></li>
<li><a name="toc-x86-Floating_002dPoint-asm-Operands" href="#x86-Floating_002dPoint-asm-Operands">6.45.2.9 x86 Floating-Point <code>asm</code> Operands</a></li>
</ul></li>
<li><a name="toc-Constraints-for-asm-Operands" href="#Constraints">6.45.3 Constraints for <code>asm</code> Operands</a>
<ul class="no-bullet">
<li><a name="toc-Simple-Constraints-1" href="#Simple-Constraints">6.45.3.1 Simple Constraints</a></li>
<li><a name="toc-Multiple-Alternative-Constraints" href="#Multi_002dAlternative">6.45.3.2 Multiple Alternative Constraints</a></li>
<li><a name="toc-Constraint-Modifier-Characters" href="#Modifiers">6.45.3.3 Constraint Modifier Characters</a></li>
<li><a name="toc-Constraints-for-Particular-Machines" href="#Machine-Constraints">6.45.3.4 Constraints for Particular Machines</a></li>
</ul></li>
<li><a name="toc-Controlling-Names-Used-in-Assembler-Code" href="#Asm-Labels">6.45.4 Controlling Names Used in Assembler Code</a></li>
<li><a name="toc-Variables-in-Specified-Registers" href="#Explicit-Register-Variables">6.45.5 Variables in Specified Registers</a>
<ul class="no-bullet">
<li><a name="toc-Defining-Global-Register-Variables" href="#Global-Register-Variables">6.45.5.1 Defining Global Register Variables</a></li>
<li><a name="toc-Specifying-Registers-for-Local-Variables" href="#Local-Register-Variables">6.45.5.2 Specifying Registers for Local Variables</a></li>
</ul></li>
<li><a name="toc-Size-of-an-asm-1" href="#Size-of-an-asm">6.45.6 Size of an <code>asm</code></a></li>
</ul></li>
<li><a name="toc-Alternate-Keywords-1" href="#Alternate-Keywords">6.46 Alternate Keywords</a></li>
<li><a name="toc-Incomplete-enum-Types" href="#Incomplete-Enums">6.47 Incomplete <code>enum</code> Types</a></li>
<li><a name="toc-Function-Names-as-Strings" href="#Function-Names">6.48 Function Names as Strings</a></li>
<li><a name="toc-Getting-the-Return-or-Frame-Address-of-a-Function" href="#Return-Address">6.49 Getting the Return or Frame Address of a Function</a></li>
<li><a name="toc-Using-Vector-Instructions-through-Built_002din-Functions" href="#Vector-Extensions">6.50 Using Vector Instructions through Built-in Functions</a></li>
<li><a name="toc-Support-for-offsetof" href="#Offsetof">6.51 Support for <code>offsetof</code></a></li>
<li><a name="toc-Legacy-_005f_005fsync-Built_002din-Functions-for-Atomic-Memory-Access" href="#g_t_005f_005fsync-Builtins">6.52 Legacy <code>__sync</code> Built-in Functions for Atomic Memory Access</a></li>
<li><a name="toc-Built_002din-Functions-for-Memory-Model-Aware-Atomic-Operations" href="#g_t_005f_005fatomic-Builtins">6.53 Built-in Functions for Memory Model Aware Atomic Operations</a></li>
<li><a name="toc-Built_002din-Functions-to-Perform-Arithmetic-with-Overflow-Checking" href="#Integer-Overflow-Builtins">6.54 Built-in Functions to Perform Arithmetic with Overflow Checking</a></li>
<li><a name="toc-x86_002dSpecific-Memory-Model-Extensions-for-Transactional-Memory" href="#x86-specific-memory-model-extensions-for-transactional-memory">6.55 x86-Specific Memory Model Extensions for Transactional Memory</a></li>
<li><a name="toc-Object-Size-Checking-Built_002din-Functions" href="#Object-Size-Checking">6.56 Object Size Checking Built-in Functions</a></li>
<li><a name="toc-Pointer-Bounds-Checker-Built_002din-Functions" href="#Pointer-Bounds-Checker-builtins">6.57 Pointer Bounds Checker Built-in Functions</a></li>
<li><a name="toc-Other-Built_002din-Functions-Provided-by-GCC" href="#Other-Builtins">6.58 Other Built-in Functions Provided by GCC</a></li>
<li><a name="toc-Built_002din-Functions-Specific-to-Particular-Target-Machines" href="#Target-Builtins">6.59 Built-in Functions Specific to Particular Target Machines</a>
<ul class="no-bullet">
<li><a name="toc-AArch64-Built_002din-Functions-1" href="#AArch64-Built_002din-Functions">6.59.1 AArch64 Built-in Functions</a></li>
<li><a name="toc-Alpha-Built_002din-Functions-1" href="#Alpha-Built_002din-Functions">6.59.2 Alpha Built-in Functions</a></li>
<li><a name="toc-Altera-Nios-II-Built_002din-Functions-1" href="#Altera-Nios-II-Built_002din-Functions">6.59.3 Altera Nios II Built-in Functions</a></li>
<li><a name="toc-ARC-Built_002din-Functions-1" href="#ARC-Built_002din-Functions">6.59.4 ARC Built-in Functions</a></li>
<li><a name="toc-ARC-SIMD-Built_002din-Functions-1" href="#ARC-SIMD-Built_002din-Functions">6.59.5 ARC SIMD Built-in Functions</a></li>
<li><a name="toc-ARM-iWMMXt-Built_002din-Functions-1" href="#ARM-iWMMXt-Built_002din-Functions">6.59.6 ARM iWMMXt Built-in Functions</a></li>
<li><a name="toc-ARM-C-Language-Extensions-_0028ACLE_0029-1" href="#ARM-C-Language-Extensions-_0028ACLE_0029">6.59.7 ARM C Language Extensions (ACLE)</a></li>
<li><a name="toc-ARM-Floating-Point-Status-and-Control-Intrinsics-1" href="#ARM-Floating-Point-Status-and-Control-Intrinsics">6.59.8 ARM Floating Point Status and Control Intrinsics</a></li>
<li><a name="toc-ARM-ARMv8_002dM-Security-Extensions-1" href="#ARM-ARMv8_002dM-Security-Extensions">6.59.9 ARM ARMv8-M Security Extensions</a></li>
<li><a name="toc-AVR-Built_002din-Functions-1" href="#AVR-Built_002din-Functions">6.59.10 AVR Built-in Functions</a></li>
<li><a name="toc-Blackfin-Built_002din-Functions-1" href="#Blackfin-Built_002din-Functions">6.59.11 Blackfin Built-in Functions</a></li>
<li><a name="toc-FR_002dV-Built_002din-Functions-1" href="#FR_002dV-Built_002din-Functions">6.59.12 FR-V Built-in Functions</a>
<ul class="no-bullet">
<li><a name="toc-Argument-Types-1" href="#Argument-Types">6.59.12.1 Argument Types</a></li>
<li><a name="toc-Directly_002dMapped-Integer-Functions" href="#Directly_002dmapped-Integer-Functions">6.59.12.2 Directly-Mapped Integer Functions</a></li>
<li><a name="toc-Directly_002dMapped-Media-Functions" href="#Directly_002dmapped-Media-Functions">6.59.12.3 Directly-Mapped Media Functions</a></li>
<li><a name="toc-Raw-Read_002fWrite-Functions" href="#Raw-read_002fwrite-Functions">6.59.12.4 Raw Read/Write Functions</a></li>
<li><a name="toc-Other-Built_002din-Functions-1" href="#Other-Built_002din-Functions">6.59.12.5 Other Built-in Functions</a></li>
</ul></li>
<li><a name="toc-MIPS-DSP-Built_002din-Functions-1" href="#MIPS-DSP-Built_002din-Functions">6.59.13 MIPS DSP Built-in Functions</a></li>
<li><a name="toc-MIPS-Paired_002dSingle-Support-1" href="#MIPS-Paired_002dSingle-Support">6.59.14 MIPS Paired-Single Support</a></li>
<li><a name="toc-MIPS-Loongson-Built_002din-Functions-1" href="#MIPS-Loongson-Built_002din-Functions">6.59.15 MIPS Loongson Built-in Functions</a>
<ul class="no-bullet">
<li><a name="toc-Paired_002dSingle-Arithmetic-1" href="#Paired_002dSingle-Arithmetic">6.59.15.1 Paired-Single Arithmetic</a></li>
<li><a name="toc-Paired_002dSingle-Built_002din-Functions-1" href="#Paired_002dSingle-Built_002din-Functions">6.59.15.2 Paired-Single Built-in Functions</a></li>
<li><a name="toc-MIPS_002d3D-Built_002din-Functions-1" href="#MIPS_002d3D-Built_002din-Functions">6.59.15.3 MIPS-3D Built-in Functions</a></li>
</ul></li>
<li><a name="toc-MIPS-SIMD-Architecture-_0028MSA_0029-Support-1" href="#MIPS-SIMD-Architecture-_0028MSA_0029-Support">6.59.16 MIPS SIMD Architecture (MSA) Support</a>
<ul class="no-bullet">
<li><a name="toc-MIPS-SIMD-Architecture-Built_002din-Functions-1" href="#MIPS-SIMD-Architecture-Built_002din-Functions">6.59.16.1 MIPS SIMD Architecture Built-in Functions</a></li>
</ul></li>
<li><a name="toc-Other-MIPS-Built_002din-Functions-1" href="#Other-MIPS-Built_002din-Functions">6.59.17 Other MIPS Built-in Functions</a></li>
<li><a name="toc-MSP430-Built_002din-Functions-1" href="#MSP430-Built_002din-Functions">6.59.18 MSP430 Built-in Functions</a></li>
<li><a name="toc-NDS32-Built_002din-Functions-1" href="#NDS32-Built_002din-Functions">6.59.19 NDS32 Built-in Functions</a></li>
<li><a name="toc-picoChip-Built_002din-Functions-1" href="#picoChip-Built_002din-Functions">6.59.20 picoChip Built-in Functions</a></li>
<li><a name="toc-PowerPC-Built_002din-Functions-1" href="#PowerPC-Built_002din-Functions">6.59.21 PowerPC Built-in Functions</a></li>
<li><a name="toc-PowerPC-AltiVec-Built_002din-Functions" href="#PowerPC-AltiVec_002fVSX-Built_002din-Functions">6.59.22 PowerPC AltiVec Built-in Functions</a></li>
<li><a name="toc-PowerPC-Hardware-Transactional-Memory-Built_002din-Functions-1" href="#PowerPC-Hardware-Transactional-Memory-Built_002din-Functions">6.59.23 PowerPC Hardware Transactional Memory Built-in Functions</a>
<ul class="no-bullet">
<li><a name="toc-PowerPC-HTM-Low-Level-Built_002din-Functions" href="#PowerPC-HTM-Low-Level-Built_002din-Functions">6.59.23.1 PowerPC HTM Low Level Built-in Functions</a></li>
<li><a name="toc-PowerPC-HTM-High-Level-Inline-Functions" href="#PowerPC-HTM-High-Level-Inline-Functions">6.59.23.2 PowerPC HTM High Level Inline Functions</a></li>
</ul></li>
<li><a name="toc-PowerPC-Atomic-Memory-Operation-Functions-1" href="#PowerPC-Atomic-Memory-Operation-Functions">6.59.24 PowerPC Atomic Memory Operation Functions</a></li>
<li><a name="toc-RX-Built_002din-Functions-1" href="#RX-Built_002din-Functions">6.59.25 RX Built-in Functions</a></li>
<li><a name="toc-S_002f390-System-z-Built_002din-Functions-1" href="#S_002f390-System-z-Built_002din-Functions">6.59.26 S/390 System z Built-in Functions</a></li>
<li><a name="toc-SH-Built_002din-Functions-1" href="#SH-Built_002din-Functions">6.59.27 SH Built-in Functions</a></li>
<li><a name="toc-SPARC-VIS-Built_002din-Functions-1" href="#SPARC-VIS-Built_002din-Functions">6.59.28 SPARC VIS Built-in Functions</a></li>
<li><a name="toc-SPU-Built_002din-Functions-1" href="#SPU-Built_002din-Functions">6.59.29 SPU Built-in Functions</a></li>
<li><a name="toc-TI-C6X-Built_002din-Functions-1" href="#TI-C6X-Built_002din-Functions">6.59.30 TI C6X Built-in Functions</a></li>
<li><a name="toc-TILE_002dGx-Built_002din-Functions-1" href="#TILE_002dGx-Built_002din-Functions">6.59.31 TILE-Gx Built-in Functions</a></li>
<li><a name="toc-TILEPro-Built_002din-Functions-1" href="#TILEPro-Built_002din-Functions">6.59.32 TILEPro Built-in Functions</a></li>
<li><a name="toc-x86-Built_002din-Functions-1" href="#x86-Built_002din-Functions">6.59.33 x86 Built-in Functions</a></li>
<li><a name="toc-x86-Transactional-Memory-Intrinsics" href="#x86-transactional-memory-intrinsics">6.59.34 x86 Transactional Memory Intrinsics</a></li>
<li><a name="toc-x86-Control_002dFlow-Protection-Intrinsics" href="#x86-control_002dflow-protection-intrinsics">6.59.35 x86 Control-Flow Protection Intrinsics</a></li>
</ul></li>
<li><a name="toc-Format-Checks-Specific-to-Particular-Target-Machines" href="#Target-Format-Checks">6.60 Format Checks Specific to Particular Target Machines</a>
<ul class="no-bullet">
<li><a name="toc-Solaris-Format-Checks-1" href="#Solaris-Format-Checks">6.60.1 Solaris Format Checks</a></li>
<li><a name="toc-Darwin-Format-Checks-1" href="#Darwin-Format-Checks">6.60.2 Darwin Format Checks</a></li>
</ul></li>
<li><a name="toc-Pragmas-Accepted-by-GCC" href="#Pragmas">6.61 Pragmas Accepted by GCC</a>
<ul class="no-bullet">
<li><a name="toc-AArch64-Pragmas-1" href="#AArch64-Pragmas">6.61.1 AArch64 Pragmas</a></li>
<li><a name="toc-ARM-Pragmas-1" href="#ARM-Pragmas">6.61.2 ARM Pragmas</a></li>
<li><a name="toc-M32C-Pragmas-1" href="#M32C-Pragmas">6.61.3 M32C Pragmas</a></li>
<li><a name="toc-MeP-Pragmas-1" href="#MeP-Pragmas">6.61.4 MeP Pragmas</a></li>
<li><a name="toc-RS_002f6000-and-PowerPC-Pragmas-1" href="#RS_002f6000-and-PowerPC-Pragmas">6.61.5 RS/6000 and PowerPC Pragmas</a></li>
<li><a name="toc-S_002f390-Pragmas-1" href="#S_002f390-Pragmas">6.61.6 S/390 Pragmas</a></li>
<li><a name="toc-Darwin-Pragmas-1" href="#Darwin-Pragmas">6.61.7 Darwin Pragmas</a></li>
<li><a name="toc-Solaris-Pragmas-1" href="#Solaris-Pragmas">6.61.8 Solaris Pragmas</a></li>
<li><a name="toc-Symbol_002dRenaming-Pragmas-1" href="#Symbol_002dRenaming-Pragmas">6.61.9 Symbol-Renaming Pragmas</a></li>
<li><a name="toc-Structure_002dLayout-Pragmas-1" href="#Structure_002dLayout-Pragmas">6.61.10 Structure-Layout Pragmas</a></li>
<li><a name="toc-Weak-Pragmas-1" href="#Weak-Pragmas">6.61.11 Weak Pragmas</a></li>
<li><a name="toc-Diagnostic-Pragmas-1" href="#Diagnostic-Pragmas">6.61.12 Diagnostic Pragmas</a></li>
<li><a name="toc-Visibility-Pragmas-1" href="#Visibility-Pragmas">6.61.13 Visibility Pragmas</a></li>
<li><a name="toc-Push_002fPop-Macro-Pragmas-1" href="#Push_002fPop-Macro-Pragmas">6.61.14 Push/Pop Macro Pragmas</a></li>
<li><a name="toc-Function-Specific-Option-Pragmas-1" href="#Function-Specific-Option-Pragmas">6.61.15 Function Specific Option Pragmas</a></li>
<li><a name="toc-Loop_002dSpecific-Pragmas-1" href="#Loop_002dSpecific-Pragmas">6.61.16 Loop-Specific Pragmas</a></li>
</ul></li>
<li><a name="toc-Unnamed-Structure-and-Union-Fields" href="#Unnamed-Fields">6.62 Unnamed Structure and Union Fields</a></li>
<li><a name="toc-Thread_002dLocal-Storage" href="#Thread_002dLocal">6.63 Thread-Local Storage</a>
<ul class="no-bullet">
<li><a name="toc-ISO_002fIEC-9899_003a1999-Edits-for-Thread_002dLocal-Storage" href="#C99-Thread_002dLocal-Edits">6.63.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage</a></li>
<li><a name="toc-ISO_002fIEC-14882_003a1998-Edits-for-Thread_002dLocal-Storage" href="#C_002b_002b98-Thread_002dLocal-Edits">6.63.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage</a></li>
</ul></li>
<li><a name="toc-Binary-Constants-using-the-0b-Prefix" href="#Binary-constants">6.64 Binary Constants using the ‘<samp>0b</samp>’ Prefix</a></li>
</ul></li>
<li><a name="toc-Extensions-to-the-C_002b_002b-Language" href="#C_002b_002b-Extensions">7 Extensions to the C++ Language</a>
<ul class="no-bullet">
<li><a name="toc-When-is-a-Volatile-C_002b_002b-Object-Accessed_003f" href="#C_002b_002b-Volatiles">7.1 When is a Volatile C++ Object Accessed?</a></li>
<li><a name="toc-Restricting-Pointer-Aliasing" href="#Restricted-Pointers">7.2 Restricting Pointer Aliasing</a></li>
<li><a name="toc-Vague-Linkage-1" href="#Vague-Linkage">7.3 Vague Linkage</a></li>
<li><a name="toc-C_002b_002b-Interface-and-Implementation-Pragmas" href="#C_002b_002b-Interface">7.4 C++ Interface and Implementation Pragmas</a></li>
<li><a name="toc-Where_0027s-the-Template_003f" href="#Template-Instantiation">7.5 Where’s the Template?</a></li>
<li><a name="toc-Extracting-the-Function-Pointer-from-a-Bound-Pointer-to-Member-Function" href="#Bound-member-functions">7.6 Extracting the Function Pointer from a Bound Pointer to Member Function</a></li>
<li><a name="toc-C_002b_002b_002dSpecific-Variable_002c-Function_002c-and-Type-Attributes" href="#C_002b_002b-Attributes">7.7 C++-Specific Variable, Function, and Type Attributes</a></li>
<li><a name="toc-Function-Multiversioning-1" href="#Function-Multiversioning">7.8 Function Multiversioning</a></li>
<li><a name="toc-Type-Traits-1" href="#Type-Traits">7.9 Type Traits</a></li>
<li><a name="toc-C_002b_002b-Concepts-1" href="#C_002b_002b-Concepts">7.10 C++ Concepts</a></li>
<li><a name="toc-Deprecated-Features-1" href="#Deprecated-Features">7.11 Deprecated Features</a></li>
<li><a name="toc-Backwards-Compatibility-1" href="#Backwards-Compatibility">7.12 Backwards Compatibility</a></li>
</ul></li>
<li><a name="toc-GNU-Objective_002dC-Features" href="#Objective_002dC">8 GNU Objective-C Features</a>
<ul class="no-bullet">
<li><a name="toc-GNU-Objective_002dC-Runtime-API" href="#GNU-Objective_002dC-runtime-API">8.1 GNU Objective-C Runtime API</a>
<ul class="no-bullet">
<li><a name="toc-Modern-GNU-Objective_002dC-Runtime-API" href="#Modern-GNU-Objective_002dC-runtime-API">8.1.1 Modern GNU Objective-C Runtime API</a></li>
<li><a name="toc-Traditional-GNU-Objective_002dC-Runtime-API" href="#Traditional-GNU-Objective_002dC-runtime-API">8.1.2 Traditional GNU Objective-C Runtime API</a></li>
</ul></li>
<li><a name="toc-_002bload_003a-Executing-Code-before-main" href="#Executing-code-before-main">8.2 <code>+load</code>: Executing Code before <code>main</code></a>
<ul class="no-bullet">
<li><a name="toc-What-You-Can-and-Cannot-Do-in-_002bload" href="#What-you-can-and-what-you-cannot-do-in-_002bload">8.2.1 What You Can and Cannot Do in <code>+load</code></a></li>
</ul></li>
<li><a name="toc-Type-Encoding" href="#Type-encoding">8.3 Type Encoding</a>
<ul class="no-bullet">
<li><a name="toc-Legacy-Type-Encoding" href="#Legacy-type-encoding">8.3.1 Legacy Type Encoding</a></li>
<li><a name="toc-_0040encode-1" href="#g_t_0040encode">8.3.2 <code>@encode</code></a></li>
<li><a name="toc-Method-Signatures" href="#Method-signatures">8.3.3 Method Signatures</a></li>
</ul></li>
<li><a name="toc-Garbage-Collection-1" href="#Garbage-Collection">8.4 Garbage Collection</a></li>
<li><a name="toc-Constant-String-Objects" href="#Constant-string-objects">8.5 Constant String Objects</a></li>
<li><a name="toc-compatibility_005falias-1" href="#compatibility_005falias">8.6 <code>compatibility_alias</code></a></li>
<li><a name="toc-Exceptions-1" href="#Exceptions">8.7 Exceptions</a></li>
<li><a name="toc-Synchronization-1" href="#Synchronization">8.8 Synchronization</a></li>
<li><a name="toc-Fast-Enumeration" href="#Fast-enumeration">8.9 Fast Enumeration</a>
<ul class="no-bullet">
<li><a name="toc-Using-Fast-Enumeration" href="#Using-fast-enumeration">8.9.1 Using Fast Enumeration</a></li>
<li><a name="toc-C99_002dLike-Fast-Enumeration-Syntax" href="#c99_002dlike-fast-enumeration-syntax">8.9.2 C99-Like Fast Enumeration Syntax</a></li>
<li><a name="toc-Fast-Enumeration-Details" href="#Fast-enumeration-details">8.9.3 Fast Enumeration Details</a></li>
<li><a name="toc-Fast-Enumeration-Protocol" href="#Fast-enumeration-protocol">8.9.4 Fast Enumeration Protocol</a></li>
</ul></li>
<li><a name="toc-Messaging-with-the-GNU-Objective_002dC-Runtime" href="#Messaging-with-the-GNU-Objective_002dC-runtime">8.10 Messaging with the GNU Objective-C Runtime</a>
<ul class="no-bullet">
<li><a name="toc-Dynamically-Registering-Methods" href="#Dynamically-registering-methods">8.10.1 Dynamically Registering Methods</a></li>
<li><a name="toc-Forwarding-Hook" href="#Forwarding-hook">8.10.2 Forwarding Hook</a></li>
</ul></li>
</ul></li>
<li><a name="toc-Binary-Compatibility" href="#Compatibility">9 Binary Compatibility</a></li>
<li><a name="toc-gcov_002d_002d_002da-Test-Coverage-Program" href="#Gcov">10 <code>gcov</code>—a Test Coverage Program</a>
<ul class="no-bullet">
<li><a name="toc-Introduction-to-gcov" href="#Gcov-Intro">10.1 Introduction to <code>gcov</code></a></li>
<li><a name="toc-Invoking-gcov" href="#Invoking-Gcov">10.2 Invoking <code>gcov</code></a></li>
<li><a name="toc-Using-gcov-with-GCC-Optimization" href="#Gcov-and-Optimization">10.3 Using <code>gcov</code> with GCC Optimization</a></li>
<li><a name="toc-Brief-Description-of-gcov-Data-Files" href="#Gcov-Data-Files">10.4 Brief Description of <code>gcov</code> Data Files</a></li>
<li><a name="toc-Data-File-Relocation-to-Support-Cross_002dProfiling" href="#Cross_002dprofiling">10.5 Data File Relocation to Support Cross-Profiling</a></li>
</ul></li>
<li><a name="toc-gcov_002dtool_002d_002d_002dan-Offline-Gcda-Profile-Processing-Tool" href="#Gcov_002dtool">11 <code>gcov-tool</code>—an Offline Gcda Profile Processing Tool</a>
<ul class="no-bullet">
<li><a name="toc-Introduction-to-gcov_002dtool" href="#Gcov_002dtool-Intro">11.1 Introduction to <code>gcov-tool</code></a></li>
<li><a name="toc-Invoking-gcov_002dtool" href="#Invoking-Gcov_002dtool">11.2 Invoking <code>gcov-tool</code></a></li>
</ul></li>
<li><a name="toc-gcov_002ddump_002d_002d_002dan-Offline-Gcda-and-Gcno-Profile-Dump-Tool" href="#Gcov_002ddump">12 <code>gcov-dump</code>—an Offline Gcda and Gcno Profile Dump Tool</a>
<ul class="no-bullet">
<li><a name="toc-Introduction-to-gcov_002ddump" href="#Gcov_002ddump-Intro">12.1 Introduction to <code>gcov-dump</code></a></li>
<li><a name="toc-Invoking-gcov_002ddump" href="#Invoking-Gcov_002ddump">12.2 Invoking <code>gcov-dump</code></a></li>
</ul></li>
<li><a name="toc-Known-Causes-of-Trouble-with-GCC" href="#Trouble">13 Known Causes of Trouble with GCC</a>
<ul class="no-bullet">
<li><a name="toc-Actual-Bugs-We-Haven_0027t-Fixed-Yet" href="#Actual-Bugs">13.1 Actual Bugs We Haven’t Fixed Yet</a></li>
<li><a name="toc-Interoperation-1" href="#Interoperation">13.2 Interoperation</a></li>
<li><a name="toc-Incompatibilities-of-GCC" href="#Incompatibilities">13.3 Incompatibilities of GCC</a></li>
<li><a name="toc-Fixed-Header-Files" href="#Fixed-Headers">13.4 Fixed Header Files</a></li>
<li><a name="toc-Standard-Libraries-1" href="#Standard-Libraries">13.5 Standard Libraries</a></li>
<li><a name="toc-Disappointments-and-Misunderstandings" href="#Disappointments">13.6 Disappointments and Misunderstandings</a></li>
<li><a name="toc-Common-Misunderstandings-with-GNU-C_002b_002b" href="#C_002b_002b-Misunderstandings">13.7 Common Misunderstandings with GNU C++</a>
<ul class="no-bullet">
<li><a name="toc-Declare-and-Define-Static-Members" href="#Static-Definitions">13.7.1 Declare <em>and</em> Define Static Members</a></li>
<li><a name="toc-Name-Lookup_002c-Templates_002c-and-Accessing-Members-of-Base-Classes" href="#Name-lookup">13.7.2 Name Lookup, Templates, and Accessing Members of Base Classes</a></li>
<li><a name="toc-Temporaries-May-Vanish-Before-You-Expect" href="#Temporaries">13.7.3 Temporaries May Vanish Before You Expect</a></li>
<li><a name="toc-Implicit-Copy_002dAssignment-for-Virtual-Bases" href="#Copy-Assignment">13.7.4 Implicit Copy-Assignment for Virtual Bases</a></li>
</ul></li>
<li><a name="toc-Certain-Changes-We-Don_0027t-Want-to-Make" href="#Non_002dbugs">13.8 Certain Changes We Don’t Want to Make</a></li>
<li><a name="toc-Warning-Messages-and-Error-Messages" href="#Warnings-and-Errors">13.9 Warning Messages and Error Messages</a></li>
</ul></li>
<li><a name="toc-Reporting-Bugs" href="#Bugs">14 Reporting Bugs</a>
<ul class="no-bullet">
<li><a name="toc-Have-You-Found-a-Bug_003f" href="#Bug-Criteria">14.1 Have You Found a Bug?</a></li>
<li><a name="toc-How-and-Where-to-Report-Bugs" href="#Bug-Reporting">14.2 How and Where to Report Bugs</a></li>
</ul></li>
<li><a name="toc-How-To-Get-Help-with-GCC" href="#Service">15 How To Get Help with GCC</a></li>
<li><a name="toc-Contributing-to-GCC-Development" href="#Contributing">16 Contributing to GCC Development</a></li>
<li><a name="toc-Funding-Free-Software" href="#Funding">Funding Free Software</a></li>
<li><a name="toc-The-GNU-Project-and-GNU_002fLinux" href="#GNU-Project">The GNU Project and GNU/Linux</a></li>
<li><a name="toc-GNU-General-Public-License" href="#Copying">GNU General Public License</a></li>
<li><a name="toc-GNU-Free-Documentation-License-1" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>
<ul class="no-bullet">
<li><a name="toc-ADDENDUM_003a-How-to-use-this-License-for-your-documents" href="#ADDENDUM_003a-How-to-use-this-License-for-your-documents">ADDENDUM: How to use this License for your documents</a></li>
</ul></li>
<li><a name="toc-Contributors-to-GCC" href="#Contributors">Contributors to GCC</a></li>
<li><a name="toc-Option-Index-1" href="#Option-Index">Option Index</a></li>
<li><a name="toc-Keyword-Index-1" href="#Keyword-Index">Keyword Index</a></li>
</ul>
</div>
<a name="Top"></a>
<div class="header">
<p>
Next: <a href="#G_002b_002b-and-GCC" accesskey="n" rel="next">G++ and GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction"></a>
<h1 class="top">Introduction</h1>
<a name="index-introduction"></a>
<p>This manual documents how to use the GNU compilers,
as well as their features and incompatibilities, and how to report
bugs. It corresponds to the compilers
(Ubuntu 8-20180414-1ubuntu2)
version 8.0.1.
The internals of the GNU compilers, including how to port them to new
targets and some information about how to write front ends for new
languages, are documented in a separate manual. See <a href="x86_64-linux-gnu-gccint-8.html#Top">Introduction</a> in <cite>GNU Compiler Collection (GCC) Internals</cite>.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#G_002b_002b-and-GCC" accesskey="1">G++ and GCC</a>:</td><td> </td><td align="left" valign="top">You can compile C or C++ programs.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Standards" accesskey="2">Standards</a>:</td><td> </td><td align="left" valign="top">Language standards supported by GCC.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Invoking-GCC" accesskey="3">Invoking GCC</a>:</td><td> </td><td align="left" valign="top">Command options supported by ‘<samp>gcc</samp>’.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C-Implementation" accesskey="4">C Implementation</a>:</td><td> </td><td align="left" valign="top">How GCC implements the ISO C specification.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Implementation" accesskey="5">C++ Implementation</a>:</td><td> </td><td align="left" valign="top">How GCC implements the ISO C++ specification.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C-Extensions" accesskey="6">C Extensions</a>:</td><td> </td><td align="left" valign="top">GNU extensions to the C language family.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Extensions" accesskey="7">C++ Extensions</a>:</td><td> </td><td align="left" valign="top">GNU extensions to the C++ language.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Objective_002dC" accesskey="8">Objective-C</a>:</td><td> </td><td align="left" valign="top">GNU Objective-C runtime features.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Compatibility" accesskey="9">Compatibility</a>:</td><td> </td><td align="left" valign="top">Binary Compatibility
</td></tr>
<tr><td align="left" valign="top">• <a href="#Gcov">Gcov</a>:</td><td> </td><td align="left" valign="top"><code>gcov</code>—a test coverage program.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Gcov_002dtool">Gcov-tool</a>:</td><td> </td><td align="left" valign="top"><code>gcov-tool</code>—an offline gcda profile processing program.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Gcov_002ddump">Gcov-dump</a>:</td><td> </td><td align="left" valign="top"><code>gcov-dump</code>—an offline gcda and gcno profile dump tool.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Trouble">Trouble</a>:</td><td> </td><td align="left" valign="top">If you have trouble using GCC.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Bugs">Bugs</a>:</td><td> </td><td align="left" valign="top">How, why and where to report bugs.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Service">Service</a>:</td><td> </td><td align="left" valign="top">How To Get Help with GCC
</td></tr>
<tr><td align="left" valign="top">• <a href="#Contributing">Contributing</a>:</td><td> </td><td align="left" valign="top">How to contribute to testing and developing GCC.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
</pre></th></tr><tr><td align="left" valign="top">• <a href="#Funding">Funding</a>:</td><td> </td><td align="left" valign="top">How to help assure funding for free software.
</td></tr>
<tr><td align="left" valign="top">• <a href="#GNU-Project">GNU Project</a>:</td><td> </td><td align="left" valign="top">The GNU Project and GNU/Linux.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
</pre></th></tr><tr><td align="left" valign="top">• <a href="#Copying">Copying</a>:</td><td> </td><td align="left" valign="top">GNU General Public License says
how you can copy and share GCC.
</td></tr>
<tr><td align="left" valign="top">• <a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>:</td><td> </td><td align="left" valign="top">How you can copy and share this manual.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Contributors">Contributors</a>:</td><td> </td><td align="left" valign="top">People who have contributed to GCC.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
</pre></th></tr><tr><td align="left" valign="top">• <a href="#Option-Index">Option Index</a>:</td><td> </td><td align="left" valign="top">Index to command line options.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Keyword-Index">Keyword Index</a>:</td><td> </td><td align="left" valign="top">Index of concepts and symbol names.
</td></tr>
</table>
<hr>
<a name="G_002b_002b-and-GCC"></a>
<div class="header">
<p>
Next: <a href="#Standards" accesskey="n" rel="next">Standards</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Programming-Languages-Supported-by-GCC"></a>
<h2 class="chapter">1 Programming Languages Supported by GCC</h2>
<a name="index-GCC"></a>
<a name="index-GNU-Compiler-Collection"></a>
<a name="index-GNU-C-Compiler"></a>
<a name="index-Ada"></a>
<a name="index-D"></a>
<a name="index-Fortran"></a>
<a name="index-Go"></a>
<a name="index-Objective_002dC"></a>
<a name="index-Objective_002dC_002b_002b"></a>
<p>GCC stands for “GNU Compiler Collection”. GCC is an integrated
distribution of compilers for several major programming languages. These
languages currently include C, C++, Objective-C, Objective-C++,
Fortran, Ada, D, Go, and BRIG (HSAIL).
</p>
<p>The abbreviation <em>GCC</em> has multiple meanings in common use. The
current official meaning is “GNU Compiler Collection”, which refers
generically to the complete suite of tools. The name historically stood
for “GNU C Compiler”, and this usage is still common when the emphasis
is on compiling C programs. Finally, the name is also used when speaking
of the <em>language-independent</em> component of GCC: code shared among the
compilers for all supported languages.
</p>
<p>The language-independent component of GCC includes the majority of the
optimizers, as well as the “back ends” that generate machine code for
various processors.
</p>
<a name="index-COBOL"></a>
<a name="index-Mercury"></a>
<a name="index-Pascal"></a>
<p>The part of a compiler that is specific to a particular language is
called the “front end”. In addition to the front ends that are
integrated components of GCC, there are several other front ends that
are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with
GCC proper.
</p>
<a name="index-C_002b_002b"></a>
<a name="index-G_002b_002b"></a>
<a name="index-Ada-1"></a>
<a name="index-GNAT"></a>
<p>Most of the compilers for languages other than C have their own names.
The C++ compiler is G++, the Ada compiler is GNAT, and so on. When we
talk about compiling one of those languages, we might refer to that
compiler by its own name, or as GCC. Either is correct.
</p>
<a name="index-compiler-compared-to-C_002b_002b-preprocessor"></a>
<a name="index-intermediate-C-version_002c-nonexistent"></a>
<a name="index-C-intermediate-output_002c-nonexistent"></a>
<p>Historically, compilers for many languages, including C++ and Fortran,
have been implemented as “preprocessors” which emit another high
level language such as C. None of the compilers included in GCC are
implemented this way; they all generate machine code directly. This
sort of preprocessor should not be confused with the <em>C
preprocessor</em>, which is an integral feature of the C, C++, Objective-C
and Objective-C++ languages.
</p>
<hr>
<a name="Standards"></a>
<div class="header">
<p>
Next: <a href="#Invoking-GCC" accesskey="n" rel="next">Invoking GCC</a>, Previous: <a href="#G_002b_002b-and-GCC" accesskey="p" rel="prev">G++ and GCC</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Language-Standards-Supported-by-GCC"></a>
<h2 class="chapter">2 Language Standards Supported by GCC</h2>
<p>For each language compiled by GCC for which there is a standard, GCC
attempts to follow one or more versions of that standard, possibly
with some exceptions, and possibly with some extensions.
</p>
<a name="C-Language"></a>
<h3 class="section">2.1 C Language</h3>
<a name="index-C-standard"></a>
<a name="index-C-standards"></a>
<a name="index-ANSI-C-standard"></a>
<a name="index-ANSI-C"></a>
<a name="index-ANSI-C89"></a>
<a name="index-C89"></a>
<a name="index-ANSI-X3_002e159_002d1989"></a>
<a name="index-X3_002e159_002d1989"></a>
<a name="index-ISO-C-standard"></a>
<a name="index-ISO-C"></a>
<a name="index-ISO-C90"></a>
<a name="index-ISO_002fIEC-9899"></a>
<a name="index-ISO-9899"></a>
<a name="index-C90"></a>
<a name="index-ISO-C94"></a>
<a name="index-C94"></a>
<a name="index-ISO-C95"></a>
<a name="index-C95"></a>
<a name="index-ISO-C99"></a>
<a name="index-C99"></a>
<a name="index-ISO-C9X"></a>
<a name="index-C9X"></a>
<a name="index-ISO-C11"></a>
<a name="index-C11"></a>
<a name="index-ISO-C1X"></a>
<a name="index-C1X"></a>
<a name="index-ISO-C17"></a>
<a name="index-C17"></a>
<a name="index-Technical-Corrigenda"></a>
<a name="index-TC1"></a>
<a name="index-Technical-Corrigendum-1"></a>
<a name="index-TC2"></a>
<a name="index-Technical-Corrigendum-2"></a>
<a name="index-TC3"></a>
<a name="index-Technical-Corrigendum-3"></a>
<a name="index-AMD1"></a>
<a name="index-freestanding-implementation"></a>
<a name="index-freestanding-environment"></a>
<a name="index-hosted-implementation"></a>
<a name="index-hosted-environment"></a>
<a name="index-_005f_005fSTDC_005fHOSTED_005f_005f"></a>
<a name="index-std"></a>
<a name="index-ansi"></a>
<a name="index-pedantic"></a>
<a name="index-pedantic_002derrors"></a>
<p>The original ANSI C standard (X3.159-1989) was ratified in 1989 and
published in 1990. This standard was ratified as an ISO standard
(ISO/IEC 9899:1990) later in 1990. There were no technical
differences between these publications, although the sections of the
ANSI standard were renumbered and became clauses in the ISO standard.
The ANSI
standard, but not the ISO standard, also came with a Rationale
document.
This standard, in both its forms, is commonly known as <em>C89</em>, or
occasionally as <em>C90</em>, from the dates of ratification.
To select this standard in GCC, use one of the options
<samp>-ansi</samp>, <samp>-std=c90</samp> or <samp>-std=iso9899:1990</samp>; to obtain
all the diagnostics required by the standard, you should also specify
<samp>-pedantic</samp> (or <samp>-pedantic-errors</samp> if you want them to be
errors rather than warnings). See <a href="#C-Dialect-Options">Options
Controlling C Dialect</a>.
</p>
<p>Errors in the 1990 ISO C standard were corrected in two Technical
Corrigenda published in 1994 and 1996. GCC does not support the
uncorrected version.
</p>
<p>An amendment to the 1990 standard was published in 1995. This
amendment added digraphs and <code>__STDC_VERSION__</code> to the language,
but otherwise concerned the library. This amendment is commonly known
as <em>AMD1</em>; the amended standard is sometimes known as <em>C94</em> or
<em>C95</em>. To select this standard in GCC, use the option
<samp>-std=iso9899:199409</samp> (with, as for other standard versions,
<samp>-pedantic</samp> to receive all required diagnostics).
</p>
<p>A new edition of the ISO C standard was published in 1999 as ISO/IEC
9899:1999, and is commonly known as <em>C99</em>. (While in
development, drafts of this standard version were referred to as
<em>C9X</em>.) GCC has substantially
complete support for this standard version; see
<a href="http://gcc.gnu.org/c99status.html">http://gcc.gnu.org/c99status.html</a> for details. To select this
standard, use <samp>-std=c99</samp> or <samp>-std=iso9899:1999</samp>.
</p>
<p>Errors in the 1999 ISO C standard were corrected in three Technical
Corrigenda published in 2001, 2004 and 2007. GCC does not support the
uncorrected version.
</p>
<p>A fourth version of the C standard, known as <em>C11</em>, was published
in 2011 as ISO/IEC 9899:2011. (While in development, drafts of this
standard version were referred to as <em>C1X</em>.)
GCC has substantially complete support
for this standard, enabled with <samp>-std=c11</samp> or
<samp>-std=iso9899:2011</samp>. A version with corrections integrated is
known as <em>C17</em> and is supported with <samp>-std=c17</samp> or
<samp>-std=iso9899:2017</samp>; the corrections are also applied with
<samp>-std=c11</samp>, and the only difference between the options is the
value of <code>__STDC_VERSION__</code>.
</p>
<p>By default, GCC provides some extensions to the C language that, on
rare occasions conflict with the C standard. See <a href="#C-Extensions">Extensions to the C Language Family</a>.
Some features that are part of the C99 standard
are accepted as extensions in C90 mode, and some features that are part
of the C11 standard are accepted as extensions in C90 and C99 modes.
Use of the
<samp>-std</samp> options listed above disables these extensions where
they conflict with the C standard version selected. You may also
select an extended version of the C language explicitly with
<samp>-std=gnu90</samp> (for C90 with GNU extensions), <samp>-std=gnu99</samp>
(for C99 with GNU extensions) or <samp>-std=gnu11</samp> (for C11 with GNU
extensions).
</p>
<p>The default, if no C language dialect options are given,
is <samp>-std=gnu11</samp>.
</p>
<p>The ISO C standard defines (in clause 4) two classes of conforming
implementation. A <em>conforming hosted implementation</em> supports the
whole standard including all the library facilities; a <em>conforming
freestanding implementation</em> is only required to provide certain
library facilities: those in <code><float.h></code>, <code><limits.h></code>,
<code><stdarg.h></code>, and <code><stddef.h></code>; since AMD1, also those in
<code><iso646.h></code>; since C99, also those in <code><stdbool.h></code> and
<code><stdint.h></code>; and since C11, also those in <code><stdalign.h></code>
and <code><stdnoreturn.h></code>. In addition, complex types, added in C99, are not
required for freestanding implementations.
</p>
<p>The standard also defines two environments for programs, a
<em>freestanding environment</em>, required of all implementations and
which may not have library facilities beyond those required of
freestanding implementations, where the handling of program startup
and termination are implementation-defined; and a <em>hosted
environment</em>, which is not required, in which all the library
facilities are provided and startup is through a function <code>int
main (void)</code> or <code>int main (int, char *[])</code>. An OS kernel is an example
of a program running in a freestanding environment;
a program using the facilities of an
operating system is an example of a program running in a hosted environment.
</p>
<a name="index-ffreestanding"></a>
<p>GCC aims towards being usable as a conforming freestanding
implementation, or as the compiler for a conforming hosted
implementation. By default, it acts as the compiler for a hosted
implementation, defining <code>__STDC_HOSTED__</code> as <code>1</code> and
presuming that when the names of ISO C functions are used, they have
the semantics defined in the standard. To make it act as a conforming
freestanding implementation for a freestanding environment, use the
option <samp>-ffreestanding</samp>; it then defines
<code>__STDC_HOSTED__</code> to <code>0</code> and does not make assumptions about the
meanings of function names from the standard library, with exceptions
noted below. To build an OS kernel, you may well still need to make
your own arrangements for linking and startup.
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
</p>
<p>GCC does not provide the library facilities required only of hosted
implementations, nor yet all the facilities required by C99 of
freestanding implementations on all platforms.
To use the facilities of a hosted
environment, you need to find them elsewhere (for example, in the
GNU C library). See <a href="#Standard-Libraries">Standard Libraries</a>.
</p>
<p>Most of the compiler support routines used by GCC are present in
<samp>libgcc</samp>, but there are a few exceptions. GCC requires the
freestanding environment provide <code>memcpy</code>, <code>memmove</code>,
<code>memset</code> and <code>memcmp</code>.
Finally, if <code>__builtin_trap</code> is used, and the target does
not implement the <code>trap</code> pattern, then GCC emits a call
to <code>abort</code>.
</p>
<p>For references to Technical Corrigenda, Rationale documents and
information concerning the history of C that is available online, see
<a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>
</p>
<a name="C_002b_002b-Language"></a>
<h3 class="section">2.2 C++ Language</h3>
<p>GCC supports the original ISO C++ standard published in 1998,
and the 2011 and 2014 revisions.
</p>
<p>The original ISO C++ standard was published as the ISO standard (ISO/IEC
14882:1998) and amended by a Technical Corrigenda published in 2003
(ISO/IEC 14882:2003). These standards are referred to as C++98 and
C++03, respectively. GCC implements the majority of C++98 (<code>export</code>
is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options <samp>-ansi</samp>,
<samp>-std=c++98</samp>, or <samp>-std=c++03</samp>; to obtain all the diagnostics
required by the standard, you should also specify <samp>-pedantic</samp> (or
<samp>-pedantic-errors</samp> if you want them to be errors rather than
warnings).
</p>
<p>A revised ISO C++ standard was published in 2011 as ISO/IEC
14882:2011, and is referred to as C++11; before its publication it was
commonly referred to as C++0x. C++11 contains several changes to the
C++ language, all of which have been implemented in GCC. For details
see <a href="https://gcc.gnu.org/projects/cxx-status.html#cxx11">https://gcc.gnu.org/projects/cxx-status.html#cxx11</a>.
To select this standard in GCC, use the option <samp>-std=c++11</samp>.
</p>
<p>Another revised ISO C++ standard was published in 2014 as ISO/IEC
14882:2014, and is referred to as C++14; before its publication it was
sometimes referred to as C++1y. C++14 contains several further
changes to the C++ language, all of which have been implemented in GCC.
For details see <a href="https://gcc.gnu.org/projects/cxx-status.html#cxx14">https://gcc.gnu.org/projects/cxx-status.html#cxx14</a>.
To select this standard in GCC, use the option <samp>-std=c++14</samp>.
</p>
<p>The C++ language was further revised in 2017 and ISO/IEC 14882:2017 was
published. This is referred to as C++17, and before publication was
often referred to as C++1z. GCC supports all the changes in the new
specification. For further details see
<a href="https://gcc.gnu.org/projects/cxx-status.html#cxx1z">https://gcc.gnu.org/projects/cxx-status.html#cxx1z</a>. Use the option
<samp>-std=c++17</samp> to select this variant of C++.
</p>
<p>More information about the C++ standards is available on the ISO C++
committee’s web site at <a href="http://www.open-std.org/jtc1/sc22/wg21/">http://www.open-std.org/jtc1/sc22/wg21/</a>.
</p>
<p>To obtain all the diagnostics required by any of the standard versions
described above you should specify <samp>-pedantic</samp>
or <samp>-pedantic-errors</samp>, otherwise GCC will allow some non-ISO C++
features as extensions. See <a href="#Warning-Options">Warning Options</a>.
</p>
<p>By default, GCC also provides some additional extensions to the C++ language
that on rare occasions conflict with the C++ standard. See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>. Use of the
<samp>-std</samp> options listed above disables these extensions where they
they conflict with the C++ standard version selected. You may also
select an extended version of the C++ language explicitly with
<samp>-std=gnu++98</samp> (for C++98 with GNU extensions), or
<samp>-std=gnu++11</samp> (for C++11 with GNU extensions), or
<samp>-std=gnu++14</samp> (for C++14 with GNU extensions), or
<samp>-std=gnu++17</samp> (for C++17 with GNU extensions).
</p>
<p>The default, if
no C++ language dialect options are given, is <samp>-std=gnu++14</samp>.
</p>
<a name="Objective_002dC-and-Objective_002dC_002b_002b-Languages"></a>
<h3 class="section">2.3 Objective-C and Objective-C++ Languages</h3>
<a name="index-Objective_002dC-1"></a>
<a name="index-Objective_002dC_002b_002b-1"></a>
<p>GCC supports “traditional” Objective-C (also known as “Objective-C
1.0”) and contains support for the Objective-C exception and
synchronization syntax. It has also support for a number of
“Objective-C 2.0” language extensions, including properties, fast
enumeration (only for Objective-C), method attributes and the
@optional and @required keywords in protocols. GCC supports
Objective-C++ and features available in Objective-C are also available
in Objective-C++.
</p>
<p>GCC by default uses the GNU Objective-C runtime library, which is part
of GCC and is not the same as the Apple/NeXT Objective-C runtime
library used on Apple systems. There are a number of differences
documented in this manual. The options <samp>-fgnu-runtime</samp> and
<samp>-fnext-runtime</samp> allow you to switch between producing output
that works with the GNU Objective-C runtime library and output that
works with the Apple/NeXT Objective-C runtime library.
</p>
<p>There is no formal written standard for Objective-C or Objective-C++.
The authoritative manual on traditional Objective-C (1.0) is
“Object-Oriented Programming and the Objective-C Language”:
<a href="http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf">http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf</a>
is the original NeXTstep document.
</p>
<p>The Objective-C exception and synchronization syntax (that is, the
keywords <code>@try</code>, <code>@throw</code>, <code>@catch</code>,
<code>@finally</code> and <code>@synchronized</code>) is
supported by GCC and is enabled with the option
<samp>-fobjc-exceptions</samp>. The syntax is briefly documented in this
manual and in the Objective-C 2.0 manuals from Apple.
</p>
<p>The Objective-C 2.0 language extensions and features are automatically
enabled; they include properties (via the <code>@property</code>,
<code>@synthesize</code> and
<code>@dynamic keywords</code>), fast enumeration (not available in
Objective-C++), attributes for methods (such as <code>deprecated</code>,
<code>noreturn</code>, <code>sentinel</code>, <code>format</code>),
the <code>unused</code> attribute for method arguments, the
<code>@package</code> keyword for instance variables and the <code>@optional</code> and
<code>@required</code> keywords in protocols. You can disable all these
Objective-C 2.0 language extensions with the option
<samp>-fobjc-std=objc1</samp>, which causes the compiler to recognize the
same Objective-C language syntax recognized by GCC 4.0, and to produce
an error if one of the new features is used.
</p>
<p>GCC has currently no support for non-fragile instance variables.
</p>
<p>The authoritative manual on Objective-C 2.0 is available from Apple:
</p><ul>
<li> <a href="https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html">https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html</a>
</li></ul>
<p>For more information concerning the history of Objective-C that is
available online, see <a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>
</p>
<a name="Go-Language"></a>
<h3 class="section">2.4 Go Language</h3>
<p>As of the GCC 4.7.1 release, GCC supports the Go 1 language standard,
described at <a href="https://golang.org/doc/go1">https://golang.org/doc/go1</a>.
</p>
<a name="HSA-Intermediate-Language-_0028HSAIL_0029"></a>
<h3 class="section">2.5 HSA Intermediate Language (HSAIL)</h3>
<p>GCC can compile the binary representation (BRIG) of the HSAIL text format as
described in HSA Programmer’s Reference Manual version 1.0.1. This
capability is typically utilized to implement the HSA runtime API’s HSAIL
finalization extension for a gcc supported processor. HSA standards are
freely available at <a href="http://www.hsafoundation.com/standards/">http://www.hsafoundation.com/standards/</a>.
</p>
<a name="D-language"></a>
<h3 class="section">2.6 D language</h3>
<p>GCC supports the D 2.0 programming language. The D language itself is
currently defined by its reference implementation and supporting language
specification, described at <a href="https://dlang.org/spec/spec.html">https://dlang.org/spec/spec.html</a>.
</p>
<a name="References-for-Other-Languages"></a>
<h3 class="section">2.7 References for Other Languages</h3>
<p>See <a href="http://gcc.gnu.org/onlinedocs/gnat_rm/index.html#Top">About This Guide</a> in <cite>GNAT Reference Manual</cite>, for information on standard
conformance and compatibility of the Ada compiler.
</p>
<p>See <a href="x86_64-linux-gnu-gfortran-8.html#Standards">Standards</a> in <cite>The GNU Fortran Compiler</cite>, for details
of standards supported by GNU Fortran.
</p>
<hr>
<a name="Invoking-GCC"></a>
<div class="header">
<p>
Next: <a href="#C-Implementation" accesskey="n" rel="next">C Implementation</a>, Previous: <a href="#Standards" accesskey="p" rel="prev">Standards</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="GCC-Command-Options"></a>
<h2 class="chapter">3 GCC Command Options</h2>
<a name="index-GCC-command-options"></a>
<a name="index-command-options"></a>
<a name="index-options_002c-GCC-command"></a>
<p>When you invoke GCC, it normally does preprocessing, compilation,
assembly and linking. The “overall options” allow you to stop this
process at an intermediate stage. For example, the <samp>-c</samp> option
says not to run the linker. Then the output consists of object files
output by the assembler.
See <a href="#Overall-Options">Options Controlling the Kind of Output</a>.
</p>
<p>Other options are passed on to one or more stages of processing. Some options
control the preprocessor and others the compiler itself. Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.
</p>
<a name="index-C-compilation-options"></a>
<p>Most of the command-line options that you can use with GCC are useful
for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly. If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.
</p>
<a name="index-cross-compiling"></a>
<a name="index-specifying-machine-version"></a>
<a name="index-specifying-compiler-version-and-target-machine"></a>
<a name="index-compiler-version_002c-specifying"></a>
<a name="index-target-machine_002c-specifying"></a>
<p>The usual way to run GCC is to run the executable called <code>gcc</code>, or
<code><var>machine</var>-gcc</code> when cross-compiling, or
<code><var>machine</var>-gcc-<var>version</var></code> to run a specific version of GCC.
When you compile C++ programs, you should invoke GCC as <code>g++</code>
instead. See <a href="#Invoking-G_002b_002b">Compiling C++ Programs</a>,
for information about the differences in behavior between <code>gcc</code>
and <code>g++</code> when compiling C++ programs.
</p>
<a name="index-grouping-options"></a>
<a name="index-options_002c-grouping"></a>
<p>The <code>gcc</code> program accepts options and file names as operands. Many
options have multi-letter names; therefore multiple single-letter options
may <em>not</em> be grouped: <samp>-dv</samp> is very different from ‘<samp><span class="nolinebreak">-d</span> <span class="nolinebreak">-v</span></samp>’<!-- /@w -->.
</p>
<a name="index-order-of-options"></a>
<a name="index-options_002c-order"></a>
<p>You can mix options and other arguments. For the most part, the order
you use doesn’t matter. Order does matter when you use several
options of the same kind; for example, if you specify <samp>-L</samp> more
than once, the directories are searched in the order specified. Also,
the placement of the <samp>-l</samp> option is significant.
</p>
<p>Many options have long names starting with ‘<samp>-f</samp>’ or with
‘<samp>-W</samp>’—for example,
<samp>-fmove-loop-invariants</samp>, <samp>-Wformat</samp> and so on. Most of
these have both positive and negative forms; the negative form of
<samp>-ffoo</samp> is <samp>-fno-foo</samp>. This manual documents
only one of these two forms, whichever one is not the default.
</p>
<p>See <a href="#Option-Index">Option Index</a>, for an index to GCC’s options.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Option-Summary" accesskey="1">Option Summary</a>:</td><td> </td><td align="left" valign="top">Brief list of all options, without explanations.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Overall-Options" accesskey="2">Overall Options</a>:</td><td> </td><td align="left" valign="top">Controlling the kind of output:
an executable, object files, assembler files,
or preprocessed source.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Invoking-G_002b_002b" accesskey="3">Invoking G++</a>:</td><td> </td><td align="left" valign="top">Compiling C++ programs.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C-Dialect-Options" accesskey="4">C Dialect Options</a>:</td><td> </td><td align="left" valign="top">Controlling the variant of C language compiled.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Dialect-Options" accesskey="5">C++ Dialect Options</a>:</td><td> </td><td align="left" valign="top">Variations on C++.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options" accesskey="6">Objective-C and Objective-C++ Dialect Options</a>:</td><td> </td><td align="left" valign="top">Variations on Objective-C
and Objective-C++.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Diagnostic-Message-Formatting-Options" accesskey="7">Diagnostic Message Formatting Options</a>:</td><td> </td><td align="left" valign="top">Controlling how diagnostics should
be formatted.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Warning-Options" accesskey="8">Warning Options</a>:</td><td> </td><td align="left" valign="top">How picky should the compiler be?
</td></tr>
<tr><td align="left" valign="top">• <a href="#Debugging-Options" accesskey="9">Debugging Options</a>:</td><td> </td><td align="left" valign="top">Producing debuggable code.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Optimize-Options">Optimize Options</a>:</td><td> </td><td align="left" valign="top">How much optimization?
</td></tr>
<tr><td align="left" valign="top">• <a href="#Instrumentation-Options">Instrumentation Options</a>:</td><td> </td><td align="left" valign="top">Enabling profiling and extra run-time error checking.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Preprocessor-Options">Preprocessor Options</a>:</td><td> </td><td align="left" valign="top">Controlling header files and macro definitions.
Also, getting dependency information for Make.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Assembler-Options">Assembler Options</a>:</td><td> </td><td align="left" valign="top">Passing options to the assembler.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Link-Options">Link Options</a>:</td><td> </td><td align="left" valign="top">Specifying libraries and so on.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Directory-Options">Directory Options</a>:</td><td> </td><td align="left" valign="top">Where to find header files and libraries.
Where to find the compiler executable files.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Code-Gen-Options">Code Gen Options</a>:</td><td> </td><td align="left" valign="top">Specifying conventions for function calls, data layout
and register usage.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Developer-Options">Developer Options</a>:</td><td> </td><td align="left" valign="top">Printing GCC configuration info, statistics, and
debugging dumps.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Submodel-Options">Submodel Options</a>:</td><td> </td><td align="left" valign="top">Target-specific options, such as compiling for a
specific processor variant.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Spec-Files">Spec Files</a>:</td><td> </td><td align="left" valign="top">How to pass switches to sub-processes.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Environment-Variables">Environment Variables</a>:</td><td> </td><td align="left" valign="top">Env vars that affect GCC.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Precompiled-Headers">Precompiled Headers</a>:</td><td> </td><td align="left" valign="top">Compiling a header once, and using it many times.
</td></tr>
</table>
<hr>
<a name="Option-Summary"></a>
<div class="header">
<p>
Next: <a href="#Overall-Options" accesskey="n" rel="next">Overall Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Option-Summary-1"></a>
<h3 class="section">3.1 Option Summary</h3>
<p>Here is a summary of all the options, grouped by type. Explanations are
in the following sections.
</p>
<dl compact="compact">
<dt><em>Overall Options</em></dt>
<dd><p>See <a href="#Overall-Options">Options Controlling the Kind of Output</a>.
</p><div class="smallexample">
<pre class="smallexample">-c -S -E -o <var>file</var> -x <var>language</var>
-v -### --help<span class="roman">[</span>=<var>class</var><span class="roman">[</span>,…<span class="roman">]]</span> --target-help --version
-pass-exit-codes -pipe -specs=<var>file</var> -wrapper
@<var>file</var> -ffile-prefix-map=<var>old</var>=<var>new</var>
-fplugin=<var>file</var> -fplugin-arg-<var>name</var>=<var>arg</var>
-fdump-ada-spec<span class="roman">[</span>-slim<span class="roman">]</span> -fada-spec-parent=<var>unit</var> -fdump-go-spec=<var>file</var>
</pre></div>
</dd>
<dt><em>C Language Options</em></dt>
<dd><p>See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
</p><div class="smallexample">
<pre class="smallexample">-ansi -std=<var>standard</var> -fgnu89-inline
-fpermitted-flt-eval-methods=<var>standard</var>
-aux-info <var>filename</var> -fallow-parameterless-variadic-functions
-fno-asm -fno-builtin -fno-builtin-<var>function</var> -fgimple
-fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd
-fms-extensions -fplan9-extensions -fsso-struct=<var>endianness</var>
-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char
</pre></div>
</dd>
<dt><em>C++ Language Options</em></dt>
<dd><p>See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>.
</p><div class="smallexample">
<pre class="smallexample">-fabi-version=<var>n</var> -fno-access-control
-faligned-new=<var>n</var> -fargs-in-order=<var>n</var> -fcheck-new
-fconstexpr-depth=<var>n</var> -fconstexpr-loop-limit=<var>n</var>
-ffriend-injection
-fno-elide-constructors
-fno-enforce-eh-specs
-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines -fms-extensions
-fnew-inheriting-ctors
-fnew-ttp-matching
-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags -fpermissive
-fno-pretty-templates
-frepo -fno-rtti -fsized-deallocation
-ftemplate-backtrace-limit=<var>n</var>
-ftemplate-depth=<var>n</var>
-fno-threadsafe-statics -fuse-cxa-atexit
-fno-weak -nostdinc++
-fvisibility-inlines-hidden
-fvisibility-ms-compat
-fext-numeric-literals
-Wabi=<var>n</var> -Wabi-tag -Wconversion-null -Wctor-dtor-privacy
-Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance
-Wnamespaces -Wnarrowing
-Wnoexcept -Wnoexcept-type -Wclass-memaccess
-Wnon-virtual-dtor -Wreorder -Wregister
-Weffc++ -Wstrict-null-sentinel -Wtemplates
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions
-Wsign-promo -Wvirtual-inheritance
</pre></div>
</dd>
<dt><em>Objective-C and Objective-C++ Language Options</em></dt>
<dd><p>See <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Options Controlling
Objective-C and Objective-C++ Dialects</a>.
</p><div class="smallexample">
<pre class="smallexample">-fconstant-string-class=<var>class-name</var>
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=<var>n</var>
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions
-fobjc-gc
-fobjc-nilcheck
-fobjc-std=objc1
-fno-local-ivars
-fivar-visibility=<span class="roman">[</span>public<span class="roman">|</span>protected<span class="roman">|</span>private<span class="roman">|</span>package<span class="roman">]</span>
-freplace-objc-classes
-fzero-link
-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector
</pre></div>
</dd>
<dt><em>Diagnostic Message Formatting Options</em></dt>
<dd><p>See <a href="#Diagnostic-Message-Formatting-Options">Options to Control Diagnostic Messages Formatting</a>.
</p><div class="smallexample">
<pre class="smallexample">-fmessage-length=<var>n</var>
-fdiagnostics-show-location=<span class="roman">[</span>once<span class="roman">|</span>every-line<span class="roman">]</span>
-fdiagnostics-color=<span class="roman">[</span>auto<span class="roman">|</span>never<span class="roman">|</span>always<span class="roman">]</span>
-fno-diagnostics-show-option -fno-diagnostics-show-caret
-fdiagnostics-parseable-fixits -fdiagnostics-generate-patch
-fdiagnostics-show-template-tree -fno-elide-type
-fno-show-column
</pre></div>
</dd>
<dt><em>Warning Options</em></dt>
<dd><p>See <a href="#Warning-Options">Options to Request or Suppress Warnings</a>.
</p><div class="smallexample">
<pre class="smallexample">-fsyntax-only -fmax-errors=<var>n</var> -Wpedantic
-pedantic-errors
-w -Wextra -Wall -Waddress -Waggregate-return
-Walloc-zero -Walloc-size-larger-than=<var>n</var>
-Walloca -Walloca-larger-than=<var>n</var>
-Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=<var>n</var>
-Wno-attributes -Wbool-compare -Wbool-operation
-Wno-builtin-declaration-mismatch
-Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat
-Wc++-compat -Wc++11-compat -Wc++14-compat
-Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual
-Wchar-subscripts -Wchkp -Wcatch-value -Wcatch-value=<var>n</var>
-Wclobbered -Wcomment -Wconditionally-supported
-Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time
-Wdelete-incomplete
-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init
-Wdisabled-optimization
-Wno-discarded-qualifiers -Wno-discarded-array-qualifiers
-Wno-div-by-zero -Wdouble-promotion
-Wduplicated-branches -Wduplicated-cond
-Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined
-Werror -Werror=* -Wextra-semi -Wfatal-errors
-Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-extra-args
-Wformat-nonliteral -Wformat-overflow=<var>n</var>
-Wformat-security -Wformat-signedness -Wformat-truncation=<var>n</var>
-Wformat-y2k -Wframe-address
-Wframe-larger-than=<var>len</var> -Wno-free-nonheap-object -Wjump-misses-init
-Wif-not-aligned
-Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types
-Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=<var>n</var>
-Wimplicit-function-declaration -Wimplicit-int
-Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context
-Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof
-Winvalid-pch -Wlarger-than=<var>len</var>
-Wlogical-op -Wlogical-not-parentheses -Wlong-long
-Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args
-Wmisleading-indentation -Wmissing-attributes -Wmissing-braces
-Wmissing-field-initializers -Wmissing-include-dirs
-Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare
-Wnormalized=<span class="roman">[</span>none<span class="roman">|</span>id<span class="roman">|</span>nfc<span class="roman">|</span>nfkc<span class="roman">]</span>
-Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd
-Woverride-init-side-effects -Woverlength-strings
-Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded
-Wparentheses -Wno-pedantic-ms-format
-Wplacement-new -Wplacement-new=<var>n</var>
-Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast
-Wno-pragmas -Wredundant-decls -Wrestrict -Wno-return-local-addr
-Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar
-Wshadow=global, -Wshadow=local, -Wshadow=compatible-local
-Wshift-overflow -Wshift-overflow=<var>n</var>
-Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value
-Wsign-compare -Wsign-conversion -Wfloat-conversion
-Wno-scalar-storage-order -Wsizeof-pointer-div
-Wsizeof-pointer-memaccess -Wsizeof-array-argument
-Wstack-protector -Wstack-usage=<var>len</var> -Wstrict-aliasing
-Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=<var>n</var>
-Wstringop-overflow=<var>n</var> -Wstringop-truncation
-Wsuggest-attribute=<span class="roman">[</span>pure<span class="roman">|</span>const<span class="roman">|</span>noreturn<span class="roman">|</span>format<span class="roman">|</span>malloc<span class="roman">]</span>
-Wsuggest-final-types -Wsuggest-final-methods -Wsuggest-override
-Wmissing-format-attribute -Wsubobject-linkage
-Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum
-Wswitch-unreachable -Wsync-nand
-Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs
-Wtype-limits -Wundef
-Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations
-Wunsuffixed-float-constants -Wunused -Wunused-function
-Wunused-label -Wunused-local-typedefs -Wunused-macros
-Wunused-parameter -Wno-unused-result
-Wunused-value -Wunused-variable
-Wunused-const-variable -Wunused-const-variable=<var>n</var>
-Wunused-but-set-parameter -Wunused-but-set-variable
-Wuseless-cast -Wvariadic-macros -Wvector-operation-performance
-Wvla -Wvla-larger-than=<var>n</var> -Wvolatile-register-var -Wwrite-strings
-Wzero-as-null-pointer-constant -Whsa
</pre></div>
</dd>
<dt><em>C and Objective-C-only Warning Options</em></dt>
<dd><div class="smallexample">
<pre class="smallexample">-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign
</pre></div>
</dd>
<dt><em>Debugging Options</em></dt>
<dd><p>See <a href="#Debugging-Options">Options for Debugging Your Program</a>.
</p><div class="smallexample">
<pre class="smallexample">-g -g<var>level</var> -gdwarf -gdwarf-<var>version</var>
-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf
-gas-loc-support -gno-as-loc-support
-gas-locview-support -gno-as-locview-support
-gcolumn-info -gno-column-info
-gstatement-frontiers -gno-statement-frontiers
-gvariable-location-views -gno-variable-location-views
-ginternal-reset-location-views -gno-internal-reset-location-views
-ginline-points -gno-inline-points
-gvms -gxcoff -gxcoff+ -gz<span class="roman">[</span>=<var>type</var><span class="roman">]</span>
-fdebug-prefix-map=<var>old</var>=<var>new</var> -fdebug-types-section
-fno-eliminate-unused-debug-types
-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed<span class="roman">[</span>=<var>spec-list</var><span class="roman">]</span>
-feliminate-unused-debug-symbols -femit-class-debug-always
-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fvar-tracking -fvar-tracking-assignments
</pre></div>
</dd>
<dt><em>Optimization Options</em></dt>
<dd><p>See <a href="#Optimize-Options">Options that Control Optimization</a>.
</p><div class="smallexample">
<pre class="smallexample">-faggressive-loop-optimizations -falign-functions[=<var>n</var>]
-falign-jumps[=<var>n</var>]
-falign-labels[=<var>n</var>] -falign-loops[=<var>n</var>]
-fassociative-math -fauto-profile -fauto-profile[=<var>path</var>]
-fauto-inc-dec -fbranch-probabilities
-fbranch-target-load-optimize -fbranch-target-load-optimize2
-fbtr-bb-exclusive -fcaller-saves
-fcombine-stack-adjustments -fconserve-stack
-fcompare-elim -fcprop-registers -fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range
-fdata-sections -fdce -fdelayed-branch
-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively
-fdevirtualize-at-ltrans -fdse
-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=<var>style</var>
-fforward-propagate -ffp-contract=<var>style</var> -ffunction-sections
-fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion
-fif-conversion2 -findirect-inlining
-finline-functions -finline-functions-called-once -finline-limit=<var>n</var>
-finline-small-functions -fipa-cp -fipa-cp-clone
-fipa-bit-cp -fipa-vrp
-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf
-fira-algorithm=<var>algorithm</var>
-fira-region=<var>region</var> -fira-hoist-pressure
-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots
-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute
-fivopts -fkeep-inline-functions -fkeep-static-functions
-fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage
-floop-block -floop-interchange -floop-strip-mine
-floop-unroll-and-jam -floop-nest-optimize
-floop-parallelize-all -flra-remat -flto -flto-compression-level
-flto-partition=<var>alg</var> -fmerge-all-constants
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fno-branch-count-reg
-fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse
-fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole
-fno-peephole2 -fno-printf-return-value -fno-sched-interblock
-fno-sched-spec -fno-signed-zeros
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-sibling-calls
-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays
-fprofile-correction
-fprofile-use -fprofile-use=<var>path</var> -fprofile-values
-fprofile-reorder-functions
-freciprocal-math -free -frename-registers -freorder-blocks
-freorder-blocks-algorithm=<var>algorithm</var>
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsched2-use-superblocks -fsched-pressure
-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=<var>n</var>] -fsched-stalled-insns[=<var>n</var>]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-fusion
-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling2
-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate
-fsignaling-nans
-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops
-fsplit-paths
-fsplit-wide-types -fssa-backprop -fssa-phiopt
-fstdarg-opt -fstore-merging -fstrict-aliasing
-fthread-jumps -ftracer -ftree-bit-ccp
-ftree-builtin-call-dce -ftree-ccp -ftree-ch
-ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts
-ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting
-ftree-loop-if-convert -ftree-loop-im
-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize
-ftree-parallelize-loops=<var>n</var> -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge
-ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons
-funit-at-a-time -funroll-all-loops -funroll-loops
-funsafe-math-optimizations -funswitch-loops
-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt
-fweb -fwhole-program -fwpa -fuse-linker-plugin
--param <var>name</var>=<var>value</var>
-O -O0 -O1 -O2 -O3 -Os -Ofast -Og
</pre></div>
</dd>
<dt><em>Program Instrumentation Options</em></dt>
<dd><p>See <a href="#Instrumentation-Options">Program Instrumentation Options</a>.
</p><div class="smallexample">
<pre class="smallexample">-p -pg -fprofile-arcs --coverage -ftest-coverage
-fprofile-abs-path
-fprofile-dir=<var>path</var> -fprofile-generate -fprofile-generate=<var>path</var>
-fsanitize=<var>style</var> -fsanitize-recover -fsanitize-recover=<var>style</var>
-fasan-shadow-offset=<var>number</var> -fsanitize-sections=<var>s1</var>,<var>s2</var>,...
-fsanitize-undefined-trap-on-error -fbounds-check
-fcheck-pointer-bounds -fchkp-check-incomplete-type
-fchkp-first-field-has-own-bounds -fchkp-narrow-bounds
-fchkp-narrow-to-innermost-array -fchkp-optimize
-fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions
-fchkp-use-static-bounds -fchkp-use-static-const-bounds
-fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read
-fchkp-check-read -fchkp-check-write -fchkp-store-bounds
-fchkp-instrument-calls -fchkp-instrument-marked-only
-fchkp-use-wrappers -fchkp-flexible-struct-trailing-arrays
-fcf-protection=<span class="roman">[</span>full<span class="roman">|</span>branch<span class="roman">|</span>return<span class="roman">|</span>none<span class="roman">]</span>
-fstack-protector -fstack-protector-all -fstack-protector-strong
-fstack-protector-explicit -fstack-check
-fstack-limit-register=<var>reg</var> -fstack-limit-symbol=<var>sym</var>
-fno-stack-limit -fsplit-stack
-fvtable-verify=<span class="roman">[</span>std<span class="roman">|</span>preinit<span class="roman">|</span>none<span class="roman">]</span>
-fvtv-counts -fvtv-debug
-finstrument-functions
-finstrument-functions-exclude-function-list=<var>sym</var>,<var>sym</var>,…
-finstrument-functions-exclude-file-list=<var>file</var>,<var>file</var>,…
</pre></div>
</dd>
<dt><em>Preprocessor Options</em></dt>
<dd><p>See <a href="#Preprocessor-Options">Options Controlling the Preprocessor</a>.
</p><div class="smallexample">
<pre class="smallexample">-A<var>question</var>=<var>answer</var>
-A-<var>question</var><span class="roman">[</span>=<var>answer</var><span class="roman">]</span>
-C -CC -D<var>macro</var><span class="roman">[</span>=<var>defn</var><span class="roman">]</span>
-dD -dI -dM -dN -dU
-fdebug-cpp -fdirectives-only -fdollars-in-identifiers
-fexec-charset=<var>charset</var> -fextended-identifiers
-finput-charset=<var>charset</var> -fmacro-prefix-map=<var>old</var>=<var>new</var>
-fno-canonical-system-headers -fpch-deps -fpch-preprocess
-fpreprocessed -ftabstop=<var>width</var> -ftrack-macro-expansion
-fwide-exec-charset=<var>charset</var> -fworking-directory
-H -imacros <var>file</var> -include <var>file</var>
-M -MD -MF -MG -MM -MMD -MP -MQ -MT
-no-integrated-cpp -P -pthread -remap
-traditional -traditional-cpp -trigraphs
-U<var>macro</var> -undef
-Wp,<var>option</var> -Xpreprocessor <var>option</var>
</pre></div>
</dd>
<dt><em>Assembler Options</em></dt>
<dd><p>See <a href="#Assembler-Options">Passing Options to the Assembler</a>.
</p><div class="smallexample">
<pre class="smallexample">-Wa,<var>option</var> -Xassembler <var>option</var>
</pre></div>
</dd>
<dt><em>Linker Options</em></dt>
<dd><p>See <a href="#Link-Options">Options for Linking</a>.
</p><div class="smallexample">
<pre class="smallexample"><var>object-file-name</var> -fuse-ld=<var>linker</var> -l<var>library</var>
-nostartfiles -nodefaultlibs -nostdlib -pie -pthread -rdynamic
-s -static -static-pie -static-libgcc -static-libstdc++
-static-libasan -static-libtsan -static-liblsan -static-libubsan
-static-libmpx -static-libmpxwrappers
-shared -shared-libgcc -symbolic
-T <var>script</var> -Wl,<var>option</var> -Xlinker <var>option</var>
-u <var>symbol</var> -z <var>keyword</var>
</pre></div>
</dd>
<dt><em>Directory Options</em></dt>
<dd><p>See <a href="#Directory-Options">Options for Directory Search</a>.
</p><div class="smallexample">
<pre class="smallexample">-B<var>prefix</var> -I<var>dir</var> -I-
-idirafter <var>dir</var>
-imacros <var>file</var> -imultilib <var>dir</var>
-iplugindir=<var>dir</var> -iprefix <var>file</var>
-iquote <var>dir</var> -isysroot <var>dir</var> -isystem <var>dir</var>
-iwithprefix <var>dir</var> -iwithprefixbefore <var>dir</var>
-L<var>dir</var> -no-canonical-prefixes --no-sysroot-suffix
-nostdinc -nostdinc++ --sysroot=<var>dir</var>
</pre></div>
</dd>
<dt><em>Code Generation Options</em></dt>
<dd><p>See <a href="#Code-Gen-Options">Options for Code Generation Conventions</a>.
</p><div class="smallexample">
<pre class="smallexample">-fcall-saved-<var>reg</var> -fcall-used-<var>reg</var>
-ffixed-<var>reg</var> -fexceptions
-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables
-fno-gnu-unique
-finhibit-size-directive -fno-common -fno-ident
-fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt
-fno-jump-tables
-frecord-gcc-switches
-freg-struct-return -fshort-enums -fshort-wchar
-fverbose-asm -fpack-struct[=<var>n</var>]
-fleading-underscore -ftls-model=<var>model</var>
-fstack-reuse=<var>reuse_level</var>
-ftrampolines -ftrapv -fwrapv
-fvisibility=<span class="roman">[</span>default<span class="roman">|</span>internal<span class="roman">|</span>hidden<span class="roman">|</span>protected<span class="roman">]</span>
-fstrict-volatile-bitfields -fsync-libcalls
</pre></div>
</dd>
<dt><em>Developer Options</em></dt>
<dd><p>See <a href="#Developer-Options">GCC Developer Options</a>.
</p><div class="smallexample">
<pre class="smallexample">-d<var>letters</var> -dumpspecs -dumpmachine -dumpversion
-dumpfullversion -fchecking -fchecking=<var>n</var> -fdbg-cnt-list
-fdbg-cnt=<var>counter-value-list</var>
-fdisable-ipa-<var>pass_name</var>
-fdisable-rtl-<var>pass_name</var>
-fdisable-rtl-<var>pass-name</var>=<var>range-list</var>
-fdisable-tree-<var>pass_name</var>
-fdisable-tree-<var>pass-name</var>=<var>range-list</var>
-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-class-hierarchy<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-final-insns<span class="roman">[</span>=<var>file</var><span class="roman">]</span>
-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-lang-all
-fdump-lang-<var>switch</var>
-fdump-lang-<var>switch</var>-<var>options</var>
-fdump-lang-<var>switch</var>-<var>options</var>=<var>filename</var>
-fdump-passes
-fdump-rtl-<var>pass</var> -fdump-rtl-<var>pass</var>=<var>filename</var>
-fdump-statistics
-fdump-tree-all
-fdump-tree-<var>switch</var>
-fdump-tree-<var>switch</var>-<var>options</var>
-fdump-tree-<var>switch</var>-<var>options</var>=<var>filename</var>
-fcompare-debug<span class="roman">[</span>=<var>opts</var><span class="roman">]</span> -fcompare-debug-second
-fenable-<var>kind</var>-<var>pass</var>
-fenable-<var>kind</var>-<var>pass</var>=<var>range-list</var>
-fira-verbose=<var>n</var>
-flto-report -flto-report-wpa -fmem-report-wpa
-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report
-fopt-info -fopt-info-<var>options</var><span class="roman">[</span>=<var>file</var><span class="roman">]</span>
-fprofile-report
-frandom-seed=<var>string</var> -fsched-verbose=<var>n</var>
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstats -fstack-usage -ftime-report -ftime-report-details
-fvar-tracking-assignments-toggle -gtoggle
-print-file-name=<var>library</var> -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=<var>program</var> -print-search-dirs -Q
-print-sysroot -print-sysroot-headers-suffix
-save-temps -save-temps=cwd -save-temps=obj -time<span class="roman">[</span>=<var>file</var><span class="roman">]</span>
</pre></div>
</dd>
<dt><em>Machine-Dependent Options</em></dt>
<dd><p>See <a href="#Submodel-Options">Machine-Dependent Options</a>.
</p>
<p><em>AArch64 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mabi=<var>name</var> -mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large
-mstrict-align
-momit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-mtls-size=<var>size</var>
-mfix-cortex-a53-835769 -mfix-cortex-a53-843419
-mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div
-mpc-relative-literal-loads
-msign-return-address=<var>scope</var>
-march=<var>name</var> -mcpu=<var>name</var> -mtune=<var>name</var>
-moverride=<var>string</var> -mverbose-cost-dump
</pre></div>
<p><em>Adapteva Epiphany Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=<var>num</var> -mcmove -mnops=<var>num</var> -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=<var>num</var>
-mround-nearest -mlong-calls -mshort-calls -msmall16
-mfp-mode=<var>mode</var> -mvect-double -max-vect-align=<var>num</var>
-msplit-vecmove-early -m1reg-<var>reg</var>
</pre></div>
<p><em>ARC Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mbarrel-shifter -mjli-always
-mcpu=<var>cpu</var> -mA6 -mARC600 -mA7 -mARC700
-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr
-mea -mno-mpy -mmul32x16 -mmul64 -matomic
-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
-mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved
-mrgf-banked-regs -mlpc-width=<var>width</var> -G <var>num</var>
-mvolatile-cache -mtp-regno=<var>regno</var>
-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
-mlra-priority-compact mlra-priority-noncompact -mno-millicode
-mmixed-code -mq-class -mRcq -mRcw -msize-level=<var>level</var>
-mtune=<var>cpu</var> -mmultcost=<var>num</var>
-munalign-prob-threshold=<var>probability</var> -mmpy-option=<var>multo</var>
-mdiv-rem -mcode-density -mll64 -mfpu=<var>fpu</var> -mrf16
</pre></div>
<p><em>ARM Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mapcs-frame -mno-apcs-frame
-mabi=<var>name</var>
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian
-mbe8 -mbe32
-mfloat-abi=<var>name</var>
-mfp16-format=<var>name</var>
-mthumb-interwork -mno-thumb-interwork
-mcpu=<var>name</var> -march=<var>name</var> -mfpu=<var>name</var>
-mtune=<var>name</var> -mprint-tune-info
-mstructure-size-boundary=<var>n</var>
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=<var>reg</var>
-mnop-fun-dllimport
-mpoke-function-name
-mthumb -marm -mflip-thumb
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=<var>name</var> -mtls-dialect=<var>dialect</var>
-mword-relocations
-mfix-cortex-m3-ldrd
-munaligned-access
-mneon-for-64bits
-mslow-flash-data
-masm-syntax-unified
-mrestrict-it
-mverbose-cost-dump
-mpure-code
-mcmse
</pre></div>
<p><em>AVR Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mmcu=<var>mcu</var> -mabsdata -maccumulate-args
-mbranch-cost=<var>cost</var>
-mcall-prologues -mgas-isr-prologues -mint8
-mn_flash=<var>size</var> -mno-interrupts
-mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack
-mfract-convert-truncate
-mshort-calls -nodevicelib
-Waddr-space-convert -Wmisspelled-isr
</pre></div>
<p><em>Blackfin Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mcpu=<var>cpu</var><span class="roman">[</span>-<var>sirevision</var><span class="roman">]</span>
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library
-mno-id-shared-library -mshared-library-id=<var>n</var>
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb
</pre></div>
<p><em>C6X Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mbig-endian -mlittle-endian -march=<var>cpu</var>
-msim -msdata=<var>sdata-type</var>
</pre></div>
<p><em>CRIS Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mcpu=<var>cpu</var> -march=<var>cpu</var> -mtune=<var>cpu</var>
-mmax-stack-frame=<var>n</var> -melinux-stacksize=<var>n</var>
-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround
</pre></div>
<p><em>CR16 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mmac
-mcr16cplus -mcr16c
-msim -mint32 -mbit-ops
-mdata-model=<var>model</var>
</pre></div>
<p><em>Darwin Options</em>
</p><div class="smallexample">
<pre class="smallexample">-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip
-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list
-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework
-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -seg1addr
-sectcreate -sectobjectsymbols -sectorder
-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=<var>version</var>
-mkernel -mone-byte-bool
</pre></div>
<p><em>DEC Alpha Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=<var>mode</var> -mfp-rounding-mode=<var>mode</var>
-mtrap-precision=<var>mode</var> -mbuild-constants
-mcpu=<var>cpu-type</var> -mtune=<var>cpu-type</var>
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=<var>time</var>
</pre></div>
<p><em>FR30 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-msmall-model -mno-lsim
</pre></div>
<p><em>FT32 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-msim -mlra -mnodiv -mft32b -mcompress -mnopm
</pre></div>
<p><em>FRV Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=<var>cpu</var>
</pre></div>
<p><em>GNU/Linux Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mglibc -muclibc -mmusl -mbionic -mandroid
-tno-android-cc -tno-android-ld
</pre></div>
<p><em>H8/300 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300
</pre></div>
<p><em>HPPA Options</em>
</p><div class="smallexample">
<pre class="smallexample">-march=<var>architecture-type</var>
-mcaller-copies -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-ld -mhp-ld
-mfixed-range=<var>register-range</var>
-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=<var>cpu-type</var> -mspace-regs -msio -mwsio
-munix=<var>unix-std</var> -nolibdld -static -threads
</pre></div>
<p><em>IA-64 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata
-mconstant-gp -mauto-pic -mfused-madd
-minline-float-divide-min-latency
-minline-float-divide-max-throughput
-mno-inline-float-divide
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-mno-inline-int-divide
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-inline-sqrt
-mdwarf2-asm -mearly-stop-bits
-mfixed-range=<var>register-range</var> -mtls-size=<var>tls-size</var>
-mtune=<var>cpu-type</var> -milp32 -mlp64
-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=<var>max-insns</var>
</pre></div>
<p><em>LM32 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled
</pre></div>
<p><em>M32R/D Options</em>
</p><div class="smallexample">
<pre class="smallexample">-m32r2 -m32rx -m32r
-mdebug
-malign-loops -mno-align-loops
-missue-rate=<var>number</var>
-mbranch-cost=<var>number</var>
-mmodel=<var>code-size-model-type</var>
-msdata=<var>sdata-type</var>
-mno-flush-func -mflush-func=<var>name</var>
-mno-flush-trap -mflush-trap=<var>number</var>
-G <var>num</var>
</pre></div>
<p><em>M32C Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mcpu=<var>cpu</var> -msim -memregs=<var>number</var>
</pre></div>
<p><em>M680x0 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-march=<var>arch</var> -mcpu=<var>cpu</var> -mtune=<var>tune</var>
-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
-m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407
-mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020
-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
-mno-short -mhard-float -m68881 -msoft-float -mpcrel
-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
-mxgot -mno-xgot -mlong-jump-table-offsets
</pre></div>
<p><em>MCore Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment
</pre></div>
<p><em>MeP Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mabsdiff -mall-opts -maverage -mbased=<var>n</var> -mbitops
-mc=<var>n</var> -mclip -mconfig=<var>name</var> -mcop -mcop32 -mcop64 -mivc2
-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax
-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=<var>n</var>
</pre></div>
<p><em>MicroBlaze Options</em>
</p><div class="smallexample">
<pre class="smallexample">-msoft-float -mhard-float -msmall-divides -mcpu=<var>cpu</var>
-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-<var>app-model</var>
</pre></div>
<p><em>MIPS Options</em>
</p><div class="smallexample">
<pre class="smallexample">-EL -EB -march=<var>arch</var> -mtune=<var>arch</var>
-mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5
-mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6
-mips16 -mno-mips16 -mflip-mips16
-minterlink-compressed -mno-interlink-compressed
-minterlink-mips16 -mno-interlink-mips16
-mabi=<var>abi</var> -mabicalls -mno-abicalls
-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
-mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float
-mno-float -msingle-float -mdouble-float
-modd-spreg -mno-odd-spreg
-mabs=<var>mode</var> -mnan=<var>encoding</var>
-mdsp -mno-dsp -mdspr2 -mno-dspr2
-mmcu -mmno-mcu
-meva -mno-eva
-mvirt -mno-virt
-mxpa -mno-xpa
-mmicromips -mno-micromips
-mmsa -mno-msa
-mfpu=<var>fpu-type</var>
-msmartmips -mno-smartmips
-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32
-G<var>num</var> -mlocal-sdata -mno-local-sdata
-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=<var>setting</var>
-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks
-mload-store-pairs -mno-load-store-pairs
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k
-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
-mfix-vr4120 -mno-fix-vr4120
-mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1
-mflush-func=<var>func</var> -mno-flush-func
-mbranch-cost=<var>num</var> -mbranch-likely -mno-branch-likely
-mcompact-branches=<var>policy</var>
-mfp-exceptions -mno-fp-exceptions
-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
-mframe-header-opt -mno-frame-header-opt
</pre></div>
<p><em>MMIX Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit
</pre></div>
<p><em>MN10300 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=<var>cpu-type</var>
-mreturn-pointer-on-d0
-mno-crt0 -mrelax -mliw -msetlb
</pre></div>
<p><em>Moxie Options</em>
</p><div class="smallexample">
<pre class="smallexample">-meb -mel -mmul.x -mno-crt0
</pre></div>
<p><em>MSP430 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax
-mwarn-mcu
-mcode-region= -mdata-region=
-msilicon-errata= -msilicon-errata-warn=
-mhwmult= -minrt
</pre></div>
<p><em>NDS32 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mbig-endian -mlittle-endian
-mreduced-regs -mfull-regs
-mcmov -mno-cmov
-mext-perf -mno-ext-perf
-mext-perf2 -mno-ext-perf2
-mext-string -mno-ext-string
-mv3push -mno-v3push
-m16bit -mno-16bit
-misr-vector-size=<var>num</var>
-mcache-block-size=<var>num</var>
-march=<var>arch</var>
-mcmodel=<var>code-model</var>
-mctor-dtor -mrelax
</pre></div>
<p><em>Nios II Options</em>
</p><div class="smallexample">
<pre class="smallexample">-G <var>num</var> -mgpopt=<var>option</var> -mgpopt -mno-gpopt
-mgprel-sec=<var>regexp</var> -mr0rel-sec=<var>regexp</var>
-mel -meb
-mno-bypass-cache -mbypass-cache
-mno-cache-volatile -mcache-volatile
-mno-fast-sw-div -mfast-sw-div
-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div
-mcustom-<var>insn</var>=<var>N</var> -mno-custom-<var>insn</var>
-mcustom-fpu-cfg=<var>name</var>
-mhal -msmallc -msys-crt0=<var>name</var> -msys-lib=<var>name</var>
-march=<var>arch</var> -mbmx -mno-bmx -mcdx -mno-cdx
</pre></div>
<p><em>Nvidia PTX Options</em>
</p><div class="smallexample">
<pre class="smallexample">-m32 -m64 -mmainkernel -moptimize
</pre></div>
<p><em>PDP-11 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10
-mbcopy -mbcopy-builtin -mint32 -mno-int16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap
-munix-asm -mdec-asm
</pre></div>
<p><em>picoChip Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mae=<var>ae_type</var> -mvliw-lookahead=<var>N</var>
-msymbol-as-address -mno-inefficient-warnings
</pre></div>
<p><em>PowerPC Options</em>
See RS/6000 and PowerPC Options.
</p>
<p><em>PowerPC SPE Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mcpu=<var>cpu-type</var>
-mtune=<var>cpu-type</var>
-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m32 -mxl-compat -mno-xl-compat
-malign-power -malign-natural
-msoft-float -mhard-float -mmultiple -mno-multiple
-msingle-float -mdouble-float
-mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-msingle-pic-base
-mprioritize-restricted-insns=<var>priority</var>
-msched-costly-dep=<var>dependence_type</var>
-minsert-sched-nops=<var>scheme</var>
-mcall-sysv -mcall-netbsd
-maix-struct-return -msvr4-struct-return
-mabi=<var>abi-type</var> -msecure-plt -mbss-plt
-mblock-move-inline-limit=<var>num</var>
-misel -mno-isel
-misel=yes -misel=no
-mspe -mno-spe
-mspe=yes -mspe=no
-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype
-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=<var>opt</var> -mvxworks -G <var>num</var>
-mrecip -mrecip=<var>opt</var> -mno-recip -mrecip-precision
-mno-recip-precision
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect
-mcompat-align-parm -mno-compat-align-parm
-mfloat128 -mno-float128
-mgnu-attribute -mno-gnu-attribute
-mstack-protector-guard=<var>guard</var> -mstack-protector-guard-reg=<var>reg</var>
-mstack-protector-guard-offset=<var>offset</var>
</pre></div>
<p><em>RISC-V Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mbranch-cost=<var>N-instruction</var>
-mplt -mno-plt
-mabi=<var>ABI-string</var>
-mfdiv -mno-fdiv
-mdiv -mno-div
-march=<var>ISA-string</var>
-mtune=<var>processor-string</var>
-mpreferred-stack-boundary=<var>num</var>
-msmall-data-limit=<var>N-bytes</var>
-msave-restore -mno-save-restore
-mstrict-align -mno-strict-align
-mcmodel=medlow -mcmodel=medany
-mexplicit-relocs -mno-explicit-relocs
-mrelax -mno-relax
</pre></div>
<p><em>RL78 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs
-mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14
-m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts
</pre></div>
<p><em>RS/6000 and PowerPC Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mcpu=<var>cpu-type</var>
-mtune=<var>cpu-type</var>
-mcmodel=<var>code-model</var>
-mpowerpc64
-maltivec -mno-altivec
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd
-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe
-malign-power -malign-natural
-msoft-float -mhard-float -mmultiple -mno-multiple
-msingle-float -mdouble-float -msimple-fpu
-mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=<var>priority</var>
-msched-costly-dep=<var>dependence_type</var>
-minsert-sched-nops=<var>scheme</var>
-mcall-aixdesc -mcall-eabi -mcall-freebsd
-mcall-linux -mcall-netbsd -mcall-openbsd
-mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi
-mtraceback=<var>traceback_type</var>
-maix-struct-return -msvr4-struct-return
-mabi=<var>abi-type</var> -msecure-plt -mbss-plt
-mblock-move-inline-limit=<var>num</var>
-mblock-compare-inline-limit=<var>num</var>
-mblock-compare-inline-loop-limit=<var>num</var>
-mstring-compare-inline-limit=<var>num</var>
-misel -mno-isel
-misel=yes -misel=no
-mpaired
-mvrsave -mno-vrsave
-mmulhw -mno-mulhw
-mdlmzb -mno-dlmzb
-mprototype -mno-prototype
-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=<var>opt</var> -mreadonly-in-sdata -mvxworks -G <var>num</var>
-mrecip -mrecip=<var>opt</var> -mno-recip -mrecip-precision
-mno-recip-precision
-mveclibabi=<var>type</var> -mfriz -mno-friz
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect
-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector
-mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move
-mquad-memory -mno-quad-memory
-mquad-memory-atomic -mno-quad-memory-atomic
-mcompat-align-parm -mno-compat-align-parm
-mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware
-mgnu-attribute -mno-gnu-attribute
-mstack-protector-guard=<var>guard</var> -mstack-protector-guard-reg=<var>reg</var>
-mstack-protector-guard-offset=<var>offset</var>
</pre></div>
<p><em>RX Options</em>
</p><div class="smallexample">
<pre class="smallexample">-m64bit-doubles -m32bit-doubles -fpu -nofpu
-mcpu=
-mbig-endian-data -mlittle-endian-data
-msmall-data
-msim -mno-sim
-mas100-syntax -mno-as100-syntax
-mrelax
-mmax-constant-size=
-mint-register=
-mpid
-mallow-string-insns -mno-allow-string-insns
-mjsr
-mno-warn-multiple-fast-interrupts
-msave-acc-in-interrupts
</pre></div>
<p><em>S/390 and zSeries Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mtune=<var>cpu-type</var> -march=<var>cpu-type</var>
-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128
-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle
-m64 -m31 -mdebug -mno-debug -mesa -mzarch
-mhtm -mvx -mzvector
-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
-mhotpatch=<var>halfwords</var>,<var>halfwords</var>
</pre></div>
<p><em>Score Options</em>
</p><div class="smallexample">
<pre class="smallexample">-meb -mel
-mnhwloop
-muls
-mmac
-mscore5 -mscore5u -mscore7 -mscore7d
</pre></div>
<p><em>SH Options</em>
</p><div class="smallexample">
<pre class="smallexample">-m1 -m2 -m2e
-m2a-nofpu -m2a-single-only -m2a-single -m2a
-m3 -m3e
-m4-nofpu -m4-single-only -m4-single -m4
-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mprefergot -musermode -multcost=<var>number</var> -mdiv=<var>strategy</var>
-mdivsi3_libfunc=<var>name</var> -mfixed-range=<var>register-range</var>
-maccumulate-outgoing-args
-matomic-model=<var>atomic-model</var>
-mbranch-cost=<var>num</var> -mzdcbranch -mno-zdcbranch
-mcbranch-force-delay-slot
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
-mpretend-cmove -mtas
</pre></div>
<p><em>Solaris 2 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text
-pthreads
</pre></div>
<p><em>SPARC Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mcpu=<var>cpu-type</var>
-mtune=<var>cpu-type</var>
-mcmodel=<var>code-model</var>
-mmemory-model=<var>mem-model</var>
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-mstd-struct-return -mno-std-struct-return
-munaligned-doubles -mno-unaligned-doubles
-muser-mode -mno-user-mode
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2 -mvis3 -mno-vis3
-mvis4 -mno-vis4 -mvis4b -mno-vis4b
-mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld
-mpopc -mno-popc -msubxc -mno-subxc
-mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc
-mlra -mno-lra
</pre></div>
<p><em>SPU Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mwarn-reloc -merror-reloc
-msafe-dma -munsafe-dma
-mbranch-hints
-msmall-mem -mlarge-mem -mstdmain
-mfixed-range=<var>register-range</var>
-mea32 -mea64
-maddress-space-conversion -mno-address-space-conversion
-mcache-size=<var>cache-size</var>
-matomic-updates -mno-atomic-updates
</pre></div>
<p><em>System V Options</em>
</p><div class="smallexample">
<pre class="smallexample">-Qy -Qn -YP,<var>paths</var> -Ym,<var>dir</var>
</pre></div>
<p><em>TILE-Gx Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian
-mcmodel=<var>code-model</var>
</pre></div>
<p><em>TILEPro Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mcpu=<var>cpu</var> -m32
</pre></div>
<p><em>V850 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=<var>n</var> -msda=<var>n</var> -mzda=<var>n</var>
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e2v3 -mv850e2 -mv850e1 -mv850es
-mv850e -mv850 -mv850e3v5
-mloop
-mrelax
-mlong-jumps
-msoft-float
-mhard-float
-mgcc-abi
-mrh850-abi
-mbig-switch
</pre></div>
<p><em>VAX Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mg -mgnu -munix
</pre></div>
<p><em>Visium Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float
-mcpu=<var>cpu-type</var> -mtune=<var>cpu-type</var> -msv-mode -muser-mode
</pre></div>
<p><em>VMS Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mvms-return-codes -mdebug-main=<var>prefix</var> -mmalloc64
-mpointer-size=<var>size</var>
</pre></div>
<p><em>VxWorks Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now
</pre></div>
<p><em>x86 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mtune=<var>cpu-type</var> -march=<var>cpu-type</var>
-mtune-ctrl=<var>feature-list</var> -mdump-tune-features -mno-default
-mfpmath=<var>unit</var>
-masm=<var>dialect</var> -mno-fancy-math-387
-mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=<var>num</var>
-mincoming-stack-boundary=<var>num</var>
-mcld -mcx16 -msahf -mmovbe -mcrc32
-mrecip -mrecip=<var>opt</var>
-mvzeroupper -mprefer-avx128 -mprefer-vector-width=<var>opt</var>
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx
-mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl
-mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes
-mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd
-mprefetchwt1 -mclflushopt -mxsavec -mxsaves
-msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop
-mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx
-mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes
-mcet -mibt -mshstk -mforce-indirect-call -mavx512vbmi2
-mvpclmulqdq -mavx512bitalg -mavx512vpopcntdq
-mms-bitfields -mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=<var>alg</var>
-mmemcpy-strategy=<var>strategy</var> -mmemset-strategy=<var>strategy</var>
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
-mregparm=<var>num</var> -msseregparm
-mveclibabi=<var>type</var> -mvect8-ret-in-mem
-mpc32 -mpc64 -mpc80 -mstackrealign
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=<var>code-model</var> -mabi=<var>name</var> -maddress-mode=<var>mode</var>
-m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=<var>num</var>
-msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv
-mavx256-split-unaligned-load -mavx256-split-unaligned-store
-malign-data=<var>type</var> -mstack-protector-guard=<var>guard</var>
-mstack-protector-guard-reg=<var>reg</var>
-mstack-protector-guard-offset=<var>offset</var>
-mstack-protector-guard-symbol=<var>symbol</var> -mmitigate-rop
-mgeneral-regs-only -mcall-ms2sysv-xlogues
-mindirect-branch=<var>choice</var> -mfunction-return=<var>choice</var>
-mindirect-branch-register
</pre></div>
<p><em>x86 Windows Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable
</pre></div>
<p><em>Xstormy16 Options</em>
</p><div class="smallexample">
<pre class="smallexample">-msim
</pre></div>
<p><em>Xtensa Options</em>
</p><div class="smallexample">
<pre class="smallexample">-mconst16 -mno-const16
-mfused-madd -mno-fused-madd
-mforce-no-pic
-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mauto-litpools -mno-auto-litpools
-mtarget-align -mno-target-align
-mlongcalls -mno-longcalls
</pre></div>
<p><em>zSeries Options</em>
See S/390 and zSeries Options.
</p></dd>
</dl>
<hr>
<a name="Overall-Options"></a>
<div class="header">
<p>
Next: <a href="#Invoking-G_002b_002b" accesskey="n" rel="next">Invoking G++</a>, Previous: <a href="#Option-Summary" accesskey="p" rel="prev">Option Summary</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-Controlling-the-Kind-of-Output"></a>
<h3 class="section">3.2 Options Controlling the Kind of Output</h3>
<p>Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. GCC is capable of
preprocessing and compiling several files either into several
assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all
the object files (those newly compiled, and those specified as input)
into an executable file.
</p>
<a name="index-file-name-suffix"></a>
<p>For any given input file, the file name suffix determines what kind of
compilation is done:
</p>
<dl compact="compact">
<dt><code><var>file</var>.c</code></dt>
<dd><p>C source code that must be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.i</code></dt>
<dd><p>C source code that should not be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.ii</code></dt>
<dd><p>C++ source code that should not be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.m</code></dt>
<dd><p>Objective-C source code. Note that you must link with the <samp>libobjc</samp>
library to make an Objective-C program work.
</p>
</dd>
<dt><code><var>file</var>.mi</code></dt>
<dd><p>Objective-C source code that should not be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.mm</code></dt>
<dt><code><var>file</var>.M</code></dt>
<dd><p>Objective-C++ source code. Note that you must link with the <samp>libobjc</samp>
library to make an Objective-C++ program work. Note that ‘<samp>.M</samp>’ refers
to a literal capital M.
</p>
</dd>
<dt><code><var>file</var>.mii</code></dt>
<dd><p>Objective-C++ source code that should not be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.h</code></dt>
<dd><p>C, C++, Objective-C or Objective-C++ header file to be turned into a
precompiled header (default), or C, C++ header file to be turned into an
Ada spec (via the <samp>-fdump-ada-spec</samp> switch).
</p>
</dd>
<dt><code><var>file</var>.cc</code></dt>
<dt><code><var>file</var>.cp</code></dt>
<dt><code><var>file</var>.cxx</code></dt>
<dt><code><var>file</var>.cpp</code></dt>
<dt><code><var>file</var>.CPP</code></dt>
<dt><code><var>file</var>.c++</code></dt>
<dt><code><var>file</var>.C</code></dt>
<dd><p>C++ source code that must be preprocessed. Note that in ‘<samp>.cxx</samp>’,
the last two letters must both be literally ‘<samp>x</samp>’. Likewise,
‘<samp>.C</samp>’ refers to a literal capital C.
</p>
</dd>
<dt><code><var>file</var>.mm</code></dt>
<dt><code><var>file</var>.M</code></dt>
<dd><p>Objective-C++ source code that must be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.mii</code></dt>
<dd><p>Objective-C++ source code that should not be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.hh</code></dt>
<dt><code><var>file</var>.H</code></dt>
<dt><code><var>file</var>.hp</code></dt>
<dt><code><var>file</var>.hxx</code></dt>
<dt><code><var>file</var>.hpp</code></dt>
<dt><code><var>file</var>.HPP</code></dt>
<dt><code><var>file</var>.h++</code></dt>
<dt><code><var>file</var>.tcc</code></dt>
<dd><p>C++ header file to be turned into a precompiled header or Ada spec.
</p>
</dd>
<dt><code><var>file</var>.f</code></dt>
<dt><code><var>file</var>.for</code></dt>
<dt><code><var>file</var>.ftn</code></dt>
<dd><p>Fixed form Fortran source code that should not be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.F</code></dt>
<dt><code><var>file</var>.FOR</code></dt>
<dt><code><var>file</var>.fpp</code></dt>
<dt><code><var>file</var>.FPP</code></dt>
<dt><code><var>file</var>.FTN</code></dt>
<dd><p>Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).
</p>
</dd>
<dt><code><var>file</var>.f90</code></dt>
<dt><code><var>file</var>.f95</code></dt>
<dt><code><var>file</var>.f03</code></dt>
<dt><code><var>file</var>.f08</code></dt>
<dd><p>Free form Fortran source code that should not be preprocessed.
</p>
</dd>
<dt><code><var>file</var>.F90</code></dt>
<dt><code><var>file</var>.F95</code></dt>
<dt><code><var>file</var>.F03</code></dt>
<dt><code><var>file</var>.F08</code></dt>
<dd><p>Free form Fortran source code that must be preprocessed (with the
traditional preprocessor).
</p>
</dd>
<dt><code><var>file</var>.go</code></dt>
<dd><p>Go source code.
</p>
</dd>
<dt><code><var>file</var>.brig</code></dt>
<dd><p>BRIG files (binary representation of HSAIL).
</p>
</dd>
<dt><code><var>file</var>.d</code></dt>
<dd><p>D source code.
</p>
</dd>
<dt><code><var>file</var>.di</code></dt>
<dd><p>D interface file.
</p>
</dd>
<dt><code><var>file</var>.dd</code></dt>
<dd><p>D documentation code (Ddoc).
</p>
</dd>
<dt><code><var>file</var>.ads</code></dt>
<dd><p>Ada source code file that contains a library unit declaration (a
declaration of a package, subprogram, or generic, or a generic
instantiation), or a library unit renaming declaration (a package,
generic, or subprogram renaming declaration). Such files are also
called <em>specs</em>.
</p>
</dd>
<dt><code><var>file</var>.adb</code></dt>
<dd><p>Ada source code file containing a library unit body (a subprogram or
package body). Such files are also called <em>bodies</em>.
</p>
</dd>
<dt><code><var>file</var>.s</code></dt>
<dd><p>Assembler code.
</p>
</dd>
<dt><code><var>file</var>.S</code></dt>
<dt><code><var>file</var>.sx</code></dt>
<dd><p>Assembler code that must be preprocessed.
</p>
</dd>
<dt><code><var>other</var></code></dt>
<dd><p>An object file to be fed straight into linking.
Any file name with no recognized suffix is treated this way.
</p></dd>
</dl>
<a name="index-x"></a>
<p>You can specify the input language explicitly with the <samp>-x</samp> option:
</p>
<dl compact="compact">
<dt><code>-x <var>language</var></code></dt>
<dd><p>Specify explicitly the <var>language</var> for the following input files
(rather than letting the compiler choose a default based on the file
name suffix). This option applies to all following input files until
the next <samp>-x</samp> option. Possible values for <var>language</var> are:
</p><div class="smallexample">
<pre class="smallexample">c c-header cpp-output
c++ c++-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
d
f77 f77-cpp-input f95 f95-cpp-input
go
brig
</pre></div>
</dd>
<dt><code>-x none</code></dt>
<dd><p>Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes (as they are if <samp>-x</samp>
has not been used at all).
</p></dd>
</dl>
<p>If you only want some of the stages of compilation, you can use
<samp>-x</samp> (or filename suffixes) to tell <code>gcc</code> where to start, and
one of the options <samp>-c</samp>, <samp>-S</samp>, or <samp>-E</samp> to say where
<code>gcc</code> is to stop. Note that some combinations (for example,
‘<samp>-x cpp-output -E</samp>’) instruct <code>gcc</code> to do nothing at all.
</p>
<dl compact="compact">
<dt><code>-c</code></dt>
<dd><a name="index-c"></a>
<p>Compile or assemble the source files, but do not link. The linking
stage simply is not done. The ultimate output is in the form of an
object file for each source file.
</p>
<p>By default, the object file name for a source file is made by replacing
the suffix ‘<samp>.c</samp>’, ‘<samp>.i</samp>’, ‘<samp>.s</samp>’, etc., with ‘<samp>.o</samp>’.
</p>
<p>Unrecognized input files, not requiring compilation or assembly, are
ignored.
</p>
</dd>
<dt><code>-S</code></dt>
<dd><a name="index-S"></a>
<p>Stop after the stage of compilation proper; do not assemble. The output
is in the form of an assembler code file for each non-assembler input
file specified.
</p>
<p>By default, the assembler file name for a source file is made by
replacing the suffix ‘<samp>.c</samp>’, ‘<samp>.i</samp>’, etc., with ‘<samp>.s</samp>’.
</p>
<p>Input files that don’t require compilation are ignored.
</p>
</dd>
<dt><code>-E</code></dt>
<dd><a name="index-E"></a>
<p>Stop after the preprocessing stage; do not run the compiler proper. The
output is in the form of preprocessed source code, which is sent to the
standard output.
</p>
<p>Input files that don’t require preprocessing are ignored.
</p>
<a name="index-output-file-option"></a>
</dd>
<dt><code>-o <var>file</var></code></dt>
<dd><a name="index-o"></a>
<p>Place output in file <var>file</var>. This applies to whatever
sort of output is being produced, whether it be an executable file,
an object file, an assembler file or preprocessed C code.
</p>
<p>If <samp>-o</samp> is not specified, the default is to put an executable
file in <samp>a.out</samp>, the object file for
<samp><var>source</var>.<var>suffix</var></samp> in <samp><var>source</var>.o</samp>, its
assembler file in <samp><var>source</var>.s</samp>, a precompiled header file in
<samp><var>source</var>.<var>suffix</var>.gch</samp>, and all preprocessed C source on
standard output.
</p>
</dd>
<dt><code>-v</code></dt>
<dd><a name="index-v"></a>
<p>Print (on standard error output) the commands executed to run the stages
of compilation. Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.
</p>
</dd>
<dt><code>-###</code></dt>
<dd><a name="index-_0023_0023_0023"></a>
<p>Like <samp>-v</samp> except the commands are not executed and arguments
are quoted unless they contain only alphanumeric characters or <code>./-_</code>.
This is useful for shell scripts to capture the driver-generated command lines.
</p>
</dd>
<dt><code>--help</code></dt>
<dd><a name="index-help"></a>
<p>Print (on the standard output) a description of the command-line options
understood by <code>gcc</code>. If the <samp>-v</samp> option is also specified
then <samp>--help</samp> is also passed on to the various processes
invoked by <code>gcc</code>, so that they can display the command-line options
they accept. If the <samp>-Wextra</samp> option has also been specified
(prior to the <samp>--help</samp> option), then command-line options that
have no documentation associated with them are also displayed.
</p>
</dd>
<dt><code>--target-help</code></dt>
<dd><a name="index-target_002dhelp"></a>
<p>Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific
information may also be printed.
</p>
</dd>
<dt><code>--help={<var>class</var><span class="roman">|[</span>^<span class="roman">]</span><var>qualifier</var>}<span class="roman">[</span>,…<span class="roman">]</span></code></dt>
<dd><p>Print (on the standard output) a description of the command-line
options understood by the compiler that fit into all specified classes
and qualifiers. These are the supported classes:
</p>
<dl compact="compact">
<dt>‘<samp>optimizers</samp>’</dt>
<dd><p>Display all of the optimization options supported by the
compiler.
</p>
</dd>
<dt>‘<samp>warnings</samp>’</dt>
<dd><p>Display all of the options controlling warning messages
produced by the compiler.
</p>
</dd>
<dt>‘<samp>target</samp>’</dt>
<dd><p>Display target-specific options. Unlike the
<samp>--target-help</samp> option however, target-specific options of the
linker and assembler are not displayed. This is because those
tools do not currently support the extended <samp>--help=</samp> syntax.
</p>
</dd>
<dt>‘<samp>params</samp>’</dt>
<dd><p>Display the values recognized by the <samp>--param</samp>
option.
</p>
</dd>
<dt><var>language</var></dt>
<dd><p>Display the options supported for <var>language</var>, where
<var>language</var> is the name of one of the languages supported in this
version of GCC.
</p>
</dd>
<dt>‘<samp>common</samp>’</dt>
<dd><p>Display the options that are common to all languages.
</p></dd>
</dl>
<p>These are the supported qualifiers:
</p>
<dl compact="compact">
<dt>‘<samp>undocumented</samp>’</dt>
<dd><p>Display only those options that are undocumented.
</p>
</dd>
<dt>‘<samp>joined</samp>’</dt>
<dd><p>Display options taking an argument that appears after an equal
sign in the same continuous piece of text, such as:
‘<samp>--help=target</samp>’.
</p>
</dd>
<dt>‘<samp>separate</samp>’</dt>
<dd><p>Display options taking an argument that appears as a separate word
following the original option, such as: ‘<samp>-o output-file</samp>’.
</p></dd>
</dl>
<p>Thus for example to display all the undocumented target-specific
switches supported by the compiler, use:
</p>
<div class="smallexample">
<pre class="smallexample">--help=target,undocumented
</pre></div>
<p>The sense of a qualifier can be inverted by prefixing it with the
‘<samp>^</samp>’ character, so for example to display all binary warning
options (i.e., ones that are either on or off and that do not take an
argument) that have a description, use:
</p>
<div class="smallexample">
<pre class="smallexample">--help=warnings,^joined,^undocumented
</pre></div>
<p>The argument to <samp>--help=</samp> should not consist solely of inverted
qualifiers.
</p>
<p>Combining several classes is possible, although this usually
restricts the output so much that there is nothing to display. One
case where it does work, however, is when one of the classes is
<var>target</var>. For example, to display all the target-specific
optimization options, use:
</p>
<div class="smallexample">
<pre class="smallexample">--help=target,optimizers
</pre></div>
<p>The <samp>--help=</samp> option can be repeated on the command line. Each
successive use displays its requested class of options, skipping
those that have already been displayed.
</p>
<p>If the <samp>-Q</samp> option appears on the command line before the
<samp>--help=</samp> option, then the descriptive text displayed by
<samp>--help=</samp> is changed. Instead of describing the displayed
options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler
knows this at the point where the <samp>--help=</samp> option is used).
</p>
<p>Here is a truncated example from the ARM port of <code>gcc</code>:
</p>
<div class="smallexample">
<pre class="smallexample"> % gcc -Q -mabi=2 --help=target -c
The following options are target specific:
-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]
</pre></div>
<p>The output is sensitive to the effects of previous command-line
options, so for example it is possible to find out which optimizations
are enabled at <samp>-O2</samp> by using:
</p>
<div class="smallexample">
<pre class="smallexample">-Q -O2 --help=optimizers
</pre></div>
<p>Alternatively you can discover which binary optimizations are enabled
by <samp>-O3</samp> by using:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
diff /tmp/O2-opts /tmp/O3-opts | grep enabled
</pre></div>
</dd>
<dt><code>--version</code></dt>
<dd><a name="index-version"></a>
<p>Display the version number and copyrights of the invoked GCC.
</p>
</dd>
<dt><code>-pass-exit-codes</code></dt>
<dd><a name="index-pass_002dexit_002dcodes"></a>
<p>Normally the <code>gcc</code> program exits with the code of 1 if any
phase of the compiler returns a non-success return code. If you specify
<samp>-pass-exit-codes</samp>, the <code>gcc</code> program instead returns with
the numerically highest error produced by any phase returning an error
indication. The C, C++, and Fortran front ends return 4 if an internal
compiler error is encountered.
</p>
</dd>
<dt><code>-pipe</code></dt>
<dd><a name="index-pipe"></a>
<p>Use pipes rather than temporary files for communication between the
various stages of compilation. This fails to work on some systems where
the assembler is unable to read from a pipe; but the GNU assembler has
no trouble.
</p>
</dd>
<dt><code>-specs=<var>file</var></code></dt>
<dd><a name="index-specs"></a>
<p>Process <var>file</var> after the compiler reads in the standard <samp>specs</samp>
file, in order to override the defaults which the <code>gcc</code> driver
program uses when determining what switches to pass to <code>cc1</code>,
<code>cc1plus</code>, <code>as</code>, <code>ld</code>, etc. More than one
<samp>-specs=<var>file</var></samp> can be specified on the command line, and they
are processed in order, from left to right. See <a href="#Spec-Files">Spec Files</a>, for
information about the format of the <var>file</var>.
</p>
</dd>
<dt><code>-wrapper</code></dt>
<dd><a name="index-wrapper"></a>
<p>Invoke all subcommands under a wrapper program. The name of the
wrapper program and its parameters are passed as a comma separated
list.
</p>
<div class="smallexample">
<pre class="smallexample">gcc -c t.c -wrapper gdb,--args
</pre></div>
<p>This invokes all subprograms of <code>gcc</code> under
‘<samp>gdb --args</samp>’, thus the invocation of <code>cc1</code> is
‘<samp>gdb --args cc1 …</samp>’.
</p>
</dd>
<dt><code>-ffile-prefix-map=<var>old</var>=<var>new</var></code></dt>
<dd><a name="index-ffile_002dprefix_002dmap"></a>
<p>When compiling files residing in directory <samp><var>old</var></samp>, record
any references to them in the result of the compilation as if the
files resided in directory <samp><var>new</var></samp> instead. Specifying this
option is equivalent to specifying all the individual
<samp>-f*-prefix-map</samp> options. This can be used to make reproducible
builds that are location independent. See also
<samp>-fmacro-prefix-map</samp> and <samp>-fdebug-prefix-map</samp>.
</p>
</dd>
<dt><code>-fplugin=<var>name</var>.so</code></dt>
<dd><a name="index-fplugin"></a>
<p>Load the plugin code in file <var>name</var>.so, assumed to be a
shared object to be dlopen’d by the compiler. The base name of
the shared object file is used to identify the plugin for the
purposes of argument parsing (See
<samp>-fplugin-arg-<var>name</var>-<var>key</var>=<var>value</var></samp> below).
Each plugin should define the callback functions specified in the
Plugins API.
</p>
</dd>
<dt><code>-fplugin-arg-<var>name</var>-<var>key</var>=<var>value</var></code></dt>
<dd><a name="index-fplugin_002darg"></a>
<p>Define an argument called <var>key</var> with a value of <var>value</var>
for the plugin called <var>name</var>.
</p>
</dd>
<dt><code>-fdump-ada-spec<span class="roman">[</span>-slim<span class="roman">]</span></code></dt>
<dd><a name="index-fdump_002dada_002dspec"></a>
<p>For C and C++ source and include files, generate corresponding Ada specs.
See <a href="http://gcc.gnu.org/onlinedocs/gnat_ugn/Generating-Ada-Bindings-for-C-and-C_002b_002b-headers.html#Generating-Ada-Bindings-for-C-and-C_002b_002b-headers">Generating Ada Bindings for C and C++ headers</a> in <cite>GNAT User’s Guide</cite>, which provides detailed documentation on this feature.
</p>
</dd>
<dt><code>-fada-spec-parent=<var>unit</var></code></dt>
<dd><a name="index-fada_002dspec_002dparent"></a>
<p>In conjunction with <samp>-fdump-ada-spec<span class="roman">[</span>-slim<span class="roman">]</span></samp> above, generate
Ada specs as child units of parent <var>unit</var>.
</p>
</dd>
<dt><code>-fdump-go-spec=<var>file</var></code></dt>
<dd><a name="index-fdump_002dgo_002dspec"></a>
<p>For input files in any language, generate corresponding Go
declarations in <var>file</var>. This generates Go <code>const</code>,
<code>type</code>, <code>var</code>, and <code>func</code> declarations which may be a
useful way to start writing a Go interface to code written in some
other language.
</p>
</dd>
<dt><code>@<var>file</var></code></dt>
<dd><p>Read command-line options from <var>file</var>. The options read are
inserted in place of the original @<var>file</var> option. If <var>file</var>
does not exist, or cannot be read, then the option will be treated
literally, and not removed.
</p>
<p>Options in <var>file</var> are separated by whitespace. A whitespace
character may be included in an option by surrounding the entire
option in either single or double quotes. Any character (including a
backslash) may be included by prefixing the character to be included
with a backslash. The <var>file</var> may itself contain additional
@<var>file</var> options; any such options will be processed recursively.
</p></dd>
</dl>
<hr>
<a name="Invoking-G_002b_002b"></a>
<div class="header">
<p>
Next: <a href="#C-Dialect-Options" accesskey="n" rel="next">C Dialect Options</a>, Previous: <a href="#Overall-Options" accesskey="p" rel="prev">Overall Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Compiling-C_002b_002b-Programs"></a>
<h3 class="section">3.3 Compiling C++ Programs</h3>
<a name="index-suffixes-for-C_002b_002b-source"></a>
<a name="index-C_002b_002b-source-file-suffixes"></a>
<p>C++ source files conventionally use one of the suffixes ‘<samp>.C</samp>’,
‘<samp>.cc</samp>’, ‘<samp>.cpp</samp>’, ‘<samp>.CPP</samp>’, ‘<samp>.c++</samp>’, ‘<samp>.cp</samp>’, or
‘<samp>.cxx</samp>’; C++ header files often use ‘<samp>.hh</samp>’, ‘<samp>.hpp</samp>’,
‘<samp>.H</samp>’, or (for shared template code) ‘<samp>.tcc</samp>’; and
preprocessed C++ files use the suffix ‘<samp>.ii</samp>’. GCC recognizes
files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name <code>gcc</code>).
</p>
<a name="index-g_002b_002b"></a>
<a name="index-c_002b_002b"></a>
<p>However, the use of <code>gcc</code> does not add the C++ library.
<code>g++</code> is a program that calls GCC and automatically specifies linking
against the C++ library. It treats ‘<samp>.c</samp>’,
‘<samp>.h</samp>’ and ‘<samp>.i</samp>’ files as C++ source files instead of C source
files unless <samp>-x</samp> is used. This program is also useful when
precompiling a C header file with a ‘<samp>.h</samp>’ extension for use in C++
compilations. On many systems, <code>g++</code> is also installed with
the name <code>c++</code>.
</p>
<a name="index-invoking-g_002b_002b"></a>
<p>When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for C++ programs.
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>, for
explanations of options for languages related to C.
See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>, for
explanations of options that are meaningful only for C++ programs.
</p>
<hr>
<a name="C-Dialect-Options"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b-Dialect-Options" accesskey="n" rel="next">C++ Dialect Options</a>, Previous: <a href="#Invoking-G_002b_002b" accesskey="p" rel="prev">Invoking G++</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-Controlling-C-Dialect"></a>
<h3 class="section">3.4 Options Controlling C Dialect</h3>
<a name="index-dialect-options"></a>
<a name="index-language-dialect-options"></a>
<a name="index-options_002c-dialect"></a>
<p>The following options control the dialect of C (or languages derived
from C, such as C++, Objective-C and Objective-C++) that the compiler
accepts:
</p>
<dl compact="compact">
<dd><a name="index-ANSI-support"></a>
<a name="index-ISO-support"></a>
</dd>
<dt><code>-ansi</code></dt>
<dd><a name="index-ansi-1"></a>
<p>In C mode, this is equivalent to <samp>-std=c90</samp>. In C++ mode, it is
equivalent to <samp>-std=c++98</samp>.
</p>
<p>This turns off certain features of GCC that are incompatible with ISO
C90 (when compiling C code), or of standard C++ (when compiling C++ code),
such as the <code>asm</code> and <code>typeof</code> keywords, and
predefined macros such as <code>unix</code> and <code>vax</code> that identify the
type of system you are using. It also enables the undesirable and
rarely used ISO trigraph feature. For the C compiler,
it disables recognition of C++ style ‘<samp>//</samp>’ comments as well as
the <code>inline</code> keyword.
</p>
<p>The alternate keywords <code>__asm__</code>, <code>__extension__</code>,
<code>__inline__</code> and <code>__typeof__</code> continue to work despite
<samp>-ansi</samp>. You would not want to use them in an ISO C program, of
course, but it is useful to put them in header files that might be included
in compilations done with <samp>-ansi</samp>. Alternate predefined macros
such as <code>__unix__</code> and <code>__vax__</code> are also available, with or
without <samp>-ansi</samp>.
</p>
<p>The <samp>-ansi</samp> option does not cause non-ISO programs to be
rejected gratuitously. For that, <samp>-Wpedantic</samp> is required in
addition to <samp>-ansi</samp>. See <a href="#Warning-Options">Warning Options</a>.
</p>
<p>The macro <code>__STRICT_ANSI__</code> is predefined when the <samp>-ansi</samp>
option is used. Some header files may notice this macro and refrain
from declaring certain functions or defining certain macros that the
ISO standard doesn’t call for; this is to avoid interfering with any
programs that might use these names for other things.
</p>
<p>Functions that are normally built in but do not have semantics
defined by ISO C (such as <code>alloca</code> and <code>ffs</code>) are not built-in
functions when <samp>-ansi</samp> is used. See <a href="#Other-Builtins">Other
built-in functions provided by GCC</a>, for details of the functions
affected.
</p>
</dd>
<dt><code>-std=</code></dt>
<dd><a name="index-std-1"></a>
<p>Determine the language standard. See <a href="#Standards">Language Standards
Supported by GCC</a>, for details of these standard versions. This option
is currently only supported when compiling C or C++.
</p>
<p>The compiler can accept several base standards, such as ‘<samp>c90</samp>’ or
‘<samp>c++98</samp>’, and GNU dialects of those standards, such as
‘<samp>gnu90</samp>’ or ‘<samp>gnu++98</samp>’. When a base standard is specified, the
compiler accepts all programs following that standard plus those
using GNU extensions that do not contradict it. For example,
<samp>-std=c90</samp> turns off certain features of GCC that are
incompatible with ISO C90, such as the <code>asm</code> and <code>typeof</code>
keywords, but not other GNU extensions that do not have a meaning in
ISO C90, such as omitting the middle term of a <code>?:</code>
expression. On the other hand, when a GNU dialect of a standard is
specified, all features supported by the compiler are enabled, even when
those features change the meaning of the base standard. As a result, some
strict-conforming programs may be rejected. The particular standard
is used by <samp>-Wpedantic</samp> to identify which features are GNU
extensions given that version of the standard. For example
<samp>-std=gnu90 -Wpedantic</samp> warns about C++ style ‘<samp>//</samp>’
comments, while <samp>-std=gnu99 -Wpedantic</samp> does not.
</p>
<p>A value for this option must be provided; possible values are
</p>
<dl compact="compact">
<dt>‘<samp>c90</samp>’</dt>
<dt>‘<samp>c89</samp>’</dt>
<dt>‘<samp>iso9899:1990</samp>’</dt>
<dd><p>Support all ISO C90 programs (certain GNU extensions that conflict
with ISO C90 are disabled). Same as <samp>-ansi</samp> for C code.
</p>
</dd>
<dt>‘<samp>iso9899:199409</samp>’</dt>
<dd><p>ISO C90 as modified in amendment 1.
</p>
</dd>
<dt>‘<samp>c99</samp>’</dt>
<dt>‘<samp>c9x</samp>’</dt>
<dt>‘<samp>iso9899:1999</samp>’</dt>
<dt>‘<samp>iso9899:199x</samp>’</dt>
<dd><p>ISO C99. This standard is substantially completely supported, modulo
bugs and floating-point issues
(mainly but not entirely relating to optional C99 features from
Annexes F and G). See
<a href="http://gcc.gnu.org/c99status.html">http://gcc.gnu.org/c99status.html</a><!-- /@w --> for more information. The
names ‘<samp>c9x</samp>’ and ‘<samp>iso9899:199x</samp>’ are deprecated.
</p>
</dd>
<dt>‘<samp>c11</samp>’</dt>
<dt>‘<samp>c1x</samp>’</dt>
<dt>‘<samp>iso9899:2011</samp>’</dt>
<dd><p>ISO C11, the 2011 revision of the ISO C standard. This standard is
substantially completely supported, modulo bugs, floating-point issues
(mainly but not entirely relating to optional C11 features from
Annexes F and G) and the optional Annexes K (Bounds-checking
interfaces) and L (Analyzability). The name ‘<samp>c1x</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>c17</samp>’</dt>
<dt>‘<samp>c18</samp>’</dt>
<dt>‘<samp>iso9899:2017</samp>’</dt>
<dt>‘<samp>iso9899:2018</samp>’</dt>
<dd><p>ISO C17, the 2017 revision of the ISO C standard (expected to be
published in 2018). This standard is
same as C11 except for corrections of defects (all of which are also
applied with <samp>-std=c11</samp>) and a new value of
<code>__STDC_VERSION__</code>, and so is supported to the same extent as C11.
</p>
</dd>
<dt>‘<samp>gnu90</samp>’</dt>
<dt>‘<samp>gnu89</samp>’</dt>
<dd><p>GNU dialect of ISO C90 (including some C99 features).
</p>
</dd>
<dt>‘<samp>gnu99</samp>’</dt>
<dt>‘<samp>gnu9x</samp>’</dt>
<dd><p>GNU dialect of ISO C99. The name ‘<samp>gnu9x</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>gnu11</samp>’</dt>
<dt>‘<samp>gnu1x</samp>’</dt>
<dd><p>GNU dialect of ISO C11.
The name ‘<samp>gnu1x</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>gnu17</samp>’</dt>
<dt>‘<samp>gnu18</samp>’</dt>
<dd><p>GNU dialect of ISO C17. This is the default for C code.
</p>
</dd>
<dt>‘<samp>c++98</samp>’</dt>
<dt>‘<samp>c++03</samp>’</dt>
<dd><p>The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
additional defect reports. Same as <samp>-ansi</samp> for C++ code.
</p>
</dd>
<dt>‘<samp>gnu++98</samp>’</dt>
<dt>‘<samp>gnu++03</samp>’</dt>
<dd><p>GNU dialect of <samp>-std=c++98</samp>.
</p>
</dd>
<dt>‘<samp>c++11</samp>’</dt>
<dt>‘<samp>c++0x</samp>’</dt>
<dd><p>The 2011 ISO C++ standard plus amendments.
The name ‘<samp>c++0x</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>gnu++11</samp>’</dt>
<dt>‘<samp>gnu++0x</samp>’</dt>
<dd><p>GNU dialect of <samp>-std=c++11</samp>.
The name ‘<samp>gnu++0x</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>c++14</samp>’</dt>
<dt>‘<samp>c++1y</samp>’</dt>
<dd><p>The 2014 ISO C++ standard plus amendments.
The name ‘<samp>c++1y</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>gnu++14</samp>’</dt>
<dt>‘<samp>gnu++1y</samp>’</dt>
<dd><p>GNU dialect of <samp>-std=c++14</samp>.
This is the default for C++ code.
The name ‘<samp>gnu++1y</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>c++17</samp>’</dt>
<dt>‘<samp>c++1z</samp>’</dt>
<dd><p>The 2017 ISO C++ standard plus amendments.
The name ‘<samp>c++1z</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>gnu++17</samp>’</dt>
<dt>‘<samp>gnu++1z</samp>’</dt>
<dd><p>GNU dialect of <samp>-std=c++17</samp>.
The name ‘<samp>gnu++1z</samp>’ is deprecated.
</p>
</dd>
<dt>‘<samp>c++2a</samp>’</dt>
<dd><p>The next revision of the ISO C++ standard, tentatively planned for
2020. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.
</p>
</dd>
<dt>‘<samp>gnu++2a</samp>’</dt>
<dd><p>GNU dialect of <samp>-std=c++2a</samp>. Support is highly experimental,
and will almost certainly change in incompatible ways in future
releases.
</p></dd>
</dl>
</dd>
<dt><code>-fgnu89-inline</code></dt>
<dd><a name="index-fgnu89_002dinline"></a>
<p>The option <samp>-fgnu89-inline</samp> tells GCC to use the traditional
GNU semantics for <code>inline</code> functions when in C99 mode.
See <a href="#Inline">An Inline Function is As Fast As a Macro</a>.
Using this option is roughly equivalent to adding the
<code>gnu_inline</code> function attribute to all inline functions
(see <a href="#Function-Attributes">Function Attributes</a>).
</p>
<p>The option <samp>-fno-gnu89-inline</samp> explicitly tells GCC to use the
C99 semantics for <code>inline</code> when in C99 or gnu99 mode (i.e., it
specifies the default behavior).
This option is not supported in <samp>-std=c90</samp> or
<samp>-std=gnu90</samp> mode.
</p>
<p>The preprocessor macros <code>__GNUC_GNU_INLINE__</code> and
<code>__GNUC_STDC_INLINE__</code> may be used to check which semantics are
in effect for <code>inline</code> functions. See <a href="http://gcc.gnu.org/onlinedocs/cpp/Common-Predefined-Macros.html#Common-Predefined-Macros">Common Predefined
Macros</a> in <cite>The C Preprocessor</cite>.
</p>
</dd>
<dt><code>-fpermitted-flt-eval-methods=<var>style</var></code></dt>
<dd><a name="index-fpermitted_002dflt_002deval_002dmethods"></a>
<a name="index-fpermitted_002dflt_002deval_002dmethods_003dc11"></a>
<a name="index-fpermitted_002dflt_002deval_002dmethods_003dts_002d18661_002d3"></a>
<p>ISO/IEC TS 18661-3 defines new permissible values for
<code>FLT_EVAL_METHOD</code> that indicate that operations and constants with
a semantic type that is an interchange or extended format should be
evaluated to the precision and range of that type. These new values are
a superset of those permitted under C99/C11, which does not specify the
meaning of other positive values of <code>FLT_EVAL_METHOD</code>. As such, code
conforming to C11 may not have been written expecting the possibility of
the new values.
</p>
<p><samp>-fpermitted-flt-eval-methods</samp> specifies whether the compiler
should allow only the values of <code>FLT_EVAL_METHOD</code> specified in C99/C11,
or the extended set of values specified in ISO/IEC TS 18661-3.
</p>
<p><var>style</var> is either <code>c11</code> or <code>ts-18661-3</code> as appropriate.
</p>
<p>The default when in a standards compliant mode (<samp>-std=c11</samp> or similar)
is <samp>-fpermitted-flt-eval-methods=c11</samp>. The default when in a GNU
dialect (<samp>-std=gnu11</samp> or similar) is
<samp>-fpermitted-flt-eval-methods=ts-18661-3</samp>.
</p>
</dd>
<dt><code>-aux-info <var>filename</var></code></dt>
<dd><a name="index-aux_002dinfo"></a>
<p>Output to the given filename prototyped declarations for all functions
declared and/or defined in a translation unit, including those in header
files. This option is silently ignored in any language other than C.
</p>
<p>Besides declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declaration was
implicit, prototyped or unprototyped (‘<samp>I</samp>’, ‘<samp>N</samp>’ for new or
‘<samp>O</samp>’ for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a
definition (‘<samp>C</samp>’ or ‘<samp>F</samp>’, respectively, in the following
character). In the case of function definitions, a K&R-style list of
arguments followed by their declarations is also provided, inside
comments, after the declaration.
</p>
</dd>
<dt><code>-fallow-parameterless-variadic-functions</code></dt>
<dd><a name="index-fallow_002dparameterless_002dvariadic_002dfunctions"></a>
<p>Accept variadic functions without named parameters.
</p>
<p>Although it is possible to define such a function, this is not very
useful as it is not possible to read the arguments. This is only
supported for C as this construct is allowed by C++.
</p>
</dd>
<dt><code>-fno-asm</code></dt>
<dd><a name="index-fno_002dasm"></a>
<p>Do not recognize <code>asm</code>, <code>inline</code> or <code>typeof</code> as a
keyword, so that code can use these words as identifiers. You can use
the keywords <code>__asm__</code>, <code>__inline__</code> and <code>__typeof__</code>
instead. <samp>-ansi</samp> implies <samp>-fno-asm</samp>.
</p>
<p>In C++, this switch only affects the <code>typeof</code> keyword, since
<code>asm</code> and <code>inline</code> are standard keywords. You may want to
use the <samp>-fno-gnu-keywords</samp> flag instead, which has the same
effect. In C99 mode (<samp>-std=c99</samp> or <samp>-std=gnu99</samp>), this
switch only affects the <code>asm</code> and <code>typeof</code> keywords, since
<code>inline</code> is a standard keyword in ISO C99.
</p>
</dd>
<dt><code>-fno-builtin</code></dt>
<dt><code>-fno-builtin-<var>function</var></code></dt>
<dd><a name="index-fno_002dbuiltin"></a>
<a name="index-built_002din-functions"></a>
<p>Don’t recognize built-in functions that do not begin with
‘<samp>__builtin_</samp>’ as prefix. See <a href="#Other-Builtins">Other built-in
functions provided by GCC</a>, for details of the functions affected,
including those which are not built-in functions when <samp>-ansi</samp> or
<samp>-std</samp> options for strict ISO C conformance are used because they
do not have an ISO standard meaning.
</p>
<p>GCC normally generates special code to handle certain built-in functions
more efficiently; for instance, calls to <code>alloca</code> may become single
instructions which adjust the stack directly, and calls to <code>memcpy</code>
may become inline copy loops. The resulting code is often both smaller
and faster, but since the function calls no longer appear as such, you
cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library. In addition,
when a function is recognized as a built-in function, GCC may use
information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the
resulting code still contains calls to that function. For example,
warnings are given with <samp>-Wformat</samp> for bad calls to
<code>printf</code> when <code>printf</code> is built in and <code>strlen</code> is
known not to modify global memory.
</p>
<p>With the <samp>-fno-builtin-<var>function</var></samp> option
only the built-in function <var>function</var> is
disabled. <var>function</var> must not begin with ‘<samp>__builtin_</samp>’. If a
function is named that is not built-in in this version of GCC, this
option is ignored. There is no corresponding
<samp>-fbuiltin-<var>function</var></samp> option; if you wish to enable
built-in functions selectively when using <samp>-fno-builtin</samp> or
<samp>-ffreestanding</samp>, you may define macros such as:
</p>
<div class="smallexample">
<pre class="smallexample">#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))
</pre></div>
</dd>
<dt><code>-fgimple</code></dt>
<dd><a name="index-fgimple"></a>
<p>Enable parsing of function definitions marked with <code>__GIMPLE</code>.
This is an experimental feature that allows unit testing of GIMPLE
passes.
</p>
</dd>
<dt><code>-fhosted</code></dt>
<dd><a name="index-fhosted"></a>
<a name="index-hosted-environment-1"></a>
<p>Assert that compilation targets a hosted environment. This implies
<samp>-fbuiltin</samp>. A hosted environment is one in which the
entire standard library is available, and in which <code>main</code> has a return
type of <code>int</code>. Examples are nearly everything except a kernel.
This is equivalent to <samp>-fno-freestanding</samp>.
</p>
</dd>
<dt><code>-ffreestanding</code></dt>
<dd><a name="index-ffreestanding-1"></a>
<a name="index-hosted-environment-2"></a>
<p>Assert that compilation targets a freestanding environment. This
implies <samp>-fno-builtin</samp>. A freestanding environment
is one in which the standard library may not exist, and program startup may
not necessarily be at <code>main</code>. The most obvious example is an OS kernel.
This is equivalent to <samp>-fno-hosted</samp>.
</p>
<p>See <a href="#Standards">Language Standards Supported by GCC</a>, for details of
freestanding and hosted environments.
</p>
</dd>
<dt><code>-fopenacc</code></dt>
<dd><a name="index-fopenacc"></a>
<a name="index-OpenACC-accelerator-programming"></a>
<p>Enable handling of OpenACC directives <code>#pragma acc</code> in C/C++ and
<code>!$acc</code> in Fortran. When <samp>-fopenacc</samp> is specified, the
compiler generates accelerated code according to the OpenACC Application
Programming Interface v2.0 <a href="https://www.openacc.org">https://www.openacc.org</a><!-- /@w -->. This option
implies <samp>-pthread</samp>, and thus is only supported on targets that
have support for <samp>-pthread</samp>.
</p>
</dd>
<dt><code>-fopenacc-dim=<var>geom</var></code></dt>
<dd><a name="index-fopenacc_002ddim"></a>
<a name="index-OpenACC-accelerator-programming-1"></a>
<p>Specify default compute dimensions for parallel offload regions that do
not explicitly specify. The <var>geom</var> value is a triple of
’:’-separated sizes, in order ’gang’, ’worker’ and, ’vector’. A size
can be omitted, to use a target-specific default value.
</p>
</dd>
<dt><code>-fopenmp</code></dt>
<dd><a name="index-fopenmp"></a>
<a name="index-OpenMP-parallel"></a>
<p>Enable handling of OpenMP directives <code>#pragma omp</code> in C/C++ and
<code>!$omp</code> in Fortran. When <samp>-fopenmp</samp> is specified, the
compiler generates parallel code according to the OpenMP Application
Program Interface v4.5 <a href="http://www.openmp.org/">http://www.openmp.org/</a><!-- /@w -->. This option
implies <samp>-pthread</samp>, and thus is only supported on targets that
have support for <samp>-pthread</samp>. <samp>-fopenmp</samp> implies
<samp>-fopenmp-simd</samp>.
</p>
</dd>
<dt><code>-fopenmp-simd</code></dt>
<dd><a name="index-fopenmp_002dsimd"></a>
<a name="index-OpenMP-SIMD"></a>
<a name="index-SIMD"></a>
<p>Enable handling of OpenMP’s SIMD directives with <code>#pragma omp</code>
in C/C++ and <code>!$omp</code> in Fortran. Other OpenMP directives
are ignored.
</p>
</dd>
<dt><code>-fgnu-tm</code></dt>
<dd><a name="index-fgnu_002dtm"></a>
<p>When the option <samp>-fgnu-tm</samp> is specified, the compiler
generates code for the Linux variant of Intel’s current Transactional
Memory ABI specification document (Revision 1.1, May 6 2009). This is
an experimental feature whose interface may change in future versions
of GCC, as the official specification changes. Please note that not
all architectures are supported for this feature.
</p>
<p>For more information on GCC’s support for transactional memory,
See <a href="libitm.html#Enabling-libitm">The GNU Transactional Memory Library</a> in <cite>GNU
Transactional Memory Library</cite>.
</p>
<p>Note that the transactional memory feature is not supported with
non-call exceptions (<samp>-fnon-call-exceptions</samp>).
</p>
</dd>
<dt><code>-fms-extensions</code></dt>
<dd><a name="index-fms_002dextensions"></a>
<p>Accept some non-standard constructs used in Microsoft header files.
</p>
<p>In C++ code, this allows member names in structures to be similar
to previous types declarations.
</p>
<div class="smallexample">
<pre class="smallexample">typedef int UOW;
struct ABC {
UOW UOW;
};
</pre></div>
<p>Some cases of unnamed fields in structures and unions are only
accepted with this option. See <a href="#Unnamed-Fields">Unnamed struct/union
fields within structs/unions</a>, for details.
</p>
<p>Note that this option is off for all targets but x86
targets using ms-abi.
</p>
</dd>
<dt><code>-fplan9-extensions</code></dt>
<dd><a name="index-fplan9_002dextensions"></a>
<p>Accept some non-standard constructs used in Plan 9 code.
</p>
<p>This enables <samp>-fms-extensions</samp>, permits passing pointers to
structures with anonymous fields to functions that expect pointers to
elements of the type of the field, and permits referring to anonymous
fields declared using a typedef. See <a href="#Unnamed-Fields">Unnamed
struct/union fields within structs/unions</a>, for details. This is only
supported for C, not C++.
</p>
</dd>
<dt><code>-fcond-mismatch</code></dt>
<dd><a name="index-fcond_002dmismatch"></a>
<p>Allow conditional expressions with mismatched types in the second and
third arguments. The value of such an expression is void. This option
is not supported for C++.
</p>
</dd>
<dt><code>-flax-vector-conversions</code></dt>
<dd><a name="index-flax_002dvector_002dconversions"></a>
<p>Allow implicit conversions between vectors with differing numbers of
elements and/or incompatible element types. This option should not be
used for new code.
</p>
</dd>
<dt><code>-funsigned-char</code></dt>
<dd><a name="index-funsigned_002dchar"></a>
<p>Let the type <code>char</code> be unsigned, like <code>unsigned char</code>.
</p>
<p>Each kind of machine has a default for what <code>char</code> should
be. It is either like <code>unsigned char</code> by default or like
<code>signed char</code> by default.
</p>
<p>Ideally, a portable program should always use <code>signed char</code> or
<code>unsigned char</code> when it depends on the signedness of an object.
But many programs have been written to use plain <code>char</code> and
expect it to be signed, or expect it to be unsigned, depending on the
machines they were written for. This option, and its inverse, let you
make such a program work with the opposite default.
</p>
<p>The type <code>char</code> is always a distinct type from each of
<code>signed char</code> or <code>unsigned char</code>, even though its behavior
is always just like one of those two.
</p>
</dd>
<dt><code>-fsigned-char</code></dt>
<dd><a name="index-fsigned_002dchar"></a>
<p>Let the type <code>char</code> be signed, like <code>signed char</code>.
</p>
<p>Note that this is equivalent to <samp>-fno-unsigned-char</samp>, which is
the negative form of <samp>-funsigned-char</samp>. Likewise, the option
<samp>-fno-signed-char</samp> is equivalent to <samp>-funsigned-char</samp>.
</p>
</dd>
<dt><code>-fsigned-bitfields</code></dt>
<dt><code>-funsigned-bitfields</code></dt>
<dt><code>-fno-signed-bitfields</code></dt>
<dt><code>-fno-unsigned-bitfields</code></dt>
<dd><a name="index-fsigned_002dbitfields"></a>
<a name="index-funsigned_002dbitfields"></a>
<a name="index-fno_002dsigned_002dbitfields"></a>
<a name="index-fno_002dunsigned_002dbitfields"></a>
<p>These options control whether a bit-field is signed or unsigned, when the
declaration does not use either <code>signed</code> or <code>unsigned</code>. By
default, such a bit-field is signed, because this is consistent: the
basic integer types such as <code>int</code> are signed types.
</p>
</dd>
<dt><code>-fsso-struct=<var>endianness</var></code></dt>
<dd><a name="index-fsso_002dstruct"></a>
<p>Set the default scalar storage order of structures and unions to the
specified endianness. The accepted values are ‘<samp>big-endian</samp>’,
‘<samp>little-endian</samp>’ and ‘<samp>native</samp>’ for the native endianness of
the target (the default). This option is not supported for C++.
</p>
<p><strong>Warning:</strong> the <samp>-fsso-struct</samp> switch causes GCC to generate
code that is not binary compatible with code generated without it if the
specified endianness is not the native endianness of the target.
</p></dd>
</dl>
<hr>
<a name="C_002b_002b-Dialect-Options"></a>
<div class="header">
<p>
Next: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options" accesskey="n" rel="next">Objective-C and Objective-C++ Dialect Options</a>, Previous: <a href="#C-Dialect-Options" accesskey="p" rel="prev">C Dialect Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-Controlling-C_002b_002b-Dialect"></a>
<h3 class="section">3.5 Options Controlling C++ Dialect</h3>
<a name="index-compiler-options_002c-C_002b_002b"></a>
<a name="index-C_002b_002b-options_002c-command_002dline"></a>
<a name="index-options_002c-C_002b_002b"></a>
<p>This section describes the command-line options that are only meaningful
for C++ programs. You can also use most of the GNU compiler options
regardless of what language your program is in. For example, you
might compile a file <samp>firstClass.C</samp> like this:
</p>
<div class="smallexample">
<pre class="smallexample">g++ -g -fstrict-enums -O -c firstClass.C
</pre></div>
<p>In this example, only <samp>-fstrict-enums</samp> is an option meant
only for C++ programs; you can use the other options with any
language supported by GCC.
</p>
<p>Some options for compiling C programs, such as <samp>-std</samp>, are also
relevant for C++ programs.
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
</p>
<p>Here is a list of options that are <em>only</em> for compiling C++ programs:
</p>
<dl compact="compact">
<dt><code>-fabi-version=<var>n</var></code></dt>
<dd><a name="index-fabi_002dversion"></a>
<p>Use version <var>n</var> of the C++ ABI. The default is version 0.
</p>
<p>Version 0 refers to the version conforming most closely to
the C++ ABI specification. Therefore, the ABI obtained using version 0
will change in different versions of G++ as ABI bugs are fixed.
</p>
<p>Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
</p>
<p>Version 2 is the version of the C++ ABI that first appeared in G++
3.4, and was the default through G++ 4.9.
</p>
<p>Version 3 corrects an error in mangling a constant address as a
template argument.
</p>
<p>Version 4, which first appeared in G++ 4.5, implements a standard
mangling for vector types.
</p>
<p>Version 5, which first appeared in G++ 4.6, corrects the mangling of
attribute const/volatile on function pointer types, decltype of a
plain decl, and use of a function parameter in the declaration of
another parameter.
</p>
<p>Version 6, which first appeared in G++ 4.7, corrects the promotion
behavior of C++11 scoped enums and the mangling of template argument
packs, const/static_cast, prefix ++ and –, and a class scope function
used as a template argument.
</p>
<p>Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
builtin type and corrects the mangling of lambdas in default argument
scope.
</p>
<p>Version 8, which first appeared in G++ 4.9, corrects the substitution
behavior of function types with function-cv-qualifiers.
</p>
<p>Version 9, which first appeared in G++ 5.2, corrects the alignment of
<code>nullptr_t</code>.
</p>
<p>Version 10, which first appeared in G++ 6.1, adds mangling of
attributes that affect type identity, such as ia32 calling convention
attributes (e.g. ‘<samp>stdcall</samp>’).
</p>
<p>Version 11, which first appeared in G++ 7, corrects the mangling of
sizeof... expressions and operator names. For multiple entities with
the same name within a function, that are declared in different scopes,
the mangling now changes starting with the twelfth occurrence. It also
implies <samp>-fnew-inheriting-ctors</samp>.
</p>
<p>See also <samp>-Wabi</samp>.
</p>
</dd>
<dt><code>-fabi-compat-version=<var>n</var></code></dt>
<dd><a name="index-fabi_002dcompat_002dversion"></a>
<p>On targets that support strong aliases, G++
works around mangling changes by creating an alias with the correct
mangled name when defining a symbol with an incorrect mangled name.
This switch specifies which ABI version to use for the alias.
</p>
<p>With <samp>-fabi-version=0</samp> (the default), this defaults to 8 (GCC 5
compatibility). If another ABI version is explicitly selected, this
defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
use <samp>-fabi-compat-version=2</samp>.
</p>
<p>If this option is not provided but <samp>-Wabi=<var>n</var></samp> is, that
version is used for compatibility aliases. If this option is provided
along with <samp>-Wabi</samp> (without the version), the version from this
option is used for the warning.
</p>
</dd>
<dt><code>-fno-access-control</code></dt>
<dd><a name="index-fno_002daccess_002dcontrol"></a>
<p>Turn off all access checking. This switch is mainly useful for working
around bugs in the access control code.
</p>
</dd>
<dt><code>-faligned-new</code></dt>
<dd><a name="index-faligned_002dnew"></a>
<p>Enable support for C++17 <code>new</code> of types that require more
alignment than <code>void* ::operator new(std::size_t)</code> provides. A
numeric argument such as <code>-faligned-new=32</code> can be used to
specify how much alignment (in bytes) is provided by that function,
but few users will need to override the default of
<code>alignof(std::max_align_t)</code>.
</p>
<p>This flag is enabled by default for <samp>-std=c++17</samp>.
</p>
</dd>
<dt><code>-fcheck-new</code></dt>
<dd><a name="index-fcheck_002dnew"></a>
<p>Check that the pointer returned by <code>operator new</code> is non-null
before attempting to modify the storage allocated. This check is
normally unnecessary because the C++ standard specifies that
<code>operator new</code> only returns <code>0</code> if it is declared
<code>throw()</code>, in which case the compiler always checks the
return value even without this option. In all other cases, when
<code>operator new</code> has a non-empty exception specification, memory
exhaustion is signalled by throwing <code>std::bad_alloc</code>. See also
‘<samp>new (nothrow)</samp>’.
</p>
</dd>
<dt><code>-fconcepts</code></dt>
<dd><a name="index-fconcepts"></a>
<p>Enable support for the C++ Extensions for Concepts Technical
Specification, ISO 19217 (2015), which allows code like
</p>
<div class="smallexample">
<pre class="smallexample">template <class T> concept bool Addable = requires (T t) { t + t; };
template <Addable T> T add (T a, T b) { return a + b; }
</pre></div>
</dd>
<dt><code>-fconstexpr-depth=<var>n</var></code></dt>
<dd><a name="index-fconstexpr_002ddepth"></a>
<p>Set the maximum nested evaluation depth for C++11 constexpr functions
to <var>n</var>. A limit is needed to detect endless recursion during
constant expression evaluation. The minimum specified by the standard
is 512.
</p>
</dd>
<dt><code>-fconstexpr-loop-limit=<var>n</var></code></dt>
<dd><a name="index-fconstexpr_002dloop_002dlimit"></a>
<p>Set the maximum number of iterations for a loop in C++14 constexpr functions
to <var>n</var>. A limit is needed to detect infinite loops during
constant expression evaluation. The default is 262144 (1<<18).
</p>
</dd>
<dt><code>-fdeduce-init-list</code></dt>
<dd><a name="index-fdeduce_002dinit_002dlist"></a>
<p>Enable deduction of a template type parameter as
<code>std::initializer_list</code> from a brace-enclosed initializer list, i.e.
</p>
<div class="smallexample">
<pre class="smallexample">template <class T> auto forward(T t) -> decltype (realfn (t))
{
return realfn (t);
}
void f()
{
forward({1,2}); // call forward<std::initializer_list<int>>
}
</pre></div>
<p>This deduction was implemented as a possible extension to the
originally proposed semantics for the C++11 standard, but was not part
of the final standard, so it is disabled by default. This option is
deprecated, and may be removed in a future version of G++.
</p>
</dd>
<dt><code>-ffriend-injection</code></dt>
<dd><a name="index-ffriend_002dinjection"></a>
<p>Inject friend functions into the enclosing namespace, so that they are
visible outside the scope of the class in which they are declared.
Friend functions were documented to work this way in the old Annotated
C++ Reference Manual.
However, in ISO C++ a friend function that is not declared
in an enclosing scope can only be found using argument dependent
lookup. GCC defaults to the standard behavior.
</p>
<p>This option is deprecated and will be removed.
</p>
</dd>
<dt><code>-fno-elide-constructors</code></dt>
<dd><a name="index-fno_002delide_002dconstructors"></a>
<p>The C++ standard allows an implementation to omit creating a temporary
that is only used to initialize another object of the same type.
Specifying this option disables that optimization, and forces G++ to
call the copy constructor in all cases. This option also causes G++
to call trivial member functions which otherwise would be expanded inline.
</p>
<p>In C++17, the compiler is required to omit these temporaries, but this
option still affects trivial member functions.
</p>
</dd>
<dt><code>-fno-enforce-eh-specs</code></dt>
<dd><a name="index-fno_002denforce_002deh_002dspecs"></a>
<p>Don’t generate code to check for violation of exception specifications
at run time. This option violates the C++ standard, but may be useful
for reducing code size in production builds, much like defining
<code>NDEBUG</code>. This does not give user code permission to throw
exceptions in violation of the exception specifications; the compiler
still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.
</p>
</dd>
<dt><code>-fextern-tls-init</code></dt>
<dt><code>-fno-extern-tls-init</code></dt>
<dd><a name="index-fextern_002dtls_002dinit"></a>
<a name="index-fno_002dextern_002dtls_002dinit"></a>
<p>The C++11 and OpenMP standards allow <code>thread_local</code> and
<code>threadprivate</code> variables to have dynamic (runtime)
initialization. To support this, any use of such a variable goes
through a wrapper function that performs any necessary initialization.
When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the
use is in a different translation unit there is significant overhead
even if the variable doesn’t actually need dynamic initialization. If
the programmer can be sure that no use of the variable in a
non-defining TU needs to trigger dynamic initialization (either
because the variable is statically initialized, or a use of the
variable in the defining TU will be executed before any uses in
another TU), they can avoid this overhead with the
<samp>-fno-extern-tls-init</samp> option.
</p>
<p>On targets that support symbol aliases, the default is
<samp>-fextern-tls-init</samp>. On targets that do not support symbol
aliases, the default is <samp>-fno-extern-tls-init</samp>.
</p>
</dd>
<dt><code>-ffor-scope</code></dt>
<dt><code>-fno-for-scope</code></dt>
<dd><a name="index-ffor_002dscope"></a>
<a name="index-fno_002dfor_002dscope"></a>
<p>If <samp>-ffor-scope</samp> is specified, the scope of variables declared in
a <i>for-init-statement</i> is limited to the <code>for</code> loop itself,
as specified by the C++ standard.
If <samp>-fno-for-scope</samp> is specified, the scope of variables declared in
a <i>for-init-statement</i> extends to the end of the enclosing scope,
as was the case in old versions of G++, and other (traditional)
implementations of C++.
</p>
<p>This option is deprecated and the associated non-standard
functionality will be removed.
</p>
</dd>
<dt><code>-fno-gnu-keywords</code></dt>
<dd><a name="index-fno_002dgnu_002dkeywords"></a>
<p>Do not recognize <code>typeof</code> as a keyword, so that code can use this
word as an identifier. You can use the keyword <code>__typeof__</code> instead.
This option is implied by the strict ISO C++ dialects: <samp>-ansi</samp>,
<samp>-std=c++98</samp>, <samp>-std=c++11</samp>, etc.
</p>
</dd>
<dt><code>-fno-implicit-templates</code></dt>
<dd><a name="index-fno_002dimplicit_002dtemplates"></a>
<p>Never emit code for non-inline templates that are instantiated
implicitly (i.e. by use); only emit code for explicit instantiations.
See <a href="#Template-Instantiation">Template Instantiation</a>, for more information.
</p>
</dd>
<dt><code>-fno-implicit-inline-templates</code></dt>
<dd><a name="index-fno_002dimplicit_002dinline_002dtemplates"></a>
<p>Don’t emit code for implicit instantiations of inline templates, either.
The default is to handle inlines differently so that compiles with and
without optimization need the same set of explicit instantiations.
</p>
</dd>
<dt><code>-fno-implement-inlines</code></dt>
<dd><a name="index-fno_002dimplement_002dinlines"></a>
<p>To save space, do not emit out-of-line copies of inline functions
controlled by <code>#pragma implementation</code>. This causes linker
errors if these functions are not inlined everywhere they are called.
</p>
</dd>
<dt><code>-fms-extensions</code></dt>
<dd><a name="index-fms_002dextensions-1"></a>
<p>Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.
</p>
</dd>
<dt><code>-fnew-inheriting-ctors</code></dt>
<dd><a name="index-fnew_002dinheriting_002dctors"></a>
<p>Enable the P0136 adjustment to the semantics of C++11 constructor
inheritance. This is part of C++17 but also considered to be a Defect
Report against C++11 and C++14. This flag is enabled by default
unless <samp>-fabi-version=10</samp> or lower is specified.
</p>
</dd>
<dt><code>-fnew-ttp-matching</code></dt>
<dd><a name="index-fnew_002dttp_002dmatching"></a>
<p>Enable the P0522 resolution to Core issue 150, template template
parameters and default arguments: this allows a template with default
template arguments as an argument for a template template parameter
with fewer template parameters. This flag is enabled by default for
<samp>-std=c++17</samp>.
</p>
</dd>
<dt><code>-fno-nonansi-builtins</code></dt>
<dd><a name="index-fno_002dnonansi_002dbuiltins"></a>
<p>Disable built-in declarations of functions that are not mandated by
ANSI/ISO C. These include <code>ffs</code>, <code>alloca</code>, <code>_exit</code>,
<code>index</code>, <code>bzero</code>, <code>conjf</code>, and other related functions.
</p>
</dd>
<dt><code>-fnothrow-opt</code></dt>
<dd><a name="index-fnothrow_002dopt"></a>
<p>Treat a <code>throw()</code> exception specification as if it were a
<code>noexcept</code> specification to reduce or eliminate the text size
overhead relative to a function with no exception specification. If
the function has local variables of types with non-trivial
destructors, the exception specification actually makes the
function smaller because the EH cleanups for those variables can be
optimized away. The semantic effect is that an exception thrown out of
a function with such an exception specification results in a call
to <code>terminate</code> rather than <code>unexpected</code>.
</p>
</dd>
<dt><code>-fno-operator-names</code></dt>
<dd><a name="index-fno_002doperator_002dnames"></a>
<p>Do not treat the operator name keywords <code>and</code>, <code>bitand</code>,
<code>bitor</code>, <code>compl</code>, <code>not</code>, <code>or</code> and <code>xor</code> as
synonyms as keywords.
</p>
</dd>
<dt><code>-fno-optional-diags</code></dt>
<dd><a name="index-fno_002doptional_002ddiags"></a>
<p>Disable diagnostics that the standard says a compiler does not need to
issue. Currently, the only such diagnostic issued by G++ is the one for
a name having multiple meanings within a class.
</p>
</dd>
<dt><code>-fpermissive</code></dt>
<dd><a name="index-fpermissive"></a>
<p>Downgrade some diagnostics about nonconformant code from errors to
warnings. Thus, using <samp>-fpermissive</samp> allows some
nonconforming code to compile.
</p>
</dd>
<dt><code>-fno-pretty-templates</code></dt>
<dd><a name="index-fno_002dpretty_002dtemplates"></a>
<p>When an error message refers to a specialization of a function
template, the compiler normally prints the signature of the
template followed by the template arguments and any typedefs or
typenames in the signature (e.g. <code>void f(T) [with T = int]</code>
rather than <code>void f(int)</code>) so that it’s clear which template is
involved. When an error message refers to a specialization of a class
template, the compiler omits any template arguments that match
the default template arguments for that template. If either of these
behaviors make it harder to understand the error message rather than
easier, you can use <samp>-fno-pretty-templates</samp> to disable them.
</p>
</dd>
<dt><code>-frepo</code></dt>
<dd><a name="index-frepo"></a>
<p>Enable automatic template instantiation at link time. This option also
implies <samp>-fno-implicit-templates</samp>. See <a href="#Template-Instantiation">Template Instantiation</a>, for more information.
</p>
</dd>
<dt><code>-fno-rtti</code></dt>
<dd><a name="index-fno_002drtti"></a>
<p>Disable generation of information about every class with virtual
functions for use by the C++ run-time type identification features
(<code>dynamic_cast</code> and <code>typeid</code>). If you don’t use those parts
of the language, you can save some space by using this flag. Note that
exception handling uses the same information, but G++ generates it as
needed. The <code>dynamic_cast</code> operator can still be used for casts that
do not require run-time type information, i.e. casts to <code>void *</code> or to
unambiguous base classes.
</p>
</dd>
<dt><code>-fsized-deallocation</code></dt>
<dd><a name="index-fsized_002ddeallocation"></a>
<p>Enable the built-in global declarations
</p><div class="smallexample">
<pre class="smallexample">void operator delete (void *, std::size_t) noexcept;
void operator delete[] (void *, std::size_t) noexcept;
</pre></div>
<p>as introduced in C++14. This is useful for user-defined replacement
deallocation functions that, for example, use the size of the object
to make deallocation faster. Enabled by default under
<samp>-std=c++14</samp> and above. The flag <samp>-Wsized-deallocation</samp>
warns about places that might want to add a definition.
</p>
</dd>
<dt><code>-fstrict-enums</code></dt>
<dd><a name="index-fstrict_002denums"></a>
<p>Allow the compiler to optimize using the assumption that a value of
enumerated type can only be one of the values of the enumeration (as
defined in the C++ standard; basically, a value that can be
represented in the minimum number of bits needed to represent all the
enumerators). This assumption may not be valid if the program uses a
cast to convert an arbitrary integer value to the enumerated type.
</p>
</dd>
<dt><code>-fstrong-eval-order</code></dt>
<dd><a name="index-fstrong_002deval_002dorder"></a>
<p>Evaluate member access, array subscripting, and shift expressions in
left-to-right order, and evaluate assignment in right-to-left order,
as adopted for C++17. Enabled by default with <samp>-std=c++17</samp>.
<samp>-fstrong-eval-order=some</samp> enables just the ordering of member
access and shift expressions, and is the default without
<samp>-std=c++17</samp>.
</p>
</dd>
<dt><code>-ftemplate-backtrace-limit=<var>n</var></code></dt>
<dd><a name="index-ftemplate_002dbacktrace_002dlimit"></a>
<p>Set the maximum number of template instantiation notes for a single
warning or error to <var>n</var>. The default value is 10.
</p>
</dd>
<dt><code>-ftemplate-depth=<var>n</var></code></dt>
<dd><a name="index-ftemplate_002ddepth"></a>
<p>Set the maximum instantiation depth for template classes to <var>n</var>.
A limit on the template instantiation depth is needed to detect
endless recursions during template class instantiation. ANSI/ISO C++
conforming programs must not rely on a maximum depth greater than 17
(changed to 1024 in C++11). The default value is 900, as the compiler
can run out of stack space before hitting 1024 in some situations.
</p>
</dd>
<dt><code>-fno-threadsafe-statics</code></dt>
<dd><a name="index-fno_002dthreadsafe_002dstatics"></a>
<p>Do not emit the extra code to use the routines specified in the C++
ABI for thread-safe initialization of local statics. You can use this
option to reduce code size slightly in code that doesn’t need to be
thread-safe.
</p>
</dd>
<dt><code>-fuse-cxa-atexit</code></dt>
<dd><a name="index-fuse_002dcxa_002datexit"></a>
<p>Register destructors for objects with static storage duration with the
<code>__cxa_atexit</code> function rather than the <code>atexit</code> function.
This option is required for fully standards-compliant handling of static
destructors, but only works if your C library supports
<code>__cxa_atexit</code>.
</p>
</dd>
<dt><code>-fno-use-cxa-get-exception-ptr</code></dt>
<dd><a name="index-fno_002duse_002dcxa_002dget_002dexception_002dptr"></a>
<p>Don’t use the <code>__cxa_get_exception_ptr</code> runtime routine. This
causes <code>std::uncaught_exception</code> to be incorrect, but is necessary
if the runtime routine is not available.
</p>
</dd>
<dt><code>-fvisibility-inlines-hidden</code></dt>
<dd><a name="index-fvisibility_002dinlines_002dhidden"></a>
<p>This switch declares that the user does not attempt to compare
pointers to inline functions or methods where the addresses of the two functions
are taken in different shared objects.
</p>
<p>The effect of this is that GCC may, effectively, mark inline methods with
<code>__attribute__ ((visibility ("hidden")))</code> so that they do not
appear in the export table of a DSO and do not require a PLT indirection
when used within the DSO. Enabling this option can have a dramatic effect
on load and link times of a DSO as it massively reduces the size of the
dynamic export table when the library makes heavy use of templates.
</p>
<p>The behavior of this switch is not quite the same as marking the
methods as hidden directly, because it does not affect static variables
local to the function or cause the compiler to deduce that
the function is defined in only one shared object.
</p>
<p>You may mark a method as having a visibility explicitly to negate the
effect of the switch for that method. For example, if you do want to
compare pointers to a particular inline method, you might mark it as
having default visibility. Marking the enclosing class with explicit
visibility has no effect.
</p>
<p>Explicitly instantiated inline methods are unaffected by this option
as their linkage might otherwise cross a shared library boundary.
See <a href="#Template-Instantiation">Template Instantiation</a>.
</p>
</dd>
<dt><code>-fvisibility-ms-compat</code></dt>
<dd><a name="index-fvisibility_002dms_002dcompat"></a>
<p>This flag attempts to use visibility settings to make GCC’s C++
linkage model compatible with that of Microsoft Visual Studio.
</p>
<p>The flag makes these changes to GCC’s linkage model:
</p>
<ol>
<li> It sets the default visibility to <code>hidden</code>, like
<samp>-fvisibility=hidden</samp>.
</li><li> Types, but not their members, are not hidden by default.
</li><li> The One Definition Rule is relaxed for types without explicit
visibility specifications that are defined in more than one
shared object: those declarations are permitted if they are
permitted when this option is not used.
</li></ol>
<p>In new code it is better to use <samp>-fvisibility=hidden</samp> and
export those classes that are intended to be externally visible.
Unfortunately it is possible for code to rely, perhaps accidentally,
on the Visual Studio behavior.
</p>
<p>Among the consequences of these changes are that static data members
of the same type with the same name but defined in different shared
objects are different, so changing one does not change the other;
and that pointers to function members defined in different shared
objects may not compare equal. When this flag is given, it is a
violation of the ODR to define types with the same name differently.
</p>
</dd>
<dt><code>-fno-weak</code></dt>
<dd><a name="index-fno_002dweak"></a>
<p>Do not use weak symbol support, even if it is provided by the linker.
By default, G++ uses weak symbols if they are available. This
option exists only for testing, and should not be used by end-users;
it results in inferior code and has no benefits. This option may
be removed in a future release of G++.
</p>
</dd>
<dt><code>-nostdinc++</code></dt>
<dd><a name="index-nostdinc_002b_002b"></a>
<p>Do not search for header files in the standard directories specific to
C++, but do still search the other standard directories. (This option
is used when building the C++ library.)
</p></dd>
</dl>
<p>In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:
</p>
<dl compact="compact">
<dt><code>-Wabi <span class="roman">(C, Objective-C, C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wabi"></a>
<a name="index-Wno_002dabi"></a>
<p>Warn when G++ it generates code that is probably not compatible with
the vendor-neutral C++ ABI. Since G++ now defaults to updating the
ABI with each major release, normally <samp>-Wabi</samp> will warn only if
there is a check added later in a release series for an ABI issue
discovered since the initial release. <samp>-Wabi</samp> will warn about
more things if an older ABI version is selected (with
<samp>-fabi-version=<var>n</var></samp>).
</p>
<p><samp>-Wabi</samp> can also be used with an explicit version number to
warn about compatibility with a particular <samp>-fabi-version</samp>
level, e.g. <samp>-Wabi=2</samp> to warn about changes relative to
<samp>-fabi-version=2</samp>.
</p>
<p>If an explicit version number is provided and
<samp>-fabi-compat-version</samp> is not specified, the version number
from this option is used for compatibility aliases. If no explicit
version number is provided with this option, but
<samp>-fabi-compat-version</samp> is specified, that version number is
used for ABI warnings.
</p>
<p>Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about,
even though G++ is generating incompatible code. There may also be
cases where warnings are emitted even though the code that is generated
is compatible.
</p>
<p>You should rewrite your code to avoid these warnings if you are
concerned about the fact that code generated by G++ may not be binary
compatible with code generated by other compilers.
</p>
<p>Known incompatibilities in <samp>-fabi-version=2</samp> (which was the
default from GCC 3.4 to 4.9) include:
</p>
<ul>
<li> A template with a non-type template parameter of reference type was
mangled incorrectly:
<div class="smallexample">
<pre class="smallexample">extern int N;
template <int &> struct S {};
void n (S<N>) {2}
</pre></div>
<p>This was fixed in <samp>-fabi-version=3</samp>.
</p>
</li><li> SIMD vector types declared using <code>__attribute ((vector_size))</code> were
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.
<p>The mangling was changed in <samp>-fabi-version=4</samp>.
</p>
</li><li> <code>__attribute ((const))</code> and <code>noreturn</code> were mangled as type
qualifiers, and <code>decltype</code> of a plain declaration was folded away.
<p>These mangling issues were fixed in <samp>-fabi-version=5</samp>.
</p>
</li><li> Scoped enumerators passed as arguments to a variadic function are
promoted like unscoped enumerators, causing <code>va_arg</code> to complain.
On most targets this does not actually affect the parameter passing
ABI, as there is no way to pass an argument smaller than <code>int</code>.
<p>Also, the ABI changed the mangling of template argument packs,
<code>const_cast</code>, <code>static_cast</code>, prefix increment/decrement, and
a class scope function used as a template argument.
</p>
<p>These issues were corrected in <samp>-fabi-version=6</samp>.
</p>
</li><li> Lambdas in default argument scope were mangled incorrectly, and the
ABI changed the mangling of <code>nullptr_t</code>.
<p>These issues were corrected in <samp>-fabi-version=7</samp>.
</p>
</li><li> When mangling a function type with function-cv-qualifiers, the
un-qualified function type was incorrectly treated as a substitution
candidate.
<p>This was fixed in <samp>-fabi-version=8</samp>, the default for GCC 5.1.
</p>
</li><li> <code>decltype(nullptr)</code> incorrectly had an alignment of 1, leading to
unaligned accesses. Note that this did not affect the ABI of a
function with a <code>nullptr_t</code> parameter, as parameters have a
minimum alignment.
<p>This was fixed in <samp>-fabi-version=9</samp>, the default for GCC 5.2.
</p>
</li><li> Target-specific attributes that affect the identity of a type, such as
ia32 calling conventions on a function type (stdcall, regparm, etc.),
did not affect the mangled name, leading to name collisions when
function pointers were used as template arguments.
<p>This was fixed in <samp>-fabi-version=10</samp>, the default for GCC 6.1.
</p>
</li></ul>
<p>It also warns about psABI-related changes. The known psABI changes at this
point include:
</p>
<ul>
<li> For SysV/x86-64, unions with <code>long double</code> members are
passed in memory as specified in psABI. For example:
<div class="smallexample">
<pre class="smallexample">union U {
long double ld;
int i;
};
</pre></div>
<p><code>union U</code> is always passed in memory.
</p>
</li></ul>
</dd>
<dt><code>-Wabi-tag <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wabi_002dtag"></a>
<a name="index-_002dWabi_002dtag"></a>
<p>Warn when a type with an ABI tag is used in a context that does not
have that ABI tag. See <a href="#C_002b_002b-Attributes">C++ Attributes</a> for more information
about ABI tags.
</p>
</dd>
<dt><code>-Wctor-dtor-privacy <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wctor_002ddtor_002dprivacy"></a>
<a name="index-Wno_002dctor_002ddtor_002dprivacy"></a>
<p>Warn when a class seems unusable because all the constructors or
destructors in that class are private, and it has neither friends nor
public static member functions. Also warn if there are no non-private
methods, and there’s at least one private member function that isn’t
a constructor or destructor.
</p>
</dd>
<dt><code>-Wdelete-non-virtual-dtor <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wdelete_002dnon_002dvirtual_002ddtor"></a>
<a name="index-Wno_002ddelete_002dnon_002dvirtual_002ddtor"></a>
<p>Warn when <code>delete</code> is used to destroy an instance of a class that
has virtual functions and non-virtual destructor. It is unsafe to delete
an instance of a derived class through a pointer to a base class if the
base class does not have a virtual destructor. This warning is enabled
by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wliteral-suffix <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wliteral_002dsuffix"></a>
<a name="index-Wno_002dliteral_002dsuffix"></a>
<p>Warn when a string or character literal is followed by a ud-suffix which does
not begin with an underscore. As a conforming extension, GCC treats such
suffixes as separate preprocessing tokens in order to maintain backwards
compatibility with code that uses formatting macros from <code><inttypes.h></code>.
For example:
</p>
<div class="smallexample">
<pre class="smallexample">#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <stdio.h>
int main() {
int64_t i64 = 123;
printf("My int64: %" PRId64"\n", i64);
}
</pre></div>
<p>In this case, <code>PRId64</code> is treated as a separate preprocessing token.
</p>
<p>Additionally, warn when a user-defined literal operator is declared with
a literal suffix identifier that doesn’t begin with an underscore. Literal
suffix identifiers that don’t begin with an underscore are reserved for
future standardization.
</p>
<p>This warning is enabled by default.
</p>
</dd>
<dt><code>-Wlto-type-mismatch</code></dt>
<dd><a name="index-Wlto_002dtype_002dmismatch"></a>
<a name="index-Wno_002dlto_002dtype_002dmismatch"></a>
<p>During the link-time optimization warn about type mismatches in
global declarations from different compilation units.
Requires <samp>-flto</samp> to be enabled. Enabled by default.
</p>
</dd>
<dt><code>-Wno-narrowing <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wnarrowing"></a>
<a name="index-Wno_002dnarrowing"></a>
<p>For C++11 and later standards, narrowing conversions are diagnosed by default,
as required by the standard. A narrowing conversion from a constant produces
an error, and a narrowing conversion from a non-constant produces a warning,
but <samp>-Wno-narrowing</samp> suppresses the diagnostic.
Note that this does not affect the meaning of well-formed code;
narrowing conversions are still considered ill-formed in SFINAE contexts.
</p>
<p>With <samp>-Wnarrowing</samp> in C++98, warn when a narrowing
conversion prohibited by C++11 occurs within
‘<samp>{ }</samp>’, e.g.
</p>
<div class="smallexample">
<pre class="smallexample">int i = { 2.2 }; // error: narrowing from double to int
</pre></div>
<p>This flag is included in <samp>-Wall</samp> and <samp>-Wc++11-compat</samp>.
</p>
</dd>
<dt><code>-Wnoexcept <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wnoexcept"></a>
<a name="index-Wno_002dnoexcept"></a>
<p>Warn when a noexcept-expression evaluates to false because of a call
to a function that does not have a non-throwing exception
specification (i.e. <code>throw()</code> or <code>noexcept</code>) but is known by
the compiler to never throw an exception.
</p>
</dd>
<dt><code>-Wnoexcept-type <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wnoexcept_002dtype"></a>
<a name="index-Wno_002dnoexcept_002dtype"></a>
<p>Warn if the C++17 feature making <code>noexcept</code> part of a function
type changes the mangled name of a symbol relative to C++14. Enabled
by <samp>-Wabi</samp> and <samp>-Wc++17-compat</samp>.
</p>
<p>As an example:
</p>
<div class="smallexample">
<pre class="smallexample">template <class T> void f(T t) { t(); };
void g() noexcept;
void h() { f(g); }
</pre></div>
<p>In C++14, <code>f</code> calls calls <code>f<void(*)()></code>, but in
C++17 it calls <code>f<void(*)()noexcept></code>.
</p>
</dd>
<dt><code>-Wclass-memaccess <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wclass_002dmemaccess"></a>
<p>Warn when the destination of a call to a raw memory function such as
<code>memset</code> or <code>memcpy</code> is an object of class type, and when writing
into such an object might bypass the class non-trivial or deleted constructor
or copy assignment, violate const-correctness or encapsulation, or corrupt
virtual table pointers. Modifying the representation of such objects may
violate invariants maintained by member functions of the class. For example,
the call to <code>memset</code> below is undefined because it modifies a non-trivial
class object and is, therefore, diagnosed. The safe way to either initialize
or clear the storage of objects of such types is by using the appropriate
constructor or assignment operator, if one is available.
</p><div class="smallexample">
<pre class="smallexample">std::string str = "abc";
memset (&str, 0, sizeof str);
</pre></div>
<p>The <samp>-Wclass-memaccess</samp> option is enabled by <samp>-Wall</samp>.
Explicitly casting the pointer to the class object to <code>void *</code> or
to a type that can be safely accessed by the raw memory function suppresses
the warning.
</p>
</dd>
<dt><code>-Wnon-virtual-dtor <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wnon_002dvirtual_002ddtor"></a>
<a name="index-Wno_002dnon_002dvirtual_002ddtor"></a>
<p>Warn when a class has virtual functions and an accessible non-virtual
destructor itself or in an accessible polymorphic base class, in which
case it is possible but unsafe to delete an instance of a derived
class through a pointer to the class itself or base class. This
warning is automatically enabled if <samp>-Weffc++</samp> is specified.
</p>
</dd>
<dt><code>-Wregister <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wregister"></a>
<a name="index-Wno_002dregister"></a>
<p>Warn on uses of the <code>register</code> storage class specifier, except
when it is part of the GNU <a href="#Explicit-Register-Variables">Explicit Register Variables</a> extension.
The use of the <code>register</code> keyword as storage class specifier has
been deprecated in C++11 and removed in C++17.
Enabled by default with <samp>-std=c++17</samp>.
</p>
</dd>
<dt><code>-Wreorder <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wreorder"></a>
<a name="index-Wno_002dreorder"></a>
<a name="index-reordering_002c-warning"></a>
<a name="index-warning-for-reordering-of-member-initializers"></a>
<p>Warn when the order of member initializers given in the code does not
match the order in which they must be executed. For instance:
</p>
<div class="smallexample">
<pre class="smallexample">struct A {
int i;
int j;
A(): j (0), i (1) { }
};
</pre></div>
<p>The compiler rearranges the member initializers for <code>i</code>
and <code>j</code> to match the declaration order of the members, emitting
a warning to that effect. This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-fext-numeric-literals <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-fext_002dnumeric_002dliterals"></a>
<a name="index-fno_002dext_002dnumeric_002dliterals"></a>
<p>Accept imaginary, fixed-point, or machine-defined
literal number suffixes as GNU extensions.
When this option is turned off these suffixes are treated
as C++11 user-defined literal numeric suffixes.
This is on by default for all pre-C++11 dialects and all GNU dialects:
<samp>-std=c++98</samp>, <samp>-std=gnu++98</samp>, <samp>-std=gnu++11</samp>,
<samp>-std=gnu++14</samp>.
This option is off by default
for ISO C++11 onwards (<samp>-std=c++11</samp>, ...).
</p></dd>
</dl>
<p>The following <samp>-W…</samp> options are not affected by <samp>-Wall</samp>.
</p>
<dl compact="compact">
<dt><code>-Weffc++ <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Weffc_002b_002b"></a>
<a name="index-Wno_002deffc_002b_002b"></a>
<p>Warn about violations of the following style guidelines from Scott Meyers’
<cite>Effective C++</cite> series of books:
</p>
<ul>
<li> Define a copy constructor and an assignment operator for classes
with dynamically-allocated memory.
</li><li> Prefer initialization to assignment in constructors.
</li><li> Have <code>operator=</code> return a reference to <code>*this</code>.
</li><li> Don’t try to return a reference when you must return an object.
</li><li> Distinguish between prefix and postfix forms of increment and
decrement operators.
</li><li> Never overload <code>&&</code>, <code>||</code>, or <code>,</code>.
</li></ul>
<p>This option also enables <samp>-Wnon-virtual-dtor</samp>, which is also
one of the effective C++ recommendations. However, the check is
extended to warn about the lack of virtual destructor in accessible
non-polymorphic bases classes too.
</p>
<p>When selecting this option, be aware that the standard library
headers do not obey all of these guidelines; use ‘<samp>grep -v</samp>’
to filter out those warnings.
</p>
</dd>
<dt><code>-Wstrict-null-sentinel <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wstrict_002dnull_002dsentinel"></a>
<a name="index-Wno_002dstrict_002dnull_002dsentinel"></a>
<p>Warn about the use of an uncasted <code>NULL</code> as sentinel. When
compiling only with GCC this is a valid sentinel, as <code>NULL</code> is defined
to <code>__null</code>. Although it is a null pointer constant rather than a
null pointer, it is guaranteed to be of the same size as a pointer.
But this use is not portable across different compilers.
</p>
</dd>
<dt><code>-Wno-non-template-friend <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wno_002dnon_002dtemplate_002dfriend"></a>
<a name="index-Wnon_002dtemplate_002dfriend"></a>
<p>Disable warnings when non-template friend functions are declared
within a template. In very old versions of GCC that predate implementation
of the ISO standard, declarations such as
‘<samp>friend int foo(int)</samp>’, where the name of the friend is an unqualified-id,
could be interpreted as a particular specialization of a template
function; the warning exists to diagnose compatibility problems,
and is enabled by default.
</p>
</dd>
<dt><code>-Wold-style-cast <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wold_002dstyle_002dcast"></a>
<a name="index-Wno_002dold_002dstyle_002dcast"></a>
<p>Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (<code>dynamic_cast</code>,
<code>static_cast</code>, <code>reinterpret_cast</code>, and <code>const_cast</code>) are
less vulnerable to unintended effects and much easier to search for.
</p>
</dd>
<dt><code>-Woverloaded-virtual <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Woverloaded_002dvirtual"></a>
<a name="index-Wno_002doverloaded_002dvirtual"></a>
<a name="index-overloaded-virtual-function_002c-warning"></a>
<a name="index-warning-for-overloaded-virtual-function"></a>
<p>Warn when a function declaration hides virtual functions from a
base class. For example, in:
</p>
<div class="smallexample">
<pre class="smallexample">struct A {
virtual void f();
};
struct B: public A {
void f(int);
};
</pre></div>
<p>the <code>A</code> class version of <code>f</code> is hidden in <code>B</code>, and code
like:
</p>
<div class="smallexample">
<pre class="smallexample">B* b;
b->f();
</pre></div>
<p>fails to compile.
</p>
</dd>
<dt><code>-Wno-pmf-conversions <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wno_002dpmf_002dconversions"></a>
<a name="index-Wpmf_002dconversions"></a>
<p>Disable the diagnostic for converting a bound pointer to member function
to a plain pointer.
</p>
</dd>
<dt><code>-Wsign-promo <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wsign_002dpromo"></a>
<a name="index-Wno_002dsign_002dpromo"></a>
<p>Warn when overload resolution chooses a promotion from unsigned or
enumerated type to a signed type, over a conversion to an unsigned type of
the same size. Previous versions of G++ tried to preserve
unsignedness, but the standard mandates the current behavior.
</p>
</dd>
<dt><code>-Wtemplates <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wtemplates"></a>
<p>Warn when a primary template declaration is encountered. Some coding
rules disallow templates, and this may be used to enforce that rule.
The warning is inactive inside a system header file, such as the STL, so
one can still use the STL. One may also instantiate or specialize
templates.
</p>
</dd>
<dt><code>-Wmultiple-inheritance <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wmultiple_002dinheritance"></a>
<p>Warn when a class is defined with multiple direct base classes. Some
coding rules disallow multiple inheritance, and this may be used to
enforce that rule. The warning is inactive inside a system header file,
such as the STL, so one can still use the STL. One may also define
classes that indirectly use multiple inheritance.
</p>
</dd>
<dt><code>-Wvirtual-inheritance</code></dt>
<dd><a name="index-Wvirtual_002dinheritance"></a>
<p>Warn when a class is defined with a virtual direct base class. Some
coding rules disallow multiple inheritance, and this may be used to
enforce that rule. The warning is inactive inside a system header file,
such as the STL, so one can still use the STL. One may also define
classes that indirectly use virtual inheritance.
</p>
</dd>
<dt><code>-Wnamespaces</code></dt>
<dd><a name="index-Wnamespaces"></a>
<p>Warn when a namespace definition is opened. Some coding rules disallow
namespaces, and this may be used to enforce that rule. The warning is
inactive inside a system header file, such as the STL, so one can still
use the STL. One may also use using directives and qualified names.
</p>
</dd>
<dt><code>-Wno-terminate <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wterminate"></a>
<a name="index-Wno_002dterminate"></a>
<p>Disable the warning about a throw-expression that will immediately
result in a call to <code>terminate</code>.
</p></dd>
</dl>
<hr>
<a name="Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options"></a>
<div class="header">
<p>
Next: <a href="#Diagnostic-Message-Formatting-Options" accesskey="n" rel="next">Diagnostic Message Formatting Options</a>, Previous: <a href="#C_002b_002b-Dialect-Options" accesskey="p" rel="prev">C++ Dialect Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-Controlling-Objective_002dC-and-Objective_002dC_002b_002b-Dialects"></a>
<h3 class="section">3.6 Options Controlling Objective-C and Objective-C++ Dialects</h3>
<a name="index-compiler-options_002c-Objective_002dC-and-Objective_002dC_002b_002b"></a>
<a name="index-Objective_002dC-and-Objective_002dC_002b_002b-options_002c-command_002dline"></a>
<a name="index-options_002c-Objective_002dC-and-Objective_002dC_002b_002b"></a>
<p>(NOTE: This manual does not describe the Objective-C and Objective-C++
languages themselves. See <a href="#Standards">Language Standards
Supported by GCC</a>, for references.)
</p>
<p>This section describes the command-line options that are only meaningful
for Objective-C and Objective-C++ programs. You can also use most of
the language-independent GNU compiler options.
For example, you might compile a file <samp>some_class.m</samp> like this:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -g -fgnu-runtime -O -c some_class.m
</pre></div>
<p>In this example, <samp>-fgnu-runtime</samp> is an option meant only for
Objective-C and Objective-C++ programs; you can use the other options with
any language supported by GCC.
</p>
<p>Note that since Objective-C is an extension of the C language, Objective-C
compilations may also use options specific to the C front-end (e.g.,
<samp>-Wtraditional</samp>). Similarly, Objective-C++ compilations may use
C++-specific options (e.g., <samp>-Wabi</samp>).
</p>
<p>Here is a list of options that are <em>only</em> for compiling Objective-C
and Objective-C++ programs:
</p>
<dl compact="compact">
<dt><code>-fconstant-string-class=<var>class-name</var></code></dt>
<dd><a name="index-fconstant_002dstring_002dclass"></a>
<p>Use <var>class-name</var> as the name of the class to instantiate for each
literal string specified with the syntax <code>@"…"</code>. The default
class name is <code>NXConstantString</code> if the GNU runtime is being used, and
<code>NSConstantString</code> if the NeXT runtime is being used (see below). The
<samp>-fconstant-cfstrings</samp> option, if also present, overrides the
<samp>-fconstant-string-class</samp> setting and cause <code>@"…"</code> literals
to be laid out as constant CoreFoundation strings.
</p>
</dd>
<dt><code>-fgnu-runtime</code></dt>
<dd><a name="index-fgnu_002druntime"></a>
<p>Generate object code compatible with the standard GNU Objective-C
runtime. This is the default for most types of systems.
</p>
</dd>
<dt><code>-fnext-runtime</code></dt>
<dd><a name="index-fnext_002druntime"></a>
<p>Generate output compatible with the NeXT runtime. This is the default
for NeXT-based systems, including Darwin and Mac OS X. The macro
<code>__NEXT_RUNTIME__</code> is predefined if (and only if) this option is
used.
</p>
</dd>
<dt><code>-fno-nil-receivers</code></dt>
<dd><a name="index-fno_002dnil_002dreceivers"></a>
<p>Assume that all Objective-C message dispatches (<code>[receiver
message:arg]</code>) in this translation unit ensure that the receiver is
not <code>nil</code>. This allows for more efficient entry points in the
runtime to be used. This option is only available in conjunction with
the NeXT runtime and ABI version 0 or 1.
</p>
</dd>
<dt><code>-fobjc-abi-version=<var>n</var></code></dt>
<dd><a name="index-fobjc_002dabi_002dversion"></a>
<p>Use version <var>n</var> of the Objective-C ABI for the selected runtime.
This option is currently supported only for the NeXT runtime. In that
case, Version 0 is the traditional (32-bit) ABI without support for
properties and other Objective-C 2.0 additions. Version 1 is the
traditional (32-bit) ABI with support for properties and other
Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
nothing is specified, the default is Version 0 on 32-bit target
machines, and Version 2 on 64-bit target machines.
</p>
</dd>
<dt><code>-fobjc-call-cxx-cdtors</code></dt>
<dd><a name="index-fobjc_002dcall_002dcxx_002dcdtors"></a>
<p>For each Objective-C class, check if any of its instance variables is a
C++ object with a non-trivial default constructor. If so, synthesize a
special <code>- (id) .cxx_construct</code> instance method which runs
non-trivial default constructors on any such instance variables, in order,
and then return <code>self</code>. Similarly, check if any instance variable
is a C++ object with a non-trivial destructor, and if so, synthesize a
special <code>- (void) .cxx_destruct</code> method which runs
all such default destructors, in reverse order.
</p>
<p>The <code>- (id) .cxx_construct</code> and <code>- (void) .cxx_destruct</code>
methods thusly generated only operate on instance variables
declared in the current Objective-C class, and not those inherited
from superclasses. It is the responsibility of the Objective-C
runtime to invoke all such methods in an object’s inheritance
hierarchy. The <code>- (id) .cxx_construct</code> methods are invoked
by the runtime immediately after a new object instance is allocated;
the <code>- (void) .cxx_destruct</code> methods are invoked immediately
before the runtime deallocates an object instance.
</p>
<p>As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
support for invoking the <code>- (id) .cxx_construct</code> and
<code>- (void) .cxx_destruct</code> methods.
</p>
</dd>
<dt><code>-fobjc-direct-dispatch</code></dt>
<dd><a name="index-fobjc_002ddirect_002ddispatch"></a>
<p>Allow fast jumps to the message dispatcher. On Darwin this is
accomplished via the comm page.
</p>
</dd>
<dt><code>-fobjc-exceptions</code></dt>
<dd><a name="index-fobjc_002dexceptions"></a>
<p>Enable syntactic support for structured exception handling in
Objective-C, similar to what is offered by C++. This option
is required to use the Objective-C keywords <code>@try</code>,
<code>@throw</code>, <code>@catch</code>, <code>@finally</code> and
<code>@synchronized</code>. This option is available with both the GNU
runtime and the NeXT runtime (but not available in conjunction with
the NeXT runtime on Mac OS X 10.2 and earlier).
</p>
</dd>
<dt><code>-fobjc-gc</code></dt>
<dd><a name="index-fobjc_002dgc"></a>
<p>Enable garbage collection (GC) in Objective-C and Objective-C++
programs. This option is only available with the NeXT runtime; the
GNU runtime has a different garbage collection implementation that
does not require special compiler flags.
</p>
</dd>
<dt><code>-fobjc-nilcheck</code></dt>
<dd><a name="index-fobjc_002dnilcheck"></a>
<p>For the NeXT runtime with version 2 of the ABI, check for a nil
receiver in method invocations before doing the actual method call.
This is the default and can be disabled using
<samp>-fno-objc-nilcheck</samp>. Class methods and super calls are never
checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the GNU runtime, or an older
version of the NeXT runtime ABI, is used.
</p>
</dd>
<dt><code>-fobjc-std=objc1</code></dt>
<dd><a name="index-fobjc_002dstd"></a>
<p>Conform to the language syntax of Objective-C 1.0, the language
recognized by GCC 4.0. This only affects the Objective-C additions to
the C/C++ language; it does not affect conformance to C/C++ standards,
which is controlled by the separate C/C++ dialect option flags. When
this option is used with the Objective-C or Objective-C++ compiler,
any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
This is useful if you need to make sure that your Objective-C code can
be compiled with older versions of GCC.
</p>
</dd>
<dt><code>-freplace-objc-classes</code></dt>
<dd><a name="index-freplace_002dobjc_002dclasses"></a>
<p>Emit a special marker instructing <code>ld(1)</code> not to statically link in
the resulting object file, and allow <code>dyld(1)</code> to load it in at
run time instead. This is used in conjunction with the Fix-and-Continue
debugging mode, where the object file in question may be recompiled and
dynamically reloaded in the course of program execution, without the need
to restart the program itself. Currently, Fix-and-Continue functionality
is only available in conjunction with the NeXT runtime on Mac OS X 10.3
and later.
</p>
</dd>
<dt><code>-fzero-link</code></dt>
<dd><a name="index-fzero_002dlink"></a>
<p>When compiling for the NeXT runtime, the compiler ordinarily replaces calls
to <code>objc_getClass("…")</code> (when the name of the class is known at
compile time) with static class references that get initialized at load time,
which improves run-time performance. Specifying the <samp>-fzero-link</samp> flag
suppresses this behavior and causes calls to <code>objc_getClass("…")</code>
to be retained. This is useful in Zero-Link debugging mode, since it allows
for individual class implementations to be modified during program execution.
The GNU runtime currently always retains calls to <code>objc_get_class("…")</code>
regardless of command-line options.
</p>
</dd>
<dt><code>-fno-local-ivars</code></dt>
<dd><a name="index-fno_002dlocal_002divars"></a>
<a name="index-flocal_002divars"></a>
<p>By default instance variables in Objective-C can be accessed as if
they were local variables from within the methods of the class they’re
declared in. This can lead to shadowing between instance variables
and other variables declared either locally inside a class method or
globally with the same name. Specifying the <samp>-fno-local-ivars</samp>
flag disables this behavior thus avoiding variable shadowing issues.
</p>
</dd>
<dt><code>-fivar-visibility=<span class="roman">[</span>public<span class="roman">|</span>protected<span class="roman">|</span>private<span class="roman">|</span>package<span class="roman">]</span></code></dt>
<dd><a name="index-fivar_002dvisibility"></a>
<p>Set the default instance variable visibility to the specified option
so that instance variables declared outside the scope of any access
modifier directives default to the specified visibility.
</p>
</dd>
<dt><code>-gen-decls</code></dt>
<dd><a name="index-gen_002ddecls"></a>
<p>Dump interface declarations for all classes seen in the source file to a
file named <samp><var>sourcename</var>.decl</samp>.
</p>
</dd>
<dt><code>-Wassign-intercept <span class="roman">(Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wassign_002dintercept"></a>
<a name="index-Wno_002dassign_002dintercept"></a>
<p>Warn whenever an Objective-C assignment is being intercepted by the
garbage collector.
</p>
</dd>
<dt><code>-Wno-protocol <span class="roman">(Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wno_002dprotocol"></a>
<a name="index-Wprotocol"></a>
<p>If a class is declared to implement a protocol, a warning is issued for
every method in the protocol that is not implemented by the class. The
default behavior is to issue a warning for every method not explicitly
implemented in the class, even if a method implementation is inherited
from the superclass. If you use the <samp>-Wno-protocol</samp> option, then
methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.
</p>
</dd>
<dt><code>-Wselector <span class="roman">(Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wselector"></a>
<a name="index-Wno_002dselector"></a>
<p>Warn if multiple methods of different types for the same selector are
found during compilation. The check is performed on the list of methods
in the final stage of compilation. Additionally, a check is performed
for each selector appearing in a <code>@selector(…)</code>
expression, and a corresponding method for that selector has been found
during compilation. Because these checks scan the method table only at
the end of compilation, these warnings are not produced if the final
stage of compilation is not reached, for example because an error is
found during compilation, or because the <samp>-fsyntax-only</samp> option is
being used.
</p>
</dd>
<dt><code>-Wstrict-selector-match <span class="roman">(Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wstrict_002dselector_002dmatch"></a>
<a name="index-Wno_002dstrict_002dselector_002dmatch"></a>
<p>Warn if multiple methods with differing argument and/or return types are
found for a given selector when attempting to send a message using this
selector to a receiver of type <code>id</code> or <code>Class</code>. When this flag
is off (which is the default behavior), the compiler omits such warnings
if any differences found are confined to types that share the same size
and alignment.
</p>
</dd>
<dt><code>-Wundeclared-selector <span class="roman">(Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wundeclared_002dselector"></a>
<a name="index-Wno_002dundeclared_002dselector"></a>
<p>Warn if a <code>@selector(…)</code> expression referring to an
undeclared selector is found. A selector is considered undeclared if no
method with that name has been declared before the
<code>@selector(…)</code> expression, either explicitly in an
<code>@interface</code> or <code>@protocol</code> declaration, or implicitly in
an <code>@implementation</code> section. This option always performs its
checks as soon as a <code>@selector(…)</code> expression is found,
while <samp>-Wselector</samp> only performs its checks in the final stage of
compilation. This also enforces the coding style convention
that methods and selectors must be declared before being used.
</p>
</dd>
<dt><code>-print-objc-runtime-info</code></dt>
<dd><a name="index-print_002dobjc_002druntime_002dinfo"></a>
<p>Generate C header describing the largest structure that is passed by
value, if any.
</p>
</dd>
</dl>
<hr>
<a name="Diagnostic-Message-Formatting-Options"></a>
<div class="header">
<p>
Next: <a href="#Warning-Options" accesskey="n" rel="next">Warning Options</a>, Previous: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options" accesskey="p" rel="prev">Objective-C and Objective-C++ Dialect Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-to-Control-Diagnostic-Messages-Formatting"></a>
<h3 class="section">3.7 Options to Control Diagnostic Messages Formatting</h3>
<a name="index-options-to-control-diagnostics-formatting"></a>
<a name="index-diagnostic-messages"></a>
<a name="index-message-formatting"></a>
<p>Traditionally, diagnostic messages have been formatted irrespective of
the output device’s aspect (e.g. its width, …). You can use the
options described below
to control the formatting algorithm for diagnostic messages,
e.g. how many characters per line, how often source location
information should be reported. Note that some language front ends may not
honor these options.
</p>
<dl compact="compact">
<dt><code>-fmessage-length=<var>n</var></code></dt>
<dd><a name="index-fmessage_002dlength"></a>
<p>Try to format error messages so that they fit on lines of about
<var>n</var> characters. If <var>n</var> is zero, then no line-wrapping is
done; each error message appears on a single line. This is the
default for all front ends.
</p>
</dd>
<dt><code>-fdiagnostics-show-location=once</code></dt>
<dd><a name="index-fdiagnostics_002dshow_002dlocation"></a>
<p>Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit source location information <em>once</em>; that is, in
case the message is too long to fit on a single physical line and has to
be wrapped, the source location won’t be emitted (as prefix) again,
over and over, in subsequent continuation lines. This is the default
behavior.
</p>
</dd>
<dt><code>-fdiagnostics-show-location=every-line</code></dt>
<dd><p>Only meaningful in line-wrapping mode. Instructs the diagnostic
messages reporter to emit the same source location information (as
prefix) for physical lines that result from the process of breaking
a message which is too long to fit on a single line.
</p>
</dd>
<dt><code>-fdiagnostics-color[=<var>WHEN</var>]</code></dt>
<dt><code>-fno-diagnostics-color</code></dt>
<dd><a name="index-fdiagnostics_002dcolor"></a>
<a name="index-highlight_002c-color"></a>
<a name="index-GCC_005fCOLORS-environment-variable"></a>
<p>Use color in diagnostics. <var>WHEN</var> is ‘<samp>never</samp>’, ‘<samp>always</samp>’,
or ‘<samp>auto</samp>’. The default depends on how the compiler has been configured,
it can be any of the above <var>WHEN</var> options or also ‘<samp>never</samp>’
if <code>GCC_COLORS</code> environment variable isn’t present in the environment,
and ‘<samp>auto</samp>’ otherwise.
‘<samp>auto</samp>’ means to use color only when the standard error is a terminal.
The forms <samp>-fdiagnostics-color</samp> and <samp>-fno-diagnostics-color</samp> are
aliases for <samp>-fdiagnostics-color=always</samp> and
<samp>-fdiagnostics-color=never</samp>, respectively.
</p>
<p>The colors are defined by the environment variable <code>GCC_COLORS</code>.
Its value is a colon-separated list of capabilities and Select Graphic
Rendition (SGR) substrings. SGR commands are interpreted by the
terminal or terminal emulator. (See the section in the documentation
of your text terminal for permitted values and their meanings as
character attributes.) These substring values are integers in decimal
representation and can be concatenated with semicolons.
Common values to concatenate include
‘<samp>1</samp>’ for bold,
‘<samp>4</samp>’ for underline,
‘<samp>5</samp>’ for blink,
‘<samp>7</samp>’ for inverse,
‘<samp>39</samp>’ for default foreground color,
‘<samp>30</samp>’ to ‘<samp>37</samp>’ for foreground colors,
‘<samp>90</samp>’ to ‘<samp>97</samp>’ for 16-color mode foreground colors,
‘<samp>38;5;0</samp>’ to ‘<samp>38;5;255</samp>’
for 88-color and 256-color modes foreground colors,
‘<samp>49</samp>’ for default background color,
‘<samp>40</samp>’ to ‘<samp>47</samp>’ for background colors,
‘<samp>100</samp>’ to ‘<samp>107</samp>’ for 16-color mode background colors,
and ‘<samp>48;5;0</samp>’ to ‘<samp>48;5;255</samp>’
for 88-color and 256-color modes background colors.
</p>
<p>The default <code>GCC_COLORS</code> is
</p><div class="smallexample">
<pre class="smallexample">error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
quote=01:fixit-insert=32:fixit-delete=31:\
diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
type-diff=01;32
</pre></div>
<p>where ‘<samp>01;31</samp>’ is bold red, ‘<samp>01;35</samp>’ is bold magenta,
‘<samp>01;36</samp>’ is bold cyan, ‘<samp>32</samp>’ is green, ‘<samp>34</samp>’ is blue,
‘<samp>01</samp>’ is bold, and ‘<samp>31</samp>’ is red.
Setting <code>GCC_COLORS</code> to the empty string disables colors.
Supported capabilities are as follows.
</p>
<dl compact="compact">
<dt><code>error=</code></dt>
<dd><a name="index-error-GCC_005fCOLORS-capability"></a>
<p>SGR substring for error: markers.
</p>
</dd>
<dt><code>warning=</code></dt>
<dd><a name="index-warning-GCC_005fCOLORS-capability"></a>
<p>SGR substring for warning: markers.
</p>
</dd>
<dt><code>note=</code></dt>
<dd><a name="index-note-GCC_005fCOLORS-capability"></a>
<p>SGR substring for note: markers.
</p>
</dd>
<dt><code>range1=</code></dt>
<dd><a name="index-range1-GCC_005fCOLORS-capability"></a>
<p>SGR substring for first additional range.
</p>
</dd>
<dt><code>range2=</code></dt>
<dd><a name="index-range2-GCC_005fCOLORS-capability"></a>
<p>SGR substring for second additional range.
</p>
</dd>
<dt><code>locus=</code></dt>
<dd><a name="index-locus-GCC_005fCOLORS-capability"></a>
<p>SGR substring for location information, ‘<samp>file:line</samp>’ or
‘<samp>file:line:column</samp>’ etc.
</p>
</dd>
<dt><code>quote=</code></dt>
<dd><a name="index-quote-GCC_005fCOLORS-capability"></a>
<p>SGR substring for information printed within quotes.
</p>
</dd>
<dt><code>fixit-insert=</code></dt>
<dd><a name="index-fixit_002dinsert-GCC_005fCOLORS-capability"></a>
<p>SGR substring for fix-it hints suggesting text to
be inserted or replaced.
</p>
</dd>
<dt><code>fixit-delete=</code></dt>
<dd><a name="index-fixit_002ddelete-GCC_005fCOLORS-capability"></a>
<p>SGR substring for fix-it hints suggesting text to
be deleted.
</p>
</dd>
<dt><code>diff-filename=</code></dt>
<dd><a name="index-diff_002dfilename-GCC_005fCOLORS-capability"></a>
<p>SGR substring for filename headers within generated patches.
</p>
</dd>
<dt><code>diff-hunk=</code></dt>
<dd><a name="index-diff_002dhunk-GCC_005fCOLORS-capability"></a>
<p>SGR substring for the starts of hunks within generated patches.
</p>
</dd>
<dt><code>diff-delete=</code></dt>
<dd><a name="index-diff_002ddelete-GCC_005fCOLORS-capability"></a>
<p>SGR substring for deleted lines within generated patches.
</p>
</dd>
<dt><code>diff-insert=</code></dt>
<dd><a name="index-diff_002dinsert-GCC_005fCOLORS-capability"></a>
<p>SGR substring for inserted lines within generated patches.
</p>
</dd>
<dt><code>type-diff=</code></dt>
<dd><a name="index-type_002ddiff-GCC_005fCOLORS-capability"></a>
<p>SGR substring for highlighting mismatching types within template
arguments in the C++ frontend.
</p></dd>
</dl>
</dd>
<dt><code>-fno-diagnostics-show-option</code></dt>
<dd><a name="index-fno_002ddiagnostics_002dshow_002doption"></a>
<a name="index-fdiagnostics_002dshow_002doption"></a>
<p>By default, each diagnostic emitted includes text indicating the
command-line option that directly controls the diagnostic (if such an
option is known to the diagnostic machinery). Specifying the
<samp>-fno-diagnostics-show-option</samp> flag suppresses that behavior.
</p>
</dd>
<dt><code>-fno-diagnostics-show-caret</code></dt>
<dd><a name="index-fno_002ddiagnostics_002dshow_002dcaret"></a>
<a name="index-fdiagnostics_002dshow_002dcaret"></a>
<p>By default, each diagnostic emitted includes the original source line
and a caret ‘<samp>^</samp>’ indicating the column. This option suppresses this
information. The source line is truncated to <var>n</var> characters, if
the <samp>-fmessage-length=n</samp> option is given. When the output is done
to the terminal, the width is limited to the width given by the
<code>COLUMNS</code> environment variable or, if not set, to the terminal width.
</p>
</dd>
<dt><code>-fdiagnostics-parseable-fixits</code></dt>
<dd><a name="index-fdiagnostics_002dparseable_002dfixits"></a>
<p>Emit fix-it hints in a machine-parseable format, suitable for consumption
by IDEs. For each fix-it, a line will be printed after the relevant
diagnostic, starting with the string “fix-it:”. For example:
</p>
<div class="smallexample">
<pre class="smallexample">fix-it:"test.c":{45:3-45:21}:"gtk_widget_show_all"
</pre></div>
<p>The location is expressed as a half-open range, expressed as a count of
bytes, starting at byte 1 for the initial column. In the above example,
bytes 3 through 20 of line 45 of “test.c” are to be replaced with the
given string:
</p>
<div class="smallexample">
<pre class="smallexample">00000000011111111112222222222
12345678901234567890123456789
gtk_widget_showall (dlg);
^^^^^^^^^^^^^^^^^^
gtk_widget_show_all
</pre></div>
<p>The filename and replacement string escape backslash as “\\", tab as “\t”,
newline as “\n”, double quotes as “\"”, non-printable characters as octal
(e.g. vertical tab as “\013”).
</p>
<p>An empty replacement string indicates that the given range is to be removed.
An empty range (e.g. “45:3-45:3”) indicates that the string is to
be inserted at the given position.
</p>
</dd>
<dt><code>-fdiagnostics-generate-patch</code></dt>
<dd><a name="index-fdiagnostics_002dgenerate_002dpatch"></a>
<p>Print fix-it hints to stderr in unified diff format, after any diagnostics
are printed. For example:
</p>
<div class="smallexample">
<pre class="smallexample">--- test.c
+++ test.c
@ -42,5 +42,5 @
void show_cb(GtkDialog *dlg)
{
- gtk_widget_showall(dlg);
+ gtk_widget_show_all(dlg);
}
</pre></div>
<p>The diff may or may not be colorized, following the same rules
as for diagnostics (see <samp>-fdiagnostics-color</samp>).
</p>
</dd>
<dt><code>-fdiagnostics-show-template-tree</code></dt>
<dd><a name="index-fdiagnostics_002dshow_002dtemplate_002dtree"></a>
<p>In the C++ frontend, when printing diagnostics showing mismatching
template types, such as:
</p>
<div class="smallexample">
<pre class="smallexample"> could not convert 'std::map<int, std::vector<double> >()'
from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
</pre></div>
<p>the <samp>-fdiagnostics-show-template-tree</samp> flag enables printing a
tree-like structure showing the common and differing parts of the types,
such as:
</p>
<div class="smallexample">
<pre class="smallexample"> map<
[...],
vector<
[double != float]>>
</pre></div>
<p>The parts that differ are highlighted with color (“double” and
“float” in this case).
</p>
</dd>
<dt><code>-fno-elide-type</code></dt>
<dd><a name="index-fno_002delide_002dtype"></a>
<a name="index-felide_002dtype"></a>
<p>By default when the C++ frontend prints diagnostics showing mismatching
template types, common parts of the types are printed as “[...]” to
simplify the error message. For example:
</p>
<div class="smallexample">
<pre class="smallexample"> could not convert 'std::map<int, std::vector<double> >()'
from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
</pre></div>
<p>Specifying the <samp>-fno-elide-type</samp> flag suppresses that behavior.
This flag also affects the output of the
<samp>-fdiagnostics-show-template-tree</samp> flag.
</p>
</dd>
<dt><code>-fno-show-column</code></dt>
<dd><a name="index-fno_002dshow_002dcolumn"></a>
<p>Do not print column numbers in diagnostics. This may be necessary if
diagnostics are being scanned by a program that does not understand the
column numbers, such as <code>dejagnu</code>.
</p>
</dd>
</dl>
<hr>
<a name="Warning-Options"></a>
<div class="header">
<p>
Next: <a href="#Debugging-Options" accesskey="n" rel="next">Debugging Options</a>, Previous: <a href="#Diagnostic-Message-Formatting-Options" accesskey="p" rel="prev">Diagnostic Message Formatting Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-to-Request-or-Suppress-Warnings"></a>
<h3 class="section">3.8 Options to Request or Suppress Warnings</h3>
<a name="index-options-to-control-warnings"></a>
<a name="index-warning-messages"></a>
<a name="index-messages_002c-warning"></a>
<a name="index-suppressing-warnings"></a>
<p>Warnings are diagnostic messages that report constructions that
are not inherently erroneous but that are risky or suggest there
may have been an error.
</p>
<p>The following language-independent options do not enable specific
warnings but control the kinds of diagnostics produced by GCC.
</p>
<dl compact="compact">
<dd><a name="index-syntax-checking"></a>
</dd>
<dt><code>-fsyntax-only</code></dt>
<dd><a name="index-fsyntax_002donly"></a>
<p>Check the code for syntax errors, but don’t do anything beyond that.
</p>
</dd>
<dt><code>-fmax-errors=<var>n</var></code></dt>
<dd><a name="index-fmax_002derrors"></a>
<p>Limits the maximum number of error messages to <var>n</var>, at which point
GCC bails out rather than attempting to continue processing the source
code. If <var>n</var> is 0 (the default), there is no limit on the number
of error messages produced. If <samp>-Wfatal-errors</samp> is also
specified, then <samp>-Wfatal-errors</samp> takes precedence over this
option.
</p>
</dd>
<dt><code>-w</code></dt>
<dd><a name="index-w"></a>
<p>Inhibit all warning messages.
</p>
</dd>
<dt><code>-Werror</code></dt>
<dd><a name="index-Werror"></a>
<a name="index-Wno_002derror"></a>
<p>Make all warnings into errors.
</p>
</dd>
<dt><code>-Werror=</code></dt>
<dd><a name="index-Werror_003d"></a>
<a name="index-Wno_002derror_003d"></a>
<p>Make the specified warning into an error. The specifier for a warning
is appended; for example <samp>-Werror=switch</samp> turns the warnings
controlled by <samp>-Wswitch</samp> into errors. This switch takes a
negative form, to be used to negate <samp>-Werror</samp> for specific
warnings; for example <samp>-Wno-error=switch</samp> makes
<samp>-Wswitch</samp> warnings not be errors, even when <samp>-Werror</samp>
is in effect.
</p>
<p>The warning message for each controllable warning includes the
option that controls the warning. That option can then be used with
<samp>-Werror=</samp> and <samp>-Wno-error=</samp> as described above.
(Printing of the option in the warning message can be disabled using the
<samp>-fno-diagnostics-show-option</samp> flag.)
</p>
<p>Note that specifying <samp>-Werror=</samp><var>foo</var> automatically implies
<samp>-W</samp><var>foo</var>. However, <samp>-Wno-error=</samp><var>foo</var> does not
imply anything.
</p>
</dd>
<dt><code>-Wfatal-errors</code></dt>
<dd><a name="index-Wfatal_002derrors"></a>
<a name="index-Wno_002dfatal_002derrors"></a>
<p>This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.
</p>
</dd>
</dl>
<p>You can request many specific warnings with options beginning with
‘<samp>-W</samp>’, for example <samp>-Wimplicit</samp> to request warnings on
implicit declarations. Each of these specific warning options also
has a negative form beginning ‘<samp>-Wno-</samp>’ to turn off warnings; for
example, <samp>-Wno-implicit</samp>. This manual lists only one of the
two forms, whichever is not the default. For further
language-specific options also refer to <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a> and
<a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>.
</p>
<p>Some options, such as <samp>-Wall</samp> and <samp>-Wextra</samp>, turn on other
options, such as <samp>-Wunused</samp>, which may turn on further options,
such as <samp>-Wunused-value</samp>. The combined effect of positive and
negative forms is that more specific options have priority over less
specific ones, independently of their position in the command-line. For
options of the same specificity, the last one takes effect. Options
enabled or disabled via pragmas (see <a href="#Diagnostic-Pragmas">Diagnostic Pragmas</a>) take effect
as if they appeared at the end of the command-line.
</p>
<p>When an unrecognized warning option is requested (e.g.,
<samp>-Wunknown-warning</samp>), GCC emits a diagnostic stating
that the option is not recognized. However, if the <samp>-Wno-</samp> form
is used, the behavior is slightly different: no diagnostic is
produced for <samp>-Wno-unknown-warning</samp> unless other diagnostics
are being produced. This allows the use of new <samp>-Wno-</samp> options
with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.
</p>
<dl compact="compact">
<dt><code>-Wpedantic</code></dt>
<dt><code>-pedantic</code></dt>
<dd><a name="index-pedantic-1"></a>
<a name="index-Wpedantic"></a>
<p>Issue all the warnings demanded by strict ISO C and ISO C++;
reject all programs that use forbidden extensions, and some other
programs that do not follow ISO C and ISO C++. For ISO C, follows the
version of the ISO C standard specified by any <samp>-std</samp> option used.
</p>
<p>Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require <samp>-ansi</samp> or a
<samp>-std</samp> option specifying the required version of ISO C). However,
without this option, certain GNU extensions and traditional C and C++
features are supported as well. With this option, they are rejected.
</p>
<p><samp>-Wpedantic</samp> does not cause warning messages for use of the
alternate keywords whose names begin and end with ‘<samp>__</samp>’. Pedantic
warnings are also disabled in the expression that follows
<code>__extension__</code>. However, only system header files should use
these escape routes; application programs should avoid them.
See <a href="#Alternate-Keywords">Alternate Keywords</a>.
</p>
<p>Some users try to use <samp>-Wpedantic</samp> to check programs for strict ISO
C conformance. They soon find that it does not do quite what they want:
it finds some non-ISO practices, but not all—only those for which
ISO C <em>requires</em> a diagnostic, and some others for which
diagnostics have been added.
</p>
<p>A feature to report any failure to conform to ISO C might be useful in
some instances, but would require considerable additional work and would
be quite different from <samp>-Wpedantic</samp>. We don’t have plans to
support such a feature in the near future.
</p>
<p>Where the standard specified with <samp>-std</samp> represents a GNU
extended dialect of C, such as ‘<samp>gnu90</samp>’ or ‘<samp>gnu99</samp>’, there is a
corresponding <em>base standard</em>, the version of ISO C on which the GNU
extended dialect is based. Warnings from <samp>-Wpedantic</samp> are given
where they are required by the base standard. (It does not make sense
for such warnings to be given only for features not in the specified GNU
C dialect, since by definition the GNU dialects of C include all
features the compiler supports with the given option, and there would be
nothing to warn about.)
</p>
</dd>
<dt><code>-pedantic-errors</code></dt>
<dd><a name="index-pedantic_002derrors-1"></a>
<p>Give an error whenever the <em>base standard</em> (see <samp>-Wpedantic</samp>)
requires a diagnostic, in some cases where there is undefined behavior
at compile-time and in some other cases that do not prevent compilation
of programs that are valid according to the standard. This is not
equivalent to <samp>-Werror=pedantic</samp>, since there are errors enabled
by this option and not enabled by the latter and vice versa.
</p>
</dd>
<dt><code>-Wall</code></dt>
<dd><a name="index-Wall"></a>
<a name="index-Wno_002dall"></a>
<p>This enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify to
prevent the warning), even in conjunction with macros. This also
enables some language-specific warnings described in <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a> and <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>.
</p>
<p><samp>-Wall</samp> turns on the following warning flags:
</p>
<div class="smallexample">
<pre class="smallexample">-Waddress
-Warray-bounds=1 <span class="roman">(only with</span> <samp>-O2</samp><span class="roman">)</span>
-Wbool-compare
-Wbool-operation
-Wc++11-compat -Wc++14-compat
-Wcatch-value <span class="roman">(C++ and Objective-C++ only)</span>
-Wchar-subscripts
-Wcomment
-Wduplicate-decl-specifier <span class="roman">(C and Objective-C only)</span>
-Wenum-compare <span class="roman">(in C/ObjC; this is on by default in C++)</span>
-Wformat
-Wint-in-bool-context
-Wimplicit <span class="roman">(C and Objective-C only)</span>
-Wimplicit-int <span class="roman">(C and Objective-C only)</span>
-Wimplicit-function-declaration <span class="roman">(C and Objective-C only)</span>
-Winit-self <span class="roman">(only for C++)</span>
-Wlogical-not-parentheses
-Wmain <span class="roman">(only for C/ObjC and unless</span> <samp>-ffreestanding</samp><span class="roman">)</span>
-Wmaybe-uninitialized
-Wmemset-elt-size
-Wmemset-transposed-args
-Wmisleading-indentation <span class="roman">(only for C/C++)</span>
-Wmissing-attributes
-Wmissing-braces <span class="roman">(only for C/ObjC)</span>
-Wmultistatement-macros
-Wnarrowing <span class="roman">(only for C++)</span>
-Wnonnull
-Wnonnull-compare
-Wopenmp-simd
-Wparentheses
-Wpointer-sign
-Wreorder
-Wrestrict
-Wreturn-type
-Wsequence-point
-Wsign-compare <span class="roman">(only in C++)</span>
-Wsizeof-pointer-div
-Wsizeof-pointer-memaccess
-Wstrict-aliasing
-Wstrict-overflow=1
-Wswitch
-Wtautological-compare
-Wtrigraphs
-Wuninitialized
-Wunknown-pragmas
-Wunused-function
-Wunused-label
-Wunused-value
-Wunused-variable
-Wvolatile-register-var
</pre></div>
<p>Note that some warning flags are not implied by <samp>-Wall</samp>. Some of
them warn about constructions that users generally do not consider
questionable, but which occasionally you might wish to check for;
others warn about constructions that are necessary or hard to avoid in
some cases, and there is no simple way to modify the code to suppress
the warning. Some of them are enabled by <samp>-Wextra</samp> but many of
them must be enabled individually.
</p>
</dd>
<dt><code>-Wextra</code></dt>
<dd><a name="index-W"></a>
<a name="index-Wextra"></a>
<a name="index-Wno_002dextra"></a>
<p>This enables some extra warning flags that are not enabled by
<samp>-Wall</samp>. (This option used to be called <samp>-W</samp>. The older
name is still supported, but the newer name is more descriptive.)
</p>
<div class="smallexample">
<pre class="smallexample">-Wclobbered
-Wcast-function-type
-Wempty-body
-Wignored-qualifiers
-Wimplicit-fallthrough=3
-Wmissing-field-initializers
-Wmissing-parameter-type <span class="roman">(C only)</span>
-Wold-style-declaration <span class="roman">(C only)</span>
-Woverride-init
-Wsign-compare <span class="roman">(C only)</span>
-Wtype-limits
-Wuninitialized
-Wshift-negative-value <span class="roman">(in C++03 and in C99 and newer)</span>
-Wunused-parameter <span class="roman">(only with</span> <samp>-Wunused</samp> <span class="roman">or</span> <samp>-Wall</samp><span class="roman">)</span>
-Wunused-but-set-parameter <span class="roman">(only with</span> <samp>-Wunused</samp> <span class="roman">or</span> <samp>-Wall</samp><span class="roman">)</span>
</pre></div>
<p>The option <samp>-Wextra</samp> also prints warning messages for the
following cases:
</p>
<ul>
<li> A pointer is compared against integer zero with <code><</code>, <code><=</code>,
<code>></code>, or <code>>=</code>.
</li><li> (C++ only) An enumerator and a non-enumerator both appear in a
conditional expression.
</li><li> (C++ only) Ambiguous virtual bases.
</li><li> (C++ only) Subscripting an array that has been declared <code>register</code>.
</li><li> (C++ only) Taking the address of a variable that has been declared
<code>register</code>.
</li><li> (C++ only) A base class is not initialized in the copy constructor
of a derived class.
</li></ul>
</dd>
<dt><code>-Wchar-subscripts</code></dt>
<dd><a name="index-Wchar_002dsubscripts"></a>
<a name="index-Wno_002dchar_002dsubscripts"></a>
<p>Warn if an array subscript has type <code>char</code>. This is a common cause
of error, as programmers often forget that this type is signed on some
machines.
This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wchkp</code></dt>
<dd><a name="index-Wchkp"></a>
<p>Warn about an invalid memory access that is found by Pointer Bounds Checker
(<samp>-fcheck-pointer-bounds</samp>).
</p>
</dd>
<dt><code>-Wno-coverage-mismatch</code></dt>
<dd><a name="index-Wno_002dcoverage_002dmismatch"></a>
<p>Warn if feedback profiles do not match when using the
<samp>-fprofile-use</samp> option.
If a source file is changed between compiling with <samp>-fprofile-gen</samp> and
with <samp>-fprofile-use</samp>, the files with the profile feedback can fail
to match the source file and GCC cannot use the profile feedback
information. By default, this warning is enabled and is treated as an
error. <samp>-Wno-coverage-mismatch</samp> can be used to disable the
warning or <samp>-Wno-error=coverage-mismatch</samp> can be used to
disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the
case of very minor changes such as bug fixes to an existing code-base.
Completely disabling the warning is not recommended.
</p>
</dd>
<dt><code>-Wno-cpp</code></dt>
<dd><p><span class="roman">(C, Objective-C, C++, Objective-C++ and Fortran only)</span>
</p>
<p>Suppress warning messages emitted by <code>#warning</code> directives.
</p>
</dd>
<dt><code>-Wdouble-promotion <span class="roman">(C, C++, Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wdouble_002dpromotion"></a>
<a name="index-Wno_002ddouble_002dpromotion"></a>
<p>Give a warning when a value of type <code>float</code> is implicitly
promoted to <code>double</code>. CPUs with a 32-bit “single-precision”
floating-point unit implement <code>float</code> in hardware, but emulate
<code>double</code> in software. On such a machine, doing computations
using <code>double</code> values is much more expensive because of the
overhead required for software emulation.
</p>
<p>It is easy to accidentally do computations with <code>double</code> because
floating-point literals are implicitly of type <code>double</code>. For
example, in:
</p><div class="smallexample">
<pre class="smallexample">float area(float radius)
{
return 3.14159 * radius * radius;
}
</pre></div>
<p>the compiler performs the entire computation with <code>double</code>
because the floating-point literal is a <code>double</code>.
</p>
</dd>
<dt><code>-Wduplicate-decl-specifier <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wduplicate_002ddecl_002dspecifier"></a>
<a name="index-Wno_002dduplicate_002ddecl_002dspecifier"></a>
<p>Warn if a declaration has duplicate <code>const</code>, <code>volatile</code>,
<code>restrict</code> or <code>_Atomic</code> specifier. This warning is enabled by
<samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wformat</code></dt>
<dt><code>-Wformat=<var>n</var></code></dt>
<dd><a name="index-Wformat"></a>
<a name="index-Wno_002dformat"></a>
<a name="index-ffreestanding-2"></a>
<a name="index-fno_002dbuiltin-1"></a>
<a name="index-Wformat_003d"></a>
<p>Check calls to <code>printf</code> and <code>scanf</code>, etc., to make sure that
the arguments supplied have types appropriate to the format string
specified, and that the conversions specified in the format string make
sense. This includes standard functions, and others specified by format
attributes (see <a href="#Function-Attributes">Function Attributes</a>), in the <code>printf</code>,
<code>scanf</code>, <code>strftime</code> and <code>strfmon</code> (an X/Open extension,
not in the C standard) families (or other target-specific families).
Which functions are checked without format attributes having been
specified depends on the standard version selected, and such checks of
functions without the attribute specified are disabled by
<samp>-ffreestanding</samp> or <samp>-fno-builtin</samp>.
</p>
<p>The formats are checked against the format features supported by GNU
libc version 2.2. These include all ISO C90 and C99 features, as well
as features from the Single Unix Specification and some BSD and GNU
extensions. Other library implementations may not support all these
features; GCC does not support warning about features that go beyond a
particular library’s limitations. However, if <samp>-Wpedantic</samp> is used
with <samp>-Wformat</samp>, warnings are given about format features not
in the selected standard version (but not for <code>strfmon</code> formats,
since those are not in any version of the C standard). See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
</p>
<dl compact="compact">
<dt><code>-Wformat=1</code></dt>
<dt><code>-Wformat</code></dt>
<dd><a name="index-Wformat-1"></a>
<a name="index-Wformat_003d1"></a>
<p>Option <samp>-Wformat</samp> is equivalent to <samp>-Wformat=1</samp>, and
<samp>-Wno-format</samp> is equivalent to <samp>-Wformat=0</samp>. Since
<samp>-Wformat</samp> also checks for null format arguments for several
functions, <samp>-Wformat</samp> also implies <samp>-Wnonnull</samp>. Some
aspects of this level of format checking can be disabled by the
options: <samp>-Wno-format-contains-nul</samp>,
<samp>-Wno-format-extra-args</samp>, and <samp>-Wno-format-zero-length</samp>.
<samp>-Wformat</samp> is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wno-format-contains-nul</code></dt>
<dd><a name="index-Wno_002dformat_002dcontains_002dnul"></a>
<a name="index-Wformat_002dcontains_002dnul"></a>
<p>If <samp>-Wformat</samp> is specified, do not warn about format strings that
contain NUL bytes.
</p>
</dd>
<dt><code>-Wno-format-extra-args</code></dt>
<dd><a name="index-Wno_002dformat_002dextra_002dargs"></a>
<a name="index-Wformat_002dextra_002dargs"></a>
<p>If <samp>-Wformat</samp> is specified, do not warn about excess arguments to a
<code>printf</code> or <code>scanf</code> format function. The C standard specifies
that such arguments are ignored.
</p>
<p>Where the unused arguments lie between used arguments that are
specified with ‘<samp>$</samp>’ operand number specifications, normally
warnings are still given, since the implementation could not know what
type to pass to <code>va_arg</code> to skip the unused arguments. However,
in the case of <code>scanf</code> formats, this option suppresses the
warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.
</p>
</dd>
<dt><code>-Wformat-overflow</code></dt>
<dt><code>-Wformat-overflow=<var>level</var></code></dt>
<dd><a name="index-Wformat_002doverflow"></a>
<a name="index-Wno_002dformat_002doverflow"></a>
<p>Warn about calls to formatted input/output functions such as <code>sprintf</code>
and <code>vsprintf</code> that might overflow the destination buffer. When the
exact number of bytes written by a format directive cannot be determined
at compile-time it is estimated based on heuristics that depend on the
<var>level</var> argument and on optimization. While enabling optimization
will in most cases improve the accuracy of the warning, it may also
result in false positives.
</p>
<dl compact="compact">
<dt><code>-Wformat-overflow</code></dt>
<dt><code>-Wformat-overflow=1</code></dt>
<dd><a name="index-Wformat_002doverflow-1"></a>
<a name="index-Wno_002dformat_002doverflow-1"></a>
<p>Level <var>1</var> of <samp>-Wformat-overflow</samp> enabled by <samp>-Wformat</samp>
employs a conservative approach that warns only about calls that most
likely overflow the buffer. At this level, numeric arguments to format
directives with unknown values are assumed to have the value of one, and
strings of unknown length to be empty. Numeric arguments that are known
to be bounded to a subrange of their type, or string arguments whose output
is bounded either by their directive’s precision or by a finite set of
string literals, are assumed to take on the value within the range that
results in the most bytes on output. For example, the call to <code>sprintf</code>
below is diagnosed because even with both <var>a</var> and <var>b</var> equal to zero,
the terminating NUL character (<code>'\0'</code>) appended by the function
to the destination buffer will be written past its end. Increasing
the size of the buffer by a single byte is sufficient to avoid the
warning, though it may not be sufficient to avoid the overflow.
</p>
<div class="smallexample">
<pre class="smallexample">void f (int a, int b)
{
char buf [13];
sprintf (buf, "a = %i, b = %i\n", a, b);
}
</pre></div>
</dd>
<dt><code>-Wformat-overflow=2</code></dt>
<dd><p>Level <var>2</var> warns also about calls that might overflow the destination
buffer given an argument of sufficient length or magnitude. At level
<var>2</var>, unknown numeric arguments are assumed to have the minimum
representable value for signed types with a precision greater than 1, and
the maximum representable value otherwise. Unknown string arguments whose
length cannot be assumed to be bounded either by the directive’s precision,
or by a finite set of string literals they may evaluate to, or the character
array they may point to, are assumed to be 1 character long.
</p>
<p>At level <var>2</var>, the call in the example above is again diagnosed, but
this time because with <var>a</var> equal to a 32-bit <code>INT_MIN</code> the first
<code>%i</code> directive will write some of its digits beyond the end of
the destination buffer. To make the call safe regardless of the values
of the two variables, the size of the destination buffer must be increased
to at least 34 bytes. GCC includes the minimum size of the buffer in
an informational note following the warning.
</p>
<p>An alternative to increasing the size of the destination buffer is to
constrain the range of formatted values. The maximum length of string
arguments can be bounded by specifying the precision in the format
directive. When numeric arguments of format directives can be assumed
to be bounded by less than the precision of their type, choosing
an appropriate length modifier to the format specifier will reduce
the required buffer size. For example, if <var>a</var> and <var>b</var> in the
example above can be assumed to be within the precision of
the <code>short int</code> type then using either the <code>%hi</code> format
directive or casting the argument to <code>short</code> reduces the maximum
required size of the buffer to 24 bytes.
</p>
<div class="smallexample">
<pre class="smallexample">void f (int a, int b)
{
char buf [23];
sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
}
</pre></div>
</dd>
</dl>
</dd>
<dt><code>-Wno-format-zero-length</code></dt>
<dd><a name="index-Wno_002dformat_002dzero_002dlength"></a>
<a name="index-Wformat_002dzero_002dlength"></a>
<p>If <samp>-Wformat</samp> is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.
</p>
</dd>
<dt><code>-Wformat=2</code></dt>
<dd><a name="index-Wformat_003d2"></a>
<p>Enable <samp>-Wformat</samp> plus additional format checks. Currently
equivalent to <samp>-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k</samp>.
</p>
</dd>
<dt><code>-Wformat-nonliteral</code></dt>
<dd><a name="index-Wformat_002dnonliteral"></a>
<a name="index-Wno_002dformat_002dnonliteral"></a>
<p>If <samp>-Wformat</samp> is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a <code>va_list</code>.
</p>
</dd>
<dt><code>-Wformat-security</code></dt>
<dd><a name="index-Wformat_002dsecurity"></a>
<a name="index-Wno_002dformat_002dsecurity"></a>
<p>If <samp>-Wformat</samp> is specified, also warn about uses of format
functions that represent possible security problems. At present, this
warns about calls to <code>printf</code> and <code>scanf</code> functions where the
format string is not a string literal and there are no format arguments,
as in <code>printf (foo);</code>. This may be a security hole if the format
string came from untrusted input and contains ‘<samp>%n</samp>’. (This is
currently a subset of what <samp>-Wformat-nonliteral</samp> warns about, but
in future warnings may be added to <samp>-Wformat-security</samp> that are not
included in <samp>-Wformat-nonliteral</samp>.)
</p>
</dd>
<dt><code>-Wformat-signedness</code></dt>
<dd><a name="index-Wformat_002dsignedness"></a>
<a name="index-Wno_002dformat_002dsignedness"></a>
<p>If <samp>-Wformat</samp> is specified, also warn if the format string
requires an unsigned argument and the argument is signed and vice versa.
</p>
</dd>
<dt><code>-Wformat-truncation</code></dt>
<dt><code>-Wformat-truncation=<var>level</var></code></dt>
<dd><a name="index-Wformat_002dtruncation"></a>
<a name="index-Wno_002dformat_002dtruncation"></a>
<p>Warn about calls to formatted input/output functions such as <code>snprintf</code>
and <code>vsnprintf</code> that might result in output truncation. When the exact
number of bytes written by a format directive cannot be determined at
compile-time it is estimated based on heuristics that depend on
the <var>level</var> argument and on optimization. While enabling optimization
will in most cases improve the accuracy of the warning, it may also result
in false positives. Except as noted otherwise, the option uses the same
logic <samp>-Wformat-overflow</samp>.
</p>
<dl compact="compact">
<dt><code>-Wformat-truncation</code></dt>
<dt><code>-Wformat-truncation=1</code></dt>
<dd><a name="index-Wformat_002dtruncation-1"></a>
<a name="index-Wno_002dformat_002doverflow-2"></a>
<p>Level <var>1</var> of <samp>-Wformat-truncation</samp> enabled by <samp>-Wformat</samp>
employs a conservative approach that warns only about calls to bounded
functions whose return value is unused and that will most likely result
in output truncation.
</p>
</dd>
<dt><code>-Wformat-truncation=2</code></dt>
<dd><p>Level <var>2</var> warns also about calls to bounded functions whose return
value is used and that might result in truncation given an argument of
sufficient length or magnitude.
</p></dd>
</dl>
<p>NOTE: In Ubuntu 8.10 and later versions this option is enabled by default
for C, C++, ObjC, ObjC++. To disable, use <samp>-Wno-format-security</samp>,
or disable all format warnings with <samp>-Wformat=0</samp>. To make format
security warnings fatal, specify <samp>-Werror=format-security</samp>.
</p>
</dd>
<dt><code>-Wformat-y2k</code></dt>
<dd><a name="index-Wformat_002dy2k"></a>
<a name="index-Wno_002dformat_002dy2k"></a>
<p>If <samp>-Wformat</samp> is specified, also warn about <code>strftime</code>
formats that may yield only a two-digit year.
</p></dd>
</dl>
</dd>
<dt><code>-Wnonnull</code></dt>
<dd><a name="index-Wnonnull"></a>
<a name="index-Wno_002dnonnull"></a>
<p>Warn about passing a null pointer for arguments marked as
requiring a non-null value by the <code>nonnull</code> function attribute.
</p>
<p><samp>-Wnonnull</samp> is included in <samp>-Wall</samp> and <samp>-Wformat</samp>. It
can be disabled with the <samp>-Wno-nonnull</samp> option.
</p>
</dd>
<dt><code>-Wnonnull-compare</code></dt>
<dd><a name="index-Wnonnull_002dcompare"></a>
<a name="index-Wno_002dnonnull_002dcompare"></a>
<p>Warn when comparing an argument marked with the <code>nonnull</code>
function attribute against null inside the function.
</p>
<p><samp>-Wnonnull-compare</samp> is included in <samp>-Wall</samp>. It
can be disabled with the <samp>-Wno-nonnull-compare</samp> option.
</p>
</dd>
<dt><code>-Wnull-dereference</code></dt>
<dd><a name="index-Wnull_002ddereference"></a>
<a name="index-Wno_002dnull_002ddereference"></a>
<p>Warn if the compiler detects paths that trigger erroneous or
undefined behavior due to dereferencing a null pointer. This option
is only active when <samp>-fdelete-null-pointer-checks</samp> is active,
which is enabled by optimizations in most targets. The precision of
the warnings depends on the optimization options used.
</p>
</dd>
<dt><code>-Winit-self <span class="roman">(C, C++, Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Winit_002dself"></a>
<a name="index-Wno_002dinit_002dself"></a>
<p>Warn about uninitialized variables that are initialized with themselves.
Note this option can only be used with the <samp>-Wuninitialized</samp> option.
</p>
<p>For example, GCC warns about <code>i</code> being uninitialized in the
following snippet only when <samp>-Winit-self</samp> has been specified:
</p><div class="smallexample">
<pre class="smallexample">int f()
{
int i = i;
return i;
}
</pre></div>
<p>This warning is enabled by <samp>-Wall</samp> in C++.
</p>
</dd>
<dt><code>-Wimplicit-int <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wimplicit_002dint"></a>
<a name="index-Wno_002dimplicit_002dint"></a>
<p>Warn when a declaration does not specify a type.
This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wimplicit-function-declaration <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wimplicit_002dfunction_002ddeclaration"></a>
<a name="index-Wno_002dimplicit_002dfunction_002ddeclaration"></a>
<p>Give a warning whenever a function is used before being declared. In
C99 mode (<samp>-std=c99</samp> or <samp>-std=gnu99</samp>), this warning is
enabled by default and it is made into an error by
<samp>-pedantic-errors</samp>. This warning is also enabled by
<samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wimplicit <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wimplicit"></a>
<a name="index-Wno_002dimplicit"></a>
<p>Same as <samp>-Wimplicit-int</samp> and <samp>-Wimplicit-function-declaration</samp>.
This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wimplicit-fallthrough</code></dt>
<dd><a name="index-Wimplicit_002dfallthrough"></a>
<a name="index-Wno_002dimplicit_002dfallthrough"></a>
<p><samp>-Wimplicit-fallthrough</samp> is the same as <samp>-Wimplicit-fallthrough=3</samp>
and <samp>-Wno-implicit-fallthrough</samp> is the same as
<samp>-Wimplicit-fallthrough=0</samp>.
</p>
</dd>
<dt><code>-Wimplicit-fallthrough=<var>n</var></code></dt>
<dd><a name="index-Wimplicit_002dfallthrough_003d"></a>
<p>Warn when a switch case falls through. For example:
</p>
<div class="smallexample">
<pre class="smallexample">switch (cond)
{
case 1:
a = 1;
break;
case 2:
a = 2;
case 3:
a = 3;
break;
}
</pre></div>
<p>This warning does not warn when the last statement of a case cannot
fall through, e.g. when there is a return statement or a call to function
declared with the noreturn attribute. <samp>-Wimplicit-fallthrough=</samp>
also takes into account control flow statements, such as ifs, and only
warns when appropriate. E.g.
</p>
<div class="smallexample">
<pre class="smallexample">switch (cond)
{
case 1:
if (i > 3) {
bar (5);
break;
} else if (i < 1) {
bar (0);
} else
return;
default:
…
}
</pre></div>
<p>Since there are occasions where a switch case fall through is desirable,
GCC provides an attribute, <code>__attribute__ ((fallthrough))</code>, that is
to be used along with a null statement to suppress this warning that
would normally occur:
</p>
<div class="smallexample">
<pre class="smallexample">switch (cond)
{
case 1:
bar (0);
__attribute__ ((fallthrough));
default:
…
}
</pre></div>
<p>C++17 provides a standard way to suppress the <samp>-Wimplicit-fallthrough</samp>
warning using <code>[[fallthrough]];</code> instead of the GNU attribute. In C++11
or C++14 users can use <code>[[gnu::fallthrough]];</code>, which is a GNU extension.
Instead of these attributes, it is also possible to add a fallthrough comment
to silence the warning. The whole body of the C or C++ style comment should
match the given regular expressions listed below. The option argument <var>n</var>
specifies what kind of comments are accepted:
</p>
<ul>
<li> <samp>-Wimplicit-fallthrough=0</samp> disables the warning altogether.
</li><li> <samp>-Wimplicit-fallthrough=1</samp> matches <code>.*</code> regular
expression, any comment is used as fallthrough comment.
</li><li> <samp>-Wimplicit-fallthrough=2</samp> case insensitively matches
<code>.*falls?[ \t-]*thr(ough|u).*</code> regular expression.
</li><li> <samp>-Wimplicit-fallthrough=3</samp> case sensitively matches one of the
following regular expressions:
<ul>
<li> <code>-fallthrough</code>
</li><li> <code>@fallthrough@</code>
</li><li> <code>lint -fallthrough[ \t]*</code>
</li><li> <code>[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?<br>FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?</code>
</li><li> <code>[ \t.!]*(Else,? |Intentional(ly)? )?<br>Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?</code>
</li><li> <code>[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?<br>fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?</code>
</li></ul>
</li><li> <samp>-Wimplicit-fallthrough=4</samp> case sensitively matches one of the
following regular expressions:
<ul>
<li> <code>-fallthrough</code>
</li><li> <code>@fallthrough@</code>
</li><li> <code>lint -fallthrough[ \t]*</code>
</li><li> <code>[ \t]*FALLTHR(OUGH|U)[ \t]*</code>
</li></ul>
</li><li> <samp>-Wimplicit-fallthrough=5</samp> doesn’t recognize any comments as
fallthrough comments, only attributes disable the warning.
</li></ul>
<p>The comment needs to be followed after optional whitespace and other comments
by <code>case</code> or <code>default</code> keywords or by a user label that precedes some
<code>case</code> or <code>default</code> label.
</p>
<div class="smallexample">
<pre class="smallexample">switch (cond)
{
case 1:
bar (0);
/* FALLTHRU */
default:
…
}
</pre></div>
<p>The <samp>-Wimplicit-fallthrough=3</samp> warning is enabled by <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wif-not-aligned <span class="roman">(C, C++, Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wif_002dnot_002daligned"></a>
<a name="index-Wno_002dif_002dnot_002daligned"></a>
<p>Control if warning triggered by the <code>warn_if_not_aligned</code> attribute
should be issued. This is is enabled by default.
Use <samp>-Wno-if-not-aligned</samp> to disable it.
</p>
</dd>
<dt><code>-Wignored-qualifiers <span class="roman">(C and C++ only)</span></code></dt>
<dd><a name="index-Wignored_002dqualifiers"></a>
<a name="index-Wno_002dignored_002dqualifiers"></a>
<p>Warn if the return type of a function has a type qualifier
such as <code>const</code>. For ISO C such a type qualifier has no effect,
since the value returned by a function is not an lvalue.
For C++, the warning is only emitted for scalar types or <code>void</code>.
ISO C prohibits qualified <code>void</code> return types on function
definitions, so such return types always receive a warning
even without this option.
</p>
<p>This warning is also enabled by <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wignored-attributes <span class="roman">(C and C++ only)</span></code></dt>
<dd><a name="index-Wignored_002dattributes"></a>
<a name="index-Wno_002dignored_002dattributes"></a>
<p>Warn when an attribute is ignored. This is different from the
<samp>-Wattributes</samp> option in that it warns whenever the compiler decides
to drop an attribute, not that the attribute is either unknown, used in a
wrong place, etc. This warning is enabled by default.
</p>
</dd>
<dt><code>-Wmain</code></dt>
<dd><a name="index-Wmain"></a>
<a name="index-Wno_002dmain"></a>
<p>Warn if the type of <code>main</code> is suspicious. <code>main</code> should be
a function with external linkage, returning int, taking either zero
arguments, two, or three arguments of appropriate types. This warning
is enabled by default in C++ and is enabled by either <samp>-Wall</samp>
or <samp>-Wpedantic</samp>.
</p>
</dd>
<dt><code>-Wmisleading-indentation <span class="roman">(C and C++ only)</span></code></dt>
<dd><a name="index-Wmisleading_002dindentation"></a>
<a name="index-Wno_002dmisleading_002dindentation"></a>
<p>Warn when the indentation of the code does not reflect the block structure.
Specifically, a warning is issued for <code>if</code>, <code>else</code>, <code>while</code>, and
<code>for</code> clauses with a guarded statement that does not use braces,
followed by an unguarded statement with the same indentation.
</p>
<p>In the following example, the call to “bar” is misleadingly indented as
if it were guarded by the “if” conditional.
</p>
<div class="smallexample">
<pre class="smallexample"> if (some_condition ())
foo ();
bar (); /* Gotcha: this is not guarded by the "if". */
</pre></div>
<p>In the case of mixed tabs and spaces, the warning uses the
<samp>-ftabstop=</samp> option to determine if the statements line up
(defaulting to 8).
</p>
<p>The warning is not issued for code involving multiline preprocessor logic
such as the following example.
</p>
<div class="smallexample">
<pre class="smallexample"> if (flagA)
foo (0);
#if SOME_CONDITION_THAT_DOES_NOT_HOLD
if (flagB)
#endif
foo (1);
</pre></div>
<p>The warning is not issued after a <code>#line</code> directive, since this
typically indicates autogenerated code, and no assumptions can be made
about the layout of the file that the directive references.
</p>
<p>This warning is enabled by <samp>-Wall</samp> in C and C++.
</p>
</dd>
<dt><code>-Wmissing-attributes</code></dt>
<dd><a name="index-Wmissing_002dattributes"></a>
<a name="index-Wno_002dmissing_002dattributes"></a>
<p>Warn when a declaration of a function is missing one or more attributes
that a related function is declared with and whose absence may adversely
affect the correctness or efficiency of generated code. For example, in
C++, the warning is issued when an explicit specialization of a primary
template declared with attribute <code>alloc_align</code>, <code>alloc_size</code>,
<code>assume_aligned</code>, <code>format</code>, <code>format_arg</code>, <code>malloc</code>,
or <code>nonnull</code> is declared without it. Attributes <code>deprecated</code>,
<code>error</code>, and <code>warning</code> suppress the warning.
(see <a href="#Function-Attributes">Function Attributes</a>).
</p>
<p><samp>-Wmissing-attributes</samp> is enabled by <samp>-Wall</samp>.
</p>
<p>For example, since the declaration of the primary function template
below makes use of both attribute <code>malloc</code> and <code>alloc_size</code>
the declaration of the explicit specialization of the template is
diagnosed because it is missing one of the attributes.
</p>
<div class="smallexample">
<pre class="smallexample">template <class T>
T* __attribute__ ((malloc, alloc_size (1)))
allocate (size_t);
template <>
void* __attribute__ ((malloc)) // missing alloc_size
allocate<void> (size_t);
</pre></div>
</dd>
<dt><code>-Wmissing-braces</code></dt>
<dd><a name="index-Wmissing_002dbraces"></a>
<a name="index-Wno_002dmissing_002dbraces"></a>
<p>Warn if an aggregate or union initializer is not fully bracketed. In
the following example, the initializer for <code>a</code> is not fully
bracketed, but that for <code>b</code> is fully bracketed. This warning is
enabled by <samp>-Wall</samp> in C.
</p>
<div class="smallexample">
<pre class="smallexample">int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };
</pre></div>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wmissing-include-dirs <span class="roman">(C, C++, Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wmissing_002dinclude_002ddirs"></a>
<a name="index-Wno_002dmissing_002dinclude_002ddirs"></a>
<p>Warn if a user-supplied include directory does not exist.
</p>
</dd>
<dt><code>-Wmultistatement-macros</code></dt>
<dd><a name="index-Wmultistatement_002dmacros"></a>
<a name="index-Wno_002dmultistatement_002dmacros"></a>
<p>Warn about unsafe multiple statement macros that appear to be guarded
by a clause such as <code>if</code>, <code>else</code>, <code>for</code>, <code>switch</code>, or
<code>while</code>, in which only the first statement is actually guarded after
the macro is expanded.
</p>
<p>For example:
</p>
<div class="smallexample">
<pre class="smallexample">#define DOIT x++; y++
if (c)
DOIT;
</pre></div>
<p>will increment <code>y</code> unconditionally, not just when <code>c</code> holds.
The can usually be fixed by wrapping the macro in a do-while loop:
</p><div class="smallexample">
<pre class="smallexample">#define DOIT do { x++; y++; } while (0)
if (c)
DOIT;
</pre></div>
<p>This warning is enabled by <samp>-Wall</samp> in C and C++.
</p>
</dd>
<dt><code>-Wparentheses</code></dt>
<dd><a name="index-Wparentheses"></a>
<a name="index-Wno_002dparentheses"></a>
<p>Warn if parentheses are omitted in certain contexts, such
as when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence people
often get confused about.
</p>
<p>Also warn if a comparison like <code>x<=y<=z</code> appears; this is
equivalent to <code>(x<=y ? 1 : 0) <= z</code>, which is a different
interpretation from that of ordinary mathematical notation.
</p>
<p>Also warn for dangerous uses of the GNU extension to
<code>?:</code> with omitted middle operand. When the condition
in the <code>?</code>: operator is a boolean expression, the omitted value is
always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.
</p>
<p>For C++ this also warns for some cases of unnecessary parentheses in
declarations, which can indicate an attempt at a function call instead
of a declaration:
</p><div class="smallexample">
<pre class="smallexample">{
// Declares a local variable called mymutex.
std::unique_lock<std::mutex> (mymutex);
// User meant std::unique_lock<std::mutex> lock (mymutex);
}
</pre></div>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wsequence-point</code></dt>
<dd><a name="index-Wsequence_002dpoint"></a>
<a name="index-Wno_002dsequence_002dpoint"></a>
<p>Warn about code that may have undefined semantics because of violations
of sequence point rules in the C and C++ standards.
</p>
<p>The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of <em>sequence points</em>, which represent
a partial ordering between the execution of parts of the program: those
executed before the sequence point, and those executed after it. These
occur after the evaluation of a full expression (one which is not part
of a larger expression), after the evaluation of the first operand of a
<code>&&</code>, <code>||</code>, <code>? :</code> or <code>,</code> (comma) operator, before a
function is called (but after the evaluation of its arguments and the
expression denoting the called function), and in certain other places.
Other than as expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not specified. All
these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression
with no sequence point between them, the order in which the functions
are called is not specified. However, the standards committee have
ruled that function calls do not overlap.
</p>
<p>It is not specified when between sequence points modifications to the
values of objects take effect. Programs whose behavior depends on this
have undefined behavior; the C and C++ standards specify that “Between
the previous and next sequence point an object shall have its stored
value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value
to be stored.”. If a program breaks these rules, the results on any
particular implementation are entirely unpredictable.
</p>
<p>Examples of code with undefined behavior are <code>a = a++;</code>, <code>a[n]
= b[n++]</code> and <code>a[i++] = i;</code>. Some more complicated cases are not
diagnosed by this option, and it may give an occasional false positive
result, but in general it has been found fairly effective at detecting
this sort of problem in programs.
</p>
<p>The C++17 standard will define the order of evaluation of operands in
more cases: in particular it requires that the right-hand side of an
assignment be evaluated before the left-hand side, so the above
examples are no longer undefined. But this warning will still warn
about them, to help people avoid writing code that is undefined in C
and earlier revisions of C++.
</p>
<p>The standard is worded confusingly, therefore there is some debate
over the precise meaning of the sequence point rules in subtle cases.
Links to discussions of the problem, including proposed formal
definitions, may be found on the GCC readings page, at
<a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>.
</p>
<p>This warning is enabled by <samp>-Wall</samp> for C and C++.
</p>
</dd>
<dt><code>-Wno-return-local-addr</code></dt>
<dd><a name="index-Wno_002dreturn_002dlocal_002daddr"></a>
<a name="index-Wreturn_002dlocal_002daddr"></a>
<p>Do not warn about returning a pointer (or in C++, a reference) to a
variable that goes out of scope after the function returns.
</p>
</dd>
<dt><code>-Wreturn-type</code></dt>
<dd><a name="index-Wreturn_002dtype"></a>
<a name="index-Wno_002dreturn_002dtype"></a>
<p>Warn whenever a function is defined with a return type that defaults
to <code>int</code>. Also warn about any <code>return</code> statement with no
return value in a function whose return type is not <code>void</code>
(falling off the end of the function body is considered returning
without a value).
</p>
<p>For C only, warn about a <code>return</code> statement with an expression in a
function whose return type is <code>void</code>, unless the expression type is
also <code>void</code>. As a GNU extension, the latter case is accepted
without a warning unless <samp>-Wpedantic</samp> is used.
</p>
<p>For C++, a function without return type always produces a diagnostic
message, even when <samp>-Wno-return-type</samp> is specified. The only
exceptions are <code>main</code> and functions defined in system headers.
</p>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wshift-count-negative</code></dt>
<dd><a name="index-Wshift_002dcount_002dnegative"></a>
<a name="index-Wno_002dshift_002dcount_002dnegative"></a>
<p>Warn if shift count is negative. This warning is enabled by default.
</p>
</dd>
<dt><code>-Wshift-count-overflow</code></dt>
<dd><a name="index-Wshift_002dcount_002doverflow"></a>
<a name="index-Wno_002dshift_002dcount_002doverflow"></a>
<p>Warn if shift count >= width of type. This warning is enabled by default.
</p>
</dd>
<dt><code>-Wshift-negative-value</code></dt>
<dd><a name="index-Wshift_002dnegative_002dvalue"></a>
<a name="index-Wno_002dshift_002dnegative_002dvalue"></a>
<p>Warn if left shifting a negative value. This warning is enabled by
<samp>-Wextra</samp> in C99 and C++11 modes (and newer).
</p>
</dd>
<dt><code>-Wshift-overflow</code></dt>
<dt><code>-Wshift-overflow=<var>n</var></code></dt>
<dd><a name="index-Wshift_002doverflow"></a>
<a name="index-Wno_002dshift_002doverflow"></a>
<p>Warn about left shift overflows. This warning is enabled by
default in C99 and C++11 modes (and newer).
</p>
<dl compact="compact">
<dt><code>-Wshift-overflow=1</code></dt>
<dd><p>This is the warning level of <samp>-Wshift-overflow</samp> and is enabled
by default in C99 and C++11 modes (and newer). This warning level does
not warn about left-shifting 1 into the sign bit. (However, in C, such
an overflow is still rejected in contexts where an integer constant expression
is required.)
</p>
</dd>
<dt><code>-Wshift-overflow=2</code></dt>
<dd><p>This warning level also warns about left-shifting 1 into the sign bit,
unless C++14 mode is active.
</p></dd>
</dl>
</dd>
<dt><code>-Wswitch</code></dt>
<dd><a name="index-Wswitch"></a>
<a name="index-Wno_002dswitch"></a>
<p>Warn whenever a <code>switch</code> statement has an index of enumerated type
and lacks a <code>case</code> for one or more of the named codes of that
enumeration. (The presence of a <code>default</code> label prevents this
warning.) <code>case</code> labels outside the enumeration range also
provoke warnings when this option is used (even if there is a
<code>default</code> label).
This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wswitch-default</code></dt>
<dd><a name="index-Wswitch_002ddefault"></a>
<a name="index-Wno_002dswitch_002ddefault"></a>
<p>Warn whenever a <code>switch</code> statement does not have a <code>default</code>
case.
</p>
</dd>
<dt><code>-Wswitch-enum</code></dt>
<dd><a name="index-Wswitch_002denum"></a>
<a name="index-Wno_002dswitch_002denum"></a>
<p>Warn whenever a <code>switch</code> statement has an index of enumerated type
and lacks a <code>case</code> for one or more of the named codes of that
enumeration. <code>case</code> labels outside the enumeration range also
provoke warnings when this option is used. The only difference
between <samp>-Wswitch</samp> and this option is that this option gives a
warning about an omitted enumeration code even if there is a
<code>default</code> label.
</p>
</dd>
<dt><code>-Wswitch-bool</code></dt>
<dd><a name="index-Wswitch_002dbool"></a>
<a name="index-Wno_002dswitch_002dbool"></a>
<p>Warn whenever a <code>switch</code> statement has an index of boolean type
and the case values are outside the range of a boolean type.
It is possible to suppress this warning by casting the controlling
expression to a type other than <code>bool</code>. For example:
</p><div class="smallexample">
<pre class="smallexample">switch ((int) (a == 4))
{
…
}
</pre></div>
<p>This warning is enabled by default for C and C++ programs.
</p>
</dd>
<dt><code>-Wswitch-unreachable</code></dt>
<dd><a name="index-Wswitch_002dunreachable"></a>
<a name="index-Wno_002dswitch_002dunreachable"></a>
<p>Warn whenever a <code>switch</code> statement contains statements between the
controlling expression and the first case label, which will never be
executed. For example:
</p><div class="smallexample">
<pre class="smallexample">switch (cond)
{
i = 15;
…
case 5:
…
}
</pre></div>
<p><samp>-Wswitch-unreachable</samp> does not warn if the statement between the
controlling expression and the first case label is just a declaration:
</p><div class="smallexample">
<pre class="smallexample">switch (cond)
{
int i;
…
case 5:
i = 5;
…
}
</pre></div>
<p>This warning is enabled by default for C and C++ programs.
</p>
</dd>
<dt><code>-Wsync-nand <span class="roman">(C and C++ only)</span></code></dt>
<dd><a name="index-Wsync_002dnand"></a>
<a name="index-Wno_002dsync_002dnand"></a>
<p>Warn when <code>__sync_fetch_and_nand</code> and <code>__sync_nand_and_fetch</code>
built-in functions are used. These functions changed semantics in GCC 4.4.
</p>
</dd>
<dt><code>-Wunused-but-set-parameter</code></dt>
<dd><a name="index-Wunused_002dbut_002dset_002dparameter"></a>
<a name="index-Wno_002dunused_002dbut_002dset_002dparameter"></a>
<p>Warn whenever a function parameter is assigned to, but otherwise unused
(aside from its declaration).
</p>
<p>To suppress this warning use the <code>unused</code> attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
</p>
<p>This warning is also enabled by <samp>-Wunused</samp> together with
<samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wunused-but-set-variable</code></dt>
<dd><a name="index-Wunused_002dbut_002dset_002dvariable"></a>
<a name="index-Wno_002dunused_002dbut_002dset_002dvariable"></a>
<p>Warn whenever a local variable is assigned to, but otherwise unused
(aside from its declaration).
This warning is enabled by <samp>-Wall</samp>.
</p>
<p>To suppress this warning use the <code>unused</code> attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
</p>
<p>This warning is also enabled by <samp>-Wunused</samp>, which is enabled
by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wunused-function</code></dt>
<dd><a name="index-Wunused_002dfunction"></a>
<a name="index-Wno_002dunused_002dfunction"></a>
<p>Warn whenever a static function is declared but not defined or a
non-inline static function is unused.
This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wunused-label</code></dt>
<dd><a name="index-Wunused_002dlabel"></a>
<a name="index-Wno_002dunused_002dlabel"></a>
<p>Warn whenever a label is declared but not used.
This warning is enabled by <samp>-Wall</samp>.
</p>
<p>To suppress this warning use the <code>unused</code> attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
</p>
</dd>
<dt><code>-Wunused-local-typedefs <span class="roman">(C, Objective-C, C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wunused_002dlocal_002dtypedefs"></a>
<p>Warn when a typedef locally defined in a function is not used.
This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wunused-parameter</code></dt>
<dd><a name="index-Wunused_002dparameter"></a>
<a name="index-Wno_002dunused_002dparameter"></a>
<p>Warn whenever a function parameter is unused aside from its declaration.
</p>
<p>To suppress this warning use the <code>unused</code> attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
</p>
</dd>
<dt><code>-Wno-unused-result</code></dt>
<dd><a name="index-Wunused_002dresult"></a>
<a name="index-Wno_002dunused_002dresult"></a>
<p>Do not warn if a caller of a function marked with attribute
<code>warn_unused_result</code> (see <a href="#Function-Attributes">Function Attributes</a>) does not use
its return value. The default is <samp>-Wunused-result</samp>.
</p>
</dd>
<dt><code>-Wunused-variable</code></dt>
<dd><a name="index-Wunused_002dvariable"></a>
<a name="index-Wno_002dunused_002dvariable"></a>
<p>Warn whenever a local or static variable is unused aside from its
declaration. This option implies <samp>-Wunused-const-variable=1</samp> for C,
but not for C++. This warning is enabled by <samp>-Wall</samp>.
</p>
<p>To suppress this warning use the <code>unused</code> attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
</p>
</dd>
<dt><code>-Wunused-const-variable</code></dt>
<dt><code>-Wunused-const-variable=<var>n</var></code></dt>
<dd><a name="index-Wunused_002dconst_002dvariable"></a>
<a name="index-Wno_002dunused_002dconst_002dvariable"></a>
<p>Warn whenever a constant static variable is unused aside from its declaration.
<samp>-Wunused-const-variable=1</samp> is enabled by <samp>-Wunused-variable</samp>
for C, but not for C++. In C this declares variable storage, but in C++ this
is not an error since const variables take the place of <code>#define</code>s.
</p>
<p>To suppress this warning use the <code>unused</code> attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
</p>
<dl compact="compact">
<dt><code>-Wunused-const-variable=1</code></dt>
<dd><p>This is the warning level that is enabled by <samp>-Wunused-variable</samp> for
C. It warns only about unused static const variables defined in the main
compilation unit, but not about static const variables declared in any
header included.
</p>
</dd>
<dt><code>-Wunused-const-variable=2</code></dt>
<dd><p>This warning level also warns for unused constant static variables in
headers (excluding system headers). This is the warning level of
<samp>-Wunused-const-variable</samp> and must be explicitly requested since
in C++ this isn’t an error and in C it might be harder to clean up all
headers included.
</p></dd>
</dl>
</dd>
<dt><code>-Wunused-value</code></dt>
<dd><a name="index-Wunused_002dvalue"></a>
<a name="index-Wno_002dunused_002dvalue"></a>
<p>Warn whenever a statement computes a result that is explicitly not
used. To suppress this warning cast the unused expression to
<code>void</code>. This includes an expression-statement or the left-hand
side of a comma expression that contains no side effects. For example,
an expression such as <code>x[i,j]</code> causes a warning, while
<code>x[(void)i,j]</code> does not.
</p>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wunused</code></dt>
<dd><a name="index-Wunused"></a>
<a name="index-Wno_002dunused"></a>
<p>All the above <samp>-Wunused</samp> options combined.
</p>
<p>In order to get a warning about an unused function parameter, you must
either specify <samp>-Wextra -Wunused</samp> (note that <samp>-Wall</samp> implies
<samp>-Wunused</samp>), or separately specify <samp>-Wunused-parameter</samp>.
</p>
</dd>
<dt><code>-Wuninitialized</code></dt>
<dd><a name="index-Wuninitialized"></a>
<a name="index-Wno_002duninitialized"></a>
<p>Warn if an automatic variable is used without first being initialized
or if a variable may be clobbered by a <code>setjmp</code> call. In C++,
warn if a non-static reference or non-static <code>const</code> member
appears in a class without constructors.
</p>
<p>If you want to warn about code that uses the uninitialized value of the
variable in its own initializer, use the <samp>-Winit-self</samp> option.
</p>
<p>These warnings occur for individual uninitialized or clobbered
elements of structure, union or array variables as well as for
variables that are uninitialized or clobbered as a whole. They do
not occur for variables or elements declared <code>volatile</code>. Because
these warnings depend on optimization, the exact variables or elements
for which there are warnings depends on the precise optimization
options and version of GCC used.
</p>
<p>Note that there may be no warning about a variable that is used only
to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the warnings
are printed.
</p>
</dd>
<dt><code>-Winvalid-memory-model</code></dt>
<dd><a name="index-Winvalid_002dmemory_002dmodel"></a>
<a name="index-Wno_002dinvalid_002dmemory_002dmodel"></a>
<p>Warn for invocations of <a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a>, <a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a>,
and the C11 atomic generic functions with a memory consistency argument
that is either invalid for the operation or outside the range of values
of the <code>memory_order</code> enumeration. For example, since the
<code>__atomic_store</code> and <code>__atomic_store_n</code> built-ins are only
defined for the relaxed, release, and sequentially consistent memory
orders the following code is diagnosed:
</p>
<div class="smallexample">
<pre class="smallexample">void store (int *i)
{
__atomic_store_n (i, 0, memory_order_consume);
}
</pre></div>
<p><samp>-Winvalid-memory-model</samp> is enabled by default.
</p>
</dd>
<dt><code>-Wmaybe-uninitialized</code></dt>
<dd><a name="index-Wmaybe_002duninitialized"></a>
<a name="index-Wno_002dmaybe_002duninitialized"></a>
<p>For an automatic (i.e. local) variable, if there exists a path from the
function entry to a use of the variable that is initialized, but there exist
some other paths for which the variable is not initialized, the compiler
emits a warning if it cannot prove the uninitialized paths are not
executed at run time.
</p>
<p>These warnings are only possible in optimizing compilation, because otherwise
GCC does not keep track of the state of variables.
</p>
<p>These warnings are made optional because GCC may not be able to determine when
the code is correct in spite of appearing to have an error. Here is one
example of how this can happen:
</p>
<div class="smallexample">
<pre class="smallexample">{
int x;
switch (y)
{
case 1: x = 1;
break;
case 2: x = 4;
break;
case 3: x = 5;
}
foo (x);
}
</pre></div>
<p>If the value of <code>y</code> is always 1, 2 or 3, then <code>x</code> is
always initialized, but GCC doesn’t know this. To suppress the
warning, you need to provide a default case with assert(0) or
similar code.
</p>
<a name="index-longjmp-warnings"></a>
<p>This option also warns when a non-volatile automatic variable might be
changed by a call to <code>longjmp</code>.
The compiler sees only the calls to <code>setjmp</code>. It cannot know
where <code>longjmp</code> will be called; in fact, a signal handler could
call it at any point in the code. As a result, you may get a warning
even when there is in fact no problem because <code>longjmp</code> cannot
in fact be called at the place that would cause a problem.
</p>
<p>Some spurious warnings can be avoided if you declare all the functions
you use that never return as <code>noreturn</code>. See <a href="#Function-Attributes">Function Attributes</a>.
</p>
<p>This warning is enabled by <samp>-Wall</samp> or <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wunknown-pragmas</code></dt>
<dd><a name="index-Wunknown_002dpragmas"></a>
<a name="index-Wno_002dunknown_002dpragmas"></a>
<a name="index-warning-for-unknown-pragmas"></a>
<a name="index-unknown-pragmas_002c-warning"></a>
<a name="index-pragmas_002c-warning-of-unknown"></a>
<p>Warn when a <code>#pragma</code> directive is encountered that is not understood by
GCC. If this command-line option is used, warnings are even issued
for unknown pragmas in system header files. This is not the case if
the warnings are only enabled by the <samp>-Wall</samp> command-line option.
</p>
</dd>
<dt><code>-Wno-pragmas</code></dt>
<dd><a name="index-Wno_002dpragmas"></a>
<a name="index-Wpragmas"></a>
<p>Do not warn about misuses of pragmas, such as incorrect parameters,
invalid syntax, or conflicts between pragmas. See also
<samp>-Wunknown-pragmas</samp>.
</p>
</dd>
<dt><code>-Wstrict-aliasing</code></dt>
<dd><a name="index-Wstrict_002daliasing"></a>
<a name="index-Wno_002dstrict_002daliasing"></a>
<p>This option is only active when <samp>-fstrict-aliasing</samp> is active.
It warns about code that might break the strict aliasing rules that the
compiler is using for optimization. The warning does not catch all
cases, but does attempt to catch the more common pitfalls. It is
included in <samp>-Wall</samp>.
It is equivalent to <samp>-Wstrict-aliasing=3</samp>
</p>
</dd>
<dt><code>-Wstrict-aliasing=n</code></dt>
<dd><a name="index-Wstrict_002daliasing_003dn"></a>
<p>This option is only active when <samp>-fstrict-aliasing</samp> is active.
It warns about code that might break the strict aliasing rules that the
compiler is using for optimization.
Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way <samp>-O</samp>
works.
<samp>-Wstrict-aliasing</samp> is equivalent to <samp>-Wstrict-aliasing=3</samp>.
</p>
<p>Level 1: Most aggressive, quick, least accurate.
Possibly useful when higher levels
do not warn but <samp>-fstrict-aliasing</samp> still breaks the code, as it has very few
false negatives. However, it has many false positives.
Warns for all pointer conversions between possibly incompatible types,
even if never dereferenced. Runs in the front end only.
</p>
<p>Level 2: Aggressive, quick, not too precise.
May still have many false positives (not as many as level 1 though),
and few false negatives (but possibly more than level 1).
Unlike level 1, it only warns when an address is taken. Warns about
incomplete types. Runs in the front end only.
</p>
<p>Level 3 (default for <samp>-Wstrict-aliasing</samp>):
Should have very few false positives and few false
negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
Takes care of the common pun+dereference pattern in the front end:
<code>*(int*)&some_float</code>.
If optimization is enabled, it also runs in the back end, where it deals
with multiple statement cases using flow-sensitive points-to information.
Only warns when the converted pointer is dereferenced.
Does not warn about incomplete types.
</p>
</dd>
<dt><code>-Wstrict-overflow</code></dt>
<dt><code>-Wstrict-overflow=<var>n</var></code></dt>
<dd><a name="index-Wstrict_002doverflow"></a>
<a name="index-Wno_002dstrict_002doverflow"></a>
<p>This option is only active when signed overflow is undefined.
It warns about cases where the compiler optimizes based on the
assumption that signed overflow does not occur. Note that it does not
warn about all cases where the code might overflow: it only warns
about cases where the compiler implements some optimization. Thus
this warning depends on the optimization level.
</p>
<p>An optimization that assumes that signed overflow does not occur is
perfectly safe if the values of the variables involved are such that
overflow never does, in fact, occur. Therefore this warning can
easily give a false positive: a warning about code that is not
actually a problem. To help focus on important issues, several
warning levels are defined. No warnings are issued for the use of
undefined signed overflow when estimating how many iterations a loop
requires, in particular when determining whether a loop will be
executed at all.
</p>
<dl compact="compact">
<dt><code>-Wstrict-overflow=1</code></dt>
<dd><p>Warn about cases that are both questionable and easy to avoid. For
example the compiler simplifies
<code>x + 1 > x</code> to <code>1</code>. This level of
<samp>-Wstrict-overflow</samp> is enabled by <samp>-Wall</samp>; higher levels
are not, and must be explicitly requested.
</p>
</dd>
<dt><code>-Wstrict-overflow=2</code></dt>
<dd><p>Also warn about other cases where a comparison is simplified to a
constant. For example: <code>abs (x) >= 0</code>. This can only be
simplified when signed integer overflow is undefined, because
<code>abs (INT_MIN)</code> overflows to <code>INT_MIN</code>, which is less than
zero. <samp>-Wstrict-overflow</samp> (with no level) is the same as
<samp>-Wstrict-overflow=2</samp>.
</p>
</dd>
<dt><code>-Wstrict-overflow=3</code></dt>
<dd><p>Also warn about other cases where a comparison is simplified. For
example: <code>x + 1 > 1</code> is simplified to <code>x > 0</code>.
</p>
</dd>
<dt><code>-Wstrict-overflow=4</code></dt>
<dd><p>Also warn about other simplifications not covered by the above cases.
For example: <code>(x * 10) / 5</code> is simplified to <code>x * 2</code>.
</p>
</dd>
<dt><code>-Wstrict-overflow=5</code></dt>
<dd><p>Also warn about cases where the compiler reduces the magnitude of a
constant involved in a comparison. For example: <code>x + 2 > y</code> is
simplified to <code>x + 1 >= y</code>. This is reported only at the
highest warning level because this simplification applies to many
comparisons, so this warning level gives a very large number of
false positives.
</p></dd>
</dl>
</dd>
<dt><code>-Wstringop-overflow</code></dt>
<dt><code>-Wstringop-overflow=<var>type</var></code></dt>
<dd><a name="index-Wstringop_002doverflow"></a>
<a name="index-Wno_002dstringop_002doverflow"></a>
<p>Warn for calls to string manipulation functions such as <code>memcpy</code> and
<code>strcpy</code> that are determined to overflow the destination buffer. The
optional argument is one greater than the type of Object Size Checking to
perform to determine the size of the destination. See <a href="#Object-Size-Checking">Object Size Checking</a>.
The argument is meaningful only for functions that operate on character arrays
but not for raw memory functions like <code>memcpy</code> which always make use
of Object Size type-0. The option also warns for calls that specify a size
in excess of the largest possible object or at most <code>SIZE_MAX / 2</code> bytes.
The option produces the best results with optimization enabled but can detect
a small subset of simple buffer overflows even without optimization in
calls to the GCC built-in functions like <code>__builtin_memcpy</code> that
correspond to the standard functions. In any case, the option warns about
just a subset of buffer overflows detected by the corresponding overflow
checking built-ins. For example, the option will issue a warning for
the <code>strcpy</code> call below because it copies at least 5 characters
(the string <code>"blue"</code> including the terminating NUL) into the buffer
of size 4.
</p>
<div class="smallexample">
<pre class="smallexample">enum Color { blue, purple, yellow };
const char* f (enum Color clr)
{
static char buf [4];
const char *str;
switch (clr)
{
case blue: str = "blue"; break;
case purple: str = "purple"; break;
case yellow: str = "yellow"; break;
}
return strcpy (buf, str); // warning here
}
</pre></div>
<p>Option <samp>-Wstringop-overflow=2</samp> is enabled by default.
</p>
<dl compact="compact">
<dt><code>-Wstringop-overflow</code></dt>
<dt><code>-Wstringop-overflow=1</code></dt>
<dd><a name="index-Wstringop_002doverflow-1"></a>
<a name="index-Wno_002dstringop_002doverflow-1"></a>
<p>The <samp>-Wstringop-overflow=1</samp> option uses type-zero Object Size Checking
to determine the sizes of destination objects. This is the default setting
of the option. At this setting the option will not warn for writes past
the end of subobjects of larger objects accessed by pointers unless the
size of the largest surrounding object is known. When the destination may
be one of several objects it is assumed to be the largest one of them. On
Linux systems, when optimization is enabled at this setting the option warns
for the same code as when the <code>_FORTIFY_SOURCE</code> macro is defined to
a non-zero value.
</p>
</dd>
<dt><code>-Wstringop-overflow=2</code></dt>
<dd><p>The <samp>-Wstringop-overflow=2</samp> option uses type-one Object Size Checking
to determine the sizes of destination objects. At this setting the option
will warn about overflows when writing to members of the largest complete
objects whose exact size is known. It will, however, not warn for excessive
writes to the same members of unknown objects referenced by pointers since
they may point to arrays containing unknown numbers of elements.
</p>
</dd>
<dt><code>-Wstringop-overflow=3</code></dt>
<dd><p>The <samp>-Wstringop-overflow=3</samp> option uses type-two Object Size Checking
to determine the sizes of destination objects. At this setting the option
warns about overflowing the smallest object or data member. This is the
most restrictive setting of the option that may result in warnings for safe
code.
</p>
</dd>
<dt><code>-Wstringop-overflow=4</code></dt>
<dd><p>The <samp>-Wstringop-overflow=4</samp> option uses type-three Object Size Checking
to determine the sizes of destination objects. At this setting the option
will warn about overflowing any data members, and when the destination is
one of several objects it uses the size of the largest of them to decide
whether to issue a warning. Similarly to <samp>-Wstringop-overflow=3</samp> this
setting of the option may result in warnings for benign code.
</p></dd>
</dl>
</dd>
<dt><code>-Wstringop-truncation</code></dt>
<dd><a name="index-Wstringop_002dtruncation"></a>
<a name="index-Wno_002dstringop_002dtruncation"></a>
<p>Warn for calls to bounded string manipulation functions such as <code>strncat</code>,
<code>strncpy</code>, and <code>stpncpy</code> that may either truncate the copied string
or leave the destination unchanged.
</p>
<p>In the following example, the call to <code>strncat</code> specifies a bound that
is less than the length of the source string. As a result, the copy of
the source will be truncated and so the call is diagnosed. To avoid the
warning use <code>bufsize - strlen (buf) - 1)</code> as the bound.
</p>
<div class="smallexample">
<pre class="smallexample">void append (char *buf, size_t bufsize)
{
strncat (buf, ".txt", 3);
}
</pre></div>
<p>As another example, the following call to <code>strncpy</code> results in copying
to <code>d</code> just the characters preceding the terminating NUL, without
appending the NUL to the end. Assuming the result of <code>strncpy</code> is
necessarily a NUL-terminated string is a common mistake, and so the call
is diagnosed. To avoid the warning when the result is not expected to be
NUL-terminated, call <code>memcpy</code> instead.
</p>
<div class="smallexample">
<pre class="smallexample">void copy (char *d, const char *s)
{
strncpy (d, s, strlen (s));
}
</pre></div>
<p>In the following example, the call to <code>strncpy</code> specifies the size
of the destination buffer as the bound. If the length of the source
string is equal to or greater than this size the result of the copy will
not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
the warning, specify <code>sizeof buf - 1</code> as the bound and set the last
element of the buffer to <code>NUL</code>.
</p>
<div class="smallexample">
<pre class="smallexample">void copy (const char *s)
{
char buf[80];
strncpy (buf, s, sizeof buf);
…
}
</pre></div>
<p>In situations where a character array is intended to store a sequence
of bytes with no terminating <code>NUL</code> such an array may be annotated
with attribute <code>nonstring</code> to avoid this warning. Such arrays,
however, are not suitable arguments to functions that expect
<code>NUL</code>-terminated strings. To help detect accidental misuses of
such arrays GCC issues warnings unless it can prove that the use is
safe. See <a href="#Common-Variable-Attributes">Common Variable Attributes</a>.
</p>
</dd>
<dt><code>-Wsuggest-attribute=<span class="roman">[</span>pure<span class="roman">|</span>const<span class="roman">|</span>noreturn<span class="roman">|</span>format<span class="roman">|</span>cold<span class="roman">|</span>malloc<span class="roman">]</span></code></dt>
<dd><a name="index-Wsuggest_002dattribute_003d"></a>
<a name="index-Wno_002dsuggest_002dattribute_003d"></a>
<p>Warn for cases where adding an attribute may be beneficial. The
attributes currently supported are listed below.
</p>
<dl compact="compact">
<dt><code>-Wsuggest-attribute=pure</code></dt>
<dt><code>-Wsuggest-attribute=const</code></dt>
<dt><code>-Wsuggest-attribute=noreturn</code></dt>
<dt><code>-Wsuggest-attribute=malloc</code></dt>
<dd><a name="index-Wsuggest_002dattribute_003dpure"></a>
<a name="index-Wno_002dsuggest_002dattribute_003dpure"></a>
<a name="index-Wsuggest_002dattribute_003dconst"></a>
<a name="index-Wno_002dsuggest_002dattribute_003dconst"></a>
<a name="index-Wsuggest_002dattribute_003dnoreturn"></a>
<a name="index-Wno_002dsuggest_002dattribute_003dnoreturn"></a>
<a name="index-Wsuggest_002dattribute_003dmalloc"></a>
<a name="index-Wno_002dsuggest_002dattribute_003dmalloc"></a>
<p>Warn about functions that might be candidates for attributes
<code>pure</code>, <code>const</code> or <code>noreturn</code> or <code>malloc</code>. The compiler
only warns for functions visible in other compilation units or (in the case of
<code>pure</code> and <code>const</code>) if it cannot prove that the function returns
normally. A function returns normally if it doesn’t contain an infinite loop or
return abnormally by throwing, calling <code>abort</code> or trapping. This analysis
requires option <samp>-fipa-pure-const</samp>, which is enabled by default at
<samp>-O</samp> and higher. Higher optimization levels improve the accuracy
of the analysis.
</p>
</dd>
<dt><code>-Wsuggest-attribute=format</code></dt>
<dt><code>-Wmissing-format-attribute</code></dt>
<dd><a name="index-Wsuggest_002dattribute_003dformat"></a>
<a name="index-Wmissing_002dformat_002dattribute"></a>
<a name="index-Wno_002dsuggest_002dattribute_003dformat"></a>
<a name="index-Wno_002dmissing_002dformat_002dattribute"></a>
<a name="index-Wformat-2"></a>
<a name="index-Wno_002dformat-1"></a>
<p>Warn about function pointers that might be candidates for <code>format</code>
attributes. Note these are only possible candidates, not absolute ones.
GCC guesses that function pointers with <code>format</code> attributes that
are used in assignment, initialization, parameter passing or return
statements should have a corresponding <code>format</code> attribute in the
resulting type. I.e. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a <code>format</code>
attribute to avoid the warning.
</p>
<p>GCC also warns about function definitions that might be
candidates for <code>format</code> attributes. Again, these are only
possible candidates. GCC guesses that <code>format</code> attributes
might be appropriate for any function that calls a function like
<code>vprintf</code> or <code>vscanf</code>, but this might not always be the
case, and some functions for which <code>format</code> attributes are
appropriate may not be detected.
</p>
</dd>
<dt><code>-Wsuggest-attribute=cold</code></dt>
<dd><a name="index-Wsuggest_002dattribute_003dcold"></a>
<a name="index-Wno_002dsuggest_002dattribute_003dcold"></a>
<p>Warn about functions that might be candidates for <code>cold</code> attribute. This
is based on static detection and generally will only warn about functions which
always leads to a call to another <code>cold</code> function such as wrappers of
C++ <code>throw</code> or fatal error reporting functions leading to <code>abort</code>.
</p></dd>
</dl>
</dd>
<dt><code>-Wsuggest-final-types</code></dt>
<dd><a name="index-Wno_002dsuggest_002dfinal_002dtypes"></a>
<a name="index-Wsuggest_002dfinal_002dtypes"></a>
<p>Warn about types with virtual methods where code quality would be improved
if the type were declared with the C++11 <code>final</code> specifier,
or, if possible,
declared in an anonymous namespace. This allows GCC to more aggressively
devirtualize the polymorphic calls. This warning is more effective with link
time optimization, where the information about the class hierarchy graph is
more complete.
</p>
</dd>
<dt><code>-Wsuggest-final-methods</code></dt>
<dd><a name="index-Wno_002dsuggest_002dfinal_002dmethods"></a>
<a name="index-Wsuggest_002dfinal_002dmethods"></a>
<p>Warn about virtual methods where code quality would be improved if the method
were declared with the C++11 <code>final</code> specifier,
or, if possible, its type were
declared in an anonymous namespace or with the <code>final</code> specifier.
This warning is
more effective with link-time optimization, where the information about the
class hierarchy graph is more complete. It is recommended to first consider
suggestions of <samp>-Wsuggest-final-types</samp> and then rebuild with new
annotations.
</p>
</dd>
<dt><code>-Wsuggest-override</code></dt>
<dd><p>Warn about overriding virtual functions that are not marked with the override
keyword.
</p>
</dd>
<dt><code>-Walloc-zero</code></dt>
<dd><a name="index-Wno_002dalloc_002dzero"></a>
<a name="index-Walloc_002dzero"></a>
<p>Warn about calls to allocation functions decorated with attribute
<code>alloc_size</code> that specify zero bytes, including those to the built-in
forms of the functions <code>aligned_alloc</code>, <code>alloca</code>, <code>calloc</code>,
<code>malloc</code>, and <code>realloc</code>. Because the behavior of these functions
when called with a zero size differs among implementations (and in the case
of <code>realloc</code> has been deprecated) relying on it may result in subtle
portability bugs and should be avoided.
</p>
</dd>
<dt><code>-Walloc-size-larger-than=<var>n</var></code></dt>
<dd><p>Warn about calls to functions decorated with attribute <code>alloc_size</code>
that attempt to allocate objects larger than the specified number of bytes,
or where the result of the size computation in an integer type with infinite
precision would exceed <code>SIZE_MAX / 2</code>. The option argument <var>n</var>
may end in one of the standard suffixes designating a multiple of bytes
such as <code>kB</code> and <code>KiB</code> for kilobyte and kibibyte, respectively,
<code>MB</code> and <code>MiB</code> for megabyte and mebibyte, and so on.
See <a href="#Function-Attributes">Function Attributes</a>.
</p>
</dd>
<dt><code>-Walloca</code></dt>
<dd><a name="index-Wno_002dalloca"></a>
<a name="index-Walloca"></a>
<p>This option warns on all uses of <code>alloca</code> in the source.
</p>
</dd>
<dt><code>-Walloca-larger-than=<var>n</var></code></dt>
<dd><p>This option warns on calls to <code>alloca</code> that are not bounded by a
controlling predicate limiting its argument of integer type to at most
<var>n</var> bytes, or calls to <code>alloca</code> where the bound is unknown.
Arguments of non-integer types are considered unbounded even if they
appear to be constrained to the expected range.
</p>
<p>For example, a bounded case of <code>alloca</code> could be:
</p>
<div class="smallexample">
<pre class="smallexample">void func (size_t n)
{
void *p;
if (n <= 1000)
p = alloca (n);
else
p = malloc (n);
f (p);
}
</pre></div>
<p>In the above example, passing <code>-Walloca-larger-than=1000</code> would not
issue a warning because the call to <code>alloca</code> is known to be at most
1000 bytes. However, if <code>-Walloca-larger-than=500</code> were passed,
the compiler would emit a warning.
</p>
<p>Unbounded uses, on the other hand, are uses of <code>alloca</code> with no
controlling predicate constraining its integer argument. For example:
</p>
<div class="smallexample">
<pre class="smallexample">void func ()
{
void *p = alloca (n);
f (p);
}
</pre></div>
<p>If <code>-Walloca-larger-than=500</code> were passed, the above would trigger
a warning, but this time because of the lack of bounds checking.
</p>
<p>Note, that even seemingly correct code involving signed integers could
cause a warning:
</p>
<div class="smallexample">
<pre class="smallexample">void func (signed int n)
{
if (n < 500)
{
p = alloca (n);
f (p);
}
}
</pre></div>
<p>In the above example, <var>n</var> could be negative, causing a larger than
expected argument to be implicitly cast into the <code>alloca</code> call.
</p>
<p>This option also warns when <code>alloca</code> is used in a loop.
</p>
<p>This warning is not enabled by <samp>-Wall</samp>, and is only active when
<samp>-ftree-vrp</samp> is active (default for <samp>-O2</samp> and above).
</p>
<p>See also <samp>-Wvla-larger-than=<var>n</var></samp>.
</p>
</dd>
<dt><code>-Warray-bounds</code></dt>
<dt><code>-Warray-bounds=<var>n</var></code></dt>
<dd><a name="index-Wno_002darray_002dbounds"></a>
<a name="index-Warray_002dbounds"></a>
<p>This option is only active when <samp>-ftree-vrp</samp> is active
(default for <samp>-O2</samp> and above). It warns about subscripts to arrays
that are always out of bounds. This warning is enabled by <samp>-Wall</samp>.
</p>
<dl compact="compact">
<dt><code>-Warray-bounds=1</code></dt>
<dd><p>This is the warning level of <samp>-Warray-bounds</samp> and is enabled
by <samp>-Wall</samp>; higher levels are not, and must be explicitly requested.
</p>
</dd>
<dt><code>-Warray-bounds=2</code></dt>
<dd><p>This warning level also warns about out of bounds access for
arrays at the end of a struct and for arrays accessed through
pointers. This warning level may give a larger number of
false positives and is deactivated by default.
</p></dd>
</dl>
</dd>
<dt><code>-Wattribute-alias</code></dt>
<dd><p>Warn about declarations using the <code>alias</code> and similar attributes whose
target is incompatible with the type of the alias. See <a href="#Function-Attributes">Declaring Attributes of Functions</a>.
</p>
</dd>
<dt><code>-Wbool-compare</code></dt>
<dd><a name="index-Wno_002dbool_002dcompare"></a>
<a name="index-Wbool_002dcompare"></a>
<p>Warn about boolean expression compared with an integer value different from
<code>true</code>/<code>false</code>. For instance, the following comparison is
always false:
</p><div class="smallexample">
<pre class="smallexample">int n = 5;
…
if ((n > 1) == 2) { … }
</pre></div>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wbool-operation</code></dt>
<dd><a name="index-Wno_002dbool_002doperation"></a>
<a name="index-Wbool_002doperation"></a>
<p>Warn about suspicious operations on expressions of a boolean type. For
instance, bitwise negation of a boolean is very likely a bug in the program.
For C, this warning also warns about incrementing or decrementing a boolean,
which rarely makes sense. (In C++, decrementing a boolean is always invalid.
Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
</p>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wduplicated-branches</code></dt>
<dd><a name="index-Wno_002dduplicated_002dbranches"></a>
<a name="index-Wduplicated_002dbranches"></a>
<p>Warn when an if-else has identical branches. This warning detects cases like
</p><div class="smallexample">
<pre class="smallexample">if (p != NULL)
return 0;
else
return 0;
</pre></div>
<p>It doesn’t warn when both branches contain just a null statement. This warning
also warn for conditional operators:
</p><div class="smallexample">
<pre class="smallexample"> int i = x ? *p : *p;
</pre></div>
</dd>
<dt><code>-Wduplicated-cond</code></dt>
<dd><a name="index-Wno_002dduplicated_002dcond"></a>
<a name="index-Wduplicated_002dcond"></a>
<p>Warn about duplicated conditions in an if-else-if chain. For instance,
warn for the following code:
</p><div class="smallexample">
<pre class="smallexample">if (p->q != NULL) { … }
else if (p->q != NULL) { … }
</pre></div>
</dd>
<dt><code>-Wframe-address</code></dt>
<dd><a name="index-Wno_002dframe_002daddress"></a>
<a name="index-Wframe_002daddress"></a>
<p>Warn when the ‘<samp>__builtin_frame_address</samp>’ or ‘<samp>__builtin_return_address</samp>’
is called with an argument greater than 0. Such calls may return indeterminate
values or crash the program. The warning is included in <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wno-discarded-qualifiers <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wno_002ddiscarded_002dqualifiers"></a>
<a name="index-Wdiscarded_002dqualifiers"></a>
<p>Do not warn if type qualifiers on pointers are being discarded.
Typically, the compiler warns if a <code>const char *</code> variable is
passed to a function that takes a <code>char *</code> parameter. This option
can be used to suppress such a warning.
</p>
</dd>
<dt><code>-Wno-discarded-array-qualifiers <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wno_002ddiscarded_002darray_002dqualifiers"></a>
<a name="index-Wdiscarded_002darray_002dqualifiers"></a>
<p>Do not warn if type qualifiers on arrays which are pointer targets
are being discarded. Typically, the compiler warns if a
<code>const int (*)[]</code> variable is passed to a function that
takes a <code>int (*)[]</code> parameter. This option can be used to
suppress such a warning.
</p>
</dd>
<dt><code>-Wno-incompatible-pointer-types <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wno_002dincompatible_002dpointer_002dtypes"></a>
<a name="index-Wincompatible_002dpointer_002dtypes"></a>
<p>Do not warn when there is a conversion between pointers that have incompatible
types. This warning is for cases not covered by <samp>-Wno-pointer-sign</samp>,
which warns for pointer argument passing or assignment with different
signedness.
</p>
</dd>
<dt><code>-Wno-int-conversion <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wno_002dint_002dconversion"></a>
<a name="index-Wint_002dconversion"></a>
<p>Do not warn about incompatible integer to pointer and pointer to integer
conversions. This warning is about implicit conversions; for explicit
conversions the warnings <samp>-Wno-int-to-pointer-cast</samp> and
<samp>-Wno-pointer-to-int-cast</samp> may be used.
</p>
</dd>
<dt><code>-Wno-div-by-zero</code></dt>
<dd><a name="index-Wno_002ddiv_002dby_002dzero"></a>
<a name="index-Wdiv_002dby_002dzero"></a>
<p>Do not warn about compile-time integer division by zero. Floating-point
division by zero is not warned about, as it can be a legitimate way of
obtaining infinities and NaNs.
</p>
</dd>
<dt><code>-Wsystem-headers</code></dt>
<dd><a name="index-Wsystem_002dheaders"></a>
<a name="index-Wno_002dsystem_002dheaders"></a>
<a name="index-warnings-from-system-headers"></a>
<a name="index-system-headers_002c-warnings-from"></a>
<p>Print warning messages for constructs found in system header files.
Warnings from system headers are normally suppressed, on the assumption
that they usually do not indicate real problems and would only make the
compiler output harder to read. Using this command-line option tells
GCC to emit warnings from system headers as if they occurred in user
code. However, note that using <samp>-Wall</samp> in conjunction with this
option does <em>not</em> warn about unknown pragmas in system
headers—for that, <samp>-Wunknown-pragmas</samp> must also be used.
</p>
</dd>
<dt><code>-Wtautological-compare</code></dt>
<dd><a name="index-Wtautological_002dcompare"></a>
<a name="index-Wno_002dtautological_002dcompare"></a>
<p>Warn if a self-comparison always evaluates to true or false. This
warning detects various mistakes such as:
</p><div class="smallexample">
<pre class="smallexample">int i = 1;
…
if (i > i) { … }
</pre></div>
<p>This warning also warns about bitwise comparisons that always evaluate
to true or false, for instance:
</p><div class="smallexample">
<pre class="smallexample">if ((a & 16) == 10) { … }
</pre></div>
<p>will always be false.
</p>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wtrampolines</code></dt>
<dd><a name="index-Wtrampolines"></a>
<a name="index-Wno_002dtrampolines"></a>
<p>Warn about trampolines generated for pointers to nested functions.
A trampoline is a small piece of data or code that is created at run
time on the stack when the address of a nested function is taken, and is
used to call the nested function indirectly. For some targets, it is
made up of data only and thus requires no special treatment. But, for
most targets, it is made up of code and thus requires the stack to be
made executable in order for the program to work properly.
</p>
</dd>
<dt><code>-Wfloat-equal</code></dt>
<dd><a name="index-Wfloat_002dequal"></a>
<a name="index-Wno_002dfloat_002dequal"></a>
<p>Warn if floating-point values are used in equality comparisons.
</p>
<p>The idea behind this is that sometimes it is convenient (for the
programmer) to consider floating-point values as approximations to
infinitely precise real numbers. If you are doing this, then you need
to compute (by analyzing the code, or in some other way) the maximum or
likely maximum error that the computation introduces, and allow for it
when performing comparisons (and when producing output, but that’s a
different problem). In particular, instead of testing for equality, you
should check to see whether the two values have ranges that overlap; and
this is done with the relational operators, so equality comparisons are
probably mistaken.
</p>
</dd>
<dt><code>-Wtraditional <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wtraditional"></a>
<a name="index-Wno_002dtraditional"></a>
<p>Warn about certain constructs that behave differently in traditional and
ISO C. Also warn about ISO C constructs that have no traditional C
equivalent, and/or problematic constructs that should be avoided.
</p>
<ul>
<li> Macro parameters that appear within string literals in the macro body.
In traditional C macro replacement takes place within string literals,
but in ISO C it does not.
</li><li> In traditional C, some preprocessor directives did not exist.
Traditional preprocessors only considered a line to be a directive
if the ‘<samp>#</samp>’ appeared in column 1 on the line. Therefore
<samp>-Wtraditional</samp> warns about directives that traditional C
understands but ignores because the ‘<samp>#</samp>’ does not appear as the
first character on the line. It also suggests you hide directives like
<code>#pragma</code> not understood by traditional C by indenting them. Some
traditional implementations do not recognize <code>#elif</code>, so this option
suggests avoiding it altogether.
</li><li> A function-like macro that appears without arguments.
</li><li> The unary plus operator.
</li><li> The ‘<samp>U</samp>’ integer constant suffix, or the ‘<samp>F</samp>’ or ‘<samp>L</samp>’ floating-point
constant suffixes. (Traditional C does support the ‘<samp>L</samp>’ suffix on integer
constants.) Note, these suffixes appear in macros defined in the system
headers of most modern systems, e.g. the ‘<samp>_MIN</samp>’/‘<samp>_MAX</samp>’ macros in <code><limits.h></code>.
Use of these macros in user code might normally lead to spurious
warnings, however GCC’s integrated preprocessor has enough context to
avoid warning in these cases.
</li><li> A function declared external in one block and then used after the end of
the block.
</li><li> A <code>switch</code> statement has an operand of type <code>long</code>.
</li><li> A non-<code>static</code> function declaration follows a <code>static</code> one.
This construct is not accepted by some traditional C compilers.
</li><li> The ISO type of an integer constant has a different width or
signedness from its traditional type. This warning is only issued if
the base of the constant is ten. I.e. hexadecimal or octal values, which
typically represent bit patterns, are not warned about.
</li><li> Usage of ISO string concatenation is detected.
</li><li> Initialization of automatic aggregates.
</li><li> Identifier conflicts with labels. Traditional C lacks a separate
namespace for labels.
</li><li> Initialization of unions. If the initializer is zero, the warning is
omitted. This is done under the assumption that the zero initializer in
user code appears conditioned on e.g. <code>__STDC__</code> to avoid missing
initializer warnings and relies on default initialization to zero in the
traditional C case.
</li><li> Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible
conversion warnings; for the full set use <samp>-Wtraditional-conversion</samp>.
</li><li> Use of ISO C style function definitions. This warning intentionally is
<em>not</em> issued for prototype declarations or variadic functions
because these ISO C features appear in your code when using
libiberty’s traditional C compatibility macros, <code>PARAMS</code> and
<code>VPARAMS</code>. This warning is also bypassed for nested functions
because that feature is already a GCC extension and thus not relevant to
traditional C compatibility.
</li></ul>
</dd>
<dt><code>-Wtraditional-conversion <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wtraditional_002dconversion"></a>
<a name="index-Wno_002dtraditional_002dconversion"></a>
<p>Warn if a prototype causes a type conversion that is different from what
would happen to the same argument in the absence of a prototype. This
includes conversions of fixed point to floating and vice versa, and
conversions changing the width or signedness of a fixed-point argument
except when the same as the default promotion.
</p>
</dd>
<dt><code>-Wdeclaration-after-statement <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wdeclaration_002dafter_002dstatement"></a>
<a name="index-Wno_002ddeclaration_002dafter_002dstatement"></a>
<p>Warn when a declaration is found after a statement in a block. This
construct, known from C++, was introduced with ISO C99 and is by default
allowed in GCC. It is not supported by ISO C90. See <a href="#Mixed-Declarations">Mixed Declarations</a>.
</p>
</dd>
<dt><code>-Wshadow</code></dt>
<dd><a name="index-Wshadow"></a>
<a name="index-Wno_002dshadow"></a>
<p>Warn whenever a local variable or type declaration shadows another
variable, parameter, type, class member (in C++), or instance variable
(in Objective-C) or whenever a built-in function is shadowed. Note
that in C++, the compiler warns if a local variable shadows an
explicit typedef, but not if it shadows a struct/class/enum.
Same as <samp>-Wshadow=global</samp>.
</p>
</dd>
<dt><code>-Wno-shadow-ivar <span class="roman">(Objective-C only)</span></code></dt>
<dd><a name="index-Wno_002dshadow_002divar"></a>
<a name="index-Wshadow_002divar"></a>
<p>Do not warn whenever a local variable shadows an instance variable in an
Objective-C method.
</p>
</dd>
<dt><code>-Wshadow=global</code></dt>
<dd><a name="index-Wshadow_003dlocal"></a>
<p>The default for <samp>-Wshadow</samp>. Warns for any (global) shadowing.
</p>
</dd>
<dt><code>-Wshadow=local</code></dt>
<dd><a name="index-Wshadow_003dlocal-1"></a>
<p>Warn when a local variable shadows another local variable or parameter.
This warning is enabled by <samp>-Wshadow=global</samp>.
</p>
</dd>
<dt><code>-Wshadow=compatible-local</code></dt>
<dd><a name="index-Wshadow_003dcompatible_002dlocal"></a>
<p>Warn when a local variable shadows another local variable or parameter
whose type is compatible with that of the shadowing variable. In C++,
type compatibility here means the type of the shadowing variable can be
converted to that of the shadowed variable. The creation of this flag
(in addition to <samp>-Wshadow=local</samp>) is based on the idea that when
a local variable shadows another one of incompatible type, it is most
likely intentional, not a bug or typo, as shown in the following example:
</p>
<div class="smallexample">
<pre class="smallexample">for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
{
for (int i = 0; i < N; ++i)
{
...
}
...
}
</pre></div>
<p>Since the two variable <code>i</code> in the example above have incompatible types,
enabling only <samp>-Wshadow=compatible-local</samp> will not emit a warning.
Because their types are incompatible, if a programmer accidentally uses one
in place of the other, type checking will catch that and emit an error or
warning. So not warning (about shadowing) in this case will not lead to
undetected bugs. Use of this flag instead of <samp>-Wshadow=local</samp> can
possibly reduce the number of warnings triggered by intentional shadowing.
</p>
<p>This warning is enabled by <samp>-Wshadow=local</samp>.
</p>
</dd>
<dt><code>-Wlarger-than=<var>len</var></code></dt>
<dd><a name="index-Wlarger_002dthan_003dlen"></a>
<a name="index-Wlarger_002dthan_002dlen"></a>
<p>Warn whenever an object of larger than <var>len</var> bytes is defined.
</p>
</dd>
<dt><code>-Wframe-larger-than=<var>len</var></code></dt>
<dd><a name="index-Wframe_002dlarger_002dthan"></a>
<p>Warn if the size of a function frame is larger than <var>len</var> bytes.
The computation done to determine the stack frame size is approximate
and not conservative.
The actual requirements may be somewhat greater than <var>len</var>
even if you do not get a warning. In addition, any space allocated
via <code>alloca</code>, variable-length arrays, or related constructs
is not included by the compiler when determining
whether or not to issue a warning.
</p>
</dd>
<dt><code>-Wno-free-nonheap-object</code></dt>
<dd><a name="index-Wno_002dfree_002dnonheap_002dobject"></a>
<a name="index-Wfree_002dnonheap_002dobject"></a>
<p>Do not warn when attempting to free an object that was not allocated
on the heap.
</p>
</dd>
<dt><code>-Wstack-usage=<var>len</var></code></dt>
<dd><a name="index-Wstack_002dusage"></a>
<p>Warn if the stack usage of a function might be larger than <var>len</var> bytes.
The computation done to determine the stack usage is conservative.
Any space allocated via <code>alloca</code>, variable-length arrays, or related
constructs is included by the compiler when determining whether or not to
issue a warning.
</p>
<p>The message is in keeping with the output of <samp>-fstack-usage</samp>.
</p>
<ul>
<li> If the stack usage is fully static but exceeds the specified amount, it’s:
<div class="smallexample">
<pre class="smallexample"> warning: stack usage is 1120 bytes
</pre></div>
</li><li> If the stack usage is (partly) dynamic but bounded, it’s:
<div class="smallexample">
<pre class="smallexample"> warning: stack usage might be 1648 bytes
</pre></div>
</li><li> If the stack usage is (partly) dynamic and not bounded, it’s:
<div class="smallexample">
<pre class="smallexample"> warning: stack usage might be unbounded
</pre></div>
</li></ul>
</dd>
<dt><code>-Wunsafe-loop-optimizations</code></dt>
<dd><a name="index-Wunsafe_002dloop_002doptimizations"></a>
<a name="index-Wno_002dunsafe_002dloop_002doptimizations"></a>
<p>Warn if the loop cannot be optimized because the compiler cannot
assume anything on the bounds of the loop indices. With
<samp>-funsafe-loop-optimizations</samp> warn if the compiler makes
such assumptions.
</p>
</dd>
<dt><code>-Wno-pedantic-ms-format <span class="roman">(MinGW targets only)</span></code></dt>
<dd><a name="index-Wno_002dpedantic_002dms_002dformat"></a>
<a name="index-Wpedantic_002dms_002dformat"></a>
<p>When used in combination with <samp>-Wformat</samp>
and <samp>-pedantic</samp> without GNU extensions, this option
disables the warnings about non-ISO <code>printf</code> / <code>scanf</code> format
width specifiers <code>I32</code>, <code>I64</code>, and <code>I</code> used on Windows targets,
which depend on the MS runtime.
</p>
</dd>
<dt><code>-Waligned-new</code></dt>
<dd><a name="index-Waligned_002dnew"></a>
<a name="index-Wno_002daligned_002dnew"></a>
<p>Warn about a new-expression of a type that requires greater alignment
than the <code>alignof(std::max_align_t)</code> but uses an allocation
function without an explicit alignment parameter. This option is
enabled by <samp>-Wall</samp>.
</p>
<p>Normally this only warns about global allocation functions, but
<samp>-Waligned-new=all</samp> also warns about class member allocation
functions.
</p>
</dd>
<dt><code>-Wplacement-new</code></dt>
<dt><code>-Wplacement-new=<var>n</var></code></dt>
<dd><a name="index-Wplacement_002dnew"></a>
<a name="index-Wno_002dplacement_002dnew"></a>
<p>Warn about placement new expressions with undefined behavior, such as
constructing an object in a buffer that is smaller than the type of
the object. For example, the placement new expression below is diagnosed
because it attempts to construct an array of 64 integers in a buffer only
64 bytes large.
</p><div class="smallexample">
<pre class="smallexample">char buf [64];
new (buf) int[64];
</pre></div>
<p>This warning is enabled by default.
</p>
<dl compact="compact">
<dt><code>-Wplacement-new=1</code></dt>
<dd><p>This is the default warning level of <samp>-Wplacement-new</samp>. At this
level the warning is not issued for some strictly undefined constructs that
GCC allows as extensions for compatibility with legacy code. For example,
the following <code>new</code> expression is not diagnosed at this level even
though it has undefined behavior according to the C++ standard because
it writes past the end of the one-element array.
</p><div class="smallexample">
<pre class="smallexample">struct S { int n, a[1]; };
S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
new (s->a)int [32]();
</pre></div>
</dd>
<dt><code>-Wplacement-new=2</code></dt>
<dd><p>At this level, in addition to diagnosing all the same constructs as at level
1, a diagnostic is also issued for placement new expressions that construct
an object in the last member of structure whose type is an array of a single
element and whose size is less than the size of the object being constructed.
While the previous example would be diagnosed, the following construct makes
use of the flexible member array extension to avoid the warning at level 2.
</p><div class="smallexample">
<pre class="smallexample">struct S { int n, a[]; };
S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
new (s->a)int [32]();
</pre></div>
</dd>
</dl>
</dd>
<dt><code>-Wpointer-arith</code></dt>
<dd><a name="index-Wpointer_002darith"></a>
<a name="index-Wno_002dpointer_002darith"></a>
<p>Warn about anything that depends on the “size of” a function type or
of <code>void</code>. GNU C assigns these types a size of 1, for
convenience in calculations with <code>void *</code> pointers and pointers
to functions. In C++, warn also when an arithmetic operation involves
<code>NULL</code>. This warning is also enabled by <samp>-Wpedantic</samp>.
</p>
</dd>
<dt><code>-Wpointer-compare</code></dt>
<dd><a name="index-Wpointer_002dcompare"></a>
<a name="index-Wno_002dpointer_002dcompare"></a>
<p>Warn if a pointer is compared with a zero character constant. This usually
means that the pointer was meant to be dereferenced. For example:
</p>
<div class="smallexample">
<pre class="smallexample">const char *p = foo ();
if (p == '\0')
return 42;
</pre></div>
<p>Note that the code above is invalid in C++11.
</p>
<p>This warning is enabled by default.
</p>
</dd>
<dt><code>-Wtype-limits</code></dt>
<dd><a name="index-Wtype_002dlimits"></a>
<a name="index-Wno_002dtype_002dlimits"></a>
<p>Warn if a comparison is always true or always false due to the limited
range of the data type, but do not warn for constant expressions. For
example, warn if an unsigned variable is compared against zero with
<code><</code> or <code>>=</code>. This warning is also enabled by
<samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wcomment</code></dt>
<dt><code>-Wcomments</code></dt>
<dd><a name="index-Wcomment"></a>
<a name="index-Wcomments"></a>
<p>Warn whenever a comment-start sequence ‘<samp>/*</samp>’ appears in a ‘<samp>/*</samp>’
comment, or whenever a backslash-newline appears in a ‘<samp>//</samp>’ comment.
This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wtrigraphs</code></dt>
<dd><a name="index-Wtrigraphs"></a>
<a name="Wtrigraphs"></a><p>Warn if any trigraphs are encountered that might change the meaning of
the program. Trigraphs within comments are not warned about,
except those that would form escaped newlines.
</p>
<p>This option is implied by <samp>-Wall</samp>. If <samp>-Wall</samp> is not
given, this option is still enabled unless trigraphs are enabled. To
get trigraph conversion without warnings, but get the other
<samp>-Wall</samp> warnings, use ‘<samp>-trigraphs -Wall -Wno-trigraphs</samp>’.
</p>
</dd>
<dt><code>-Wundef</code></dt>
<dd><a name="index-Wundef"></a>
<a name="index-Wno_002dundef"></a>
<p>Warn if an undefined identifier is evaluated in an <code>#if</code> directive.
Such identifiers are replaced with zero.
</p>
</dd>
<dt><code>-Wexpansion-to-defined</code></dt>
<dd><a name="index-Wexpansion_002dto_002ddefined"></a>
<p>Warn whenever ‘<samp>defined</samp>’ is encountered in the expansion of a macro
(including the case where the macro is expanded by an ‘<samp>#if</samp>’ directive).
Such usage is not portable.
This warning is also enabled by <samp>-Wpedantic</samp> and <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wunused-macros</code></dt>
<dd><a name="index-Wunused_002dmacros"></a>
<p>Warn about macros defined in the main file that are unused. A macro
is <em>used</em> if it is expanded or tested for existence at least once.
The preprocessor also warns if the macro has not been used at the
time it is redefined or undefined.
</p>
<p>Built-in macros, macros defined on the command line, and macros
defined in include files are not warned about.
</p>
<p><em>Note:</em> If a macro is actually used, but only used in skipped
conditional blocks, then the preprocessor reports it as unused. To avoid the
warning in such a case, you might improve the scope of the macro’s
definition by, for example, moving it into the first skipped block.
Alternatively, you could provide a dummy use with something like:
</p>
<div class="smallexample">
<pre class="smallexample">#if defined the_macro_causing_the_warning
#endif
</pre></div>
</dd>
<dt><code>-Wno-endif-labels</code></dt>
<dd><a name="index-Wno_002dendif_002dlabels"></a>
<a name="index-Wendif_002dlabels"></a>
<p>Do not warn whenever an <code>#else</code> or an <code>#endif</code> are followed by text.
This sometimes happens in older programs with code of the form
</p>
<div class="smallexample">
<pre class="smallexample">#if FOO
…
#else FOO
…
#endif FOO
</pre></div>
<p>The second and third <code>FOO</code> should be in comments.
This warning is on by default.
</p>
</dd>
<dt><code>-Wbad-function-cast <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wbad_002dfunction_002dcast"></a>
<a name="index-Wno_002dbad_002dfunction_002dcast"></a>
<p>Warn when a function call is cast to a non-matching type.
For example, warn if a call to a function returning an integer type
is cast to a pointer type.
</p>
</dd>
<dt><code>-Wc90-c99-compat <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wc90_002dc99_002dcompat"></a>
<a name="index-Wno_002dc90_002dc99_002dcompat"></a>
<p>Warn about features not present in ISO C90, but present in ISO C99.
For instance, warn about use of variable length arrays, <code>long long</code>
type, <code>bool</code> type, compound literals, designated initializers, and so
on. This option is independent of the standards mode. Warnings are disabled
in the expression that follows <code>__extension__</code>.
</p>
</dd>
<dt><code>-Wc99-c11-compat <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wc99_002dc11_002dcompat"></a>
<a name="index-Wno_002dc99_002dc11_002dcompat"></a>
<p>Warn about features not present in ISO C99, but present in ISO C11.
For instance, warn about use of anonymous structures and unions,
<code>_Atomic</code> type qualifier, <code>_Thread_local</code> storage-class specifier,
<code>_Alignas</code> specifier, <code>Alignof</code> operator, <code>_Generic</code> keyword,
and so on. This option is independent of the standards mode. Warnings are
disabled in the expression that follows <code>__extension__</code>.
</p>
</dd>
<dt><code>-Wc++-compat <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wc_002b_002b_002dcompat"></a>
<p>Warn about ISO C constructs that are outside of the common subset of
ISO C and ISO C++, e.g. request for implicit conversion from
<code>void *</code> to a pointer to non-<code>void</code> type.
</p>
</dd>
<dt><code>-Wc++11-compat <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wc_002b_002b11_002dcompat"></a>
<p>Warn about C++ constructs whose meaning differs between ISO C++ 1998
and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
in ISO C++ 2011. This warning turns on <samp>-Wnarrowing</samp> and is
enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wc++14-compat <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wc_002b_002b14_002dcompat"></a>
<p>Warn about C++ constructs whose meaning differs between ISO C++ 2011
and ISO C++ 2014. This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wc++17-compat <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wc_002b_002b17_002dcompat"></a>
<p>Warn about C++ constructs whose meaning differs between ISO C++ 2014
and ISO C++ 2017. This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wcast-qual</code></dt>
<dd><a name="index-Wcast_002dqual"></a>
<a name="index-Wno_002dcast_002dqual"></a>
<p>Warn whenever a pointer is cast so as to remove a type qualifier from
the target type. For example, warn if a <code>const char *</code> is cast
to an ordinary <code>char *</code>.
</p>
<p>Also warn when making a cast that introduces a type qualifier in an
unsafe way. For example, casting <code>char **</code> to <code>const char **</code>
is unsafe, as in this example:
</p>
<div class="smallexample">
<pre class="smallexample"> /* p is char ** value. */
const char **q = (const char **) p;
/* Assignment of readonly string to const char * is OK. */
*q = "string";
/* Now char** pointer points to read-only memory. */
**p = 'b';
</pre></div>
</dd>
<dt><code>-Wcast-align</code></dt>
<dd><a name="index-Wcast_002dalign"></a>
<a name="index-Wno_002dcast_002dalign"></a>
<p>Warn whenever a pointer is cast such that the required alignment of the
target is increased. For example, warn if a <code>char *</code> is cast to
an <code>int *</code> on machines where integers can only be accessed at
two- or four-byte boundaries.
</p>
</dd>
<dt><code>-Wcast-align=strict</code></dt>
<dd><a name="index-Wcast_002dalign_003dstrict"></a>
<p>Warn whenever a pointer is cast such that the required alignment of the
target is increased. For example, warn if a <code>char *</code> is cast to
an <code>int *</code> regardless of the target machine.
</p>
</dd>
<dt><code>-Wcast-function-type</code></dt>
<dd><a name="index-Wcast_002dfunction_002dtype"></a>
<a name="index-Wno_002dcast_002dfunction_002dtype"></a>
<p>Warn when a function pointer is cast to an incompatible function pointer.
In a cast involving function types with a variable argument list only
the types of initial arguments that are provided are considered.
Any parameter of pointer-type matches any other pointer-type. Any benign
differences in integral types are ignored, like <code>int</code> vs. <code>long</code>
on ILP32 targets. Likewise type qualifiers are ignored. The function
type <code>void (*) (void)</code> is special and matches everything, which can
be used to suppress this warning.
In a cast involving pointer to member types this warning warns whenever
the type cast is changing the pointer to member type.
This warning is enabled by <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wwrite-strings</code></dt>
<dd><a name="index-Wwrite_002dstrings"></a>
<a name="index-Wno_002dwrite_002dstrings"></a>
<p>When compiling C, give string constants the type <code>const
char[<var>length</var>]</code> so that copying the address of one into a
non-<code>const</code> <code>char *</code> pointer produces a warning. These
warnings help you find at compile time code that can try to write
into a string constant, but only if you have been very careful about
using <code>const</code> in declarations and prototypes. Otherwise, it is
just a nuisance. This is why we did not make <samp>-Wall</samp> request
these warnings.
</p>
<p>When compiling C++, warn about the deprecated conversion from string
literals to <code>char *</code>. This warning is enabled by default for C++
programs.
</p>
</dd>
<dt><code>-Wcatch-value</code></dt>
<dt><code>-Wcatch-value=<var>n</var> <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wcatch_002dvalue"></a>
<a name="index-Wno_002dcatch_002dvalue"></a>
<p>Warn about catch handlers that do not catch via reference.
With <samp>-Wcatch-value=1</samp> (or <samp>-Wcatch-value</samp> for short)
warn about polymorphic class types that are caught by value.
With <samp>-Wcatch-value=2</samp> warn about all class types that are caught
by value. With <samp>-Wcatch-value=3</samp> warn about all types that are
not caught by reference. <samp>-Wcatch-value</samp> is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wclobbered</code></dt>
<dd><a name="index-Wclobbered"></a>
<a name="index-Wno_002dclobbered"></a>
<p>Warn for variables that might be changed by <code>longjmp</code> or
<code>vfork</code>. This warning is also enabled by <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wconditionally-supported <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wconditionally_002dsupported"></a>
<a name="index-Wno_002dconditionally_002dsupported"></a>
<p>Warn for conditionally-supported (C++11 [intro.defs]) constructs.
</p>
</dd>
<dt><code>-Wconversion</code></dt>
<dd><a name="index-Wconversion"></a>
<a name="index-Wno_002dconversion"></a>
<p>Warn for implicit conversions that may alter a value. This includes
conversions between real and integer, like <code>abs (x)</code> when
<code>x</code> is <code>double</code>; conversions between signed and unsigned,
like <code>unsigned ui = -1</code>; and conversions to smaller types, like
<code>sqrtf (M_PI)</code>. Do not warn for explicit casts like <code>abs
((int) x)</code> and <code>ui = (unsigned) -1</code>, or if the value is not
changed by the conversion like in <code>abs (2.0)</code>. Warnings about
conversions between signed and unsigned integers can be disabled by
using <samp>-Wno-sign-conversion</samp>.
</p>
<p>For C++, also warn for confusing overload resolution for user-defined
conversions; and conversions that never use a type conversion
operator: conversions to <code>void</code>, the same type, a base class or a
reference to them. Warnings about conversions between signed and
unsigned integers are disabled by default in C++ unless
<samp>-Wsign-conversion</samp> is explicitly enabled.
</p>
</dd>
<dt><code>-Wno-conversion-null <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wconversion_002dnull"></a>
<a name="index-Wno_002dconversion_002dnull"></a>
<p>Do not warn for conversions between <code>NULL</code> and non-pointer
types. <samp>-Wconversion-null</samp> is enabled by default.
</p>
</dd>
<dt><code>-Wzero-as-null-pointer-constant <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wzero_002das_002dnull_002dpointer_002dconstant"></a>
<a name="index-Wno_002dzero_002das_002dnull_002dpointer_002dconstant"></a>
<p>Warn when a literal ‘<samp>0</samp>’ is used as null pointer constant. This can
be useful to facilitate the conversion to <code>nullptr</code> in C++11.
</p>
</dd>
<dt><code>-Wsubobject-linkage <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wsubobject_002dlinkage"></a>
<a name="index-Wno_002dsubobject_002dlinkage"></a>
<p>Warn if a class type has a base or a field whose type uses the anonymous
namespace or depends on a type with no linkage. If a type A depends on
a type B with no or internal linkage, defining it in multiple
translation units would be an ODR violation because the meaning of B
is different in each translation unit. If A only appears in a single
translation unit, the best way to silence the warning is to give it
internal linkage by putting it in an anonymous namespace as well. The
compiler doesn’t give this warning for types defined in the main .C
file, as those are unlikely to have multiple definitions.
<samp>-Wsubobject-linkage</samp> is enabled by default.
</p>
</dd>
<dt><code>-Wdangling-else</code></dt>
<dd><a name="index-Wdangling_002delse"></a>
<a name="index-Wno_002ddangling_002delse"></a>
<p>Warn about constructions where there may be confusion to which
<code>if</code> statement an <code>else</code> branch belongs. Here is an example of
such a case:
</p>
<div class="smallexample">
<pre class="smallexample">{
if (a)
if (b)
foo ();
else
bar ();
}
</pre></div>
<p>In C/C++, every <code>else</code> branch belongs to the innermost possible
<code>if</code> statement, which in this example is <code>if (b)</code>. This is
often not what the programmer expected, as illustrated in the above
example by indentation the programmer chose. When there is the
potential for this confusion, GCC issues a warning when this flag
is specified. To eliminate the warning, add explicit braces around
the innermost <code>if</code> statement so there is no way the <code>else</code>
can belong to the enclosing <code>if</code>. The resulting code
looks like this:
</p>
<div class="smallexample">
<pre class="smallexample">{
if (a)
{
if (b)
foo ();
else
bar ();
}
}
</pre></div>
<p>This warning is enabled by <samp>-Wparentheses</samp>.
</p>
</dd>
<dt><code>-Wdate-time</code></dt>
<dd><a name="index-Wdate_002dtime"></a>
<a name="index-Wno_002ddate_002dtime"></a>
<p>Warn when macros <code>__TIME__</code>, <code>__DATE__</code> or <code>__TIMESTAMP__</code>
are encountered as they might prevent bit-wise-identical reproducible
compilations.
</p>
</dd>
<dt><code>-Wdelete-incomplete <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wdelete_002dincomplete"></a>
<a name="index-Wno_002ddelete_002dincomplete"></a>
<p>Warn when deleting a pointer to incomplete type, which may cause
undefined behavior at runtime. This warning is enabled by default.
</p>
</dd>
<dt><code>-Wuseless-cast <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wuseless_002dcast"></a>
<a name="index-Wno_002duseless_002dcast"></a>
<p>Warn when an expression is casted to its own type.
</p>
</dd>
<dt><code>-Wempty-body</code></dt>
<dd><a name="index-Wempty_002dbody"></a>
<a name="index-Wno_002dempty_002dbody"></a>
<p>Warn if an empty body occurs in an <code>if</code>, <code>else</code> or <code>do
while</code> statement. This warning is also enabled by <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wenum-compare</code></dt>
<dd><a name="index-Wenum_002dcompare"></a>
<a name="index-Wno_002denum_002dcompare"></a>
<p>Warn about a comparison between values of different enumerated types.
In C++ enumerated type mismatches in conditional expressions are also
diagnosed and the warning is enabled by default. In C this warning is
enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wextra-semi <span class="roman">(C++, Objective-C++ only)</span></code></dt>
<dd><a name="index-Wextra_002dsemi"></a>
<a name="index-Wno_002dextra_002dsemi"></a>
<p>Warn about redundant semicolon after in-class function definition.
</p>
</dd>
<dt><code>-Wjump-misses-init <span class="roman">(C, Objective-C only)</span></code></dt>
<dd><a name="index-Wjump_002dmisses_002dinit"></a>
<a name="index-Wno_002djump_002dmisses_002dinit"></a>
<p>Warn if a <code>goto</code> statement or a <code>switch</code> statement jumps
forward across the initialization of a variable, or jumps backward to a
label after the variable has been initialized. This only warns about
variables that are initialized when they are declared. This warning is
only supported for C and Objective-C; in C++ this sort of branch is an
error in any case.
</p>
<p><samp>-Wjump-misses-init</samp> is included in <samp>-Wc++-compat</samp>. It
can be disabled with the <samp>-Wno-jump-misses-init</samp> option.
</p>
</dd>
<dt><code>-Wsign-compare</code></dt>
<dd><a name="index-Wsign_002dcompare"></a>
<a name="index-Wno_002dsign_002dcompare"></a>
<a name="index-warning-for-comparison-of-signed-and-unsigned-values"></a>
<a name="index-comparison-of-signed-and-unsigned-values_002c-warning"></a>
<a name="index-signed-and-unsigned-values_002c-comparison-warning"></a>
<p>Warn when a comparison between signed and unsigned values could produce
an incorrect result when the signed value is converted to unsigned.
In C++, this warning is also enabled by <samp>-Wall</samp>. In C, it is
also enabled by <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wsign-conversion</code></dt>
<dd><a name="index-Wsign_002dconversion"></a>
<a name="index-Wno_002dsign_002dconversion"></a>
<p>Warn for implicit conversions that may change the sign of an integer
value, like assigning a signed integer expression to an unsigned
integer variable. An explicit cast silences the warning. In C, this
option is enabled also by <samp>-Wconversion</samp>.
</p>
</dd>
<dt><code>-Wfloat-conversion</code></dt>
<dd><a name="index-Wfloat_002dconversion"></a>
<a name="index-Wno_002dfloat_002dconversion"></a>
<p>Warn for implicit conversions that reduce the precision of a real value.
This includes conversions from real to integer, and from higher precision
real to lower precision real values. This option is also enabled by
<samp>-Wconversion</samp>.
</p>
</dd>
<dt><code>-Wno-scalar-storage-order</code></dt>
<dd><a name="index-_002dWno_002dscalar_002dstorage_002dorder"></a>
<a name="index-_002dWscalar_002dstorage_002dorder"></a>
<p>Do not warn on suspicious constructs involving reverse scalar storage order.
</p>
</dd>
<dt><code>-Wsized-deallocation <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wsized_002ddeallocation"></a>
<a name="index-Wno_002dsized_002ddeallocation"></a>
<p>Warn about a definition of an unsized deallocation function
</p><div class="smallexample">
<pre class="smallexample">void operator delete (void *) noexcept;
void operator delete[] (void *) noexcept;
</pre></div>
<p>without a definition of the corresponding sized deallocation function
</p><div class="smallexample">
<pre class="smallexample">void operator delete (void *, std::size_t) noexcept;
void operator delete[] (void *, std::size_t) noexcept;
</pre></div>
<p>or vice versa. Enabled by <samp>-Wextra</samp> along with
<samp>-fsized-deallocation</samp>.
</p>
</dd>
<dt><code>-Wsizeof-pointer-div</code></dt>
<dd><a name="index-Wsizeof_002dpointer_002ddiv"></a>
<a name="index-Wno_002dsizeof_002dpointer_002ddiv"></a>
<p>Warn for suspicious divisions of two sizeof expressions that divide
the pointer size by the element size, which is the usual way to compute
the array size but won’t work out correctly with pointers. This warning
warns e.g. about <code>sizeof (ptr) / sizeof (ptr[0])</code> if <code>ptr</code> is
not an array, but a pointer. This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wsizeof-pointer-memaccess</code></dt>
<dd><a name="index-Wsizeof_002dpointer_002dmemaccess"></a>
<a name="index-Wno_002dsizeof_002dpointer_002dmemaccess"></a>
<p>Warn for suspicious length parameters to certain string and memory built-in
functions if the argument uses <code>sizeof</code>. This warning triggers for
example for <code>memset (ptr, 0, sizeof (ptr));</code> if <code>ptr</code> is not
an array, but a pointer, and suggests a possible fix, or about
<code>memcpy (&foo, ptr, sizeof (&foo));</code>. <samp>-Wsizeof-pointer-memaccess</samp>
also warns about calls to bounded string copy functions like <code>strncat</code>
or <code>strncpy</code> that specify as the bound a <code>sizeof</code> expression of
the source array. For example, in the following function the call to
<code>strncat</code> specifies the size of the source string as the bound. That
is almost certainly a mistake and so the call is diagnosed.
</p><div class="smallexample">
<pre class="smallexample">void make_file (const char *name)
{
char path[PATH_MAX];
strncpy (path, name, sizeof path - 1);
strncat (path, ".text", sizeof ".text");
…
}
</pre></div>
<p>The <samp>-Wsizeof-pointer-memaccess</samp> option is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wsizeof-array-argument</code></dt>
<dd><a name="index-Wsizeof_002darray_002dargument"></a>
<a name="index-Wno_002dsizeof_002darray_002dargument"></a>
<p>Warn when the <code>sizeof</code> operator is applied to a parameter that is
declared as an array in a function definition. This warning is enabled by
default for C and C++ programs.
</p>
</dd>
<dt><code>-Wmemset-elt-size</code></dt>
<dd><a name="index-Wmemset_002delt_002dsize"></a>
<a name="index-Wno_002dmemset_002delt_002dsize"></a>
<p>Warn for suspicious calls to the <code>memset</code> built-in function, if the
first argument references an array, and the third argument is a number
equal to the number of elements, but not equal to the size of the array
in memory. This indicates that the user has omitted a multiplication by
the element size. This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wmemset-transposed-args</code></dt>
<dd><a name="index-Wmemset_002dtransposed_002dargs"></a>
<a name="index-Wno_002dmemset_002dtransposed_002dargs"></a>
<p>Warn for suspicious calls to the <code>memset</code> built-in function, if the
second argument is not zero and the third argument is zero. This warns e.g. about <code>memset (buf, sizeof buf, 0)</code> where most probably
<code>memset (buf, 0, sizeof buf)</code> was meant instead. The diagnostics
is only emitted if the third argument is literal zero. If it is some
expression that is folded to zero, a cast of zero to some type, etc.,
it is far less likely that the user has mistakenly exchanged the arguments
and no warning is emitted. This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Waddress</code></dt>
<dd><a name="index-Waddress"></a>
<a name="index-Wno_002daddress"></a>
<p>Warn about suspicious uses of memory addresses. These include using
the address of a function in a conditional expression, such as
<code>void func(void); if (func)</code>, and comparisons against the memory
address of a string literal, such as <code>if (x == "abc")</code>. Such
uses typically indicate a programmer error: the address of a function
always evaluates to true, so their use in a conditional usually
indicate that the programmer forgot the parentheses in a function
call; and comparisons against string literals result in unspecified
behavior and are not portable in C, so they usually indicate that the
programmer intended to use <code>strcmp</code>. This warning is enabled by
<samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wlogical-op</code></dt>
<dd><a name="index-Wlogical_002dop"></a>
<a name="index-Wno_002dlogical_002dop"></a>
<p>Warn about suspicious uses of logical operators in expressions.
This includes using logical operators in contexts where a
bit-wise operator is likely to be expected. Also warns when
the operands of a logical operator are the same:
</p><div class="smallexample">
<pre class="smallexample">extern int a;
if (a < 0 && a < 0) { … }
</pre></div>
</dd>
<dt><code>-Wlogical-not-parentheses</code></dt>
<dd><a name="index-Wlogical_002dnot_002dparentheses"></a>
<a name="index-Wno_002dlogical_002dnot_002dparentheses"></a>
<p>Warn about logical not used on the left hand side operand of a comparison.
This option does not warn if the right operand is considered to be a boolean
expression. Its purpose is to detect suspicious code like the following:
</p><div class="smallexample">
<pre class="smallexample">int a;
…
if (!a > 1) { … }
</pre></div>
<p>It is possible to suppress the warning by wrapping the LHS into
parentheses:
</p><div class="smallexample">
<pre class="smallexample">if ((!a) > 1) { … }
</pre></div>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Waggregate-return</code></dt>
<dd><a name="index-Waggregate_002dreturn"></a>
<a name="index-Wno_002daggregate_002dreturn"></a>
<p>Warn if any functions that return structures or unions are defined or
called. (In languages where you can return an array, this also elicits
a warning.)
</p>
</dd>
<dt><code>-Wno-aggressive-loop-optimizations</code></dt>
<dd><a name="index-Wno_002daggressive_002dloop_002doptimizations"></a>
<a name="index-Waggressive_002dloop_002doptimizations"></a>
<p>Warn if in a loop with constant number of iterations the compiler detects
undefined behavior in some statement during one or more of the iterations.
</p>
</dd>
<dt><code>-Wno-attributes</code></dt>
<dd><a name="index-Wno_002dattributes"></a>
<a name="index-Wattributes"></a>
<p>Do not warn if an unexpected <code>__attribute__</code> is used, such as
unrecognized attributes, function attributes applied to variables,
etc. This does not stop errors for incorrect use of supported
attributes.
</p>
</dd>
<dt><code>-Wno-builtin-declaration-mismatch</code></dt>
<dd><a name="index-Wno_002dbuiltin_002ddeclaration_002dmismatch"></a>
<a name="index-Wbuiltin_002ddeclaration_002dmismatch"></a>
<p>Warn if a built-in function is declared with the wrong signature or
as non-function.
This warning is enabled by default.
</p>
</dd>
<dt><code>-Wno-builtin-macro-redefined</code></dt>
<dd><a name="index-Wno_002dbuiltin_002dmacro_002dredefined"></a>
<a name="index-Wbuiltin_002dmacro_002dredefined"></a>
<p>Do not warn if certain built-in macros are redefined. This suppresses
warnings for redefinition of <code>__TIMESTAMP__</code>, <code>__TIME__</code>,
<code>__DATE__</code>, <code>__FILE__</code>, and <code>__BASE_FILE__</code>.
</p>
</dd>
<dt><code>-Wstrict-prototypes <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wstrict_002dprototypes"></a>
<a name="index-Wno_002dstrict_002dprototypes"></a>
<p>Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted without
a warning if preceded by a declaration that specifies the argument
types.)
</p>
</dd>
<dt><code>-Wold-style-declaration <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wold_002dstyle_002ddeclaration"></a>
<a name="index-Wno_002dold_002dstyle_002ddeclaration"></a>
<p>Warn for obsolescent usages, according to the C Standard, in a
declaration. For example, warn if storage-class specifiers like
<code>static</code> are not the first things in a declaration. This warning
is also enabled by <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wold-style-definition <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wold_002dstyle_002ddefinition"></a>
<a name="index-Wno_002dold_002dstyle_002ddefinition"></a>
<p>Warn if an old-style function definition is used. A warning is given
even if there is a previous prototype.
</p>
</dd>
<dt><code>-Wmissing-parameter-type <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wmissing_002dparameter_002dtype"></a>
<a name="index-Wno_002dmissing_002dparameter_002dtype"></a>
<p>A function parameter is declared without a type specifier in K&R-style
functions:
</p>
<div class="smallexample">
<pre class="smallexample">void foo(bar) { }
</pre></div>
<p>This warning is also enabled by <samp>-Wextra</samp>.
</p>
</dd>
<dt><code>-Wmissing-prototypes <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wmissing_002dprototypes"></a>
<a name="index-Wno_002dmissing_002dprototypes"></a>
<p>Warn if a global function is defined without a previous prototype
declaration. This warning is issued even if the definition itself
provides a prototype. Use this option to detect global functions
that do not have a matching prototype declaration in a header file.
This option is not valid for C++ because all function declarations
provide prototypes and a non-matching declaration declares an
overload rather than conflict with an earlier declaration.
Use <samp>-Wmissing-declarations</samp> to detect missing declarations in C++.
</p>
</dd>
<dt><code>-Wmissing-declarations</code></dt>
<dd><a name="index-Wmissing_002ddeclarations"></a>
<a name="index-Wno_002dmissing_002ddeclarations"></a>
<p>Warn if a global function is defined without a previous declaration.
Do so even if the definition itself provides a prototype.
Use this option to detect global functions that are not declared in
header files. In C, no warnings are issued for functions with previous
non-prototype declarations; use <samp>-Wmissing-prototypes</samp> to detect
missing prototypes. In C++, no warnings are issued for function templates,
or for inline functions, or for functions in anonymous namespaces.
</p>
</dd>
<dt><code>-Wmissing-field-initializers</code></dt>
<dd><a name="index-Wmissing_002dfield_002dinitializers"></a>
<a name="index-Wno_002dmissing_002dfield_002dinitializers"></a>
<a name="index-W-1"></a>
<a name="index-Wextra-1"></a>
<a name="index-Wno_002dextra-1"></a>
<p>Warn if a structure’s initializer has some fields missing. For
example, the following code causes such a warning, because
<code>x.h</code> is implicitly zero:
</p>
<div class="smallexample">
<pre class="smallexample">struct s { int f, g, h; };
struct s x = { 3, 4 };
</pre></div>
<p>This option does not warn about designated initializers, so the following
modification does not trigger a warning:
</p>
<div class="smallexample">
<pre class="smallexample">struct s { int f, g, h; };
struct s x = { .f = 3, .g = 4 };
</pre></div>
<p>In C this option does not warn about the universal zero initializer
‘<samp>{ 0 }</samp>’:
</p>
<div class="smallexample">
<pre class="smallexample">struct s { int f, g, h; };
struct s x = { 0 };
</pre></div>
<p>Likewise, in C++ this option does not warn about the empty { }
initializer, for example:
</p>
<div class="smallexample">
<pre class="smallexample">struct s { int f, g, h; };
s x = { };
</pre></div>
<p>This warning is included in <samp>-Wextra</samp>. To get other <samp>-Wextra</samp>
warnings without this one, use <samp>-Wextra -Wno-missing-field-initializers</samp>.
</p>
</dd>
<dt><code>-Wno-multichar</code></dt>
<dd><a name="index-Wno_002dmultichar"></a>
<a name="index-Wmultichar"></a>
<p>Do not warn if a multicharacter constant (‘<samp>'FOOF'</samp>’) is used.
Usually they indicate a typo in the user’s code, as they have
implementation-defined values, and should not be used in portable code.
</p>
</dd>
<dt><code>-Wnormalized=<span class="roman">[</span>none<span class="roman">|</span>id<span class="roman">|</span>nfc<span class="roman">|</span>nfkc<span class="roman">]</span></code></dt>
<dd><a name="index-Wnormalized_003d"></a>
<a name="index-Wnormalized"></a>
<a name="index-Wno_002dnormalized"></a>
<a name="index-NFC"></a>
<a name="index-NFKC"></a>
<a name="index-character-set_002c-input-normalization"></a>
<p>In ISO C and ISO C++, two identifiers are different if they are
different sequences of characters. However, sometimes when characters
outside the basic ASCII character set are used, you can have two
different character sequences that look the same. To avoid confusion,
the ISO 10646 standard sets out some <em>normalization rules</em> which
when applied ensure that two sequences that look the same are turned into
the same sequence. GCC can warn you if you are using identifiers that
have not been normalized; this option controls that warning.
</p>
<p>There are four levels of warning supported by GCC. The default is
<samp>-Wnormalized=nfc</samp>, which warns about any identifier that is
not in the ISO 10646 “C” normalized form, <em>NFC</em>. NFC is the
recommended form for most uses. It is equivalent to
<samp>-Wnormalized</samp>.
</p>
<p>Unfortunately, there are some characters allowed in identifiers by
ISO C and ISO C++ that, when turned into NFC, are not allowed in
identifiers. That is, there’s no way to use these symbols in portable
ISO C or C++ and have all your identifiers in NFC.
<samp>-Wnormalized=id</samp> suppresses the warning for these characters.
It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.
</p>
<p>You can switch the warning off for all characters by writing
<samp>-Wnormalized=none</samp> or <samp>-Wno-normalized</samp>. You should
only do this if you are using some other normalization scheme (like
“D”), because otherwise you can easily create bugs that are
literally impossible to see.
</p>
<p>Some characters in ISO 10646 have distinct meanings but look identical
in some fonts or display methodologies, especially once formatting has
been applied. For instance <code>\u207F</code>, “SUPERSCRIPT LATIN SMALL
LETTER N”, displays just like a regular <code>n</code> that has been
placed in a superscript. ISO 10646 defines the <em>NFKC</em>
normalization scheme to convert all these into a standard form as
well, and GCC warns if your code is not in NFKC if you use
<samp>-Wnormalized=nfkc</samp>. This warning is comparable to warning
about every identifier that contains the letter O because it might be
confused with the digit 0, and so is not the default, but may be
useful as a local coding convention if the programming environment
cannot be fixed to display these characters distinctly.
</p>
</dd>
<dt><code>-Wno-deprecated</code></dt>
<dd><a name="index-Wno_002ddeprecated"></a>
<a name="index-Wdeprecated"></a>
<p>Do not warn about usage of deprecated features. See <a href="#Deprecated-Features">Deprecated Features</a>.
</p>
</dd>
<dt><code>-Wno-deprecated-declarations</code></dt>
<dd><a name="index-Wno_002ddeprecated_002ddeclarations"></a>
<a name="index-Wdeprecated_002ddeclarations"></a>
<p>Do not warn about uses of functions (see <a href="#Function-Attributes">Function Attributes</a>),
variables (see <a href="#Variable-Attributes">Variable Attributes</a>), and types (see <a href="#Type-Attributes">Type Attributes</a>) marked as deprecated by using the <code>deprecated</code>
attribute.
</p>
</dd>
<dt><code>-Wno-overflow</code></dt>
<dd><a name="index-Wno_002doverflow"></a>
<a name="index-Woverflow"></a>
<p>Do not warn about compile-time overflow in constant expressions.
</p>
</dd>
<dt><code>-Wno-odr</code></dt>
<dd><a name="index-Wno_002dodr"></a>
<a name="index-Wodr"></a>
<p>Warn about One Definition Rule violations during link-time optimization.
Requires <samp>-flto-odr-type-merging</samp> to be enabled. Enabled by default.
</p>
</dd>
<dt><code>-Wopenmp-simd</code></dt>
<dd><a name="index-Wopenm_002dsimd"></a>
<p>Warn if the vectorizer cost model overrides the OpenMP
simd directive set by user. The <samp>-fsimd-cost-model=unlimited</samp>
option can be used to relax the cost model.
</p>
</dd>
<dt><code>-Woverride-init <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Woverride_002dinit"></a>
<a name="index-Wno_002doverride_002dinit"></a>
<a name="index-W-2"></a>
<a name="index-Wextra-2"></a>
<a name="index-Wno_002dextra-2"></a>
<p>Warn if an initialized field without side effects is overridden when
using designated initializers (see <a href="#Designated-Inits">Designated
Initializers</a>).
</p>
<p>This warning is included in <samp>-Wextra</samp>. To get other
<samp>-Wextra</samp> warnings without this one, use <samp>-Wextra
-Wno-override-init</samp>.
</p>
</dd>
<dt><code>-Woverride-init-side-effects <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Woverride_002dinit_002dside_002deffects"></a>
<a name="index-Wno_002doverride_002dinit_002dside_002deffects"></a>
<p>Warn if an initialized field with side effects is overridden when
using designated initializers (see <a href="#Designated-Inits">Designated
Initializers</a>). This warning is enabled by default.
</p>
</dd>
<dt><code>-Wpacked</code></dt>
<dd><a name="index-Wpacked"></a>
<a name="index-Wno_002dpacked"></a>
<p>Warn if a structure is given the packed attribute, but the packed
attribute has no effect on the layout or size of the structure.
Such structures may be mis-aligned for little benefit. For
instance, in this code, the variable <code>f.x</code> in <code>struct bar</code>
is misaligned even though <code>struct bar</code> does not itself
have the packed attribute:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo {
int x;
char a, b, c, d;
} __attribute__((packed));
struct bar {
char z;
struct foo f;
};
</pre></div>
</dd>
<dt><code>-Wpacked-bitfield-compat</code></dt>
<dd><a name="index-Wpacked_002dbitfield_002dcompat"></a>
<a name="index-Wno_002dpacked_002dbitfield_002dcompat"></a>
<p>The 4.1, 4.2 and 4.3 series of GCC ignore the <code>packed</code> attribute
on bit-fields of type <code>char</code>. This has been fixed in GCC 4.4 but
the change can lead to differences in the structure layout. GCC
informs you when the offset of such a field has changed in GCC 4.4.
For example there is no longer a 4-bit padding between field <code>a</code>
and <code>b</code> in this structure:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo
{
char a:4;
char b:8;
} __attribute__ ((packed));
</pre></div>
<p>This warning is enabled by default. Use
<samp>-Wno-packed-bitfield-compat</samp> to disable this warning.
</p>
</dd>
<dt><code>-Wpacked-not-aligned <span class="roman">(C, C++, Objective-C and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wpacked_002dnot_002daligned"></a>
<a name="index-Wno_002dpacked_002dnot_002daligned"></a>
<p>Warn if a structure field with explicitly specified alignment in a
packed struct or union is misaligned. For example, a warning will
be issued on <code>struct S</code>, like, <code>warning: alignment 1 of
'struct S' is less than 8</code>, in this code:
</p>
<div class="smallexample">
<pre class="smallexample">struct __attribute__ ((aligned (8))) S8 { char a[8]; };
struct __attribute__ ((packed)) S {
struct S8 s8;
};
</pre></div>
<p>This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wpadded</code></dt>
<dd><a name="index-Wpadded"></a>
<a name="index-Wno_002dpadded"></a>
<p>Warn if padding is included in a structure, either to align an element
of the structure or to align the whole structure. Sometimes when this
happens it is possible to rearrange the fields of the structure to
reduce the padding and so make the structure smaller.
</p>
</dd>
<dt><code>-Wredundant-decls</code></dt>
<dd><a name="index-Wredundant_002ddecls"></a>
<a name="index-Wno_002dredundant_002ddecls"></a>
<p>Warn if anything is declared more than once in the same scope, even in
cases where multiple declaration is valid and changes nothing.
</p>
</dd>
<dt><code>-Wno-restrict</code></dt>
<dd><a name="index-Wrestrict"></a>
<a name="index-Wno_002drestrict"></a>
<p>Warn when an object referenced by a <code>restrict</code>-qualified parameter
(or, in C++, a <code>__restrict</code>-qualified parameter) is aliased by another
argument, or when copies between such objects overlap. For example,
the call to the <code>strcpy</code> function below attempts to truncate the string
by replacing its initial characters with the last four. However, because
the call writes the terminating NUL into <code>a[4]</code>, the copies overlap and
the call is diagnosed.
</p>
<div class="smallexample">
<pre class="smallexample">void foo (void)
{
char a[] = "abcd1234";
strcpy (a, a + 4);
…
}
</pre></div>
<p>The <samp>-Wrestrict</samp> option detects some instances of simple overlap
even without optimization but works best at <samp>-O2</samp> and above. It
is included in <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wnested-externs <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wnested_002dexterns"></a>
<a name="index-Wno_002dnested_002dexterns"></a>
<p>Warn if an <code>extern</code> declaration is encountered within a function.
</p>
</dd>
<dt><code>-Wno-inherited-variadic-ctor</code></dt>
<dd><a name="index-Winherited_002dvariadic_002dctor"></a>
<a name="index-Wno_002dinherited_002dvariadic_002dctor"></a>
<p>Suppress warnings about use of C++11 inheriting constructors when the
base class inherited from has a C variadic constructor; the warning is
on by default because the ellipsis is not inherited.
</p>
</dd>
<dt><code>-Winline</code></dt>
<dd><a name="index-Winline"></a>
<a name="index-Wno_002dinline"></a>
<p>Warn if a function that is declared as inline cannot be inlined.
Even with this option, the compiler does not warn about failures to
inline functions declared in system headers.
</p>
<p>The compiler uses a variety of heuristics to determine whether or not
to inline a function. For example, the compiler takes into account
the size of the function being inlined and the amount of inlining
that has already been done in the current function. Therefore,
seemingly insignificant changes in the source program can cause the
warnings produced by <samp>-Winline</samp> to appear or disappear.
</p>
</dd>
<dt><code>-Wno-invalid-offsetof <span class="roman">(C++ and Objective-C++ only)</span></code></dt>
<dd><a name="index-Wno_002dinvalid_002doffsetof"></a>
<a name="index-Winvalid_002doffsetof"></a>
<p>Suppress warnings from applying the <code>offsetof</code> macro to a non-POD
type. According to the 2014 ISO C++ standard, applying <code>offsetof</code>
to a non-standard-layout type is undefined. In existing C++ implementations,
however, <code>offsetof</code> typically gives meaningful results.
This flag is for users who are aware that they are
writing nonportable code and who have deliberately chosen to ignore the
warning about it.
</p>
<p>The restrictions on <code>offsetof</code> may be relaxed in a future version
of the C++ standard.
</p>
</dd>
<dt><code>-Wint-in-bool-context</code></dt>
<dd><a name="index-Wint_002din_002dbool_002dcontext"></a>
<a name="index-Wno_002dint_002din_002dbool_002dcontext"></a>
<p>Warn for suspicious use of integer values where boolean values are expected,
such as conditional expressions (?:) using non-boolean integer constants in
boolean context, like <code>if (a <= b ? 2 : 3)</code>. Or left shifting of signed
integers in boolean context, like <code>for (a = 0; 1 << a; a++);</code>. Likewise
for all kinds of multiplications regardless of the data type.
This warning is enabled by <samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wno-int-to-pointer-cast</code></dt>
<dd><a name="index-Wno_002dint_002dto_002dpointer_002dcast"></a>
<a name="index-Wint_002dto_002dpointer_002dcast"></a>
<p>Suppress warnings from casts to pointer type of an integer of a
different size. In C++, casting to a pointer type of smaller size is
an error. <samp>Wint-to-pointer-cast</samp> is enabled by default.
</p>
</dd>
<dt><code>-Wno-pointer-to-int-cast <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wno_002dpointer_002dto_002dint_002dcast"></a>
<a name="index-Wpointer_002dto_002dint_002dcast"></a>
<p>Suppress warnings from casts from a pointer to an integer type of a
different size.
</p>
</dd>
<dt><code>-Winvalid-pch</code></dt>
<dd><a name="index-Winvalid_002dpch"></a>
<a name="index-Wno_002dinvalid_002dpch"></a>
<p>Warn if a precompiled header (see <a href="#Precompiled-Headers">Precompiled Headers</a>) is found in
the search path but cannot be used.
</p>
</dd>
<dt><code>-Wlong-long</code></dt>
<dd><a name="index-Wlong_002dlong"></a>
<a name="index-Wno_002dlong_002dlong"></a>
<p>Warn if <code>long long</code> type is used. This is enabled by either
<samp>-Wpedantic</samp> or <samp>-Wtraditional</samp> in ISO C90 and C++98
modes. To inhibit the warning messages, use <samp>-Wno-long-long</samp>.
</p>
</dd>
<dt><code>-Wvariadic-macros</code></dt>
<dd><a name="index-Wvariadic_002dmacros"></a>
<a name="index-Wno_002dvariadic_002dmacros"></a>
<p>Warn if variadic macros are used in ISO C90 mode, or if the GNU
alternate syntax is used in ISO C99 mode. This is enabled by either
<samp>-Wpedantic</samp> or <samp>-Wtraditional</samp>. To inhibit the warning
messages, use <samp>-Wno-variadic-macros</samp>.
</p>
</dd>
<dt><code>-Wvarargs</code></dt>
<dd><a name="index-Wvarargs"></a>
<a name="index-Wno_002dvarargs"></a>
<p>Warn upon questionable usage of the macros used to handle variable
arguments like <code>va_start</code>. This is default. To inhibit the
warning messages, use <samp>-Wno-varargs</samp>.
</p>
</dd>
<dt><code>-Wvector-operation-performance</code></dt>
<dd><a name="index-Wvector_002doperation_002dperformance"></a>
<a name="index-Wno_002dvector_002doperation_002dperformance"></a>
<p>Warn if vector operation is not implemented via SIMD capabilities of the
architecture. Mainly useful for the performance tuning.
Vector operation can be implemented <code>piecewise</code>, which means that the
scalar operation is performed on every vector element;
<code>in parallel</code>, which means that the vector operation is implemented
using scalars of wider type, which normally is more performance efficient;
and <code>as a single scalar</code>, which means that vector fits into a
scalar type.
</p>
</dd>
<dt><code>-Wno-virtual-move-assign</code></dt>
<dd><a name="index-Wvirtual_002dmove_002dassign"></a>
<a name="index-Wno_002dvirtual_002dmove_002dassign"></a>
<p>Suppress warnings about inheriting from a virtual base with a
non-trivial C++11 move assignment operator. This is dangerous because
if the virtual base is reachable along more than one path, it is
moved multiple times, which can mean both objects end up in the
moved-from state. If the move assignment operator is written to avoid
moving from a moved-from object, this warning can be disabled.
</p>
</dd>
<dt><code>-Wvla</code></dt>
<dd><a name="index-Wvla"></a>
<a name="index-Wno_002dvla"></a>
<p>Warn if a variable-length array is used in the code.
<samp>-Wno-vla</samp> prevents the <samp>-Wpedantic</samp> warning of
the variable-length array.
</p>
</dd>
<dt><code>-Wvla-larger-than=<var>n</var></code></dt>
<dd><p>If this option is used, the compiler will warn on uses of
variable-length arrays where the size is either unbounded, or bounded
by an argument that can be larger than <var>n</var> bytes. This is similar
to how <samp>-Walloca-larger-than=<var>n</var></samp> works, but with
variable-length arrays.
</p>
<p>Note that GCC may optimize small variable-length arrays of a known
value into plain arrays, so this warning may not get triggered for
such arrays.
</p>
<p>This warning is not enabled by <samp>-Wall</samp>, and is only active when
<samp>-ftree-vrp</samp> is active (default for <samp>-O2</samp> and above).
</p>
<p>See also <samp>-Walloca-larger-than=<var>n</var></samp>.
</p>
</dd>
<dt><code>-Wvolatile-register-var</code></dt>
<dd><a name="index-Wvolatile_002dregister_002dvar"></a>
<a name="index-Wno_002dvolatile_002dregister_002dvar"></a>
<p>Warn if a register variable is declared volatile. The volatile
modifier does not inhibit all optimizations that may eliminate reads
and/or writes to register variables. This warning is enabled by
<samp>-Wall</samp>.
</p>
</dd>
<dt><code>-Wdisabled-optimization</code></dt>
<dd><a name="index-Wdisabled_002doptimization"></a>
<a name="index-Wno_002ddisabled_002doptimization"></a>
<p>Warn if a requested optimization pass is disabled. This warning does
not generally indicate that there is anything wrong with your code; it
merely indicates that GCC’s optimizers are unable to handle the code
effectively. Often, the problem is that your code is too big or too
complex; GCC refuses to optimize programs when the optimization
itself is likely to take inordinate amounts of time.
</p>
</dd>
<dt><code>-Wpointer-sign <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wpointer_002dsign"></a>
<a name="index-Wno_002dpointer_002dsign"></a>
<p>Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by
<samp>-Wall</samp> and by <samp>-Wpedantic</samp>, which can be disabled with
<samp>-Wno-pointer-sign</samp>.
</p>
</dd>
<dt><code>-Wstack-protector</code></dt>
<dd><a name="index-Wstack_002dprotector"></a>
<a name="index-Wno_002dstack_002dprotector"></a>
<p>This option is only active when <samp>-fstack-protector</samp> is active. It
warns about functions that are not protected against stack smashing.
</p>
</dd>
<dt><code>-Woverlength-strings</code></dt>
<dd><a name="index-Woverlength_002dstrings"></a>
<a name="index-Wno_002doverlength_002dstrings"></a>
<p>Warn about string constants that are longer than the “minimum
maximum” length specified in the C standard. Modern compilers
generally allow string constants that are much longer than the
standard’s minimum limit, but very portable programs should avoid
using longer strings.
</p>
<p>The limit applies <em>after</em> string constant concatenation, and does
not count the trailing NUL. In C90, the limit was 509 characters; in
C99, it was raised to 4095. C++98 does not specify a normative
minimum maximum, so we do not diagnose overlength strings in C++.
</p>
<p>This option is implied by <samp>-Wpedantic</samp>, and can be disabled with
<samp>-Wno-overlength-strings</samp>.
</p>
</dd>
<dt><code>-Wunsuffixed-float-constants <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><a name="index-Wunsuffixed_002dfloat_002dconstants"></a>
<p>Issue a warning for any floating constant that does not have
a suffix. When used together with <samp>-Wsystem-headers</samp> it
warns about such constants in system header files. This can be useful
when preparing code to use with the <code>FLOAT_CONST_DECIMAL64</code> pragma
from the decimal floating-point extension to C99.
</p>
</dd>
<dt><code>-Wno-designated-init <span class="roman">(C and Objective-C only)</span></code></dt>
<dd><p>Suppress warnings when a positional initializer is used to initialize
a structure that has been marked with the <code>designated_init</code>
attribute.
</p>
</dd>
<dt><code>-Whsa</code></dt>
<dd><p>Issue a warning when HSAIL cannot be emitted for the compiled function or
OpenMP construct.
</p>
</dd>
</dl>
<hr>
<a name="Debugging-Options"></a>
<div class="header">
<p>
Next: <a href="#Optimize-Options" accesskey="n" rel="next">Optimize Options</a>, Previous: <a href="#Warning-Options" accesskey="p" rel="prev">Warning Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-for-Debugging-Your-Program"></a>
<h3 class="section">3.9 Options for Debugging Your Program</h3>
<a name="index-options_002c-debugging"></a>
<a name="index-debugging-information-options"></a>
<p>To tell GCC to emit extra information for use by a debugger, in almost
all cases you need only to add <samp>-g</samp> to your other options.
</p>
<p>GCC allows you to use <samp>-g</samp> with
<samp>-O</samp>. The shortcuts taken by optimized code may occasionally
be surprising: some variables you declared may not exist
at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant
results or their values are already at hand; some statements may
execute in different places because they have been moved out of loops.
Nevertheless it is possible to debug optimized output. This makes
it reasonable to use the optimizer for programs that might have bugs.
</p>
<p>If you are not using some other optimization option, consider
using <samp>-Og</samp> (see <a href="#Optimize-Options">Optimize Options</a>) with <samp>-g</samp>.
With no <samp>-O</samp> option at all, some compiler passes that collect
information useful for debugging do not run at all, so that
<samp>-Og</samp> may result in a better debugging experience.
</p>
<dl compact="compact">
<dt><code>-g</code></dt>
<dd><a name="index-g"></a>
<p>Produce debugging information in the operating system’s native format
(stabs, COFF, XCOFF, or DWARF). GDB can work with this debugging
information.
</p>
<p>On most systems that use stabs format, <samp>-g</samp> enables use of extra
debugging information that only GDB can use; this extra information
makes debugging work better in GDB but probably makes other debuggers
crash or
refuse to read the program. If you want to control for certain whether
to generate the extra information, use <samp>-gstabs+</samp>, <samp>-gstabs</samp>,
<samp>-gxcoff+</samp>, <samp>-gxcoff</samp>, or <samp>-gvms</samp> (see below).
</p>
</dd>
<dt><code>-ggdb</code></dt>
<dd><a name="index-ggdb"></a>
<p>Produce debugging information for use by GDB. This means to use the
most expressive format available (DWARF, stabs, or the native format
if neither of those are supported), including GDB extensions if at all
possible.
</p>
</dd>
<dt><code>-gdwarf</code></dt>
<dt><code>-gdwarf-<var>version</var></code></dt>
<dd><a name="index-gdwarf"></a>
<p>Produce debugging information in DWARF format (if that is supported).
The value of <var>version</var> may be either 2, 3, 4 or 5; the default version
for most targets is 4. DWARF Version 5 is only experimental.
</p>
<p>Note that with DWARF Version 2, some ports require and always
use some non-conflicting DWARF 3 extensions in the unwind tables.
</p>
<p>Version 4 may require GDB 7.0 and <samp>-fvar-tracking-assignments</samp>
for maximum benefit.
</p>
<p>GCC no longer supports DWARF Version 1, which is substantially
different than Version 2 and later. For historical reasons, some
other DWARF-related options such as
<samp>-fno-dwarf2-cfi-asm</samp>) retain a reference to DWARF Version 2
in their names, but apply to all currently-supported versions of DWARF.
</p>
</dd>
<dt><code>-gstabs</code></dt>
<dd><a name="index-gstabs"></a>
<p>Produce debugging information in stabs format (if that is supported),
without GDB extensions. This is the format used by DBX on most BSD
systems. On MIPS, Alpha and System V Release 4 systems this option
produces stabs debugging output that is not understood by DBX.
On System V Release 4 systems this option requires the GNU assembler.
</p>
</dd>
<dt><code>-gstabs+</code></dt>
<dd><a name="index-gstabs_002b"></a>
<p>Produce debugging information in stabs format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB). The
use of these extensions is likely to make other debuggers crash or
refuse to read the program.
</p>
</dd>
<dt><code>-gxcoff</code></dt>
<dd><a name="index-gxcoff"></a>
<p>Produce debugging information in XCOFF format (if that is supported).
This is the format used by the DBX debugger on IBM RS/6000 systems.
</p>
</dd>
<dt><code>-gxcoff+</code></dt>
<dd><a name="index-gxcoff_002b"></a>
<p>Produce debugging information in XCOFF format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB). The
use of these extensions is likely to make other debuggers crash or
refuse to read the program, and may cause assemblers other than the GNU
assembler (GAS) to fail with an error.
</p>
</dd>
<dt><code>-gvms</code></dt>
<dd><a name="index-gvms"></a>
<p>Produce debugging information in Alpha/VMS debug format (if that is
supported). This is the format used by DEBUG on Alpha/VMS systems.
</p>
</dd>
<dt><code>-g<var>level</var></code></dt>
<dt><code>-ggdb<var>level</var></code></dt>
<dt><code>-gstabs<var>level</var></code></dt>
<dt><code>-gxcoff<var>level</var></code></dt>
<dt><code>-gvms<var>level</var></code></dt>
<dd><p>Request debugging information and also use <var>level</var> to specify how
much information. The default level is 2.
</p>
<p>Level 0 produces no debug information at all. Thus, <samp>-g0</samp> negates
<samp>-g</samp>.
</p>
<p>Level 1 produces minimal information, enough for making backtraces in
parts of the program that you don’t plan to debug. This includes
descriptions of functions and external variables, and line number
tables, but no information about local variables.
</p>
<p>Level 3 includes extra information, such as all the macro definitions
present in the program. Some debuggers support macro expansion when
you use <samp>-g3</samp>.
</p>
<p><samp>-gdwarf</samp> does not accept a concatenated debug level, to avoid
confusion with <samp>-gdwarf-<var>level</var></samp>.
Instead use an additional <samp>-g<var>level</var></samp> option to change the
debug level for DWARF.
</p>
</dd>
<dt><code>-feliminate-unused-debug-symbols</code></dt>
<dd><a name="index-feliminate_002dunused_002ddebug_002dsymbols"></a>
<p>Produce debugging information in stabs format (if that is supported),
for only symbols that are actually used.
</p>
</dd>
<dt><code>-femit-class-debug-always</code></dt>
<dd><a name="index-femit_002dclass_002ddebug_002dalways"></a>
<p>Instead of emitting debugging information for a C++ class in only one
object file, emit it in all object files using the class. This option
should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes because using this
option increases the size of debugging information by as much as a
factor of two.
</p>
</dd>
<dt><code>-fno-merge-debug-strings</code></dt>
<dd><a name="index-fmerge_002ddebug_002dstrings"></a>
<a name="index-fno_002dmerge_002ddebug_002dstrings"></a>
<p>Direct the linker to not merge together strings in the debugging
information that are identical in different object files. Merging is
not supported by all assemblers or linkers. Merging decreases the size
of the debug information in the output file at the cost of increasing
link processing time. Merging is enabled by default.
</p>
</dd>
<dt><code>-fdebug-prefix-map=<var>old</var>=<var>new</var></code></dt>
<dd><a name="index-fdebug_002dprefix_002dmap"></a>
<p>When compiling files residing in directory <samp><var>old</var></samp>, record
debugging information describing them as if the files resided in
directory <samp><var>new</var></samp> instead. This can be used to replace a
build-time path with an install-time path in the debug info. It can
also be used to change an absolute path to a relative path by using
<samp>.</samp> for <var>new</var>. This can give more reproducible builds, which
are location independent, but may require an extra command to tell GDB
where to find the source files. See also <samp>-ffile-prefix-map</samp>.
</p>
</dd>
<dt><code>-fvar-tracking</code></dt>
<dd><a name="index-fvar_002dtracking"></a>
<p>Run variable tracking pass. It computes where variables are stored at each
position in code. Better debugging information is then generated
(if the debugging information format supports this information).
</p>
<p>It is enabled by default when compiling with optimization (<samp>-Os</samp>,
<samp>-O</samp>, <samp>-O2</samp>, …), debugging information (<samp>-g</samp>) and
the debug info format supports it.
</p>
</dd>
<dt><code>-fvar-tracking-assignments</code></dt>
<dd><a name="index-fvar_002dtracking_002dassignments"></a>
<a name="index-fno_002dvar_002dtracking_002dassignments"></a>
<p>Annotate assignments to user variables early in the compilation and
attempt to carry the annotations over throughout the compilation all the
way to the end, in an attempt to improve debug information while
optimizing. Use of <samp>-gdwarf-4</samp> is recommended along with it.
</p>
<p>It can be enabled even if var-tracking is disabled, in which case
annotations are created and maintained, but discarded at the end.
By default, this flag is enabled together with <samp>-fvar-tracking</samp>,
except when selective scheduling is enabled.
</p>
</dd>
<dt><code>-gsplit-dwarf</code></dt>
<dd><a name="index-gsplit_002ddwarf"></a>
<p>Separate as much DWARF debugging information as possible into a
separate output file with the extension <samp>.dwo</samp>. This option allows
the build system to avoid linking files with debug information. To
be useful, this option requires a debugger capable of reading <samp>.dwo</samp>
files.
</p>
</dd>
<dt><code>-gpubnames</code></dt>
<dd><a name="index-gpubnames"></a>
<p>Generate DWARF <code>.debug_pubnames</code> and <code>.debug_pubtypes</code> sections.
</p>
</dd>
<dt><code>-ggnu-pubnames</code></dt>
<dd><a name="index-ggnu_002dpubnames"></a>
<p>Generate <code>.debug_pubnames</code> and <code>.debug_pubtypes</code> sections in a format
suitable for conversion into a GDB index. This option is only useful
with a linker that can produce GDB index version 7.
</p>
</dd>
<dt><code>-fdebug-types-section</code></dt>
<dd><a name="index-fdebug_002dtypes_002dsection"></a>
<a name="index-fno_002ddebug_002dtypes_002dsection"></a>
<p>When using DWARF Version 4 or higher, type DIEs can be put into
their own <code>.debug_types</code> section instead of making them part of the
<code>.debug_info</code> section. It is more efficient to put them in a separate
comdat sections since the linker can then remove duplicates.
But not all DWARF consumers support <code>.debug_types</code> sections yet
and on some objects <code>.debug_types</code> produces larger instead of smaller
debugging information.
</p>
</dd>
<dt><code>-grecord-gcc-switches</code></dt>
<dt><code>-gno-record-gcc-switches</code></dt>
<dd><a name="index-grecord_002dgcc_002dswitches"></a>
<a name="index-gno_002drecord_002dgcc_002dswitches"></a>
<p>This switch causes the command-line options used to invoke the
compiler that may affect code generation to be appended to the
DW_AT_producer attribute in DWARF debugging information. The options
are concatenated with spaces separating them from each other and from
the compiler version.
It is enabled by default.
See also <samp>-frecord-gcc-switches</samp> for another
way of storing compiler options into the object file.
</p>
</dd>
<dt><code>-gstrict-dwarf</code></dt>
<dd><a name="index-gstrict_002ddwarf"></a>
<p>Disallow using extensions of later DWARF standard version than selected
with <samp>-gdwarf-<var>version</var></samp>. On most targets using non-conflicting
DWARF extensions from later standard versions is allowed.
</p>
</dd>
<dt><code>-gno-strict-dwarf</code></dt>
<dd><a name="index-gno_002dstrict_002ddwarf"></a>
<p>Allow using extensions of later DWARF standard version than selected with
<samp>-gdwarf-<var>version</var></samp>.
</p>
</dd>
<dt><code>-gas-loc-support</code></dt>
<dd><a name="index-gas_002dloc_002dsupport"></a>
<p>Inform the compiler that the assembler supports <code>.loc</code> directives.
It may then use them for the assembler to generate DWARF2+ line number
tables.
</p>
<p>This is generally desirable, because assembler-generated line-number
tables are a lot more compact than those the compiler can generate
itself.
</p>
<p>This option will be enabled by default if, at GCC configure time, the
assembler was found to support such directives.
</p>
</dd>
<dt><code>-gno-as-loc-support</code></dt>
<dd><a name="index-gno_002das_002dloc_002dsupport"></a>
<p>Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
line number tables are to be generated.
</p>
</dd>
<dt><code>gas-locview-support</code></dt>
<dd><a name="index-gas_002dlocview_002dsupport"></a>
<p>Inform the compiler that the assembler supports <code>view</code> assignment
and reset assertion checking in <code>.loc</code> directives.
</p>
<p>This option will be enabled by default if, at GCC configure time, the
assembler was found to support them.
</p>
</dd>
<dt><code>gno-as-locview-support</code></dt>
<dd><p>Force GCC to assign view numbers internally, if
<samp>-gvariable-location-views</samp> are explicitly requested.
</p>
</dd>
<dt><code>-gcolumn-info</code></dt>
<dt><code>-gno-column-info</code></dt>
<dd><a name="index-gcolumn_002dinfo"></a>
<a name="index-gno_002dcolumn_002dinfo"></a>
<p>Emit location column information into DWARF debugging information, rather
than just file and line.
This option is enabled by default.
</p>
</dd>
<dt><code>-gstatement-frontiers</code></dt>
<dt><code>-gno-statement-frontiers</code></dt>
<dd><a name="index-gstatement_002dfrontiers"></a>
<a name="index-gno_002dstatement_002dfrontiers"></a>
<p>This option causes GCC to create markers in the internal representation
at the beginning of statements, and to keep them roughly in place
throughout compilation, using them to guide the output of <code>is_stmt</code>
markers in the line number table. This is enabled by default when
compiling with optimization (<samp>-Os</samp>, <samp>-O</samp>, <samp>-O2</samp>,
…), and outputting DWARF 2 debug information at the normal level.
</p>
</dd>
<dt><code>-gvariable-location-views</code></dt>
<dt><code>-gvariable-location-views=incompat5</code></dt>
<dt><code>-gno-variable-location-views</code></dt>
<dd><a name="index-gvariable_002dlocation_002dviews"></a>
<a name="index-gvariable_002dlocation_002dviews_003dincompat5"></a>
<a name="index-gno_002dvariable_002dlocation_002dviews"></a>
<p>Augment variable location lists with progressive view numbers implied
from the line number table. This enables debug information consumers to
inspect state at certain points of the program, even if no instructions
associated with the corresponding source locations are present at that
point. If the assembler lacks support for view numbers in line number
tables, this will cause the compiler to emit the line number table,
which generally makes them somewhat less compact. The augmented line
number tables and location lists are fully backward-compatible, so they
can be consumed by debug information consumers that are not aware of
these augmentations, but they won’t derive any benefit from them either.
</p>
<p>This is enabled by default when outputting DWARF 2 debug information at
the normal level, as long as there is assembler support,
<samp>-fvar-tracking-assignments</samp> is enabled and
<samp>-gstrict-dwarf</samp> is not. When assembler support is not
available, this may still be enabled, but it will force GCC to output
internal line number tables, and if
<samp>-ginternal-reset-location-views</samp> is not enabled, that will most
certainly lead to silently mismatching location views.
</p>
<p>There is a proposed representation for view numbers that is not backward
compatible with the location list format introduced in DWARF 5, that can
be enabled with <samp>-gvariable-location-views=incompat5</samp>. This
option may be removed in the future, is only provided as a reference
implementation of the proposed representation. Debug information
consumers are not expected to support this extended format, and they
would be rendered unable to decode location lists using it.
</p>
</dd>
<dt><code>-ginternal-reset-location-views</code></dt>
<dt><code>-gnointernal-reset-location-views</code></dt>
<dd><a name="index-ginternal_002dreset_002dlocation_002dviews"></a>
<a name="index-gno_002dinternal_002dreset_002dlocation_002dviews"></a>
<p>Attempt to determine location views that can be omitted from location
view lists. This requires the compiler to have very accurate insn
length estimates, which isn’t always the case, and it may cause
incorrect view lists to be generated silently when using an assembler
that does not support location view lists. The GNU assembler will flag
any such error as a <code>view number mismatch</code>. This is only enabled
on ports that define a reliable estimation function.
</p>
</dd>
<dt><code>-ginline-points</code></dt>
<dt><code>-gno-inline-points</code></dt>
<dd><a name="index-ginline_002dpoints"></a>
<a name="index-gno_002dinline_002dpoints"></a>
<p>Generate extended debug information for inlined functions. Location
view tracking markers are inserted at inlined entry points, so that
address and view numbers can be computed and output in debug
information. This can be enabled independently of location views, in
which case the view numbers won’t be output, but it can only be enabled
along with statement frontiers, and it is only enabled by default if
location views are enabled.
</p>
</dd>
<dt><code>-gz<span class="roman">[</span>=<var>type</var><span class="roman">]</span></code></dt>
<dd><a name="index-gz"></a>
<p>Produce compressed debug sections in DWARF format, if that is supported.
If <var>type</var> is not given, the default type depends on the capabilities
of the assembler and linker used. <var>type</var> may be one of
‘<samp>none</samp>’ (don’t compress debug sections), ‘<samp>zlib</samp>’ (use zlib
compression in ELF gABI format), or ‘<samp>zlib-gnu</samp>’ (use zlib
compression in traditional GNU format). If the linker doesn’t support
writing compressed debug sections, the option is rejected. Otherwise,
if the assembler does not support them, <samp>-gz</samp> is silently ignored
when producing object files.
</p>
</dd>
<dt><code>-femit-struct-debug-baseonly</code></dt>
<dd><a name="index-femit_002dstruct_002ddebug_002dbaseonly"></a>
<p>Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the struct is defined.
</p>
<p>This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See <samp>-femit-struct-debug-reduced</samp> for a less aggressive option.
See <samp>-femit-struct-debug-detailed</samp> for more detailed control.
</p>
<p>This option works only with DWARF debug output.
</p>
</dd>
<dt><code>-femit-struct-debug-reduced</code></dt>
<dd><a name="index-femit_002dstruct_002ddebug_002dreduced"></a>
<p>Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the type is defined,
unless the struct is a template or defined in a system header.
</p>
<p>This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger.
See <samp>-femit-struct-debug-baseonly</samp> for a more aggressive option.
See <samp>-femit-struct-debug-detailed</samp> for more detailed control.
</p>
<p>This option works only with DWARF debug output.
</p>
</dd>
<dt><code>-femit-struct-debug-detailed<span class="roman">[</span>=<var>spec-list</var><span class="roman">]</span></code></dt>
<dd><a name="index-femit_002dstruct_002ddebug_002ddetailed"></a>
<p>Specify the struct-like types
for which the compiler generates debug information.
The intent is to reduce duplicate struct debug information
between different object files within the same program.
</p>
<p>This option is a detailed version of
<samp>-femit-struct-debug-reduced</samp> and <samp>-femit-struct-debug-baseonly</samp>,
which serves for most needs.
</p>
<p>A specification has the syntax<br>
[‘<samp>dir:</samp>’|‘<samp>ind:</samp>’][‘<samp>ord:</samp>’|‘<samp>gen:</samp>’](‘<samp>any</samp>’|‘<samp>sys</samp>’|‘<samp>base</samp>’|‘<samp>none</samp>’)
</p>
<p>The optional first word limits the specification to
structs that are used directly (‘<samp>dir:</samp>’) or used indirectly (‘<samp>ind:</samp>’).
A struct type is used directly when it is the type of a variable, member.
Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct is valid, the use is indirect.
An example is
‘<samp>struct one direct; struct two * indirect;</samp>’.
</p>
<p>The optional second word limits the specification to
ordinary structs (‘<samp>ord:</samp>’) or generic structs (‘<samp>gen:</samp>’).
Generic structs are a bit complicated to explain.
For C++, these are non-explicit specializations of template classes,
or non-template classes within the above.
Other programming languages have generics,
but <samp>-femit-struct-debug-detailed</samp> does not yet implement them.
</p>
<p>The third word specifies the source files for those
structs for which the compiler should emit debug information.
The values ‘<samp>none</samp>’ and ‘<samp>any</samp>’ have the normal meaning.
The value ‘<samp>base</samp>’ means that
the base of name of the file in which the type declaration appears
must match the base of the name of the main compilation file.
In practice, this means that when compiling <samp>foo.c</samp>, debug information
is generated for types declared in that file and <samp>foo.h</samp>,
but not other header files.
The value ‘<samp>sys</samp>’ means those types satisfying ‘<samp>base</samp>’
or declared in system or compiler headers.
</p>
<p>You may need to experiment to determine the best settings for your application.
</p>
<p>The default is <samp>-femit-struct-debug-detailed=all</samp>.
</p>
<p>This option works only with DWARF debug output.
</p>
</dd>
<dt><code>-fno-dwarf2-cfi-asm</code></dt>
<dd><a name="index-fdwarf2_002dcfi_002dasm"></a>
<a name="index-fno_002ddwarf2_002dcfi_002dasm"></a>
<p>Emit DWARF unwind info as compiler generated <code>.eh_frame</code> section
instead of using GAS <code>.cfi_*</code> directives.
</p>
</dd>
<dt><code>-fno-eliminate-unused-debug-types</code></dt>
<dd><a name="index-feliminate_002dunused_002ddebug_002dtypes"></a>
<a name="index-fno_002deliminate_002dunused_002ddebug_002dtypes"></a>
<p>Normally, when producing DWARF output, GCC avoids producing debug symbol
output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging
information for all types declared in a compilation
unit, regardless of whether or not they are actually used
in that compilation unit, for example
if, in the debugger, you want to cast a value to a type that is
not actually used in your program (but is declared). More often,
however, this results in a significant amount of wasted space.
</p></dd>
</dl>
<hr>
<a name="Optimize-Options"></a>
<div class="header">
<p>
Next: <a href="#Instrumentation-Options" accesskey="n" rel="next">Instrumentation Options</a>, Previous: <a href="#Debugging-Options" accesskey="p" rel="prev">Debugging Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-That-Control-Optimization"></a>
<h3 class="section">3.10 Options That Control Optimization</h3>
<a name="index-optimize-options"></a>
<a name="index-options_002c-optimization"></a>
<p>These options control various sorts of optimizations.
</p>
<p>Without any optimization option, the compiler’s goal is to reduce the
cost of compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the
function and get exactly the results you expect from the source
code.
</p>
<p>Turning on optimization flags makes the compiler attempt to improve
the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.
</p>
<p>The compiler performs optimization based on the knowledge it has of the
program. Compiling multiple files at once to a single output file mode allows
the compiler to use information gained from all of the files when compiling
each of them.
</p>
<p>Not all optimizations are controlled directly by a flag. Only
optimizations that have a flag are listed in this section.
</p>
<p>Most optimizations are only enabled if an <samp>-O</samp> level is set on
the command line. Otherwise they are disabled, even if individual
optimization flags are specified.
</p>
<p>Depending on the target and how GCC was configured, a slightly different
set of optimizations may be enabled at each <samp>-O</samp> level than
those listed here. You can invoke GCC with <samp>-Q --help=optimizers</samp>
to find out the exact set of optimizations that are enabled at each level.
See <a href="#Overall-Options">Overall Options</a>, for examples.
</p>
<dl compact="compact">
<dt><code>-O</code></dt>
<dt><code>-O1</code></dt>
<dd><a name="index-O"></a>
<a name="index-O1"></a>
<p>Optimize. Optimizing compilation takes somewhat more time, and a lot
more memory for a large function.
</p>
<p>With <samp>-O</samp>, the compiler tries to reduce code size and execution
time, without performing any optimizations that take a great deal of
compilation time.
</p>
<p><samp>-O</samp> turns on the following optimization flags:
</p><div class="smallexample">
<pre class="smallexample">-fauto-inc-dec
-fbranch-count-reg
-fcombine-stack-adjustments
-fcompare-elim
-fcprop-registers
-fdce
-fdefer-pop
-fdelayed-branch
-fdse
-fforward-propagate
-fguess-branch-probability
-fif-conversion2
-fif-conversion
-finline-functions-called-once
-fipa-pure-const
-fipa-profile
-fipa-reference
-fmerge-constants
-fmove-loop-invariants
-fomit-frame-pointer
-freorder-blocks
-fshrink-wrap
-fshrink-wrap-separate
-fsplit-wide-types
-fssa-backprop
-fssa-phiopt
-ftree-bit-ccp
-ftree-ccp
-ftree-ch
-ftree-coalesce-vars
-ftree-copy-prop
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-forwprop
-ftree-fre
-ftree-phiprop
-ftree-sink
-ftree-slsr
-ftree-sra
-ftree-pta
-ftree-ter
-funit-at-a-time
</pre></div>
</dd>
<dt><code>-O2</code></dt>
<dd><a name="index-O2"></a>
<p>Optimize even more. GCC performs nearly all supported optimizations
that do not involve a space-speed tradeoff.
As compared to <samp>-O</samp>, this option increases both compilation time
and the performance of the generated code.
</p>
<p><samp>-O2</samp> turns on all optimization flags specified by <samp>-O</samp>. It
also turns on the following optimization flags:
</p><div class="smallexample">
<pre class="smallexample">-fthread-jumps
-falign-functions -falign-jumps
-falign-loops -falign-labels
-fcaller-saves
-fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks
-fdevirtualize -fdevirtualize-speculatively
-fexpensive-optimizations
-fgcse -fgcse-lm
-fhoist-adjacent-loads
-finline-small-functions
-findirect-inlining
-fipa-cp
-fipa-bit-cp
-fipa-vrp
-fipa-sra
-fipa-icf
-fisolate-erroneous-paths-dereference
-flra-remat
-foptimize-sibling-calls
-foptimize-strlen
-fpartial-inlining
-fpeephole2
-freorder-blocks-algorithm=stc
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop
-fsched-interblock -fsched-spec
-fschedule-insns -fschedule-insns2
-fstore-merging
-fstrict-aliasing
-ftree-builtin-call-dce
-ftree-switch-conversion -ftree-tail-merge
-fcode-hoisting
-ftree-pre
-ftree-vrp
-fipa-ra
</pre></div>
<p>Please note the warning under <samp>-fgcse</samp> about
invoking <samp>-O2</samp> on programs that use computed gotos.
</p>
<p>NOTE: In Ubuntu 8.10 and later versions, <samp>-D_FORTIFY_SOURCE=2</samp> is
set by default, and is activated when <samp>-O</samp> is set to 2 or higher.
This enables additional compile-time and run-time checks for several libc
functions. To disable, specify either <samp>-U_FORTIFY_SOURCE</samp> or
<samp>-D_FORTIFY_SOURCE=0</samp>.
</p>
</dd>
<dt><code>-O3</code></dt>
<dd><a name="index-O3"></a>
<p>Optimize yet more. <samp>-O3</samp> turns on all optimizations specified
by <samp>-O2</samp> and also turns on the following optimization flags:
</p><div class="smallexample">
<pre class="smallexample">-finline-functions
-funswitch-loops
-fpredictive-commoning
-fgcse-after-reload
-ftree-loop-vectorize
-ftree-loop-distribution
-ftree-loop-distribute-patterns
-floop-interchange
-fsplit-paths
-ftree-slp-vectorize
-fvect-cost-model
-ftree-partial-pre
-fpeel-loops
-fipa-cp-clone
</pre></div>
</dd>
<dt><code>-O0</code></dt>
<dd><a name="index-O0"></a>
<p>Reduce compilation time and make debugging produce the expected
results. This is the default.
</p>
</dd>
<dt><code>-Os</code></dt>
<dd><a name="index-Os"></a>
<p>Optimize for size. <samp>-Os</samp> enables all <samp>-O2</samp> optimizations that
do not typically increase code size. It also performs further
optimizations designed to reduce code size.
</p>
<p><samp>-Os</samp> disables the following optimization flags:
</p><div class="smallexample">
<pre class="smallexample">-falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-algorithm=stc
-freorder-blocks-and-partition -fprefetch-loop-arrays
</pre></div>
</dd>
<dt><code>-Ofast</code></dt>
<dd><a name="index-Ofast"></a>
<p>Disregard strict standards compliance. <samp>-Ofast</samp> enables all
<samp>-O3</samp> optimizations. It also enables optimizations that are not
valid for all standard-compliant programs.
It turns on <samp>-ffast-math</samp> and the Fortran-specific
<samp>-fstack-arrays</samp>, unless <samp>-fmax-stack-var-size</samp> is
specified, and <samp>-fno-protect-parens</samp>.
</p>
</dd>
<dt><code>-Og</code></dt>
<dd><a name="index-Og"></a>
<p>Optimize debugging experience. <samp>-Og</samp> enables optimizations
that do not interfere with debugging. It should be the optimization
level of choice for the standard edit-compile-debug cycle, offering
a reasonable level of optimization while maintaining fast compilation
and a good debugging experience.
</p></dd>
</dl>
<p>If you use multiple <samp>-O</samp> options, with or without level numbers,
the last such option is the one that is effective.
</p>
<p>Options of the form <samp>-f<var>flag</var></samp> specify machine-independent
flags. Most flags have both positive and negative forms; the negative
form of <samp>-ffoo</samp> is <samp>-fno-foo</samp>. In the table
below, only one of the forms is listed—the one you typically
use. You can figure out the other form by either removing ‘<samp>no-</samp>’
or adding it.
</p>
<p>The following options control specific optimizations. They are either
activated by <samp>-O</samp> options or are related to ones that are. You
can use the following flags in the rare cases when “fine-tuning” of
optimizations to be performed is desired.
</p>
<dl compact="compact">
<dt><code>-fno-defer-pop</code></dt>
<dd><a name="index-fno_002ddefer_002dpop"></a>
<p>Always pop the arguments to each function call as soon as that function
returns. For machines that must pop arguments after a function call,
the compiler normally lets arguments accumulate on the stack for several
function calls and pops them all at once.
</p>
<p>Disabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fforward-propagate</code></dt>
<dd><a name="index-fforward_002dpropagate"></a>
<p>Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling
is active, two passes are performed and the second is scheduled after
loop unrolling.
</p>
<p>This option is enabled by default at optimization levels <samp>-O</samp>,
<samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-ffp-contract=<var>style</var></code></dt>
<dd><a name="index-ffp_002dcontract"></a>
<p><samp>-ffp-contract=off</samp> disables floating-point expression contraction.
<samp>-ffp-contract=fast</samp> enables floating-point expression contraction
such as forming of fused multiply-add operations if the target has
native support for them.
<samp>-ffp-contract=on</samp> enables floating-point expression contraction
if allowed by the language standard. This is currently not implemented
and treated equal to <samp>-ffp-contract=off</samp>.
</p>
<p>The default is <samp>-ffp-contract=fast</samp>.
</p>
</dd>
<dt><code>-fomit-frame-pointer</code></dt>
<dd><a name="index-fomit_002dframe_002dpointer"></a>
<p>Omit the frame pointer in functions that don’t need one. This avoids the
instructions to save, set up and restore the frame pointer; on many targets
it also makes an extra register available.
</p>
<p>On some targets this flag has no effect because the standard calling sequence
always uses a frame pointer, so it cannot be omitted.
</p>
<p>Note that <samp>-fno-omit-frame-pointer</samp> doesn’t guarantee the frame pointer
is used in all functions. Several targets always omit the frame pointer in
leaf functions.
</p>
<p>Enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-foptimize-sibling-calls</code></dt>
<dd><a name="index-foptimize_002dsibling_002dcalls"></a>
<p>Optimize sibling and tail recursive calls.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-foptimize-strlen</code></dt>
<dd><a name="index-foptimize_002dstrlen"></a>
<p>Optimize various standard C string functions (e.g. <code>strlen</code>,
<code>strchr</code> or <code>strcpy</code>) and
their <code>_FORTIFY_SOURCE</code> counterparts into faster alternatives.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>.
</p>
</dd>
<dt><code>-fno-inline</code></dt>
<dd><a name="index-fno_002dinline"></a>
<p>Do not expand any functions inline apart from those marked with
the <code>always_inline</code> attribute. This is the default when not
optimizing.
</p>
<p>Single functions can be exempted from inlining by marking them
with the <code>noinline</code> attribute.
</p>
</dd>
<dt><code>-finline-small-functions</code></dt>
<dd><a name="index-finline_002dsmall_002dfunctions"></a>
<p>Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler
heuristically decides which functions are simple enough to be worth integrating
in this way. This inlining applies to all functions, even those not declared
inline.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-findirect-inlining</code></dt>
<dd><a name="index-findirect_002dinlining"></a>
<p>Inline also indirect calls that are discovered to be known at compile
time thanks to previous inlining. This option has any effect only
when inlining itself is turned on by the <samp>-finline-functions</samp>
or <samp>-finline-small-functions</samp> options.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-finline-functions</code></dt>
<dd><a name="index-finline_002dfunctions"></a>
<p>Consider all functions for inlining, even if they are not declared inline.
The compiler heuristically decides which functions are worth integrating
in this way.
</p>
<p>If all calls to a given function are integrated, and the function is
declared <code>static</code>, then the function is normally not output as
assembler code in its own right.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-finline-functions-called-once</code></dt>
<dd><a name="index-finline_002dfunctions_002dcalled_002donce"></a>
<p>Consider all <code>static</code> functions called once for inlining into their
caller even if they are not marked <code>inline</code>. If a call to a given
function is integrated, then the function is not output as assembler code
in its own right.
</p>
<p>Enabled at levels <samp>-O1</samp>, <samp>-O2</samp>, <samp>-O3</samp> and <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fearly-inlining</code></dt>
<dd><a name="index-fearly_002dinlining"></a>
<p>Inline functions marked by <code>always_inline</code> and functions whose body seems
smaller than the function call overhead early before doing
<samp>-fprofile-generate</samp> instrumentation and real inlining pass. Doing so
makes profiling significantly cheaper and usually inlining faster on programs
having large chains of nested wrapper functions.
</p>
<p>Enabled by default.
</p>
</dd>
<dt><code>-fipa-sra</code></dt>
<dd><a name="index-fipa_002dsra"></a>
<p>Perform interprocedural scalar replacement of aggregates, removal of
unused parameters and replacement of parameters passed by reference
by parameters passed by value.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp> and <samp>-Os</samp>.
</p>
</dd>
<dt><code>-finline-limit=<var>n</var></code></dt>
<dd><a name="index-finline_002dlimit"></a>
<p>By default, GCC limits the size of functions that can be inlined. This flag
allows coarse control of this limit. <var>n</var> is the size of functions that
can be inlined in number of pseudo instructions.
</p>
<p>Inlining is actually controlled by a number of parameters, which may be
specified individually by using <samp>--param <var>name</var>=<var>value</var></samp>.
The <samp>-finline-limit=<var>n</var></samp> option sets some of these parameters
as follows:
</p>
<dl compact="compact">
<dt><code>max-inline-insns-single</code></dt>
<dd><p>is set to <var>n</var>/2.
</p></dd>
<dt><code>max-inline-insns-auto</code></dt>
<dd><p>is set to <var>n</var>/2.
</p></dd>
</dl>
<p>See below for a documentation of the individual
parameters controlling inlining and for the defaults of these parameters.
</p>
<p><em>Note:</em> there may be no value to <samp>-finline-limit</samp> that results
in default behavior.
</p>
<p><em>Note:</em> pseudo instruction represents, in this particular context, an
abstract measurement of function’s size. In no way does it represent a count
of assembly instructions and as such its exact meaning might change from one
release to an another.
</p>
</dd>
<dt><code>-fno-keep-inline-dllexport</code></dt>
<dd><a name="index-fno_002dkeep_002dinline_002ddllexport"></a>
<p>This is a more fine-grained version of <samp>-fkeep-inline-functions</samp>,
which applies only to functions that are declared using the <code>dllexport</code>
attribute or declspec. See <a href="#Function-Attributes">Declaring Attributes of
Functions</a>.
</p>
</dd>
<dt><code>-fkeep-inline-functions</code></dt>
<dd><a name="index-fkeep_002dinline_002dfunctions"></a>
<p>In C, emit <code>static</code> functions that are declared <code>inline</code>
into the object file, even if the function has been inlined into all
of its callers. This switch does not affect functions using the
<code>extern inline</code> extension in GNU C90. In C++, emit any and all
inline functions into the object file.
</p>
</dd>
<dt><code>-fkeep-static-functions</code></dt>
<dd><a name="index-fkeep_002dstatic_002dfunctions"></a>
<p>Emit <code>static</code> functions into the object file, even if the function
is never used.
</p>
</dd>
<dt><code>-fkeep-static-consts</code></dt>
<dd><a name="index-fkeep_002dstatic_002dconsts"></a>
<p>Emit variables declared <code>static const</code> when optimization isn’t turned
on, even if the variables aren’t referenced.
</p>
<p>GCC enables this option by default. If you want to force the compiler to
check if a variable is referenced, regardless of whether or not
optimization is turned on, use the <samp>-fno-keep-static-consts</samp> option.
</p>
</dd>
<dt><code>-fmerge-constants</code></dt>
<dd><a name="index-fmerge_002dconstants"></a>
<p>Attempt to merge identical constants (string constants and floating-point
constants) across compilation units.
</p>
<p>This option is the default for optimized compilation if the assembler and
linker support it. Use <samp>-fno-merge-constants</samp> to inhibit this
behavior.
</p>
<p>Enabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fmerge-all-constants</code></dt>
<dd><a name="index-fmerge_002dall_002dconstants"></a>
<p>Attempt to merge identical constants and identical variables.
</p>
<p>This option implies <samp>-fmerge-constants</samp>. In addition to
<samp>-fmerge-constants</samp> this considers e.g. even constant initialized
arrays or initialized constant variables with integral or floating-point
types. Languages like C or C++ require each variable, including multiple
instances of the same variable in recursive calls, to have distinct locations,
so using this option results in non-conforming
behavior.
</p>
</dd>
<dt><code>-fmodulo-sched</code></dt>
<dd><a name="index-fmodulo_002dsched"></a>
<p>Perform swing modulo scheduling immediately before the first scheduling
pass. This pass looks at innermost loops and reorders their
instructions by overlapping different iterations.
</p>
</dd>
<dt><code>-fmodulo-sched-allow-regmoves</code></dt>
<dd><a name="index-fmodulo_002dsched_002dallow_002dregmoves"></a>
<p>Perform more aggressive SMS-based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges are
deleted, which triggers the generation of reg-moves based on the
life-range analysis. This option is effective only with
<samp>-fmodulo-sched</samp> enabled.
</p>
</dd>
<dt><code>-fno-branch-count-reg</code></dt>
<dd><a name="index-fno_002dbranch_002dcount_002dreg"></a>
<p>Avoid running a pass scanning for opportunities to use “decrement and
branch” instructions on a count register instead of generating sequences
of instructions that decrement a register, compare it against zero, and
then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC,
IA-64 and S/390. Note that the <samp>-fno-branch-count-reg</samp> option
doesn’t remove the decrement and branch instructions from the generated
instruction stream introduced by other optimization passes.
</p>
<p>Enabled by default at <samp>-O1</samp> and higher.
</p>
<p>The default is <samp>-fbranch-count-reg</samp>.
</p>
</dd>
<dt><code>-fno-function-cse</code></dt>
<dd><a name="index-fno_002dfunction_002dcse"></a>
<p>Do not put function addresses in registers; make each instruction that
calls a constant function contain the function’s address explicitly.
</p>
<p>This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the optimizations
performed when this option is not used.
</p>
<p>The default is <samp>-ffunction-cse</samp>
</p>
</dd>
<dt><code>-fno-zero-initialized-in-bss</code></dt>
<dd><a name="index-fno_002dzero_002dinitialized_002din_002dbss"></a>
<p>If the target supports a BSS section, GCC by default puts variables that
are initialized to zero into BSS. This can save space in the resulting
code.
</p>
<p>This option turns off this behavior because some programs explicitly
rely on variables going to the data section—e.g., so that the
resulting executable can find the beginning of that section and/or make
assumptions based on that.
</p>
<p>The default is <samp>-fzero-initialized-in-bss</samp>.
</p>
</dd>
<dt><code>-fthread-jumps</code></dt>
<dd><a name="index-fthread_002djumps"></a>
<p>Perform optimizations that check to see if a jump branches to a
location where another comparison subsumed by the first is found. If
so, the first branch is redirected to either the destination of the
second branch or a point immediately following it, depending on whether
the condition is known to be true or false.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fsplit-wide-types</code></dt>
<dd><a name="index-fsplit_002dwide_002dtypes"></a>
<p>When using a type that occupies multiple registers, such as <code>long
long</code> on a 32-bit system, split the registers apart and allocate them
independently. This normally generates better code for those types,
but may make debugging more difficult.
</p>
<p>Enabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>,
<samp>-Os</samp>.
</p>
</dd>
<dt><code>-fcse-follow-jumps</code></dt>
<dd><a name="index-fcse_002dfollow_002djumps"></a>
<p>In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For
example, when CSE encounters an <code>if</code> statement with an
<code>else</code> clause, CSE follows the jump when the condition
tested is false.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fcse-skip-blocks</code></dt>
<dd><a name="index-fcse_002dskip_002dblocks"></a>
<p>This is similar to <samp>-fcse-follow-jumps</samp>, but causes CSE to
follow jumps that conditionally skip over blocks. When CSE
encounters a simple <code>if</code> statement with no else clause,
<samp>-fcse-skip-blocks</samp> causes CSE to follow the jump around the
body of the <code>if</code>.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-frerun-cse-after-loop</code></dt>
<dd><a name="index-frerun_002dcse_002dafter_002dloop"></a>
<p>Re-run common subexpression elimination after loop optimizations are
performed.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fgcse</code></dt>
<dd><a name="index-fgcse"></a>
<p>Perform a global common subexpression elimination pass.
This pass also performs global constant and copy propagation.
</p>
<p><em>Note:</em> When compiling a program using computed gotos, a GCC
extension, you may get better run-time performance if you disable
the global common subexpression elimination pass by adding
<samp>-fno-gcse</samp> to the command line.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fgcse-lm</code></dt>
<dd><a name="index-fgcse_002dlm"></a>
<p>When <samp>-fgcse-lm</samp> is enabled, global common subexpression elimination
attempts to move loads that are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.
</p>
<p>Enabled by default when <samp>-fgcse</samp> is enabled.
</p>
</dd>
<dt><code>-fgcse-sm</code></dt>
<dd><a name="index-fgcse_002dsm"></a>
<p>When <samp>-fgcse-sm</samp> is enabled, a store motion pass is run after
global common subexpression elimination. This pass attempts to move
stores out of loops. When used in conjunction with <samp>-fgcse-lm</samp>,
loops containing a load/store sequence can be changed to a load before
the loop and a store after the loop.
</p>
<p>Not enabled at any optimization level.
</p>
</dd>
<dt><code>-fgcse-las</code></dt>
<dd><a name="index-fgcse_002dlas"></a>
<p>When <samp>-fgcse-las</samp> is enabled, the global common subexpression
elimination pass eliminates redundant loads that come after stores to the
same memory location (both partial and full redundancies).
</p>
<p>Not enabled at any optimization level.
</p>
</dd>
<dt><code>-fgcse-after-reload</code></dt>
<dd><a name="index-fgcse_002dafter_002dreload"></a>
<p>When <samp>-fgcse-after-reload</samp> is enabled, a redundant load elimination
pass is performed after reload. The purpose of this pass is to clean up
redundant spilling.
</p>
</dd>
<dt><code>-faggressive-loop-optimizations</code></dt>
<dd><a name="index-faggressive_002dloop_002doptimizations"></a>
<p>This option tells the loop optimizer to use language constraints to
derive bounds for the number of iterations of a loop. This assumes that
loop code does not invoke undefined behavior by for example causing signed
integer overflows or out-of-bound array accesses. The bounds for the
number of iterations of a loop are used to guide loop unrolling and peeling
and loop exit test optimizations.
This option is enabled by default.
</p>
</dd>
<dt><code>-funconstrained-commons</code></dt>
<dd><a name="index-funconstrained_002dcommons"></a>
<p>This option tells the compiler that variables declared in common blocks
(e.g. Fortran) may later be overridden with longer trailing arrays. This
prevents certain optimizations that depend on knowing the array bounds.
</p>
</dd>
<dt><code>-fcrossjumping</code></dt>
<dd><a name="index-fcrossjumping"></a>
<p>Perform cross-jumping transformation.
This transformation unifies equivalent code and saves code size. The
resulting code may or may not perform better than without cross-jumping.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fauto-inc-dec</code></dt>
<dd><a name="index-fauto_002dinc_002ddec"></a>
<p>Combine increments or decrements of addresses with memory accesses.
This pass is always skipped on architectures that do not have
instructions to support this. Enabled by default at <samp>-O</samp> and
higher on architectures that support this.
</p>
</dd>
<dt><code>-fdce</code></dt>
<dd><a name="index-fdce"></a>
<p>Perform dead code elimination (DCE) on RTL.
Enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fdse</code></dt>
<dd><a name="index-fdse"></a>
<p>Perform dead store elimination (DSE) on RTL.
Enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fif-conversion</code></dt>
<dd><a name="index-fif_002dconversion"></a>
<p>Attempt to transform conditional jumps into branch-less equivalents. This
includes use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by <samp>-fif-conversion2</samp>.
</p>
<p>Enabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fif-conversion2</code></dt>
<dd><a name="index-fif_002dconversion2"></a>
<p>Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.
</p>
<p>Enabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fdeclone-ctor-dtor</code></dt>
<dd><a name="index-fdeclone_002dctor_002ddtor"></a>
<p>The C++ ABI requires multiple entry points for constructors and
destructors: one for a base subobject, one for a complete object, and
one for a virtual destructor that calls operator delete afterwards.
For a hierarchy with virtual bases, the base and complete variants are
clones, which means two copies of the function. With this option, the
base and complete variants are changed to be thunks that call a common
implementation.
</p>
<p>Enabled by <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fdelete-null-pointer-checks</code></dt>
<dd><a name="index-fdelete_002dnull_002dpointer_002dchecks"></a>
<p>Assume that programs cannot safely dereference null pointers, and that
no code or data element resides at address zero.
This option enables simple constant
folding optimizations at all optimization levels. In addition, other
optimization passes in GCC use this flag to control global dataflow
analyses that eliminate useless checks for null pointers; these assume
that a memory access to address zero always results in a trap, so
that if a pointer is checked after it has already been dereferenced,
it cannot be null.
</p>
<p>Note however that in some environments this assumption is not true.
Use <samp>-fno-delete-null-pointer-checks</samp> to disable this optimization
for programs that depend on that behavior.
</p>
<p>This option is enabled by default on most targets. On Nios II ELF, it
defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
</p>
<p>Passes that use the dataflow information
are enabled independently at different optimization levels.
</p>
</dd>
<dt><code>-fdevirtualize</code></dt>
<dd><a name="index-fdevirtualize"></a>
<p>Attempt to convert calls to virtual functions to direct calls. This
is done both within a procedure and interprocedurally as part of
indirect inlining (<samp>-findirect-inlining</samp>) and interprocedural constant
propagation (<samp>-fipa-cp</samp>).
Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fdevirtualize-speculatively</code></dt>
<dd><a name="index-fdevirtualize_002dspeculatively"></a>
<p>Attempt to convert calls to virtual functions to speculative direct calls.
Based on the analysis of the type inheritance graph, determine for a given call
the set of likely targets. If the set is small, preferably of size 1, change
the call into a conditional deciding between direct and indirect calls. The
speculative calls enable more optimizations, such as inlining. When they seem
useless after further optimization, they are converted back into original form.
</p>
</dd>
<dt><code>-fdevirtualize-at-ltrans</code></dt>
<dd><a name="index-fdevirtualize_002dat_002dltrans"></a>
<p>Stream extra information needed for aggressive devirtualization when running
the link-time optimizer in local transformation mode.
This option enables more devirtualization but
significantly increases the size of streamed data. For this reason it is
disabled by default.
</p>
</dd>
<dt><code>-fexpensive-optimizations</code></dt>
<dd><a name="index-fexpensive_002doptimizations"></a>
<p>Perform a number of minor optimizations that are relatively expensive.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-free</code></dt>
<dd><a name="index-free"></a>
<p>Attempt to remove redundant extension instructions. This is especially
helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
registers after writing to their lower 32-bit half.
</p>
<p>Enabled for Alpha, AArch64 and x86 at levels <samp>-O2</samp>,
<samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fno-lifetime-dse</code></dt>
<dd><a name="index-fno_002dlifetime_002ddse"></a>
<p>In C++ the value of an object is only affected by changes within its
lifetime: when the constructor begins, the object has an indeterminate
value, and any changes during the lifetime of the object are dead when
the object is destroyed. Normally dead store elimination will take
advantage of this; if your code relies on the value of the object
storage persisting beyond the lifetime of the object, you can use this
flag to disable this optimization. To preserve stores before the
constructor starts (e.g. because your operator new clears the object
storage) but still treat the object as dead after the destructor you,
can use <samp>-flifetime-dse=1</samp>. The default behavior can be
explicitly selected with <samp>-flifetime-dse=2</samp>.
<samp>-flifetime-dse=0</samp> is equivalent to <samp>-fno-lifetime-dse</samp>.
</p>
</dd>
<dt><code>-flive-range-shrinkage</code></dt>
<dd><a name="index-flive_002drange_002dshrinkage"></a>
<p>Attempt to decrease register pressure through register live range
shrinkage. This is helpful for fast processors with small or moderate
size register sets.
</p>
</dd>
<dt><code>-fira-algorithm=<var>algorithm</var></code></dt>
<dd><a name="index-fira_002dalgorithm"></a>
<p>Use the specified coloring algorithm for the integrated register
allocator. The <var>algorithm</var> argument can be ‘<samp>priority</samp>’, which
specifies Chow’s priority coloring, or ‘<samp>CB</samp>’, which specifies
Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
for all architectures, but for those targets that do support it, it is
the default because it generates better code.
</p>
</dd>
<dt><code>-fira-region=<var>region</var></code></dt>
<dd><a name="index-fira_002dregion"></a>
<p>Use specified regions for the integrated register allocator. The
<var>region</var> argument should be one of the following:
</p>
<dl compact="compact">
<dt>‘<samp>all</samp>’</dt>
<dd><p>Use all loops as register allocation regions.
This can give the best results for machines with a small and/or
irregular register set.
</p>
</dd>
<dt>‘<samp>mixed</samp>’</dt>
<dd><p>Use all loops except for loops with small register pressure
as the regions. This value usually gives
the best results in most cases and for most architectures,
and is enabled by default when compiling with optimization for speed
(<samp>-O</samp>, <samp>-O2</samp>, …).
</p>
</dd>
<dt>‘<samp>one</samp>’</dt>
<dd><p>Use all functions as a single region.
This typically results in the smallest code size, and is enabled by default for
<samp>-Os</samp> or <samp>-O0</samp>.
</p>
</dd>
</dl>
</dd>
<dt><code>-fira-hoist-pressure</code></dt>
<dd><a name="index-fira_002dhoist_002dpressure"></a>
<p>Use IRA to evaluate register pressure in the code hoisting pass for
decisions to hoist expressions. This option usually results in smaller
code, but it can slow the compiler down.
</p>
<p>This option is enabled at level <samp>-Os</samp> for all targets.
</p>
</dd>
<dt><code>-fira-loop-pressure</code></dt>
<dd><a name="index-fira_002dloop_002dpressure"></a>
<p>Use IRA to evaluate register pressure in loops for decisions to move
loop invariants. This option usually results in generation
of faster and smaller code on machines with large register files (>= 32
registers), but it can slow the compiler down.
</p>
<p>This option is enabled at level <samp>-O3</samp> for some targets.
</p>
</dd>
<dt><code>-fno-ira-share-save-slots</code></dt>
<dd><a name="index-fno_002dira_002dshare_002dsave_002dslots"></a>
<p>Disable sharing of stack slots used for saving call-used hard
registers living through a call. Each hard register gets a
separate stack slot, and as a result function stack frames are
larger.
</p>
</dd>
<dt><code>-fno-ira-share-spill-slots</code></dt>
<dd><a name="index-fno_002dira_002dshare_002dspill_002dslots"></a>
<p>Disable sharing of stack slots allocated for pseudo-registers. Each
pseudo-register that does not get a hard register gets a separate
stack slot, and as a result function stack frames are larger.
</p>
</dd>
<dt><code>-flra-remat</code></dt>
<dd><a name="index-flra_002dremat"></a>
<p>Enable CFG-sensitive rematerialization in LRA. Instead of loading
values of spilled pseudos, LRA tries to rematerialize (recalculate)
values if it is profitable.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fdelayed-branch</code></dt>
<dd><a name="index-fdelayed_002dbranch"></a>
<p>If supported for the target machine, attempt to reorder instructions
to exploit instruction slots available after delayed branch
instructions.
</p>
<p>Enabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fschedule-insns</code></dt>
<dd><a name="index-fschedule_002dinsns"></a>
<p>If supported for the target machine, attempt to reorder instructions to
eliminate execution stalls due to required data being unavailable. This
helps machines that have slow floating point or memory load instructions
by allowing other instructions to be issued until the result of the load
or floating-point instruction is required.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>.
</p>
</dd>
<dt><code>-fschedule-insns2</code></dt>
<dd><a name="index-fschedule_002dinsns2"></a>
<p>Similar to <samp>-fschedule-insns</samp>, but requests an additional pass of
instruction scheduling after register allocation has been done. This is
especially useful on machines with a relatively small number of
registers and where memory load instructions take more than one cycle.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fno-sched-interblock</code></dt>
<dd><a name="index-fno_002dsched_002dinterblock"></a>
<p>Don’t schedule instructions across basic blocks. This is normally
enabled by default when scheduling before register allocation, i.e.
with <samp>-fschedule-insns</samp> or at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fno-sched-spec</code></dt>
<dd><a name="index-fno_002dsched_002dspec"></a>
<p>Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e.
with <samp>-fschedule-insns</samp> or at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-pressure</code></dt>
<dd><a name="index-fsched_002dpressure"></a>
<p>Enable register pressure sensitive insn scheduling before register
allocation. This only makes sense when scheduling before register
allocation is enabled, i.e. with <samp>-fschedule-insns</samp> or at
<samp>-O2</samp> or higher. Usage of this option can improve the
generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and subsequent
spills in register allocation.
</p>
</dd>
<dt><code>-fsched-spec-load</code></dt>
<dd><a name="index-fsched_002dspec_002dload"></a>
<p>Allow speculative motion of some load instructions. This only makes
sense when scheduling before register allocation, i.e. with
<samp>-fschedule-insns</samp> or at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-spec-load-dangerous</code></dt>
<dd><a name="index-fsched_002dspec_002dload_002ddangerous"></a>
<p>Allow speculative motion of more load instructions. This only makes
sense when scheduling before register allocation, i.e. with
<samp>-fschedule-insns</samp> or at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-stalled-insns</code></dt>
<dt><code>-fsched-stalled-insns=<var>n</var></code></dt>
<dd><a name="index-fsched_002dstalled_002dinsns"></a>
<p>Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list during the second scheduling pass.
<samp>-fno-sched-stalled-insns</samp> means that no insns are moved
prematurely, <samp>-fsched-stalled-insns=0</samp> means there is no limit
on how many queued insns can be moved prematurely.
<samp>-fsched-stalled-insns</samp> without a value is equivalent to
<samp>-fsched-stalled-insns=1</samp>.
</p>
</dd>
<dt><code>-fsched-stalled-insns-dep</code></dt>
<dt><code>-fsched-stalled-insns-dep=<var>n</var></code></dt>
<dd><a name="index-fsched_002dstalled_002dinsns_002ddep"></a>
<p>Define how many insn groups (cycles) are examined for a dependency
on a stalled insn that is a candidate for premature removal from the queue
of stalled insns. This has an effect only during the second scheduling pass,
and only if <samp>-fsched-stalled-insns</samp> is used.
<samp>-fno-sched-stalled-insns-dep</samp> is equivalent to
<samp>-fsched-stalled-insns-dep=0</samp>.
<samp>-fsched-stalled-insns-dep</samp> without a value is equivalent to
<samp>-fsched-stalled-insns-dep=1</samp>.
</p>
</dd>
<dt><code>-fsched2-use-superblocks</code></dt>
<dd><a name="index-fsched2_002duse_002dsuperblocks"></a>
<p>When scheduling after register allocation, use superblock scheduling.
This allows motion across basic block boundaries,
resulting in faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.
</p>
<p>This only makes sense when scheduling after register allocation, i.e. with
<samp>-fschedule-insns2</samp> or at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-group-heuristic</code></dt>
<dd><a name="index-fsched_002dgroup_002dheuristic"></a>
<p>Enable the group heuristic in the scheduler. This heuristic favors
the instruction that belongs to a schedule group. This is enabled
by default when scheduling is enabled, i.e. with <samp>-fschedule-insns</samp>
or <samp>-fschedule-insns2</samp> or at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-critical-path-heuristic</code></dt>
<dd><a name="index-fsched_002dcritical_002dpath_002dheuristic"></a>
<p>Enable the critical-path heuristic in the scheduler. This heuristic favors
instructions on the critical path. This is enabled by default when
scheduling is enabled, i.e. with <samp>-fschedule-insns</samp>
or <samp>-fschedule-insns2</samp> or at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-spec-insn-heuristic</code></dt>
<dd><a name="index-fsched_002dspec_002dinsn_002dheuristic"></a>
<p>Enable the speculative instruction heuristic in the scheduler. This
heuristic favors speculative instructions with greater dependency weakness.
This is enabled by default when scheduling is enabled, i.e.
with <samp>-fschedule-insns</samp> or <samp>-fschedule-insns2</samp>
or at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-rank-heuristic</code></dt>
<dd><a name="index-fsched_002drank_002dheuristic"></a>
<p>Enable the rank heuristic in the scheduler. This heuristic favors
the instruction belonging to a basic block with greater size or frequency.
This is enabled by default when scheduling is enabled, i.e.
with <samp>-fschedule-insns</samp> or <samp>-fschedule-insns2</samp> or
at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-last-insn-heuristic</code></dt>
<dd><a name="index-fsched_002dlast_002dinsn_002dheuristic"></a>
<p>Enable the last-instruction heuristic in the scheduler. This heuristic
favors the instruction that is less dependent on the last instruction
scheduled. This is enabled by default when scheduling is enabled,
i.e. with <samp>-fschedule-insns</samp> or <samp>-fschedule-insns2</samp> or
at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-fsched-dep-count-heuristic</code></dt>
<dd><a name="index-fsched_002ddep_002dcount_002dheuristic"></a>
<p>Enable the dependent-count heuristic in the scheduler. This heuristic
favors the instruction that has more instructions depending on it.
This is enabled by default when scheduling is enabled, i.e.
with <samp>-fschedule-insns</samp> or <samp>-fschedule-insns2</samp> or
at <samp>-O2</samp> or higher.
</p>
</dd>
<dt><code>-freschedule-modulo-scheduled-loops</code></dt>
<dd><a name="index-freschedule_002dmodulo_002dscheduled_002dloops"></a>
<p>Modulo scheduling is performed before traditional scheduling. If a loop
is modulo scheduled, later scheduling passes may change its schedule.
Use this option to control that behavior.
</p>
</dd>
<dt><code>-fselective-scheduling</code></dt>
<dd><a name="index-fselective_002dscheduling"></a>
<p>Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the first scheduler pass.
</p>
</dd>
<dt><code>-fselective-scheduling2</code></dt>
<dd><a name="index-fselective_002dscheduling2"></a>
<p>Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the second scheduler pass.
</p>
</dd>
<dt><code>-fsel-sched-pipelining</code></dt>
<dd><a name="index-fsel_002dsched_002dpipelining"></a>
<p>Enable software pipelining of innermost loops during selective scheduling.
This option has no effect unless one of <samp>-fselective-scheduling</samp> or
<samp>-fselective-scheduling2</samp> is turned on.
</p>
</dd>
<dt><code>-fsel-sched-pipelining-outer-loops</code></dt>
<dd><a name="index-fsel_002dsched_002dpipelining_002douter_002dloops"></a>
<p>When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect unless <samp>-fsel-sched-pipelining</samp> is turned on.
</p>
</dd>
<dt><code>-fsemantic-interposition</code></dt>
<dd><a name="index-fsemantic_002dinterposition"></a>
<p>Some object formats, like ELF, allow interposing of symbols by the
dynamic linker.
This means that for symbols exported from the DSO, the compiler cannot perform
interprocedural propagation, inlining and other optimizations in anticipation
that the function or variable in question may change. While this feature is
useful, for example, to rewrite memory allocation functions by a debugging
implementation, it is expensive in the terms of code quality.
With <samp>-fno-semantic-interposition</samp> the compiler assumes that
if interposition happens for functions the overwriting function will have
precisely the same semantics (and side effects).
Similarly if interposition happens
for variables, the constructor of the variable will be the same. The flag
has no effect for functions explicitly declared inline
(where it is never allowed for interposition to change semantics)
and for symbols explicitly declared weak.
</p>
</dd>
<dt><code>-fshrink-wrap</code></dt>
<dd><a name="index-fshrink_002dwrap"></a>
<p>Emit function prologues only before parts of the function that need it,
rather than at the top of the function. This flag is enabled by default at
<samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fshrink-wrap-separate</code></dt>
<dd><a name="index-fshrink_002dwrap_002dseparate"></a>
<p>Shrink-wrap separate parts of the prologue and epilogue separately, so that
those parts are only executed when needed.
This option is on by default, but has no effect unless <samp>-fshrink-wrap</samp>
is also turned on and the target supports this.
</p>
</dd>
<dt><code>-fcaller-saves</code></dt>
<dd><a name="index-fcaller_002dsaves"></a>
<p>Enable allocation of values to registers that are clobbered by
function calls, by emitting extra instructions to save and restore the
registers around such calls. Such allocation is done only when it
seems to result in better code.
</p>
<p>This option is always enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fcombine-stack-adjustments</code></dt>
<dd><a name="index-fcombine_002dstack_002dadjustments"></a>
<p>Tracks stack adjustments (pushes and pops) and stack memory references
and then tries to find ways to combine them.
</p>
<p>Enabled by default at <samp>-O1</samp> and higher.
</p>
</dd>
<dt><code>-fipa-ra</code></dt>
<dd><a name="index-fipa_002dra"></a>
<p>Use caller save registers for allocation if those registers are not used by
any called function. In that case it is not necessary to save and restore
them around calls. This is only possible if called functions are part of
same compilation unit as current function and they are compiled before it.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>, however the option
is disabled if generated code will be instrumented for profiling
(<samp>-p</samp>, or <samp>-pg</samp>) or if callee’s register usage cannot be known
exactly (this happens on targets that do not expose prologues
and epilogues in RTL).
</p>
</dd>
<dt><code>-fconserve-stack</code></dt>
<dd><a name="index-fconserve_002dstack"></a>
<p>Attempt to minimize stack usage. The compiler attempts to use less
stack space, even if that makes the program slower. This option
implies setting the <samp>large-stack-frame</samp> parameter to 100
and the <samp>large-stack-frame-growth</samp> parameter to 400.
</p>
</dd>
<dt><code>-ftree-reassoc</code></dt>
<dd><a name="index-ftree_002dreassoc"></a>
<p>Perform reassociation on trees. This flag is enabled by default
at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fcode-hoisting</code></dt>
<dd><a name="index-fcode_002dhoisting"></a>
<p>Perform code hoisting. Code hoisting tries to move the
evaluation of expressions executed on all paths to the function exit
as early as possible. This is especially useful as a code size
optimization, but it often helps for code speed as well.
This flag is enabled by default at <samp>-O2</samp> and higher.
</p>
</dd>
<dt><code>-ftree-pre</code></dt>
<dd><a name="index-ftree_002dpre"></a>
<p>Perform partial redundancy elimination (PRE) on trees. This flag is
enabled by default at <samp>-O2</samp> and <samp>-O3</samp>.
</p>
</dd>
<dt><code>-ftree-partial-pre</code></dt>
<dd><a name="index-ftree_002dpartial_002dpre"></a>
<p>Make partial redundancy elimination (PRE) more aggressive. This flag is
enabled by default at <samp>-O3</samp>.
</p>
</dd>
<dt><code>-ftree-forwprop</code></dt>
<dd><a name="index-ftree_002dforwprop"></a>
<p>Perform forward propagation on trees. This flag is enabled by default
at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-fre</code></dt>
<dd><a name="index-ftree_002dfre"></a>
<p>Perform full redundancy elimination (FRE) on trees. The difference
between FRE and PRE is that FRE only considers expressions
that are computed on all paths leading to the redundant computation.
This analysis is faster than PRE, though it exposes fewer redundancies.
This flag is enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-phiprop</code></dt>
<dd><a name="index-ftree_002dphiprop"></a>
<p>Perform hoisting of loads from conditional pointers on trees. This
pass is enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fhoist-adjacent-loads</code></dt>
<dd><a name="index-fhoist_002dadjacent_002dloads"></a>
<p>Speculatively hoist loads from both branches of an if-then-else if the
loads are from adjacent locations in the same structure and the target
architecture has a conditional move instruction. This flag is enabled
by default at <samp>-O2</samp> and higher.
</p>
</dd>
<dt><code>-ftree-copy-prop</code></dt>
<dd><a name="index-ftree_002dcopy_002dprop"></a>
<p>Perform copy propagation on trees. This pass eliminates unnecessary
copy operations. This flag is enabled by default at <samp>-O</samp> and
higher.
</p>
</dd>
<dt><code>-fipa-pure-const</code></dt>
<dd><a name="index-fipa_002dpure_002dconst"></a>
<p>Discover which functions are pure or constant.
Enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fipa-reference</code></dt>
<dd><a name="index-fipa_002dreference"></a>
<p>Discover which static variables do not escape the
compilation unit.
Enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fipa-pta</code></dt>
<dd><a name="index-fipa_002dpta"></a>
<p>Perform interprocedural pointer analysis and interprocedural modification
and reference analysis. This option can cause excessive memory and
compile-time usage on large compilation units. It is not enabled by
default at any optimization level.
</p>
</dd>
<dt><code>-fipa-profile</code></dt>
<dd><a name="index-fipa_002dprofile"></a>
<p>Perform interprocedural profile propagation. The functions called only from
cold functions are marked as cold. Also functions executed once (such as
<code>cold</code>, <code>noreturn</code>, static constructors or destructors) are identified. Cold
functions and loop less parts of functions executed once are then optimized for
size.
Enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fipa-cp</code></dt>
<dd><a name="index-fipa_002dcp"></a>
<p>Perform interprocedural constant propagation.
This optimization analyzes the program to determine when values passed
to functions are constants and then optimizes accordingly.
This optimization can substantially increase performance
if the application has constants passed to functions.
This flag is enabled by default at <samp>-O2</samp>, <samp>-Os</samp> and <samp>-O3</samp>.
</p>
</dd>
<dt><code>-fipa-cp-clone</code></dt>
<dd><a name="index-fipa_002dcp_002dclone"></a>
<p>Perform function cloning to make interprocedural constant propagation stronger.
When enabled, interprocedural constant propagation performs function cloning
when externally visible function can be called with constant arguments.
Because this optimization can create multiple copies of functions,
it may significantly increase code size
(see <samp>--param ipcp-unit-growth=<var>value</var></samp>).
This flag is enabled by default at <samp>-O3</samp>.
</p>
</dd>
<dt><code>-fipa-bit-cp</code></dt>
<dd><a name="index-_002dfipa_002dbit_002dcp"></a>
<p>When enabled, perform interprocedural bitwise constant
propagation. This flag is enabled by default at <samp>-O2</samp>. It
requires that <samp>-fipa-cp</samp> is enabled.
</p>
</dd>
<dt><code>-fipa-vrp</code></dt>
<dd><a name="index-_002dfipa_002dvrp"></a>
<p>When enabled, perform interprocedural propagation of value
ranges. This flag is enabled by default at <samp>-O2</samp>. It requires
that <samp>-fipa-cp</samp> is enabled.
</p>
</dd>
<dt><code>-fipa-icf</code></dt>
<dd><a name="index-fipa_002dicf"></a>
<p>Perform Identical Code Folding for functions and read-only variables.
The optimization reduces code size and may disturb unwind stacks by replacing
a function by equivalent one with a different name. The optimization works
more effectively with link-time optimization enabled.
</p>
<p>Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
works on different levels and thus the optimizations are not same - there are
equivalences that are found only by GCC and equivalences found only by Gold.
</p>
<p>This flag is enabled by default at <samp>-O2</samp> and <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fisolate-erroneous-paths-dereference</code></dt>
<dd><a name="index-fisolate_002derroneous_002dpaths_002ddereference"></a>
<p>Detect paths that trigger erroneous or undefined behavior due to
dereferencing a null pointer. Isolate those paths from the main control
flow and turn the statement with erroneous or undefined behavior into a trap.
This flag is enabled by default at <samp>-O2</samp> and higher and depends on
<samp>-fdelete-null-pointer-checks</samp> also being enabled.
</p>
</dd>
<dt><code>-fisolate-erroneous-paths-attribute</code></dt>
<dd><a name="index-fisolate_002derroneous_002dpaths_002dattribute"></a>
<p>Detect paths that trigger erroneous or undefined behavior due to a null value
being used in a way forbidden by a <code>returns_nonnull</code> or <code>nonnull</code>
attribute. Isolate those paths from the main control flow and turn the
statement with erroneous or undefined behavior into a trap. This is not
currently enabled, but may be enabled by <samp>-O2</samp> in the future.
</p>
</dd>
<dt><code>-ftree-sink</code></dt>
<dd><a name="index-ftree_002dsink"></a>
<p>Perform forward store motion on trees. This flag is
enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-bit-ccp</code></dt>
<dd><a name="index-ftree_002dbit_002dccp"></a>
<p>Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information.
This pass only operates on local scalar variables and is enabled by default
at <samp>-O</samp> and higher. It requires that <samp>-ftree-ccp</samp> is enabled.
</p>
</dd>
<dt><code>-ftree-ccp</code></dt>
<dd><a name="index-ftree_002dccp"></a>
<p>Perform sparse conditional constant propagation (CCP) on trees. This
pass only operates on local scalar variables and is enabled by default
at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fssa-backprop</code></dt>
<dd><a name="index-fssa_002dbackprop"></a>
<p>Propagate information about uses of a value up the definition chain
in order to simplify the definitions. For example, this pass strips
sign operations if the sign of a value never matters. The flag is
enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fssa-phiopt</code></dt>
<dd><a name="index-fssa_002dphiopt"></a>
<p>Perform pattern matching on SSA PHI nodes to optimize conditional
code. This pass is enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-switch-conversion</code></dt>
<dd><a name="index-ftree_002dswitch_002dconversion"></a>
<p>Perform conversion of simple initializations in a switch to
initializations from a scalar array. This flag is enabled by default
at <samp>-O2</samp> and higher.
</p>
</dd>
<dt><code>-ftree-tail-merge</code></dt>
<dd><a name="index-ftree_002dtail_002dmerge"></a>
<p>Look for identical code sequences. When found, replace one with a jump to the
other. This optimization is known as tail merging or cross jumping. This flag
is enabled by default at <samp>-O2</samp> and higher. The compilation time
in this pass can
be limited using <samp>max-tail-merge-comparisons</samp> parameter and
<samp>max-tail-merge-iterations</samp> parameter.
</p>
</dd>
<dt><code>-ftree-dce</code></dt>
<dd><a name="index-ftree_002ddce"></a>
<p>Perform dead code elimination (DCE) on trees. This flag is enabled by
default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-builtin-call-dce</code></dt>
<dd><a name="index-ftree_002dbuiltin_002dcall_002ddce"></a>
<p>Perform conditional dead code elimination (DCE) for calls to built-in functions
that may set <code>errno</code> but are otherwise free of side effects. This flag is
enabled by default at <samp>-O2</samp> and higher if <samp>-Os</samp> is not also
specified.
</p>
</dd>
<dt><code>-ftree-dominator-opts</code></dt>
<dd><a name="index-ftree_002ddominator_002dopts"></a>
<p>Perform a variety of simple scalar cleanups (constant/copy
propagation, redundancy elimination, range propagation and expression
simplification) based on a dominator tree traversal. This also
performs jump threading (to reduce jumps to jumps). This flag is
enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-dse</code></dt>
<dd><a name="index-ftree_002ddse"></a>
<p>Perform dead store elimination (DSE) on trees. A dead store is a store into
a memory location that is later overwritten by another store without
any intervening loads. In this case the earlier store can be deleted. This
flag is enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-ch</code></dt>
<dd><a name="index-ftree_002dch"></a>
<p>Perform loop header copying on trees. This is beneficial since it increases
effectiveness of code motion optimizations. It also saves one jump. This flag
is enabled by default at <samp>-O</samp> and higher. It is not enabled
for <samp>-Os</samp>, since it usually increases code size.
</p>
</dd>
<dt><code>-ftree-loop-optimize</code></dt>
<dd><a name="index-ftree_002dloop_002doptimize"></a>
<p>Perform loop optimizations on trees. This flag is enabled by default
at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-loop-linear</code></dt>
<dt><code>-floop-strip-mine</code></dt>
<dt><code>-floop-block</code></dt>
<dd><a name="index-ftree_002dloop_002dlinear"></a>
<a name="index-floop_002dstrip_002dmine"></a>
<a name="index-floop_002dblock"></a>
<p>Perform loop nest optimizations. Same as
<samp>-floop-nest-optimize</samp>. To use this code transformation, GCC has
to be configured with <samp>--with-isl</samp> to enable the Graphite loop
transformation infrastructure.
</p>
</dd>
<dt><code>-fgraphite-identity</code></dt>
<dd><a name="index-fgraphite_002didentity"></a>
<p>Enable the identity transformation for graphite. For every SCoP we generate
the polyhedral representation and transform it back to gimple. Using
<samp>-fgraphite-identity</samp> we can check the costs or benefits of the
GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
are also performed by the code generator isl, like index splitting and
dead code elimination in loops.
</p>
</dd>
<dt><code>-floop-nest-optimize</code></dt>
<dd><a name="index-floop_002dnest_002doptimize"></a>
<p>Enable the isl based loop nest optimizer. This is a generic loop nest
optimizer based on the Pluto optimization algorithms. It calculates a loop
structure optimized for data-locality and parallelism. This option
is experimental.
</p>
</dd>
<dt><code>-floop-parallelize-all</code></dt>
<dd><a name="index-floop_002dparallelize_002dall"></a>
<p>Use the Graphite data dependence analysis to identify loops that can
be parallelized. Parallelize all the loops that can be analyzed to
not contain loop carried dependences without checking that it is
profitable to parallelize the loops.
</p>
</dd>
<dt><code>-ftree-coalesce-vars</code></dt>
<dd><a name="index-ftree_002dcoalesce_002dvars"></a>
<p>While transforming the program out of the SSA representation, attempt to
reduce copying by coalescing versions of different user-defined
variables, instead of just compiler temporaries. This may severely
limit the ability to debug an optimized program compiled with
<samp>-fno-var-tracking-assignments</samp>. In the negated form, this flag
prevents SSA coalescing of user variables. This option is enabled by
default if optimization is enabled, and it does very little otherwise.
</p>
</dd>
<dt><code>-ftree-loop-if-convert</code></dt>
<dd><a name="index-ftree_002dloop_002dif_002dconvert"></a>
<p>Attempt to transform conditional jumps in the innermost loops to
branch-less equivalents. The intent is to remove control-flow from
the innermost loops in order to improve the ability of the
vectorization pass to handle these loops. This is enabled by default
if vectorization is enabled.
</p>
</dd>
<dt><code>-ftree-loop-distribution</code></dt>
<dd><a name="index-ftree_002dloop_002ddistribution"></a>
<p>Perform loop distribution. This flag can improve cache performance on
big loop bodies and allow further loop optimizations, like
parallelization or vectorization, to take place. For example, the loop
</p><div class="smallexample">
<pre class="smallexample">DO I = 1, N
A(I) = B(I) + C
D(I) = E(I) * F
ENDDO
</pre></div>
<p>is transformed to
</p><div class="smallexample">
<pre class="smallexample">DO I = 1, N
A(I) = B(I) + C
ENDDO
DO I = 1, N
D(I) = E(I) * F
ENDDO
</pre></div>
</dd>
<dt><code>-ftree-loop-distribute-patterns</code></dt>
<dd><a name="index-ftree_002dloop_002ddistribute_002dpatterns"></a>
<p>Perform loop distribution of patterns that can be code generated with
calls to a library. This flag is enabled by default at <samp>-O3</samp>.
</p>
<p>This pass distributes the initialization loops and generates a call to
memset zero. For example, the loop
</p><div class="smallexample">
<pre class="smallexample">DO I = 1, N
A(I) = 0
B(I) = A(I) + I
ENDDO
</pre></div>
<p>is transformed to
</p><div class="smallexample">
<pre class="smallexample">DO I = 1, N
A(I) = 0
ENDDO
DO I = 1, N
B(I) = A(I) + I
ENDDO
</pre></div>
<p>and the initialization loop is transformed into a call to memset zero.
</p>
</dd>
<dt><code>-floop-interchange</code></dt>
<dd><a name="index-floop_002dinterchange"></a>
<p>Perform loop interchange outside of graphite. This flag can improve cache
performance on loop nest and allow further loop optimizations, like
vectorization, to take place. For example, the loop
</p><div class="smallexample">
<pre class="smallexample">for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
c[i][j] = c[i][j] + a[i][k]*b[k][j];
</pre></div>
<p>is transformed to
</p><div class="smallexample">
<pre class="smallexample">for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
c[i][j] = c[i][j] + a[i][k]*b[k][j];
</pre></div>
</dd>
<dt><code>-ftree-loop-im</code></dt>
<dd><a name="index-ftree_002dloop_002dim"></a>
<p>Perform loop invariant motion on trees. This pass moves only invariants that
are hard to handle at RTL level (function calls, operations that expand to
nontrivial sequences of insns). With <samp>-funswitch-loops</samp> it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.
</p>
</dd>
<dt><code>-ftree-loop-ivcanon</code></dt>
<dd><a name="index-ftree_002dloop_002divcanon"></a>
<p>Create a canonical counter for number of iterations in loops for which
determining number of iterations requires complicated analysis. Later
optimizations then may determine the number easily. Useful especially
in connection with unrolling.
</p>
</dd>
<dt><code>-fivopts</code></dt>
<dd><a name="index-fivopts"></a>
<p>Perform induction variable optimizations (strength reduction, induction
variable merging and induction variable elimination) on trees.
</p>
</dd>
<dt><code>-ftree-parallelize-loops=n</code></dt>
<dd><a name="index-ftree_002dparallelize_002dloops"></a>
<p>Parallelize loops, i.e., split their iteration space to run in n threads.
This is only possible for loops whose iterations are independent
and can be arbitrarily reordered. The optimization is only
profitable on multiprocessor machines, for loops that are CPU-intensive,
rather than constrained e.g. by memory bandwidth. This option
implies <samp>-pthread</samp>, and thus is only supported on targets
that have support for <samp>-pthread</samp>.
</p>
</dd>
<dt><code>-ftree-pta</code></dt>
<dd><a name="index-ftree_002dpta"></a>
<p>Perform function-local points-to analysis on trees. This flag is
enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-sra</code></dt>
<dd><a name="index-ftree_002dsra"></a>
<p>Perform scalar replacement of aggregates. This pass replaces structure
references with scalars to prevent committing structures to memory too
early. This flag is enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-fstore-merging</code></dt>
<dd><a name="index-fstore_002dmerging"></a>
<p>Perform merging of narrow stores to consecutive memory addresses. This pass
merges contiguous stores of immediate values narrower than a word into fewer
wider stores to reduce the number of instructions. This is enabled by default
at <samp>-O2</samp> and higher as well as <samp>-Os</samp>.
</p>
</dd>
<dt><code>-ftree-ter</code></dt>
<dd><a name="index-ftree_002dter"></a>
<p>Perform temporary expression replacement during the SSA->normal phase. Single
use/single def temporaries are replaced at their use location with their
defining expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This is
enabled by default at <samp>-O</samp> and higher.
</p>
</dd>
<dt><code>-ftree-slsr</code></dt>
<dd><a name="index-ftree_002dslsr"></a>
<p>Perform straight-line strength reduction on trees. This recognizes related
expressions involving multiplications and replaces them by less expensive
calculations when possible. This is enabled by default at <samp>-O</samp> and
higher.
</p>
</dd>
<dt><code>-ftree-vectorize</code></dt>
<dd><a name="index-ftree_002dvectorize"></a>
<p>Perform vectorization on trees. This flag enables <samp>-ftree-loop-vectorize</samp>
and <samp>-ftree-slp-vectorize</samp> if not explicitly specified.
</p>
</dd>
<dt><code>-ftree-loop-vectorize</code></dt>
<dd><a name="index-ftree_002dloop_002dvectorize"></a>
<p>Perform loop vectorization on trees. This flag is enabled by default at
<samp>-O3</samp> and when <samp>-ftree-vectorize</samp> is enabled.
</p>
</dd>
<dt><code>-ftree-slp-vectorize</code></dt>
<dd><a name="index-ftree_002dslp_002dvectorize"></a>
<p>Perform basic block vectorization on trees. This flag is enabled by default at
<samp>-O3</samp> and when <samp>-ftree-vectorize</samp> is enabled.
</p>
</dd>
<dt><code>-fvect-cost-model=<var>model</var></code></dt>
<dd><a name="index-fvect_002dcost_002dmodel"></a>
<p>Alter the cost model used for vectorization. The <var>model</var> argument
should be one of ‘<samp>unlimited</samp>’, ‘<samp>dynamic</samp>’ or ‘<samp>cheap</samp>’.
With the ‘<samp>unlimited</samp>’ model the vectorized code-path is assumed
to be profitable while with the ‘<samp>dynamic</samp>’ model a runtime check
guards the vectorized code-path to enable it only for iteration
counts that will likely execute faster than when executing the original
scalar loop. The ‘<samp>cheap</samp>’ model disables vectorization of
loops where doing so would be cost prohibitive for example due to
required runtime checks for data dependence or alignment but otherwise
is equal to the ‘<samp>dynamic</samp>’ model.
The default cost model depends on other optimization flags and is
either ‘<samp>dynamic</samp>’ or ‘<samp>cheap</samp>’.
</p>
</dd>
<dt><code>-fsimd-cost-model=<var>model</var></code></dt>
<dd><a name="index-fsimd_002dcost_002dmodel"></a>
<p>Alter the cost model used for vectorization of loops marked with the OpenMP
simd directive. The <var>model</var> argument should be one of
‘<samp>unlimited</samp>’, ‘<samp>dynamic</samp>’, ‘<samp>cheap</samp>’. All values of <var>model</var>
have the same meaning as described in <samp>-fvect-cost-model</samp> and by
default a cost model defined with <samp>-fvect-cost-model</samp> is used.
</p>
</dd>
<dt><code>-ftree-vrp</code></dt>
<dd><a name="index-ftree_002dvrp"></a>
<p>Perform Value Range Propagation on trees. This is similar to the
constant propagation pass, but instead of values, ranges of values are
propagated. This allows the optimizers to remove unnecessary range
checks like array bound checks and null pointer checks. This is
enabled by default at <samp>-O2</samp> and higher. Null pointer check
elimination is only done if <samp>-fdelete-null-pointer-checks</samp> is
enabled.
</p>
</dd>
<dt><code>-fsplit-paths</code></dt>
<dd><a name="index-fsplit_002dpaths"></a>
<p>Split paths leading to loop backedges. This can improve dead code
elimination and common subexpression elimination. This is enabled by
default at <samp>-O2</samp> and above.
</p>
</dd>
<dt><code>-fsplit-ivs-in-unroller</code></dt>
<dd><a name="index-fsplit_002divs_002din_002dunroller"></a>
<p>Enables expression of values of induction variables in later iterations
of the unrolled loop using the value in the first iteration. This breaks
long dependency chains, thus improving efficiency of the scheduling passes.
</p>
<p>A combination of <samp>-fweb</samp> and CSE is often sufficient to obtain the
same effect. However, that is not reliable in cases where the loop body
is more complicated than a single basic block. It also does not work at all
on some architectures due to restrictions in the CSE pass.
</p>
<p>This optimization is enabled by default.
</p>
</dd>
<dt><code>-fvariable-expansion-in-unroller</code></dt>
<dd><a name="index-fvariable_002dexpansion_002din_002dunroller"></a>
<p>With this option, the compiler creates multiple copies of some
local variables when unrolling a loop, which can result in superior code.
</p>
</dd>
<dt><code>-fpartial-inlining</code></dt>
<dd><a name="index-fpartial_002dinlining"></a>
<p>Inline parts of functions. This option has any effect only
when inlining itself is turned on by the <samp>-finline-functions</samp>
or <samp>-finline-small-functions</samp> options.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fpredictive-commoning</code></dt>
<dd><a name="index-fpredictive_002dcommoning"></a>
<p>Perform predictive commoning optimization, i.e., reusing computations
(especially memory loads and stores) performed in previous
iterations of loops.
</p>
<p>This option is enabled at level <samp>-O3</samp>.
</p>
</dd>
<dt><code>-fprefetch-loop-arrays</code></dt>
<dd><a name="index-fprefetch_002dloop_002darrays"></a>
<p>If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.
</p>
<p>This option may generate better or worse code; results are highly
dependent on the structure of loops within the source code.
</p>
<p>Disabled at level <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fno-printf-return-value</code></dt>
<dd><a name="index-fno_002dprintf_002dreturn_002dvalue"></a>
<p>Do not substitute constants for known return value of formatted output
functions such as <code>sprintf</code>, <code>snprintf</code>, <code>vsprintf</code>, and
<code>vsnprintf</code> (but not <code>printf</code> of <code>fprintf</code>). This
transformation allows GCC to optimize or even eliminate branches based
on the known return value of these functions called with arguments that
are either constant, or whose values are known to be in a range that
makes determining the exact return value possible. For example, when
<samp>-fprintf-return-value</samp> is in effect, both the branch and the
body of the <code>if</code> statement (but not the call to <code>snprint</code>)
can be optimized away when <code>i</code> is a 32-bit or smaller integer
because the return value is guaranteed to be at most 8.
</p>
<div class="smallexample">
<pre class="smallexample">char buf[9];
if (snprintf (buf, "%08x", i) >= sizeof buf)
…
</pre></div>
<p>The <samp>-fprintf-return-value</samp> option relies on other optimizations
and yields best results with <samp>-O2</samp> and above. It works in tandem
with the <samp>-Wformat-overflow</samp> and <samp>-Wformat-truncation</samp>
options. The <samp>-fprintf-return-value</samp> option is enabled by default.
</p>
</dd>
<dt><code>-fno-peephole</code></dt>
<dt><code>-fno-peephole2</code></dt>
<dd><a name="index-fno_002dpeephole"></a>
<a name="index-fno_002dpeephole2"></a>
<p>Disable any machine-specific peephole optimizations. The difference
between <samp>-fno-peephole</samp> and <samp>-fno-peephole2</samp> is in how they
are implemented in the compiler; some targets use one, some use the
other, a few use both.
</p>
<p><samp>-fpeephole</samp> is enabled by default.
<samp>-fpeephole2</samp> enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fno-guess-branch-probability</code></dt>
<dd><a name="index-fno_002dguess_002dbranch_002dprobability"></a>
<p>Do not guess branch probabilities using heuristics.
</p>
<p>GCC uses heuristics to guess branch probabilities if they are
not provided by profiling feedback (<samp>-fprofile-arcs</samp>). These
heuristics are based on the control flow graph. If some branch probabilities
are specified by <code>__builtin_expect</code>, then the heuristics are
used to guess branch probabilities for the rest of the control flow graph,
taking the <code>__builtin_expect</code> info into account. The interactions
between the heuristics and <code>__builtin_expect</code> can be complex, and in
some cases, it may be useful to disable the heuristics so that the effects
of <code>__builtin_expect</code> are easier to understand.
</p>
<p>The default is <samp>-fguess-branch-probability</samp> at levels
<samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-freorder-blocks</code></dt>
<dd><a name="index-freorder_002dblocks"></a>
<p>Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.
</p>
<p>Enabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-freorder-blocks-algorithm=<var>algorithm</var></code></dt>
<dd><a name="index-freorder_002dblocks_002dalgorithm"></a>
<p>Use the specified algorithm for basic block reordering. The
<var>algorithm</var> argument can be ‘<samp>simple</samp>’, which does not increase
code size (except sometimes due to secondary effects like alignment),
or ‘<samp>stc</samp>’, the “software trace cache” algorithm, which tries to
put all often executed code together, minimizing the number of branches
executed by making extra copies of code.
</p>
<p>The default is ‘<samp>simple</samp>’ at levels <samp>-O</samp>, <samp>-Os</samp>, and
‘<samp>stc</samp>’ at levels <samp>-O2</samp>, <samp>-O3</samp>.
</p>
</dd>
<dt><code>-freorder-blocks-and-partition</code></dt>
<dd><a name="index-freorder_002dblocks_002dand_002dpartition"></a>
<p>In addition to reordering basic blocks in the compiled function, in order
to reduce number of taken branches, partitions hot and cold basic blocks
into separate sections of the assembly and <samp>.o</samp> files, to improve
paging and cache locality performance.
</p>
<p>This optimization is automatically turned off in the presence of
exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
section attribute and on any architecture that does not support named
sections. When <samp>-fsplit-stack</samp> is used this option is not
enabled by default (to avoid linker errors), but may be enabled
explicitly (if using a working linker).
</p>
<p>Enabled for x86 at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-freorder-functions</code></dt>
<dd><a name="index-freorder_002dfunctions"></a>
<p>Reorder functions in the object file in order to
improve code locality. This is implemented by using special
subsections <code>.text.hot</code> for most frequently executed functions and
<code>.text.unlikely</code> for unlikely executed functions. Reordering is done by
the linker so object file format must support named sections and linker must
place them in a reasonable way.
</p>
<p>Also profile feedback must be available to make this option effective. See
<samp>-fprofile-arcs</samp> for details.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fstrict-aliasing</code></dt>
<dd><a name="index-fstrict_002daliasing"></a>
<p>Allow the compiler to assume the strictest aliasing rules applicable to
the language being compiled. For C (and C++), this activates
optimizations based on the type of expressions. In particular, an
object of one type is assumed never to reside at the same address as an
object of a different type, unless the types are almost the same. For
example, an <code>unsigned int</code> can alias an <code>int</code>, but not a
<code>void*</code> or a <code>double</code>. A character type may alias any other
type.
</p>
<a name="Type_002dpunning"></a><p>Pay special attention to code like this:
</p><div class="smallexample">
<pre class="smallexample">union a_union {
int i;
double d;
};
int f() {
union a_union t;
t.d = 3.0;
return t.i;
}
</pre></div>
<p>The practice of reading from a different union member than the one most
recently written to (called “type-punning”) is common. Even with
<samp>-fstrict-aliasing</samp>, type-punning is allowed, provided the memory
is accessed through the union type. So, the code above works as
expected. See <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>. However, this code might not:
</p><div class="smallexample">
<pre class="smallexample">int f() {
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;
}
</pre></div>
<p>Similarly, access by taking the address, casting the resulting pointer
and dereferencing the result has undefined behavior, even if the cast
uses a union type, e.g.:
</p><div class="smallexample">
<pre class="smallexample">int f() {
double d = 3.0;
return ((union a_union *) &d)->i;
}
</pre></div>
<p>The <samp>-fstrict-aliasing</samp> option is enabled at levels
<samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-falign-functions</code></dt>
<dt><code>-falign-functions=<var>n</var></code></dt>
<dd><a name="index-falign_002dfunctions"></a>
<p>Align the start of functions to the next power-of-two greater than
<var>n</var>, skipping up to <var>n</var> bytes. For instance,
<samp>-falign-functions=32</samp> aligns functions to the next 32-byte
boundary, but <samp>-falign-functions=24</samp> aligns to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.
</p>
<p><samp>-fno-align-functions</samp> and <samp>-falign-functions=1</samp> are
equivalent and mean that functions are not aligned.
</p>
<p>Some assemblers only support this flag when <var>n</var> is a power of two;
in that case, it is rounded up.
</p>
<p>If <var>n</var> is not specified or is zero, use a machine-dependent default.
The maximum allowed <var>n</var> option value is 65536.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>.
</p>
</dd>
<dt><code>-flimit-function-alignment</code></dt>
<dd><p>If this option is enabled, the compiler tries to avoid unnecessarily
overaligning functions. It attempts to instruct the assembler to align
by the amount specified by <samp>-falign-functions</samp>, but not to
skip more bytes than the size of the function.
</p>
</dd>
<dt><code>-falign-labels</code></dt>
<dt><code>-falign-labels=<var>n</var></code></dt>
<dd><a name="index-falign_002dlabels"></a>
<p>Align all branch targets to a power-of-two boundary, skipping up to
<var>n</var> bytes like <samp>-falign-functions</samp>. This option can easily
make code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.
</p>
<p><samp>-fno-align-labels</samp> and <samp>-falign-labels=1</samp> are
equivalent and mean that labels are not aligned.
</p>
<p>If <samp>-falign-loops</samp> or <samp>-falign-jumps</samp> are applicable and
are greater than this value, then their values are used instead.
</p>
<p>If <var>n</var> is not specified or is zero, use a machine-dependent default
which is very likely to be ‘<samp>1</samp>’, meaning no alignment.
The maximum allowed <var>n</var> option value is 65536.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>.
</p>
</dd>
<dt><code>-falign-loops</code></dt>
<dt><code>-falign-loops=<var>n</var></code></dt>
<dd><a name="index-falign_002dloops"></a>
<p>Align loops to a power-of-two boundary, skipping up to <var>n</var> bytes
like <samp>-falign-functions</samp>. If the loops are
executed many times, this makes up for any execution of the dummy
operations.
</p>
<p><samp>-fno-align-loops</samp> and <samp>-falign-loops=1</samp> are
equivalent and mean that loops are not aligned.
The maximum allowed <var>n</var> option value is 65536.
</p>
<p>If <var>n</var> is not specified or is zero, use a machine-dependent default.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>.
</p>
</dd>
<dt><code>-falign-jumps</code></dt>
<dt><code>-falign-jumps=<var>n</var></code></dt>
<dd><a name="index-falign_002djumps"></a>
<p>Align branch targets to a power-of-two boundary, for branch targets
where the targets can only be reached by jumping, skipping up to <var>n</var>
bytes like <samp>-falign-functions</samp>. In this case, no dummy operations
need be executed.
</p>
<p><samp>-fno-align-jumps</samp> and <samp>-falign-jumps=1</samp> are
equivalent and mean that loops are not aligned.
</p>
<p>If <var>n</var> is not specified or is zero, use a machine-dependent default.
The maximum allowed <var>n</var> option value is 65536.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>.
</p>
</dd>
<dt><code>-funit-at-a-time</code></dt>
<dd><a name="index-funit_002dat_002da_002dtime"></a>
<p>This option is left for compatibility reasons. <samp>-funit-at-a-time</samp>
has no effect, while <samp>-fno-unit-at-a-time</samp> implies
<samp>-fno-toplevel-reorder</samp> and <samp>-fno-section-anchors</samp>.
</p>
<p>Enabled by default.
</p>
</dd>
<dt><code>-fno-toplevel-reorder</code></dt>
<dd><a name="index-fno_002dtoplevel_002dreorder"></a>
<p>Do not reorder top-level functions, variables, and <code>asm</code>
statements. Output them in the same order that they appear in the
input file. When this option is used, unreferenced static variables
are not removed. This option is intended to support existing code
that relies on a particular ordering. For new code, it is better to
use attributes when possible.
</p>
<p>Enabled at level <samp>-O0</samp>. When disabled explicitly, it also implies
<samp>-fno-section-anchors</samp>, which is otherwise enabled at <samp>-O0</samp> on some
targets.
</p>
</dd>
<dt><code>-fweb</code></dt>
<dd><a name="index-fweb"></a>
<p>Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables no longer stay in a
“home register”.
</p>
<p>Enabled by default with <samp>-funroll-loops</samp>.
</p>
</dd>
<dt><code>-fwhole-program</code></dt>
<dd><a name="index-fwhole_002dprogram"></a>
<p>Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables with the exception of <code>main</code>
and those merged by attribute <code>externally_visible</code> become static functions
and in effect are optimized more aggressively by interprocedural optimizers.
</p>
<p>This option should not be used in combination with <samp>-flto</samp>.
Instead relying on a linker plugin should provide safer and more precise
information.
</p>
</dd>
<dt><code>-flto[=<var>n</var>]</code></dt>
<dd><a name="index-flto"></a>
<p>This option runs the standard link-time optimizer. When invoked
with source code, it generates GIMPLE (one of GCC’s internal
representations) and writes it to special ELF sections in the object
file. When the object files are linked together, all the function
bodies are read from these ELF sections and instantiated as if they
had been part of the same translation unit.
</p>
<p>To use the link-time optimizer, <samp>-flto</samp> and optimization
options should be specified at compile time and during the final link.
It is recommended that you compile all the files participating in the
same link with the same options and also specify those options at
link time.
For example:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -c -O2 -flto foo.c
gcc -c -O2 -flto bar.c
gcc -o myprog -flto -O2 foo.o bar.o
</pre></div>
<p>The first two invocations to GCC save a bytecode representation
of GIMPLE into special ELF sections inside <samp>foo.o</samp> and
<samp>bar.o</samp>. The final invocation reads the GIMPLE bytecode from
<samp>foo.o</samp> and <samp>bar.o</samp>, merges the two files into a single
internal image, and compiles the result as usual. Since both
<samp>foo.o</samp> and <samp>bar.o</samp> are merged into a single image, this
causes all the interprocedural analyses and optimizations in GCC to
work across the two files as if they were a single one. This means,
for example, that the inliner is able to inline functions in
<samp>bar.o</samp> into functions in <samp>foo.o</samp> and vice-versa.
</p>
<p>Another (simpler) way to enable link-time optimization is:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -o myprog -flto -O2 foo.c bar.c
</pre></div>
<p>The above generates bytecode for <samp>foo.c</samp> and <samp>bar.c</samp>,
merges them together into a single GIMPLE representation and optimizes
them as usual to produce <samp>myprog</samp>.
</p>
<p>The only important thing to keep in mind is that to enable link-time
optimizations you need to use the GCC driver to perform the link step.
GCC then automatically performs link-time optimization if any of the
objects involved were compiled with the <samp>-flto</samp> command-line option.
You generally
should specify the optimization options to be used for link-time
optimization though GCC tries to be clever at guessing an
optimization level to use from the options used at compile time
if you fail to specify one at link time. You can always override
the automatic decision to do link-time optimization
by passing <samp>-fno-lto</samp> to the link command.
</p>
<p>To make whole program optimization effective, it is necessary to make
certain whole program assumptions. The compiler needs to know
what functions and variables can be accessed by libraries and runtime
outside of the link-time optimized unit. When supported by the linker,
the linker plugin (see <samp>-fuse-linker-plugin</samp>) passes information
to the compiler about used and externally visible symbols. When
the linker plugin is not available, <samp>-fwhole-program</samp> should be
used to allow the compiler to make these assumptions, which leads
to more aggressive optimization decisions.
</p>
<p>When <samp>-fuse-linker-plugin</samp> is not enabled, when a file is
compiled with <samp>-flto</samp>, the generated object file is larger than
a regular object file because it contains GIMPLE bytecodes and the usual
final code (see <samp>-ffat-lto-objects</samp>. This means that
object files with LTO information can be linked as normal object
files; if <samp>-fno-lto</samp> is passed to the linker, no
interprocedural optimizations are applied. Note that when
<samp>-fno-fat-lto-objects</samp> is enabled the compile stage is faster
but you cannot perform a regular, non-LTO link on them.
</p>
<p>Additionally, the optimization flags used to compile individual files
are not necessarily related to those used at link time. For instance,
</p>
<div class="smallexample">
<pre class="smallexample">gcc -c -O0 -ffat-lto-objects -flto foo.c
gcc -c -O0 -ffat-lto-objects -flto bar.c
gcc -o myprog -O3 foo.o bar.o
</pre></div>
<p>This produces individual object files with unoptimized assembler
code, but the resulting binary <samp>myprog</samp> is optimized at
<samp>-O3</samp>. If, instead, the final binary is generated with
<samp>-fno-lto</samp>, then <samp>myprog</samp> is not optimized.
</p>
<p>When producing the final binary, GCC only
applies link-time optimizations to those files that contain bytecode.
Therefore, you can mix and match object files and libraries with
GIMPLE bytecodes and final object code. GCC automatically selects
which files to optimize in LTO mode and which files to link without
further processing.
</p>
<p>There are some code generation flags preserved by GCC when
generating bytecodes, as they need to be used during the final link
stage. Generally options specified at link time override those
specified at compile time.
</p>
<p>If you do not specify an optimization level option <samp>-O</samp> at
link time, then GCC uses the highest optimization level
used when compiling the object files.
</p>
<p>Currently, the following options and their settings are taken from
the first object file that explicitly specifies them:
<samp>-fPIC</samp>, <samp>-fpic</samp>, <samp>-fpie</samp>, <samp>-fcommon</samp>,
<samp>-fexceptions</samp>, <samp>-fnon-call-exceptions</samp>, <samp>-fgnu-tm</samp>
and all the <samp>-m</samp> target flags.
</p>
<p>Certain ABI-changing flags are required to match in all compilation units,
and trying to override this at link time with a conflicting value
is ignored. This includes options such as <samp>-freg-struct-return</samp>
and <samp>-fpcc-struct-return</samp>.
</p>
<p>Other options such as <samp>-ffp-contract</samp>, <samp>-fno-strict-overflow</samp>,
<samp>-fwrapv</samp>, <samp>-fno-trapv</samp> or <samp>-fno-strict-aliasing</samp>
are passed through to the link stage and merged conservatively for
conflicting translation units. Specifically
<samp>-fno-strict-overflow</samp>, <samp>-fwrapv</samp> and <samp>-fno-trapv</samp> take
precedence; and for example <samp>-ffp-contract=off</samp> takes precedence
over <samp>-ffp-contract=fast</samp>. You can override them at link time.
</p>
<p>If LTO encounters objects with C linkage declared with incompatible
types in separate translation units to be linked together (undefined
behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
issued. The behavior is still undefined at run time. Similar
diagnostics may be raised for other languages.
</p>
<p>Another feature of LTO is that it is possible to apply interprocedural
optimizations on files written in different languages:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -c -flto foo.c
g++ -c -flto bar.cc
gfortran -c -flto baz.f90
g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
</pre></div>
<p>Notice that the final link is done with <code>g++</code> to get the C++
runtime libraries and <samp>-lgfortran</samp> is added to get the Fortran
runtime libraries. In general, when mixing languages in LTO mode, you
should use the same link command options as when mixing languages in a
regular (non-LTO) compilation.
</p>
<p>If object files containing GIMPLE bytecode are stored in a library archive, say
<samp>libfoo.a</samp>, it is possible to extract and use them in an LTO link if you
are using a linker with plugin support. To create static libraries suitable
for LTO, use <code>gcc-ar</code> and <code>gcc-ranlib</code> instead of <code>ar</code>
and <code>ranlib</code>;
to show the symbols of object files with GIMPLE bytecode, use
<code>gcc-nm</code>. Those commands require that <code>ar</code>, <code>ranlib</code>
and <code>nm</code> have been compiled with plugin support. At link time, use the the
flag <samp>-fuse-linker-plugin</samp> to ensure that the library participates in
the LTO optimization process:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
</pre></div>
<p>With the linker plugin enabled, the linker extracts the needed
GIMPLE files from <samp>libfoo.a</samp> and passes them on to the running GCC
to make them part of the aggregated GIMPLE image to be optimized.
</p>
<p>If you are not using a linker with plugin support and/or do not
enable the linker plugin, then the objects inside <samp>libfoo.a</samp>
are extracted and linked as usual, but they do not participate
in the LTO optimization process. In order to make a static library suitable
for both LTO optimization and usual linkage, compile its object files with
<samp>-flto</samp> <samp>-ffat-lto-objects</samp>.
</p>
<p>Link-time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is
possible to combine <samp>-flto</samp> and <samp>-fwhole-program</samp> to allow
the interprocedural optimizers to use more aggressive assumptions which may
lead to improved optimization opportunities.
Use of <samp>-fwhole-program</samp> is not needed when linker plugin is
active (see <samp>-fuse-linker-plugin</samp>).
</p>
<p>The current implementation of LTO makes no
attempt to generate bytecode that is portable between different
types of hosts. The bytecode files are versioned and there is a
strict version check, so bytecode files generated in one version of
GCC do not work with an older or newer version of GCC.
</p>
<p>Link-time optimization does not work well with generation of debugging
information on systems other than those using a combination of ELF and
DWARF.
</p>
<p>If you specify the optional <var>n</var>, the optimization and code
generation done at link time is executed in parallel using <var>n</var>
parallel jobs by utilizing an installed <code>make</code> program. The
environment variable <code>MAKE</code> may be used to override the program
used. The default value for <var>n</var> is 1.
</p>
<p>You can also specify <samp>-flto=jobserver</samp> to use GNU make’s
job server mode to determine the number of parallel jobs. This
is useful when the Makefile calling GCC is already executing in parallel.
You must prepend a ‘<samp>+</samp>’ to the command recipe in the parent Makefile
for this to work. This option likely only works if <code>MAKE</code> is
GNU make.
</p>
</dd>
<dt><code>-flto-partition=<var>alg</var></code></dt>
<dd><a name="index-flto_002dpartition"></a>
<p>Specify the partitioning algorithm used by the link-time optimizer.
The value is either ‘<samp>1to1</samp>’ to specify a partitioning mirroring
the original source files or ‘<samp>balanced</samp>’ to specify partitioning
into equally sized chunks (whenever possible) or ‘<samp>max</samp>’ to create
new partition for every symbol where possible. Specifying ‘<samp>none</samp>’
as an algorithm disables partitioning and streaming completely.
The default value is ‘<samp>balanced</samp>’. While ‘<samp>1to1</samp>’ can be used
as an workaround for various code ordering issues, the ‘<samp>max</samp>’
partitioning is intended for internal testing only.
The value ‘<samp>one</samp>’ specifies that exactly one partition should be
used while the value ‘<samp>none</samp>’ bypasses partitioning and executes
the link-time optimization step directly from the WPA phase.
</p>
</dd>
<dt><code>-flto-odr-type-merging</code></dt>
<dd><a name="index-flto_002dodr_002dtype_002dmerging"></a>
<p>Enable streaming of mangled types names of C++ types and their unification
at link time. This increases size of LTO object files, but enables
diagnostics about One Definition Rule violations.
</p>
</dd>
<dt><code>-flto-compression-level=<var>n</var></code></dt>
<dd><a name="index-flto_002dcompression_002dlevel"></a>
<p>This option specifies the level of compression used for intermediate
language written to LTO object files, and is only meaningful in
conjunction with LTO mode (<samp>-flto</samp>). Valid
values are 0 (no compression) to 9 (maximum compression). Values
outside this range are clamped to either 0 or 9. If the option is not
given, a default balanced compression setting is used.
</p>
</dd>
<dt><code>-fuse-linker-plugin</code></dt>
<dd><a name="index-fuse_002dlinker_002dplugin"></a>
<p>Enables the use of a linker plugin during link-time optimization. This
option relies on plugin support in the linker, which is available in gold
or in GNU ld 2.21 or newer.
</p>
<p>This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing
more code to the link-time optimizer. This information specifies what
symbols can be accessed externally (by non-LTO object or during dynamic
linking). Resulting code quality improvements on binaries (and shared
libraries that use hidden visibility) are similar to <samp>-fwhole-program</samp>.
See <samp>-flto</samp> for a description of the effect of this flag and how to
use it.
</p>
<p>This option is enabled by default when LTO support in GCC is enabled
and GCC was configured for use with
a linker supporting plugins (GNU ld 2.21 or newer or gold).
</p>
</dd>
<dt><code>-ffat-lto-objects</code></dt>
<dd><a name="index-ffat_002dlto_002dobjects"></a>
<p>Fat LTO objects are object files that contain both the intermediate language
and the object code. This makes them usable for both LTO linking and normal
linking. This option is effective only when compiling with <samp>-flto</samp>
and is ignored at link time.
</p>
<p><samp>-fno-fat-lto-objects</samp> improves compilation time over plain LTO, but
requires the complete toolchain to be aware of LTO. It requires a linker with
linker plugin support for basic functionality. Additionally,
<code>nm</code>, <code>ar</code> and <code>ranlib</code>
need to support linker plugins to allow a full-featured build environment
(capable of building static libraries etc). GCC provides the <code>gcc-ar</code>,
<code>gcc-nm</code>, <code>gcc-ranlib</code> wrappers to pass the right options
to these tools. With non fat LTO makefiles need to be modified to use them.
</p>
<p>Note that modern binutils provide plugin auto-load mechanism.
Installing the linker plugin into <samp>$libdir/bfd-plugins</samp> has the same
effect as usage of the command wrappers (<code>gcc-ar</code>, <code>gcc-nm</code> and
<code>gcc-ranlib</code>).
</p>
<p>The default is <samp>-fno-fat-lto-objects</samp> on targets with linker plugin
support.
</p>
</dd>
<dt><code>-fcompare-elim</code></dt>
<dd><a name="index-fcompare_002delim"></a>
<p>After register allocation and post-register allocation instruction splitting,
identify arithmetic instructions that compute processor flags similar to a
comparison operation based on that arithmetic. If possible, eliminate the
explicit comparison operation.
</p>
<p>This pass only applies to certain targets that cannot explicitly represent
the comparison operation before register allocation is complete.
</p>
<p>Enabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fcprop-registers</code></dt>
<dd><a name="index-fcprop_002dregisters"></a>
<p>After register allocation and post-register allocation instruction splitting,
perform a copy-propagation pass to try to reduce scheduling dependencies
and occasionally eliminate the copy.
</p>
<p>Enabled at levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-fprofile-correction</code></dt>
<dd><a name="index-fprofile_002dcorrection"></a>
<p>Profiles collected using an instrumented binary for multi-threaded programs may
be inconsistent due to missed counter updates. When this option is specified,
GCC uses heuristics to correct or smooth out such inconsistencies. By
default, GCC emits an error message when an inconsistent profile is detected.
</p>
</dd>
<dt><code>-fprofile-use</code></dt>
<dt><code>-fprofile-use=<var>path</var></code></dt>
<dd><a name="index-fprofile_002duse"></a>
<p>Enable profile feedback-directed optimizations,
and the following optimizations
which are generally profitable only with profile feedback available:
<samp>-fbranch-probabilities</samp>, <samp>-fvpt</samp>,
<samp>-funroll-loops</samp>, <samp>-fpeel-loops</samp>, <samp>-ftracer</samp>,
<samp>-ftree-vectorize</samp>, and <samp>ftree-loop-distribute-patterns</samp>.
</p>
<p>Before you can use this option, you must first generate profiling information.
See <a href="#Instrumentation-Options">Instrumentation Options</a>, for information about the
<samp>-fprofile-generate</samp> option.
</p>
<p>By default, GCC emits an error message if the feedback profiles do not
match the source code. This error can be turned into a warning by using
<samp>-Wcoverage-mismatch</samp>. Note this may result in poorly optimized
code.
</p>
<p>If <var>path</var> is specified, GCC looks at the <var>path</var> to find
the profile feedback data files. See <samp>-fprofile-dir</samp>.
</p>
</dd>
<dt><code>-fauto-profile</code></dt>
<dt><code>-fauto-profile=<var>path</var></code></dt>
<dd><a name="index-fauto_002dprofile"></a>
<p>Enable sampling-based feedback-directed optimizations,
and the following optimizations
which are generally profitable only with profile feedback available:
<samp>-fbranch-probabilities</samp>, <samp>-fvpt</samp>,
<samp>-funroll-loops</samp>, <samp>-fpeel-loops</samp>, <samp>-ftracer</samp>,
<samp>-ftree-vectorize</samp>,
<samp>-finline-functions</samp>, <samp>-fipa-cp</samp>, <samp>-fipa-cp-clone</samp>,
<samp>-fpredictive-commoning</samp>, <samp>-funswitch-loops</samp>,
<samp>-fgcse-after-reload</samp>, and <samp>-ftree-loop-distribute-patterns</samp>.
</p>
<p><var>path</var> is the name of a file containing AutoFDO profile information.
If omitted, it defaults to <samp>fbdata.afdo</samp> in the current directory.
</p>
<p>Producing an AutoFDO profile data file requires running your program
with the <code>perf</code> utility on a supported GNU/Linux target system.
For more information, see <a href="https://perf.wiki.kernel.org/">https://perf.wiki.kernel.org/</a>.
</p>
<p>E.g.
</p><div class="smallexample">
<pre class="smallexample">perf record -e br_inst_retired:near_taken -b -o perf.data \
-- your_program
</pre></div>
<p>Then use the <code>create_gcov</code> tool to convert the raw profile data
to a format that can be used by GCC. You must also supply the
unstripped binary for your program to this tool.
See <a href="https://github.com/google/autofdo">https://github.com/google/autofdo</a>.
</p>
<p>E.g.
</p><div class="smallexample">
<pre class="smallexample">create_gcov --binary=your_program.unstripped --profile=perf.data \
--gcov=profile.afdo
</pre></div>
</dd>
</dl>
<p>The following options control compiler behavior regarding floating-point
arithmetic. These options trade off between speed and
correctness. All must be specifically enabled.
</p>
<dl compact="compact">
<dt><code>-ffloat-store</code></dt>
<dd><a name="index-ffloat_002dstore"></a>
<p>Do not store floating-point variables in registers, and inhibit other
options that might change whether a floating-point value is taken from a
register or memory.
</p>
<a name="index-floating_002dpoint-precision"></a>
<p>This option prevents undesirable excess precision on machines such as
the 68000 where the floating registers (of the 68881) keep more
precision than a <code>double</code> is supposed to have. Similarly for the
x86 architecture. For most programs, the excess precision does only
good, but a few programs rely on the precise definition of IEEE floating
point. Use <samp>-ffloat-store</samp> for such programs, after modifying
them to store all pertinent intermediate computations into variables.
</p>
</dd>
<dt><code>-fexcess-precision=<var>style</var></code></dt>
<dd><a name="index-fexcess_002dprecision"></a>
<p>This option allows further control over excess precision on machines
where floating-point operations occur in a format with more precision or
range than the IEEE standard and interchange floating-point types. By
default, <samp>-fexcess-precision=fast</samp> is in effect; this means that
operations may be carried out in a wider precision than the types specified
in the source if that would result in faster code, and it is unpredictable
when rounding to the types specified in the source code takes place.
When compiling C, if <samp>-fexcess-precision=standard</samp> is specified then
excess precision follows the rules specified in ISO C99; in particular,
both casts and assignments cause values to be rounded to their
semantic types (whereas <samp>-ffloat-store</samp> only affects
assignments). This option is enabled by default for C if a strict
conformance option such as <samp>-std=c99</samp> is used.
<samp>-ffast-math</samp> enables <samp>-fexcess-precision=fast</samp> by default
regardless of whether a strict conformance option is used.
</p>
<a name="index-mfpmath"></a>
<p><samp>-fexcess-precision=standard</samp> is not implemented for languages
other than C. On the x86, it has no effect if <samp>-mfpmath=sse</samp>
or <samp>-mfpmath=sse+387</samp> is specified; in the former case, IEEE
semantics apply without excess precision, and in the latter, rounding
is unpredictable.
</p>
</dd>
<dt><code>-ffast-math</code></dt>
<dd><a name="index-ffast_002dmath"></a>
<p>Sets the options <samp>-fno-math-errno</samp>, <samp>-funsafe-math-optimizations</samp>,
<samp>-ffinite-math-only</samp>, <samp>-fno-rounding-math</samp>,
<samp>-fno-signaling-nans</samp>, <samp>-fcx-limited-range</samp> and
<samp>-fexcess-precision=fast</samp>.
</p>
<p>This option causes the preprocessor macro <code>__FAST_MATH__</code> to be defined.
</p>
<p>This option is not turned on by any <samp>-O</samp> option besides
<samp>-Ofast</samp> since it can result in incorrect output for programs
that depend on an exact implementation of IEEE or ISO rules/specifications
for math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
</p>
</dd>
<dt><code>-fno-math-errno</code></dt>
<dd><a name="index-fno_002dmath_002derrno"></a>
<p>Do not set <code>errno</code> after calling math functions that are executed
with a single instruction, e.g., <code>sqrt</code>. A program that relies on
IEEE exceptions for math error handling may want to use this flag
for speed while maintaining IEEE arithmetic compatibility.
</p>
<p>This option is not turned on by any <samp>-O</samp> option since
it can result in incorrect output for programs that depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
</p>
<p>The default is <samp>-fmath-errno</samp>.
</p>
<p>On Darwin systems, the math library never sets <code>errno</code>. There is
therefore no reason for the compiler to consider the possibility that
it might, and <samp>-fno-math-errno</samp> is the default.
</p>
</dd>
<dt><code>-funsafe-math-optimizations</code></dt>
<dd><a name="index-funsafe_002dmath_002doptimizations"></a>
<p>Allow optimizations for floating-point arithmetic that (a) assume
that arguments and results are valid and (b) may violate IEEE or
ANSI standards. When used at link time, it may include libraries
or startup files that change the default FPU control word or other
similar optimizations.
</p>
<p>This option is not turned on by any <samp>-O</samp> option since
it can result in incorrect output for programs that depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
Enables <samp>-fno-signed-zeros</samp>, <samp>-fno-trapping-math</samp>,
<samp>-fassociative-math</samp> and <samp>-freciprocal-math</samp>.
</p>
<p>The default is <samp>-fno-unsafe-math-optimizations</samp>.
</p>
</dd>
<dt><code>-fassociative-math</code></dt>
<dd><a name="index-fassociative_002dmath"></a>
<p>Allow re-association of operands in series of floating-point operations.
This violates the ISO C and C++ language standard by possibly changing
computation result. NOTE: re-ordering may change the sign of zero as
well as ignore NaNs and inhibit or create underflow or overflow (and
thus cannot be used on code that relies on rounding behavior like
<code>(x + 2**52) - 2**52</code>. May also reorder floating-point comparisons
and thus may not be used when ordered comparisons are required.
This option requires that both <samp>-fno-signed-zeros</samp> and
<samp>-fno-trapping-math</samp> be in effect. Moreover, it doesn’t make
much sense with <samp>-frounding-math</samp>. For Fortran the option
is automatically enabled when both <samp>-fno-signed-zeros</samp> and
<samp>-fno-trapping-math</samp> are in effect.
</p>
<p>The default is <samp>-fno-associative-math</samp>.
</p>
</dd>
<dt><code>-freciprocal-math</code></dt>
<dd><a name="index-freciprocal_002dmath"></a>
<p>Allow the reciprocal of a value to be used instead of dividing by
the value if this enables optimizations. For example <code>x / y</code>
can be replaced with <code>x * (1/y)</code>, which is useful if <code>(1/y)</code>
is subject to common subexpression elimination. Note that this loses
precision and increases the number of flops operating on the value.
</p>
<p>The default is <samp>-fno-reciprocal-math</samp>.
</p>
</dd>
<dt><code>-ffinite-math-only</code></dt>
<dd><a name="index-ffinite_002dmath_002donly"></a>
<p>Allow optimizations for floating-point arithmetic that assume
that arguments and results are not NaNs or +-Infs.
</p>
<p>This option is not turned on by any <samp>-O</samp> option since
it can result in incorrect output for programs that depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
</p>
<p>The default is <samp>-fno-finite-math-only</samp>.
</p>
</dd>
<dt><code>-fno-signed-zeros</code></dt>
<dd><a name="index-fno_002dsigned_002dzeros"></a>
<p>Allow optimizations for floating-point arithmetic that ignore the
signedness of zero. IEEE arithmetic specifies the behavior of
distinct +0.0 and -0.0 values, which then prohibits simplification
of expressions such as x+0.0 or 0.0*x (even with <samp>-ffinite-math-only</samp>).
This option implies that the sign of a zero result isn’t significant.
</p>
<p>The default is <samp>-fsigned-zeros</samp>.
</p>
</dd>
<dt><code>-fno-trapping-math</code></dt>
<dd><a name="index-fno_002dtrapping_002dmath"></a>
<p>Compile code assuming that floating-point operations cannot generate
user-visible traps. These traps include division by zero, overflow,
underflow, inexact result and invalid operation. This option requires
that <samp>-fno-signaling-nans</samp> be in effect. Setting this option may
allow faster code if one relies on “non-stop” IEEE arithmetic, for example.
</p>
<p>This option should never be turned on by any <samp>-O</samp> option since
it can result in incorrect output for programs that depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions.
</p>
<p>The default is <samp>-ftrapping-math</samp>.
</p>
</dd>
<dt><code>-frounding-math</code></dt>
<dd><a name="index-frounding_002dmath"></a>
<p>Disable transformations and optimizations that assume default floating-point
rounding behavior. This is round-to-zero for all floating point
to integer conversions, and round-to-nearest for all other arithmetic
truncations. This option should be specified for programs that change
the FP rounding mode dynamically, or that may be executed with a
non-default rounding mode. This option disables constant folding of
floating-point expressions at compile time (which may be affected by
rounding mode) and arithmetic transformations that are unsafe in the
presence of sign-dependent rounding modes.
</p>
<p>The default is <samp>-fno-rounding-math</samp>.
</p>
<p>This option is experimental and does not currently guarantee to
disable all GCC optimizations that are affected by rounding mode.
Future versions of GCC may provide finer control of this setting
using C99’s <code>FENV_ACCESS</code> pragma. This command-line option
will be used to specify the default state for <code>FENV_ACCESS</code>.
</p>
</dd>
<dt><code>-fsignaling-nans</code></dt>
<dd><a name="index-fsignaling_002dnans"></a>
<p>Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables
optimizations that may change the number of exceptions visible with
signaling NaNs. This option implies <samp>-ftrapping-math</samp>.
</p>
<p>This option causes the preprocessor macro <code>__SUPPORT_SNAN__</code> to
be defined.
</p>
<p>The default is <samp>-fno-signaling-nans</samp>.
</p>
<p>This option is experimental and does not currently guarantee to
disable all GCC optimizations that affect signaling NaN behavior.
</p>
</dd>
<dt><code>-fno-fp-int-builtin-inexact</code></dt>
<dd><a name="index-fno_002dfp_002dint_002dbuiltin_002dinexact"></a>
<p>Do not allow the built-in functions <code>ceil</code>, <code>floor</code>,
<code>round</code> and <code>trunc</code>, and their <code>float</code> and <code>long
double</code> variants, to generate code that raises the “inexact”
floating-point exception for noninteger arguments. ISO C99 and C11
allow these functions to raise the “inexact” exception, but ISO/IEC
TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
functions to do so.
</p>
<p>The default is <samp>-ffp-int-builtin-inexact</samp>, allowing the
exception to be raised. This option does nothing unless
<samp>-ftrapping-math</samp> is in effect.
</p>
<p>Even if <samp>-fno-fp-int-builtin-inexact</samp> is used, if the functions
generate a call to a library function then the “inexact” exception
may be raised if the library implementation does not follow TS 18661.
</p>
</dd>
<dt><code>-fsingle-precision-constant</code></dt>
<dd><a name="index-fsingle_002dprecision_002dconstant"></a>
<p>Treat floating-point constants as single precision instead of
implicitly converting them to double-precision constants.
</p>
</dd>
<dt><code>-fcx-limited-range</code></dt>
<dd><a name="index-fcx_002dlimited_002drange"></a>
<p>When enabled, this option states that a range reduction step is not
needed when performing complex division. Also, there is no checking
whether the result of a complex multiplication or division is <code>NaN
+ I*NaN</code>, with an attempt to rescue the situation in that case. The
default is <samp>-fno-cx-limited-range</samp>, but is enabled by
<samp>-ffast-math</samp>.
</p>
<p>This option controls the default setting of the ISO C99
<code>CX_LIMITED_RANGE</code> pragma. Nevertheless, the option applies to
all languages.
</p>
</dd>
<dt><code>-fcx-fortran-rules</code></dt>
<dd><a name="index-fcx_002dfortran_002drules"></a>
<p>Complex multiplication and division follow Fortran rules. Range
reduction is done as part of complex division, but there is no checking
whether the result of a complex multiplication or division is <code>NaN
+ I*NaN</code>, with an attempt to rescue the situation in that case.
</p>
<p>The default is <samp>-fno-cx-fortran-rules</samp>.
</p>
</dd>
</dl>
<p>The following options control optimizations that may improve
performance, but are not enabled by any <samp>-O</samp> options. This
section includes experimental options that may produce broken code.
</p>
<dl compact="compact">
<dt><code>-fbranch-probabilities</code></dt>
<dd><a name="index-fbranch_002dprobabilities"></a>
<p>After running a program compiled with <samp>-fprofile-arcs</samp>
(see <a href="#Instrumentation-Options">Instrumentation Options</a>),
you can compile it a second time using
<samp>-fbranch-probabilities</samp>, to improve optimizations based on
the number of times each branch was taken. When a program
compiled with <samp>-fprofile-arcs</samp> exits, it saves arc execution
counts to a file called <samp><var>sourcename</var>.gcda</samp> for each source
file. The information in this data file is very dependent on the
structure of the generated code, so you must use the same source code
and the same optimization options for both compilations.
</p>
<p>With <samp>-fbranch-probabilities</samp>, GCC puts a
‘<samp>REG_BR_PROB</samp>’ note on each ‘<samp>JUMP_INSN</samp>’ and ‘<samp>CALL_INSN</samp>’.
These can be used to improve optimization. Currently, they are only
used in one place: in <samp>reorg.c</samp>, instead of guessing which path a
branch is most likely to take, the ‘<samp>REG_BR_PROB</samp>’ values are used to
exactly determine which path is taken more often.
</p>
</dd>
<dt><code>-fprofile-values</code></dt>
<dd><a name="index-fprofile_002dvalues"></a>
<p>If combined with <samp>-fprofile-arcs</samp>, it adds code so that some
data about values of expressions in the program is gathered.
</p>
<p>With <samp>-fbranch-probabilities</samp>, it reads back the data gathered
from profiling values of expressions for usage in optimizations.
</p>
<p>Enabled with <samp>-fprofile-generate</samp> and <samp>-fprofile-use</samp>.
</p>
</dd>
<dt><code>-fprofile-reorder-functions</code></dt>
<dd><a name="index-fprofile_002dreorder_002dfunctions"></a>
<p>Function reordering based on profile instrumentation collects
first time of execution of a function and orders these functions
in ascending order.
</p>
<p>Enabled with <samp>-fprofile-use</samp>.
</p>
</dd>
<dt><code>-fvpt</code></dt>
<dd><a name="index-fvpt"></a>
<p>If combined with <samp>-fprofile-arcs</samp>, this option instructs the compiler
to add code to gather information about values of expressions.
</p>
<p>With <samp>-fbranch-probabilities</samp>, it reads back the data gathered
and actually performs the optimizations based on them.
Currently the optimizations include specialization of division operations
using the knowledge about the value of the denominator.
</p>
</dd>
<dt><code>-frename-registers</code></dt>
<dd><a name="index-frename_002dregisters"></a>
<p>Attempt to avoid false dependencies in scheduled code by making use
of registers left over after register allocation. This optimization
most benefits processors with lots of registers. Depending on the
debug information format adopted by the target, however, it can
make debugging impossible, since variables no longer stay in
a “home register”.
</p>
<p>Enabled by default with <samp>-funroll-loops</samp>.
</p>
</dd>
<dt><code>-fschedule-fusion</code></dt>
<dd><a name="index-fschedule_002dfusion"></a>
<p>Performs a target dependent pass over the instruction stream to schedule
instructions of same type together because target machine can execute them
more efficiently if they are adjacent to each other in the instruction flow.
</p>
<p>Enabled at levels <samp>-O2</samp>, <samp>-O3</samp>, <samp>-Os</samp>.
</p>
</dd>
<dt><code>-ftracer</code></dt>
<dd><a name="index-ftracer"></a>
<p>Perform tail duplication to enlarge superblock size. This transformation
simplifies the control flow of the function allowing other optimizations to do
a better job.
</p>
<p>Enabled with <samp>-fprofile-use</samp>.
</p>
</dd>
<dt><code>-funroll-loops</code></dt>
<dd><a name="index-funroll_002dloops"></a>
<p>Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. <samp>-funroll-loops</samp> implies
<samp>-frerun-cse-after-loop</samp>, <samp>-fweb</samp> and <samp>-frename-registers</samp>.
It also turns on complete loop peeling (i.e. complete removal of loops with
a small constant number of iterations). This option makes code larger, and may
or may not make it run faster.
</p>
<p>Enabled with <samp>-fprofile-use</samp>.
</p>
</dd>
<dt><code>-funroll-all-loops</code></dt>
<dd><a name="index-funroll_002dall_002dloops"></a>
<p>Unroll all loops, even if their number of iterations is uncertain when
the loop is entered. This usually makes programs run more slowly.
<samp>-funroll-all-loops</samp> implies the same options as
<samp>-funroll-loops</samp>.
</p>
</dd>
<dt><code>-fpeel-loops</code></dt>
<dd><a name="index-fpeel_002dloops"></a>
<p>Peels loops for which there is enough information that they do not
roll much (from profile feedback or static analysis). It also turns on
complete loop peeling (i.e. complete removal of loops with small constant
number of iterations).
</p>
<p>Enabled with <samp>-O3</samp> and/or <samp>-fprofile-use</samp>.
</p>
</dd>
<dt><code>-fmove-loop-invariants</code></dt>
<dd><a name="index-fmove_002dloop_002dinvariants"></a>
<p>Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
at level <samp>-O1</samp>
</p>
</dd>
<dt><code>-fsplit-loops</code></dt>
<dd><a name="index-fsplit_002dloops"></a>
<p>Split a loop into two if it contains a condition that’s always true
for one side of the iteration space and false for the other.
</p>
</dd>
<dt><code>-funswitch-loops</code></dt>
<dd><a name="index-funswitch_002dloops"></a>
<p>Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).
</p>
</dd>
<dt><code>-floop-unroll-and-jam</code></dt>
<dd><a name="index-floop_002dunroll_002dand_002djam"></a>
<p>Apply unroll and jam transformations on feasible loops. In a loop
nest this unrolls the outer loop by some factor and fuses the resulting
multiple inner loops.
</p>
</dd>
<dt><code>-ffunction-sections</code></dt>
<dt><code>-fdata-sections</code></dt>
<dd><a name="index-ffunction_002dsections"></a>
<a name="index-fdata_002dsections"></a>
<p>Place each function or data item into its own section in the output
file if the target supports arbitrary sections. The name of the
function or the name of the data item determines the section’s name
in the output file.
</p>
<p>Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format have linkers with such optimizations. On AIX, the linker
rearranges sections (CSECTs) based on the call graph. The performance impact
varies.
</p>
<p>Together with a linker garbage collection (linker <samp>--gc-sections</samp>
option) these options may lead to smaller statically-linked executables (after
stripping).
</p>
<p>On ELF/DWARF systems these options do not degenerate the quality of the debug
information. There could be issues with other object files/debug info formats.
</p>
<p>Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker create larger object and
executable files and are also slower. These options affect code generation.
They prevent optimizations by the compiler and assembler using relative
locations inside a translation unit since the locations are unknown until
link time. An example of such an optimization is relaxing calls to short call
instructions.
</p>
</dd>
<dt><code>-fbranch-target-load-optimize</code></dt>
<dd><a name="index-fbranch_002dtarget_002dload_002doptimize"></a>
<p>Perform branch target register load optimization before prologue / epilogue
threading.
The use of target registers can typically be exposed only during reload,
thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.
</p>
</dd>
<dt><code>-fbranch-target-load-optimize2</code></dt>
<dd><a name="index-fbranch_002dtarget_002dload_002doptimize2"></a>
<p>Perform branch target register load optimization after prologue / epilogue
threading.
</p>
</dd>
<dt><code>-fbtr-bb-exclusive</code></dt>
<dd><a name="index-fbtr_002dbb_002dexclusive"></a>
<p>When performing branch target register load optimization, don’t reuse
branch target registers within any basic block.
</p>
</dd>
<dt><code>-fstdarg-opt</code></dt>
<dd><a name="index-fstdarg_002dopt"></a>
<p>Optimize the prologue of variadic argument functions with respect to usage of
those arguments.
</p>
<p>NOTE: In Ubuntu 14.10 and later versions,
<samp>-fstack-protector-strong</samp> is enabled by default for C,
C++, ObjC, ObjC++, if none of <samp>-fno-stack-protector</samp>,
<samp>-nostdlib</samp>, nor <samp>-ffreestanding</samp> are found.
</p>
</dd>
<dt><code>-fsection-anchors</code></dt>
<dd><a name="index-fsection_002danchors"></a>
<p>Try to reduce the number of symbolic address calculations by using
shared “anchor” symbols to address nearby objects. This transformation
can help to reduce the number of GOT entries and GOT accesses on some
targets.
</p>
<p>For example, the implementation of the following function <code>foo</code>:
</p>
<div class="smallexample">
<pre class="smallexample">static int a, b, c;
int foo (void) { return a + b + c; }
</pre></div>
<p>usually calculates the addresses of all three variables, but if you
compile it with <samp>-fsection-anchors</samp>, it accesses the variables
from a common anchor point instead. The effect is similar to the
following pseudocode (which isn’t valid C):
</p>
<div class="smallexample">
<pre class="smallexample">int foo (void)
{
register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
}
</pre></div>
<p>Not all targets support this option.
</p>
</dd>
<dt><code>--param <var>name</var>=<var>value</var></code></dt>
<dd><a name="index-param"></a>
<p>In some places, GCC uses various constants to control the amount of
optimization that is done. For example, GCC does not inline functions
that contain more than a certain number of instructions. You can
control some of these constants on the command line using the
<samp>--param</samp> option.
</p>
<p>The names of specific parameters, and the meaning of the values, are
tied to the internals of the compiler, and are subject to change
without notice in future releases.
</p>
<p>In each case, the <var>value</var> is an integer. The allowable choices for
<var>name</var> are:
</p>
<dl compact="compact">
<dt><code>predictable-branch-outcome</code></dt>
<dd><p>When branch is predicted to be taken with probability lower than this threshold
(in percent), then it is considered well predictable. The default is 10.
</p>
</dd>
<dt><code>max-rtl-if-conversion-insns</code></dt>
<dd><p>RTL if-conversion tries to remove conditional branches around a block and
replace them with conditionally executed instructions. This parameter
gives the maximum number of instructions in a block which should be
considered for if-conversion. The default is 10, though the compiler will
also use other heuristics to decide whether if-conversion is likely to be
profitable.
</p>
</dd>
<dt><code>max-rtl-if-conversion-predictable-cost</code></dt>
<dt><code>max-rtl-if-conversion-unpredictable-cost</code></dt>
<dd><p>RTL if-conversion will try to remove conditional branches around a block
and replace them with conditionally executed instructions. These parameters
give the maximum permissible cost for the sequence that would be generated
by if-conversion depending on whether the branch is statically determined
to be predictable or not. The units for this parameter are the same as
those for the GCC internal seq_cost metric. The compiler will try to
provide a reasonable default for this parameter using the BRANCH_COST
target macro.
</p>
</dd>
<dt><code>max-crossjump-edges</code></dt>
<dd><p>The maximum number of incoming edges to consider for cross-jumping.
The algorithm used by <samp>-fcrossjumping</samp> is <em>O(N^2)</em> in
the number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compilation time increase with
probably small improvement in executable size.
</p>
</dd>
<dt><code>min-crossjump-insns</code></dt>
<dd><p>The minimum number of instructions that must be matched at the end
of two blocks before cross-jumping is performed on them. This
value is ignored in the case where all instructions in the block being
cross-jumped from are matched. The default value is 5.
</p>
</dd>
<dt><code>max-grow-copy-bb-insns</code></dt>
<dd><p>The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.
</p>
</dd>
<dt><code>max-goto-duplication-insns</code></dt>
<dd><p>The maximum number of instructions to duplicate to a block that jumps
to a computed goto. To avoid <em>O(N^2)</em> behavior in a number of
passes, GCC factors computed gotos early in the compilation process,
and unfactors them as late as possible. Only computed jumps at the
end of a basic blocks with no more than max-goto-duplication-insns are
unfactored. The default value is 8.
</p>
</dd>
<dt><code>max-delay-slot-insn-search</code></dt>
<dd><p>The maximum number of instructions to consider when looking for an
instruction to fill a delay slot. If more than this arbitrary number of
instructions are searched, the time savings from filling the delay slot
are minimal, so stop searching. Increasing values mean more
aggressive optimization, making the compilation time increase with probably
small improvement in execution time.
</p>
</dd>
<dt><code>max-delay-slot-live-search</code></dt>
<dd><p>When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compilation time. This parameter
should be removed when the delay slot code is rewritten to maintain the
control-flow graph.
</p>
</dd>
<dt><code>max-gcse-memory</code></dt>
<dd><p>The approximate maximum amount of memory that can be allocated in
order to perform the global common subexpression elimination
optimization. If more memory than specified is required, the
optimization is not done.
</p>
</dd>
<dt><code>max-gcse-insertion-ratio</code></dt>
<dd><p>If the ratio of expression insertions to deletions is larger than this value
for any expression, then RTL PRE inserts or removes the expression and thus
leaves partially redundant computations in the instruction stream. The default value is 20.
</p>
</dd>
<dt><code>max-pending-list-length</code></dt>
<dd><p>The maximum number of pending dependencies scheduling allows
before flushing the current state and starting over. Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.
</p>
</dd>
<dt><code>max-modulo-backtrack-attempts</code></dt>
<dd><p>The maximum number of backtrack attempts the scheduler should make
when modulo scheduling a loop. Larger values can exponentially increase
compilation time.
</p>
</dd>
<dt><code>max-inline-insns-single</code></dt>
<dd><p>Several parameters control the tree inliner used in GCC.
This number sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
considers for inlining. This only affects functions declared
inline and methods implemented in a class declaration (C++).
The default value is 400.
</p>
</dd>
<dt><code>max-inline-insns-auto</code></dt>
<dd><p>When you use <samp>-finline-functions</samp> (included in <samp>-O3</samp>),
a lot of functions that would otherwise not be considered for inlining
by the compiler are investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied.
The default value is 30.
</p>
</dd>
<dt><code>inline-min-speedup</code></dt>
<dd><p>When estimated performance improvement of caller + callee runtime exceeds this
threshold (in percent), the function can be inlined regardless of the limit on
<samp>--param max-inline-insns-single</samp> and <samp>--param
max-inline-insns-auto</samp>.
The default value is 15.
</p>
</dd>
<dt><code>large-function-insns</code></dt>
<dd><p>The limit specifying really large functions. For functions larger than this
limit after inlining, inlining is constrained by
<samp>--param large-function-growth</samp>. This parameter is useful primarily
to avoid extreme compilation time caused by non-linear algorithms used by the
back end.
The default value is 2700.
</p>
</dd>
<dt><code>large-function-growth</code></dt>
<dd><p>Specifies maximal growth of large function caused by inlining in percents.
The default value is 100 which limits large function growth to 2.0 times
the original size.
</p>
</dd>
<dt><code>large-unit-insns</code></dt>
<dd><p>The limit specifying large translation unit. Growth caused by inlining of
units larger than this limit is limited by <samp>--param inline-unit-growth</samp>.
For small units this might be too tight.
For example, consider a unit consisting of function A
that is inline and B that just calls A three times. If B is small relative to
A, the growth of unit is 300\% and yet such inlining is very sane. For very
large units consisting of small inlineable functions, however, the overall unit
growth limit is needed to avoid exponential explosion of code size. Thus for
smaller units, the size is increased to <samp>--param large-unit-insns</samp>
before applying <samp>--param inline-unit-growth</samp>. The default is 10000.
</p>
</dd>
<dt><code>inline-unit-growth</code></dt>
<dd><p>Specifies maximal overall growth of the compilation unit caused by inlining.
The default value is 20 which limits unit growth to 1.2 times the original
size. Cold functions (either marked cold via an attribute or by profile
feedback) are not accounted into the unit size.
</p>
</dd>
<dt><code>ipcp-unit-growth</code></dt>
<dd><p>Specifies maximal overall growth of the compilation unit caused by
interprocedural constant propagation. The default value is 10 which limits
unit growth to 1.1 times the original size.
</p>
</dd>
<dt><code>large-stack-frame</code></dt>
<dd><p>The limit specifying large stack frames. While inlining the algorithm is trying
to not grow past this limit too much. The default value is 256 bytes.
</p>
</dd>
<dt><code>large-stack-frame-growth</code></dt>
<dd><p>Specifies maximal growth of large stack frames caused by inlining in percents.
The default value is 1000 which limits large stack frame growth to 11 times
the original size.
</p>
</dd>
<dt><code>max-inline-insns-recursive</code></dt>
<dt><code>max-inline-insns-recursive-auto</code></dt>
<dd><p>Specifies the maximum number of instructions an out-of-line copy of a
self-recursive inline
function can grow into by performing recursive inlining.
</p>
<p><samp>--param max-inline-insns-recursive</samp> applies to functions
declared inline.
For functions not declared inline, recursive inlining
happens only when <samp>-finline-functions</samp> (included in <samp>-O3</samp>) is
enabled; <samp>--param max-inline-insns-recursive-auto</samp> applies instead. The
default value is 450.
</p>
</dd>
<dt><code>max-inline-recursive-depth</code></dt>
<dt><code>max-inline-recursive-depth-auto</code></dt>
<dd><p>Specifies the maximum recursion depth used for recursive inlining.
</p>
<p><samp>--param max-inline-recursive-depth</samp> applies to functions
declared inline. For functions not declared inline, recursive inlining
happens only when <samp>-finline-functions</samp> (included in <samp>-O3</samp>) is
enabled; <samp>--param max-inline-recursive-depth-auto</samp> applies instead. The
default value is 8.
</p>
</dd>
<dt><code>min-inline-recursive-probability</code></dt>
<dd><p>Recursive inlining is profitable only for function having deep recursion
in average and can hurt for function having little recursion depth by
increasing the prologue size or complexity of function body to other
optimizers.
</p>
<p>When profile feedback is available (see <samp>-fprofile-generate</samp>) the actual
recursion depth can be guessed from the probability that function recurses
via a given call expression. This parameter limits inlining only to call
expressions whose probability exceeds the given threshold (in percents).
The default value is 10.
</p>
</dd>
<dt><code>early-inlining-insns</code></dt>
<dd><p>Specify growth that the early inliner can make. In effect it increases
the amount of inlining for code having a large abstraction penalty.
The default value is 14.
</p>
</dd>
<dt><code>max-early-inliner-iterations</code></dt>
<dd><p>Limit of iterations of the early inliner. This basically bounds
the number of nested indirect calls the early inliner can resolve.
Deeper chains are still handled by late inlining.
</p>
</dd>
<dt><code>comdat-sharing-probability</code></dt>
<dd><p>Probability (in percent) that C++ inline function with comdat visibility
are shared across multiple compilation units. The default value is 20.
</p>
</dd>
<dt><code>profile-func-internal-id</code></dt>
<dd><p>A parameter to control whether to use function internal id in profile
database lookup. If the value is 0, the compiler uses an id that
is based on function assembler name and filename, which makes old profile
data more tolerant to source changes such as function reordering etc.
The default value is 0.
</p>
</dd>
<dt><code>min-vect-loop-bound</code></dt>
<dd><p>The minimum number of iterations under which loops are not vectorized
when <samp>-ftree-vectorize</samp> is used. The number of iterations after
vectorization needs to be greater than the value specified by this option
to allow vectorization. The default value is 0.
</p>
</dd>
<dt><code>gcse-cost-distance-ratio</code></dt>
<dd><p>Scaling factor in calculation of maximum distance an expression
can be moved by GCSE optimizations. This is currently supported only in the
code hoisting pass. The bigger the ratio, the more aggressive code hoisting
is with simple expressions, i.e., the expressions that have cost
less than <samp>gcse-unrestricted-cost</samp>. Specifying 0 disables
hoisting of simple expressions. The default value is 10.
</p>
</dd>
<dt><code>gcse-unrestricted-cost</code></dt>
<dd><p>Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations do not constrain
the distance an expression can travel. This is currently
supported only in the code hoisting pass. The lesser the cost,
the more aggressive code hoisting is. Specifying 0
allows all expressions to travel unrestricted distances.
The default value is 3.
</p>
</dd>
<dt><code>max-hoist-depth</code></dt>
<dd><p>The depth of search in the dominator tree for expressions to hoist.
This is used to avoid quadratic behavior in hoisting algorithm.
The value of 0 does not limit on the search, but may slow down compilation
of huge functions. The default value is 30.
</p>
</dd>
<dt><code>max-tail-merge-comparisons</code></dt>
<dd><p>The maximum amount of similar bbs to compare a bb with. This is used to
avoid quadratic behavior in tree tail merging. The default value is 10.
</p>
</dd>
<dt><code>max-tail-merge-iterations</code></dt>
<dd><p>The maximum amount of iterations of the pass over the function. This is used to
limit compilation time in tree tail merging. The default value is 2.
</p>
</dd>
<dt><code>store-merging-allow-unaligned</code></dt>
<dd><p>Allow the store merging pass to introduce unaligned stores if it is legal to
do so. The default value is 1.
</p>
</dd>
<dt><code>max-stores-to-merge</code></dt>
<dd><p>The maximum number of stores to attempt to merge into wider stores in the store
merging pass. The minimum value is 2 and the default is 64.
</p>
</dd>
<dt><code>max-unrolled-insns</code></dt>
<dd><p>The maximum number of instructions that a loop may have to be unrolled.
If a loop is unrolled, this parameter also determines how many times
the loop code is unrolled.
</p>
</dd>
<dt><code>max-average-unrolled-insns</code></dt>
<dd><p>The maximum number of instructions biased by probabilities of their execution
that a loop may have to be unrolled. If a loop is unrolled,
this parameter also determines how many times the loop code is unrolled.
</p>
</dd>
<dt><code>max-unroll-times</code></dt>
<dd><p>The maximum number of unrollings of a single loop.
</p>
</dd>
<dt><code>max-peeled-insns</code></dt>
<dd><p>The maximum number of instructions that a loop may have to be peeled.
If a loop is peeled, this parameter also determines how many times
the loop code is peeled.
</p>
</dd>
<dt><code>max-peel-times</code></dt>
<dd><p>The maximum number of peelings of a single loop.
</p>
</dd>
<dt><code>max-peel-branches</code></dt>
<dd><p>The maximum number of branches on the hot path through the peeled sequence.
</p>
</dd>
<dt><code>max-completely-peeled-insns</code></dt>
<dd><p>The maximum number of insns of a completely peeled loop.
</p>
</dd>
<dt><code>max-completely-peel-times</code></dt>
<dd><p>The maximum number of iterations of a loop to be suitable for complete peeling.
</p>
</dd>
<dt><code>max-completely-peel-loop-nest-depth</code></dt>
<dd><p>The maximum depth of a loop nest suitable for complete peeling.
</p>
</dd>
<dt><code>max-unswitch-insns</code></dt>
<dd><p>The maximum number of insns of an unswitched loop.
</p>
</dd>
<dt><code>max-unswitch-level</code></dt>
<dd><p>The maximum number of branches unswitched in a single loop.
</p>
</dd>
<dt><code>max-loop-headers-insns</code></dt>
<dd><p>The maximum number of insns in loop header duplicated by the copy loop headers
pass.
</p>
</dd>
<dt><code>lim-expensive</code></dt>
<dd><p>The minimum cost of an expensive expression in the loop invariant motion.
</p>
</dd>
<dt><code>iv-consider-all-candidates-bound</code></dt>
<dd><p>Bound on number of candidates for induction variables, below which
all candidates are considered for each use in induction variable
optimizations. If there are more candidates than this,
only the most relevant ones are considered to avoid quadratic time complexity.
</p>
</dd>
<dt><code>iv-max-considered-uses</code></dt>
<dd><p>The induction variable optimizations give up on loops that contain more
induction variable uses.
</p>
</dd>
<dt><code>iv-always-prune-cand-set-bound</code></dt>
<dd><p>If the number of candidates in the set is smaller than this value,
always try to remove unnecessary ivs from the set
when adding a new one.
</p>
</dd>
<dt><code>avg-loop-niter</code></dt>
<dd><p>Average number of iterations of a loop.
</p>
</dd>
<dt><code>dse-max-object-size</code></dt>
<dd><p>Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
Larger values may result in larger compilation times.
</p>
</dd>
<dt><code>scev-max-expr-size</code></dt>
<dd><p>Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.
</p>
</dd>
<dt><code>scev-max-expr-complexity</code></dt>
<dd><p>Bound on the complexity of the expressions in the scalar evolutions analyzer.
Complex expressions slow the analyzer.
</p>
</dd>
<dt><code>max-tree-if-conversion-phi-args</code></dt>
<dd><p>Maximum number of arguments in a PHI supported by TREE if conversion
unless the loop is marked with simd pragma.
</p>
</dd>
<dt><code>vect-max-version-for-alignment-checks</code></dt>
<dd><p>The maximum number of run-time checks that can be performed when
doing loop versioning for alignment in the vectorizer.
</p>
</dd>
<dt><code>vect-max-version-for-alias-checks</code></dt>
<dd><p>The maximum number of run-time checks that can be performed when
doing loop versioning for alias in the vectorizer.
</p>
</dd>
<dt><code>vect-max-peeling-for-alignment</code></dt>
<dd><p>The maximum number of loop peels to enhance access alignment
for vectorizer. Value -1 means no limit.
</p>
</dd>
<dt><code>max-iterations-to-track</code></dt>
<dd><p>The maximum number of iterations of a loop the brute-force algorithm
for analysis of the number of iterations of the loop tries to evaluate.
</p>
</dd>
<dt><code>hot-bb-count-ws-permille</code></dt>
<dd><p>A basic block profile count is considered hot if it contributes to
the given permillage (i.e. 0...1000) of the entire profiled execution.
</p>
</dd>
<dt><code>hot-bb-frequency-fraction</code></dt>
<dd><p>Select fraction of the entry block frequency of executions of basic block in
function given basic block needs to have to be considered hot.
</p>
</dd>
<dt><code>max-predicted-iterations</code></dt>
<dd><p>The maximum number of loop iterations we predict statically. This is useful
in cases where a function contains a single loop with known bound and
another loop with unknown bound.
The known number of iterations is predicted correctly, while
the unknown number of iterations average to roughly 10. This means that the
loop without bounds appears artificially cold relative to the other one.
</p>
</dd>
<dt><code>builtin-expect-probability</code></dt>
<dd><p>Control the probability of the expression having the specified value. This
parameter takes a percentage (i.e. 0 ... 100) as input.
The default probability of 90 is obtained empirically.
</p>
</dd>
<dt><code>align-threshold</code></dt>
<dd>
<p>Select fraction of the maximal frequency of executions of a basic block in
a function to align the basic block.
</p>
</dd>
<dt><code>align-loop-iterations</code></dt>
<dd>
<p>A loop expected to iterate at least the selected number of iterations is
aligned.
</p>
</dd>
<dt><code>tracer-dynamic-coverage</code></dt>
<dt><code>tracer-dynamic-coverage-feedback</code></dt>
<dd>
<p>This value is used to limit superblock formation once the given percentage of
executed instructions is covered. This limits unnecessary code size
expansion.
</p>
<p>The <samp>tracer-dynamic-coverage-feedback</samp> parameter
is used only when profile
feedback is available. The real profiles (as opposed to statically estimated
ones) are much less balanced allowing the threshold to be larger value.
</p>
</dd>
<dt><code>tracer-max-code-growth</code></dt>
<dd><p>Stop tail duplication once code growth has reached given percentage. This is
a rather artificial limit, as most of the duplicates are eliminated later in
cross jumping, so it may be set to much higher values than is the desired code
growth.
</p>
</dd>
<dt><code>tracer-min-branch-ratio</code></dt>
<dd>
<p>Stop reverse growth when the reverse probability of best edge is less than this
threshold (in percent).
</p>
</dd>
<dt><code>tracer-min-branch-probability</code></dt>
<dt><code>tracer-min-branch-probability-feedback</code></dt>
<dd>
<p>Stop forward growth if the best edge has probability lower than this
threshold.
</p>
<p>Similarly to <samp>tracer-dynamic-coverage</samp> two parameters are
provided. <samp>tracer-min-branch-probability-feedback</samp> is used for
compilation with profile feedback and <samp>tracer-min-branch-probability</samp>
compilation without. The value for compilation with profile feedback
needs to be more conservative (higher) in order to make tracer
effective.
</p>
</dd>
<dt><code>stack-clash-protection-guard-size</code></dt>
<dd><p>Specify the size of the operating system provided stack guard as
2 raised to <var>num</var> bytes. The default value is 12 (4096 bytes).
Acceptable values are between 12 and 30. Higher values may reduce the
number of explicit probes, but a value larger than the operating system
provided guard will leave code vulnerable to stack clash style attacks.
</p>
</dd>
<dt><code>stack-clash-protection-probe-interval</code></dt>
<dd><p>Stack clash protection involves probing stack space as it is allocated. This
param controls the maximum distance between probes into the stack as 2 raised
to <var>num</var> bytes. Acceptable values are between 10 and 16 and defaults to
12. Higher values may reduce the number of explicit probes, but a value
larger than the operating system provided guard will leave code vulnerable to
stack clash style attacks.
</p>
</dd>
<dt><code>max-cse-path-length</code></dt>
<dd>
<p>The maximum number of basic blocks on path that CSE considers.
The default is 10.
</p>
</dd>
<dt><code>max-cse-insns</code></dt>
<dd><p>The maximum number of instructions CSE processes before flushing.
The default is 1000.
</p>
</dd>
<dt><code>ggc-min-expand</code></dt>
<dd>
<p>GCC uses a garbage collector to manage its own memory allocation. This
parameter specifies the minimum percentage by which the garbage
collector’s heap should be allowed to expand between collections.
Tuning this may improve compilation speed; it has no effect on code
generation.
</p>
<p>The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
RAM >= 1GB. If <code>getrlimit</code> is available, the notion of “RAM” is
the smallest of actual RAM and <code>RLIMIT_DATA</code> or <code>RLIMIT_AS</code>. If
GCC is not able to calculate RAM on a particular platform, the lower
bound of 30% is used. Setting this parameter and
<samp>ggc-min-heapsize</samp> to zero causes a full collection to occur at
every opportunity. This is extremely slow, but can be useful for
debugging.
</p>
</dd>
<dt><code>ggc-min-heapsize</code></dt>
<dd>
<p>Minimum size of the garbage collector’s heap before it begins bothering
to collect garbage. The first collection occurs after the heap expands
by <samp>ggc-min-expand</samp>% beyond <samp>ggc-min-heapsize</samp>. Again,
tuning this may improve compilation speed, and has no effect on code
generation.
</p>
<p>The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
with a lower bound of 4096 (four megabytes) and an upper bound of
131072 (128 megabytes). If GCC is not able to calculate RAM on a
particular platform, the lower bound is used. Setting this parameter
very large effectively disables garbage collection. Setting this
parameter and <samp>ggc-min-expand</samp> to zero causes a full collection
to occur at every opportunity.
</p>
</dd>
<dt><code>max-reload-search-insns</code></dt>
<dd><p>The maximum number of instruction reload should look backward for equivalent
register. Increasing values mean more aggressive optimization, making the
compilation time increase with probably slightly better performance.
The default value is 100.
</p>
</dd>
<dt><code>max-cselib-memory-locations</code></dt>
<dd><p>The maximum number of memory locations cselib should take into account.
Increasing values mean more aggressive optimization, making the compilation time
increase with probably slightly better performance. The default value is 500.
</p>
</dd>
<dt><code>max-sched-ready-insns</code></dt>
<dd><p>The maximum number of instructions ready to be issued the scheduler should
consider at any given time during the first scheduling pass. Increasing
values mean more thorough searches, making the compilation time increase
with probably little benefit. The default value is 100.
</p>
</dd>
<dt><code>max-sched-region-blocks</code></dt>
<dd><p>The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.
</p>
</dd>
<dt><code>max-pipeline-region-blocks</code></dt>
<dd><p>The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler. The default value is 15.
</p>
</dd>
<dt><code>max-sched-region-insns</code></dt>
<dd><p>The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.
</p>
</dd>
<dt><code>max-pipeline-region-insns</code></dt>
<dd><p>The maximum number of insns in a region to be considered for
pipelining in the selective scheduler. The default value is 200.
</p>
</dd>
<dt><code>min-spec-prob</code></dt>
<dd><p>The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling. The default value is 40.
</p>
</dd>
<dt><code>max-sched-extend-regions-iters</code></dt>
<dd><p>The maximum number of iterations through CFG to extend regions.
A value of 0 (the default) disables region extensions.
</p>
</dd>
<dt><code>max-sched-insn-conflict-delay</code></dt>
<dd><p>The maximum conflict delay for an insn to be considered for speculative motion.
The default value is 3.
</p>
</dd>
<dt><code>sched-spec-prob-cutoff</code></dt>
<dd><p>The minimal probability of speculation success (in percents), so that
speculative insns are scheduled.
The default value is 40.
</p>
</dd>
<dt><code>sched-state-edge-prob-cutoff</code></dt>
<dd><p>The minimum probability an edge must have for the scheduler to save its
state across it.
The default value is 10.
</p>
</dd>
<dt><code>sched-mem-true-dep-cost</code></dt>
<dd><p>Minimal distance (in CPU cycles) between store and load targeting same
memory locations. The default value is 1.
</p>
</dd>
<dt><code>selsched-max-lookahead</code></dt>
<dd><p>The maximum size of the lookahead window of selective scheduling. It is a
depth of search for available instructions.
The default value is 50.
</p>
</dd>
<dt><code>selsched-max-sched-times</code></dt>
<dd><p>The maximum number of times that an instruction is scheduled during
selective scheduling. This is the limit on the number of iterations
through which the instruction may be pipelined. The default value is 2.
</p>
</dd>
<dt><code>selsched-insns-to-rename</code></dt>
<dd><p>The maximum number of best instructions in the ready list that are considered
for renaming in the selective scheduler. The default value is 2.
</p>
</dd>
<dt><code>sms-min-sc</code></dt>
<dd><p>The minimum value of stage count that swing modulo scheduler
generates. The default value is 2.
</p>
</dd>
<dt><code>max-last-value-rtl</code></dt>
<dd><p>The maximum size measured as number of RTLs that can be recorded in an expression
in combiner for a pseudo register as last known value of that register. The default
is 10000.
</p>
</dd>
<dt><code>max-combine-insns</code></dt>
<dd><p>The maximum number of instructions the RTL combiner tries to combine.
The default value is 2 at <samp>-Og</samp> and 4 otherwise.
</p>
</dd>
<dt><code>integer-share-limit</code></dt>
<dd><p>Small integer constants can use a shared data structure, reducing the
compiler’s memory usage and increasing its speed. This sets the maximum
value of a shared integer constant. The default value is 256.
</p>
</dd>
<dt><code>ssp-buffer-size</code></dt>
<dd><p>The minimum size of buffers (i.e. arrays) that receive stack smashing
protection when <samp>-fstack-protection</samp> is used.
</p>
<p>This default before Ubuntu 10.10 was "8". Currently it is "4", to increase
the number of functions protected by the stack protector.
</p>
</dd>
<dt><code>min-size-for-stack-sharing</code></dt>
<dd><p>The minimum size of variables taking part in stack slot sharing when not
optimizing. The default value is 32.
</p>
</dd>
<dt><code>max-jump-thread-duplication-stmts</code></dt>
<dd><p>Maximum number of statements allowed in a block that needs to be
duplicated when threading jumps.
</p>
</dd>
<dt><code>max-fields-for-field-sensitive</code></dt>
<dd><p>Maximum number of fields in a structure treated in
a field sensitive manner during pointer analysis. The default is zero
for <samp>-O0</samp> and <samp>-O1</samp>,
and 100 for <samp>-Os</samp>, <samp>-O2</samp>, and <samp>-O3</samp>.
</p>
</dd>
<dt><code>prefetch-latency</code></dt>
<dd><p>Estimate on average number of instructions that are executed before
prefetch finishes. The distance prefetched ahead is proportional
to this constant. Increasing this number may also lead to less
streams being prefetched (see <samp>simultaneous-prefetches</samp>).
</p>
</dd>
<dt><code>simultaneous-prefetches</code></dt>
<dd><p>Maximum number of prefetches that can run at the same time.
</p>
</dd>
<dt><code>l1-cache-line-size</code></dt>
<dd><p>The size of cache line in L1 cache, in bytes.
</p>
</dd>
<dt><code>l1-cache-size</code></dt>
<dd><p>The size of L1 cache, in kilobytes.
</p>
</dd>
<dt><code>l2-cache-size</code></dt>
<dd><p>The size of L2 cache, in kilobytes.
</p>
</dd>
<dt><code>loop-interchange-max-num-stmts</code></dt>
<dd><p>The maximum number of stmts in a loop to be interchanged.
</p>
</dd>
<dt><code>loop-interchange-stride-ratio</code></dt>
<dd><p>The minimum ratio between stride of two loops for interchange to be profitable.
</p>
</dd>
<dt><code>min-insn-to-prefetch-ratio</code></dt>
<dd><p>The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.
</p>
</dd>
<dt><code>prefetch-min-insn-to-mem-ratio</code></dt>
<dd><p>The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.
</p>
</dd>
<dt><code>use-canonical-types</code></dt>
<dd><p>Whether the compiler should use the “canonical” type system. By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++. However, if
bugs in the canonical type system are causing compilation failures,
set this value to 0 to disable canonical types.
</p>
</dd>
<dt><code>switch-conversion-max-branch-ratio</code></dt>
<dd><p>Switch initialization conversion refuses to create arrays that are
bigger than <samp>switch-conversion-max-branch-ratio</samp> times the number of
branches in the switch.
</p>
</dd>
<dt><code>max-partial-antic-length</code></dt>
<dd><p>Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (<samp>-ftree-pre</samp>) when
optimizing at <samp>-O3</samp> and above. For some sorts of source code
the enhanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for
this parameter allows an unlimited set length.
</p>
</dd>
<dt><code>sccvn-max-scc-size</code></dt>
<dd><p>Maximum size of a strongly connected component (SCC) during SCCVN
processing. If this limit is hit, SCCVN processing for the whole
function is not done and optimizations depending on it are
disabled. The default maximum SCC size is 10000.
</p>
</dd>
<dt><code>sccvn-max-alias-queries-per-access</code></dt>
<dd><p>Maximum number of alias-oracle queries we perform when looking for
redundancies for loads and stores. If this limit is hit the search
is aborted and the load or store is not considered redundant. The
number of queries is algorithmically limited to the number of
stores on all paths from the load to the function entry.
The default maximum number of queries is 1000.
</p>
</dd>
<dt><code>ira-max-loops-num</code></dt>
<dd><p>IRA uses regional register allocation by default. If a function
contains more loops than the number given by this parameter, only at most
the given number of the most frequently-executed loops form regions
for regional register allocation. The default value of the
parameter is 100.
</p>
</dd>
<dt><code>ira-max-conflict-table-size</code></dt>
<dd><p>Although IRA uses a sophisticated algorithm to compress the conflict
table, the table can still require excessive amounts of memory for
huge functions. If the conflict table for a function could be more
than the size in MB given by this parameter, the register allocator
instead uses a faster, simpler, and lower-quality
algorithm that does not require building a pseudo-register conflict table.
The default value of the parameter is 2000.
</p>
</dd>
<dt><code>ira-loop-reserved-regs</code></dt>
<dd><p>IRA can be used to evaluate more accurate register pressure in loops
for decisions to move loop invariants (see <samp>-O3</samp>). The number
of available registers reserved for some other purposes is given
by this parameter. The default value of the parameter is 2, which is
the minimal number of registers needed by typical instructions.
This value is the best found from numerous experiments.
</p>
</dd>
<dt><code>lra-inheritance-ebb-probability-cutoff</code></dt>
<dd><p>LRA tries to reuse values reloaded in registers in subsequent insns.
This optimization is called inheritance. EBB is used as a region to
do this optimization. The parameter defines a minimal fall-through
edge probability in percentage used to add BB to inheritance EBB in
LRA. The default value of the parameter is 40. The value was chosen
from numerous runs of SPEC2000 on x86-64.
</p>
</dd>
<dt><code>loop-invariant-max-bbs-in-loop</code></dt>
<dd><p>Loop invariant motion can be very expensive, both in compilation time and
in amount of needed compile-time memory, with very large loops. Loops
with more basic blocks than this parameter won’t have loop invariant
motion optimization performed on them. The default value of the
parameter is 1000 for <samp>-O1</samp> and 10000 for <samp>-O2</samp> and above.
</p>
</dd>
<dt><code>loop-max-datarefs-for-datadeps</code></dt>
<dd><p>Building data dependencies is expensive for very large loops. This
parameter limits the number of data references in loops that are
considered for data dependence analysis. These large loops are no
handled by the optimizations using loop data dependencies.
The default value is 1000.
</p>
</dd>
<dt><code>max-vartrack-size</code></dt>
<dd><p>Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function. If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function. If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function. Setting
the parameter to zero makes it unlimited.
</p>
</dd>
<dt><code>max-vartrack-expr-depth</code></dt>
<dd><p>Sets a maximum number of recursion levels when attempting to map
variable names or debug temporaries to value expressions. This trades
compilation time for more complete debug information. If this is set too
low, value expressions that are available and could be represented in
debug information may end up not being used; setting this higher may
enable the compiler to find more complex debug expressions, but compile
time and memory use may grow. The default is 12.
</p>
</dd>
<dt><code>max-debug-marker-count</code></dt>
<dd><p>Sets a threshold on the number of debug markers (e.g. begin stmt
markers) to avoid complexity explosion at inlining or expanding to RTL.
If a function has more such gimple stmts than the set limit, such stmts
will be dropped from the inlined copy of a function, and from its RTL
expansion. The default is 100000.
</p>
</dd>
<dt><code>min-nondebug-insn-uid</code></dt>
<dd><p>Use uids starting at this parameter for nondebug insns. The range below
the parameter is reserved exclusively for debug insns created by
<samp>-fvar-tracking-assignments</samp>, but debug insns may get
(non-overlapping) uids above it if the reserved range is exhausted.
</p>
</dd>
<dt><code>ipa-sra-ptr-growth-factor</code></dt>
<dd><p>IPA-SRA replaces a pointer to an aggregate with one or more new
parameters only when their cumulative size is less or equal to
<samp>ipa-sra-ptr-growth-factor</samp> times the size of the original
pointer parameter.
</p>
</dd>
<dt><code>sra-max-scalarization-size-Ospeed</code></dt>
<dt><code>sra-max-scalarization-size-Osize</code></dt>
<dd><p>The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
replace scalar parts of aggregates with uses of independent scalar
variables. These parameters control the maximum size, in storage units,
of aggregate which is considered for replacement when compiling for
speed
(<samp>sra-max-scalarization-size-Ospeed</samp>) or size
(<samp>sra-max-scalarization-size-Osize</samp>) respectively.
</p>
</dd>
<dt><code>tm-max-aggregate-size</code></dt>
<dd><p>When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables are
saved with the logging functions as opposed to save/restore code
sequence pairs. This option only applies when using
<samp>-fgnu-tm</samp>.
</p>
</dd>
<dt><code>graphite-max-nb-scop-params</code></dt>
<dd><p>To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded. The
default value is 10 parameters, a value of zero can be used to lift
the bound. A variable whose value is unknown at compilation time and
defined outside a SCoP is a parameter of the SCoP.
</p>
</dd>
<dt><code>loop-block-tile-size</code></dt>
<dd><p>Loop blocking or strip mining transforms, enabled with
<samp>-floop-block</samp> or <samp>-floop-strip-mine</samp>, strip mine each
loop in the loop nest by a given number of iterations. The strip
length can be changed using the <samp>loop-block-tile-size</samp>
parameter. The default value is 51 iterations.
</p>
</dd>
<dt><code>loop-unroll-jam-size</code></dt>
<dd><p>Specify the unroll factor for the <samp>-floop-unroll-and-jam</samp> option. The
default value is 4.
</p>
</dd>
<dt><code>loop-unroll-jam-depth</code></dt>
<dd><p>Specify the dimension to be unrolled (counting from the most inner loop)
for the <samp>-floop-unroll-and-jam</samp>. The default value is 2.
</p>
</dd>
<dt><code>ipa-cp-value-list-size</code></dt>
<dd><p>IPA-CP attempts to track all possible values and types passed to a function’s
parameter in order to propagate them and perform devirtualization.
<samp>ipa-cp-value-list-size</samp> is the maximum number of values and types it
stores per one formal parameter of a function.
</p>
</dd>
<dt><code>ipa-cp-eval-threshold</code></dt>
<dd><p>IPA-CP calculates its own score of cloning profitability heuristics
and performs those cloning opportunities with scores that exceed
<samp>ipa-cp-eval-threshold</samp>.
</p>
</dd>
<dt><code>ipa-cp-recursion-penalty</code></dt>
<dd><p>Percentage penalty the recursive functions will receive when they
are evaluated for cloning.
</p>
</dd>
<dt><code>ipa-cp-single-call-penalty</code></dt>
<dd><p>Percentage penalty functions containing a single call to another
function will receive when they are evaluated for cloning.
</p>
</dd>
<dt><code>ipa-max-agg-items</code></dt>
<dd><p>IPA-CP is also capable to propagate a number of scalar values passed
in an aggregate. <samp>ipa-max-agg-items</samp> controls the maximum
number of such values per one parameter.
</p>
</dd>
<dt><code>ipa-cp-loop-hint-bonus</code></dt>
<dd><p>When IPA-CP determines that a cloning candidate would make the number
of iterations of a loop known, it adds a bonus of
<samp>ipa-cp-loop-hint-bonus</samp> to the profitability score of
the candidate.
</p>
</dd>
<dt><code>ipa-cp-array-index-hint-bonus</code></dt>
<dd><p>When IPA-CP determines that a cloning candidate would make the index of
an array access known, it adds a bonus of
<samp>ipa-cp-array-index-hint-bonus</samp> to the profitability
score of the candidate.
</p>
</dd>
<dt><code>ipa-max-aa-steps</code></dt>
<dd><p>During its analysis of function bodies, IPA-CP employs alias analysis
in order to track values pointed to by function parameters. In order
not spend too much time analyzing huge functions, it gives up and
consider all memory clobbered after examining
<samp>ipa-max-aa-steps</samp> statements modifying memory.
</p>
</dd>
<dt><code>lto-partitions</code></dt>
<dd><p>Specify desired number of partitions produced during WHOPR compilation.
The number of partitions should exceed the number of CPUs used for compilation.
The default value is 32.
</p>
</dd>
<dt><code>lto-min-partition</code></dt>
<dd><p>Size of minimal partition for WHOPR (in estimated instructions).
This prevents expenses of splitting very small programs into too many
partitions.
</p>
</dd>
<dt><code>lto-max-partition</code></dt>
<dd><p>Size of max partition for WHOPR (in estimated instructions).
to provide an upper bound for individual size of partition.
Meant to be used only with balanced partitioning.
</p>
</dd>
<dt><code>cxx-max-namespaces-for-diagnostic-help</code></dt>
<dd><p>The maximum number of namespaces to consult for suggestions when C++
name lookup fails for an identifier. The default is 1000.
</p>
</dd>
<dt><code>sink-frequency-threshold</code></dt>
<dd><p>The maximum relative execution frequency (in percents) of the target block
relative to a statement’s original block to allow statement sinking of a
statement. Larger numbers result in more aggressive statement sinking.
The default value is 75. A small positive adjustment is applied for
statements with memory operands as those are even more profitable so sink.
</p>
</dd>
<dt><code>max-stores-to-sink</code></dt>
<dd><p>The maximum number of conditional store pairs that can be sunk. Set to 0
if either vectorization (<samp>-ftree-vectorize</samp>) or if-conversion
(<samp>-ftree-loop-if-convert</samp>) is disabled. The default is 2.
</p>
</dd>
<dt><code>allow-store-data-races</code></dt>
<dd><p>Allow optimizers to introduce new data races on stores.
Set to 1 to allow, otherwise to 0. This option is enabled by default
at optimization level <samp>-Ofast</samp>.
</p>
</dd>
<dt><code>case-values-threshold</code></dt>
<dd><p>The smallest number of different values for which it is best to use a
jump-table instead of a tree of conditional branches. If the value is
0, use the default for the machine. The default is 0.
</p>
</dd>
<dt><code>tree-reassoc-width</code></dt>
<dd><p>Set the maximum number of instructions executed in parallel in
reassociated tree. This parameter overrides target dependent
heuristics used by default if has non zero value.
</p>
</dd>
<dt><code>sched-pressure-algorithm</code></dt>
<dd><p>Choose between the two available implementations of
<samp>-fsched-pressure</samp>. Algorithm 1 is the original implementation
and is the more likely to prevent instructions from being reordered.
Algorithm 2 was designed to be a compromise between the relatively
conservative approach taken by algorithm 1 and the rather aggressive
approach taken by the default scheduler. It relies more heavily on
having a regular register file and accurate register pressure classes.
See <samp>haifa-sched.c</samp> in the GCC sources for more details.
</p>
<p>The default choice depends on the target.
</p>
</dd>
<dt><code>max-slsr-cand-scan</code></dt>
<dd><p>Set the maximum number of existing candidates that are considered when
seeking a basis for a new straight-line strength reduction candidate.
</p>
</dd>
<dt><code>asan-globals</code></dt>
<dd><p>Enable buffer overflow detection for global objects. This kind
of protection is enabled by default if you are using
<samp>-fsanitize=address</samp> option.
To disable global objects protection use <samp>--param asan-globals=0</samp>.
</p>
</dd>
<dt><code>asan-stack</code></dt>
<dd><p>Enable buffer overflow detection for stack objects. This kind of
protection is enabled by default when using <samp>-fsanitize=address</samp>.
To disable stack protection use <samp>--param asan-stack=0</samp> option.
</p>
</dd>
<dt><code>asan-instrument-reads</code></dt>
<dd><p>Enable buffer overflow detection for memory reads. This kind of
protection is enabled by default when using <samp>-fsanitize=address</samp>.
To disable memory reads protection use
<samp>--param asan-instrument-reads=0</samp>.
</p>
</dd>
<dt><code>asan-instrument-writes</code></dt>
<dd><p>Enable buffer overflow detection for memory writes. This kind of
protection is enabled by default when using <samp>-fsanitize=address</samp>.
To disable memory writes protection use
<samp>--param asan-instrument-writes=0</samp> option.
</p>
</dd>
<dt><code>asan-memintrin</code></dt>
<dd><p>Enable detection for built-in functions. This kind of protection
is enabled by default when using <samp>-fsanitize=address</samp>.
To disable built-in functions protection use
<samp>--param asan-memintrin=0</samp>.
</p>
</dd>
<dt><code>asan-use-after-return</code></dt>
<dd><p>Enable detection of use-after-return. This kind of protection
is enabled by default when using the <samp>-fsanitize=address</samp> option.
To disable it use <samp>--param asan-use-after-return=0</samp>.
</p>
<p>Note: By default the check is disabled at run time. To enable it,
add <code>detect_stack_use_after_return=1</code> to the environment variable
<code>ASAN_OPTIONS</code>.
</p>
</dd>
<dt><code>asan-instrumentation-with-call-threshold</code></dt>
<dd><p>If number of memory accesses in function being instrumented
is greater or equal to this number, use callbacks instead of inline checks.
E.g. to disable inline code use
<samp>--param asan-instrumentation-with-call-threshold=0</samp>.
</p>
</dd>
<dt><code>use-after-scope-direct-emission-threshold</code></dt>
<dd><p>If the size of a local variable in bytes is smaller or equal to this
number, directly poison (or unpoison) shadow memory instead of using
run-time callbacks. The default value is 256.
</p>
</dd>
<dt><code>chkp-max-ctor-size</code></dt>
<dd><p>Static constructors generated by Pointer Bounds Checker may become very
large and significantly increase compile time at optimization level
<samp>-O1</samp> and higher. This parameter is a maximum number of statements
in a single generated constructor. Default value is 5000.
</p>
</dd>
<dt><code>max-fsm-thread-path-insns</code></dt>
<dd><p>Maximum number of instructions to copy when duplicating blocks on a
finite state automaton jump thread path. The default is 100.
</p>
</dd>
<dt><code>max-fsm-thread-length</code></dt>
<dd><p>Maximum number of basic blocks on a finite state automaton jump thread
path. The default is 10.
</p>
</dd>
<dt><code>max-fsm-thread-paths</code></dt>
<dd><p>Maximum number of new jump thread paths to create for a finite state
automaton. The default is 50.
</p>
</dd>
<dt><code>parloops-chunk-size</code></dt>
<dd><p>Chunk size of omp schedule for loops parallelized by parloops. The default
is 0.
</p>
</dd>
<dt><code>parloops-schedule</code></dt>
<dd><p>Schedule type of omp schedule for loops parallelized by parloops (static,
dynamic, guided, auto, runtime). The default is static.
</p>
</dd>
<dt><code>parloops-min-per-thread</code></dt>
<dd><p>The minimum number of iterations per thread of an innermost parallelized
loop for which the parallelized variant is prefered over the single threaded
one. The default is 100. Note that for a parallelized loop nest the
minimum number of iterations of the outermost loop per thread is two.
</p>
</dd>
<dt><code>max-ssa-name-query-depth</code></dt>
<dd><p>Maximum depth of recursion when querying properties of SSA names in things
like fold routines. One level of recursion corresponds to following a
use-def chain.
</p>
</dd>
<dt><code>hsa-gen-debug-stores</code></dt>
<dd><p>Enable emission of special debug stores within HSA kernels which are
then read and reported by libgomp plugin. Generation of these stores
is disabled by default, use <samp>--param hsa-gen-debug-stores=1</samp> to
enable it.
</p>
</dd>
<dt><code>max-speculative-devirt-maydefs</code></dt>
<dd><p>The maximum number of may-defs we analyze when looking for a must-def
specifying the dynamic type of an object that invokes a virtual call
we may be able to devirtualize speculatively.
</p>
</dd>
<dt><code>max-vrp-switch-assertions</code></dt>
<dd><p>The maximum number of assertions to add along the default edge of a switch
statement during VRP. The default is 10.
</p>
</dd>
<dt><code>unroll-jam-min-percent</code></dt>
<dd><p>The minimum percentage of memory references that must be optimized
away for the unroll-and-jam transformation to be considered profitable.
</p>
</dd>
<dt><code>unroll-jam-max-unroll</code></dt>
<dd><p>The maximum number of times the outer loop should be unrolled by
the unroll-and-jam transformation.
</p></dd>
</dl>
</dd>
</dl>
<hr>
<a name="Instrumentation-Options"></a>
<div class="header">
<p>
Next: <a href="#Preprocessor-Options" accesskey="n" rel="next">Preprocessor Options</a>, Previous: <a href="#Optimize-Options" accesskey="p" rel="prev">Optimize Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Program-Instrumentation-Options"></a>
<h3 class="section">3.11 Program Instrumentation Options</h3>
<a name="index-instrumentation-options"></a>
<a name="index-program-instrumentation-options"></a>
<a name="index-run_002dtime-error-checking-options"></a>
<a name="index-profiling-options"></a>
<a name="index-options_002c-program-instrumentation"></a>
<a name="index-options_002c-run_002dtime-error-checking"></a>
<a name="index-options_002c-profiling"></a>
<p>GCC supports a number of command-line options that control adding
run-time instrumentation to the code it normally generates.
For example, one purpose of instrumentation is collect profiling
statistics for use in finding program hot spots, code coverage
analysis, or profile-guided optimizations.
Another class of program instrumentation is adding run-time checking
to detect programming errors like invalid pointer
dereferences or out-of-bounds array accesses, as well as deliberately
hostile attacks such as stack smashing or C++ vtable hijacking.
There is also a general hook which can be used to implement other
forms of tracing or function-level instrumentation for debug or
program analysis purposes.
</p>
<dl compact="compact">
<dd><a name="index-prof"></a>
</dd>
<dt><code>-p</code></dt>
<dd><a name="index-p"></a>
<p>Generate extra code to write profile information suitable for the
analysis program <code>prof</code>. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
</p>
<a name="index-gprof"></a>
</dd>
<dt><code>-pg</code></dt>
<dd><a name="index-pg"></a>
<p>Generate extra code to write profile information suitable for the
analysis program <code>gprof</code>. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
</p>
</dd>
<dt><code>-fprofile-arcs</code></dt>
<dd><a name="index-fprofile_002darcs"></a>
<p>Add code so that program flow <em>arcs</em> are instrumented. During
execution the program records how many times each branch and call is
executed and how many times it is taken or returns. On targets that support
constructors with priority support, profiling properly handles constructors,
destructors and C++ constructors (and destructors) of classes which are used
as a type of a global variable.
</p>
<p>When the compiled
program exits it saves this data to a file called
<samp><var>auxname</var>.gcda</samp> for each source file. The data may be used for
profile-directed optimizations (<samp>-fbranch-probabilities</samp>), or for
test coverage analysis (<samp>-ftest-coverage</samp>). Each object file’s
<var>auxname</var> is generated from the name of the output file, if
explicitly specified and it is not the final executable, otherwise it is
the basename of the source file. In both cases any suffix is removed
(e.g. <samp>foo.gcda</samp> for input file <samp>dir/foo.c</samp>, or
<samp>dir/foo.gcda</samp> for output file specified as <samp>-o dir/foo.o</samp>).
See <a href="#Cross_002dprofiling">Cross-profiling</a>.
</p>
<a name="index-gcov"></a>
</dd>
<dt><code>--coverage</code></dt>
<dd><a name="index-coverage"></a>
<p>This option is used to compile and link code instrumented for coverage
analysis. The option is a synonym for <samp>-fprofile-arcs</samp>
<samp>-ftest-coverage</samp> (when compiling) and <samp>-lgcov</samp> (when
linking). See the documentation for those options for more details.
</p>
<ul>
<li> Compile the source files with <samp>-fprofile-arcs</samp> plus optimization
and code generation options. For test coverage analysis, use the
additional <samp>-ftest-coverage</samp> option. You do not need to profile
every source file in a program.
</li><li> Compile the source files additionally with <samp>-fprofile-abs-path</samp>
to create absolute path names in the <samp>.gcno</samp> files. This allows
<code>gcov</code> to find the correct sources in projects where compilations
occur with different working directories.
</li><li> Link your object files with <samp>-lgcov</samp> or <samp>-fprofile-arcs</samp>
(the latter implies the former).
</li><li> Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Unless
a strict ISO C dialect option is in effect, <code>fork</code> calls are
detected and correctly handled without double counting.
</li><li> For profile-directed optimizations, compile the source files again with
the same optimization and code generation options plus
<samp>-fbranch-probabilities</samp> (see <a href="#Optimize-Options">Options that
Control Optimization</a>).
</li><li> For test coverage analysis, use <code>gcov</code> to produce human readable
information from the <samp>.gcno</samp> and <samp>.gcda</samp> files. Refer to the
<code>gcov</code> documentation for further information.
</li></ul>
<p>With <samp>-fprofile-arcs</samp>, for each function of your program GCC
creates a program flow graph, then finds a spanning tree for the graph.
Only arcs that are not on the spanning tree have to be instrumented: the
compiler adds code to count the number of times that these arcs are
executed. When an arc is the only exit or only entrance to a block, the
instrumentation code can be added to the block; otherwise, a new basic
block must be created to hold the instrumentation code.
</p>
</dd>
<dt><code>-ftest-coverage</code></dt>
<dd><a name="index-ftest_002dcoverage"></a>
<p>Produce a notes file that the <code>gcov</code> code-coverage utility
(see <a href="#Gcov"><code>gcov</code>—a Test Coverage Program</a>) can use to
show program coverage. Each source file’s note file is called
<samp><var>auxname</var>.gcno</samp>. Refer to the <samp>-fprofile-arcs</samp> option
above for a description of <var>auxname</var> and instructions on how to
generate test coverage data. Coverage data matches the source files
more closely if you do not optimize.
</p>
</dd>
<dt><code>-fprofile-abs-path</code></dt>
<dd><a name="index-fprofile_002dabs_002dpath"></a>
<p>Automatically convert relative source file names to absolute path names
in the <samp>.gcno</samp> files. This allows <code>gcov</code> to find the correct
sources in projects where compilations occur with different working
directories.
</p>
</dd>
<dt><code>-fprofile-dir=<var>path</var></code></dt>
<dd><a name="index-fprofile_002ddir"></a>
<p>Set the directory to search for the profile data files in to <var>path</var>.
This option affects only the profile data generated by
<samp>-fprofile-generate</samp>, <samp>-ftest-coverage</samp>, <samp>-fprofile-arcs</samp>
and used by <samp>-fprofile-use</samp> and <samp>-fbranch-probabilities</samp>
and its related options. Both absolute and relative paths can be used.
By default, GCC uses the current directory as <var>path</var>, thus the
profile data file appears in the same directory as the object file.
</p>
</dd>
<dt><code>-fprofile-generate</code></dt>
<dt><code>-fprofile-generate=<var>path</var></code></dt>
<dd><a name="index-fprofile_002dgenerate"></a>
<p>Enable options usually used for instrumenting application to produce
profile useful for later recompilation with profile feedback based
optimization. You must use <samp>-fprofile-generate</samp> both when
compiling and when linking your program.
</p>
<p>The following options are enabled: <samp>-fprofile-arcs</samp>, <samp>-fprofile-values</samp>, <samp>-fvpt</samp>.
</p>
<p>If <var>path</var> is specified, GCC looks at the <var>path</var> to find
the profile feedback data files. See <samp>-fprofile-dir</samp>.
</p>
<p>To optimize the program based on the collected profile information, use
<samp>-fprofile-use</samp>. See <a href="#Optimize-Options">Optimize Options</a>, for more information.
</p>
</dd>
<dt><code>-fprofile-update=<var>method</var></code></dt>
<dd><a name="index-fprofile_002dupdate"></a>
<p>Alter the update method for an application instrumented for profile
feedback based optimization. The <var>method</var> argument should be one of
‘<samp>single</samp>’, ‘<samp>atomic</samp>’ or ‘<samp>prefer-atomic</samp>’.
The first one is useful for single-threaded applications,
while the second one prevents profile corruption by emitting thread-safe code.
</p>
<p><strong>Warning:</strong> When an application does not properly join all threads
(or creates an detached thread), a profile file can be still corrupted.
</p>
<p>Using ‘<samp>prefer-atomic</samp>’ would be transformed either to ‘<samp>atomic</samp>’,
when supported by a target, or to ‘<samp>single</samp>’ otherwise. The GCC driver
automatically selects ‘<samp>prefer-atomic</samp>’ when <samp>-pthread</samp>
is present in the command line.
</p>
</dd>
<dt><code>-fsanitize=address</code></dt>
<dd><a name="index-fsanitize_003daddress"></a>
<p>Enable AddressSanitizer, a fast memory error detector.
Memory access instructions are instrumented to detect
out-of-bounds and use-after-free bugs.
The option enables <samp>-fsanitize-address-use-after-scope</samp>.
See <a href="https://github.com/google/sanitizers/wiki/AddressSanitizer">https://github.com/google/sanitizers/wiki/AddressSanitizer</a> for
more details. The run-time behavior can be influenced using the
<code>ASAN_OPTIONS</code> environment variable. When set to <code>help=1</code>,
the available options are shown at startup of the instrumented program. See
<a href="https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags">https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags</a>
for a list of supported options.
The option cannot be combined with <samp>-fsanitize=thread</samp>
and/or <samp>-fcheck-pointer-bounds</samp>.
</p>
</dd>
<dt><code>-fsanitize=kernel-address</code></dt>
<dd><a name="index-fsanitize_003dkernel_002daddress"></a>
<p>Enable AddressSanitizer for Linux kernel.
See <a href="https://github.com/google/kasan/wiki">https://github.com/google/kasan/wiki</a> for more details.
The option cannot be combined with <samp>-fcheck-pointer-bounds</samp>.
</p>
</dd>
<dt><code>-fsanitize=pointer-compare</code></dt>
<dd><a name="index-fsanitize_003dpointer_002dcompare"></a>
<p>Instrument comparison operation (<, <=, >, >=) with pointer operands.
The option must be combined with either <samp>-fsanitize=kernel-address</samp> or
<samp>-fsanitize=address</samp>
The option cannot be combined with <samp>-fsanitize=thread</samp>
and/or <samp>-fcheck-pointer-bounds</samp>.
Note: By default the check is disabled at run time. To enable it,
add <code>detect_invalid_pointer_pairs=2</code> to the environment variable
<code>ASAN_OPTIONS</code>. Using <code>detect_invalid_pointer_pairs=1</code> detects
invalid operation only when both pointers are non-null.
</p>
</dd>
<dt><code>-fsanitize=pointer-subtract</code></dt>
<dd><a name="index-fsanitize_003dpointer_002dsubtract"></a>
<p>Instrument subtraction with pointer operands.
The option must be combined with either <samp>-fsanitize=kernel-address</samp> or
<samp>-fsanitize=address</samp>
The option cannot be combined with <samp>-fsanitize=thread</samp>
and/or <samp>-fcheck-pointer-bounds</samp>.
Note: By default the check is disabled at run time. To enable it,
add <code>detect_invalid_pointer_pairs=2</code> to the environment variable
<code>ASAN_OPTIONS</code>. Using <code>detect_invalid_pointer_pairs=1</code> detects
invalid operation only when both pointers are non-null.
</p>
</dd>
<dt><code>-fsanitize=thread</code></dt>
<dd><a name="index-fsanitize_003dthread"></a>
<p>Enable ThreadSanitizer, a fast data race detector.
Memory access instructions are instrumented to detect
data race bugs. See <a href="https://github.com/google/sanitizers/wiki#threadsanitizer">https://github.com/google/sanitizers/wiki#threadsanitizer</a> for more
details. The run-time behavior can be influenced using the <code>TSAN_OPTIONS</code>
environment variable; see
<a href="https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags">https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags</a> for a list of
supported options.
The option cannot be combined with <samp>-fsanitize=address</samp>,
<samp>-fsanitize=leak</samp> and/or <samp>-fcheck-pointer-bounds</samp>.
</p>
<p>Note that sanitized atomic builtins cannot throw exceptions when
operating on invalid memory addresses with non-call exceptions
(<samp>-fnon-call-exceptions</samp>).
</p>
</dd>
<dt><code>-fsanitize=leak</code></dt>
<dd><a name="index-fsanitize_003dleak"></a>
<p>Enable LeakSanitizer, a memory leak detector.
This option only matters for linking of executables and
the executable is linked against a library that overrides <code>malloc</code>
and other allocator functions. See
<a href="https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer">https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer</a> for more
details. The run-time behavior can be influenced using the
<code>LSAN_OPTIONS</code> environment variable.
The option cannot be combined with <samp>-fsanitize=thread</samp>.
</p>
</dd>
<dt><code>-fsanitize=undefined</code></dt>
<dd><a name="index-fsanitize_003dundefined"></a>
<p>Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
Various computations are instrumented to detect undefined behavior
at runtime. Current suboptions are:
</p>
<dl compact="compact">
<dt><code>-fsanitize=shift</code></dt>
<dd><a name="index-fsanitize_003dshift"></a>
<p>This option enables checking that the result of a shift operation is
not undefined. Note that what exactly is considered undefined differs
slightly between C and C++, as well as between ISO C90 and C99, etc.
This option has two suboptions, <samp>-fsanitize=shift-base</samp> and
<samp>-fsanitize=shift-exponent</samp>.
</p>
</dd>
<dt><code>-fsanitize=shift-exponent</code></dt>
<dd><a name="index-fsanitize_003dshift_002dexponent"></a>
<p>This option enables checking that the second argument of a shift operation
is not negative and is smaller than the precision of the promoted first
argument.
</p>
</dd>
<dt><code>-fsanitize=shift-base</code></dt>
<dd><a name="index-fsanitize_003dshift_002dbase"></a>
<p>If the second argument of a shift operation is within range, check that the
result of a shift operation is not undefined. Note that what exactly is
considered undefined differs slightly between C and C++, as well as between
ISO C90 and C99, etc.
</p>
</dd>
<dt><code>-fsanitize=integer-divide-by-zero</code></dt>
<dd><a name="index-fsanitize_003dinteger_002ddivide_002dby_002dzero"></a>
<p>Detect integer division by zero as well as <code>INT_MIN / -1</code> division.
</p>
</dd>
<dt><code>-fsanitize=unreachable</code></dt>
<dd><a name="index-fsanitize_003dunreachable"></a>
<p>With this option, the compiler turns the <code>__builtin_unreachable</code>
call into a diagnostics message call instead. When reaching the
<code>__builtin_unreachable</code> call, the behavior is undefined.
</p>
</dd>
<dt><code>-fsanitize=vla-bound</code></dt>
<dd><a name="index-fsanitize_003dvla_002dbound"></a>
<p>This option instructs the compiler to check that the size of a variable
length array is positive.
</p>
</dd>
<dt><code>-fsanitize=null</code></dt>
<dd><a name="index-fsanitize_003dnull"></a>
<p>This option enables pointer checking. Particularly, the application
built with this option turned on will issue an error message when it
tries to dereference a NULL pointer, or if a reference (possibly an
rvalue reference) is bound to a NULL pointer, or if a method is invoked
on an object pointed by a NULL pointer.
</p>
</dd>
<dt><code>-fsanitize=return</code></dt>
<dd><a name="index-fsanitize_003dreturn"></a>
<p>This option enables return statement checking. Programs
built with this option turned on will issue an error message
when the end of a non-void function is reached without actually
returning a value. This option works in C++ only.
</p>
</dd>
<dt><code>-fsanitize=signed-integer-overflow</code></dt>
<dd><a name="index-fsanitize_003dsigned_002dinteger_002doverflow"></a>
<p>This option enables signed integer overflow checking. We check that
the result of <code>+</code>, <code>*</code>, and both unary and binary <code>-</code>
does not overflow in the signed arithmetics. Note, integer promotion
rules must be taken into account. That is, the following is not an
overflow:
</p><div class="smallexample">
<pre class="smallexample">signed char a = SCHAR_MAX;
a++;
</pre></div>
</dd>
<dt><code>-fsanitize=bounds</code></dt>
<dd><a name="index-fsanitize_003dbounds"></a>
<p>This option enables instrumentation of array bounds. Various out of bounds
accesses are detected. Flexible array members, flexible array member-like
arrays, and initializers of variables with static storage are not instrumented.
The option cannot be combined with <samp>-fcheck-pointer-bounds</samp>.
</p>
</dd>
<dt><code>-fsanitize=bounds-strict</code></dt>
<dd><a name="index-fsanitize_003dbounds_002dstrict"></a>
<p>This option enables strict instrumentation of array bounds. Most out of bounds
accesses are detected, including flexible array members and flexible array
member-like arrays. Initializers of variables with static storage are not
instrumented. The option cannot be combined
with <samp>-fcheck-pointer-bounds</samp>.
</p>
</dd>
<dt><code>-fsanitize=alignment</code></dt>
<dd><a name="index-fsanitize_003dalignment"></a>
<p>This option enables checking of alignment of pointers when they are
dereferenced, or when a reference is bound to insufficiently aligned target,
or when a method or constructor is invoked on insufficiently aligned object.
</p>
</dd>
<dt><code>-fsanitize=object-size</code></dt>
<dd><a name="index-fsanitize_003dobject_002dsize"></a>
<p>This option enables instrumentation of memory references using the
<code>__builtin_object_size</code> function. Various out of bounds pointer
accesses are detected.
</p>
</dd>
<dt><code>-fsanitize=float-divide-by-zero</code></dt>
<dd><a name="index-fsanitize_003dfloat_002ddivide_002dby_002dzero"></a>
<p>Detect floating-point division by zero. Unlike other similar options,
<samp>-fsanitize=float-divide-by-zero</samp> is not enabled by
<samp>-fsanitize=undefined</samp>, since floating-point division by zero can
be a legitimate way of obtaining infinities and NaNs.
</p>
</dd>
<dt><code>-fsanitize=float-cast-overflow</code></dt>
<dd><a name="index-fsanitize_003dfloat_002dcast_002doverflow"></a>
<p>This option enables floating-point type to integer conversion checking.
We check that the result of the conversion does not overflow.
Unlike other similar options, <samp>-fsanitize=float-cast-overflow</samp> is
not enabled by <samp>-fsanitize=undefined</samp>.
This option does not work well with <code>FE_INVALID</code> exceptions enabled.
</p>
</dd>
<dt><code>-fsanitize=nonnull-attribute</code></dt>
<dd><a name="index-fsanitize_003dnonnull_002dattribute"></a>
<p>This option enables instrumentation of calls, checking whether null values
are not passed to arguments marked as requiring a non-null value by the
<code>nonnull</code> function attribute.
</p>
</dd>
<dt><code>-fsanitize=returns-nonnull-attribute</code></dt>
<dd><a name="index-fsanitize_003dreturns_002dnonnull_002dattribute"></a>
<p>This option enables instrumentation of return statements in functions
marked with <code>returns_nonnull</code> function attribute, to detect returning
of null values from such functions.
</p>
</dd>
<dt><code>-fsanitize=bool</code></dt>
<dd><a name="index-fsanitize_003dbool"></a>
<p>This option enables instrumentation of loads from bool. If a value other
than 0/1 is loaded, a run-time error is issued.
</p>
</dd>
<dt><code>-fsanitize=enum</code></dt>
<dd><a name="index-fsanitize_003denum"></a>
<p>This option enables instrumentation of loads from an enum type. If
a value outside the range of values for the enum type is loaded,
a run-time error is issued.
</p>
</dd>
<dt><code>-fsanitize=vptr</code></dt>
<dd><a name="index-fsanitize_003dvptr"></a>
<p>This option enables instrumentation of C++ member function calls, member
accesses and some conversions between pointers to base and derived classes,
to verify the referenced object has the correct dynamic type.
</p>
</dd>
<dt><code>-fsanitize=pointer-overflow</code></dt>
<dd><a name="index-fsanitize_003dpointer_002doverflow"></a>
<p>This option enables instrumentation of pointer arithmetics. If the pointer
arithmetics overflows, a run-time error is issued.
</p>
</dd>
<dt><code>-fsanitize=builtin</code></dt>
<dd><a name="index-fsanitize_003dbuiltin"></a>
<p>This option enables instrumentation of arguments to selected builtin
functions. If an invalid value is passed to such arguments, a run-time
error is issued. E.g. passing 0 as the argument to <code>__builtin_ctz</code>
or <code>__builtin_clz</code> invokes undefined behavior and is diagnosed
by this option.
</p>
</dd>
</dl>
<p>While <samp>-ftrapv</samp> causes traps for signed overflows to be emitted,
<samp>-fsanitize=undefined</samp> gives a diagnostic message.
This currently works only for the C family of languages.
</p>
</dd>
<dt><code>-fno-sanitize=all</code></dt>
<dd><a name="index-fno_002dsanitize_003dall"></a>
<p>This option disables all previously enabled sanitizers.
<samp>-fsanitize=all</samp> is not allowed, as some sanitizers cannot be used
together.
</p>
</dd>
<dt><code>-fasan-shadow-offset=<var>number</var></code></dt>
<dd><a name="index-fasan_002dshadow_002doffset"></a>
<p>This option forces GCC to use custom shadow offset in AddressSanitizer checks.
It is useful for experimenting with different shadow memory layouts in
Kernel AddressSanitizer.
</p>
</dd>
<dt><code>-fsanitize-sections=<var>s1</var>,<var>s2</var>,...</code></dt>
<dd><a name="index-fsanitize_002dsections"></a>
<p>Sanitize global variables in selected user-defined sections. <var>si</var> may
contain wildcards.
</p>
</dd>
<dt><code>-fsanitize-recover<span class="roman">[</span>=<var>opts</var><span class="roman">]</span></code></dt>
<dd><a name="index-fsanitize_002drecover"></a>
<a name="index-fno_002dsanitize_002drecover"></a>
<p><samp>-fsanitize-recover=</samp> controls error recovery mode for sanitizers
mentioned in comma-separated list of <var>opts</var>. Enabling this option
for a sanitizer component causes it to attempt to continue
running the program as if no error happened. This means multiple
runtime errors can be reported in a single program run, and the exit
code of the program may indicate success even when errors
have been reported. The <samp>-fno-sanitize-recover=</samp> option
can be used to alter
this behavior: only the first detected error is reported
and program then exits with a non-zero exit code.
</p>
<p>Currently this feature only works for <samp>-fsanitize=undefined</samp> (and its suboptions
except for <samp>-fsanitize=unreachable</samp> and <samp>-fsanitize=return</samp>),
<samp>-fsanitize=float-cast-overflow</samp>, <samp>-fsanitize=float-divide-by-zero</samp>,
<samp>-fsanitize=bounds-strict</samp>,
<samp>-fsanitize=kernel-address</samp> and <samp>-fsanitize=address</samp>.
For these sanitizers error recovery is turned on by default,
except <samp>-fsanitize=address</samp>, for which this feature is experimental.
<samp>-fsanitize-recover=all</samp> and <samp>-fno-sanitize-recover=all</samp> is also
accepted, the former enables recovery for all sanitizers that support it,
the latter disables recovery for all sanitizers that support it.
</p>
<p>Even if a recovery mode is turned on the compiler side, it needs to be also
enabled on the runtime library side, otherwise the failures are still fatal.
The runtime library defaults to <code>halt_on_error=0</code> for
ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
AddressSanitizer is <code>halt_on_error=1</code>. This can be overridden through
setting the <code>halt_on_error</code> flag in the corresponding environment variable.
</p>
<p>Syntax without an explicit <var>opts</var> parameter is deprecated. It is
equivalent to specifying an <var>opts</var> list of:
</p>
<div class="smallexample">
<pre class="smallexample">undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
</pre></div>
</dd>
<dt><code>-fsanitize-address-use-after-scope</code></dt>
<dd><a name="index-fsanitize_002daddress_002duse_002dafter_002dscope"></a>
<p>Enable sanitization of local variables to detect use-after-scope bugs.
The option sets <samp>-fstack-reuse</samp> to ‘<samp>none</samp>’.
</p>
</dd>
<dt><code>-fsanitize-undefined-trap-on-error</code></dt>
<dd><a name="index-fsanitize_002dundefined_002dtrap_002don_002derror"></a>
<p>The <samp>-fsanitize-undefined-trap-on-error</samp> option instructs the compiler to
report undefined behavior using <code>__builtin_trap</code> rather than
a <code>libubsan</code> library routine. The advantage of this is that the
<code>libubsan</code> library is not needed and is not linked in, so this
is usable even in freestanding environments.
</p>
</dd>
<dt><code>-fsanitize-coverage=trace-pc</code></dt>
<dd><a name="index-fsanitize_002dcoverage_003dtrace_002dpc"></a>
<p>Enable coverage-guided fuzzing code instrumentation.
Inserts a call to <code>__sanitizer_cov_trace_pc</code> into every basic block.
</p>
</dd>
<dt><code>-fsanitize-coverage=trace-cmp</code></dt>
<dd><a name="index-fsanitize_002dcoverage_003dtrace_002dcmp"></a>
<p>Enable dataflow guided fuzzing code instrumentation.
Inserts a call to <code>__sanitizer_cov_trace_cmp1</code>,
<code>__sanitizer_cov_trace_cmp2</code>, <code>__sanitizer_cov_trace_cmp4</code> or
<code>__sanitizer_cov_trace_cmp8</code> for integral comparison with both operands
variable or <code>__sanitizer_cov_trace_const_cmp1</code>,
<code>__sanitizer_cov_trace_const_cmp2</code>,
<code>__sanitizer_cov_trace_const_cmp4</code> or
<code>__sanitizer_cov_trace_const_cmp8</code> for integral comparison with one
operand constant, <code>__sanitizer_cov_trace_cmpf</code> or
<code>__sanitizer_cov_trace_cmpd</code> for float or double comparisons and
<code>__sanitizer_cov_trace_switch</code> for switch statements.
</p>
</dd>
<dt><code>-fbounds-check</code></dt>
<dd><a name="index-fbounds_002dcheck"></a>
<p>For front ends that support it, generate additional code to check that
indices used to access arrays are within the declared range. This is
currently only supported by the Fortran front end, where this option
defaults to false.
</p>
</dd>
<dt><code>-fcheck-pointer-bounds</code></dt>
<dd><a name="index-fcheck_002dpointer_002dbounds"></a>
<a name="index-fno_002dcheck_002dpointer_002dbounds"></a>
<a name="index-Pointer-Bounds-Checker-options"></a>
<p>Enable Pointer Bounds Checker instrumentation. Each memory reference
is instrumented with checks of the pointer used for memory access against
bounds associated with that pointer.
</p>
<p>Currently there
is only an implementation for Intel MPX available, thus x86 GNU/Linux target
and <samp>-mmpx</samp> are required to enable this feature.
MPX-based instrumentation requires
a runtime library to enable MPX in hardware and handle bounds
violation signals. By default when <samp>-fcheck-pointer-bounds</samp>
and <samp>-mmpx</samp> options are used to link a program, the GCC driver
links against the <samp>libmpx</samp> and <samp>libmpxwrappers</samp> libraries.
Bounds checking on calls to dynamic libraries requires a linker
with <samp>-z bndplt</samp> support; if GCC was configured with a linker
without support for this option (including the Gold linker and older
versions of ld), a warning is given if you link with <samp>-mmpx</samp>
without also specifying <samp>-static</samp>, since the overall effectiveness
of the bounds checking protection is reduced.
See also <samp>-static-libmpxwrappers</samp>.
</p>
<p>MPX-based instrumentation
may be used for debugging and also may be included in production code
to increase program security. Depending on usage, you may
have different requirements for the runtime library. The current version
of the MPX runtime library is more oriented for use as a debugging
tool. MPX runtime library usage implies <samp>-lpthread</samp>. See
also <samp>-static-libmpx</samp>. The runtime library behavior can be
influenced using various <code>CHKP_RT_*</code> environment variables. See
<a href="https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler">https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler</a>
for more details.
</p>
<p>Generated instrumentation may be controlled by various
<samp>-fchkp-*</samp> options and by the <code>bnd_variable_size</code>
structure field attribute (see <a href="#Type-Attributes">Type Attributes</a>) and
<code>bnd_legacy</code>, and <code>bnd_instrument</code> function attributes
(see <a href="#Function-Attributes">Function Attributes</a>). GCC also provides a number of built-in
functions for controlling the Pointer Bounds Checker. See <a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a>, for more information.
</p>
</dd>
<dt><code>-fchkp-check-incomplete-type</code></dt>
<dd><a name="index-fchkp_002dcheck_002dincomplete_002dtype"></a>
<a name="index-fno_002dchkp_002dcheck_002dincomplete_002dtype"></a>
<p>Generate pointer bounds checks for variables with incomplete type.
Enabled by default.
</p>
</dd>
<dt><code>-fchkp-narrow-bounds</code></dt>
<dd><a name="index-fchkp_002dnarrow_002dbounds"></a>
<a name="index-fno_002dchkp_002dnarrow_002dbounds"></a>
<p>Controls bounds used by Pointer Bounds Checker for pointers to object
fields. If narrowing is enabled then field bounds are used. Otherwise
object bounds are used. See also <samp>-fchkp-narrow-to-innermost-array</samp>
and <samp>-fchkp-first-field-has-own-bounds</samp>. Enabled by default.
</p>
</dd>
<dt><code>-fchkp-first-field-has-own-bounds</code></dt>
<dd><a name="index-fchkp_002dfirst_002dfield_002dhas_002down_002dbounds"></a>
<a name="index-fno_002dchkp_002dfirst_002dfield_002dhas_002down_002dbounds"></a>
<p>Forces Pointer Bounds Checker to use narrowed bounds for the address of the
first field in the structure. By default a pointer to the first field has
the same bounds as a pointer to the whole structure.
</p>
</dd>
<dt><code>-fchkp-flexible-struct-trailing-arrays</code></dt>
<dd><a name="index-fchkp_002dflexible_002dstruct_002dtrailing_002darrays"></a>
<a name="index-fno_002dchkp_002dflexible_002dstruct_002dtrailing_002darrays"></a>
<p>Forces Pointer Bounds Checker to treat all trailing arrays in structures as
possibly flexible. By default only array fields with zero length or that are
marked with attribute bnd_variable_size are treated as flexible.
</p>
</dd>
<dt><code>-fchkp-narrow-to-innermost-array</code></dt>
<dd><a name="index-fchkp_002dnarrow_002dto_002dinnermost_002darray"></a>
<a name="index-fno_002dchkp_002dnarrow_002dto_002dinnermost_002darray"></a>
<p>Forces Pointer Bounds Checker to use bounds of the innermost arrays in
case of nested static array access. By default this option is disabled and
bounds of the outermost array are used.
</p>
</dd>
<dt><code>-fchkp-optimize</code></dt>
<dd><a name="index-fchkp_002doptimize"></a>
<a name="index-fno_002dchkp_002doptimize"></a>
<p>Enables Pointer Bounds Checker optimizations. Enabled by default at
optimization levels <samp>-O</samp>, <samp>-O2</samp>, <samp>-O3</samp>.
</p>
</dd>
<dt><code>-fchkp-use-fast-string-functions</code></dt>
<dd><a name="index-fchkp_002duse_002dfast_002dstring_002dfunctions"></a>
<a name="index-fno_002dchkp_002duse_002dfast_002dstring_002dfunctions"></a>
<p>Enables use of <code>*_nobnd</code> versions of string functions (not copying bounds)
by Pointer Bounds Checker. Disabled by default.
</p>
</dd>
<dt><code>-fchkp-use-nochk-string-functions</code></dt>
<dd><a name="index-fchkp_002duse_002dnochk_002dstring_002dfunctions"></a>
<a name="index-fno_002dchkp_002duse_002dnochk_002dstring_002dfunctions"></a>
<p>Enables use of <code>*_nochk</code> versions of string functions (not checking bounds)
by Pointer Bounds Checker. Disabled by default.
</p>
</dd>
<dt><code>-fchkp-use-static-bounds</code></dt>
<dd><a name="index-fchkp_002duse_002dstatic_002dbounds"></a>
<a name="index-fno_002dchkp_002duse_002dstatic_002dbounds"></a>
<p>Allow Pointer Bounds Checker to generate static bounds holding
bounds of static variables. Enabled by default.
</p>
</dd>
<dt><code>-fchkp-use-static-const-bounds</code></dt>
<dd><a name="index-fchkp_002duse_002dstatic_002dconst_002dbounds"></a>
<a name="index-fno_002dchkp_002duse_002dstatic_002dconst_002dbounds"></a>
<p>Use statically-initialized bounds for constant bounds instead of
generating them each time they are required. By default enabled when
<samp>-fchkp-use-static-bounds</samp> is enabled.
</p>
</dd>
<dt><code>-fchkp-treat-zero-dynamic-size-as-infinite</code></dt>
<dd><a name="index-fchkp_002dtreat_002dzero_002ddynamic_002dsize_002das_002dinfinite"></a>
<a name="index-fno_002dchkp_002dtreat_002dzero_002ddynamic_002dsize_002das_002dinfinite"></a>
<p>With this option, objects with incomplete type whose
dynamically-obtained size is zero are treated as having infinite size
instead by Pointer Bounds
Checker. This option may be helpful if a program is linked with a library
missing size information for some symbols. Disabled by default.
</p>
</dd>
<dt><code>-fchkp-check-read</code></dt>
<dd><a name="index-fchkp_002dcheck_002dread"></a>
<a name="index-fno_002dchkp_002dcheck_002dread"></a>
<p>Instructs Pointer Bounds Checker to generate checks for all read
accesses to memory. Enabled by default.
</p>
</dd>
<dt><code>-fchkp-check-write</code></dt>
<dd><a name="index-fchkp_002dcheck_002dwrite"></a>
<a name="index-fno_002dchkp_002dcheck_002dwrite"></a>
<p>Instructs Pointer Bounds Checker to generate checks for all write
accesses to memory. Enabled by default.
</p>
</dd>
<dt><code>-fchkp-store-bounds</code></dt>
<dd><a name="index-fchkp_002dstore_002dbounds"></a>
<a name="index-fno_002dchkp_002dstore_002dbounds"></a>
<p>Instructs Pointer Bounds Checker to generate bounds stores for
pointer writes. Enabled by default.
</p>
</dd>
<dt><code>-fchkp-instrument-calls</code></dt>
<dd><a name="index-fchkp_002dinstrument_002dcalls"></a>
<a name="index-fno_002dchkp_002dinstrument_002dcalls"></a>
<p>Instructs Pointer Bounds Checker to pass pointer bounds to calls.
Enabled by default.
</p>
</dd>
<dt><code>-fchkp-instrument-marked-only</code></dt>
<dd><a name="index-fchkp_002dinstrument_002dmarked_002donly"></a>
<a name="index-fno_002dchkp_002dinstrument_002dmarked_002donly"></a>
<p>Instructs Pointer Bounds Checker to instrument only functions
marked with the <code>bnd_instrument</code> attribute
(see <a href="#Function-Attributes">Function Attributes</a>). Disabled by default.
</p>
</dd>
<dt><code>-fchkp-use-wrappers</code></dt>
<dd><a name="index-fchkp_002duse_002dwrappers"></a>
<a name="index-fno_002dchkp_002duse_002dwrappers"></a>
<p>Allows Pointer Bounds Checker to replace calls to built-in functions
with calls to wrapper functions. When <samp>-fchkp-use-wrappers</samp>
is used to link a program, the GCC driver automatically links
against <samp>libmpxwrappers</samp>. See also <samp>-static-libmpxwrappers</samp>.
Enabled by default.
</p>
</dd>
<dt><code>-fcf-protection=<span class="roman">[</span>full<span class="roman">|</span>branch<span class="roman">|</span>return<span class="roman">|</span>none<span class="roman">]</span></code></dt>
<dd><a name="index-fcf_002dprotection"></a>
<p>Enable code instrumentation of control-flow transfers to increase
program security by checking that target addresses of control-flow
transfer instructions (such as indirect function call, function return,
indirect jump) are valid. This prevents diverting the flow of control
to an unexpected target. This is intended to protect against such
threats as Return-oriented Programming (ROP), and similarly
call/jmp-oriented programming (COP/JOP).
</p>
<p>The value <code>branch</code> tells the compiler to implement checking of
validity of control-flow transfer at the point of indirect branch
instructions, i.e. call/jmp instructions. The value <code>return</code>
implements checking of validity at the point of returning from a
function. The value <code>full</code> is an alias for specifying both
<code>branch</code> and <code>return</code>. The value <code>none</code> turns off
instrumentation.
</p>
<p>You can also use the <code>nocf_check</code> attribute to identify
which functions and calls should be skipped from instrumentation
(see <a href="#Function-Attributes">Function Attributes</a>).
</p>
<p>Currently the x86 GNU/Linux target provides an implementation based
on Intel Control-flow Enforcement Technology (CET). Instrumentation
for x86 is controlled by target-specific options <samp>-mcet</samp>,
<samp>-mibt</samp> and <samp>-mshstk</samp> (see <a href="#x86-Options">x86 Options</a>).
</p>
</dd>
<dt><code>-fstack-protector</code></dt>
<dd><a name="index-fstack_002dprotector"></a>
<p>Emit extra code to check for buffer overflows, such as stack smashing
attacks. This is done by adding a guard variable to functions with
vulnerable objects. This includes functions that call <code>alloca</code>, and
functions with buffers larger than 8 bytes. The guards are initialized
when a function is entered and then checked when the function exits.
If a guard check fails, an error message is printed and the program exits.
</p>
</dd>
<dt><code>-fstack-protector-all</code></dt>
<dd><a name="index-fstack_002dprotector_002dall"></a>
<p>Like <samp>-fstack-protector</samp> except that all functions are protected.
</p>
</dd>
<dt><code>-fstack-protector-strong</code></dt>
<dd><a name="index-fstack_002dprotector_002dstrong"></a>
<p>Like <samp>-fstack-protector</samp> but includes additional functions to
be protected — those that have local array definitions, or have
references to local frame addresses.
</p>
</dd>
<dt><code>-fstack-protector-explicit</code></dt>
<dd><a name="index-fstack_002dprotector_002dexplicit"></a>
<p>Like <samp>-fstack-protector</samp> but only protects those functions which
have the <code>stack_protect</code> attribute.
</p>
</dd>
<dt><code>-fstack-check</code></dt>
<dd><a name="index-fstack_002dcheck"></a>
<p>Generate code to verify that you do not go beyond the boundary of the
stack. You should specify this flag if you are running in an
environment with multiple threads, but you only rarely need to specify it in
a single-threaded environment since stack overflow is automatically
detected on nearly all systems if there is only one stack.
</p>
<p>Note that this switch does not actually cause checking to be done; the
operating system or the language runtime must do that. The switch causes
generation of code to ensure that they see the stack being extended.
</p>
<p>You can additionally specify a string parameter: ‘<samp>no</samp>’ means no
checking, ‘<samp>generic</samp>’ means force the use of old-style checking,
‘<samp>specific</samp>’ means use the best checking method and is equivalent
to bare <samp>-fstack-check</samp>.
</p>
<p>Old-style checking is a generic mechanism that requires no specific
target support in the compiler but comes with the following drawbacks:
</p>
<ol>
<li> Modified allocation strategy for large objects: they are always
allocated dynamically if their size exceeds a fixed threshold. Note this
may change the semantics of some code.
</li><li> Fixed limit on the size of the static frame of functions: when it is
topped by a particular function, stack checking is not reliable and
a warning is issued by the compiler.
</li><li> Inefficiency: because of both the modified allocation strategy and the
generic implementation, code performance is hampered.
</li></ol>
<p>Note that old-style stack checking is also the fallback method for
‘<samp>specific</samp>’ if no target support has been added in the compiler.
</p>
<p>‘<samp>-fstack-check=</samp>’ is designed for Ada’s needs to detect infinite recursion
and stack overflows. ‘<samp>specific</samp>’ is an excellent choice when compiling
Ada code. It is not generally sufficient to protect against stack-clash
attacks. To protect against those you want ‘<samp>-fstack-clash-protection</samp>’.
</p>
</dd>
<dt><code>-fstack-clash-protection</code></dt>
<dd><a name="index-fstack_002dclash_002dprotection"></a>
<p>Generate code to prevent stack clash style attacks. When this option is
enabled, the compiler will only allocate one page of stack space at a time
and each page is accessed immediately after allocation. Thus, it prevents
allocations from jumping over any stack guard page provided by the
operating system.
</p>
<p>Most targets do not fully support stack clash protection. However, on
those targets <samp>-fstack-clash-protection</samp> will protect dynamic stack
allocations. <samp>-fstack-clash-protection</samp> may also provide limited
protection for static stack allocations if the target supports
<samp>-fstack-check=specific</samp>.
</p>
</dd>
<dt><code>-fstack-limit-register=<var>reg</var></code></dt>
<dt><code>-fstack-limit-symbol=<var>sym</var></code></dt>
<dt><code>-fno-stack-limit</code></dt>
<dd><a name="index-fstack_002dlimit_002dregister"></a>
<a name="index-fstack_002dlimit_002dsymbol"></a>
<a name="index-fno_002dstack_002dlimit"></a>
<p>Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If a larger
stack is required, a signal is raised at run time. For most targets,
the signal is raised before the stack overruns the boundary, so
it is possible to catch the signal without taking special precautions.
</p>
<p>For instance, if the stack starts at absolute address ‘<samp>0x80000000</samp>’
and grows downwards, you can use the flags
<samp>-fstack-limit-symbol=__stack_limit</samp> and
<samp>-Wl,--defsym,__stack_limit=0x7ffe0000</samp> to enforce a stack limit
of 128KB. Note that this may only work with the GNU linker.
</p>
<p>You can locally override stack limit checking by using the
<code>no_stack_limit</code> function attribute (see <a href="#Function-Attributes">Function Attributes</a>).
</p>
</dd>
<dt><code>-fsplit-stack</code></dt>
<dd><a name="index-fsplit_002dstack"></a>
<p>Generate code to automatically split the stack before it overflows.
The resulting program has a discontiguous stack which can only
overflow if the program is unable to allocate any more memory. This
is most useful when running threaded programs, as it is no longer
necessary to calculate a good stack size to use for each thread. This
is currently only implemented for the x86 targets running
GNU/Linux.
</p>
<p>When code compiled with <samp>-fsplit-stack</samp> calls code compiled
without <samp>-fsplit-stack</samp>, there may not be much stack space
available for the latter code to run. If compiling all code,
including library code, with <samp>-fsplit-stack</samp> is not an option,
then the linker can fix up these calls so that the code compiled
without <samp>-fsplit-stack</samp> always has a large stack. Support for
this is implemented in the gold linker in GNU binutils release 2.21
and later.
</p>
</dd>
<dt><code>-fvtable-verify=<span class="roman">[</span>std<span class="roman">|</span>preinit<span class="roman">|</span>none<span class="roman">]</span></code></dt>
<dd><a name="index-fvtable_002dverify"></a>
<p>This option is only available when compiling C++ code.
It turns on (or off, if using <samp>-fvtable-verify=none</samp>) the security
feature that verifies at run time, for every virtual call, that
the vtable pointer through which the call is made is valid for the type of
the object, and has not been corrupted or overwritten. If an invalid vtable
pointer is detected at run time, an error is reported and execution of the
program is immediately halted.
</p>
<p>This option causes run-time data structures to be built at program startup,
which are used for verifying the vtable pointers.
The options ‘<samp>std</samp>’ and ‘<samp>preinit</samp>’
control the timing of when these data structures are built. In both cases the
data structures are built before execution reaches <code>main</code>. Using
<samp>-fvtable-verify=std</samp> causes the data structures to be built after
shared libraries have been loaded and initialized.
<samp>-fvtable-verify=preinit</samp> causes them to be built before shared
libraries have been loaded and initialized.
</p>
<p>If this option appears multiple times in the command line with different
values specified, ‘<samp>none</samp>’ takes highest priority over both ‘<samp>std</samp>’ and
‘<samp>preinit</samp>’; ‘<samp>preinit</samp>’ takes priority over ‘<samp>std</samp>’.
</p>
</dd>
<dt><code>-fvtv-debug</code></dt>
<dd><a name="index-fvtv_002ddebug"></a>
<p>When used in conjunction with <samp>-fvtable-verify=std</samp> or
<samp>-fvtable-verify=preinit</samp>, causes debug versions of the
runtime functions for the vtable verification feature to be called.
This flag also causes the compiler to log information about which
vtable pointers it finds for each class.
This information is written to a file named <samp>vtv_set_ptr_data.log</samp>
in the directory named by the environment variable <code>VTV_LOGS_DIR</code>
if that is defined or the current working directory otherwise.
</p>
<p>Note: This feature <em>appends</em> data to the log file. If you want a fresh log
file, be sure to delete any existing one.
</p>
</dd>
<dt><code>-fvtv-counts</code></dt>
<dd><a name="index-fvtv_002dcounts"></a>
<p>This is a debugging flag. When used in conjunction with
<samp>-fvtable-verify=std</samp> or <samp>-fvtable-verify=preinit</samp>, this
causes the compiler to keep track of the total number of virtual calls
it encounters and the number of verifications it inserts. It also
counts the number of calls to certain run-time library functions
that it inserts and logs this information for each compilation unit.
The compiler writes this information to a file named
<samp>vtv_count_data.log</samp> in the directory named by the environment
variable <code>VTV_LOGS_DIR</code> if that is defined or the current working
directory otherwise. It also counts the size of the vtable pointer sets
for each class, and writes this information to <samp>vtv_class_set_sizes.log</samp>
in the same directory.
</p>
<p>Note: This feature <em>appends</em> data to the log files. To get fresh log
files, be sure to delete any existing ones.
</p>
</dd>
<dt><code>-finstrument-functions</code></dt>
<dd><a name="index-finstrument_002dfunctions"></a>
<p>Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions are called with the address of the current
function and its call site. (On some platforms,
<code>__builtin_return_address</code> does not work beyond the current
function, so the call site information may not be available to the
profiling functions otherwise.)
</p>
<div class="smallexample">
<pre class="smallexample">void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);
</pre></div>
<p>The first argument is the address of the start of the current function,
which may be looked up exactly in the symbol table.
</p>
<p>This instrumentation is also done for functions expanded inline in other
functions. The profiling calls indicate where, conceptually, the
inline function is entered and exited. This means that addressable
versions of such functions must be available. If all your uses of a
function are expanded inline, this may mean an additional expansion of
code size. If you use <code>extern inline</code> in your C code, an
addressable version of such functions must be provided. (This is
normally the case anyway, but if you get lucky and the optimizer always
expands the functions inline, you might have gotten away without
providing static copies.)
</p>
<p>A function may be given the attribute <code>no_instrument_function</code>, in
which case this instrumentation is not done. This can be used, for
example, for the profiling functions listed above, high-priority
interrupt routines, and any functions from which the profiling functions
cannot safely be called (perhaps signal handlers, if the profiling
routines generate output or allocate memory).
</p>
</dd>
<dt><code>-finstrument-functions-exclude-file-list=<var>file</var>,<var>file</var>,…</code></dt>
<dd><a name="index-finstrument_002dfunctions_002dexclude_002dfile_002dlist"></a>
<p>Set the list of functions that are excluded from instrumentation (see
the description of <samp>-finstrument-functions</samp>). If the file that
contains a function definition matches with one of <var>file</var>, then
that function is not instrumented. The match is done on substrings:
if the <var>file</var> parameter is a substring of the file name, it is
considered to be a match.
</p>
<p>For example:
</p>
<div class="smallexample">
<pre class="smallexample">-finstrument-functions-exclude-file-list=/bits/stl,include/sys
</pre></div>
<p>excludes any inline function defined in files whose pathnames
contain <samp>/bits/stl</samp> or <samp>include/sys</samp>.
</p>
<p>If, for some reason, you want to include letter ‘<samp>,</samp>’ in one of
<var>sym</var>, write ‘<samp>\,</samp>’. For example,
<samp>-finstrument-functions-exclude-file-list='\,\,tmp'</samp>
(note the single quote surrounding the option).
</p>
</dd>
<dt><code>-finstrument-functions-exclude-function-list=<var>sym</var>,<var>sym</var>,…</code></dt>
<dd><a name="index-finstrument_002dfunctions_002dexclude_002dfunction_002dlist"></a>
<p>This is similar to <samp>-finstrument-functions-exclude-file-list</samp>,
but this option sets the list of function names to be excluded from
instrumentation. The function name to be matched is its user-visible
name, such as <code>vector<int> blah(const vector<int> &)</code>, not the
internal mangled name (e.g., <code>_Z4blahRSt6vectorIiSaIiEE</code>). The
match is done on substrings: if the <var>sym</var> parameter is a substring
of the function name, it is considered to be a match. For C99 and C++
extended identifiers, the function name must be given in UTF-8, not
using universal character names.
</p>
</dd>
<dt><code>-fpatchable-function-entry=<var>N</var>[,<var>M</var>]</code></dt>
<dd><a name="index-fpatchable_002dfunction_002dentry"></a>
<p>Generate <var>N</var> NOPs right at the beginning
of each function, with the function entry point before the <var>M</var>th NOP.
If <var>M</var> is omitted, it defaults to <code>0</code> so the
function entry points to the address just at the first NOP.
The NOP instructions reserve extra space which can be used to patch in
any desired instrumentation at run time, provided that the code segment
is writable. The amount of space is controllable indirectly via
the number of NOPs; the NOP instruction used corresponds to the instruction
emitted by the internal GCC back-end interface <code>gen_nop</code>. This behavior
is target-specific and may also depend on the architecture variant and/or
other compilation options.
</p>
<p>For run-time identification, the starting addresses of these areas,
which correspond to their respective function entries minus <var>M</var>,
are additionally collected in the <code>__patchable_function_entries</code>
section of the resulting binary.
</p>
<p>Note that the value of <code>__attribute__ ((patchable_function_entry
(N,M)))</code> takes precedence over command-line option
<samp>-fpatchable-function-entry=N,M</samp>. This can be used to increase
the area size or to remove it completely on a single function.
If <code>N=0</code>, no pad location is recorded.
</p>
<p>The NOP instructions are inserted at—and maybe before, depending on
<var>M</var>—the function entry address, even before the prologue.
</p>
</dd>
</dl>
<hr>
<a name="Preprocessor-Options"></a>
<div class="header">
<p>
Next: <a href="#Assembler-Options" accesskey="n" rel="next">Assembler Options</a>, Previous: <a href="#Instrumentation-Options" accesskey="p" rel="prev">Instrumentation Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-Controlling-the-Preprocessor"></a>
<h3 class="section">3.12 Options Controlling the Preprocessor</h3>
<a name="index-preprocessor-options"></a>
<a name="index-options_002c-preprocessor"></a>
<p>These options control the C preprocessor, which is run on each C source
file before actual compilation.
</p>
<p>If you use the <samp>-E</samp> option, nothing is done except preprocessing.
Some of these options make sense only together with <samp>-E</samp> because
they cause the preprocessor output to be unsuitable for actual
compilation.
</p>
<p>In addition to the options listed here, there are a number of options
to control search paths for include files documented in
<a href="#Directory-Options">Directory Options</a>.
Options to control preprocessor diagnostics are listed in
<a href="#Warning-Options">Warning Options</a>.
</p>
<dl compact="compact">
<dt><code>-D <var>name</var></code></dt>
<dd><a name="index-D-1"></a>
<p>Predefine <var>name</var> as a macro, with definition <code>1</code>.
</p>
</dd>
<dt><code>-D <var>name</var>=<var>definition</var></code></dt>
<dd><p>The contents of <var>definition</var> are tokenized and processed as if
they appeared during translation phase three in a ‘<samp>#define</samp>’
directive. In particular, the definition is truncated by
embedded newline characters.
</p>
<p>If you are invoking the preprocessor from a shell or shell-like
program you may need to use the shell’s quoting syntax to protect
characters such as spaces that have a meaning in the shell syntax.
</p>
<p>If you wish to define a function-like macro on the command line, write
its argument list with surrounding parentheses before the equals sign
(if any). Parentheses are meaningful to most shells, so you should
quote the option. With <code>sh</code> and <code>csh</code>,
<samp>-D'<var>name</var>(<var>args…</var>)=<var>definition</var>'</samp> works.
</p>
<p><samp>-D</samp> and <samp>-U</samp> options are processed in the order they
are given on the command line. All <samp>-imacros <var>file</var></samp> and
<samp>-include <var>file</var></samp> options are processed after all
<samp>-D</samp> and <samp>-U</samp> options.
</p>
</dd>
<dt><code>-U <var>name</var></code></dt>
<dd><a name="index-U"></a>
<p>Cancel any previous definition of <var>name</var>, either built in or
provided with a <samp>-D</samp> option.
</p>
</dd>
<dt><code>-include <var>file</var></code></dt>
<dd><a name="index-include"></a>
<p>Process <var>file</var> as if <code>#include "file"</code> appeared as the first
line of the primary source file. However, the first directory searched
for <var>file</var> is the preprocessor’s working directory <em>instead of</em>
the directory containing the main source file. If not found there, it
is searched for in the remainder of the <code>#include "…"</code> search
chain as normal.
</p>
<p>If multiple <samp>-include</samp> options are given, the files are included
in the order they appear on the command line.
</p>
</dd>
<dt><code>-imacros <var>file</var></code></dt>
<dd><a name="index-imacros"></a>
<p>Exactly like <samp>-include</samp>, except that any output produced by
scanning <var>file</var> is thrown away. Macros it defines remain defined.
This allows you to acquire all the macros from a header without also
processing its declarations.
</p>
<p>All files specified by <samp>-imacros</samp> are processed before all files
specified by <samp>-include</samp>.
</p>
</dd>
<dt><code>-undef</code></dt>
<dd><a name="index-undef"></a>
<p>Do not predefine any system-specific or GCC-specific macros. The
standard predefined macros remain defined.
</p>
</dd>
<dt><code>-pthread</code></dt>
<dd><a name="index-pthread"></a>
<p>Define additional macros required for using the POSIX threads library.
You should use this option consistently for both compilation and linking.
This option is supported on GNU/Linux targets, most other Unix derivatives,
and also on x86 Cygwin and MinGW targets.
</p>
</dd>
<dt><code>-M</code></dt>
<dd><a name="index-M"></a>
<a name="index-make"></a>
<a name="index-dependencies_002c-make"></a>
<p>Instead of outputting the result of preprocessing, output a rule
suitable for <code>make</code> describing the dependencies of the main
source file. The preprocessor outputs one <code>make</code> rule containing
the object file name for that source file, a colon, and the names of all
the included files, including those coming from <samp>-include</samp> or
<samp>-imacros</samp> command-line options.
</p>
<p>Unless specified explicitly (with <samp>-MT</samp> or <samp>-MQ</samp>), the
object file name consists of the name of the source file with any
suffix replaced with object file suffix and with any leading directory
parts removed. If there are many included files then the rule is
split into several lines using ‘<samp>\</samp>’-newline. The rule has no
commands.
</p>
<p>This option does not suppress the preprocessor’s debug output, such as
<samp>-dM</samp>. To avoid mixing such debug output with the dependency
rules you should explicitly specify the dependency output file with
<samp>-MF</samp>, or use an environment variable like
<code>DEPENDENCIES_OUTPUT</code> (see <a href="#Environment-Variables">Environment Variables</a>). Debug output
is still sent to the regular output stream as normal.
</p>
<p>Passing <samp>-M</samp> to the driver implies <samp>-E</samp>, and suppresses
warnings with an implicit <samp>-w</samp>.
</p>
</dd>
<dt><code>-MM</code></dt>
<dd><a name="index-MM"></a>
<p>Like <samp>-M</samp> but do not mention header files that are found in
system header directories, nor header files that are included,
directly or indirectly, from such a header.
</p>
<p>This implies that the choice of angle brackets or double quotes in an
‘<samp>#include</samp>’ directive does not in itself determine whether that
header appears in <samp>-MM</samp> dependency output.
</p>
<a name="dashMF"></a></dd>
<dt><code>-MF <var>file</var></code></dt>
<dd><a name="index-MF"></a>
<p>When used with <samp>-M</samp> or <samp>-MM</samp>, specifies a
file to write the dependencies to. If no <samp>-MF</samp> switch is given
the preprocessor sends the rules to the same place it would send
preprocessed output.
</p>
<p>When used with the driver options <samp>-MD</samp> or <samp>-MMD</samp>,
<samp>-MF</samp> overrides the default dependency output file.
</p>
<p>If <var>file</var> is <samp>-</samp>, then the dependencies are written to <samp>stdout</samp>.
</p>
</dd>
<dt><code>-MG</code></dt>
<dd><a name="index-MG"></a>
<p>In conjunction with an option such as <samp>-M</samp> requesting
dependency generation, <samp>-MG</samp> assumes missing header files are
generated files and adds them to the dependency list without raising
an error. The dependency filename is taken directly from the
<code>#include</code> directive without prepending any path. <samp>-MG</samp>
also suppresses preprocessed output, as a missing header file renders
this useless.
</p>
<p>This feature is used in automatic updating of makefiles.
</p>
</dd>
<dt><code>-MP</code></dt>
<dd><a name="index-MP"></a>
<p>This option instructs CPP to add a phony target for each dependency
other than the main file, causing each to depend on nothing. These
dummy rules work around errors <code>make</code> gives if you remove header
files without updating the <samp>Makefile</samp> to match.
</p>
<p>This is typical output:
</p>
<div class="smallexample">
<pre class="smallexample">test.o: test.c test.h
test.h:
</pre></div>
</dd>
<dt><code>-MT <var>target</var></code></dt>
<dd><a name="index-MT"></a>
<p>Change the target of the rule emitted by dependency generation. By
default CPP takes the name of the main input file, deletes any
directory components and any file suffix such as ‘<samp>.c</samp>’, and
appends the platform’s usual object suffix. The result is the target.
</p>
<p>An <samp>-MT</samp> option sets the target to be exactly the string you
specify. If you want multiple targets, you can specify them as a single
argument to <samp>-MT</samp>, or use multiple <samp>-MT</samp> options.
</p>
<p>For example, <samp><span class="nolinebreak">-MT</span> '$(objpfx)foo.o'<!-- /@w --></samp> might give
</p>
<div class="smallexample">
<pre class="smallexample">$(objpfx)foo.o: foo.c
</pre></div>
</dd>
<dt><code>-MQ <var>target</var></code></dt>
<dd><a name="index-MQ"></a>
<p>Same as <samp>-MT</samp>, but it quotes any characters which are special to
Make. <samp><span class="nolinebreak">-MQ</span> '$(objpfx)foo.o'<!-- /@w --></samp> gives
</p>
<div class="smallexample">
<pre class="smallexample">$$(objpfx)foo.o: foo.c
</pre></div>
<p>The default target is automatically quoted, as if it were given with
<samp>-MQ</samp>.
</p>
</dd>
<dt><code>-MD</code></dt>
<dd><a name="index-MD"></a>
<p><samp>-MD</samp> is equivalent to <samp>-M -MF <var>file</var></samp>, except that
<samp>-E</samp> is not implied. The driver determines <var>file</var> based on
whether an <samp>-o</samp> option is given. If it is, the driver uses its
argument but with a suffix of <samp>.d</samp>, otherwise it takes the name
of the input file, removes any directory components and suffix, and
applies a <samp>.d</samp> suffix.
</p>
<p>If <samp>-MD</samp> is used in conjunction with <samp>-E</samp>, any
<samp>-o</samp> switch is understood to specify the dependency output file
(see <a href="#dashMF">-MF</a>), but if used without <samp>-E</samp>, each <samp>-o</samp>
is understood to specify a target object file.
</p>
<p>Since <samp>-E</samp> is not implied, <samp>-MD</samp> can be used to generate
a dependency output file as a side effect of the compilation process.
</p>
</dd>
<dt><code>-MMD</code></dt>
<dd><a name="index-MMD"></a>
<p>Like <samp>-MD</samp> except mention only user header files, not system
header files.
</p>
</dd>
<dt><code>-fpreprocessed</code></dt>
<dd><a name="index-fpreprocessed"></a>
<p>Indicate to the preprocessor that the input file has already been
preprocessed. This suppresses things like macro expansion, trigraph
conversion, escaped newline splicing, and processing of most directives.
The preprocessor still recognizes and removes comments, so that you can
pass a file preprocessed with <samp>-C</samp> to the compiler without
problems. In this mode the integrated preprocessor is little more than
a tokenizer for the front ends.
</p>
<p><samp>-fpreprocessed</samp> is implicit if the input file has one of the
extensions ‘<samp>.i</samp>’, ‘<samp>.ii</samp>’ or ‘<samp>.mi</samp>’. These are the
extensions that GCC uses for preprocessed files created by
<samp>-save-temps</samp>.
</p>
</dd>
<dt><code>-fdirectives-only</code></dt>
<dd><a name="index-fdirectives_002donly"></a>
<p>When preprocessing, handle directives, but do not expand macros.
</p>
<p>The option’s behavior depends on the <samp>-E</samp> and <samp>-fpreprocessed</samp>
options.
</p>
<p>With <samp>-E</samp>, preprocessing is limited to the handling of directives
such as <code>#define</code>, <code>#ifdef</code>, and <code>#error</code>. Other
preprocessor operations, such as macro expansion and trigraph
conversion are not performed. In addition, the <samp>-dD</samp> option is
implicitly enabled.
</p>
<p>With <samp>-fpreprocessed</samp>, predefinition of command line and most
builtin macros is disabled. Macros such as <code>__LINE__</code>, which are
contextually dependent, are handled normally. This enables compilation of
files previously preprocessed with <code>-E -fdirectives-only</code>.
</p>
<p>With both <samp>-E</samp> and <samp>-fpreprocessed</samp>, the rules for
<samp>-fpreprocessed</samp> take precedence. This enables full preprocessing of
files previously preprocessed with <code>-E -fdirectives-only</code>.
</p>
</dd>
<dt><code>-fdollars-in-identifiers</code></dt>
<dd><a name="index-fdollars_002din_002didentifiers"></a>
<a name="fdollars_002din_002didentifiers"></a><p>Accept ‘<samp>$</samp>’ in identifiers.
</p>
</dd>
<dt><code>-fextended-identifiers</code></dt>
<dd><a name="index-fextended_002didentifiers"></a>
<p>Accept universal character names in identifiers. This option is
enabled by default for C99 (and later C standard versions) and C++.
</p>
</dd>
<dt><code>-fno-canonical-system-headers</code></dt>
<dd><a name="index-fno_002dcanonical_002dsystem_002dheaders"></a>
<p>When preprocessing, do not shorten system header paths with canonicalization.
</p>
</dd>
<dt><code>-ftabstop=<var>width</var></code></dt>
<dd><a name="index-ftabstop"></a>
<p>Set the distance between tab stops. This helps the preprocessor report
correct column numbers in warnings or errors, even if tabs appear on the
line. If the value is less than 1 or greater than 100, the option is
ignored. The default is 8.
</p>
</dd>
<dt><code>-ftrack-macro-expansion<span class="roman">[</span>=<var>level</var><span class="roman">]</span></code></dt>
<dd><a name="index-ftrack_002dmacro_002dexpansion"></a>
<p>Track locations of tokens across macro expansions. This allows the
compiler to emit diagnostic about the current macro expansion stack
when a compilation error occurs in a macro expansion. Using this
option makes the preprocessor and the compiler consume more
memory. The <var>level</var> parameter can be used to choose the level of
precision of token location tracking thus decreasing the memory
consumption if necessary. Value ‘<samp>0</samp>’ of <var>level</var> de-activates
this option. Value ‘<samp>1</samp>’ tracks tokens locations in a
degraded mode for the sake of minimal memory overhead. In this mode
all tokens resulting from the expansion of an argument of a
function-like macro have the same location. Value ‘<samp>2</samp>’ tracks
tokens locations completely. This value is the most memory hungry.
When this option is given no argument, the default parameter value is
‘<samp>2</samp>’.
</p>
<p>Note that <code>-ftrack-macro-expansion=2</code> is activated by default.
</p>
</dd>
<dt><code>-fmacro-prefix-map=<var>old</var>=<var>new</var></code></dt>
<dd><a name="index-fmacro_002dprefix_002dmap"></a>
<p>When preprocessing files residing in directory <samp><var>old</var></samp>,
expand the <code>__FILE__</code> and <code>__BASE_FILE__</code> macros as if the
files resided in directory <samp><var>new</var></samp> instead. This can be used
to change an absolute path to a relative path by using <samp>.</samp> for
<var>new</var> which can result in more reproducible builds that are
location independent. This option also affects
<code>__builtin_FILE()</code> during compilation. See also
<samp>-ffile-prefix-map</samp>.
</p>
</dd>
<dt><code>-fexec-charset=<var>charset</var></code></dt>
<dd><a name="index-fexec_002dcharset"></a>
<a name="index-character-set_002c-execution"></a>
<p>Set the execution character set, used for string and character
constants. The default is UTF-8. <var>charset</var> can be any encoding
supported by the system’s <code>iconv</code> library routine.
</p>
</dd>
<dt><code>-fwide-exec-charset=<var>charset</var></code></dt>
<dd><a name="index-fwide_002dexec_002dcharset"></a>
<a name="index-character-set_002c-wide-execution"></a>
<p>Set the wide execution character set, used for wide string and
character constants. The default is UTF-32 or UTF-16, whichever
corresponds to the width of <code>wchar_t</code>. As with
<samp>-fexec-charset</samp>, <var>charset</var> can be any encoding supported
by the system’s <code>iconv</code> library routine; however, you will have
problems with encodings that do not fit exactly in <code>wchar_t</code>.
</p>
</dd>
<dt><code>-finput-charset=<var>charset</var></code></dt>
<dd><a name="index-finput_002dcharset"></a>
<a name="index-character-set_002c-input"></a>
<p>Set the input character set, used for translation from the character
set of the input file to the source character set used by GCC. If the
locale does not specify, or GCC cannot get this information from the
locale, the default is UTF-8. This can be overridden by either the locale
or this command-line option. Currently the command-line option takes
precedence if there’s a conflict. <var>charset</var> can be any encoding
supported by the system’s <code>iconv</code> library routine.
</p>
</dd>
<dt><code>-fpch-deps</code></dt>
<dd><a name="index-fpch_002ddeps"></a>
<p>When using precompiled headers (see <a href="#Precompiled-Headers">Precompiled Headers</a>), this flag
causes the dependency-output flags to also list the files from the
precompiled header’s dependencies. If not specified, only the
precompiled header are listed and not the files that were used to
create it, because those files are not consulted when a precompiled
header is used.
</p>
</dd>
<dt><code>-fpch-preprocess</code></dt>
<dd><a name="index-fpch_002dpreprocess"></a>
<p>This option allows use of a precompiled header (see <a href="#Precompiled-Headers">Precompiled Headers</a>) together with <samp>-E</samp>. It inserts a special <code>#pragma</code>,
<code>#pragma GCC pch_preprocess "<var>filename</var>"</code> in the output to mark
the place where the precompiled header was found, and its <var>filename</var>.
When <samp>-fpreprocessed</samp> is in use, GCC recognizes this <code>#pragma</code>
and loads the PCH.
</p>
<p>This option is off by default, because the resulting preprocessed output
is only really suitable as input to GCC. It is switched on by
<samp>-save-temps</samp>.
</p>
<p>You should not write this <code>#pragma</code> in your own code, but it is
safe to edit the filename if the PCH file is available in a different
location. The filename may be absolute or it may be relative to GCC’s
current directory.
</p>
</dd>
<dt><code>-fworking-directory</code></dt>
<dd><a name="index-fworking_002ddirectory"></a>
<a name="index-fno_002dworking_002ddirectory"></a>
<p>Enable generation of linemarkers in the preprocessor output that
let the compiler know the current working directory at the time of
preprocessing. When this option is enabled, the preprocessor
emits, after the initial linemarker, a second linemarker with the
current working directory followed by two slashes. GCC uses this
directory, when it’s present in the preprocessed input, as the
directory emitted as the current working directory in some debugging
information formats. This option is implicitly enabled if debugging
information is enabled, but this can be inhibited with the negated
form <samp>-fno-working-directory</samp>. If the <samp>-P</samp> flag is
present in the command line, this option has no effect, since no
<code>#line</code> directives are emitted whatsoever.
</p>
</dd>
<dt><code>-A <var>predicate</var>=<var>answer</var></code></dt>
<dd><a name="index-A"></a>
<p>Make an assertion with the predicate <var>predicate</var> and answer
<var>answer</var>. This form is preferred to the older form <samp>-A
<var>predicate</var>(<var>answer</var>)</samp>, which is still supported, because
it does not use shell special characters.
</p>
</dd>
<dt><code>-A -<var>predicate</var>=<var>answer</var></code></dt>
<dd><p>Cancel an assertion with the predicate <var>predicate</var> and answer
<var>answer</var>.
</p>
</dd>
<dt><code>-C</code></dt>
<dd><a name="index-C"></a>
<p>Do not discard comments. All comments are passed through to the output
file, except for comments in processed directives, which are deleted
along with the directive.
</p>
<p>You should be prepared for side effects when using <samp>-C</samp>; it
causes the preprocessor to treat comments as tokens in their own right.
For example, comments appearing at the start of what would be a
directive line have the effect of turning that line into an ordinary
source line, since the first token on the line is no longer a ‘<samp>#</samp>’.
</p>
</dd>
<dt><code>-CC</code></dt>
<dd><a name="index-CC"></a>
<p>Do not discard comments, including during macro expansion. This is
like <samp>-C</samp>, except that comments contained within macros are
also passed through to the output file where the macro is expanded.
</p>
<p>In addition to the side effects of the <samp>-C</samp> option, the
<samp>-CC</samp> option causes all C++-style comments inside a macro
to be converted to C-style comments. This is to prevent later use
of that macro from inadvertently commenting out the remainder of
the source line.
</p>
<p>The <samp>-CC</samp> option is generally used to support lint comments.
</p>
</dd>
<dt><code>-P</code></dt>
<dd><a name="index-P"></a>
<p>Inhibit generation of linemarkers in the output from the preprocessor.
This might be useful when running the preprocessor on something that is
not C code, and will be sent to a program which might be confused by the
linemarkers.
</p>
<a name="index-traditional-C-language"></a>
<a name="index-C-language_002c-traditional"></a>
</dd>
<dt><code>-traditional</code></dt>
<dt><code>-traditional-cpp</code></dt>
<dd><a name="index-traditional_002dcpp"></a>
<a name="index-traditional"></a>
<p>Try to imitate the behavior of pre-standard C preprocessors, as
opposed to ISO C preprocessors.
See the GNU CPP manual for details.
</p>
<p>Note that GCC does not otherwise attempt to emulate a pre-standard
C compiler, and these options are only supported with the <samp>-E</samp>
switch, or when invoking CPP explicitly.
</p>
</dd>
<dt><code>-trigraphs</code></dt>
<dd><a name="index-trigraphs"></a>
<p>Support ISO C trigraphs.
These are three-character sequences, all starting with ‘<samp>??</samp>’, that
are defined by ISO C to stand for single characters. For example,
‘<samp>??/</samp>’ stands for ‘<samp>\</samp>’, so ‘<samp>'??/n'</samp>’ is a character
constant for a newline.
</p>
<p>The nine trigraphs and their replacements are
</p>
<div class="smallexample">
<pre class="smallexample">Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??-
Replacement: [ ] { } # \ ^ | ~
</pre></div>
<p>By default, GCC ignores trigraphs, but in
standard-conforming modes it converts them. See the <samp>-std</samp> and
<samp>-ansi</samp> options.
</p>
</dd>
<dt><code>-remap</code></dt>
<dd><a name="index-remap"></a>
<p>Enable special code to work around file systems which only permit very
short file names, such as MS-DOS.
</p>
</dd>
<dt><code>-H</code></dt>
<dd><a name="index-H"></a>
<p>Print the name of each header file used, in addition to other normal
activities. Each name is indented to show how deep in the
‘<samp>#include</samp>’ stack it is. Precompiled header files are also
printed, even if they are found to be invalid; an invalid precompiled
header file is printed with ‘<samp>...x</samp>’ and a valid one with ‘<samp>...!</samp>’ .
</p>
</dd>
<dt><code>-d<var>letters</var></code></dt>
<dd><a name="index-d"></a>
<p>Says to make debugging dumps during compilation as specified by
<var>letters</var>. The flags documented here are those relevant to the
preprocessor. Other <var>letters</var> are interpreted
by the compiler proper, or reserved for future versions of GCC, and so
are silently ignored. If you specify <var>letters</var> whose behavior
conflicts, the result is undefined.
See <a href="#Developer-Options">Developer Options</a>, for more information.
</p>
<dl compact="compact">
<dt><code>-dM</code></dt>
<dd><a name="index-dM"></a>
<p>Instead of the normal output, generate a list of ‘<samp>#define</samp>’
directives for all the macros defined during the execution of the
preprocessor, including predefined macros. This gives you a way of
finding out what is predefined in your version of the preprocessor.
Assuming you have no file <samp>foo.h</samp>, the command
</p>
<div class="smallexample">
<pre class="smallexample">touch foo.h; cpp -dM foo.h
</pre></div>
<p>shows all the predefined macros.
</p>
<p>If you use <samp>-dM</samp> without the <samp>-E</samp> option, <samp>-dM</samp> is
interpreted as a synonym for <samp>-fdump-rtl-mach</samp>.
See <a href="http://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html#Developer-Options">(gcc)Developer Options</a>.
</p>
</dd>
<dt><code>-dD</code></dt>
<dd><a name="index-dD"></a>
<p>Like <samp>-dM</samp> except in two respects: it does <em>not</em> include the
predefined macros, and it outputs <em>both</em> the ‘<samp>#define</samp>’
directives and the result of preprocessing. Both kinds of output go to
the standard output file.
</p>
</dd>
<dt><code>-dN</code></dt>
<dd><a name="index-dN"></a>
<p>Like <samp>-dD</samp>, but emit only the macro names, not their expansions.
</p>
</dd>
<dt><code>-dI</code></dt>
<dd><a name="index-dI"></a>
<p>Output ‘<samp>#include</samp>’ directives in addition to the result of
preprocessing.
</p>
</dd>
<dt><code>-dU</code></dt>
<dd><a name="index-dU"></a>
<p>Like <samp>-dD</samp> except that only macros that are expanded, or whose
definedness is tested in preprocessor directives, are output; the
output is delayed until the use or test of the macro; and
‘<samp>#undef</samp>’ directives are also output for macros tested but
undefined at the time.
</p></dd>
</dl>
</dd>
<dt><code>-fdebug-cpp</code></dt>
<dd><a name="index-fdebug_002dcpp"></a>
<p>This option is only useful for debugging GCC. When used from CPP or with
<samp>-E</samp>, it dumps debugging information about location maps. Every
token in the output is preceded by the dump of the map its location
belongs to.
</p>
<p>When used from GCC without <samp>-E</samp>, this option has no effect.
</p>
</dd>
<dt><code>-Wp,<var>option</var></code></dt>
<dd><a name="index-Wp"></a>
<p>You can use <samp>-Wp,<var>option</var></samp> to bypass the compiler driver
and pass <var>option</var> directly through to the preprocessor. If
<var>option</var> contains commas, it is split into multiple options at the
commas. However, many options are modified, translated or interpreted
by the compiler driver before being passed to the preprocessor, and
<samp>-Wp</samp> forcibly bypasses this phase. The preprocessor’s direct
interface is undocumented and subject to change, so whenever possible
you should avoid using <samp>-Wp</samp> and let the driver handle the
options instead.
</p>
</dd>
<dt><code>-Xpreprocessor <var>option</var></code></dt>
<dd><a name="index-Xpreprocessor"></a>
<p>Pass <var>option</var> as an option to the preprocessor. You can use this to
supply system-specific preprocessor options that GCC does not
recognize.
</p>
<p>If you want to pass an option that takes an argument, you must use
<samp>-Xpreprocessor</samp> twice, once for the option and once for the argument.
</p>
</dd>
<dt><code>-no-integrated-cpp</code></dt>
<dd><a name="index-no_002dintegrated_002dcpp"></a>
<p>Perform preprocessing as a separate pass before compilation.
By default, GCC performs preprocessing as an integrated part of
input tokenization and parsing.
If this option is provided, the appropriate language front end
(<code>cc1</code>, <code>cc1plus</code>, or <code>cc1obj</code> for C, C++,
and Objective-C, respectively) is instead invoked twice,
once for preprocessing only and once for actual compilation
of the preprocessed input.
This option may be useful in conjunction with the <samp>-B</samp> or
<samp>-wrapper</samp> options to specify an alternate preprocessor or
perform additional processing of the program source between
normal preprocessing and compilation.
</p>
</dd>
</dl>
<hr>
<a name="Assembler-Options"></a>
<div class="header">
<p>
Next: <a href="#Link-Options" accesskey="n" rel="next">Link Options</a>, Previous: <a href="#Preprocessor-Options" accesskey="p" rel="prev">Preprocessor Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Passing-Options-to-the-Assembler"></a>
<h3 class="section">3.13 Passing Options to the Assembler</h3>
<p>You can pass options to the assembler.
</p>
<dl compact="compact">
<dt><code>-Wa,<var>option</var></code></dt>
<dd><a name="index-Wa"></a>
<p>Pass <var>option</var> as an option to the assembler. If <var>option</var>
contains commas, it is split into multiple options at the commas.
</p>
</dd>
<dt><code>-Xassembler <var>option</var></code></dt>
<dd><a name="index-Xassembler"></a>
<p>Pass <var>option</var> as an option to the assembler. You can use this to
supply system-specific assembler options that GCC does not
recognize.
</p>
<p>If you want to pass an option that takes an argument, you must use
<samp>-Xassembler</samp> twice, once for the option and once for the argument.
</p>
</dd>
</dl>
<hr>
<a name="Link-Options"></a>
<div class="header">
<p>
Next: <a href="#Directory-Options" accesskey="n" rel="next">Directory Options</a>, Previous: <a href="#Assembler-Options" accesskey="p" rel="prev">Assembler Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-for-Linking"></a>
<h3 class="section">3.14 Options for Linking</h3>
<a name="index-link-options"></a>
<a name="index-options_002c-linking"></a>
<p>These options come into play when the compiler links object files into
an executable output file. They are meaningless if the compiler is
not doing a link step.
</p>
<dl compact="compact">
<dd><a name="index-file-names"></a>
</dd>
<dt><code><var>object-file-name</var></code></dt>
<dd><p>A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the file
contents.) If linking is done, these object files are used as input
to the linker.
</p>
</dd>
<dt><code>-c</code></dt>
<dt><code>-S</code></dt>
<dt><code>-E</code></dt>
<dd><a name="index-c-1"></a>
<a name="index-S-1"></a>
<a name="index-E-1"></a>
<p>If any of these options is used, then the linker is not run, and
object file names should not be used as arguments. See <a href="#Overall-Options">Overall Options</a>.
</p>
</dd>
<dt><code>-fuse-ld=bfd</code></dt>
<dd><a name="index-fuse_002dld_003dbfd"></a>
<p>Use the <code>bfd</code> linker instead of the default linker.
</p>
</dd>
<dt><code>-fuse-ld=gold</code></dt>
<dd><a name="index-fuse_002dld_003dgold"></a>
<p>Use the <code>gold</code> linker instead of the default linker.
</p>
</dd>
<dt><code>-fuse-ld=lld</code></dt>
<dd><a name="index-fuse_002dld_003dlld"></a>
<p>Use the LLVM <code>lld</code> linker instead of the default linker.
</p>
<a name="index-Libraries"></a>
</dd>
<dt><code>-l<var>library</var></code></dt>
<dt><code>-l <var>library</var></code></dt>
<dd><a name="index-l"></a>
<p>Search the library named <var>library</var> when linking. (The second
alternative with the library as a separate argument is only for
POSIX compliance and is not recommended.)
</p>
<p>It makes a difference where in the command you write this option; the
linker searches and processes libraries and object files in the order they
are specified. Thus, ‘<samp>foo.o -lz bar.o</samp>’ searches library ‘<samp>z</samp>’
after file <samp>foo.o</samp> but before <samp>bar.o</samp>. If <samp>bar.o</samp> refers
to functions in ‘<samp>z</samp>’, those functions may not be loaded.
</p>
<p>The linker searches a standard list of directories for the library,
which is actually a file named <samp>lib<var>library</var>.a</samp>. The linker
then uses this file as if it had been specified precisely by name.
</p>
<p>The directories searched include several standard system directories
plus any that you specify with <samp>-L</samp>.
</p>
<p>Normally the files found this way are library files—archive files
whose members are object files. The linker handles an archive file by
scanning through it for members which define symbols that have so far
been referenced but not defined. But if the file that is found is an
ordinary object file, it is linked in the usual fashion. The only
difference between using an <samp>-l</samp> option and specifying a file name
is that <samp>-l</samp> surrounds <var>library</var> with ‘<samp>lib</samp>’ and ‘<samp>.a</samp>’
and searches several directories.
</p>
</dd>
<dt><code>-lobjc</code></dt>
<dd><a name="index-lobjc"></a>
<p>You need this special case of the <samp>-l</samp> option in order to
link an Objective-C or Objective-C++ program.
</p>
</dd>
<dt><code>-nostartfiles</code></dt>
<dd><a name="index-nostartfiles"></a>
<p>Do not use the standard system startup files when linking.
The standard system libraries are used normally, unless <samp>-nostdlib</samp>
or <samp>-nodefaultlibs</samp> is used.
</p>
</dd>
<dt><code>-nodefaultlibs</code></dt>
<dd><a name="index-nodefaultlibs"></a>
<p>Do not use the standard system libraries when linking.
Only the libraries you specify are passed to the linker, and options
specifying linkage of the system libraries, such as <samp>-static-libgcc</samp>
or <samp>-shared-libgcc</samp>, are ignored.
The standard startup files are used normally, unless <samp>-nostartfiles</samp>
is used.
</p>
<p>The compiler may generate calls to <code>memcmp</code>,
<code>memset</code>, <code>memcpy</code> and <code>memmove</code>.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
</p>
</dd>
<dt><code>-nostdlib</code></dt>
<dd><a name="index-nostdlib"></a>
<p>Do not use the standard system startup files or libraries when linking.
No startup files and only the libraries you specify are passed to
the linker, and options specifying linkage of the system libraries, such as
<samp>-static-libgcc</samp> or <samp>-shared-libgcc</samp>, are ignored.
</p>
<p>The compiler may generate calls to <code>memcmp</code>, <code>memset</code>,
<code>memcpy</code> and <code>memmove</code>.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
</p>
<a name="index-_002dlgcc_002c-use-with-_002dnostdlib"></a>
<a name="index-_002dnostdlib-and-unresolved-references"></a>
<a name="index-unresolved-references-and-_002dnostdlib"></a>
<a name="index-_002dlgcc_002c-use-with-_002dnodefaultlibs"></a>
<a name="index-_002dnodefaultlibs-and-unresolved-references"></a>
<a name="index-unresolved-references-and-_002dnodefaultlibs"></a>
<p>One of the standard libraries bypassed by <samp>-nostdlib</samp> and
<samp>-nodefaultlibs</samp> is <samp>libgcc.a</samp>, a library of internal subroutines
which GCC uses to overcome shortcomings of particular machines, or special
needs for some languages.
(See <a href="x86_64-linux-gnu-gccint-8.html#Interface">Interfacing to GCC Output</a> in <cite>GNU Compiler
Collection (GCC) Internals</cite>,
for more discussion of <samp>libgcc.a</samp>.)
In most cases, you need <samp>libgcc.a</samp> even when you want to avoid
other standard libraries. In other words, when you specify <samp>-nostdlib</samp>
or <samp>-nodefaultlibs</samp> you should usually specify <samp>-lgcc</samp> as well.
This ensures that you have no unresolved references to internal GCC
library subroutines.
(An example of such an internal subroutine is <code>__main</code>, used to ensure C++
constructors are called; see <a href="x86_64-linux-gnu-gccint-8.html#Collect2"><code>collect2</code></a> in <cite>GNU Compiler Collection (GCC) Internals</cite>.)
</p>
</dd>
<dt><code>-pie</code></dt>
<dd><a name="index-pie"></a>
<p>Produce a dynamically linked position independent executable on targets
that support it. For predictable results, you must also specify the same
set of options used for compilation (<samp>-fpie</samp>, <samp>-fPIE</samp>,
or model suboptions) when you specify this linker option.
</p>
</dd>
<dt><code>-no-pie</code></dt>
<dd><a name="index-no_002dpie"></a>
<p>Don’t produce a dynamically linked position independent executable.
</p>
</dd>
<dt><code>-static-pie</code></dt>
<dd><a name="index-static_002dpie"></a>
<p>Produce a static position independent executable on targets that support
it. A static position independent executable is similar to a static
executable, but can be loaded at any address without a dynamic linker.
For predictable results, you must also specify the same set of options
used for compilation (<samp>-fpie</samp>, <samp>-fPIE</samp>, or model
suboptions) when you specify this linker option.
</p>
</dd>
<dt><code>-pthread</code></dt>
<dd><a name="index-pthread-1"></a>
<p>Link with the POSIX threads library. This option is supported on
GNU/Linux targets, most other Unix derivatives, and also on
x86 Cygwin and MinGW targets. On some targets this option also sets
flags for the preprocessor, so it should be used consistently for both
compilation and linking.
</p>
</dd>
<dt><code>-rdynamic</code></dt>
<dd><a name="index-rdynamic"></a>
<p>Pass the flag <samp>-export-dynamic</samp> to the ELF linker, on targets
that support it. This instructs the linker to add all symbols, not
only used ones, to the dynamic symbol table. This option is needed
for some uses of <code>dlopen</code> or to allow obtaining backtraces
from within a program.
</p>
</dd>
<dt><code>-s</code></dt>
<dd><a name="index-s"></a>
<p>Remove all symbol table and relocation information from the executable.
</p>
</dd>
<dt><code>-static</code></dt>
<dd><a name="index-static"></a>
<p>On systems that support dynamic linking, this overrides <samp>-pie</samp>
and prevents linking with the shared libraries. On other systems, this
option has no effect.
</p>
</dd>
<dt><code>-shared</code></dt>
<dd><a name="index-shared"></a>
<p>Produce a shared object which can then be linked with other objects to
form an executable. Not all systems support this option. For predictable
results, you must also specify the same set of options used for compilation
(<samp>-fpic</samp>, <samp>-fPIC</samp>, or model suboptions) when
you specify this linker option.<a name="DOCF1" href="#FOOT1"><sup>1</sup></a>
</p>
</dd>
<dt><code>-shared-libgcc</code></dt>
<dt><code>-static-libgcc</code></dt>
<dd><a name="index-shared_002dlibgcc"></a>
<a name="index-static_002dlibgcc"></a>
<p>On systems that provide <samp>libgcc</samp> as a shared library, these options
force the use of either the shared or static version, respectively.
If no shared version of <samp>libgcc</samp> was built when the compiler was
configured, these options have no effect.
</p>
<p>There are several situations in which an application should use the
shared <samp>libgcc</samp> instead of the static version. The most common
of these is when the application wishes to throw and catch exceptions
across different shared libraries. In that case, each of the libraries
as well as the application itself should use the shared <samp>libgcc</samp>.
</p>
<p>Therefore, the G++ and driver automatically adds <samp>-shared-libgcc</samp>
whenever you build a shared library or a main executable, because C++
programs typically use exceptions, so this is the right thing to do.
</p>
<p>If, instead, you use the GCC driver to create shared libraries, you may
find that they are not always linked with the shared <samp>libgcc</samp>.
If GCC finds, at its configuration time, that you have a non-GNU linker
or a GNU linker that does not support option <samp>--eh-frame-hdr</samp>,
it links the shared version of <samp>libgcc</samp> into shared libraries
by default. Otherwise, it takes advantage of the linker and optimizes
away the linking with the shared version of <samp>libgcc</samp>, linking with
the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation
costs at library load time.
</p>
<p>However, if a library or main executable is supposed to throw or catch
exceptions, you must link it using the G++ driver, as appropriate
for the languages used in the program, or using the option
<samp>-shared-libgcc</samp>, such that it is linked with the shared
<samp>libgcc</samp>.
</p>
</dd>
<dt><code>-static-libasan</code></dt>
<dd><a name="index-static_002dlibasan"></a>
<p>When the <samp>-fsanitize=address</samp> option is used to link a program,
the GCC driver automatically links against <samp>libasan</samp>. If
<samp>libasan</samp> is available as a shared library, and the <samp>-static</samp>
option is not used, then this links against the shared version of
<samp>libasan</samp>. The <samp>-static-libasan</samp> option directs the GCC
driver to link <samp>libasan</samp> statically, without necessarily linking
other libraries statically.
</p>
</dd>
<dt><code>-static-libtsan</code></dt>
<dd><a name="index-static_002dlibtsan"></a>
<p>When the <samp>-fsanitize=thread</samp> option is used to link a program,
the GCC driver automatically links against <samp>libtsan</samp>. If
<samp>libtsan</samp> is available as a shared library, and the <samp>-static</samp>
option is not used, then this links against the shared version of
<samp>libtsan</samp>. The <samp>-static-libtsan</samp> option directs the GCC
driver to link <samp>libtsan</samp> statically, without necessarily linking
other libraries statically.
</p>
</dd>
<dt><code>-static-liblsan</code></dt>
<dd><a name="index-static_002dliblsan"></a>
<p>When the <samp>-fsanitize=leak</samp> option is used to link a program,
the GCC driver automatically links against <samp>liblsan</samp>. If
<samp>liblsan</samp> is available as a shared library, and the <samp>-static</samp>
option is not used, then this links against the shared version of
<samp>liblsan</samp>. The <samp>-static-liblsan</samp> option directs the GCC
driver to link <samp>liblsan</samp> statically, without necessarily linking
other libraries statically.
</p>
</dd>
<dt><code>-static-libubsan</code></dt>
<dd><a name="index-static_002dlibubsan"></a>
<p>When the <samp>-fsanitize=undefined</samp> option is used to link a program,
the GCC driver automatically links against <samp>libubsan</samp>. If
<samp>libubsan</samp> is available as a shared library, and the <samp>-static</samp>
option is not used, then this links against the shared version of
<samp>libubsan</samp>. The <samp>-static-libubsan</samp> option directs the GCC
driver to link <samp>libubsan</samp> statically, without necessarily linking
other libraries statically.
</p>
</dd>
<dt><code>-static-libmpx</code></dt>
<dd><a name="index-static_002dlibmpx"></a>
<p>When the <samp>-fcheck-pointer bounds</samp> and <samp>-mmpx</samp> options are
used to link a program, the GCC driver automatically links against
<samp>libmpx</samp>. If <samp>libmpx</samp> is available as a shared library,
and the <samp>-static</samp> option is not used, then this links against
the shared version of <samp>libmpx</samp>. The <samp>-static-libmpx</samp>
option directs the GCC driver to link <samp>libmpx</samp> statically,
without necessarily linking other libraries statically.
</p>
</dd>
<dt><code>-static-libmpxwrappers</code></dt>
<dd><a name="index-static_002dlibmpxwrappers"></a>
<p>When the <samp>-fcheck-pointer bounds</samp> and <samp>-mmpx</samp> options are used
to link a program without also using <samp>-fno-chkp-use-wrappers</samp>, the
GCC driver automatically links against <samp>libmpxwrappers</samp>. If
<samp>libmpxwrappers</samp> is available as a shared library, and the
<samp>-static</samp> option is not used, then this links against the shared
version of <samp>libmpxwrappers</samp>. The <samp>-static-libmpxwrappers</samp>
option directs the GCC driver to link <samp>libmpxwrappers</samp> statically,
without necessarily linking other libraries statically.
</p>
</dd>
<dt><code>-static-libstdc++</code></dt>
<dd><a name="index-static_002dlibstdc_002b_002b"></a>
<p>When the <code>g++</code> program is used to link a C++ program, it
normally automatically links against <samp>libstdc++</samp>. If
<samp>libstdc++</samp> is available as a shared library, and the
<samp>-static</samp> option is not used, then this links against the
shared version of <samp>libstdc++</samp>. That is normally fine. However, it
is sometimes useful to freeze the version of <samp>libstdc++</samp> used by
the program without going all the way to a fully static link. The
<samp>-static-libstdc++</samp> option directs the <code>g++</code> driver to
link <samp>libstdc++</samp> statically, without necessarily linking other
libraries statically.
</p>
</dd>
<dt><code>-symbolic</code></dt>
<dd><a name="index-symbolic"></a>
<p>Bind references to global symbols when building a shared object. Warn
about any unresolved references (unless overridden by the link editor
option <samp>-Xlinker -z -Xlinker defs</samp>). Only a few systems support
this option.
</p>
</dd>
<dt><code>-T <var>script</var></code></dt>
<dd><a name="index-T"></a>
<a name="index-linker-script"></a>
<p>Use <var>script</var> as the linker script. This option is supported by most
systems using the GNU linker. On some targets, such as bare-board
targets without an operating system, the <samp>-T</samp> option may be required
when linking to avoid references to undefined symbols.
</p>
</dd>
<dt><code>-Xlinker <var>option</var></code></dt>
<dd><a name="index-Xlinker"></a>
<p>Pass <var>option</var> as an option to the linker. You can use this to
supply system-specific linker options that GCC does not recognize.
</p>
<p>If you want to pass an option that takes a separate argument, you must use
<samp>-Xlinker</samp> twice, once for the option and once for the argument.
For example, to pass <samp>-assert definitions</samp>, you must write
<samp>-Xlinker -assert -Xlinker definitions</samp>. It does not work to write
<samp>-Xlinker "-assert definitions"</samp>, because this passes the entire
string as a single argument, which is not what the linker expects.
</p>
<p>When using the GNU linker, it is usually more convenient to pass
arguments to linker options using the <samp><var>option</var>=<var>value</var></samp>
syntax than as separate arguments. For example, you can specify
<samp>-Xlinker -Map=output.map</samp> rather than
<samp>-Xlinker -Map -Xlinker output.map</samp>. Other linkers may not support
this syntax for command-line options.
</p>
</dd>
<dt><code>-Wl,<var>option</var></code></dt>
<dd><a name="index-Wl"></a>
<p>Pass <var>option</var> as an option to the linker. If <var>option</var> contains
commas, it is split into multiple options at the commas. You can use this
syntax to pass an argument to the option.
For example, <samp>-Wl,-Map,output.map</samp> passes <samp>-Map output.map</samp> to the
linker. When using the GNU linker, you can also get the same effect with
<samp>-Wl,-Map=output.map</samp>.
</p>
<p>NOTE: In Ubuntu 8.10 and later versions, for LDFLAGS, the option
<samp>-Wl,-z,relro</samp> is used. To disable, use <samp>-Wl,-z,norelro</samp>.
</p>
</dd>
<dt><code>-u <var>symbol</var></code></dt>
<dd><a name="index-u"></a>
<p>Pretend the symbol <var>symbol</var> is undefined, to force linking of
library modules to define it. You can use <samp>-u</samp> multiple times with
different symbols to force loading of additional library modules.
</p>
</dd>
<dt><code>-z <var>keyword</var></code></dt>
<dd><a name="index-z"></a>
<p><samp>-z</samp> is passed directly on to the linker along with the keyword
<var>keyword</var>. See the section in the documentation of your linker for
permitted values and their meanings.
</p></dd>
</dl>
<hr>
<a name="Directory-Options"></a>
<div class="header">
<p>
Next: <a href="#Code-Gen-Options" accesskey="n" rel="next">Code Gen Options</a>, Previous: <a href="#Link-Options" accesskey="p" rel="prev">Link Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-for-Directory-Search"></a>
<h3 class="section">3.15 Options for Directory Search</h3>
<a name="index-directory-options"></a>
<a name="index-options_002c-directory-search"></a>
<a name="index-search-path"></a>
<p>These options specify directories to search for header files, for
libraries and for parts of the compiler:
</p>
<dl compact="compact">
<dt><code>-I <var>dir</var></code></dt>
<dt><code>-iquote <var>dir</var></code></dt>
<dt><code>-isystem <var>dir</var></code></dt>
<dt><code>-idirafter <var>dir</var></code></dt>
<dd><a name="index-I"></a>
<a name="index-iquote"></a>
<a name="index-isystem"></a>
<a name="index-idirafter"></a>
<p>Add the directory <var>dir</var> to the list of directories to be searched
for header files during preprocessing.
If <var>dir</var> begins with ‘<samp>=</samp>’ or <code>$SYSROOT</code>, then the ‘<samp>=</samp>’
or <code>$SYSROOT</code> is replaced by the sysroot prefix; see
<samp>--sysroot</samp> and <samp>-isysroot</samp>.
</p>
<p>Directories specified with <samp>-iquote</samp> apply only to the quote
form of the directive, <code>#include "<var>file</var>"<!-- /@w --></code>.
Directories specified with <samp>-I</samp>, <samp>-isystem</samp>,
or <samp>-idirafter</samp> apply to lookup for both the
<code>#include "<var>file</var>"<!-- /@w --></code> and
<code>#include <<var>file</var>><!-- /@w --></code> directives.
</p>
<p>You can specify any number or combination of these options on the
command line to search for header files in several directories.
The lookup order is as follows:
</p>
<ol>
<li> For the quote form of the include directive, the directory of the current
file is searched first.
</li><li> For the quote form of the include directive, the directories specified
by <samp>-iquote</samp> options are searched in left-to-right order,
as they appear on the command line.
</li><li> Directories specified with <samp>-I</samp> options are scanned in
left-to-right order.
</li><li> Directories specified with <samp>-isystem</samp> options are scanned in
left-to-right order.
</li><li> Standard system directories are scanned.
</li><li> Directories specified with <samp>-idirafter</samp> options are scanned in
left-to-right order.
</li></ol>
<p>You can use <samp>-I</samp> to override a system header
file, substituting your own version, since these directories are
searched before the standard system header file directories.
However, you should
not use this option to add directories that contain vendor-supplied
system header files; use <samp>-isystem</samp> for that.
</p>
<p>The <samp>-isystem</samp> and <samp>-idirafter</samp> options also mark the directory
as a system directory, so that it gets the same special treatment that
is applied to the standard system directories.
</p>
<p>If a standard system include directory, or a directory specified with
<samp>-isystem</samp>, is also specified with <samp>-I</samp>, the <samp>-I</samp>
option is ignored. The directory is still searched but as a
system directory at its normal position in the system include chain.
This is to ensure that GCC’s procedure to fix buggy system headers and
the ordering for the <code>#include_next</code> directive are not inadvertently
changed.
If you really need to change the search order for system directories,
use the <samp>-nostdinc</samp> and/or <samp>-isystem</samp> options.
</p>
</dd>
<dt><code>-I-</code></dt>
<dd><a name="index-I_002d"></a>
<p>Split the include path.
This option has been deprecated. Please use <samp>-iquote</samp> instead for
<samp>-I</samp> directories before the <samp>-I-</samp> and remove the <samp>-I-</samp>
option.
</p>
<p>Any directories specified with <samp>-I</samp>
options before <samp>-I-</samp> are searched only for headers requested with
<code>#include "<var>file</var>"<!-- /@w --></code>; they are not searched for
<code>#include <<var>file</var>><!-- /@w --></code>. If additional directories are
specified with <samp>-I</samp> options after the <samp>-I-</samp>, those
directories are searched for all ‘<samp>#include</samp>’ directives.
</p>
<p>In addition, <samp>-I-</samp> inhibits the use of the directory of the current
file directory as the first search directory for <code>#include "<var>file</var>"<!-- /@w --></code>. There is no way to override this effect of <samp>-I-</samp>.
</p>
</dd>
<dt><code>-iprefix <var>prefix</var></code></dt>
<dd><a name="index-iprefix"></a>
<p>Specify <var>prefix</var> as the prefix for subsequent <samp>-iwithprefix</samp>
options. If the prefix represents a directory, you should include the
final ‘<samp>/</samp>’.
</p>
</dd>
<dt><code>-iwithprefix <var>dir</var></code></dt>
<dt><code>-iwithprefixbefore <var>dir</var></code></dt>
<dd><a name="index-iwithprefix"></a>
<a name="index-iwithprefixbefore"></a>
<p>Append <var>dir</var> to the prefix specified previously with
<samp>-iprefix</samp>, and add the resulting directory to the include search
path. <samp>-iwithprefixbefore</samp> puts it in the same place <samp>-I</samp>
would; <samp>-iwithprefix</samp> puts it where <samp>-idirafter</samp> would.
</p>
</dd>
<dt><code>-isysroot <var>dir</var></code></dt>
<dd><a name="index-isysroot"></a>
<p>This option is like the <samp>--sysroot</samp> option, but applies only to
header files (except for Darwin targets, where it applies to both header
files and libraries). See the <samp>--sysroot</samp> option for more
information.
</p>
</dd>
<dt><code>-imultilib <var>dir</var></code></dt>
<dd><a name="index-imultilib"></a>
<p>Use <var>dir</var> as a subdirectory of the directory containing
target-specific C++ headers.
</p>
</dd>
<dt><code>-nostdinc</code></dt>
<dd><a name="index-nostdinc"></a>
<p>Do not search the standard system directories for header files.
Only the directories explicitly specified with <samp>-I</samp>,
<samp>-iquote</samp>, <samp>-isystem</samp>, and/or <samp>-idirafter</samp>
options (and the directory of the current file, if appropriate)
are searched.
</p>
</dd>
<dt><code>-nostdinc++</code></dt>
<dd><a name="index-nostdinc_002b_002b-1"></a>
<p>Do not search for header files in the C++-specific standard directories,
but do still search the other standard directories. (This option is
used when building the C++ library.)
</p>
</dd>
<dt><code>-iplugindir=<var>dir</var></code></dt>
<dd><a name="index-iplugindir_003d"></a>
<p>Set the directory to search for plugins that are passed
by <samp>-fplugin=<var>name</var></samp> instead of
<samp>-fplugin=<var>path</var>/<var>name</var>.so</samp>. This option is not meant
to be used by the user, but only passed by the driver.
</p>
</dd>
<dt><code>-L<var>dir</var></code></dt>
<dd><a name="index-L"></a>
<p>Add directory <var>dir</var> to the list of directories to be searched
for <samp>-l</samp>.
</p>
</dd>
<dt><code>-B<var>prefix</var></code></dt>
<dd><a name="index-B"></a>
<p>This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.
</p>
<p>The compiler driver program runs one or more of the subprograms
<code>cpp</code>, <code>cc1</code>, <code>as</code> and <code>ld</code>. It tries
<var>prefix</var> as a prefix for each program it tries to run, both with and
without ‘<samp><var>machine</var>/<var>version</var>/</samp>’ for the corresponding target
machine and compiler version.
</p>
<p>For each subprogram to be run, the compiler driver first tries the
<samp>-B</samp> prefix, if any. If that name is not found, or if <samp>-B</samp>
is not specified, the driver tries two standard prefixes,
<samp>/usr/lib/gcc/</samp> and <samp>/usr/local/lib/gcc/</samp>. If neither of
those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your
<code>PATH</code> environment variable.
</p>
<p>The compiler checks to see if the path provided by <samp>-B</samp>
refers to a directory, and if necessary it adds a directory
separator character at the end of the path.
</p>
<p><samp>-B</samp> prefixes that effectively specify directory names also apply
to libraries in the linker, because the compiler translates these
options into <samp>-L</samp> options for the linker. They also apply to
include files in the preprocessor, because the compiler translates these
options into <samp>-isystem</samp> options for the preprocessor. In this case,
the compiler appends ‘<samp>include</samp>’ to the prefix.
</p>
<p>The runtime support file <samp>libgcc.a</samp> can also be searched for using
the <samp>-B</samp> prefix, if needed. If it is not found there, the two
standard prefixes above are tried, and that is all. The file is left
out of the link if it is not found by those means.
</p>
<p>Another way to specify a prefix much like the <samp>-B</samp> prefix is to use
the environment variable <code>GCC_EXEC_PREFIX</code>. See <a href="#Environment-Variables">Environment Variables</a>.
</p>
<p>As a special kludge, if the path provided by <samp>-B</samp> is
<samp>[dir/]stage<var>N</var>/</samp>, where <var>N</var> is a number in the range 0 to
9, then it is replaced by <samp>[dir/]include</samp>. This is to help
with boot-strapping the compiler.
</p>
</dd>
<dt><code>-no-canonical-prefixes</code></dt>
<dd><a name="index-no_002dcanonical_002dprefixes"></a>
<p>Do not expand any symbolic links, resolve references to ‘<samp>/../</samp>’
or ‘<samp>/./</samp>’, or make the path absolute when generating a relative
prefix.
</p>
</dd>
<dt><code>--sysroot=<var>dir</var></code></dt>
<dd><a name="index-sysroot"></a>
<p>Use <var>dir</var> as the logical root directory for headers and libraries.
For example, if the compiler normally searches for headers in
<samp>/usr/include</samp> and libraries in <samp>/usr/lib</samp>, it instead
searches <samp><var>dir</var>/usr/include</samp> and <samp><var>dir</var>/usr/lib</samp>.
</p>
<p>If you use both this option and the <samp>-isysroot</samp> option, then
the <samp>--sysroot</samp> option applies to libraries, but the
<samp>-isysroot</samp> option applies to header files.
</p>
<p>The GNU linker (beginning with version 2.16) has the necessary support
for this option. If your linker does not support this option, the
header file aspect of <samp>--sysroot</samp> still works, but the
library aspect does not.
</p>
</dd>
<dt><code>--no-sysroot-suffix</code></dt>
<dd><a name="index-no_002dsysroot_002dsuffix"></a>
<p>For some targets, a suffix is added to the root directory specified
with <samp>--sysroot</samp>, depending on the other options used, so that
headers may for example be found in
<samp><var>dir</var>/<var>suffix</var>/usr/include</samp> instead of
<samp><var>dir</var>/usr/include</samp>. This option disables the addition of
such a suffix.
</p>
</dd>
</dl>
<hr>
<a name="Code-Gen-Options"></a>
<div class="header">
<p>
Next: <a href="#Developer-Options" accesskey="n" rel="next">Developer Options</a>, Previous: <a href="#Directory-Options" accesskey="p" rel="prev">Directory Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-for-Code-Generation-Conventions"></a>
<h3 class="section">3.16 Options for Code Generation Conventions</h3>
<a name="index-code-generation-conventions"></a>
<a name="index-options_002c-code-generation"></a>
<a name="index-run_002dtime-options"></a>
<p>These machine-independent options control the interface conventions
used in code generation.
</p>
<p>Most of them have both positive and negative forms; the negative form
of <samp>-ffoo</samp> is <samp>-fno-foo</samp>. In the table below, only
one of the forms is listed—the one that is not the default. You
can figure out the other form by either removing ‘<samp>no-</samp>’ or adding
it.
</p>
<dl compact="compact">
<dt><code>-fstack-reuse=<var>reuse-level</var></code></dt>
<dd><a name="index-fstack_005freuse"></a>
<p>This option controls stack space reuse for user declared local/auto variables
and compiler generated temporaries. <var>reuse_level</var> can be ‘<samp>all</samp>’,
‘<samp>named_vars</samp>’, or ‘<samp>none</samp>’. ‘<samp>all</samp>’ enables stack reuse for all
local variables and temporaries, ‘<samp>named_vars</samp>’ enables the reuse only for
user defined local variables with names, and ‘<samp>none</samp>’ disables stack reuse
completely. The default value is ‘<samp>all</samp>’. The option is needed when the
program extends the lifetime of a scoped local variable or a compiler generated
temporary beyond the end point defined by the language. When a lifetime of
a variable ends, and if the variable lives in memory, the optimizing compiler
has the freedom to reuse its stack space with other temporaries or scoped
local variables whose live range does not overlap with it. Legacy code extending
local lifetime is likely to break with the stack reuse optimization.
</p>
<p>For example,
</p>
<div class="smallexample">
<pre class="smallexample"> int *p;
{
int local1;
p = &local1;
local1 = 10;
....
}
{
int local2;
local2 = 20;
...
}
if (*p == 10) // out of scope use of local1
{
}
</pre></div>
<p>Another example:
</p><div class="smallexample">
<pre class="smallexample">
struct A
{
A(int k) : i(k), j(k) { }
int i;
int j;
};
A *ap;
void foo(const A& ar)
{
ap = &ar;
}
void bar()
{
foo(A(10)); // temp object's lifetime ends when foo returns
{
A a(20);
....
}
ap->i+= 10; // ap references out of scope temp whose space
// is reused with a. What is the value of ap->i?
}
</pre></div>
<p>The lifetime of a compiler generated temporary is well defined by the C++
standard. When a lifetime of a temporary ends, and if the temporary lives
in memory, the optimizing compiler has the freedom to reuse its stack
space with other temporaries or scoped local variables whose live range
does not overlap with it. However some of the legacy code relies on
the behavior of older compilers in which temporaries’ stack space is
not reused, the aggressive stack reuse can lead to runtime errors. This
option is used to control the temporary stack reuse optimization.
</p>
</dd>
<dt><code>-ftrapv</code></dt>
<dd><a name="index-ftrapv"></a>
<p>This option generates traps for signed overflow on addition, subtraction,
multiplication operations.
The options <samp>-ftrapv</samp> and <samp>-fwrapv</samp> override each other, so using
<samp>-ftrapv</samp> <samp>-fwrapv</samp> on the command-line results in
<samp>-fwrapv</samp> being effective. Note that only active options override, so
using <samp>-ftrapv</samp> <samp>-fwrapv</samp> <samp>-fno-wrapv</samp> on the command-line
results in <samp>-ftrapv</samp> being effective.
</p>
</dd>
<dt><code>-fwrapv</code></dt>
<dd><a name="index-fwrapv"></a>
<p>This option instructs the compiler to assume that signed arithmetic
overflow of addition, subtraction and multiplication wraps around
using twos-complement representation. This flag enables some optimizations
and disables others.
The options <samp>-ftrapv</samp> and <samp>-fwrapv</samp> override each other, so using
<samp>-ftrapv</samp> <samp>-fwrapv</samp> on the command-line results in
<samp>-fwrapv</samp> being effective. Note that only active options override, so
using <samp>-ftrapv</samp> <samp>-fwrapv</samp> <samp>-fno-wrapv</samp> on the command-line
results in <samp>-ftrapv</samp> being effective.
</p>
</dd>
<dt><code>-fwrapv-pointer</code></dt>
<dd><a name="index-fwrapv_002dpointer"></a>
<p>This option instructs the compiler to assume that pointer arithmetic
overflow on addition and subtraction wraps around using twos-complement
representation. This flag disables some optimizations which assume
pointer overflow is invalid.
</p>
</dd>
<dt><code>-fstrict-overflow</code></dt>
<dd><a name="index-fstrict_002doverflow"></a>
<p>This option implies <samp>-fno-wrapv</samp> <samp>-fno-wrapv-pointer</samp> and when
negated implies <samp>-fwrapv</samp> <samp>-fwrapv-pointer</samp>.
</p>
</dd>
<dt><code>-fexceptions</code></dt>
<dd><a name="index-fexceptions"></a>
<p>Enable exception handling. Generates extra code needed to propagate
exceptions. For some targets, this implies GCC generates frame
unwind information for all functions, which can produce significant data
size overhead, although it does not affect execution. If you do not
specify this option, GCC enables it by default for languages like
C++ that normally require exception handling, and disables it for
languages like C that do not normally require it. However, you may need
to enable this option when compiling C code that needs to interoperate
properly with exception handlers written in C++. You may also wish to
disable this option if you are compiling older C++ programs that don’t
use exception handling.
</p>
</dd>
<dt><code>-fnon-call-exceptions</code></dt>
<dd><a name="index-fnon_002dcall_002dexceptions"></a>
<p>Generate code that allows trapping instructions to throw exceptions.
Note that this requires platform-specific runtime support that does
not exist everywhere. Moreover, it only allows <em>trapping</em>
instructions to throw exceptions, i.e. memory references or floating-point
instructions. It does not allow exceptions to be thrown from
arbitrary signal handlers such as <code>SIGALRM</code>.
</p>
</dd>
<dt><code>-fdelete-dead-exceptions</code></dt>
<dd><a name="index-fdelete_002ddead_002dexceptions"></a>
<p>Consider that instructions that may throw exceptions but don’t otherwise
contribute to the execution of the program can be optimized away.
This option is enabled by default for the Ada front end, as permitted by
the Ada language specification.
Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
</p>
</dd>
<dt><code>-funwind-tables</code></dt>
<dd><a name="index-funwind_002dtables"></a>
<p>Similar to <samp>-fexceptions</samp>, except that it just generates any needed
static data, but does not affect the generated code in any other way.
You normally do not need to enable this option; instead, a language processor
that needs this handling enables it on your behalf.
</p>
</dd>
<dt><code>-fasynchronous-unwind-tables</code></dt>
<dd><a name="index-fasynchronous_002dunwind_002dtables"></a>
<p>Generate unwind table in DWARF format, if supported by target machine. The
table is exact at each instruction boundary, so it can be used for stack
unwinding from asynchronous events (such as debugger or garbage collector).
</p>
</dd>
<dt><code>-fno-gnu-unique</code></dt>
<dd><a name="index-fno_002dgnu_002dunique"></a>
<p>On systems with recent GNU assembler and C library, the C++ compiler
uses the <code>STB_GNU_UNIQUE</code> binding to make sure that definitions
of template static data members and static local variables in inline
functions are unique even in the presence of <code>RTLD_LOCAL</code>; this
is necessary to avoid problems with a library used by two different
<code>RTLD_LOCAL</code> plugins depending on a definition in one of them and
therefore disagreeing with the other one about the binding of the
symbol. But this causes <code>dlclose</code> to be ignored for affected
DSOs; if your program relies on reinitialization of a DSO via
<code>dlclose</code> and <code>dlopen</code>, you can use
<samp>-fno-gnu-unique</samp>.
</p>
</dd>
<dt><code>-fpcc-struct-return</code></dt>
<dd><a name="index-fpcc_002dstruct_002dreturn"></a>
<p>Return “short” <code>struct</code> and <code>union</code> values in memory like
longer ones, rather than in registers. This convention is less
efficient, but it has the advantage of allowing intercallability between
GCC-compiled files and files compiled with other compilers, particularly
the Portable C Compiler (pcc).
</p>
<p>The precise convention for returning structures in memory depends
on the target configuration macros.
</p>
<p>Short structures and unions are those whose size and alignment match
that of some integer type.
</p>
<p><strong>Warning:</strong> code compiled with the <samp>-fpcc-struct-return</samp>
switch is not binary compatible with code compiled with the
<samp>-freg-struct-return</samp> switch.
Use it to conform to a non-default application binary interface.
</p>
</dd>
<dt><code>-freg-struct-return</code></dt>
<dd><a name="index-freg_002dstruct_002dreturn"></a>
<p>Return <code>struct</code> and <code>union</code> values in registers when possible.
This is more efficient for small structures than
<samp>-fpcc-struct-return</samp>.
</p>
<p>If you specify neither <samp>-fpcc-struct-return</samp> nor
<samp>-freg-struct-return</samp>, GCC defaults to whichever convention is
standard for the target. If there is no standard convention, GCC
defaults to <samp>-fpcc-struct-return</samp>, except on targets where GCC is
the principal compiler. In those cases, we can choose the standard, and
we chose the more efficient register return alternative.
</p>
<p><strong>Warning:</strong> code compiled with the <samp>-freg-struct-return</samp>
switch is not binary compatible with code compiled with the
<samp>-fpcc-struct-return</samp> switch.
Use it to conform to a non-default application binary interface.
</p>
</dd>
<dt><code>-fshort-enums</code></dt>
<dd><a name="index-fshort_002denums"></a>
<p>Allocate to an <code>enum</code> type only as many bytes as it needs for the
declared range of possible values. Specifically, the <code>enum</code> type
is equivalent to the smallest integer type that has enough room.
</p>
<p><strong>Warning:</strong> the <samp>-fshort-enums</samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
</p>
</dd>
<dt><code>-fshort-wchar</code></dt>
<dd><a name="index-fshort_002dwchar"></a>
<p>Override the underlying type for <code>wchar_t</code> to be <code>short
unsigned int</code> instead of the default for the target. This option is
useful for building programs to run under WINE.
</p>
<p><strong>Warning:</strong> the <samp>-fshort-wchar</samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
</p>
</dd>
<dt><code>-fno-common</code></dt>
<dd><a name="index-fno_002dcommon"></a>
<a name="index-tentative-definitions"></a>
<p>In C code, this option controls the placement of global variables
defined without an initializer, known as <em>tentative definitions</em>
in the C standard. Tentative definitions are distinct from declarations
of a variable with the <code>extern</code> keyword, which do not allocate storage.
</p>
<p>Unix C compilers have traditionally allocated storage for
uninitialized global variables in a common block. This allows the
linker to resolve all tentative definitions of the same variable
in different compilation units to the same object, or to a non-tentative
definition.
This is the behavior specified by <samp>-fcommon</samp>, and is the default for
GCC on most targets.
On the other hand, this behavior is not required by ISO
C, and on some targets may carry a speed or code size penalty on
variable references.
</p>
<p>The <samp>-fno-common</samp> option specifies that the compiler should instead
place uninitialized global variables in the data section of the object file.
This inhibits the merging of tentative definitions by the linker so
you get a multiple-definition error if the same
variable is defined in more than one compilation unit.
Compiling with <samp>-fno-common</samp> is useful on targets for which
it provides better performance, or if you wish to verify that the
program will work on other systems that always treat uninitialized
variable definitions this way.
</p>
</dd>
<dt><code>-fno-ident</code></dt>
<dd><a name="index-fno_002dident"></a>
<p>Ignore the <code>#ident</code> directive.
</p>
</dd>
<dt><code>-finhibit-size-directive</code></dt>
<dd><a name="index-finhibit_002dsize_002ddirective"></a>
<p>Don’t output a <code>.size</code> assembler directive, or anything else that
would cause trouble if the function is split in the middle, and the
two halves are placed at locations far apart in memory. This option is
used when compiling <samp>crtstuff.c</samp>; you should not need to use it
for anything else.
</p>
</dd>
<dt><code>-fverbose-asm</code></dt>
<dd><a name="index-fverbose_002dasm"></a>
<p>Put extra commentary information in the generated assembly code to
make it more readable. This option is generally only of use to those
who actually need to read the generated assembly code (perhaps while
debugging the compiler itself).
</p>
<p><samp>-fno-verbose-asm</samp>, the default, causes the
extra information to be omitted and is useful when comparing two assembler
files.
</p>
<p>The added comments include:
</p>
<ul>
<li> information on the compiler version and command-line options,
</li><li> the source code lines associated with the assembly instructions,
in the form FILENAME:LINENUMBER:CONTENT OF LINE,
</li><li> hints on which high-level expressions correspond to
the various assembly instruction operands.
</li></ul>
<p>For example, given this C source file:
</p>
<div class="smallexample">
<pre class="smallexample">int test (int n)
{
int i;
int total = 0;
for (i = 0; i < n; i++)
total += i * i;
return total;
}
</pre></div>
<p>compiling to (x86_64) assembly via <samp>-S</samp> and emitting the result
direct to stdout via <samp>-o</samp> <samp>-</samp>
</p>
<div class="smallexample">
<pre class="smallexample">gcc -S test.c -fverbose-asm -Os -o -
</pre></div>
<p>gives output similar to this:
</p>
<div class="smallexample">
<pre class="smallexample"> .file "test.c"
# GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
[...snip...]
# options passed:
[...snip...]
.text
.globl test
.type test, @function
test:
.LFB0:
.cfi_startproc
# test.c:4: int total = 0;
xorl %eax, %eax # <retval>
# test.c:6: for (i = 0; i < n; i++)
xorl %edx, %edx # i
.L2:
# test.c:6: for (i = 0; i < n; i++)
cmpl %edi, %edx # n, i
jge .L5 #,
# test.c:7: total += i * i;
movl %edx, %ecx # i, tmp92
imull %edx, %ecx # i, tmp92
# test.c:6: for (i = 0; i < n; i++)
incl %edx # i
# test.c:7: total += i * i;
addl %ecx, %eax # tmp92, <retval>
jmp .L2 #
.L5:
# test.c:10: }
ret
.cfi_endproc
.LFE0:
.size test, .-test
.ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
.section .note.GNU-stack,"",@progbits
</pre></div>
<p>The comments are intended for humans rather than machines and hence the
precise format of the comments is subject to change.
</p>
</dd>
<dt><code>-frecord-gcc-switches</code></dt>
<dd><a name="index-frecord_002dgcc_002dswitches"></a>
<p>This switch causes the command line used to invoke the
compiler to be recorded into the object file that is being created.
This switch is only implemented on some targets and the exact format
of the recording is target and binary file format dependent, but it
usually takes the form of a section containing ASCII text. This
switch is related to the <samp>-fverbose-asm</samp> switch, but that
switch only records information in the assembler output file as
comments, so it never reaches the object file.
See also <samp>-grecord-gcc-switches</samp> for another
way of storing compiler options into the object file.
</p>
</dd>
<dt><code>-fpic</code></dt>
<dd><a name="index-fpic"></a>
<a name="index-global-offset-table"></a>
<a name="index-PIC"></a>
<p>Generate position-independent code (PIC) suitable for use in a shared
library, if supported for the target machine. Such code accesses all
constant addresses through a global offset table (GOT). The dynamic
loader resolves the GOT entries when the program starts (the dynamic
loader is not part of GCC; it is part of the operating system). If
the GOT size for the linked executable exceeds a machine-specific
maximum size, you get an error message from the linker indicating that
<samp>-fpic</samp> does not work; in that case, recompile with <samp>-fPIC</samp>
instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
on the m68k and RS/6000. The x86 has no such limit.)
</p>
<p>Position-independent code requires special support, and therefore works
only on certain machines. For the x86, GCC supports PIC for System V
but not for the Sun 386i. Code generated for the IBM RS/6000 is always
position-independent.
</p>
<p>When this flag is set, the macros <code>__pic__</code> and <code>__PIC__</code>
are defined to 1.
</p>
</dd>
<dt><code>-fPIC</code></dt>
<dd><a name="index-fPIC"></a>
<p>If supported for the target machine, emit position-independent code,
suitable for dynamic linking and avoiding any limit on the size of the
global offset table. This option makes a difference on AArch64, m68k,
PowerPC and SPARC.
</p>
<p>Position-independent code requires special support, and therefore works
only on certain machines.
</p>
<p>When this flag is set, the macros <code>__pic__</code> and <code>__PIC__</code>
are defined to 2.
</p>
</dd>
<dt><code>-fpie</code></dt>
<dt><code>-fPIE</code></dt>
<dd><a name="index-fpie"></a>
<a name="index-fPIE"></a>
<p>These options are similar to <samp>-fpic</samp> and <samp>-fPIC</samp>, but
generated position independent code can be only linked into executables.
Usually these options are used when <samp>-pie</samp> GCC option is
used during linking.
</p>
<p><samp>-fpie</samp> and <samp>-fPIE</samp> both define the macros
<code>__pie__</code> and <code>__PIE__</code>. The macros have the value 1
for <samp>-fpie</samp> and 2 for <samp>-fPIE</samp>.
</p>
</dd>
<dt><code>-fno-plt</code></dt>
<dd><a name="index-fno_002dplt"></a>
<p>Do not use the PLT for external function calls in position-independent code.
Instead, load the callee address at call sites from the GOT and branch to it.
This leads to more efficient code by eliminating PLT stubs and exposing
GOT loads to optimizations. On architectures such as 32-bit x86 where
PLT stubs expect the GOT pointer in a specific register, this gives more
register allocation freedom to the compiler.
Lazy binding requires use of the PLT;
with <samp>-fno-plt</samp> all external symbols are resolved at load time.
</p>
<p>Alternatively, the function attribute <code>noplt</code> can be used to avoid calls
through the PLT for specific external functions.
</p>
<p>In position-dependent code, a few targets also convert calls to
functions that are marked to not use the PLT to use the GOT instead.
</p>
</dd>
<dt><code>-fno-jump-tables</code></dt>
<dd><a name="index-fno_002djump_002dtables"></a>
<p>Do not use jump tables for switch statements even where it would be
more efficient than other code generation strategies. This option is
of use in conjunction with <samp>-fpic</samp> or <samp>-fPIC</samp> for
building code that forms part of a dynamic linker and cannot
reference the address of a jump table. On some targets, jump tables
do not require a GOT and this option is not needed.
</p>
</dd>
<dt><code>-ffixed-<var>reg</var></code></dt>
<dd><a name="index-ffixed"></a>
<p>Treat the register named <var>reg</var> as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame
pointer or in some other fixed role).
</p>
<p><var>reg</var> must be the name of a register. The register names accepted
are machine-specific and are defined in the <code>REGISTER_NAMES</code>
macro in the machine description macro file.
</p>
<p>This flag does not have a negative form, because it specifies a
three-way choice.
</p>
</dd>
<dt><code>-fcall-used-<var>reg</var></code></dt>
<dd><a name="index-fcall_002dused"></a>
<p>Treat the register named <var>reg</var> as an allocable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
do not save and restore the register <var>reg</var>.
</p>
<p>It is an error to use this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine’s execution model produces disastrous results.
</p>
<p>This flag does not have a negative form, because it specifies a
three-way choice.
</p>
</dd>
<dt><code>-fcall-saved-<var>reg</var></code></dt>
<dd><a name="index-fcall_002dsaved"></a>
<p>Treat the register named <var>reg</var> as an allocable register saved by
functions. It may be allocated even for temporaries or variables that
live across a call. Functions compiled this way save and restore
the register <var>reg</var> if they use it.
</p>
<p>It is an error to use this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine’s execution model produces disastrous results.
</p>
<p>A different sort of disaster results from the use of this flag for
a register in which function values may be returned.
</p>
<p>This flag does not have a negative form, because it specifies a
three-way choice.
</p>
</dd>
<dt><code>-fpack-struct[=<var>n</var>]</code></dt>
<dd><a name="index-fpack_002dstruct"></a>
<p>Without a value specified, pack all structure members together without
holes. When a value is specified (which must be a small power of two), pack
structure members according to this value, representing the maximum
alignment (that is, objects with default alignment requirements larger than
this are output potentially unaligned at the next fitting location.
</p>
<p><strong>Warning:</strong> the <samp>-fpack-struct</samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Additionally, it makes the code suboptimal.
Use it to conform to a non-default application binary interface.
</p>
</dd>
<dt><code>-fleading-underscore</code></dt>
<dd><a name="index-fleading_002dunderscore"></a>
<p>This option and its counterpart, <samp>-fno-leading-underscore</samp>, forcibly
change the way C symbols are represented in the object file. One use
is to help link with legacy assembly code.
</p>
<p><strong>Warning:</strong> the <samp>-fleading-underscore</samp> switch causes GCC to
generate code that is not binary compatible with code generated without that
switch. Use it to conform to a non-default application binary interface.
Not all targets provide complete support for this switch.
</p>
</dd>
<dt><code>-ftls-model=<var>model</var></code></dt>
<dd><a name="index-ftls_002dmodel"></a>
<p>Alter the thread-local storage model to be used (see <a href="#Thread_002dLocal">Thread-Local</a>).
The <var>model</var> argument should be one of ‘<samp>global-dynamic</samp>’,
‘<samp>local-dynamic</samp>’, ‘<samp>initial-exec</samp>’ or ‘<samp>local-exec</samp>’.
Note that the choice is subject to optimization: the compiler may use
a more efficient model for symbols not visible outside of the translation
unit, or if <samp>-fpic</samp> is not given on the command line.
</p>
<p>The default without <samp>-fpic</samp> is ‘<samp>initial-exec</samp>’; with
<samp>-fpic</samp> the default is ‘<samp>global-dynamic</samp>’.
</p>
</dd>
<dt><code>-ftrampolines</code></dt>
<dd><a name="index-ftrampolines"></a>
<p>For targets that normally need trampolines for nested functions, always
generate them instead of using descriptors. Otherwise, for targets that
do not need them, like for example HP-PA or IA-64, do nothing.
</p>
<p>A trampoline is a small piece of code that is created at run time on the
stack when the address of a nested function is taken, and is used to call
the nested function indirectly. Therefore, it requires the stack to be
made executable in order for the program to work properly.
</p>
<p><samp>-fno-trampolines</samp> is enabled by default on a language by language
basis to let the compiler avoid generating them, if it computes that this
is safe, and replace them with descriptors. Descriptors are made up of data
only, but the generated code must be prepared to deal with them. As of this
writing, <samp>-fno-trampolines</samp> is enabled by default only for Ada.
</p>
<p>Moreover, code compiled with <samp>-ftrampolines</samp> and code compiled with
<samp>-fno-trampolines</samp> are not binary compatible if nested functions are
present. This option must therefore be used on a program-wide basis and be
manipulated with extreme care.
</p>
</dd>
<dt><code>-fvisibility=<span class="roman">[</span>default<span class="roman">|</span>internal<span class="roman">|</span>hidden<span class="roman">|</span>protected<span class="roman">]</span></code></dt>
<dd><a name="index-fvisibility"></a>
<p>Set the default ELF image symbol visibility to the specified option—all
symbols are marked with this unless overridden within the code.
Using this feature can very substantially improve linking and
load times of shared object libraries, produce more optimized
code, provide near-perfect API export and prevent symbol clashes.
It is <strong>strongly</strong> recommended that you use this in any shared objects
you distribute.
</p>
<p>Despite the nomenclature, ‘<samp>default</samp>’ always means public; i.e.,
available to be linked against from outside the shared object.
‘<samp>protected</samp>’ and ‘<samp>internal</samp>’ are pretty useless in real-world
usage so the only other commonly used option is ‘<samp>hidden</samp>’.
The default if <samp>-fvisibility</samp> isn’t specified is
‘<samp>default</samp>’, i.e., make every symbol public.
</p>
<p>A good explanation of the benefits offered by ensuring ELF
symbols have the correct visibility is given by “How To Write
Shared Libraries” by Ulrich Drepper (which can be found at
<a href="https://www.akkadia.org/drepper/">https://www.akkadia.org/drepper/</a><!-- /@w -->)—however a superior
solution made possible by this option to marking things hidden when
the default is public is to make the default hidden and mark things
public. This is the norm with DLLs on Windows and with <samp>-fvisibility=hidden</samp>
and <code>__attribute__ ((visibility("default")))</code> instead of
<code>__declspec(dllexport)</code> you get almost identical semantics with
identical syntax. This is a great boon to those working with
cross-platform projects.
</p>
<p>For those adding visibility support to existing code, you may find
<code>#pragma GCC visibility</code> of use. This works by you enclosing
the declarations you wish to set visibility for with (for example)
<code>#pragma GCC visibility push(hidden)</code> and
<code>#pragma GCC visibility pop</code>.
Bear in mind that symbol visibility should be viewed <strong>as
part of the API interface contract</strong> and thus all new code should
always specify visibility when it is not the default; i.e., declarations
only for use within the local DSO should <strong>always</strong> be marked explicitly
as hidden as so to avoid PLT indirection overheads—making this
abundantly clear also aids readability and self-documentation of the code.
Note that due to ISO C++ specification requirements, <code>operator new</code> and
<code>operator delete</code> must always be of default visibility.
</p>
<p>Be aware that headers from outside your project, in particular system
headers and headers from any other library you use, may not be
expecting to be compiled with visibility other than the default. You
may need to explicitly say <code>#pragma GCC visibility push(default)</code>
before including any such headers.
</p>
<p><code>extern</code> declarations are not affected by <samp>-fvisibility</samp>, so
a lot of code can be recompiled with <samp>-fvisibility=hidden</samp> with
no modifications. However, this means that calls to <code>extern</code>
functions with no explicit visibility use the PLT, so it is more
effective to use <code>__attribute ((visibility))</code> and/or
<code>#pragma GCC visibility</code> to tell the compiler which <code>extern</code>
declarations should be treated as hidden.
</p>
<p>Note that <samp>-fvisibility</samp> does affect C++ vague linkage
entities. This means that, for instance, an exception class that is
be thrown between DSOs must be explicitly marked with default
visibility so that the ‘<samp>type_info</samp>’ nodes are unified between
the DSOs.
</p>
<p>An overview of these techniques, their benefits and how to use them
is at <a href="http://gcc.gnu.org/wiki/Visibility">http://gcc.gnu.org/wiki/Visibility</a>.
</p>
</dd>
<dt><code>-fstrict-volatile-bitfields</code></dt>
<dd><a name="index-fstrict_002dvolatile_002dbitfields"></a>
<p>This option should be used if accesses to volatile bit-fields (or other
structure fields, although the compiler usually honors those types
anyway) should use a single access of the width of the
field’s type, aligned to a natural alignment if possible. For
example, targets with memory-mapped peripheral registers might require
all such accesses to be 16 bits wide; with this flag you can
declare all peripheral bit-fields as <code>unsigned short</code> (assuming short
is 16 bits on these targets) to force GCC to use 16-bit accesses
instead of, perhaps, a more efficient 32-bit access.
</p>
<p>If this option is disabled, the compiler uses the most efficient
instruction. In the previous example, that might be a 32-bit load
instruction, even though that accesses bytes that do not contain
any portion of the bit-field, or memory-mapped registers unrelated to
the one being updated.
</p>
<p>In some cases, such as when the <code>packed</code> attribute is applied to a
structure field, it may not be possible to access the field with a single
read or write that is correctly aligned for the target machine. In this
case GCC falls back to generating multiple accesses rather than code that
will fault or truncate the result at run time.
</p>
<p>Note: Due to restrictions of the C/C++11 memory model, write accesses are
not allowed to touch non bit-field members. It is therefore recommended
to define all bits of the field’s type as bit-field members.
</p>
<p>The default value of this option is determined by the application binary
interface for the target processor.
</p>
</dd>
<dt><code>-fsync-libcalls</code></dt>
<dd><a name="index-fsync_002dlibcalls"></a>
<p>This option controls whether any out-of-line instance of the <code>__sync</code>
family of functions may be used to implement the C++11 <code>__atomic</code>
family of functions.
</p>
<p>The default value of this option is enabled, thus the only useful form
of the option is <samp>-fno-sync-libcalls</samp>. This option is used in
the implementation of the <samp>libatomic</samp> runtime library.
</p>
</dd>
</dl>
<hr>
<a name="Developer-Options"></a>
<div class="header">
<p>
Next: <a href="#Submodel-Options" accesskey="n" rel="next">Submodel Options</a>, Previous: <a href="#Code-Gen-Options" accesskey="p" rel="prev">Code Gen Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="GCC-Developer-Options"></a>
<h3 class="section">3.17 GCC Developer Options</h3>
<a name="index-developer-options"></a>
<a name="index-debugging-GCC"></a>
<a name="index-debug-dump-options"></a>
<a name="index-dump-options"></a>
<a name="index-compilation-statistics"></a>
<p>This section describes command-line options that are primarily of
interest to GCC developers, including options to support compiler
testing and investigation of compiler bugs and compile-time
performance problems. This includes options that produce debug dumps
at various points in the compilation; that print statistics such as
memory use and execution time; and that print information about GCC’s
configuration, such as where it searches for libraries. You should
rarely need to use any of these options for ordinary compilation and
linking tasks.
</p>
<dl compact="compact">
<dt><code>-d<var>letters</var></code></dt>
<dt><code>-fdump-rtl-<var>pass</var></code></dt>
<dt><code>-fdump-rtl-<var>pass</var>=<var>filename</var></code></dt>
<dd><a name="index-d-1"></a>
<a name="index-fdump_002drtl_002dpass"></a>
<p>Says to make debugging dumps during compilation at times specified by
<var>letters</var>. This is used for debugging the RTL-based passes of the
compiler. The file names for most of the dumps are made by appending
a pass number and a word to the <var>dumpname</var>, and the files are
created in the directory of the output file. In case of
<samp>=<var>filename</var></samp> option, the dump is output on the given file
instead of the pass numbered dump files. Note that the pass number is
assigned as passes are registered into the pass manager. Most passes
are registered in the order that they will execute and for these passes
the number corresponds to the pass execution order. However, passes
registered by plugins, passes specific to compilation targets, or
passes that are otherwise registered after all the other passes are
numbered higher than a pass named "final", even if they are executed
earlier. <var>dumpname</var> is generated from the name of the output
file if explicitly specified and not an executable, otherwise it is
the basename of the source file.
</p>
<p>Some <samp>-d<var>letters</var></samp> switches have different meaning when
<samp>-E</samp> is used for preprocessing. See <a href="#Preprocessor-Options">Preprocessor Options</a>,
for information about preprocessor-specific dump options.
</p>
<p>Debug dumps can be enabled with a <samp>-fdump-rtl</samp> switch or some
<samp>-d</samp> option <var>letters</var>. Here are the possible
letters for use in <var>pass</var> and <var>letters</var>, and their meanings:
</p>
<dl compact="compact">
<dt><code>-fdump-rtl-alignments</code></dt>
<dd><a name="index-fdump_002drtl_002dalignments"></a>
<p>Dump after branch alignments have been computed.
</p>
</dd>
<dt><code>-fdump-rtl-asmcons</code></dt>
<dd><a name="index-fdump_002drtl_002dasmcons"></a>
<p>Dump after fixing rtl statements that have unsatisfied in/out constraints.
</p>
</dd>
<dt><code>-fdump-rtl-auto_inc_dec</code></dt>
<dd><a name="index-fdump_002drtl_002dauto_005finc_005fdec"></a>
<p>Dump after auto-inc-dec discovery. This pass is only run on
architectures that have auto inc or auto dec instructions.
</p>
</dd>
<dt><code>-fdump-rtl-barriers</code></dt>
<dd><a name="index-fdump_002drtl_002dbarriers"></a>
<p>Dump after cleaning up the barrier instructions.
</p>
</dd>
<dt><code>-fdump-rtl-bbpart</code></dt>
<dd><a name="index-fdump_002drtl_002dbbpart"></a>
<p>Dump after partitioning hot and cold basic blocks.
</p>
</dd>
<dt><code>-fdump-rtl-bbro</code></dt>
<dd><a name="index-fdump_002drtl_002dbbro"></a>
<p>Dump after block reordering.
</p>
</dd>
<dt><code>-fdump-rtl-btl1</code></dt>
<dt><code>-fdump-rtl-btl2</code></dt>
<dd><a name="index-fdump_002drtl_002dbtl2"></a>
<a name="index-fdump_002drtl_002dbtl2-1"></a>
<p><samp>-fdump-rtl-btl1</samp> and <samp>-fdump-rtl-btl2</samp> enable dumping
after the two branch
target load optimization passes.
</p>
</dd>
<dt><code>-fdump-rtl-bypass</code></dt>
<dd><a name="index-fdump_002drtl_002dbypass"></a>
<p>Dump after jump bypassing and control flow optimizations.
</p>
</dd>
<dt><code>-fdump-rtl-combine</code></dt>
<dd><a name="index-fdump_002drtl_002dcombine"></a>
<p>Dump after the RTL instruction combination pass.
</p>
</dd>
<dt><code>-fdump-rtl-compgotos</code></dt>
<dd><a name="index-fdump_002drtl_002dcompgotos"></a>
<p>Dump after duplicating the computed gotos.
</p>
</dd>
<dt><code>-fdump-rtl-ce1</code></dt>
<dt><code>-fdump-rtl-ce2</code></dt>
<dt><code>-fdump-rtl-ce3</code></dt>
<dd><a name="index-fdump_002drtl_002dce1"></a>
<a name="index-fdump_002drtl_002dce2"></a>
<a name="index-fdump_002drtl_002dce3"></a>
<p><samp>-fdump-rtl-ce1</samp>, <samp>-fdump-rtl-ce2</samp>, and
<samp>-fdump-rtl-ce3</samp> enable dumping after the three
if conversion passes.
</p>
</dd>
<dt><code>-fdump-rtl-cprop_hardreg</code></dt>
<dd><a name="index-fdump_002drtl_002dcprop_005fhardreg"></a>
<p>Dump after hard register copy propagation.
</p>
</dd>
<dt><code>-fdump-rtl-csa</code></dt>
<dd><a name="index-fdump_002drtl_002dcsa"></a>
<p>Dump after combining stack adjustments.
</p>
</dd>
<dt><code>-fdump-rtl-cse1</code></dt>
<dt><code>-fdump-rtl-cse2</code></dt>
<dd><a name="index-fdump_002drtl_002dcse1"></a>
<a name="index-fdump_002drtl_002dcse2"></a>
<p><samp>-fdump-rtl-cse1</samp> and <samp>-fdump-rtl-cse2</samp> enable dumping after
the two common subexpression elimination passes.
</p>
</dd>
<dt><code>-fdump-rtl-dce</code></dt>
<dd><a name="index-fdump_002drtl_002ddce"></a>
<p>Dump after the standalone dead code elimination passes.
</p>
</dd>
<dt><code>-fdump-rtl-dbr</code></dt>
<dd><a name="index-fdump_002drtl_002ddbr"></a>
<p>Dump after delayed branch scheduling.
</p>
</dd>
<dt><code>-fdump-rtl-dce1</code></dt>
<dt><code>-fdump-rtl-dce2</code></dt>
<dd><a name="index-fdump_002drtl_002ddce1"></a>
<a name="index-fdump_002drtl_002ddce2"></a>
<p><samp>-fdump-rtl-dce1</samp> and <samp>-fdump-rtl-dce2</samp> enable dumping after
the two dead store elimination passes.
</p>
</dd>
<dt><code>-fdump-rtl-eh</code></dt>
<dd><a name="index-fdump_002drtl_002deh"></a>
<p>Dump after finalization of EH handling code.
</p>
</dd>
<dt><code>-fdump-rtl-eh_ranges</code></dt>
<dd><a name="index-fdump_002drtl_002deh_005franges"></a>
<p>Dump after conversion of EH handling range regions.
</p>
</dd>
<dt><code>-fdump-rtl-expand</code></dt>
<dd><a name="index-fdump_002drtl_002dexpand"></a>
<p>Dump after RTL generation.
</p>
</dd>
<dt><code>-fdump-rtl-fwprop1</code></dt>
<dt><code>-fdump-rtl-fwprop2</code></dt>
<dd><a name="index-fdump_002drtl_002dfwprop1"></a>
<a name="index-fdump_002drtl_002dfwprop2"></a>
<p><samp>-fdump-rtl-fwprop1</samp> and <samp>-fdump-rtl-fwprop2</samp> enable
dumping after the two forward propagation passes.
</p>
</dd>
<dt><code>-fdump-rtl-gcse1</code></dt>
<dt><code>-fdump-rtl-gcse2</code></dt>
<dd><a name="index-fdump_002drtl_002dgcse1"></a>
<a name="index-fdump_002drtl_002dgcse2"></a>
<p><samp>-fdump-rtl-gcse1</samp> and <samp>-fdump-rtl-gcse2</samp> enable dumping
after global common subexpression elimination.
</p>
</dd>
<dt><code>-fdump-rtl-init-regs</code></dt>
<dd><a name="index-fdump_002drtl_002dinit_002dregs"></a>
<p>Dump after the initialization of the registers.
</p>
</dd>
<dt><code>-fdump-rtl-initvals</code></dt>
<dd><a name="index-fdump_002drtl_002dinitvals"></a>
<p>Dump after the computation of the initial value sets.
</p>
</dd>
<dt><code>-fdump-rtl-into_cfglayout</code></dt>
<dd><a name="index-fdump_002drtl_002dinto_005fcfglayout"></a>
<p>Dump after converting to cfglayout mode.
</p>
</dd>
<dt><code>-fdump-rtl-ira</code></dt>
<dd><a name="index-fdump_002drtl_002dira"></a>
<p>Dump after iterated register allocation.
</p>
</dd>
<dt><code>-fdump-rtl-jump</code></dt>
<dd><a name="index-fdump_002drtl_002djump"></a>
<p>Dump after the second jump optimization.
</p>
</dd>
<dt><code>-fdump-rtl-loop2</code></dt>
<dd><a name="index-fdump_002drtl_002dloop2"></a>
<p><samp>-fdump-rtl-loop2</samp> enables dumping after the rtl
loop optimization passes.
</p>
</dd>
<dt><code>-fdump-rtl-mach</code></dt>
<dd><a name="index-fdump_002drtl_002dmach"></a>
<p>Dump after performing the machine dependent reorganization pass, if that
pass exists.
</p>
</dd>
<dt><code>-fdump-rtl-mode_sw</code></dt>
<dd><a name="index-fdump_002drtl_002dmode_005fsw"></a>
<p>Dump after removing redundant mode switches.
</p>
</dd>
<dt><code>-fdump-rtl-rnreg</code></dt>
<dd><a name="index-fdump_002drtl_002drnreg"></a>
<p>Dump after register renumbering.
</p>
</dd>
<dt><code>-fdump-rtl-outof_cfglayout</code></dt>
<dd><a name="index-fdump_002drtl_002doutof_005fcfglayout"></a>
<p>Dump after converting from cfglayout mode.
</p>
</dd>
<dt><code>-fdump-rtl-peephole2</code></dt>
<dd><a name="index-fdump_002drtl_002dpeephole2"></a>
<p>Dump after the peephole pass.
</p>
</dd>
<dt><code>-fdump-rtl-postreload</code></dt>
<dd><a name="index-fdump_002drtl_002dpostreload"></a>
<p>Dump after post-reload optimizations.
</p>
</dd>
<dt><code>-fdump-rtl-pro_and_epilogue</code></dt>
<dd><a name="index-fdump_002drtl_002dpro_005fand_005fepilogue"></a>
<p>Dump after generating the function prologues and epilogues.
</p>
</dd>
<dt><code>-fdump-rtl-sched1</code></dt>
<dt><code>-fdump-rtl-sched2</code></dt>
<dd><a name="index-fdump_002drtl_002dsched1"></a>
<a name="index-fdump_002drtl_002dsched2"></a>
<p><samp>-fdump-rtl-sched1</samp> and <samp>-fdump-rtl-sched2</samp> enable dumping
after the basic block scheduling passes.
</p>
</dd>
<dt><code>-fdump-rtl-ree</code></dt>
<dd><a name="index-fdump_002drtl_002dree"></a>
<p>Dump after sign/zero extension elimination.
</p>
</dd>
<dt><code>-fdump-rtl-seqabstr</code></dt>
<dd><a name="index-fdump_002drtl_002dseqabstr"></a>
<p>Dump after common sequence discovery.
</p>
</dd>
<dt><code>-fdump-rtl-shorten</code></dt>
<dd><a name="index-fdump_002drtl_002dshorten"></a>
<p>Dump after shortening branches.
</p>
</dd>
<dt><code>-fdump-rtl-sibling</code></dt>
<dd><a name="index-fdump_002drtl_002dsibling"></a>
<p>Dump after sibling call optimizations.
</p>
</dd>
<dt><code>-fdump-rtl-split1</code></dt>
<dt><code>-fdump-rtl-split2</code></dt>
<dt><code>-fdump-rtl-split3</code></dt>
<dt><code>-fdump-rtl-split4</code></dt>
<dt><code>-fdump-rtl-split5</code></dt>
<dd><a name="index-fdump_002drtl_002dsplit1"></a>
<a name="index-fdump_002drtl_002dsplit2"></a>
<a name="index-fdump_002drtl_002dsplit3"></a>
<a name="index-fdump_002drtl_002dsplit4"></a>
<a name="index-fdump_002drtl_002dsplit5"></a>
<p>These options enable dumping after five rounds of
instruction splitting.
</p>
</dd>
<dt><code>-fdump-rtl-sms</code></dt>
<dd><a name="index-fdump_002drtl_002dsms"></a>
<p>Dump after modulo scheduling. This pass is only run on some
architectures.
</p>
</dd>
<dt><code>-fdump-rtl-stack</code></dt>
<dd><a name="index-fdump_002drtl_002dstack"></a>
<p>Dump after conversion from GCC’s “flat register file” registers to the
x87’s stack-like registers. This pass is only run on x86 variants.
</p>
</dd>
<dt><code>-fdump-rtl-subreg1</code></dt>
<dt><code>-fdump-rtl-subreg2</code></dt>
<dd><a name="index-fdump_002drtl_002dsubreg1"></a>
<a name="index-fdump_002drtl_002dsubreg2"></a>
<p><samp>-fdump-rtl-subreg1</samp> and <samp>-fdump-rtl-subreg2</samp> enable dumping after
the two subreg expansion passes.
</p>
</dd>
<dt><code>-fdump-rtl-unshare</code></dt>
<dd><a name="index-fdump_002drtl_002dunshare"></a>
<p>Dump after all rtl has been unshared.
</p>
</dd>
<dt><code>-fdump-rtl-vartrack</code></dt>
<dd><a name="index-fdump_002drtl_002dvartrack"></a>
<p>Dump after variable tracking.
</p>
</dd>
<dt><code>-fdump-rtl-vregs</code></dt>
<dd><a name="index-fdump_002drtl_002dvregs"></a>
<p>Dump after converting virtual registers to hard registers.
</p>
</dd>
<dt><code>-fdump-rtl-web</code></dt>
<dd><a name="index-fdump_002drtl_002dweb"></a>
<p>Dump after live range splitting.
</p>
</dd>
<dt><code>-fdump-rtl-regclass</code></dt>
<dt><code>-fdump-rtl-subregs_of_mode_init</code></dt>
<dt><code>-fdump-rtl-subregs_of_mode_finish</code></dt>
<dt><code>-fdump-rtl-dfinit</code></dt>
<dt><code>-fdump-rtl-dfinish</code></dt>
<dd><a name="index-fdump_002drtl_002dregclass"></a>
<a name="index-fdump_002drtl_002dsubregs_005fof_005fmode_005finit"></a>
<a name="index-fdump_002drtl_002dsubregs_005fof_005fmode_005ffinish"></a>
<a name="index-fdump_002drtl_002ddfinit"></a>
<a name="index-fdump_002drtl_002ddfinish"></a>
<p>These dumps are defined but always produce empty files.
</p>
</dd>
<dt><code>-da</code></dt>
<dt><code>-fdump-rtl-all</code></dt>
<dd><a name="index-da"></a>
<a name="index-fdump_002drtl_002dall"></a>
<p>Produce all the dumps listed above.
</p>
</dd>
<dt><code>-dA</code></dt>
<dd><a name="index-dA"></a>
<p>Annotate the assembler output with miscellaneous debugging information.
</p>
</dd>
<dt><code>-dD</code></dt>
<dd><a name="index-dD-1"></a>
<p>Dump all macro definitions, at the end of preprocessing, in addition to
normal output.
</p>
</dd>
<dt><code>-dH</code></dt>
<dd><a name="index-dH"></a>
<p>Produce a core dump whenever an error occurs.
</p>
</dd>
<dt><code>-dp</code></dt>
<dd><a name="index-dp"></a>
<p>Annotate the assembler output with a comment indicating which
pattern and alternative is used. The length and cost of each instruction are
also printed.
</p>
</dd>
<dt><code>-dP</code></dt>
<dd><a name="index-dP"></a>
<p>Dump the RTL in the assembler output as a comment before each instruction.
Also turns on <samp>-dp</samp> annotation.
</p>
</dd>
<dt><code>-dx</code></dt>
<dd><a name="index-dx"></a>
<p>Just generate RTL for a function instead of compiling it. Usually used
with <samp>-fdump-rtl-expand</samp>.
</p></dd>
</dl>
</dd>
<dt><code>-fdump-noaddr</code></dt>
<dd><a name="index-fdump_002dnoaddr"></a>
<p>When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with
different compiler binaries and/or different
text / bss / data / heap / stack / dso start locations.
</p>
</dd>
<dt><code>-freport-bug</code></dt>
<dd><a name="index-freport_002dbug"></a>
<p>Collect and dump debug information into a temporary file if an
internal compiler error (ICE) occurs.
</p>
</dd>
<dt><code>-fdump-unnumbered</code></dt>
<dd><a name="index-fdump_002dunnumbered"></a>
<p>When doing debugging dumps, suppress instruction numbers and address output.
This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without
<samp>-g</samp>.
</p>
</dd>
<dt><code>-fdump-unnumbered-links</code></dt>
<dd><a name="index-fdump_002dunnumbered_002dlinks"></a>
<p>When doing debugging dumps (see <samp>-d</samp> option above), suppress
instruction numbers for the links to the previous and next instructions
in a sequence.
</p>
</dd>
<dt><code>-fdump-ipa-<var>switch</var></code></dt>
<dd><a name="index-fdump_002dipa"></a>
<p>Control the dumping at various stages of inter-procedural analysis
language tree to a file. The file name is generated by appending a
switch specific suffix to the source file name, and the file is created
in the same directory as the output file. The following dumps are
possible:
</p>
<dl compact="compact">
<dt>‘<samp>all</samp>’</dt>
<dd><p>Enables all inter-procedural analysis dumps.
</p>
</dd>
<dt>‘<samp>cgraph</samp>’</dt>
<dd><p>Dumps information about call-graph optimization, unused function removal,
and inlining decisions.
</p>
</dd>
<dt>‘<samp>inline</samp>’</dt>
<dd><p>Dump after function inlining.
</p>
</dd>
</dl>
</dd>
<dt><code>-fdump-lang-all</code></dt>
<dt><code>-fdump-lang-<var>switch</var></code></dt>
<dt><code>-fdump-lang-<var>switch</var>-<var>options</var></code></dt>
<dt><code>-fdump-lang-<var>switch</var>-<var>options</var>=<var>filename</var></code></dt>
<dd><a name="index-fdump_002dlang_002dall"></a>
<a name="index-fdump_002dlang"></a>
<p>Control the dumping of language-specific information. The <var>options</var>
and <var>filename</var> portions behave as described in the
<samp>-fdump-tree</samp> option. The following <var>switch</var> values are
accepted:
</p>
<dl compact="compact">
<dt>‘<samp>all</samp>’</dt>
<dd>
<p>Enable all language-specific dumps.
</p>
</dd>
<dt>‘<samp>class</samp>’</dt>
<dd><p>Dump class hierarchy information. Virtual table information is emitted
unless ’<samp>slim</samp>’ is specified. This option is applicable to C++ only.
</p>
</dd>
<dt>‘<samp>raw</samp>’</dt>
<dd><p>Dump the raw internal tree data. This option is applicable to C++ only.
</p>
</dd>
</dl>
</dd>
<dt><code>-fdump-passes</code></dt>
<dd><a name="index-fdump_002dpasses"></a>
<p>Print on <samp>stderr</samp> the list of optimization passes that are turned
on and off by the current command-line options.
</p>
</dd>
<dt><code>-fdump-statistics-<var>option</var></code></dt>
<dd><a name="index-fdump_002dstatistics"></a>
<p>Enable and control dumping of pass statistics in a separate file. The
file name is generated by appending a suffix ending in
‘<samp>.statistics</samp>’ to the source file name, and the file is created in
the same directory as the output file. If the ‘<samp>-<var>option</var></samp>’
form is used, ‘<samp>-stats</samp>’ causes counters to be summed over the
whole compilation unit while ‘<samp>-details</samp>’ dumps every event as
the passes generate them. The default with no option is to sum
counters for each function compiled.
</p>
</dd>
<dt><code>-fdump-tree-all</code></dt>
<dt><code>-fdump-tree-<var>switch</var></code></dt>
<dt><code>-fdump-tree-<var>switch</var>-<var>options</var></code></dt>
<dt><code>-fdump-tree-<var>switch</var>-<var>options</var>=<var>filename</var></code></dt>
<dd><a name="index-fdump_002dtree_002dall"></a>
<a name="index-fdump_002dtree"></a>
<p>Control the dumping at various stages of processing the intermediate
language tree to a file. The file name is generated by appending a
switch-specific suffix to the source file name, and the file is
created in the same directory as the output file. In case of
<samp>=<var>filename</var></samp> option, the dump is output on the given file
instead of the auto named dump files. If the ‘<samp>-<var>options</var></samp>’
form is used, <var>options</var> is a list of ‘<samp>-</samp>’ separated options
which control the details of the dump. Not all options are applicable
to all dumps; those that are not meaningful are ignored. The
following options are available
</p>
<dl compact="compact">
<dt>‘<samp>address</samp>’</dt>
<dd><p>Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary use
is for tying up a dump file with a debug environment.
</p></dd>
<dt>‘<samp>asmname</samp>’</dt>
<dd><p>If <code>DECL_ASSEMBLER_NAME</code> has been set for a given decl, use that
in the dump instead of <code>DECL_NAME</code>. Its primary use is ease of
use working backward from mangled names in the assembly file.
</p></dd>
<dt>‘<samp>slim</samp>’</dt>
<dd><p>When dumping front-end intermediate representations, inhibit dumping
of members of a scope or body of a function merely because that scope
has been reached. Only dump such items when they are directly reachable
by some other path.
</p>
<p>When dumping pretty-printed trees, this option inhibits dumping the
bodies of control structures.
</p>
<p>When dumping RTL, print the RTL in slim (condensed) form instead of
the default LISP-like representation.
</p></dd>
<dt>‘<samp>raw</samp>’</dt>
<dd><p>Print a raw representation of the tree. By default, trees are
pretty-printed into a C-like representation.
</p></dd>
<dt>‘<samp>details</samp>’</dt>
<dd><p>Enable more detailed dumps (not honored by every dump option). Also
include information from the optimization passes.
</p></dd>
<dt>‘<samp>stats</samp>’</dt>
<dd><p>Enable dumping various statistics about the pass (not honored by every dump
option).
</p></dd>
<dt>‘<samp>blocks</samp>’</dt>
<dd><p>Enable showing basic block boundaries (disabled in raw dumps).
</p></dd>
<dt>‘<samp>graph</samp>’</dt>
<dd><p>For each of the other indicated dump files (<samp>-fdump-rtl-<var>pass</var></samp>),
dump a representation of the control flow graph suitable for viewing with
GraphViz to <samp><var>file</var>.<var>passid</var>.<var>pass</var>.dot</samp>. Each function in
the file is pretty-printed as a subgraph, so that GraphViz can render them
all in a single plot.
</p>
<p>This option currently only works for RTL dumps, and the RTL is always
dumped in slim form.
</p></dd>
<dt>‘<samp>vops</samp>’</dt>
<dd><p>Enable showing virtual operands for every statement.
</p></dd>
<dt>‘<samp>lineno</samp>’</dt>
<dd><p>Enable showing line numbers for statements.
</p></dd>
<dt>‘<samp>uid</samp>’</dt>
<dd><p>Enable showing the unique ID (<code>DECL_UID</code>) for each variable.
</p></dd>
<dt>‘<samp>verbose</samp>’</dt>
<dd><p>Enable showing the tree dump for each statement.
</p></dd>
<dt>‘<samp>eh</samp>’</dt>
<dd><p>Enable showing the EH region number holding each statement.
</p></dd>
<dt>‘<samp>scev</samp>’</dt>
<dd><p>Enable showing scalar evolution analysis details.
</p></dd>
<dt>‘<samp>optimized</samp>’</dt>
<dd><p>Enable showing optimization information (only available in certain
passes).
</p></dd>
<dt>‘<samp>missed</samp>’</dt>
<dd><p>Enable showing missed optimization information (only available in certain
passes).
</p></dd>
<dt>‘<samp>note</samp>’</dt>
<dd><p>Enable other detailed optimization information (only available in
certain passes).
</p></dd>
<dt>‘<samp>=<var>filename</var></samp>’</dt>
<dd><p>Instead of an auto named dump file, output into the given file
name. The file names <samp>stdout</samp> and <samp>stderr</samp> are treated
specially and are considered already open standard streams. For
example,
</p>
<div class="smallexample">
<pre class="smallexample">gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
-fdump-tree-pre=/dev/stderr file.c
</pre></div>
<p>outputs vectorizer dump into <samp>foo.dump</samp>, while the PRE dump is
output on to <samp>stderr</samp>. If two conflicting dump filenames are
given for the same pass, then the latter option overrides the earlier
one.
</p>
</dd>
<dt>‘<samp>all</samp>’</dt>
<dd><p>Turn on all options, except <samp>raw</samp>, <samp>slim</samp>, <samp>verbose</samp>
and <samp>lineno</samp>.
</p>
</dd>
<dt>‘<samp>optall</samp>’</dt>
<dd><p>Turn on all optimization options, i.e., <samp>optimized</samp>,
<samp>missed</samp>, and <samp>note</samp>.
</p></dd>
</dl>
<p>To determine what tree dumps are available or find the dump for a pass
of interest follow the steps below.
</p>
<ol>
<li> Invoke GCC with <samp>-fdump-passes</samp> and in the <samp>stderr</samp> output
look for a code that corresponds to the pass you are interested in.
For example, the codes <code>tree-evrp</code>, <code>tree-vrp1</code>, and
<code>tree-vrp2</code> correspond to the three Value Range Propagation passes.
The number at the end distinguishes distinct invocations of the same pass.
</li><li> To enable the creation of the dump file, append the pass code to
the <samp>-fdump-</samp> option prefix and invoke GCC with it. For example,
to enable the dump from the Early Value Range Propagation pass, invoke
GCC with the <samp>-fdump-tree-evrp</samp> option. Optionally, you may
specify the name of the dump file. If you don’t specify one, GCC
creates as described below.
</li><li> Find the pass dump in a file whose name is composed of three components
separated by a period: the name of the source file GCC was invoked to
compile, a numeric suffix indicating the pass number followed by the
letter ‘<samp>t</samp>’ for tree passes (and the letter ‘<samp>r</samp>’ for RTL passes),
and finally the pass code. For example, the Early VRP pass dump might
be in a file named <samp>myfile.c.038t.evrp</samp> in the current working
directory. Note that the numeric codes are not stable and may change
from one version of GCC to another.
</li></ol>
</dd>
<dt><code>-fopt-info</code></dt>
<dt><code>-fopt-info-<var>options</var></code></dt>
<dt><code>-fopt-info-<var>options</var>=<var>filename</var></code></dt>
<dd><a name="index-fopt_002dinfo"></a>
<p>Controls optimization dumps from various optimization passes. If the
‘<samp>-<var>options</var></samp>’ form is used, <var>options</var> is a list of
‘<samp>-</samp>’ separated option keywords to select the dump details and
optimizations.
</p>
<p>The <var>options</var> can be divided into two groups: options describing the
verbosity of the dump, and options describing which optimizations
should be included. The options from both the groups can be freely
mixed as they are non-overlapping. However, in case of any conflicts,
the later options override the earlier options on the command
line.
</p>
<p>The following options control the dump verbosity:
</p>
<dl compact="compact">
<dt>‘<samp>optimized</samp>’</dt>
<dd><p>Print information when an optimization is successfully applied. It is
up to a pass to decide which information is relevant. For example, the
vectorizer passes print the source location of loops which are
successfully vectorized.
</p></dd>
<dt>‘<samp>missed</samp>’</dt>
<dd><p>Print information about missed optimizations. Individual passes
control which information to include in the output.
</p></dd>
<dt>‘<samp>note</samp>’</dt>
<dd><p>Print verbose information about optimizations, such as certain
transformations, more detailed messages about decisions etc.
</p></dd>
<dt>‘<samp>all</samp>’</dt>
<dd><p>Print detailed optimization information. This includes
‘<samp>optimized</samp>’, ‘<samp>missed</samp>’, and ‘<samp>note</samp>’.
</p></dd>
</dl>
<p>One or more of the following option keywords can be used to describe a
group of optimizations:
</p>
<dl compact="compact">
<dt>‘<samp>ipa</samp>’</dt>
<dd><p>Enable dumps from all interprocedural optimizations.
</p></dd>
<dt>‘<samp>loop</samp>’</dt>
<dd><p>Enable dumps from all loop optimizations.
</p></dd>
<dt>‘<samp>inline</samp>’</dt>
<dd><p>Enable dumps from all inlining optimizations.
</p></dd>
<dt>‘<samp>omp</samp>’</dt>
<dd><p>Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
</p></dd>
<dt>‘<samp>vec</samp>’</dt>
<dd><p>Enable dumps from all vectorization optimizations.
</p></dd>
<dt>‘<samp>optall</samp>’</dt>
<dd><p>Enable dumps from all optimizations. This is a superset of
the optimization groups listed above.
</p></dd>
</dl>
<p>If <var>options</var> is
omitted, it defaults to ‘<samp>optimized-optall</samp>’, which means to dump all
info about successful optimizations from all the passes.
</p>
<p>If the <var>filename</var> is provided, then the dumps from all the
applicable optimizations are concatenated into the <var>filename</var>.
Otherwise the dump is output onto <samp>stderr</samp>. Though multiple
<samp>-fopt-info</samp> options are accepted, only one of them can include
a <var>filename</var>. If other filenames are provided then all but the
first such option are ignored.
</p>
<p>Note that the output <var>filename</var> is overwritten
in case of multiple translation units. If a combined output from
multiple translation units is desired, <samp>stderr</samp> should be used
instead.
</p>
<p>In the following example, the optimization info is output to
<samp>stderr</samp>:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -O3 -fopt-info
</pre></div>
<p>This example:
</p><div class="smallexample">
<pre class="smallexample">gcc -O3 -fopt-info-missed=missed.all
</pre></div>
<p>outputs missed optimization report from all the passes into
<samp>missed.all</samp>, and this one:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -O2 -ftree-vectorize -fopt-info-vec-missed
</pre></div>
<p>prints information about missed optimization opportunities from
vectorization passes on <samp>stderr</samp>.
Note that <samp>-fopt-info-vec-missed</samp> is equivalent to
<samp>-fopt-info-missed-vec</samp>. The order of the optimization group
names and message types listed after <samp>-fopt-info</samp> does not matter.
</p>
<p>As another example,
</p><div class="smallexample">
<pre class="smallexample">gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
</pre></div>
<p>outputs information about missed optimizations as well as
optimized locations from all the inlining passes into
<samp>inline.txt</samp>.
</p>
<p>Finally, consider:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
</pre></div>
<p>Here the two output filenames <samp>vec.miss</samp> and <samp>loop.opt</samp> are
in conflict since only one output file is allowed. In this case, only
the first option takes effect and the subsequent options are
ignored. Thus only <samp>vec.miss</samp> is produced which contains
dumps from the vectorizer about missed opportunities.
</p>
</dd>
<dt><code>-fsched-verbose=<var>n</var></code></dt>
<dd><a name="index-fsched_002dverbose"></a>
<p>On targets that use instruction scheduling, this option controls the
amount of debugging output the scheduler prints to the dump files.
</p>
<p>For <var>n</var> greater than zero, <samp>-fsched-verbose</samp> outputs the
same information as <samp>-fdump-rtl-sched1</samp> and <samp>-fdump-rtl-sched2</samp>.
For <var>n</var> greater than one, it also output basic block probabilities,
detailed ready list information and unit/insn info. For <var>n</var> greater
than two, it includes RTL at abort point, control-flow and regions info.
And for <var>n</var> over four, <samp>-fsched-verbose</samp> also includes
dependence info.
</p>
</dd>
<dt><code>-fenable-<var>kind</var>-<var>pass</var></code></dt>
<dt><code>-fdisable-<var>kind</var>-<var>pass</var>=<var>range-list</var></code></dt>
<dd><a name="index-fdisable_002d"></a>
<a name="index-fenable_002d"></a>
<p>This is a set of options that are used to explicitly disable/enable
optimization passes. These options are intended for use for debugging GCC.
Compiler users should use regular options for enabling/disabling
passes instead.
</p>
<dl compact="compact">
<dt><code>-fdisable-ipa-<var>pass</var></code></dt>
<dd><p>Disable IPA pass <var>pass</var>. <var>pass</var> is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1.
</p>
</dd>
<dt><code>-fdisable-rtl-<var>pass</var></code></dt>
<dt><code>-fdisable-rtl-<var>pass</var>=<var>range-list</var></code></dt>
<dd><p>Disable RTL pass <var>pass</var>. <var>pass</var> is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1. <var>range-list</var> is a
comma-separated list of function ranges or assembler names. Each range is a number
pair separated by a colon. The range is inclusive in both ends. If the range
is trivial, the number pair can be simplified as a single number. If the
function’s call graph node’s <var>uid</var> falls within one of the specified ranges,
the <var>pass</var> is disabled for that function. The <var>uid</var> is shown in the
function header of a dump file, and the pass names can be dumped by using
option <samp>-fdump-passes</samp>.
</p>
</dd>
<dt><code>-fdisable-tree-<var>pass</var></code></dt>
<dt><code>-fdisable-tree-<var>pass</var>=<var>range-list</var></code></dt>
<dd><p>Disable tree pass <var>pass</var>. See <samp>-fdisable-rtl</samp> for the description of
option arguments.
</p>
</dd>
<dt><code>-fenable-ipa-<var>pass</var></code></dt>
<dd><p>Enable IPA pass <var>pass</var>. <var>pass</var> is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1.
</p>
</dd>
<dt><code>-fenable-rtl-<var>pass</var></code></dt>
<dt><code>-fenable-rtl-<var>pass</var>=<var>range-list</var></code></dt>
<dd><p>Enable RTL pass <var>pass</var>. See <samp>-fdisable-rtl</samp> for option argument
description and examples.
</p>
</dd>
<dt><code>-fenable-tree-<var>pass</var></code></dt>
<dt><code>-fenable-tree-<var>pass</var>=<var>range-list</var></code></dt>
<dd><p>Enable tree pass <var>pass</var>. See <samp>-fdisable-rtl</samp> for the description
of option arguments.
</p>
</dd>
</dl>
<p>Here are some examples showing uses of these options.
</p>
<div class="smallexample">
<pre class="smallexample">
# disable ccp1 for all functions
-fdisable-tree-ccp1
# disable complete unroll for function whose cgraph node uid is 1
-fenable-tree-cunroll=1
# disable gcse2 for functions at the following ranges [1,1],
# [300,400], and [400,1000]
# disable gcse2 for functions foo and foo2
-fdisable-rtl-gcse2=foo,foo2
# disable early inlining
-fdisable-tree-einline
# disable ipa inlining
-fdisable-ipa-inline
# enable tree full unroll
-fenable-tree-unroll
</pre></div>
</dd>
<dt><code>-fchecking</code></dt>
<dt><code>-fchecking=<var>n</var></code></dt>
<dd><a name="index-fchecking"></a>
<a name="index-fno_002dchecking"></a>
<p>Enable internal consistency checking. The default depends on
the compiler configuration. <samp>-fchecking=2</samp> enables further
internal consistency checking that might affect code generation.
</p>
</dd>
<dt><code>-frandom-seed=<var>string</var></code></dt>
<dd><a name="index-frandom_002dseed"></a>
<p>This option provides a seed that GCC uses in place of
random numbers in generating certain symbol names
that have to be different in every compiled file. It is also used to
place unique stamps in coverage data files and the object files that
produce them. You can use the <samp>-frandom-seed</samp> option to produce
reproducibly identical object files.
</p>
<p>The <var>string</var> can either be a number (decimal, octal or hex) or an
arbitrary string (in which case it’s converted to a number by
computing CRC32).
</p>
<p>The <var>string</var> should be different for every file you compile.
</p>
</dd>
<dt><code>-save-temps</code></dt>
<dt><code>-save-temps=cwd</code></dt>
<dd><a name="index-save_002dtemps"></a>
<p>Store the usual “temporary” intermediate files permanently; place them
in the current directory and name them based on the source file. Thus,
compiling <samp>foo.c</samp> with <samp>-c -save-temps</samp> produces files
<samp>foo.i</samp> and <samp>foo.s</samp>, as well as <samp>foo.o</samp>. This creates a
preprocessed <samp>foo.i</samp> output file even though the compiler now
normally uses an integrated preprocessor.
</p>
<p>When used in combination with the <samp>-x</samp> command-line option,
<samp>-save-temps</samp> is sensible enough to avoid over writing an
input source file with the same extension as an intermediate file.
The corresponding intermediate file may be obtained by renaming the
source file before using <samp>-save-temps</samp>.
</p>
<p>If you invoke GCC in parallel, compiling several different source
files that share a common base name in different subdirectories or the
same source file compiled for multiple output destinations, it is
likely that the different parallel compilers will interfere with each
other, and overwrite the temporary files. For instance:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -save-temps -o outdir1/foo.o indir1/foo.c&
gcc -save-temps -o outdir2/foo.o indir2/foo.c&
</pre></div>
<p>may result in <samp>foo.i</samp> and <samp>foo.o</samp> being written to
simultaneously by both compilers.
</p>
</dd>
<dt><code>-save-temps=obj</code></dt>
<dd><a name="index-save_002dtemps_003dobj"></a>
<p>Store the usual “temporary” intermediate files permanently. If the
<samp>-o</samp> option is used, the temporary files are based on the
object file. If the <samp>-o</samp> option is not used, the
<samp>-save-temps=obj</samp> switch behaves like <samp>-save-temps</samp>.
</p>
<p>For example:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -save-temps=obj -c foo.c
gcc -save-temps=obj -c bar.c -o dir/xbar.o
gcc -save-temps=obj foobar.c -o dir2/yfoobar
</pre></div>
<p>creates <samp>foo.i</samp>, <samp>foo.s</samp>, <samp>dir/xbar.i</samp>,
<samp>dir/xbar.s</samp>, <samp>dir2/yfoobar.i</samp>, <samp>dir2/yfoobar.s</samp>, and
<samp>dir2/yfoobar.o</samp>.
</p>
</dd>
<dt><code>-time<span class="roman">[</span>=<var>file</var><span class="roman">]</span></code></dt>
<dd><a name="index-time"></a>
<p>Report the CPU time taken by each subprocess in the compilation
sequence. For C source files, this is the compiler proper and assembler
(plus the linker if linking is done).
</p>
<p>Without the specification of an output file, the output looks like this:
</p>
<div class="smallexample">
<pre class="smallexample"># cc1 0.12 0.01
# as 0.00 0.01
</pre></div>
<p>The first number on each line is the “user time”, that is time spent
executing the program itself. The second number is “system time”,
time spent executing operating system routines on behalf of the program.
Both numbers are in seconds.
</p>
<p>With the specification of an output file, the output is appended to the
named file, and it looks like this:
</p>
<div class="smallexample">
<pre class="smallexample">0.12 0.01 cc1 <var>options</var>
0.00 0.01 as <var>options</var>
</pre></div>
<p>The “user time” and the “system time” are moved before the program
name, and the options passed to the program are displayed, so that one
can later tell what file was being compiled, and with which options.
</p>
</dd>
<dt><code>-fdump-final-insns<span class="roman">[</span>=<var>file</var><span class="roman">]</span></code></dt>
<dd><a name="index-fdump_002dfinal_002dinsns"></a>
<p>Dump the final internal representation (RTL) to <var>file</var>. If the
optional argument is omitted (or if <var>file</var> is <code>.</code>), the name
of the dump file is determined by appending <code>.gkd</code> to the
compilation output file name.
</p>
</dd>
<dt><code>-fcompare-debug<span class="roman">[</span>=<var>opts</var><span class="roman">]</span></code></dt>
<dd><a name="index-fcompare_002ddebug"></a>
<a name="index-fno_002dcompare_002ddebug"></a>
<p>If no error occurs during compilation, run the compiler a second time,
adding <var>opts</var> and <samp>-fcompare-debug-second</samp> to the arguments
passed to the second compilation. Dump the final internal
representation in both compilations, and print an error if they differ.
</p>
<p>If the equal sign is omitted, the default <samp>-gtoggle</samp> is used.
</p>
<p>The environment variable <code>GCC_COMPARE_DEBUG</code>, if defined, non-empty
and nonzero, implicitly enables <samp>-fcompare-debug</samp>. If
<code>GCC_COMPARE_DEBUG</code> is defined to a string starting with a dash,
then it is used for <var>opts</var>, otherwise the default <samp>-gtoggle</samp>
is used.
</p>
<p><samp>-fcompare-debug=</samp>, with the equal sign but without <var>opts</var>,
is equivalent to <samp>-fno-compare-debug</samp>, which disables the dumping
of the final representation and the second compilation, preventing even
<code>GCC_COMPARE_DEBUG</code> from taking effect.
</p>
<p>To verify full coverage during <samp>-fcompare-debug</samp> testing, set
<code>GCC_COMPARE_DEBUG</code> to say <samp>-fcompare-debug-not-overridden</samp>,
which GCC rejects as an invalid option in any actual compilation
(rather than preprocessing, assembly or linking). To get just a
warning, setting <code>GCC_COMPARE_DEBUG</code> to ‘<samp>-w%n-fcompare-debug
not overridden</samp>’ will do.
</p>
</dd>
<dt><code>-fcompare-debug-second</code></dt>
<dd><a name="index-fcompare_002ddebug_002dsecond"></a>
<p>This option is implicitly passed to the compiler for the second
compilation requested by <samp>-fcompare-debug</samp>, along with options to
silence warnings, and omitting other options that would cause the compiler
to produce output to files or to standard output as a side effect. Dump
files and preserved temporary files are renamed so as to contain the
<code>.gk</code> additional extension during the second compilation, to avoid
overwriting those generated by the first.
</p>
<p>When this option is passed to the compiler driver, it causes the
<em>first</em> compilation to be skipped, which makes it useful for little
other than debugging the compiler proper.
</p>
</dd>
<dt><code>-gtoggle</code></dt>
<dd><a name="index-gtoggle"></a>
<p>Turn off generation of debug info, if leaving out this option
generates it, or turn it on at level 2 otherwise. The position of this
argument in the command line does not matter; it takes effect after all
other options are processed, and it does so only once, no matter how
many times it is given. This is mainly intended to be used with
<samp>-fcompare-debug</samp>.
</p>
</dd>
<dt><code>-fvar-tracking-assignments-toggle</code></dt>
<dd><a name="index-fvar_002dtracking_002dassignments_002dtoggle"></a>
<a name="index-fno_002dvar_002dtracking_002dassignments_002dtoggle"></a>
<p>Toggle <samp>-fvar-tracking-assignments</samp>, in the same way that
<samp>-gtoggle</samp> toggles <samp>-g</samp>.
</p>
</dd>
<dt><code>-Q</code></dt>
<dd><a name="index-Q"></a>
<p>Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.
</p>
</dd>
<dt><code>-ftime-report</code></dt>
<dd><a name="index-ftime_002dreport"></a>
<p>Makes the compiler print some statistics about the time consumed by each
pass when it finishes.
</p>
</dd>
<dt><code>-ftime-report-details</code></dt>
<dd><a name="index-ftime_002dreport_002ddetails"></a>
<p>Record the time consumed by infrastructure parts separately for each pass.
</p>
</dd>
<dt><code>-fira-verbose=<var>n</var></code></dt>
<dd><a name="index-fira_002dverbose"></a>
<p>Control the verbosity of the dump file for the integrated register allocator.
The default value is 5. If the value <var>n</var> is greater or equal to 10,
the dump output is sent to stderr using the same format as <var>n</var> minus 10.
</p>
</dd>
<dt><code>-flto-report</code></dt>
<dd><a name="index-flto_002dreport"></a>
<p>Prints a report with internal details on the workings of the link-time
optimizer. The contents of this report vary from version to version.
It is meant to be useful to GCC developers when processing object
files in LTO mode (via <samp>-flto</samp>).
</p>
<p>Disabled by default.
</p>
</dd>
<dt><code>-flto-report-wpa</code></dt>
<dd><a name="index-flto_002dreport_002dwpa"></a>
<p>Like <samp>-flto-report</samp>, but only print for the WPA phase of Link
Time Optimization.
</p>
</dd>
<dt><code>-fmem-report</code></dt>
<dd><a name="index-fmem_002dreport"></a>
<p>Makes the compiler print some statistics about permanent memory
allocation when it finishes.
</p>
</dd>
<dt><code>-fmem-report-wpa</code></dt>
<dd><a name="index-fmem_002dreport_002dwpa"></a>
<p>Makes the compiler print some statistics about permanent memory
allocation for the WPA phase only.
</p>
</dd>
<dt><code>-fpre-ipa-mem-report</code></dt>
<dd><a name="index-fpre_002dipa_002dmem_002dreport"></a>
</dd>
<dt><code>-fpost-ipa-mem-report</code></dt>
<dd><a name="index-fpost_002dipa_002dmem_002dreport"></a>
<p>Makes the compiler print some statistics about permanent memory
allocation before or after interprocedural optimization.
</p>
</dd>
<dt><code>-fprofile-report</code></dt>
<dd><a name="index-fprofile_002dreport"></a>
<p>Makes the compiler print some statistics about consistency of the
(estimated) profile and effect of individual passes.
</p>
</dd>
<dt><code>-fstack-usage</code></dt>
<dd><a name="index-fstack_002dusage"></a>
<p>Makes the compiler output stack usage information for the program, on a
per-function basis. The filename for the dump is made by appending
<samp>.su</samp> to the <var>auxname</var>. <var>auxname</var> is generated from the name of
the output file, if explicitly specified and it is not an executable,
otherwise it is the basename of the source file. An entry is made up
of three fields:
</p>
<ul>
<li> The name of the function.
</li><li> A number of bytes.
</li><li> One or more qualifiers: <code>static</code>, <code>dynamic</code>, <code>bounded</code>.
</li></ul>
<p>The qualifier <code>static</code> means that the function manipulates the stack
statically: a fixed number of bytes are allocated for the frame on function
entry and released on function exit; no stack adjustments are otherwise made
in the function. The second field is this fixed number of bytes.
</p>
<p>The qualifier <code>dynamic</code> means that the function manipulates the stack
dynamically: in addition to the static allocation described above, stack
adjustments are made in the body of the function, for example to push/pop
arguments around function calls. If the qualifier <code>bounded</code> is also
present, the amount of these adjustments is bounded at compile time and
the second field is an upper bound of the total amount of stack used by
the function. If it is not present, the amount of these adjustments is
not bounded at compile time and the second field only represents the
bounded part.
</p>
</dd>
<dt><code>-fstats</code></dt>
<dd><a name="index-fstats"></a>
<p>Emit statistics about front-end processing at the end of the compilation.
This option is supported only by the C++ front end, and
the information is generally only useful to the G++ development team.
</p>
</dd>
<dt><code>-fdbg-cnt-list</code></dt>
<dd><a name="index-fdbg_002dcnt_002dlist"></a>
<p>Print the name and the counter upper bound for all debug counters.
</p>
</dd>
<dt><code>-fdbg-cnt=<var>counter-value-list</var></code></dt>
<dd><a name="index-fdbg_002dcnt"></a>
<p>Set the internal debug counter upper bound. <var>counter-value-list</var>
is a comma-separated list of <var>name</var>:<var>value</var> pairs
which sets the upper bound of each debug counter <var>name</var> to <var>value</var>.
All debug counters have the initial upper bound of <code>UINT_MAX</code>;
thus <code>dbg_cnt</code> returns true always unless the upper bound
is set by this option.
For example, with <samp>-fdbg-cnt=dce:10,tail_call:0</samp>,
<code>dbg_cnt(dce)</code> returns true only for first 10 invocations.
</p>
</dd>
<dt><code>-print-file-name=<var>library</var></code></dt>
<dd><a name="index-print_002dfile_002dname"></a>
<p>Print the full absolute name of the library file <var>library</var> that
would be used when linking—and don’t do anything else. With this
option, GCC does not compile or link anything; it just prints the
file name.
</p>
</dd>
<dt><code>-print-multi-directory</code></dt>
<dd><a name="index-print_002dmulti_002ddirectory"></a>
<p>Print the directory name corresponding to the multilib selected by any
other switches present in the command line. This directory is supposed
to exist in <code>GCC_EXEC_PREFIX</code>.
</p>
</dd>
<dt><code>-print-multi-lib</code></dt>
<dd><a name="index-print_002dmulti_002dlib"></a>
<p>Print the mapping from multilib directory names to compiler switches
that enable them. The directory name is separated from the switches by
‘<samp>;</samp>’, and each switch starts with an ‘<samp>@</samp>’ instead of the
‘<samp>-</samp>’, without spaces between multiple switches. This is supposed to
ease shell processing.
</p>
</dd>
<dt><code>-print-multi-os-directory</code></dt>
<dd><a name="index-print_002dmulti_002dos_002ddirectory"></a>
<p>Print the path to OS libraries for the selected
multilib, relative to some <samp>lib</samp> subdirectory. If OS libraries are
present in the <samp>lib</samp> subdirectory and no multilibs are used, this is
usually just <samp>.</samp>, if OS libraries are present in <samp>lib<var>suffix</var></samp>
sibling directories this prints e.g. <samp>../lib64</samp>, <samp>../lib</samp> or
<samp>../lib32</samp>, or if OS libraries are present in <samp>lib/<var>subdir</var></samp>
subdirectories it prints e.g. <samp>amd64</samp>, <samp>sparcv9</samp> or <samp>ev6</samp>.
</p>
</dd>
<dt><code>-print-multiarch</code></dt>
<dd><a name="index-print_002dmultiarch"></a>
<p>Print the path to OS libraries for the selected multiarch,
relative to some <samp>lib</samp> subdirectory.
</p>
</dd>
<dt><code>-print-prog-name=<var>program</var></code></dt>
<dd><a name="index-print_002dprog_002dname"></a>
<p>Like <samp>-print-file-name</samp>, but searches for a program such as <code>cpp</code>.
</p>
</dd>
<dt><code>-print-libgcc-file-name</code></dt>
<dd><a name="index-print_002dlibgcc_002dfile_002dname"></a>
<p>Same as <samp>-print-file-name=libgcc.a</samp>.
</p>
<p>This is useful when you use <samp>-nostdlib</samp> or <samp>-nodefaultlibs</samp>
but you do want to link with <samp>libgcc.a</samp>. You can do:
</p>
<div class="smallexample">
<pre class="smallexample">gcc -nostdlib <var>files</var>… `gcc -print-libgcc-file-name`
</pre></div>
</dd>
<dt><code>-print-search-dirs</code></dt>
<dd><a name="index-print_002dsearch_002ddirs"></a>
<p>Print the name of the configured installation directory and a list of
program and library directories <code>gcc</code> searches—and don’t do anything else.
</p>
<p>This is useful when <code>gcc</code> prints the error message
‘<samp>installation problem, cannot exec cpp0: No such file or directory</samp>’.
To resolve this you either need to put <samp>cpp0</samp> and the other compiler
components where <code>gcc</code> expects to find them, or you can set the environment
variable <code>GCC_EXEC_PREFIX</code> to the directory where you installed them.
Don’t forget the trailing ‘<samp>/</samp>’.
See <a href="#Environment-Variables">Environment Variables</a>.
</p>
</dd>
<dt><code>-print-sysroot</code></dt>
<dd><a name="index-print_002dsysroot"></a>
<p>Print the target sysroot directory that is used during
compilation. This is the target sysroot specified either at configure
time or using the <samp>--sysroot</samp> option, possibly with an extra
suffix that depends on compilation options. If no target sysroot is
specified, the option prints nothing.
</p>
</dd>
<dt><code>-print-sysroot-headers-suffix</code></dt>
<dd><a name="index-print_002dsysroot_002dheaders_002dsuffix"></a>
<p>Print the suffix added to the target sysroot when searching for
headers, or give an error if the compiler is not configured with such
a suffix—and don’t do anything else.
</p>
</dd>
<dt><code>-dumpmachine</code></dt>
<dd><a name="index-dumpmachine"></a>
<p>Print the compiler’s target machine (for example,
‘<samp>i686-pc-linux-gnu</samp>’)—and don’t do anything else.
</p>
</dd>
<dt><code>-dumpversion</code></dt>
<dd><a name="index-dumpversion"></a>
<p>Print the compiler version (for example, <code>3.0</code>, <code>6.3.0</code> or <code>7</code>)—and don’t do
anything else. This is the compiler version used in filesystem paths,
specs, can be depending on how the compiler has been configured just
a single number (major version), two numbers separated by dot (major and
minor version) or three numbers separated by dots (major, minor and patchlevel
version).
</p>
</dd>
<dt><code>-dumpfullversion</code></dt>
<dd><a name="index-dumpfullversion"></a>
<p>Print the full compiler version, always 3 numbers separated by dots,
major, minor and patchlevel version.
</p>
</dd>
<dt><code>-dumpspecs</code></dt>
<dd><a name="index-dumpspecs"></a>
<p>Print the compiler’s built-in specs—and don’t do anything else. (This
is used when GCC itself is being built.) See <a href="#Spec-Files">Spec Files</a>.
</p></dd>
</dl>
<hr>
<a name="Submodel-Options"></a>
<div class="header">
<p>
Next: <a href="#Spec-Files" accesskey="n" rel="next">Spec Files</a>, Previous: <a href="#Developer-Options" accesskey="p" rel="prev">Developer Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Machine_002dDependent-Options"></a>
<h3 class="section">3.18 Machine-Dependent Options</h3>
<a name="index-submodel-options"></a>
<a name="index-specifying-hardware-config"></a>
<a name="index-hardware-models-and-configurations_002c-specifying"></a>
<a name="index-target_002ddependent-options"></a>
<a name="index-machine_002ddependent-options"></a>
<p>Each target machine supported by GCC can have its own options—for
example, to allow you to compile for a particular processor variant or
ABI, or to control optimizations specific to that machine. By
convention, the names of machine-specific options start with
‘<samp>-m</samp>’.
</p>
<p>Some configurations of the compiler also support additional target-specific
options, usually for compatibility with other compilers on the same
platform.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#AArch64-Options" accesskey="1">AArch64 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Adapteva-Epiphany-Options" accesskey="2">Adapteva Epiphany Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARC-Options" accesskey="3">ARC Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARM-Options" accesskey="4">ARM Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#AVR-Options" accesskey="5">AVR Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Blackfin-Options" accesskey="6">Blackfin Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#C6X-Options" accesskey="7">C6X Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#CRIS-Options" accesskey="8">CRIS Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#CR16-Options" accesskey="9">CR16 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Darwin-Options">Darwin Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#DEC-Alpha-Options">DEC Alpha Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#FR30-Options">FR30 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#FT32-Options">FT32 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#FRV-Options">FRV Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#GNU_002fLinux-Options">GNU/Linux Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#H8_002f300-Options">H8/300 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#HPPA-Options">HPPA Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#IA_002d64-Options">IA-64 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#LM32-Options">LM32 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#M32C-Options">M32C Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#M32R_002fD-Options">M32R/D Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#M680x0-Options">M680x0 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MCore-Options">MCore Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MeP-Options">MeP Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MicroBlaze-Options">MicroBlaze Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MIPS-Options">MIPS Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MMIX-Options">MMIX Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MN10300-Options">MN10300 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Moxie-Options">Moxie Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MSP430-Options">MSP430 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#NDS32-Options">NDS32 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Nios-II-Options">Nios II Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Nvidia-PTX-Options">Nvidia PTX Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PDP_002d11-Options">PDP-11 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#picoChip-Options">picoChip Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-Options">PowerPC Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-SPE-Options">PowerPC SPE Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RISC_002dV-Options">RISC-V Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RL78-Options">RL78 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RX-Options">RX Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Score-Options">Score Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SH-Options">SH Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Solaris-2-Options">Solaris 2 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SPARC-Options">SPARC Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SPU-Options">SPU Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#System-V-Options">System V Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#TILE_002dGx-Options">TILE-Gx Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#TILEPro-Options">TILEPro Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#V850-Options">V850 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#VAX-Options">VAX Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Visium-Options">Visium Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#VMS-Options">VMS Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#VxWorks-Options">VxWorks Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-Options">x86 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-Windows-Options">x86 Windows Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Xstormy16-Options">Xstormy16 Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Xtensa-Options">Xtensa Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#zSeries-Options">zSeries Options</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="AArch64-Options"></a>
<div class="header">
<p>
Next: <a href="#Adapteva-Epiphany-Options" accesskey="n" rel="next">Adapteva Epiphany Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="AArch64-Options-1"></a>
<h4 class="subsection">3.18.1 AArch64 Options</h4>
<a name="index-AArch64-Options"></a>
<p>These options are defined for AArch64 implementations:
</p>
<dl compact="compact">
<dt><code>-mabi=<var>name</var></code></dt>
<dd><a name="index-mabi"></a>
<p>Generate code for the specified data model. Permissible values
are ‘<samp>ilp32</samp>’ for SysV-like data model where int, long int and pointers
are 32 bits, and ‘<samp>lp64</samp>’ for SysV-like data model where int is 32 bits,
but long int and pointers are 64 bits.
</p>
<p>The default depends on the specific target configuration. Note that
the LP64 and ILP32 ABIs are not link-compatible; you must compile your
entire program with the same ABI, and link with a compatible set of libraries.
</p>
</dd>
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig_002dendian"></a>
<p>Generate big-endian code. This is the default when GCC is configured for an
‘<samp>aarch64_be-*-*</samp>’ target.
</p>
</dd>
<dt><code>-mgeneral-regs-only</code></dt>
<dd><a name="index-mgeneral_002dregs_002donly"></a>
<p>Generate code which uses only the general-purpose registers. This will prevent
the compiler from using floating-point and Advanced SIMD registers but will not
impose any restrictions on the assembler.
</p>
</dd>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle_002dendian"></a>
<p>Generate little-endian code. This is the default when GCC is configured for an
‘<samp>aarch64-*-*</samp>’ but not an ‘<samp>aarch64_be-*-*</samp>’ target.
</p>
</dd>
<dt><code>-mcmodel=tiny</code></dt>
<dd><a name="index-mcmodel_003dtiny"></a>
<p>Generate code for the tiny code model. The program and its statically defined
symbols must be within 1MB of each other. Programs can be statically or
dynamically linked.
</p>
</dd>
<dt><code>-mcmodel=small</code></dt>
<dd><a name="index-mcmodel_003dsmall"></a>
<p>Generate code for the small code model. The program and its statically defined
symbols must be within 4GB of each other. Programs can be statically or
dynamically linked. This is the default code model.
</p>
</dd>
<dt><code>-mcmodel=large</code></dt>
<dd><a name="index-mcmodel_003dlarge"></a>
<p>Generate code for the large code model. This makes no assumptions about
addresses and sizes of sections. Programs can be statically linked only.
</p>
</dd>
<dt><code>-mstrict-align</code></dt>
<dd><a name="index-mstrict_002dalign"></a>
<p>Avoid generating memory accesses that may not be aligned on a natural object
boundary as described in the architecture specification.
</p>
</dd>
<dt><code>-momit-leaf-frame-pointer</code></dt>
<dt><code>-mno-omit-leaf-frame-pointer</code></dt>
<dd><a name="index-momit_002dleaf_002dframe_002dpointer"></a>
<a name="index-mno_002domit_002dleaf_002dframe_002dpointer"></a>
<p>Omit or keep the frame pointer in leaf functions. The former behavior is the
default.
</p>
</dd>
<dt><code>-mtls-dialect=desc</code></dt>
<dd><a name="index-mtls_002ddialect_003ddesc"></a>
<p>Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
of TLS variables. This is the default.
</p>
</dd>
<dt><code>-mtls-dialect=traditional</code></dt>
<dd><a name="index-mtls_002ddialect_003dtraditional"></a>
<p>Use traditional TLS as the thread-local storage mechanism for dynamic accesses
of TLS variables.
</p>
</dd>
<dt><code>-mtls-size=<var>size</var></code></dt>
<dd><a name="index-mtls_002dsize"></a>
<p>Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
This option requires binutils 2.26 or newer.
</p>
</dd>
<dt><code>-mfix-cortex-a53-835769</code></dt>
<dt><code>-mno-fix-cortex-a53-835769</code></dt>
<dd><a name="index-mfix_002dcortex_002da53_002d835769"></a>
<a name="index-mno_002dfix_002dcortex_002da53_002d835769"></a>
<p>Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
This involves inserting a NOP instruction between memory instructions and
64-bit integer multiply-accumulate instructions.
</p>
</dd>
<dt><code>-mfix-cortex-a53-843419</code></dt>
<dt><code>-mno-fix-cortex-a53-843419</code></dt>
<dd><a name="index-mfix_002dcortex_002da53_002d843419"></a>
<a name="index-mno_002dfix_002dcortex_002da53_002d843419"></a>
<p>Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
This erratum workaround is made at link time and this will only pass the
corresponding flag to the linker.
</p>
</dd>
<dt><code>-mlow-precision-recip-sqrt</code></dt>
<dt><code>-mno-low-precision-recip-sqrt</code></dt>
<dd><a name="index-mlow_002dprecision_002drecip_002dsqrt"></a>
<a name="index-mno_002dlow_002dprecision_002drecip_002dsqrt"></a>
<p>Enable or disable the reciprocal square root approximation.
This option only has an effect if <samp>-ffast-math</samp> or
<samp>-funsafe-math-optimizations</samp> is used as well. Enabling this reduces
precision of reciprocal square root results to about 16 bits for
single precision and to 32 bits for double precision.
</p>
</dd>
<dt><code>-mlow-precision-sqrt</code></dt>
<dt><code>-mno-low-precision-sqrt</code></dt>
<dd><a name="index-_002dmlow_002dprecision_002dsqrt"></a>
<a name="index-_002dmno_002dlow_002dprecision_002dsqrt"></a>
<p>Enable or disable the square root approximation.
This option only has an effect if <samp>-ffast-math</samp> or
<samp>-funsafe-math-optimizations</samp> is used as well. Enabling this reduces
precision of square root results to about 16 bits for
single precision and to 32 bits for double precision.
If enabled, it implies <samp>-mlow-precision-recip-sqrt</samp>.
</p>
</dd>
<dt><code>-mlow-precision-div</code></dt>
<dt><code>-mno-low-precision-div</code></dt>
<dd><a name="index-_002dmlow_002dprecision_002ddiv"></a>
<a name="index-_002dmno_002dlow_002dprecision_002ddiv"></a>
<p>Enable or disable the division approximation.
This option only has an effect if <samp>-ffast-math</samp> or
<samp>-funsafe-math-optimizations</samp> is used as well. Enabling this reduces
precision of division results to about 16 bits for
single precision and to 32 bits for double precision.
</p>
</dd>
<dt><code>-march=<var>name</var></code></dt>
<dd><a name="index-march"></a>
<p>Specify the name of the target architecture and, optionally, one or
more feature modifiers. This option has the form
<samp>-march=<var>arch</var><span class="roman">{</span>+<span class="roman">[</span>no<span class="roman">]</span><var>feature</var><span class="roman">}*</span></samp>.
</p>
<p>The permissible values for <var>arch</var> are ‘<samp>armv8-a</samp>’,
‘<samp>armv8.1-a</samp>’, ‘<samp>armv8.2-a</samp>’, ‘<samp>armv8.3-a</samp>’ or ‘<samp>armv8.4-a</samp>’
or <var>native</var>.
</p>
<p>The value ‘<samp>armv8.4-a</samp>’ implies ‘<samp>armv8.3-a</samp>’ and enables compiler
support for the ARMv8.4-A architecture extensions.
</p>
<p>The value ‘<samp>armv8.3-a</samp>’ implies ‘<samp>armv8.2-a</samp>’ and enables compiler
support for the ARMv8.3-A architecture extensions.
</p>
<p>The value ‘<samp>armv8.2-a</samp>’ implies ‘<samp>armv8.1-a</samp>’ and enables compiler
support for the ARMv8.2-A architecture extensions.
</p>
<p>The value ‘<samp>armv8.1-a</samp>’ implies ‘<samp>armv8-a</samp>’ and enables compiler
support for the ARMv8.1-A architecture extension. In particular, it
enables the ‘<samp>+crc</samp>’, ‘<samp>+lse</samp>’, and ‘<samp>+rdma</samp>’ features.
</p>
<p>The value ‘<samp>native</samp>’ is available on native AArch64 GNU/Linux and
causes the compiler to pick the architecture of the host system. This
option has no effect if the compiler is unable to recognize the
architecture of the host system,
</p>
<p>The permissible values for <var>feature</var> are listed in the sub-section
on <a href="#aarch64_002dfeature_002dmodifiers"><samp>-march</samp> and <samp>-mcpu</samp>
Feature Modifiers</a>. Where conflicting feature modifiers are
specified, the right-most feature is used.
</p>
<p>GCC uses <var>name</var> to determine what kind of instructions it can emit
when generating assembly code. If <samp>-march</samp> is specified
without either of <samp>-mtune</samp> or <samp>-mcpu</samp> also being
specified, the code is tuned to perform well across a range of target
processors implementing the target architecture.
</p>
</dd>
<dt><code>-mtune=<var>name</var></code></dt>
<dd><a name="index-mtune"></a>
<p>Specify the name of the target processor for which GCC should tune the
performance of the code. Permissible values for this option are:
‘<samp>generic</samp>’, ‘<samp>cortex-a35</samp>’, ‘<samp>cortex-a53</samp>’, ‘<samp>cortex-a55</samp>’,
‘<samp>cortex-a57</samp>’, ‘<samp>cortex-a72</samp>’, ‘<samp>cortex-a73</samp>’, ‘<samp>cortex-a75</samp>’,
‘<samp>exynos-m1</samp>’, ‘<samp>falkor</samp>’, ‘<samp>qdf24xx</samp>’, ‘<samp>saphira</samp>’,
‘<samp>xgene1</samp>’, ‘<samp>vulcan</samp>’, ‘<samp>thunderx</samp>’,
‘<samp>thunderxt88</samp>’, ‘<samp>thunderxt88p1</samp>’, ‘<samp>thunderxt81</samp>’,
‘<samp>thunderxt83</samp>’, ‘<samp>thunderx2t99</samp>’, ‘<samp>cortex-a57.cortex-a53</samp>’,
‘<samp>cortex-a72.cortex-a53</samp>’, ‘<samp>cortex-a73.cortex-a35</samp>’,
‘<samp>cortex-a73.cortex-a53</samp>’, ‘<samp>cortex-a75.cortex-a55</samp>’,
‘<samp>native</samp>’.
</p>
<p>The values ‘<samp>cortex-a57.cortex-a53</samp>’, ‘<samp>cortex-a72.cortex-a53</samp>’,
‘<samp>cortex-a73.cortex-a35</samp>’, ‘<samp>cortex-a73.cortex-a53</samp>’,
‘<samp>cortex-a75.cortex-a55</samp>’ specify that GCC should tune for a
big.LITTLE system.
</p>
<p>Additionally on native AArch64 GNU/Linux systems the value
‘<samp>native</samp>’ tunes performance to the host system. This option has no effect
if the compiler is unable to recognize the processor of the host system.
</p>
<p>Where none of <samp>-mtune=</samp>, <samp>-mcpu=</samp> or <samp>-march=</samp>
are specified, the code is tuned to perform well across a range
of target processors.
</p>
<p>This option cannot be suffixed by feature modifiers.
</p>
</dd>
<dt><code>-mcpu=<var>name</var></code></dt>
<dd><a name="index-mcpu"></a>
<p>Specify the name of the target processor, optionally suffixed by one
or more feature modifiers. This option has the form
<samp>-mcpu=<var>cpu</var><span class="roman">{</span>+<span class="roman">[</span>no<span class="roman">]</span><var>feature</var><span class="roman">}*</span></samp>, where
the permissible values for <var>cpu</var> are the same as those available
for <samp>-mtune</samp>. The permissible values for <var>feature</var> are
documented in the sub-section on
<a href="#aarch64_002dfeature_002dmodifiers"><samp>-march</samp> and <samp>-mcpu</samp>
Feature Modifiers</a>. Where conflicting feature modifiers are
specified, the right-most feature is used.
</p>
<p>GCC uses <var>name</var> to determine what kind of instructions it can emit when
generating assembly code (as if by <samp>-march</samp>) and to determine
the target processor for which to tune for performance (as if
by <samp>-mtune</samp>). Where this option is used in conjunction
with <samp>-march</samp> or <samp>-mtune</samp>, those options take precedence
over the appropriate part of this option.
</p>
</dd>
<dt><code>-moverride=<var>string</var></code></dt>
<dd><a name="index-moverride"></a>
<p>Override tuning decisions made by the back-end in response to a
<samp>-mtune=</samp> switch. The syntax, semantics, and accepted values
for <var>string</var> in this option are not guaranteed to be consistent
across releases.
</p>
<p>This option is only intended to be useful when developing GCC.
</p>
</dd>
<dt><code>-mverbose-cost-dump</code></dt>
<dd><a name="index-mverbose_002dcost_002ddump"></a>
<p>Enable verbose cost model dumping in the debug dump files. This option is
provided for use in debugging the compiler.
</p>
</dd>
<dt><code>-mpc-relative-literal-loads</code></dt>
<dt><code>-mno-pc-relative-literal-loads</code></dt>
<dd><a name="index-mpc_002drelative_002dliteral_002dloads"></a>
<a name="index-mno_002dpc_002drelative_002dliteral_002dloads"></a>
<p>Enable or disable PC-relative literal loads. With this option literal pools are
accessed using a single instruction and emitted after each function. This
limits the maximum size of functions to 1MB. This is enabled by default for
<samp>-mcmodel=tiny</samp>.
</p>
</dd>
<dt><code>-msign-return-address=<var>scope</var></code></dt>
<dd><a name="index-msign_002dreturn_002daddress"></a>
<p>Select the function scope on which return address signing will be applied.
Permissible values are ‘<samp>none</samp>’, which disables return address signing,
‘<samp>non-leaf</samp>’, which enables pointer signing for functions which are not leaf
functions, and ‘<samp>all</samp>’, which enables pointer signing for all functions. The
default value is ‘<samp>none</samp>’.
</p>
</dd>
<dt><code>-msve-vector-bits=<var>bits</var></code></dt>
<dd><a name="index-msve_002dvector_002dbits"></a>
<p>Specify the number of bits in an SVE vector register. This option only has
an effect when SVE is enabled.
</p>
<p>GCC supports two forms of SVE code generation: “vector-length
agnostic” output that works with any size of vector register and
“vector-length specific” output that only works when the vector
registers are a particular size. Replacing <var>bits</var> with
‘<samp>scalable</samp>’ selects vector-length agnostic output while
replacing it with a number selects vector-length specific output.
The possible lengths in the latter case are: 128, 256, 512, 1024
and 2048. ‘<samp>scalable</samp>’ is the default.
</p>
<p>At present, ‘<samp>-msve-vector-bits=128</samp>’ produces the same output
as ‘<samp>-msve-vector-bits=scalable</samp>’.
</p>
</dd>
</dl>
<a name="g_t_002dmarch-and-_002dmcpu-Feature-Modifiers"></a>
<h4 class="subsubsection">3.18.1.1 <samp>-march</samp> and <samp>-mcpu</samp> Feature Modifiers</h4>
<a name="aarch64_002dfeature_002dmodifiers"></a><a name="index-_002dmarch-feature-modifiers"></a>
<a name="index-_002dmcpu-feature-modifiers"></a>
<p>Feature modifiers used with <samp>-march</samp> and <samp>-mcpu</samp> can be any of
the following and their inverses <samp>no<var>feature</var></samp>:
</p>
<dl compact="compact">
<dt>‘<samp>crc</samp>’</dt>
<dd><p>Enable CRC extension. This is on by default for
<samp>-march=armv8.1-a</samp>.
</p></dd>
<dt>‘<samp>crypto</samp>’</dt>
<dd><p>Enable Crypto extension. This also enables Advanced SIMD and floating-point
instructions.
</p></dd>
<dt>‘<samp>fp</samp>’</dt>
<dd><p>Enable floating-point instructions. This is on by default for all possible
values for options <samp>-march</samp> and <samp>-mcpu</samp>.
</p></dd>
<dt>‘<samp>simd</samp>’</dt>
<dd><p>Enable Advanced SIMD instructions. This also enables floating-point
instructions. This is on by default for all possible values for options
<samp>-march</samp> and <samp>-mcpu</samp>.
</p></dd>
<dt>‘<samp>sve</samp>’</dt>
<dd><p>Enable Scalable Vector Extension instructions. This also enables Advanced
SIMD and floating-point instructions.
</p></dd>
<dt>‘<samp>lse</samp>’</dt>
<dd><p>Enable Large System Extension instructions. This is on by default for
<samp>-march=armv8.1-a</samp>.
</p></dd>
<dt>‘<samp>rdma</samp>’</dt>
<dd><p>Enable Round Double Multiply Accumulate instructions. This is on by default
for <samp>-march=armv8.1-a</samp>.
</p></dd>
<dt>‘<samp>fp16</samp>’</dt>
<dd><p>Enable FP16 extension. This also enables floating-point instructions.
</p></dd>
<dt>‘<samp>fp16fml</samp>’</dt>
<dd><p>Enable FP16 fmla extension. This also enables FP16 extensions and
floating-point instructions. This option is enabled by default for <samp>-march=armv8.4-a</samp>. Use of this option with architectures prior to Armv8.2-A is not supported.
</p>
</dd>
<dt>‘<samp>rcpc</samp>’</dt>
<dd><p>Enable the RcPc extension. This does not change code generation from GCC,
but is passed on to the assembler, enabling inline asm statements to use
instructions from the RcPc extension.
</p></dd>
<dt>‘<samp>dotprod</samp>’</dt>
<dd><p>Enable the Dot Product extension. This also enables Advanced SIMD instructions.
</p></dd>
<dt>‘<samp>aes</samp>’</dt>
<dd><p>Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
SIMD instructions.
</p></dd>
<dt>‘<samp>sha2</samp>’</dt>
<dd><p>Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
</p></dd>
<dt>‘<samp>sha3</samp>’</dt>
<dd><p>Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
</p></dd>
<dt>‘<samp>sm4</samp>’</dt>
<dd><p>Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
Use of this option with architectures prior to Armv8.2-A is not supported.
</p>
</dd>
</dl>
<p>Feature <samp>crypto</samp> implies <samp>aes</samp>, <samp>sha2</samp>, and <samp>simd</samp>,
which implies <samp>fp</samp>.
Conversely, <samp>nofp</samp> implies <samp>nosimd</samp>, which implies
<samp>nocrypto</samp>, <samp>noaes</samp> and <samp>nosha2</samp>.
</p>
<hr>
<a name="Adapteva-Epiphany-Options"></a>
<div class="header">
<p>
Next: <a href="#ARC-Options" accesskey="n" rel="next">ARC Options</a>, Previous: <a href="#AArch64-Options" accesskey="p" rel="prev">AArch64 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Adapteva-Epiphany-Options-1"></a>
<h4 class="subsection">3.18.2 Adapteva Epiphany Options</h4>
<p>These ‘<samp>-m</samp>’ options are defined for Adapteva Epiphany:
</p>
<dl compact="compact">
<dt><code>-mhalf-reg-file</code></dt>
<dd><a name="index-mhalf_002dreg_002dfile"></a>
<p>Don’t allocate any register in the range <code>r32</code>…<code>r63</code>.
That allows code to run on hardware variants that lack these registers.
</p>
</dd>
<dt><code>-mprefer-short-insn-regs</code></dt>
<dd><a name="index-mprefer_002dshort_002dinsn_002dregs"></a>
<p>Preferentially allocate registers that allow short instruction generation.
This can result in increased instruction count, so this may either reduce or
increase overall code size.
</p>
</dd>
<dt><code>-mbranch-cost=<var>num</var></code></dt>
<dd><a name="index-mbranch_002dcost"></a>
<p>Set the cost of branches to roughly <var>num</var> “simple” instructions.
This cost is only a heuristic and is not guaranteed to produce
consistent results across releases.
</p>
</dd>
<dt><code>-mcmove</code></dt>
<dd><a name="index-mcmove"></a>
<p>Enable the generation of conditional moves.
</p>
</dd>
<dt><code>-mnops=<var>num</var></code></dt>
<dd><a name="index-mnops"></a>
<p>Emit <var>num</var> NOPs before every other generated instruction.
</p>
</dd>
<dt><code>-mno-soft-cmpsf</code></dt>
<dd><a name="index-mno_002dsoft_002dcmpsf"></a>
<p>For single-precision floating-point comparisons, emit an <code>fsub</code> instruction
and test the flags. This is faster than a software comparison, but can
get incorrect results in the presence of NaNs, or when two different small
numbers are compared such that their difference is calculated as zero.
The default is <samp>-msoft-cmpsf</samp>, which uses slower, but IEEE-compliant,
software comparisons.
</p>
</dd>
<dt><code>-mstack-offset=<var>num</var></code></dt>
<dd><a name="index-mstack_002doffset"></a>
<p>Set the offset between the top of the stack and the stack pointer.
E.g., a value of 8 means that the eight bytes in the range <code>sp+0…sp+7</code>
can be used by leaf functions without stack allocation.
Values other than ‘<samp>8</samp>’ or ‘<samp>16</samp>’ are untested and unlikely to work.
Note also that this option changes the ABI; compiling a program with a
different stack offset than the libraries have been compiled with
generally does not work.
This option can be useful if you want to evaluate if a different stack
offset would give you better code, but to actually use a different stack
offset to build working programs, it is recommended to configure the
toolchain with the appropriate <samp>--with-stack-offset=<var>num</var></samp> option.
</p>
</dd>
<dt><code>-mno-round-nearest</code></dt>
<dd><a name="index-mno_002dround_002dnearest"></a>
<p>Make the scheduler assume that the rounding mode has been set to
truncating. The default is <samp>-mround-nearest</samp>.
</p>
</dd>
<dt><code>-mlong-calls</code></dt>
<dd><a name="index-mlong_002dcalls"></a>
<p>If not otherwise specified by an attribute, assume all calls might be beyond
the offset range of the <code>b</code> / <code>bl</code> instructions, and therefore load the
function address into a register before performing a (otherwise direct) call.
This is the default.
</p>
</dd>
<dt><code>-mshort-calls</code></dt>
<dd><a name="index-short_002dcalls"></a>
<p>If not otherwise specified by an attribute, assume all direct calls are
in the range of the <code>b</code> / <code>bl</code> instructions, so use these instructions
for direct calls. The default is <samp>-mlong-calls</samp>.
</p>
</dd>
<dt><code>-msmall16</code></dt>
<dd><a name="index-msmall16"></a>
<p>Assume addresses can be loaded as 16-bit unsigned values. This does not
apply to function addresses for which <samp>-mlong-calls</samp> semantics
are in effect.
</p>
</dd>
<dt><code>-mfp-mode=<var>mode</var></code></dt>
<dd><a name="index-mfp_002dmode"></a>
<p>Set the prevailing mode of the floating-point unit.
This determines the floating-point mode that is provided and expected
at function call and return time. Making this mode match the mode you
predominantly need at function start can make your programs smaller and
faster by avoiding unnecessary mode switches.
</p>
<p><var>mode</var> can be set to one the following values:
</p>
<dl compact="compact">
<dt>‘<samp>caller</samp>’</dt>
<dd><p>Any mode at function entry is valid, and retained or restored when
the function returns, and when it calls other functions.
This mode is useful for compiling libraries or other compilation units
you might want to incorporate into different programs with different
prevailing FPU modes, and the convenience of being able to use a single
object file outweighs the size and speed overhead for any extra
mode switching that might be needed, compared with what would be needed
with a more specific choice of prevailing FPU mode.
</p>
</dd>
<dt>‘<samp>truncate</samp>’</dt>
<dd><p>This is the mode used for floating-point calculations with
truncating (i.e. round towards zero) rounding mode. That includes
conversion from floating point to integer.
</p>
</dd>
<dt>‘<samp>round-nearest</samp>’</dt>
<dd><p>This is the mode used for floating-point calculations with
round-to-nearest-or-even rounding mode.
</p>
</dd>
<dt>‘<samp>int</samp>’</dt>
<dd><p>This is the mode used to perform integer calculations in the FPU, e.g.
integer multiply, or integer multiply-and-accumulate.
</p></dd>
</dl>
<p>The default is <samp>-mfp-mode=caller</samp>
</p>
</dd>
<dt><code>-mnosplit-lohi</code></dt>
<dt><code>-mno-postinc</code></dt>
<dt><code>-mno-postmodify</code></dt>
<dd><a name="index-mnosplit_002dlohi"></a>
<a name="index-mno_002dpostinc"></a>
<a name="index-mno_002dpostmodify"></a>
<p>Code generation tweaks that disable, respectively, splitting of 32-bit
loads, generation of post-increment addresses, and generation of
post-modify addresses. The defaults are <samp>msplit-lohi</samp>,
<samp>-mpost-inc</samp>, and <samp>-mpost-modify</samp>.
</p>
</dd>
<dt><code>-mnovect-double</code></dt>
<dd><a name="index-mno_002dvect_002ddouble"></a>
<p>Change the preferred SIMD mode to SImode. The default is
<samp>-mvect-double</samp>, which uses DImode as preferred SIMD mode.
</p>
</dd>
<dt><code>-max-vect-align=<var>num</var></code></dt>
<dd><a name="index-max_002dvect_002dalign"></a>
<p>The maximum alignment for SIMD vector mode types.
<var>num</var> may be 4 or 8. The default is 8.
Note that this is an ABI change, even though many library function
interfaces are unaffected if they don’t use SIMD vector modes
in places that affect size and/or alignment of relevant types.
</p>
</dd>
<dt><code>-msplit-vecmove-early</code></dt>
<dd><a name="index-msplit_002dvecmove_002dearly"></a>
<p>Split vector moves into single word moves before reload. In theory this
can give better register allocation, but so far the reverse seems to be
generally the case.
</p>
</dd>
<dt><code>-m1reg-<var>reg</var></code></dt>
<dd><a name="index-m1reg_002d"></a>
<p>Specify a register to hold the constant -1, which makes loading small negative
constants and certain bitmasks faster.
Allowable values for <var>reg</var> are ‘<samp>r43</samp>’ and ‘<samp>r63</samp>’,
which specify use of that register as a fixed register,
and ‘<samp>none</samp>’, which means that no register is used for this
purpose. The default is <samp>-m1reg-none</samp>.
</p>
</dd>
</dl>
<hr>
<a name="ARC-Options"></a>
<div class="header">
<p>
Next: <a href="#ARM-Options" accesskey="n" rel="next">ARM Options</a>, Previous: <a href="#Adapteva-Epiphany-Options" accesskey="p" rel="prev">Adapteva Epiphany Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARC-Options-1"></a>
<h4 class="subsection">3.18.3 ARC Options</h4>
<a name="index-ARC-options"></a>
<p>The following options control the architecture variant for which code
is being compiled:
</p>
<dl compact="compact">
<dt><code>-mbarrel-shifter</code></dt>
<dd><a name="index-mbarrel_002dshifter"></a>
<p>Generate instructions supported by barrel shifter. This is the default
unless <samp>-mcpu=ARC601</samp> or ‘<samp>-mcpu=ARCEM</samp>’ is in effect.
</p>
</dd>
<dt><code>-mjli-always</code></dt>
<dd><a name="index-mjli_002dalawys"></a>
<p>Force to call a function using jli_s instruction. This option is
valid only for ARCv2 architecture.
</p>
</dd>
<dt><code>-mcpu=<var>cpu</var></code></dt>
<dd><a name="index-mcpu-1"></a>
<p>Set architecture type, register usage, and instruction scheduling
parameters for <var>cpu</var>. There are also shortcut alias options
available for backward compatibility and convenience. Supported
values for <var>cpu</var> are
</p>
<dl compact="compact">
<dd><a name="index-mA6"></a>
<a name="index-mARC600"></a>
</dd>
<dt>‘<samp>arc600</samp>’</dt>
<dd><p>Compile for ARC600. Aliases: <samp>-mA6</samp>, <samp>-mARC600</samp>.
</p>
</dd>
<dt>‘<samp>arc601</samp>’</dt>
<dd><a name="index-mARC601"></a>
<p>Compile for ARC601. Alias: <samp>-mARC601</samp>.
</p>
</dd>
<dt>‘<samp>arc700</samp>’</dt>
<dd><a name="index-mA7"></a>
<a name="index-mARC700"></a>
<p>Compile for ARC700. Aliases: <samp>-mA7</samp>, <samp>-mARC700</samp>.
This is the default when configured with <samp>--with-cpu=arc700</samp>.
</p>
</dd>
<dt>‘<samp>arcem</samp>’</dt>
<dd><p>Compile for ARC EM.
</p>
</dd>
<dt>‘<samp>archs</samp>’</dt>
<dd><p>Compile for ARC HS.
</p>
</dd>
<dt>‘<samp>em</samp>’</dt>
<dd><p>Compile for ARC EM CPU with no hardware extensions.
</p>
</dd>
<dt>‘<samp>em4</samp>’</dt>
<dd><p>Compile for ARC EM4 CPU.
</p>
</dd>
<dt>‘<samp>em4_dmips</samp>’</dt>
<dd><p>Compile for ARC EM4 DMIPS CPU.
</p>
</dd>
<dt>‘<samp>em4_fpus</samp>’</dt>
<dd><p>Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
extension.
</p>
</dd>
<dt>‘<samp>em4_fpuda</samp>’</dt>
<dd><p>Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
double assist instructions.
</p>
</dd>
<dt>‘<samp>hs</samp>’</dt>
<dd><p>Compile for ARC HS CPU with no hardware extensions except the atomic
instructions.
</p>
</dd>
<dt>‘<samp>hs34</samp>’</dt>
<dd><p>Compile for ARC HS34 CPU.
</p>
</dd>
<dt>‘<samp>hs38</samp>’</dt>
<dd><p>Compile for ARC HS38 CPU.
</p>
</dd>
<dt>‘<samp>hs38_linux</samp>’</dt>
<dd><p>Compile for ARC HS38 CPU with all hardware extensions on.
</p>
</dd>
<dt>‘<samp>arc600_norm</samp>’</dt>
<dd><p>Compile for ARC 600 CPU with <code>norm</code> instructions enabled.
</p>
</dd>
<dt>‘<samp>arc600_mul32x16</samp>’</dt>
<dd><p>Compile for ARC 600 CPU with <code>norm</code> and 32x16-bit multiply
instructions enabled.
</p>
</dd>
<dt>‘<samp>arc600_mul64</samp>’</dt>
<dd><p>Compile for ARC 600 CPU with <code>norm</code> and <code>mul64</code>-family
instructions enabled.
</p>
</dd>
<dt>‘<samp>arc601_norm</samp>’</dt>
<dd><p>Compile for ARC 601 CPU with <code>norm</code> instructions enabled.
</p>
</dd>
<dt>‘<samp>arc601_mul32x16</samp>’</dt>
<dd><p>Compile for ARC 601 CPU with <code>norm</code> and 32x16-bit multiply
instructions enabled.
</p>
</dd>
<dt>‘<samp>arc601_mul64</samp>’</dt>
<dd><p>Compile for ARC 601 CPU with <code>norm</code> and <code>mul64</code>-family
instructions enabled.
</p>
</dd>
<dt>‘<samp>nps400</samp>’</dt>
<dd><p>Compile for ARC 700 on NPS400 chip.
</p>
</dd>
<dt>‘<samp>em_mini</samp>’</dt>
<dd><p>Compile for ARC EM minimalist configuration featuring reduced register
set.
</p>
</dd>
</dl>
</dd>
<dt><code>-mdpfp</code></dt>
<dd><a name="index-mdpfp"></a>
</dd>
<dt><code>-mdpfp-compact</code></dt>
<dd><a name="index-mdpfp_002dcompact"></a>
<p>Generate double-precision FPX instructions, tuned for the compact
implementation.
</p>
</dd>
<dt><code>-mdpfp-fast</code></dt>
<dd><a name="index-mdpfp_002dfast"></a>
<p>Generate double-precision FPX instructions, tuned for the fast
implementation.
</p>
</dd>
<dt><code>-mno-dpfp-lrsr</code></dt>
<dd><a name="index-mno_002ddpfp_002dlrsr"></a>
<p>Disable <code>lr</code> and <code>sr</code> instructions from using FPX extension
aux registers.
</p>
</dd>
<dt><code>-mea</code></dt>
<dd><a name="index-mea"></a>
<p>Generate extended arithmetic instructions. Currently only
<code>divaw</code>, <code>adds</code>, <code>subs</code>, and <code>sat16</code> are
supported. This is always enabled for <samp>-mcpu=ARC700</samp>.
</p>
</dd>
<dt><code>-mno-mpy</code></dt>
<dd><a name="index-mno_002dmpy"></a>
<p>Do not generate <code>mpy</code>-family instructions for ARC700. This option is
deprecated.
</p>
</dd>
<dt><code>-mmul32x16</code></dt>
<dd><a name="index-mmul32x16"></a>
<p>Generate 32x16-bit multiply and multiply-accumulate instructions.
</p>
</dd>
<dt><code>-mmul64</code></dt>
<dd><a name="index-mmul64"></a>
<p>Generate <code>mul64</code> and <code>mulu64</code> instructions.
Only valid for <samp>-mcpu=ARC600</samp>.
</p>
</dd>
<dt><code>-mnorm</code></dt>
<dd><a name="index-mnorm"></a>
<p>Generate <code>norm</code> instructions. This is the default if <samp>-mcpu=ARC700</samp>
is in effect.
</p>
</dd>
<dt><code>-mspfp</code></dt>
<dd><a name="index-mspfp"></a>
</dd>
<dt><code>-mspfp-compact</code></dt>
<dd><a name="index-mspfp_002dcompact"></a>
<p>Generate single-precision FPX instructions, tuned for the compact
implementation.
</p>
</dd>
<dt><code>-mspfp-fast</code></dt>
<dd><a name="index-mspfp_002dfast"></a>
<p>Generate single-precision FPX instructions, tuned for the fast
implementation.
</p>
</dd>
<dt><code>-msimd</code></dt>
<dd><a name="index-msimd"></a>
<p>Enable generation of ARC SIMD instructions via target-specific
builtins. Only valid for <samp>-mcpu=ARC700</samp>.
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-msoft_002dfloat"></a>
<p>This option ignored; it is provided for compatibility purposes only.
Software floating-point code is emitted by default, and this default
can overridden by FPX options; <samp>-mspfp</samp>, <samp>-mspfp-compact</samp>, or
<samp>-mspfp-fast</samp> for single precision, and <samp>-mdpfp</samp>,
<samp>-mdpfp-compact</samp>, or <samp>-mdpfp-fast</samp> for double precision.
</p>
</dd>
<dt><code>-mswap</code></dt>
<dd><a name="index-mswap"></a>
<p>Generate <code>swap</code> instructions.
</p>
</dd>
<dt><code>-matomic</code></dt>
<dd><a name="index-matomic"></a>
<p>This enables use of the locked load/store conditional extension to implement
atomic memory built-in functions. Not available for ARC 6xx or ARC
EM cores.
</p>
</dd>
<dt><code>-mdiv-rem</code></dt>
<dd><a name="index-mdiv_002drem"></a>
<p>Enable <code>div</code> and <code>rem</code> instructions for ARCv2 cores.
</p>
</dd>
<dt><code>-mcode-density</code></dt>
<dd><a name="index-mcode_002ddensity"></a>
<p>Enable code density instructions for ARC EM.
This option is on by default for ARC HS.
</p>
</dd>
<dt><code>-mll64</code></dt>
<dd><a name="index-mll64"></a>
<p>Enable double load/store operations for ARC HS cores.
</p>
</dd>
<dt><code>-mtp-regno=<var>regno</var></code></dt>
<dd><a name="index-mtp_002dregno"></a>
<p>Specify thread pointer register number.
</p>
</dd>
<dt><code>-mmpy-option=<var>multo</var></code></dt>
<dd><a name="index-mmpy_002doption"></a>
<p>Compile ARCv2 code with a multiplier design option. You can specify
the option using either a string or numeric value for <var>multo</var>.
‘<samp>wlh1</samp>’ is the default value. The recognized values are:
</p>
<dl compact="compact">
<dt>‘<samp>0</samp>’</dt>
<dt>‘<samp>none</samp>’</dt>
<dd><p>No multiplier available.
</p>
</dd>
<dt>‘<samp>1</samp>’</dt>
<dt>‘<samp>w</samp>’</dt>
<dd><p>16x16 multiplier, fully pipelined.
The following instructions are enabled: <code>mpyw</code> and <code>mpyuw</code>.
</p>
</dd>
<dt>‘<samp>2</samp>’</dt>
<dt>‘<samp>wlh1</samp>’</dt>
<dd><p>32x32 multiplier, fully
pipelined (1 stage). The following instructions are additionally
enabled: <code>mpy</code>, <code>mpyu</code>, <code>mpym</code>, <code>mpymu</code>, and <code>mpy_s</code>.
</p>
</dd>
<dt>‘<samp>3</samp>’</dt>
<dt>‘<samp>wlh2</samp>’</dt>
<dd><p>32x32 multiplier, fully pipelined
(2 stages). The following instructions are additionally enabled: <code>mpy</code>,
<code>mpyu</code>, <code>mpym</code>, <code>mpymu</code>, and <code>mpy_s</code>.
</p>
</dd>
<dt>‘<samp>4</samp>’</dt>
<dt>‘<samp>wlh3</samp>’</dt>
<dd><p>Two 16x16 multipliers, blocking,
sequential. The following instructions are additionally enabled: <code>mpy</code>,
<code>mpyu</code>, <code>mpym</code>, <code>mpymu</code>, and <code>mpy_s</code>.
</p>
</dd>
<dt>‘<samp>5</samp>’</dt>
<dt>‘<samp>wlh4</samp>’</dt>
<dd><p>One 16x16 multiplier, blocking,
sequential. The following instructions are additionally enabled: <code>mpy</code>,
<code>mpyu</code>, <code>mpym</code>, <code>mpymu</code>, and <code>mpy_s</code>.
</p>
</dd>
<dt>‘<samp>6</samp>’</dt>
<dt>‘<samp>wlh5</samp>’</dt>
<dd><p>One 32x4 multiplier, blocking,
sequential. The following instructions are additionally enabled: <code>mpy</code>,
<code>mpyu</code>, <code>mpym</code>, <code>mpymu</code>, and <code>mpy_s</code>.
</p>
</dd>
<dt>‘<samp>7</samp>’</dt>
<dt>‘<samp>plus_dmpy</samp>’</dt>
<dd><p>ARC HS SIMD support.
</p>
</dd>
<dt>‘<samp>8</samp>’</dt>
<dt>‘<samp>plus_macd</samp>’</dt>
<dd><p>ARC HS SIMD support.
</p>
</dd>
<dt>‘<samp>9</samp>’</dt>
<dt>‘<samp>plus_qmacw</samp>’</dt>
<dd><p>ARC HS SIMD support.
</p>
</dd>
</dl>
<p>This option is only available for ARCv2 cores.
</p>
</dd>
<dt><code>-mfpu=<var>fpu</var></code></dt>
<dd><a name="index-mfpu"></a>
<p>Enables support for specific floating-point hardware extensions for ARCv2
cores. Supported values for <var>fpu</var> are:
</p>
<dl compact="compact">
<dt>‘<samp>fpus</samp>’</dt>
<dd><p>Enables support for single-precision floating-point hardware
extensions.
</p>
</dd>
<dt>‘<samp>fpud</samp>’</dt>
<dd><p>Enables support for double-precision floating-point hardware
extensions. The single-precision floating-point extension is also
enabled. Not available for ARC EM.
</p>
</dd>
<dt>‘<samp>fpuda</samp>’</dt>
<dd><p>Enables support for double-precision floating-point hardware
extensions using double-precision assist instructions. The single-precision
floating-point extension is also enabled. This option is
only available for ARC EM.
</p>
</dd>
<dt>‘<samp>fpuda_div</samp>’</dt>
<dd><p>Enables support for double-precision floating-point hardware
extensions using double-precision assist instructions.
The single-precision floating-point, square-root, and divide
extensions are also enabled. This option is
only available for ARC EM.
</p>
</dd>
<dt>‘<samp>fpuda_fma</samp>’</dt>
<dd><p>Enables support for double-precision floating-point hardware
extensions using double-precision assist instructions.
The single-precision floating-point and fused multiply and add
hardware extensions are also enabled. This option is
only available for ARC EM.
</p>
</dd>
<dt>‘<samp>fpuda_all</samp>’</dt>
<dd><p>Enables support for double-precision floating-point hardware
extensions using double-precision assist instructions.
All single-precision floating-point hardware extensions are also
enabled. This option is only available for ARC EM.
</p>
</dd>
<dt>‘<samp>fpus_div</samp>’</dt>
<dd><p>Enables support for single-precision floating-point, square-root and divide
hardware extensions.
</p>
</dd>
<dt>‘<samp>fpud_div</samp>’</dt>
<dd><p>Enables support for double-precision floating-point, square-root and divide
hardware extensions. This option
includes option ‘<samp>fpus_div</samp>’. Not available for ARC EM.
</p>
</dd>
<dt>‘<samp>fpus_fma</samp>’</dt>
<dd><p>Enables support for single-precision floating-point and
fused multiply and add hardware extensions.
</p>
</dd>
<dt>‘<samp>fpud_fma</samp>’</dt>
<dd><p>Enables support for double-precision floating-point and
fused multiply and add hardware extensions. This option
includes option ‘<samp>fpus_fma</samp>’. Not available for ARC EM.
</p>
</dd>
<dt>‘<samp>fpus_all</samp>’</dt>
<dd><p>Enables support for all single-precision floating-point hardware
extensions.
</p>
</dd>
<dt>‘<samp>fpud_all</samp>’</dt>
<dd><p>Enables support for all single- and double-precision floating-point
hardware extensions. Not available for ARC EM.
</p>
</dd>
</dl>
</dd>
<dt><code>-mirq-ctrl-saved=<var>register-range</var>, <var>blink</var>, <var>lp_count</var></code></dt>
<dd><a name="index-mirq_002dctrl_002dsaved"></a>
<p>Specifies general-purposes registers that the processor automatically
saves/restores on interrupt entry and exit. <var>register-range</var> is
specified as two registers separated by a dash. The register range
always starts with <code>r0</code>, the upper limit is <code>fp</code> register.
<var>blink</var> and <var>lp_count</var> are optional. This option is only
valid for ARC EM and ARC HS cores.
</p>
</dd>
<dt><code>-mrgf-banked-regs=<var>number</var></code></dt>
<dd><a name="index-mrgf_002dbanked_002dregs"></a>
<p>Specifies the number of registers replicated in second register bank
on entry to fast interrupt. Fast interrupts are interrupts with the
highest priority level P0. These interrupts save only PC and STATUS32
registers to avoid memory transactions during interrupt entry and exit
sequences. Use this option when you are using fast interrupts in an
ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
</p>
</dd>
<dt><code>-mlpc-width=<var>width</var></code></dt>
<dd><a name="index-mlpc_002dwidth"></a>
<p>Specify the width of the <code>lp_count</code> register. Valid values for
<var>width</var> are 8, 16, 20, 24, 28 and 32 bits. The default width is
fixed to 32 bits. If the width is less than 32, the compiler does not
attempt to transform loops in your program to use the zero-delay loop
mechanism unless it is known that the <code>lp_count</code> register can
hold the required loop-counter value. Depending on the width
specified, the compiler and run-time library might continue to use the
loop mechanism for various needs. This option defines macro
<code>__ARC_LPC_WIDTH__</code> with the value of <var>width</var>.
</p>
</dd>
<dt><code>-mrf16</code></dt>
<dd><a name="index-mrf16"></a>
<p>This option instructs the compiler to generate code for a 16-entry
register file. This option defines the <code>__ARC_RF16__</code>
preprocessor macro.
</p>
</dd>
</dl>
<p>The following options are passed through to the assembler, and also
define preprocessor macro symbols.
</p>
<dl compact="compact">
<dt><code>-mdsp-packa</code></dt>
<dd><a name="index-mdsp_002dpacka"></a>
<p>Passed down to the assembler to enable the DSP Pack A extensions.
Also sets the preprocessor symbol <code>__Xdsp_packa</code>. This option is
deprecated.
</p>
</dd>
<dt><code>-mdvbf</code></dt>
<dd><a name="index-mdvbf"></a>
<p>Passed down to the assembler to enable the dual Viterbi butterfly
extension. Also sets the preprocessor symbol <code>__Xdvbf</code>. This
option is deprecated.
</p>
</dd>
<dt><code>-mlock</code></dt>
<dd><a name="index-mlock"></a>
<p>Passed down to the assembler to enable the locked load/store
conditional extension. Also sets the preprocessor symbol
<code>__Xlock</code>.
</p>
</dd>
<dt><code>-mmac-d16</code></dt>
<dd><a name="index-mmac_002dd16"></a>
<p>Passed down to the assembler. Also sets the preprocessor symbol
<code>__Xxmac_d16</code>. This option is deprecated.
</p>
</dd>
<dt><code>-mmac-24</code></dt>
<dd><a name="index-mmac_002d24"></a>
<p>Passed down to the assembler. Also sets the preprocessor symbol
<code>__Xxmac_24</code>. This option is deprecated.
</p>
</dd>
<dt><code>-mrtsc</code></dt>
<dd><a name="index-mrtsc"></a>
<p>Passed down to the assembler to enable the 64-bit time-stamp counter
extension instruction. Also sets the preprocessor symbol
<code>__Xrtsc</code>. This option is deprecated.
</p>
</dd>
<dt><code>-mswape</code></dt>
<dd><a name="index-mswape"></a>
<p>Passed down to the assembler to enable the swap byte ordering
extension instruction. Also sets the preprocessor symbol
<code>__Xswape</code>.
</p>
</dd>
<dt><code>-mtelephony</code></dt>
<dd><a name="index-mtelephony"></a>
<p>Passed down to the assembler to enable dual- and single-operand
instructions for telephony. Also sets the preprocessor symbol
<code>__Xtelephony</code>. This option is deprecated.
</p>
</dd>
<dt><code>-mxy</code></dt>
<dd><a name="index-mxy"></a>
<p>Passed down to the assembler to enable the XY memory extension. Also
sets the preprocessor symbol <code>__Xxy</code>.
</p>
</dd>
</dl>
<p>The following options control how the assembly code is annotated:
</p>
<dl compact="compact">
<dt><code>-misize</code></dt>
<dd><a name="index-misize"></a>
<p>Annotate assembler instructions with estimated addresses.
</p>
</dd>
<dt><code>-mannotate-align</code></dt>
<dd><a name="index-mannotate_002dalign"></a>
<p>Explain what alignment considerations lead to the decision to make an
instruction short or long.
</p>
</dd>
</dl>
<p>The following options are passed through to the linker:
</p>
<dl compact="compact">
<dt><code>-marclinux</code></dt>
<dd><a name="index-marclinux"></a>
<p>Passed through to the linker, to specify use of the <code>arclinux</code> emulation.
This option is enabled by default in tool chains built for
<code><span class="nolinebreak">arc-linux-uclibc</span></code><!-- /@w --> and <code><span class="nolinebreak">arceb-linux-uclibc</span></code><!-- /@w --> targets
when profiling is not requested.
</p>
</dd>
<dt><code>-marclinux_prof</code></dt>
<dd><a name="index-marclinux_005fprof"></a>
<p>Passed through to the linker, to specify use of the
<code>arclinux_prof</code> emulation. This option is enabled by default in
tool chains built for <code><span class="nolinebreak">arc-linux-uclibc</span></code><!-- /@w --> and
<code><span class="nolinebreak">arceb-linux-uclibc</span></code><!-- /@w --> targets when profiling is requested.
</p>
</dd>
</dl>
<p>The following options control the semantics of generated code:
</p>
<dl compact="compact">
<dt><code>-mlong-calls</code></dt>
<dd><a name="index-mlong_002dcalls-1"></a>
<p>Generate calls as register indirect calls, thus providing access
to the full 32-bit address range.
</p>
</dd>
<dt><code>-mmedium-calls</code></dt>
<dd><a name="index-mmedium_002dcalls"></a>
<p>Don’t use less than 25-bit addressing range for calls, which is the
offset available for an unconditional branch-and-link
instruction. Conditional execution of function calls is suppressed, to
allow use of the 25-bit range, rather than the 21-bit range with
conditional branch-and-link. This is the default for tool chains built
for <code><span class="nolinebreak">arc-linux-uclibc</span></code><!-- /@w --> and <code><span class="nolinebreak">arceb-linux-uclibc</span></code><!-- /@w --> targets.
</p>
</dd>
<dt><code>-G <var>num</var></code></dt>
<dd><a name="index-G"></a>
<p>Put definitions of externally-visible data in a small data section if
that data is no bigger than <var>num</var> bytes. The default value of
<var>num</var> is 4 for any ARC configuration, or 8 when we have double
load/store operations.
</p>
</dd>
<dt><code>-mno-sdata</code></dt>
<dd><a name="index-mno_002dsdata"></a>
<p>Do not generate sdata references. This is the default for tool chains
built for <code><span class="nolinebreak">arc-linux-uclibc</span></code><!-- /@w --> and <code><span class="nolinebreak">arceb-linux-uclibc</span></code><!-- /@w -->
targets.
</p>
</dd>
<dt><code>-mvolatile-cache</code></dt>
<dd><a name="index-mvolatile_002dcache"></a>
<p>Use ordinarily cached memory accesses for volatile references. This is the
default.
</p>
</dd>
<dt><code>-mno-volatile-cache</code></dt>
<dd><a name="index-mno_002dvolatile_002dcache"></a>
<p>Enable cache bypass for volatile references.
</p>
</dd>
</dl>
<p>The following options fine tune code generation:
</p><dl compact="compact">
<dt><code>-malign-call</code></dt>
<dd><a name="index-malign_002dcall"></a>
<p>Do alignment optimizations for call instructions.
</p>
</dd>
<dt><code>-mauto-modify-reg</code></dt>
<dd><a name="index-mauto_002dmodify_002dreg"></a>
<p>Enable the use of pre/post modify with register displacement.
</p>
</dd>
<dt><code>-mbbit-peephole</code></dt>
<dd><a name="index-mbbit_002dpeephole"></a>
<p>Enable bbit peephole2.
</p>
</dd>
<dt><code>-mno-brcc</code></dt>
<dd><a name="index-mno_002dbrcc"></a>
<p>This option disables a target-specific pass in <samp>arc_reorg</samp> to
generate compare-and-branch (<code>br<var>cc</var></code>) instructions.
It has no effect on
generation of these instructions driven by the combiner pass.
</p>
</dd>
<dt><code>-mcase-vector-pcrel</code></dt>
<dd><a name="index-mcase_002dvector_002dpcrel"></a>
<p>Use PC-relative switch case tables to enable case table shortening.
This is the default for <samp>-Os</samp>.
</p>
</dd>
<dt><code>-mcompact-casesi</code></dt>
<dd><a name="index-mcompact_002dcasesi"></a>
<p>Enable compact <code>casesi</code> pattern. This is the default for <samp>-Os</samp>,
and only available for ARCv1 cores.
</p>
</dd>
<dt><code>-mno-cond-exec</code></dt>
<dd><a name="index-mno_002dcond_002dexec"></a>
<p>Disable the ARCompact-specific pass to generate conditional
execution instructions.
</p>
<p>Due to delay slot scheduling and interactions between operand numbers,
literal sizes, instruction lengths, and the support for conditional execution,
the target-independent pass to generate conditional execution is often lacking,
so the ARC port has kept a special pass around that tries to find more
conditional execution generation opportunities after register allocation,
branch shortening, and delay slot scheduling have been done. This pass
generally, but not always, improves performance and code size, at the cost of
extra compilation time, which is why there is an option to switch it off.
If you have a problem with call instructions exceeding their allowable
offset range because they are conditionalized, you should consider using
<samp>-mmedium-calls</samp> instead.
</p>
</dd>
<dt><code>-mearly-cbranchsi</code></dt>
<dd><a name="index-mearly_002dcbranchsi"></a>
<p>Enable pre-reload use of the <code>cbranchsi</code> pattern.
</p>
</dd>
<dt><code>-mexpand-adddi</code></dt>
<dd><a name="index-mexpand_002dadddi"></a>
<p>Expand <code>adddi3</code> and <code>subdi3</code> at RTL generation time into
<code>add.f</code>, <code>adc</code> etc. This option is deprecated.
</p>
</dd>
<dt><code>-mindexed-loads</code></dt>
<dd><a name="index-mindexed_002dloads"></a>
<p>Enable the use of indexed loads. This can be problematic because some
optimizers then assume that indexed stores exist, which is not
the case.
</p>
</dd>
<dt><code>-mlra</code></dt>
<dd><a name="index-mlra"></a>
<p>Enable Local Register Allocation. This is still experimental for ARC,
so by default the compiler uses standard reload
(i.e. <samp>-mno-lra</samp>).
</p>
</dd>
<dt><code>-mlra-priority-none</code></dt>
<dd><a name="index-mlra_002dpriority_002dnone"></a>
<p>Don’t indicate any priority for target registers.
</p>
</dd>
<dt><code>-mlra-priority-compact</code></dt>
<dd><a name="index-mlra_002dpriority_002dcompact"></a>
<p>Indicate target register priority for r0..r3 / r12..r15.
</p>
</dd>
<dt><code>-mlra-priority-noncompact</code></dt>
<dd><a name="index-mlra_002dpriority_002dnoncompact"></a>
<p>Reduce target register priority for r0..r3 / r12..r15.
</p>
</dd>
<dt><code>-mno-millicode</code></dt>
<dd><a name="index-mno_002dmillicode"></a>
<p>When optimizing for size (using <samp>-Os</samp>), prologues and epilogues
that have to save or restore a large number of registers are often
shortened by using call to a special function in libgcc; this is
referred to as a <em>millicode</em> call. As these calls can pose
performance issues, and/or cause linking issues when linking in a
nonstandard way, this option is provided to turn off millicode call
generation.
</p>
</dd>
<dt><code>-mmixed-code</code></dt>
<dd><a name="index-mmixed_002dcode"></a>
<p>Tweak register allocation to help 16-bit instruction generation.
This generally has the effect of decreasing the average instruction size
while increasing the instruction count.
</p>
</dd>
<dt><code>-mq-class</code></dt>
<dd><a name="index-mq_002dclass"></a>
<p>Enable ‘<samp>q</samp>’ instruction alternatives.
This is the default for <samp>-Os</samp>.
</p>
</dd>
<dt><code>-mRcq</code></dt>
<dd><a name="index-mRcq"></a>
<p>Enable ‘<samp>Rcq</samp>’ constraint handling.
Most short code generation depends on this.
This is the default.
</p>
</dd>
<dt><code>-mRcw</code></dt>
<dd><a name="index-mRcw"></a>
<p>Enable ‘<samp>Rcw</samp>’ constraint handling.
Most ccfsm condexec mostly depends on this.
This is the default.
</p>
</dd>
<dt><code>-msize-level=<var>level</var></code></dt>
<dd><a name="index-msize_002dlevel"></a>
<p>Fine-tune size optimization with regards to instruction lengths and alignment.
The recognized values for <var>level</var> are:
</p><dl compact="compact">
<dt>‘<samp>0</samp>’</dt>
<dd><p>No size optimization. This level is deprecated and treated like ‘<samp>1</samp>’.
</p>
</dd>
<dt>‘<samp>1</samp>’</dt>
<dd><p>Short instructions are used opportunistically.
</p>
</dd>
<dt>‘<samp>2</samp>’</dt>
<dd><p>In addition, alignment of loops and of code after barriers are dropped.
</p>
</dd>
<dt>‘<samp>3</samp>’</dt>
<dd><p>In addition, optional data alignment is dropped, and the option <samp>Os</samp> is enabled.
</p>
</dd>
</dl>
<p>This defaults to ‘<samp>3</samp>’ when <samp>-Os</samp> is in effect. Otherwise,
the behavior when this is not set is equivalent to level ‘<samp>1</samp>’.
</p>
</dd>
<dt><code>-mtune=<var>cpu</var></code></dt>
<dd><a name="index-mtune-1"></a>
<p>Set instruction scheduling parameters for <var>cpu</var>, overriding any implied
by <samp>-mcpu=</samp>.
</p>
<p>Supported values for <var>cpu</var> are
</p>
<dl compact="compact">
<dt>‘<samp>ARC600</samp>’</dt>
<dd><p>Tune for ARC600 CPU.
</p>
</dd>
<dt>‘<samp>ARC601</samp>’</dt>
<dd><p>Tune for ARC601 CPU.
</p>
</dd>
<dt>‘<samp>ARC700</samp>’</dt>
<dd><p>Tune for ARC700 CPU with standard multiplier block.
</p>
</dd>
<dt>‘<samp>ARC700-xmac</samp>’</dt>
<dd><p>Tune for ARC700 CPU with XMAC block.
</p>
</dd>
<dt>‘<samp>ARC725D</samp>’</dt>
<dd><p>Tune for ARC725D CPU.
</p>
</dd>
<dt>‘<samp>ARC750D</samp>’</dt>
<dd><p>Tune for ARC750D CPU.
</p>
</dd>
</dl>
</dd>
<dt><code>-mmultcost=<var>num</var></code></dt>
<dd><a name="index-mmultcost"></a>
<p>Cost to assume for a multiply instruction, with ‘<samp>4</samp>’ being equal to a
normal instruction.
</p>
</dd>
<dt><code>-munalign-prob-threshold=<var>probability</var></code></dt>
<dd><a name="index-munalign_002dprob_002dthreshold"></a>
<p>Set probability threshold for unaligning branches.
When tuning for ‘<samp>ARC700</samp>’ and optimizing for speed, branches without
filled delay slot are preferably emitted unaligned and long, unless
profiling indicates that the probability for the branch to be taken
is below <var>probability</var>. See <a href="#Cross_002dprofiling">Cross-profiling</a>.
The default is (REG_BR_PROB_BASE/2), i.e. 5000.
</p>
</dd>
</dl>
<p>The following options are maintained for backward compatibility, but
are now deprecated and will be removed in a future release:
</p>
<dl compact="compact">
<dt><code>-margonaut</code></dt>
<dd><a name="index-margonaut"></a>
<p>Obsolete FPX.
</p>
</dd>
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig_002dendian-1"></a>
</dd>
<dt><code>-EB</code></dt>
<dd><a name="index-EB"></a>
<p>Compile code for big-endian targets. Use of these options is now
deprecated. Big-endian code is supported by configuring GCC to build
<code><span class="nolinebreak">arceb-elf32</span></code><!-- /@w --> and <code><span class="nolinebreak">arceb-linux-uclibc</span></code><!-- /@w --> targets,
for which big endian is the default.
</p>
</dd>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle_002dendian-1"></a>
</dd>
<dt><code>-EL</code></dt>
<dd><a name="index-EL"></a>
<p>Compile code for little-endian targets. Use of these options is now
deprecated. Little-endian code is supported by configuring GCC to build
<code><span class="nolinebreak">arc-elf32</span></code><!-- /@w --> and <code><span class="nolinebreak">arc-linux-uclibc</span></code><!-- /@w --> targets,
for which little endian is the default.
</p>
</dd>
<dt><code>-mbarrel_shifter</code></dt>
<dd><a name="index-mbarrel_005fshifter"></a>
<p>Replaced by <samp>-mbarrel-shifter</samp>.
</p>
</dd>
<dt><code>-mdpfp_compact</code></dt>
<dd><a name="index-mdpfp_005fcompact"></a>
<p>Replaced by <samp>-mdpfp-compact</samp>.
</p>
</dd>
<dt><code>-mdpfp_fast</code></dt>
<dd><a name="index-mdpfp_005ffast"></a>
<p>Replaced by <samp>-mdpfp-fast</samp>.
</p>
</dd>
<dt><code>-mdsp_packa</code></dt>
<dd><a name="index-mdsp_005fpacka"></a>
<p>Replaced by <samp>-mdsp-packa</samp>.
</p>
</dd>
<dt><code>-mEA</code></dt>
<dd><a name="index-mEA"></a>
<p>Replaced by <samp>-mea</samp>.
</p>
</dd>
<dt><code>-mmac_24</code></dt>
<dd><a name="index-mmac_005f24"></a>
<p>Replaced by <samp>-mmac-24</samp>.
</p>
</dd>
<dt><code>-mmac_d16</code></dt>
<dd><a name="index-mmac_005fd16"></a>
<p>Replaced by <samp>-mmac-d16</samp>.
</p>
</dd>
<dt><code>-mspfp_compact</code></dt>
<dd><a name="index-mspfp_005fcompact"></a>
<p>Replaced by <samp>-mspfp-compact</samp>.
</p>
</dd>
<dt><code>-mspfp_fast</code></dt>
<dd><a name="index-mspfp_005ffast"></a>
<p>Replaced by <samp>-mspfp-fast</samp>.
</p>
</dd>
<dt><code>-mtune=<var>cpu</var></code></dt>
<dd><a name="index-mtune-2"></a>
<p>Values ‘<samp>arc600</samp>’, ‘<samp>arc601</samp>’, ‘<samp>arc700</samp>’ and
‘<samp>arc700-xmac</samp>’ for <var>cpu</var> are replaced by ‘<samp>ARC600</samp>’,
‘<samp>ARC601</samp>’, ‘<samp>ARC700</samp>’ and ‘<samp>ARC700-xmac</samp>’ respectively.
</p>
</dd>
<dt><code>-multcost=<var>num</var></code></dt>
<dd><a name="index-multcost"></a>
<p>Replaced by <samp>-mmultcost</samp>.
</p>
</dd>
</dl>
<hr>
<a name="ARM-Options"></a>
<div class="header">
<p>
Next: <a href="#AVR-Options" accesskey="n" rel="next">AVR Options</a>, Previous: <a href="#ARC-Options" accesskey="p" rel="prev">ARC Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARM-Options-1"></a>
<h4 class="subsection">3.18.4 ARM Options</h4>
<a name="index-ARM-options"></a>
<p>These ‘<samp>-m</samp>’ options are defined for the ARM port:
</p>
<dl compact="compact">
<dt><code>-mabi=<var>name</var></code></dt>
<dd><a name="index-mabi-1"></a>
<p>Generate code for the specified ABI. Permissible values are: ‘<samp>apcs-gnu</samp>’,
‘<samp>atpcs</samp>’, ‘<samp>aapcs</samp>’, ‘<samp>aapcs-linux</samp>’ and ‘<samp>iwmmxt</samp>’.
</p>
</dd>
<dt><code>-mapcs-frame</code></dt>
<dd><a name="index-mapcs_002dframe"></a>
<p>Generate a stack frame that is compliant with the ARM Procedure Call
Standard for all functions, even if this is not strictly necessary for
correct execution of the code. Specifying <samp>-fomit-frame-pointer</samp>
with this option causes the stack frames not to be generated for
leaf functions. The default is <samp>-mno-apcs-frame</samp>.
This option is deprecated.
</p>
</dd>
<dt><code>-mapcs</code></dt>
<dd><a name="index-mapcs"></a>
<p>This is a synonym for <samp>-mapcs-frame</samp> and is deprecated.
</p>
</dd>
<dt><code>-mthumb-interwork</code></dt>
<dd><a name="index-mthumb_002dinterwork"></a>
<p>Generate code that supports calling between the ARM and Thumb
instruction sets. Without this option, on pre-v5 architectures, the
two instruction sets cannot be reliably used inside one program. The
default is <samp>-mno-thumb-interwork</samp>, since slightly larger code
is generated when <samp>-mthumb-interwork</samp> is specified. In AAPCS
configurations this option is meaningless.
</p>
</dd>
<dt><code>-mno-sched-prolog</code></dt>
<dd><a name="index-mno_002dsched_002dprolog"></a>
<p>Prevent the reordering of instructions in the function prologue, or the
merging of those instruction with the instructions in the function’s
body. This means that all functions start with a recognizable set
of instructions (or in fact one of a choice from a small set of
different function prologues), and this information can be used to
locate the start of functions inside an executable piece of code. The
default is <samp>-msched-prolog</samp>.
</p>
</dd>
<dt><code>-mfloat-abi=<var>name</var></code></dt>
<dd><a name="index-mfloat_002dabi"></a>
<p>Specifies which floating-point ABI to use. Permissible values
are: ‘<samp>soft</samp>’, ‘<samp>softfp</samp>’ and ‘<samp>hard</samp>’.
</p>
<p>Specifying ‘<samp>soft</samp>’ causes GCC to generate output containing
library calls for floating-point operations.
‘<samp>softfp</samp>’ allows the generation of code using hardware floating-point
instructions, but still uses the soft-float calling conventions.
‘<samp>hard</samp>’ allows generation of floating-point instructions
and uses FPU-specific calling conventions.
</p>
<p>The default depends on the specific target configuration. Note that
the hard-float and soft-float ABIs are not link-compatible; you must
compile your entire program with the same ABI, and link with a
compatible set of libraries.
</p>
</dd>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle_002dendian-2"></a>
<p>Generate code for a processor running in little-endian mode. This is
the default for all standard configurations.
</p>
</dd>
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig_002dendian-2"></a>
<p>Generate code for a processor running in big-endian mode; the default is
to compile code for a little-endian processor.
</p>
</dd>
<dt><code>-mbe8</code></dt>
<dt><code>-mbe32</code></dt>
<dd><a name="index-mbe8"></a>
<p>When linking a big-endian image select between BE8 and BE32 formats.
The option has no effect for little-endian images and is ignored. The
default is dependent on the selected target architecture. For ARMv6
and later architectures the default is BE8, for older architectures
the default is BE32. BE32 format has been deprecated by ARM.
</p>
</dd>
<dt><code>-march=<var>name</var><span class="roman">[</span>+extension…<span class="roman">]</span></code></dt>
<dd><a name="index-march-1"></a>
<p>This specifies the name of the target ARM architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. This option can be used in conjunction with or instead
of the <samp>-mcpu=</samp> option.
</p>
<p>Permissible names are:
‘<samp>armv4t</samp>’,
‘<samp>armv5t</samp>’, ‘<samp>armv5te</samp>’,
‘<samp>armv6</samp>’, ‘<samp>armv6j</samp>’, ‘<samp>armv6k</samp>’, ‘<samp>armv6kz</samp>’, ‘<samp>armv6t2</samp>’,
‘<samp>armv6z</samp>’, ‘<samp>armv6zk</samp>’,
‘<samp>armv7</samp>’, ‘<samp>armv7-a</samp>’, ‘<samp>armv7ve</samp>’,
‘<samp>armv8-a</samp>’, ‘<samp>armv8.1-a</samp>’, ‘<samp>armv8.2-a</samp>’, ‘<samp>armv8.3-a</samp>’,
‘<samp>armv8.4-a</samp>’,
‘<samp>armv7-r</samp>’,
‘<samp>armv8-r</samp>’,
‘<samp>armv6-m</samp>’, ‘<samp>armv6s-m</samp>’,
‘<samp>armv7-m</samp>’, ‘<samp>armv7e-m</samp>’,
‘<samp>armv8-m.base</samp>’, ‘<samp>armv8-m.main</samp>’,
‘<samp>iwmmxt</samp>’ and ‘<samp>iwmmxt2</samp>’.
</p>
<p>Additionally, the following architectures, which lack support for the
Thumb execution state, are recognized but support is deprecated:
‘<samp>armv2</samp>’, ‘<samp>armv2a</samp>’, ‘<samp>armv3</samp>’, ‘<samp>armv3m</samp>’,
‘<samp>armv4</samp>’, ‘<samp>armv5</samp>’ and ‘<samp>armv5e</samp>’.
</p>
<p>Many of the architectures support extensions. These can be added by
appending ‘<samp>+<var>extension</var></samp>’ to the architecture name. Extension
options are processed in order and capabilities accumulate. An extension
will also enable any necessary base extensions
upon which it depends. For example, the ‘<samp>+crypto</samp>’ extension
will always enable the ‘<samp>+simd</samp>’ extension. The exception to the
additive construction is for extensions that are prefixed with
‘<samp>+no…</samp>’: these extensions disable the specified option and
any other extensions that may depend on the presence of that
extension.
</p>
<p>For example, ‘<samp>-march=armv7-a+simd+nofp+vfpv4</samp>’ is equivalent to
writing ‘<samp>-march=armv7-a+vfpv4</samp>’ since the ‘<samp>+simd</samp>’ option is
entirely disabled by the ‘<samp>+nofp</samp>’ option that follows it.
</p>
<p>Most extension names are generically named, but have an effect that is
dependent upon the architecture to which it is applied. For example,
the ‘<samp>+simd</samp>’ option can be applied to both ‘<samp>armv7-a</samp>’ and
‘<samp>armv8-a</samp>’ architectures, but will enable the original ARMv7-A
Advanced SIMD (Neon) extensions for ‘<samp>armv7-a</samp>’ and the ARMv8-A
variant for ‘<samp>armv8-a</samp>’.
</p>
<p>The table below lists the supported extensions for each architecture.
Architectures not mentioned do not support any extensions.
</p>
<dl compact="compact">
<dt>‘<samp>armv5e</samp>’</dt>
<dt>‘<samp>armv5te</samp>’</dt>
<dt>‘<samp>armv6</samp>’</dt>
<dt>‘<samp>armv6j</samp>’</dt>
<dt>‘<samp>armv6k</samp>’</dt>
<dt>‘<samp>armv6kz</samp>’</dt>
<dt>‘<samp>armv6t2</samp>’</dt>
<dt>‘<samp>armv6z</samp>’</dt>
<dt>‘<samp>armv6zk</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+fp</samp>’</dt>
<dd><p>The VFPv2 floating-point instructions. The extension ‘<samp>+vfpv2</samp>’ can be
used as an alias for this extension.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point instructions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv7</samp>’</dt>
<dd><p>The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
</p><dl compact="compact">
<dt>‘<samp>+fp</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 16 double-precision
registers. The extension ‘<samp>+vfpv3-d16</samp>’ can be used as an alias
for this extension. Note that floating-point is not supported by the
base ARMv7-M architecture, but is compatible with both the ARMv7-A and
ARMv7-R architectures.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point instructions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv7-a</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+fp</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 16 double-precision
registers. The extension ‘<samp>+vfpv3-d16</samp>’ can be used as an alias
for this extension.
</p>
</dd>
<dt>‘<samp>+simd</samp>’</dt>
<dd><p>The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
The extensions ‘<samp>+neon</samp>’ and ‘<samp>+neon-vfpv3</samp>’ can be used as aliases
for this extension.
</p>
</dd>
<dt>‘<samp>+vfpv3</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 32 double-precision
registers.
</p>
</dd>
<dt>‘<samp>+vfpv3-d16-fp16</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 16 double-precision
registers and the half-precision floating-point conversion operations.
</p>
</dd>
<dt>‘<samp>+vfpv3-fp16</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 32 double-precision
registers and the half-precision floating-point conversion operations.
</p>
</dd>
<dt>‘<samp>+vfpv4-d16</samp>’</dt>
<dd><p>The VFPv4 floating-point instructions, with 16 double-precision
registers.
</p>
</dd>
<dt>‘<samp>+vfpv4</samp>’</dt>
<dd><p>The VFPv4 floating-point instructions, with 32 double-precision
registers.
</p>
</dd>
<dt>‘<samp>+neon-fp16</samp>’</dt>
<dd><p>The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
the half-precision floating-point conversion operations.
</p>
</dd>
<dt>‘<samp>+neon-vfpv4</samp>’</dt>
<dd><p>The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
</p>
</dd>
<dt>‘<samp>+nosimd</samp>’</dt>
<dd><p>Disable the Advanced SIMD instructions (does not disable floating point).
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point and Advanced SIMD instructions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv7ve</samp>’</dt>
<dd><p>The extended version of the ARMv7-A architecture with support for
virtualization.
</p><dl compact="compact">
<dt>‘<samp>+fp</samp>’</dt>
<dd><p>The VFPv4 floating-point instructions, with 16 double-precision registers.
The extension ‘<samp>+vfpv4-d16</samp>’ can be used as an alias for this extension.
</p>
</dd>
<dt>‘<samp>+simd</samp>’</dt>
<dd><p>The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
extension ‘<samp>+neon-vfpv4</samp>’ can be used as an alias for this extension.
</p>
</dd>
<dt>‘<samp>+vfpv3-d16</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 16 double-precision
registers.
</p>
</dd>
<dt>‘<samp>+vfpv3</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 32 double-precision
registers.
</p>
</dd>
<dt>‘<samp>+vfpv3-d16-fp16</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 16 double-precision
registers and the half-precision floating-point conversion operations.
</p>
</dd>
<dt>‘<samp>+vfpv3-fp16</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions, with 32 double-precision
registers and the half-precision floating-point conversion operations.
</p>
</dd>
<dt>‘<samp>+vfpv4-d16</samp>’</dt>
<dd><p>The VFPv4 floating-point instructions, with 16 double-precision
registers.
</p>
</dd>
<dt>‘<samp>+vfpv4</samp>’</dt>
<dd><p>The VFPv4 floating-point instructions, with 32 double-precision
registers.
</p>
</dd>
<dt>‘<samp>+neon</samp>’</dt>
<dd><p>The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
The extension ‘<samp>+neon-vfpv3</samp>’ can be used as an alias for this extension.
</p>
</dd>
<dt>‘<samp>+neon-fp16</samp>’</dt>
<dd><p>The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
the half-precision floating-point conversion operations.
</p>
</dd>
<dt>‘<samp>+nosimd</samp>’</dt>
<dd><p>Disable the Advanced SIMD instructions (does not disable floating point).
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point and Advanced SIMD instructions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv8-a</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+crc</samp>’</dt>
<dd><p>The Cyclic Redundancy Check (CRC) instructions.
</p></dd>
<dt>‘<samp>+simd</samp>’</dt>
<dd><p>The ARMv8-A Advanced SIMD and floating-point instructions.
</p></dd>
<dt>‘<samp>+crypto</samp>’</dt>
<dd><p>The cryptographic instructions.
</p></dd>
<dt>‘<samp>+nocrypto</samp>’</dt>
<dd><p>Disable the cryptographic instructions.
</p></dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point, Advanced SIMD and cryptographic instructions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv8.1-a</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+simd</samp>’</dt>
<dd><p>The ARMv8.1-A Advanced SIMD and floating-point instructions.
</p>
</dd>
<dt>‘<samp>+crypto</samp>’</dt>
<dd><p>The cryptographic instructions. This also enables the Advanced SIMD and
floating-point instructions.
</p>
</dd>
<dt>‘<samp>+nocrypto</samp>’</dt>
<dd><p>Disable the cryptographic instructions.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point, Advanced SIMD and cryptographic instructions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv8.2-a</samp>’</dt>
<dt>‘<samp>armv8.3-a</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+fp16</samp>’</dt>
<dd><p>The half-precision floating-point data processing instructions.
This also enables the Advanced SIMD and floating-point instructions.
</p>
</dd>
<dt>‘<samp>+fp16fml</samp>’</dt>
<dd><p>The half-precision floating-point fmla extension. This also enables
the half-precision floating-point extension and Advanced SIMD and
floating-point instructions.
</p>
</dd>
<dt>‘<samp>+simd</samp>’</dt>
<dd><p>The ARMv8.1-A Advanced SIMD and floating-point instructions.
</p>
</dd>
<dt>‘<samp>+crypto</samp>’</dt>
<dd><p>The cryptographic instructions. This also enables the Advanced SIMD and
floating-point instructions.
</p>
</dd>
<dt>‘<samp>+dotprod</samp>’</dt>
<dd><p>Enable the Dot Product extension. This also enables Advanced SIMD instructions.
</p>
</dd>
<dt>‘<samp>+nocrypto</samp>’</dt>
<dd><p>Disable the cryptographic extension.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point, Advanced SIMD and cryptographic instructions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv8.4-a</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+fp16</samp>’</dt>
<dd><p>The half-precision floating-point data processing instructions.
This also enables the Advanced SIMD and floating-point instructions as well
as the Dot Product extension and the half-precision floating-point fmla
extension.
</p>
</dd>
<dt>‘<samp>+simd</samp>’</dt>
<dd><p>The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
Dot Product extension.
</p>
</dd>
<dt>‘<samp>+crypto</samp>’</dt>
<dd><p>The cryptographic instructions. This also enables the Advanced SIMD and
floating-point instructions as well as the Dot Product extension.
</p>
</dd>
<dt>‘<samp>+nocrypto</samp>’</dt>
<dd><p>Disable the cryptographic extension.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point, Advanced SIMD and cryptographic instructions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv7-r</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+fp.sp</samp>’</dt>
<dd><p>The single-precision VFPv3 floating-point instructions. The extension
‘<samp>+vfpv3xd</samp>’ can be used as an alias for this extension.
</p>
</dd>
<dt>‘<samp>+fp</samp>’</dt>
<dd><p>The VFPv3 floating-point instructions with 16 double-precision registers.
The extension +vfpv3-d16 can be used as an alias for this extension.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point extension.
</p>
</dd>
<dt>‘<samp>+idiv</samp>’</dt>
<dd><p>The ARM-state integer division instructions.
</p>
</dd>
<dt>‘<samp>+noidiv</samp>’</dt>
<dd><p>Disable the ARM-state integer division extension.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv7e-m</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+fp</samp>’</dt>
<dd><p>The single-precision VFPv4 floating-point instructions.
</p>
</dd>
<dt>‘<samp>+fpv5</samp>’</dt>
<dd><p>The single-precision FPv5 floating-point instructions.
</p>
</dd>
<dt>‘<samp>+fp.dp</samp>’</dt>
<dd><p>The single- and double-precision FPv5 floating-point instructions.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point extensions.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv8-m.main</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+dsp</samp>’</dt>
<dd><p>The DSP instructions.
</p>
</dd>
<dt>‘<samp>+nodsp</samp>’</dt>
<dd><p>Disable the DSP extension.
</p>
</dd>
<dt>‘<samp>+fp</samp>’</dt>
<dd><p>The single-precision floating-point instructions.
</p>
</dd>
<dt>‘<samp>+fp.dp</samp>’</dt>
<dd><p>The single- and double-precision floating-point instructions.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point extension.
</p></dd>
</dl>
</dd>
<dt>‘<samp>armv8-r</samp>’</dt>
<dd><dl compact="compact">
<dt>‘<samp>+crc</samp>’</dt>
<dd><p>The Cyclic Redundancy Check (CRC) instructions.
</p></dd>
<dt>‘<samp>+fp.sp</samp>’</dt>
<dd><p>The single-precision FPv5 floating-point instructions.
</p></dd>
<dt>‘<samp>+simd</samp>’</dt>
<dd><p>The ARMv8-A Advanced SIMD and floating-point instructions.
</p></dd>
<dt>‘<samp>+crypto</samp>’</dt>
<dd><p>The cryptographic instructions.
</p></dd>
<dt>‘<samp>+nocrypto</samp>’</dt>
<dd><p>Disable the cryptographic instructions.
</p></dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disable the floating-point, Advanced SIMD and cryptographic instructions.
</p></dd>
</dl>
</dd>
</dl>
<p><samp>-march=native</samp> causes the compiler to auto-detect the architecture
of the build computer. At present, this feature is only supported on
GNU/Linux, and not all architectures are recognized. If the auto-detect
is unsuccessful the option has no effect.
</p>
</dd>
<dt><code>-mtune=<var>name</var></code></dt>
<dd><a name="index-mtune-3"></a>
<p>This option specifies the name of the target ARM processor for
which GCC should tune the performance of the code.
For some ARM implementations better performance can be obtained by using
this option.
Permissible names are: ‘<samp>arm2</samp>’, ‘<samp>arm250</samp>’,
‘<samp>arm3</samp>’, ‘<samp>arm6</samp>’, ‘<samp>arm60</samp>’, ‘<samp>arm600</samp>’, ‘<samp>arm610</samp>’,
‘<samp>arm620</samp>’, ‘<samp>arm7</samp>’, ‘<samp>arm7m</samp>’, ‘<samp>arm7d</samp>’, ‘<samp>arm7dm</samp>’,
‘<samp>arm7di</samp>’, ‘<samp>arm7dmi</samp>’, ‘<samp>arm70</samp>’, ‘<samp>arm700</samp>’,
‘<samp>arm700i</samp>’, ‘<samp>arm710</samp>’, ‘<samp>arm710c</samp>’, ‘<samp>arm7100</samp>’,
‘<samp>arm720</samp>’,
‘<samp>arm7500</samp>’, ‘<samp>arm7500fe</samp>’, ‘<samp>arm7tdmi</samp>’, ‘<samp>arm7tdmi-s</samp>’,
‘<samp>arm710t</samp>’, ‘<samp>arm720t</samp>’, ‘<samp>arm740t</samp>’,
‘<samp>strongarm</samp>’, ‘<samp>strongarm110</samp>’, ‘<samp>strongarm1100</samp>’,
‘<samp>strongarm1110</samp>’,
‘<samp>arm8</samp>’, ‘<samp>arm810</samp>’, ‘<samp>arm9</samp>’, ‘<samp>arm9e</samp>’, ‘<samp>arm920</samp>’,
‘<samp>arm920t</samp>’, ‘<samp>arm922t</samp>’, ‘<samp>arm946e-s</samp>’, ‘<samp>arm966e-s</samp>’,
‘<samp>arm968e-s</samp>’, ‘<samp>arm926ej-s</samp>’, ‘<samp>arm940t</samp>’, ‘<samp>arm9tdmi</samp>’,
‘<samp>arm10tdmi</samp>’, ‘<samp>arm1020t</samp>’, ‘<samp>arm1026ej-s</samp>’,
‘<samp>arm10e</samp>’, ‘<samp>arm1020e</samp>’, ‘<samp>arm1022e</samp>’,
‘<samp>arm1136j-s</samp>’, ‘<samp>arm1136jf-s</samp>’, ‘<samp>mpcore</samp>’, ‘<samp>mpcorenovfp</samp>’,
‘<samp>arm1156t2-s</samp>’, ‘<samp>arm1156t2f-s</samp>’, ‘<samp>arm1176jz-s</samp>’, ‘<samp>arm1176jzf-s</samp>’,
‘<samp>generic-armv7-a</samp>’, ‘<samp>cortex-a5</samp>’, ‘<samp>cortex-a7</samp>’, ‘<samp>cortex-a8</samp>’,
‘<samp>cortex-a9</samp>’, ‘<samp>cortex-a12</samp>’, ‘<samp>cortex-a15</samp>’, ‘<samp>cortex-a17</samp>’,
‘<samp>cortex-a32</samp>’, ‘<samp>cortex-a35</samp>’, ‘<samp>cortex-a53</samp>’, ‘<samp>cortex-a55</samp>’,
‘<samp>cortex-a57</samp>’, ‘<samp>cortex-a72</samp>’, ‘<samp>cortex-a73</samp>’, ‘<samp>cortex-a75</samp>’,
‘<samp>cortex-r4</samp>’, ‘<samp>cortex-r4f</samp>’, ‘<samp>cortex-r5</samp>’, ‘<samp>cortex-r7</samp>’,
‘<samp>cortex-r8</samp>’, ‘<samp>cortex-r52</samp>’,
‘<samp>cortex-m33</samp>’,
‘<samp>cortex-m23</samp>’,
‘<samp>cortex-m7</samp>’,
‘<samp>cortex-m4</samp>’,
‘<samp>cortex-m3</samp>’,
‘<samp>cortex-m1</samp>’,
‘<samp>cortex-m0</samp>’,
‘<samp>cortex-m0plus</samp>’,
‘<samp>cortex-m1.small-multiply</samp>’,
‘<samp>cortex-m0.small-multiply</samp>’,
‘<samp>cortex-m0plus.small-multiply</samp>’,
‘<samp>exynos-m1</samp>’,
‘<samp>marvell-pj4</samp>’,
‘<samp>xscale</samp>’, ‘<samp>iwmmxt</samp>’, ‘<samp>iwmmxt2</samp>’, ‘<samp>ep9312</samp>’,
‘<samp>fa526</samp>’, ‘<samp>fa626</samp>’,
‘<samp>fa606te</samp>’, ‘<samp>fa626te</samp>’, ‘<samp>fmp626</samp>’, ‘<samp>fa726te</samp>’,
‘<samp>xgene1</samp>’.
</p>
<p>Additionally, this option can specify that GCC should tune the performance
of the code for a big.LITTLE system. Permissible names are:
‘<samp>cortex-a15.cortex-a7</samp>’, ‘<samp>cortex-a17.cortex-a7</samp>’,
‘<samp>cortex-a57.cortex-a53</samp>’, ‘<samp>cortex-a72.cortex-a53</samp>’,
‘<samp>cortex-a72.cortex-a35</samp>’, ‘<samp>cortex-a73.cortex-a53</samp>’,
‘<samp>cortex-a75.cortex-a55</samp>’.
</p>
<p><samp>-mtune=generic-<var>arch</var></samp> specifies that GCC should tune the
performance for a blend of processors within architecture <var>arch</var>.
The aim is to generate code that run well on the current most popular
processors, balancing between optimizations that benefit some CPUs in the
range, and avoiding performance pitfalls of other CPUs. The effects of
this option may change in future GCC versions as CPU models come and go.
</p>
<p><samp>-mtune</samp> permits the same extension options as <samp>-mcpu</samp>, but
the extension options do not affect the tuning of the generated code.
</p>
<p><samp>-mtune=native</samp> causes the compiler to auto-detect the CPU
of the build computer. At present, this feature is only supported on
GNU/Linux, and not all architectures are recognized. If the auto-detect is
unsuccessful the option has no effect.
</p>
</dd>
<dt><code>-mcpu=<var>name</var><span class="roman">[</span>+extension…<span class="roman">]</span></code></dt>
<dd><a name="index-mcpu-2"></a>
<p>This specifies the name of the target ARM processor. GCC uses this name
to derive the name of the target ARM architecture (as if specified
by <samp>-march</samp>) and the ARM processor type for which to tune for
performance (as if specified by <samp>-mtune</samp>). Where this option
is used in conjunction with <samp>-march</samp> or <samp>-mtune</samp>,
those options take precedence over the appropriate part of this option.
</p>
<p>Many of the supported CPUs implement optional architectural
extensions. Where this is so the architectural extensions are
normally enabled by default. If implementations that lack the
extension exist, then the extension syntax can be used to disable
those extensions that have been omitted. For floating-point and
Advanced SIMD (Neon) instructions, the settings of the options
<samp>-mfloat-abi</samp> and <samp>-mfpu</samp> must also be considered:
floating-point and Advanced SIMD instructions will only be used if
<samp>-mfloat-abi</samp> is not set to ‘<samp>soft</samp>’; and any setting of
<samp>-mfpu</samp> other than ‘<samp>auto</samp>’ will override the available
floating-point and SIMD extension instructions.
</p>
<p>For example, ‘<samp>cortex-a9</samp>’ can be found in three major
configurations: integer only, with just a floating-point unit or with
floating-point and Advanced SIMD. The default is to enable all the
instructions, but the extensions ‘<samp>+nosimd</samp>’ and ‘<samp>+nofp</samp>’ can
be used to disable just the SIMD or both the SIMD and floating-point
instructions respectively.
</p>
<p>Permissible names for this option are the same as those for
<samp>-mtune</samp>.
</p>
<p>The following extension options are common to the listed CPUs:
</p>
<dl compact="compact">
<dt>‘<samp>+nodsp</samp>’</dt>
<dd><p>Disable the DSP instructions on ‘<samp>cortex-m33</samp>’.
</p>
</dd>
<dt>‘<samp>+nofp</samp>’</dt>
<dd><p>Disables the floating-point instructions on ‘<samp>arm9e</samp>’,
‘<samp>arm946e-s</samp>’, ‘<samp>arm966e-s</samp>’, ‘<samp>arm968e-s</samp>’, ‘<samp>arm10e</samp>’,
‘<samp>arm1020e</samp>’, ‘<samp>arm1022e</samp>’, ‘<samp>arm926ej-s</samp>’,
‘<samp>arm1026ej-s</samp>’, ‘<samp>cortex-r5</samp>’, ‘<samp>cortex-r7</samp>’, ‘<samp>cortex-r8</samp>’,
‘<samp>cortex-m4</samp>’, ‘<samp>cortex-m7</samp>’ and ‘<samp>cortex-m33</samp>’.
Disables the floating-point and SIMD instructions on
‘<samp>generic-armv7-a</samp>’, ‘<samp>cortex-a5</samp>’, ‘<samp>cortex-a7</samp>’,
‘<samp>cortex-a8</samp>’, ‘<samp>cortex-a9</samp>’, ‘<samp>cortex-a12</samp>’,
‘<samp>cortex-a15</samp>’, ‘<samp>cortex-a17</samp>’, ‘<samp>cortex-a15.cortex-a7</samp>’,
‘<samp>cortex-a17.cortex-a7</samp>’, ‘<samp>cortex-a32</samp>’, ‘<samp>cortex-a35</samp>’,
‘<samp>cortex-a53</samp>’ and ‘<samp>cortex-a55</samp>’.
</p>
</dd>
<dt>‘<samp>+nofp.dp</samp>’</dt>
<dd><p>Disables the double-precision component of the floating-point instructions
on ‘<samp>cortex-r5</samp>’, ‘<samp>cortex-r52</samp>’ and ‘<samp>cortex-m7</samp>’.
</p>
</dd>
<dt>‘<samp>+nosimd</samp>’</dt>
<dd><p>Disables the SIMD (but not floating-point) instructions on
‘<samp>generic-armv7-a</samp>’, ‘<samp>cortex-a5</samp>’, ‘<samp>cortex-a7</samp>’
and ‘<samp>cortex-a9</samp>’.
</p>
</dd>
<dt>‘<samp>+crypto</samp>’</dt>
<dd><p>Enables the cryptographic instructions on ‘<samp>cortex-a32</samp>’,
‘<samp>cortex-a35</samp>’, ‘<samp>cortex-a53</samp>’, ‘<samp>cortex-a55</samp>’, ‘<samp>cortex-a57</samp>’,
‘<samp>cortex-a72</samp>’, ‘<samp>cortex-a73</samp>’, ‘<samp>cortex-a75</samp>’, ‘<samp>exynos-m1</samp>’,
‘<samp>xgene1</samp>’, ‘<samp>cortex-a57.cortex-a53</samp>’, ‘<samp>cortex-a72.cortex-a53</samp>’,
‘<samp>cortex-a73.cortex-a35</samp>’, ‘<samp>cortex-a73.cortex-a53</samp>’ and
‘<samp>cortex-a75.cortex-a55</samp>’.
</p></dd>
</dl>
<p>Additionally the ‘<samp>generic-armv7-a</samp>’ pseudo target defaults to
VFPv3 with 16 double-precision registers. It supports the following
extension options: ‘<samp>vfpv3-d16</samp>’, ‘<samp>vfpv3</samp>’,
‘<samp>vfpv3-d16-fp16</samp>’, ‘<samp>vfpv3-fp16</samp>’, ‘<samp>vfpv4-d16</samp>’,
‘<samp>vfpv4</samp>’, ‘<samp>neon</samp>’, ‘<samp>neon-vfpv3</samp>’, ‘<samp>neon-fp16</samp>’,
‘<samp>neon-vfpv4</samp>’. The meanings are the same as for the extensions to
<samp>-march=armv7-a</samp>.
</p>
<p><samp>-mcpu=generic-<var>arch</var></samp> is also permissible, and is
equivalent to <samp>-march=<var>arch</var> -mtune=generic-<var>arch</var></samp>.
See <samp>-mtune</samp> for more information.
</p>
<p><samp>-mcpu=native</samp> causes the compiler to auto-detect the CPU
of the build computer. At present, this feature is only supported on
GNU/Linux, and not all architectures are recognized. If the auto-detect
is unsuccessful the option has no effect.
</p>
</dd>
<dt><code>-mfpu=<var>name</var></code></dt>
<dd><a name="index-mfpu-1"></a>
<p>This specifies what floating-point hardware (or hardware emulation) is
available on the target. Permissible names are: ‘<samp>auto</samp>’, ‘<samp>vfpv2</samp>’,
‘<samp>vfpv3</samp>’,
‘<samp>vfpv3-fp16</samp>’, ‘<samp>vfpv3-d16</samp>’, ‘<samp>vfpv3-d16-fp16</samp>’, ‘<samp>vfpv3xd</samp>’,
‘<samp>vfpv3xd-fp16</samp>’, ‘<samp>neon-vfpv3</samp>’, ‘<samp>neon-fp16</samp>’, ‘<samp>vfpv4</samp>’,
‘<samp>vfpv4-d16</samp>’, ‘<samp>fpv4-sp-d16</samp>’, ‘<samp>neon-vfpv4</samp>’,
‘<samp>fpv5-d16</samp>’, ‘<samp>fpv5-sp-d16</samp>’,
‘<samp>fp-armv8</samp>’, ‘<samp>neon-fp-armv8</samp>’ and ‘<samp>crypto-neon-fp-armv8</samp>’.
Note that ‘<samp>neon</samp>’ is an alias for ‘<samp>neon-vfpv3</samp>’ and ‘<samp>vfp</samp>’
is an alias for ‘<samp>vfpv2</samp>’.
</p>
<p>The setting ‘<samp>auto</samp>’ is the default and is special. It causes the
compiler to select the floating-point and Advanced SIMD instructions
based on the settings of <samp>-mcpu</samp> and <samp>-march</samp>.
</p>
<p>If the selected floating-point hardware includes the NEON extension
(e.g. <samp>-mfpu=neon</samp>), note that floating-point
operations are not generated by GCC’s auto-vectorization pass unless
<samp>-funsafe-math-optimizations</samp> is also specified. This is
because NEON hardware does not fully implement the IEEE 754 standard for
floating-point arithmetic (in particular denormal values are treated as
zero), so the use of NEON instructions may lead to a loss of precision.
</p>
<p>You can also set the fpu name at function level by using the <code>target("fpu=")</code> function attributes (see <a href="#ARM-Function-Attributes">ARM Function Attributes</a>) or pragmas (see <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>).
</p>
</dd>
<dt><code>-mfp16-format=<var>name</var></code></dt>
<dd><a name="index-mfp16_002dformat"></a>
<p>Specify the format of the <code>__fp16</code> half-precision floating-point type.
Permissible names are ‘<samp>none</samp>’, ‘<samp>ieee</samp>’, and ‘<samp>alternative</samp>’;
the default is ‘<samp>none</samp>’, in which case the <code>__fp16</code> type is not
defined. See <a href="#Half_002dPrecision">Half-Precision</a>, for more information.
</p>
</dd>
<dt><code>-mstructure-size-boundary=<var>n</var></code></dt>
<dd><a name="index-mstructure_002dsize_002dboundary"></a>
<p>The sizes of all structures and unions are rounded up to a multiple
of the number of bits set by this option. Permissible values are 8, 32
and 64. The default value varies for different toolchains. For the COFF
targeted toolchain the default value is 8. A value of 64 is only allowed
if the underlying ABI supports it.
</p>
<p>Specifying a larger number can produce faster, more efficient code, but
can also increase the size of the program. Different values are potentially
incompatible. Code compiled with one value cannot necessarily expect to
work with code or libraries compiled with another value, if they exchange
information using structures or unions.
</p>
<p>This option is deprecated.
</p>
</dd>
<dt><code>-mabort-on-noreturn</code></dt>
<dd><a name="index-mabort_002don_002dnoreturn"></a>
<p>Generate a call to the function <code>abort</code> at the end of a
<code>noreturn</code> function. It is executed if the function tries to
return.
</p>
</dd>
<dt><code>-mlong-calls</code></dt>
<dt><code>-mno-long-calls</code></dt>
<dd><a name="index-mlong_002dcalls-2"></a>
<a name="index-mno_002dlong_002dcalls"></a>
<p>Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register. This switch is needed if the target function
lies outside of the 64-megabyte addressing range of the offset-based
version of subroutine call instruction.
</p>
<p>Even if this switch is enabled, not all function calls are turned
into long calls. The heuristic is that static functions, functions
that have the <code>short_call</code> attribute, functions that are inside
the scope of a <code>#pragma no_long_calls</code> directive, and functions whose
definitions have already been compiled within the current compilation
unit are not turned into long calls. The exceptions to this rule are
that weak function definitions, functions with the <code>long_call</code>
attribute or the <code>section</code> attribute, and functions that are within
the scope of a <code>#pragma long_calls</code> directive are always
turned into long calls.
</p>
<p>This feature is not enabled by default. Specifying
<samp>-mno-long-calls</samp> restores the default behavior, as does
placing the function calls within the scope of a <code>#pragma
long_calls_off</code> directive. Note these switches have no effect on how
the compiler generates code to handle function calls via function
pointers.
</p>
</dd>
<dt><code>-msingle-pic-base</code></dt>
<dd><a name="index-msingle_002dpic_002dbase"></a>
<p>Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
</p>
</dd>
<dt><code>-mpic-register=<var>reg</var></code></dt>
<dd><a name="index-mpic_002dregister"></a>
<p>Specify the register to be used for PIC addressing.
For standard PIC base case, the default is any suitable register
determined by compiler. For single PIC base case, the default is
‘<samp>R9</samp>’ if target is EABI based or stack-checking is enabled,
otherwise the default is ‘<samp>R10</samp>’.
</p>
</dd>
<dt><code>-mpic-data-is-text-relative</code></dt>
<dd><a name="index-mpic_002ddata_002dis_002dtext_002drelative"></a>
<p>Assume that the displacement between the text and data segments is fixed
at static link time. This permits using PC-relative addressing
operations to access data known to be in the data segment. For
non-VxWorks RTP targets, this option is enabled by default. When
disabled on such targets, it will enable <samp>-msingle-pic-base</samp> by
default.
</p>
</dd>
<dt><code>-mpoke-function-name</code></dt>
<dd><a name="index-mpoke_002dfunction_002dname"></a>
<p>Write the name of each function into the text section, directly
preceding the function prologue. The generated code is similar to this:
</p>
<div class="smallexample">
<pre class="smallexample"> t0
.ascii "arm_poke_function_name", 0
.align
t1
.word 0xff000000 + (t1 - t0)
arm_poke_function_name
mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4
</pre></div>
<p>When performing a stack backtrace, code can inspect the value of
<code>pc</code> stored at <code>fp + 0</code>. If the trace function then looks at
location <code>pc - 12</code> and the top 8 bits are set, then we know that
there is a function name embedded immediately preceding this location
and has length <code>((pc[-3]) & 0xff000000)</code>.
</p>
</dd>
<dt><code>-mthumb</code></dt>
<dt><code>-marm</code></dt>
<dd><a name="index-marm"></a>
<a name="index-mthumb"></a>
<p>Select between generating code that executes in ARM and Thumb
states. The default for most configurations is to generate code
that executes in ARM state, but the default can be changed by
configuring GCC with the <samp>--with-mode=</samp><var>state</var>
configure option.
</p>
<p>You can also override the ARM and Thumb mode for each function
by using the <code>target("thumb")</code> and <code>target("arm")</code> function attributes
(see <a href="#ARM-Function-Attributes">ARM Function Attributes</a>) or pragmas (see <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>).
</p>
</dd>
<dt><code>-mflip-thumb</code></dt>
<dd><a name="index-mflip_002dthumb"></a>
<p>Switch ARM/Thumb modes on alternating functions.
This option is provided for regression testing of mixed Thumb/ARM code
generation, and is not intended for ordinary use in compiling code.
</p>
</dd>
<dt><code>-mtpcs-frame</code></dt>
<dd><a name="index-mtpcs_002dframe"></a>
<p>Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all non-leaf functions. (A leaf function is one that does
not call any other functions.) The default is <samp>-mno-tpcs-frame</samp>.
</p>
</dd>
<dt><code>-mtpcs-leaf-frame</code></dt>
<dd><a name="index-mtpcs_002dleaf_002dframe"></a>
<p>Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all leaf functions. (A leaf function is one that does
not call any other functions.) The default is <samp>-mno-apcs-leaf-frame</samp>.
</p>
</dd>
<dt><code>-mcallee-super-interworking</code></dt>
<dd><a name="index-mcallee_002dsuper_002dinterworking"></a>
<p>Gives all externally visible functions in the file being compiled an ARM
instruction set header which switches to Thumb mode before executing the
rest of the function. This allows these functions to be called from
non-interworking code. This option is not valid in AAPCS configurations
because interworking is enabled by default.
</p>
</dd>
<dt><code>-mcaller-super-interworking</code></dt>
<dd><a name="index-mcaller_002dsuper_002dinterworking"></a>
<p>Allows calls via function pointers (including virtual functions) to
execute correctly regardless of whether the target code has been
compiled for interworking or not. There is a small overhead in the cost
of executing a function pointer if this option is enabled. This option
is not valid in AAPCS configurations because interworking is enabled
by default.
</p>
</dd>
<dt><code>-mtp=<var>name</var></code></dt>
<dd><a name="index-mtp"></a>
<p>Specify the access model for the thread local storage pointer. The valid
models are ‘<samp>soft</samp>’, which generates calls to <code>__aeabi_read_tp</code>,
‘<samp>cp15</samp>’, which fetches the thread pointer from <code>cp15</code> directly
(supported in the arm6k architecture), and ‘<samp>auto</samp>’, which uses the
best available method for the selected processor. The default setting is
‘<samp>auto</samp>’.
</p>
</dd>
<dt><code>-mtls-dialect=<var>dialect</var></code></dt>
<dd><a name="index-mtls_002ddialect"></a>
<p>Specify the dialect to use for accessing thread local storage. Two
<var>dialect</var>s are supported—‘<samp>gnu</samp>’ and ‘<samp>gnu2</samp>’. The
‘<samp>gnu</samp>’ dialect selects the original GNU scheme for supporting
local and global dynamic TLS models. The ‘<samp>gnu2</samp>’ dialect
selects the GNU descriptor scheme, which provides better performance
for shared libraries. The GNU descriptor scheme is compatible with
the original scheme, but does require new assembler, linker and
library support. Initial and local exec TLS models are unaffected by
this option and always use the original scheme.
</p>
</dd>
<dt><code>-mword-relocations</code></dt>
<dd><a name="index-mword_002drelocations"></a>
<p>Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when <samp>-fpic</samp> or <samp>-fPIC</samp>
is specified.
</p>
</dd>
<dt><code>-mfix-cortex-m3-ldrd</code></dt>
<dd><a name="index-mfix_002dcortex_002dm3_002dldrd"></a>
<p>Some Cortex-M3 cores can cause data corruption when <code>ldrd</code> instructions
with overlapping destination and base registers are used. This option avoids
generating these instructions. This option is enabled by default when
<samp>-mcpu=cortex-m3</samp> is specified.
</p>
</dd>
<dt><code>-munaligned-access</code></dt>
<dt><code>-mno-unaligned-access</code></dt>
<dd><a name="index-munaligned_002daccess"></a>
<a name="index-mno_002dunaligned_002daccess"></a>
<p>Enables (or disables) reading and writing of 16- and 32- bit values
from addresses that are not 16- or 32- bit aligned. By default
unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
ARMv8-M Baseline architectures, and enabled for all other
architectures. If unaligned access is not enabled then words in packed
data structures are accessed a byte at a time.
</p>
<p>The ARM attribute <code>Tag_CPU_unaligned_access</code> is set in the
generated object file to either true or false, depending upon the
setting of this option. If unaligned access is enabled then the
preprocessor symbol <code>__ARM_FEATURE_UNALIGNED</code> is also
defined.
</p>
</dd>
<dt><code>-mneon-for-64bits</code></dt>
<dd><a name="index-mneon_002dfor_002d64bits"></a>
<p>Enables using Neon to handle scalar 64-bits operations. This is
disabled by default since the cost of moving data from core registers
to Neon is high.
</p>
</dd>
<dt><code>-mslow-flash-data</code></dt>
<dd><a name="index-mslow_002dflash_002ddata"></a>
<p>Assume loading data from flash is slower than fetching instruction.
Therefore literal load is minimized for better performance.
This option is only supported when compiling for ARMv7 M-profile and
off by default.
</p>
</dd>
<dt><code>-masm-syntax-unified</code></dt>
<dd><a name="index-masm_002dsyntax_002dunified"></a>
<p>Assume inline assembler is using unified asm syntax. The default is
currently off which implies divided syntax. This option has no impact
on Thumb2. However, this may change in future releases of GCC.
Divided syntax should be considered deprecated.
</p>
</dd>
<dt><code>-mrestrict-it</code></dt>
<dd><a name="index-mrestrict_002dit"></a>
<p>Restricts generation of IT blocks to conform to the rules of ARMv8-A.
IT blocks can only contain a single 16-bit instruction from a select
set of instructions. This option is on by default for ARMv8-A Thumb mode.
</p>
</dd>
<dt><code>-mprint-tune-info</code></dt>
<dd><a name="index-mprint_002dtune_002dinfo"></a>
<p>Print CPU tuning information as comment in assembler file. This is
an option used only for regression testing of the compiler and not
intended for ordinary use in compiling code. This option is disabled
by default.
</p>
</dd>
<dt><code>-mverbose-cost-dump</code></dt>
<dd><a name="index-mverbose_002dcost_002ddump-1"></a>
<p>Enable verbose cost model dumping in the debug dump files. This option is
provided for use in debugging the compiler.
</p>
</dd>
<dt><code>-mpure-code</code></dt>
<dd><a name="index-mpure_002dcode"></a>
<p>Do not allow constant data to be placed in code sections.
Additionally, when compiling for ELF object format give all text sections the
ELF processor-specific section attribute <code>SHF_ARM_PURECODE</code>. This option
is only available when generating non-pic code for M-profile targets with the
MOVT instruction.
</p>
</dd>
<dt><code>-mcmse</code></dt>
<dd><a name="index-mcmse"></a>
<p>Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
Development Tools Engineering Specification", which can be found on
<a href="http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf">http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf</a>.
</p></dd>
</dl>
<hr>
<a name="AVR-Options"></a>
<div class="header">
<p>
Next: <a href="#Blackfin-Options" accesskey="n" rel="next">Blackfin Options</a>, Previous: <a href="#ARM-Options" accesskey="p" rel="prev">ARM Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="AVR-Options-1"></a>
<h4 class="subsection">3.18.5 AVR Options</h4>
<a name="index-AVR-Options"></a>
<p>These options are defined for AVR implementations:
</p>
<dl compact="compact">
<dt><code>-mmcu=<var>mcu</var></code></dt>
<dd><a name="index-mmcu"></a>
<p>Specify Atmel AVR instruction set architectures (ISA) or MCU type.
</p>
<p>The default for this option is ‘<samp>avr2</samp>’.
</p>
<p>GCC supports the following AVR devices and ISAs:
</p>
<dl compact="compact">
<dt><code>avr2</code></dt>
<dd><p>“Classic” devices with up to 8 KiB of program memory.
<br><var>mcu</var> = <code>attiny22</code>, <code>attiny26</code>, <code>at90c8534</code>, <code>at90s2313</code>, <code>at90s2323</code>, <code>at90s2333</code>, <code>at90s2343</code>, <code>at90s4414</code>, <code>at90s4433</code>, <code>at90s4434</code>, <code>at90s8515</code>, <code>at90s8535</code>.
</p>
</dd>
<dt><code>avr25</code></dt>
<dd><p>“Classic” devices with up to 8 KiB of program memory and with the <code>MOVW</code> instruction.
<br><var>mcu</var> = <code>ata5272</code>, <code>ata6616c</code>, <code>attiny13</code>, <code>attiny13a</code>, <code>attiny2313</code>, <code>attiny2313a</code>, <code>attiny24</code>, <code>attiny24a</code>, <code>attiny25</code>, <code>attiny261</code>, <code>attiny261a</code>, <code>attiny43u</code>, <code>attiny4313</code>, <code>attiny44</code>, <code>attiny44a</code>, <code>attiny441</code>, <code>attiny45</code>, <code>attiny461</code>, <code>attiny461a</code>, <code>attiny48</code>, <code>attiny828</code>, <code>attiny84</code>, <code>attiny84a</code>, <code>attiny841</code>, <code>attiny85</code>, <code>attiny861</code>, <code>attiny861a</code>, <code>attiny87</code>, <code>attiny88</code>, <code>at86rf401</code>.
</p>
</dd>
<dt><code>avr3</code></dt>
<dd><p>“Classic” devices with 16 KiB up to 64 KiB of program memory.
<br><var>mcu</var> = <code>at43usb355</code>, <code>at76c711</code>.
</p>
</dd>
<dt><code>avr31</code></dt>
<dd><p>“Classic” devices with 128 KiB of program memory.
<br><var>mcu</var> = <code>atmega103</code>, <code>at43usb320</code>.
</p>
</dd>
<dt><code>avr35</code></dt>
<dd><p>“Classic” devices with 16 KiB up to 64 KiB of program memory and with the <code>MOVW</code> instruction.
<br><var>mcu</var> = <code>ata5505</code>, <code>ata6617c</code>, <code>ata664251</code>, <code>atmega16u2</code>, <code>atmega32u2</code>, <code>atmega8u2</code>, <code>attiny1634</code>, <code>attiny167</code>, <code>at90usb162</code>, <code>at90usb82</code>.
</p>
</dd>
<dt><code>avr4</code></dt>
<dd><p>“Enhanced” devices with up to 8 KiB of program memory.
<br><var>mcu</var> = <code>ata6285</code>, <code>ata6286</code>, <code>ata6289</code>, <code>ata6612c</code>, <code>atmega48</code>, <code>atmega48a</code>, <code>atmega48p</code>, <code>atmega48pa</code>, <code>atmega48pb</code>, <code>atmega8</code>, <code>atmega8a</code>, <code>atmega8hva</code>, <code>atmega8515</code>, <code>atmega8535</code>, <code>atmega88</code>, <code>atmega88a</code>, <code>atmega88p</code>, <code>atmega88pa</code>, <code>atmega88pb</code>, <code>at90pwm1</code>, <code>at90pwm2</code>, <code>at90pwm2b</code>, <code>at90pwm3</code>, <code>at90pwm3b</code>, <code>at90pwm81</code>.
</p>
</dd>
<dt><code>avr5</code></dt>
<dd><p>“Enhanced” devices with 16 KiB up to 64 KiB of program memory.
<br><var>mcu</var> = <code>ata5702m322</code>, <code>ata5782</code>, <code>ata5790</code>, <code>ata5790n</code>, <code>ata5791</code>, <code>ata5795</code>, <code>ata5831</code>, <code>ata6613c</code>, <code>ata6614q</code>, <code>ata8210</code>, <code>ata8510</code>, <code>atmega16</code>, <code>atmega16a</code>, <code>atmega16hva</code>, <code>atmega16hva2</code>, <code>atmega16hvb</code>, <code>atmega16hvbrevb</code>, <code>atmega16m1</code>, <code>atmega16u4</code>, <code>atmega161</code>, <code>atmega162</code>, <code>atmega163</code>, <code>atmega164a</code>, <code>atmega164p</code>, <code>atmega164pa</code>, <code>atmega165</code>, <code>atmega165a</code>, <code>atmega165p</code>, <code>atmega165pa</code>, <code>atmega168</code>, <code>atmega168a</code>, <code>atmega168p</code>, <code>atmega168pa</code>, <code>atmega168pb</code>, <code>atmega169</code>, <code>atmega169a</code>, <code>atmega169p</code>, <code>atmega169pa</code>, <code>atmega32</code>, <code>atmega32a</code>, <code>atmega32c1</code>, <code>atmega32hvb</code>, <code>atmega32hvbrevb</code>, <code>atmega32m1</code>, <code>atmega32u4</code>, <code>atmega32u6</code>, <code>atmega323</code>, <code>atmega324a</code>, <code>atmega324p</code>, <code>atmega324pa</code>, <code>atmega325</code>, <code>atmega325a</code>, <code>atmega325p</code>, <code>atmega325pa</code>, <code>atmega3250</code>, <code>atmega3250a</code>, <code>atmega3250p</code>, <code>atmega3250pa</code>, <code>atmega328</code>, <code>atmega328p</code>, <code>atmega328pb</code>, <code>atmega329</code>, <code>atmega329a</code>, <code>atmega329p</code>, <code>atmega329pa</code>, <code>atmega3290</code>, <code>atmega3290a</code>, <code>atmega3290p</code>, <code>atmega3290pa</code>, <code>atmega406</code>, <code>atmega64</code>, <code>atmega64a</code>, <code>atmega64c1</code>, <code>atmega64hve</code>, <code>atmega64hve2</code>, <code>atmega64m1</code>, <code>atmega64rfr2</code>, <code>atmega640</code>, <code>atmega644</code>, <code>atmega644a</code>, <code>atmega644p</code>, <code>atmega644pa</code>, <code>atmega644rfr2</code>, <code>atmega645</code>, <code>atmega645a</code>, <code>atmega645p</code>, <code>atmega6450</code>, <code>atmega6450a</code>, <code>atmega6450p</code>, <code>atmega649</code>, <code>atmega649a</code>, <code>atmega649p</code>, <code>atmega6490</code>, <code>atmega6490a</code>, <code>atmega6490p</code>, <code>at90can32</code>, <code>at90can64</code>, <code>at90pwm161</code>, <code>at90pwm216</code>, <code>at90pwm316</code>, <code>at90scr100</code>, <code>at90usb646</code>, <code>at90usb647</code>, <code>at94k</code>, <code>m3000</code>.
</p>
</dd>
<dt><code>avr51</code></dt>
<dd><p>“Enhanced” devices with 128 KiB of program memory.
<br><var>mcu</var> = <code>atmega128</code>, <code>atmega128a</code>, <code>atmega128rfa1</code>, <code>atmega128rfr2</code>, <code>atmega1280</code>, <code>atmega1281</code>, <code>atmega1284</code>, <code>atmega1284p</code>, <code>atmega1284rfr2</code>, <code>at90can128</code>, <code>at90usb1286</code>, <code>at90usb1287</code>.
</p>
</dd>
<dt><code>avr6</code></dt>
<dd><p>“Enhanced” devices with 3-byte PC, i.e. with more than 128 KiB of program memory.
<br><var>mcu</var> = <code>atmega256rfr2</code>, <code>atmega2560</code>, <code>atmega2561</code>, <code>atmega2564rfr2</code>.
</p>
</dd>
<dt><code>avrxmega2</code></dt>
<dd><p>“XMEGA” devices with more than 8 KiB and up to 64 KiB of program memory.
<br><var>mcu</var> = <code>atxmega16a4</code>, <code>atxmega16a4u</code>, <code>atxmega16c4</code>, <code>atxmega16d4</code>, <code>atxmega16e5</code>, <code>atxmega32a4</code>, <code>atxmega32a4u</code>, <code>atxmega32c3</code>, <code>atxmega32c4</code>, <code>atxmega32d3</code>, <code>atxmega32d4</code>, <code>atxmega32e5</code>, <code>atxmega8e5</code>.
</p>
</dd>
<dt><code>avrxmega3</code></dt>
<dd><p>“XMEGA” devices with up to 64 KiB of combined program memory and RAM, and with program memory visible in the RAM address space.
<br><var>mcu</var> = <code>attiny1614</code>, <code>attiny1616</code>, <code>attiny1617</code>, <code>attiny212</code>, <code>attiny214</code>, <code>attiny3214</code>, <code>attiny3216</code>, <code>attiny3217</code>, <code>attiny412</code>, <code>attiny414</code>, <code>attiny416</code>, <code>attiny417</code>, <code>attiny814</code>, <code>attiny816</code>, <code>attiny817</code>.
</p>
</dd>
<dt><code>avrxmega4</code></dt>
<dd><p>“XMEGA” devices with more than 64 KiB and up to 128 KiB of program memory.
<br><var>mcu</var> = <code>atxmega64a3</code>, <code>atxmega64a3u</code>, <code>atxmega64a4u</code>, <code>atxmega64b1</code>, <code>atxmega64b3</code>, <code>atxmega64c3</code>, <code>atxmega64d3</code>, <code>atxmega64d4</code>.
</p>
</dd>
<dt><code>avrxmega5</code></dt>
<dd><p>“XMEGA” devices with more than 64 KiB and up to 128 KiB of program memory and more than 64 KiB of RAM.
<br><var>mcu</var> = <code>atxmega64a1</code>, <code>atxmega64a1u</code>.
</p>
</dd>
<dt><code>avrxmega6</code></dt>
<dd><p>“XMEGA” devices with more than 128 KiB of program memory.
<br><var>mcu</var> = <code>atxmega128a3</code>, <code>atxmega128a3u</code>, <code>atxmega128b1</code>, <code>atxmega128b3</code>, <code>atxmega128c3</code>, <code>atxmega128d3</code>, <code>atxmega128d4</code>, <code>atxmega192a3</code>, <code>atxmega192a3u</code>, <code>atxmega192c3</code>, <code>atxmega192d3</code>, <code>atxmega256a3</code>, <code>atxmega256a3b</code>, <code>atxmega256a3bu</code>, <code>atxmega256a3u</code>, <code>atxmega256c3</code>, <code>atxmega256d3</code>, <code>atxmega384c3</code>, <code>atxmega384d3</code>.
</p>
</dd>
<dt><code>avrxmega7</code></dt>
<dd><p>“XMEGA” devices with more than 128 KiB of program memory and more than 64 KiB of RAM.
<br><var>mcu</var> = <code>atxmega128a1</code>, <code>atxmega128a1u</code>, <code>atxmega128a4u</code>.
</p>
</dd>
<dt><code>avrtiny</code></dt>
<dd><p>“TINY” Tiny core devices with 512 B up to 4 KiB of program memory.
<br><var>mcu</var> = <code>attiny10</code>, <code>attiny20</code>, <code>attiny4</code>, <code>attiny40</code>, <code>attiny5</code>, <code>attiny9</code>.
</p>
</dd>
<dt><code>avr1</code></dt>
<dd><p>This ISA is implemented by the minimal AVR core and supported for assembler only.
<br><var>mcu</var> = <code>attiny11</code>, <code>attiny12</code>, <code>attiny15</code>, <code>attiny28</code>, <code>at90s1200</code>.
</p>
</dd>
</dl>
</dd>
<dt><code>-mabsdata</code></dt>
<dd><a name="index-mabsdata"></a>
<p>Assume that all data in static storage can be accessed by LDS / STS
instructions. This option has only an effect on reduced Tiny devices like
ATtiny40. See also the <code>absdata</code>
<a href="#AVR-Variable-Attributes">variable attribute</a>.
</p>
</dd>
<dt><code>-maccumulate-args</code></dt>
<dd><a name="index-maccumulate_002dargs"></a>
<p>Accumulate outgoing function arguments and acquire/release the needed
stack space for outgoing function arguments once in function
prologue/epilogue. Without this option, outgoing arguments are pushed
before calling a function and popped afterwards.
</p>
<p>Popping the arguments after the function call can be expensive on
AVR so that accumulating the stack space might lead to smaller
executables because arguments need not be removed from the
stack after such a function call.
</p>
<p>This option can lead to reduced code size for functions that perform
several calls to functions that get their arguments on the stack like
calls to printf-like functions.
</p>
</dd>
<dt><code>-mbranch-cost=<var>cost</var></code></dt>
<dd><a name="index-mbranch_002dcost-1"></a>
<p>Set the branch costs for conditional branch instructions to
<var>cost</var>. Reasonable values for <var>cost</var> are small, non-negative
integers. The default branch cost is 0.
</p>
</dd>
<dt><code>-mcall-prologues</code></dt>
<dd><a name="index-mcall_002dprologues"></a>
<p>Functions prologues/epilogues are expanded as calls to appropriate
subroutines. Code size is smaller.
</p>
</dd>
<dt><code>-mgas-isr-prologues</code></dt>
<dd><a name="index-mgas_002disr_002dprologues"></a>
<p>Interrupt service routines (ISRs) may use the <code>__gcc_isr</code> pseudo
instruction supported by GNU Binutils.
If this option is on, the feature can still be disabled for individual
ISRs by means of the <a href="#AVR-Function-Attributes"><code>no_gccisr</code></a>
function attribute. This feature is activated per default
if optimization is on (but not with <samp>-Og</samp>, see <a href="#Optimize-Options">Optimize Options</a>),
and if GNU Binutils support <a href="https://sourceware.org/PR21683">PR21683</a><!-- /@w -->.
</p>
</dd>
<dt><code>-mint8</code></dt>
<dd><a name="index-mint8"></a>
<p>Assume <code>int</code> to be 8-bit integer. This affects the sizes of all types: a
<code>char</code> is 1 byte, an <code>int</code> is 1 byte, a <code>long</code> is 2 bytes,
and <code>long long</code> is 4 bytes. Please note that this option does not
conform to the C standards, but it results in smaller code
size.
</p>
</dd>
<dt><code>-mmain-is-OS_task</code></dt>
<dd><a name="index-mmain_002dis_002dOS_005ftask"></a>
<p>Do not save registers in <code>main</code>. The effect is the same like
attaching attribute <a href="#AVR-Function-Attributes"><code>OS_task</code></a>
to <code>main</code>. It is activated per default if optimization is on.
</p>
</dd>
<dt><code>-mn-flash=<var>num</var></code></dt>
<dd><a name="index-mn_002dflash"></a>
<p>Assume that the flash memory has a size of
<var>num</var> times 64 KiB.
</p>
</dd>
<dt><code>-mno-interrupts</code></dt>
<dd><a name="index-mno_002dinterrupts"></a>
<p>Generated code is not compatible with hardware interrupts.
Code size is smaller.
</p>
</dd>
<dt><code>-mrelax</code></dt>
<dd><a name="index-mrelax"></a>
<p>Try to replace <code>CALL</code> resp. <code>JMP</code> instruction by the shorter
<code>RCALL</code> resp. <code>RJMP</code> instruction if applicable.
Setting <samp>-mrelax</samp> just adds the <samp>--mlink-relax</samp> option to
the assembler’s command line and the <samp>--relax</samp> option to the
linker’s command line.
</p>
<p>Jump relaxing is performed by the linker because jump offsets are not
known before code is located. Therefore, the assembler code generated by the
compiler is the same, but the instructions in the executable may
differ from instructions in the assembler code.
</p>
<p>Relaxing must be turned on if linker stubs are needed, see the
section on <code>EIND</code> and linker stubs below.
</p>
</dd>
<dt><code>-mrmw</code></dt>
<dd><a name="index-mrmw"></a>
<p>Assume that the device supports the Read-Modify-Write
instructions <code>XCH</code>, <code>LAC</code>, <code>LAS</code> and <code>LAT</code>.
</p>
</dd>
<dt><code>-mshort-calls</code></dt>
<dd><a name="index-mshort_002dcalls"></a>
<p>Assume that <code>RJMP</code> and <code>RCALL</code> can target the whole
program memory.
</p>
<p>This option is used internally for multilib selection. It is
not an optimization option, and you don’t need to set it by hand.
</p>
</dd>
<dt><code>-msp8</code></dt>
<dd><a name="index-msp8"></a>
<p>Treat the stack pointer register as an 8-bit register,
i.e. assume the high byte of the stack pointer is zero.
In general, you don’t need to set this option by hand.
</p>
<p>This option is used internally by the compiler to select and
build multilibs for architectures <code>avr2</code> and <code>avr25</code>.
These architectures mix devices with and without <code>SPH</code>.
For any setting other than <samp>-mmcu=avr2</samp> or <samp>-mmcu=avr25</samp>
the compiler driver adds or removes this option from the compiler
proper’s command line, because the compiler then knows if the device
or architecture has an 8-bit stack pointer and thus no <code>SPH</code>
register or not.
</p>
</dd>
<dt><code>-mstrict-X</code></dt>
<dd><a name="index-mstrict_002dX"></a>
<p>Use address register <code>X</code> in a way proposed by the hardware. This means
that <code>X</code> is only used in indirect, post-increment or
pre-decrement addressing.
</p>
<p>Without this option, the <code>X</code> register may be used in the same way
as <code>Y</code> or <code>Z</code> which then is emulated by additional
instructions.
For example, loading a value with <code>X+const</code> addressing with a
small non-negative <code>const < 64</code> to a register <var>Rn</var> is
performed as
</p>
<div class="example">
<pre class="example">adiw r26, const ; X += const
ld <var>Rn</var>, X ; <var>Rn</var> = *X
sbiw r26, const ; X -= const
</pre></div>
</dd>
<dt><code>-mtiny-stack</code></dt>
<dd><a name="index-mtiny_002dstack"></a>
<p>Only change the lower 8 bits of the stack pointer.
</p>
</dd>
<dt><code>-mfract-convert-truncate</code></dt>
<dd><a name="index-mfract_002dconvert_002dtruncate"></a>
<p>Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
</p>
</dd>
<dt><code>-nodevicelib</code></dt>
<dd><a name="index-nodevicelib"></a>
<p>Don’t link against AVR-LibC’s device specific library <code>lib<mcu>.a</code>.
</p>
</dd>
<dt><code>-Waddr-space-convert</code></dt>
<dd><a name="index-Waddr_002dspace_002dconvert"></a>
<p>Warn about conversions between address spaces in the case where the
resulting address space is not contained in the incoming address space.
</p>
</dd>
<dt><code>-Wmisspelled-isr</code></dt>
<dd><a name="index-Wmisspelled_002disr"></a>
<p>Warn if the ISR is misspelled, i.e. without __vector prefix.
Enabled by default.
</p></dd>
</dl>
<a name="EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash"></a>
<h4 class="subsubsection">3.18.5.1 <code>EIND</code> and Devices with More Than 128 Ki Bytes of Flash</h4>
<a name="index-EIND"></a>
<p>Pointers in the implementation are 16 bits wide.
The address of a function or label is represented as word address so
that indirect jumps and calls can target any code address in the
range of 64 Ki words.
</p>
<p>In order to facilitate indirect jump on devices with more than 128 Ki
bytes of program memory space, there is a special function register called
<code>EIND</code> that serves as most significant part of the target address
when <code>EICALL</code> or <code>EIJMP</code> instructions are used.
</p>
<p>Indirect jumps and calls on these devices are handled as follows by
the compiler and are subject to some limitations:
</p>
<ul>
<li> The compiler never sets <code>EIND</code>.
</li><li> The compiler uses <code>EIND</code> implicitly in <code>EICALL</code>/<code>EIJMP</code>
instructions or might read <code>EIND</code> directly in order to emulate an
indirect call/jump by means of a <code>RET</code> instruction.
</li><li> The compiler assumes that <code>EIND</code> never changes during the startup
code or during the application. In particular, <code>EIND</code> is not
saved/restored in function or interrupt service routine
prologue/epilogue.
</li><li> For indirect calls to functions and computed goto, the linker
generates <em>stubs</em>. Stubs are jump pads sometimes also called
<em>trampolines</em>. Thus, the indirect call/jump jumps to such a stub.
The stub contains a direct jump to the desired address.
</li><li> Linker relaxation must be turned on so that the linker generates
the stubs correctly in all situations. See the compiler option
<samp>-mrelax</samp> and the linker option <samp>--relax</samp>.
There are corner cases where the linker is supposed to generate stubs
but aborts without relaxation and without a helpful error message.
</li><li> The default linker script is arranged for code with <code>EIND = 0</code>.
If code is supposed to work for a setup with <code>EIND != 0</code>, a custom
linker script has to be used in order to place the sections whose
name start with <code>.trampolines</code> into the segment where <code>EIND</code>
points to.
</li><li> The startup code from libgcc never sets <code>EIND</code>.
Notice that startup code is a blend of code from libgcc and AVR-LibC.
For the impact of AVR-LibC on <code>EIND</code>, see the
<a href="http://nongnu.org/avr-libc/user-manual/"><span class="nolinebreak">AVR-LibC</span> user manual</a><!-- /@w -->.
</li><li> It is legitimate for user-specific startup code to set up <code>EIND</code>
early, for example by means of initialization code located in
section <code>.init3</code>. Such code runs prior to general startup code
that initializes RAM and calls constructors, but after the bit
of startup code from AVR-LibC that sets <code>EIND</code> to the segment
where the vector table is located.
<div class="example">
<pre class="example">#include <avr/io.h>
static void
__attribute__((section(".init3"),naked,used,no_instrument_function))
init3_set_eind (void)
{
__asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
"out %i0,r24" :: "n" (&EIND) : "r24","memory");
}
</pre></div>
<p>The <code>__trampolines_start</code> symbol is defined in the linker script.
</p>
</li><li> Stubs are generated automatically by the linker if
the following two conditions are met:
<ul class="no-bullet">
<li>- The address of a label is taken by means of the <code>gs</code> modifier
(short for <em>generate stubs</em>) like so:
<div class="example">
<pre class="example">LDI r24, lo8(gs(<var>func</var>))
LDI r25, hi8(gs(<var>func</var>))
</pre></div>
</li><li>- The final location of that label is in a code segment
<em>outside</em> the segment where the stubs are located.
</li></ul>
</li><li> The compiler emits such <code>gs</code> modifiers for code labels in the
following situations:
<ul class="no-bullet">
<li>- Taking address of a function or code label.
</li><li>- Computed goto.
</li><li>- If prologue-save function is used, see <samp>-mcall-prologues</samp>
command-line option.
</li><li>- Switch/case dispatch tables. If you do not want such dispatch
tables you can specify the <samp>-fno-jump-tables</samp> command-line option.
</li><li>- C and C++ constructors/destructors called during startup/shutdown.
</li><li>- If the tools hit a <code>gs()</code> modifier explained above.
</li></ul>
</li><li> Jumping to non-symbolic addresses like so is <em>not</em> supported:
<div class="example">
<pre class="example">int main (void)
{
/* Call function at word address 0x2 */
return ((int(*)(void)) 0x2)();
}
</pre></div>
<p>Instead, a stub has to be set up, i.e. the function has to be called
through a symbol (<code>func_4</code> in the example):
</p>
<div class="example">
<pre class="example">int main (void)
{
extern int func_4 (void);
/* Call function at byte address 0x4 */
return func_4();
}
</pre></div>
<p>and the application be linked with <samp>-Wl,--defsym,func_4=0x4</samp>.
Alternatively, <code>func_4</code> can be defined in the linker script.
</p></li></ul>
<a name="Handling-of-the-RAMPD_002c-RAMPX_002c-RAMPY-and-RAMPZ-Special-Function-Registers"></a>
<h4 class="subsubsection">3.18.5.2 Handling of the <code>RAMPD</code>, <code>RAMPX</code>, <code>RAMPY</code> and <code>RAMPZ</code> Special Function Registers</h4>
<a name="index-RAMPD"></a>
<a name="index-RAMPX"></a>
<a name="index-RAMPY"></a>
<a name="index-RAMPZ"></a>
<p>Some AVR devices support memories larger than the 64 KiB range
that can be accessed with 16-bit pointers. To access memory locations
outside this 64 KiB range, the content of a <code>RAMP</code>
register is used as high part of the address:
The <code>X</code>, <code>Y</code>, <code>Z</code> address register is concatenated
with the <code>RAMPX</code>, <code>RAMPY</code>, <code>RAMPZ</code> special function
register, respectively, to get a wide address. Similarly,
<code>RAMPD</code> is used together with direct addressing.
</p>
<ul>
<li> The startup code initializes the <code>RAMP</code> special function
registers with zero.
</li><li> If a <a href="#AVR-Named-Address-Spaces">named address space</a> other than
generic or <code>__flash</code> is used, then <code>RAMPZ</code> is set
as needed before the operation.
</li><li> If the device supports RAM larger than 64 KiB and the compiler
needs to change <code>RAMPZ</code> to accomplish an operation, <code>RAMPZ</code>
is reset to zero after the operation.
</li><li> If the device comes with a specific <code>RAMP</code> register, the ISR
prologue/epilogue saves/restores that SFR and initializes it with
zero in case the ISR code might (implicitly) use it.
</li><li> RAM larger than 64 KiB is not supported by GCC for AVR targets.
If you use inline assembler to read from locations outside the
16-bit address range and change one of the <code>RAMP</code> registers,
you must reset it to zero after the access.
</li></ul>
<a name="AVR-Built_002din-Macros"></a>
<h4 class="subsubsection">3.18.5.3 AVR Built-in Macros</h4>
<p>GCC defines several built-in macros so that the user code can test
for the presence or absence of features. Almost any of the following
built-in macros are deduced from device capabilities and thus
triggered by the <samp>-mmcu=</samp> command-line option.
</p>
<p>For even more AVR-specific built-in macros see
<a href="#AVR-Named-Address-Spaces">AVR Named Address Spaces</a> and <a href="#AVR-Built_002din-Functions">AVR Built-in Functions</a>.
</p>
<dl compact="compact">
<dt><code>__AVR_ARCH__</code></dt>
<dd><p>Build-in macro that resolves to a decimal number that identifies the
architecture and depends on the <samp>-mmcu=<var>mcu</var></samp> option.
Possible values are:
</p>
<p><code>2</code>, <code>25</code>, <code>3</code>, <code>31</code>, <code>35</code>,
<code>4</code>, <code>5</code>, <code>51</code>, <code>6</code>
</p>
<p>for <var>mcu</var>=<code>avr2</code>, <code>avr25</code>, <code>avr3</code>, <code>avr31</code>,
<code>avr35</code>, <code>avr4</code>, <code>avr5</code>, <code>avr51</code>, <code>avr6</code>,
</p>
<p>respectively and
</p>
<p><code>100</code>,
<code>102</code>, <code>103</code>, <code>104</code>,
<code>105</code>, <code>106</code>, <code>107</code>
</p>
<p>for <var>mcu</var>=<code>avrtiny</code>,
<code>avrxmega2</code>, <code>avrxmega3</code>, <code>avrxmega4</code>,
<code>avrxmega5</code>, <code>avrxmega6</code>, <code>avrxmega7</code>, respectively.
If <var>mcu</var> specifies a device, this built-in macro is set
accordingly. For example, with <samp>-mmcu=atmega8</samp> the macro is
defined to <code>4</code>.
</p>
</dd>
<dt><code>__AVR_<var>Device</var>__</code></dt>
<dd><p>Setting <samp>-mmcu=<var>device</var></samp> defines this built-in macro which reflects
the device’s name. For example, <samp>-mmcu=atmega8</samp> defines the
built-in macro <code>__AVR_ATmega8__</code>, <samp>-mmcu=attiny261a</samp> defines
<code>__AVR_ATtiny261A__</code>, etc.
</p>
<p>The built-in macros’ names follow
the scheme <code>__AVR_<var>Device</var>__</code> where <var>Device</var> is
the device name as from the AVR user manual. The difference between
<var>Device</var> in the built-in macro and <var>device</var> in
<samp>-mmcu=<var>device</var></samp> is that the latter is always lowercase.
</p>
<p>If <var>device</var> is not a device but only a core architecture like
‘<samp>avr51</samp>’, this macro is not defined.
</p>
</dd>
<dt><code>__AVR_DEVICE_NAME__</code></dt>
<dd><p>Setting <samp>-mmcu=<var>device</var></samp> defines this built-in macro to
the device’s name. For example, with <samp>-mmcu=atmega8</samp> the macro
is defined to <code>atmega8</code>.
</p>
<p>If <var>device</var> is not a device but only a core architecture like
‘<samp>avr51</samp>’, this macro is not defined.
</p>
</dd>
<dt><code>__AVR_XMEGA__</code></dt>
<dd><p>The device / architecture belongs to the XMEGA family of devices.
</p>
</dd>
<dt><code>__AVR_HAVE_ELPM__</code></dt>
<dd><p>The device has the <code>ELPM</code> instruction.
</p>
</dd>
<dt><code>__AVR_HAVE_ELPMX__</code></dt>
<dd><p>The device has the <code>ELPM R<var>n</var>,Z</code> and <code>ELPM
R<var>n</var>,Z+</code> instructions.
</p>
</dd>
<dt><code>__AVR_HAVE_MOVW__</code></dt>
<dd><p>The device has the <code>MOVW</code> instruction to perform 16-bit
register-register moves.
</p>
</dd>
<dt><code>__AVR_HAVE_LPMX__</code></dt>
<dd><p>The device has the <code>LPM R<var>n</var>,Z</code> and
<code>LPM R<var>n</var>,Z+</code> instructions.
</p>
</dd>
<dt><code>__AVR_HAVE_MUL__</code></dt>
<dd><p>The device has a hardware multiplier.
</p>
</dd>
<dt><code>__AVR_HAVE_JMP_CALL__</code></dt>
<dd><p>The device has the <code>JMP</code> and <code>CALL</code> instructions.
This is the case for devices with more than 8 KiB of program
memory.
</p>
</dd>
<dt><code>__AVR_HAVE_EIJMP_EICALL__</code></dt>
<dt><code>__AVR_3_BYTE_PC__</code></dt>
<dd><p>The device has the <code>EIJMP</code> and <code>EICALL</code> instructions.
This is the case for devices with more than 128 KiB of program memory.
This also means that the program counter
(PC) is 3 bytes wide.
</p>
</dd>
<dt><code>__AVR_2_BYTE_PC__</code></dt>
<dd><p>The program counter (PC) is 2 bytes wide. This is the case for devices
with up to 128 KiB of program memory.
</p>
</dd>
<dt><code>__AVR_HAVE_8BIT_SP__</code></dt>
<dt><code>__AVR_HAVE_16BIT_SP__</code></dt>
<dd><p>The stack pointer (SP) register is treated as 8-bit respectively
16-bit register by the compiler.
The definition of these macros is affected by <samp>-mtiny-stack</samp>.
</p>
</dd>
<dt><code>__AVR_HAVE_SPH__</code></dt>
<dt><code>__AVR_SP8__</code></dt>
<dd><p>The device has the SPH (high part of stack pointer) special function
register or has an 8-bit stack pointer, respectively.
The definition of these macros is affected by <samp>-mmcu=</samp> and
in the cases of <samp>-mmcu=avr2</samp> and <samp>-mmcu=avr25</samp> also
by <samp>-msp8</samp>.
</p>
</dd>
<dt><code>__AVR_HAVE_RAMPD__</code></dt>
<dt><code>__AVR_HAVE_RAMPX__</code></dt>
<dt><code>__AVR_HAVE_RAMPY__</code></dt>
<dt><code>__AVR_HAVE_RAMPZ__</code></dt>
<dd><p>The device has the <code>RAMPD</code>, <code>RAMPX</code>, <code>RAMPY</code>,
<code>RAMPZ</code> special function register, respectively.
</p>
</dd>
<dt><code>__NO_INTERRUPTS__</code></dt>
<dd><p>This macro reflects the <samp>-mno-interrupts</samp> command-line option.
</p>
</dd>
<dt><code>__AVR_ERRATA_SKIP__</code></dt>
<dt><code>__AVR_ERRATA_SKIP_JMP_CALL__</code></dt>
<dd><p>Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
instructions because of a hardware erratum. Skip instructions are
<code>SBRS</code>, <code>SBRC</code>, <code>SBIS</code>, <code>SBIC</code> and <code>CPSE</code>.
The second macro is only defined if <code>__AVR_HAVE_JMP_CALL__</code> is also
set.
</p>
</dd>
<dt><code>__AVR_ISA_RMW__</code></dt>
<dd><p>The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
</p>
</dd>
<dt><code>__AVR_SFR_OFFSET__=<var>offset</var></code></dt>
<dd><p>Instructions that can address I/O special function registers directly
like <code>IN</code>, <code>OUT</code>, <code>SBI</code>, etc. may use a different
address as if addressed by an instruction to access RAM like <code>LD</code>
or <code>STS</code>. This offset depends on the device architecture and has
to be subtracted from the RAM address in order to get the
respective I/O address.
</p>
</dd>
<dt><code>__AVR_SHORT_CALLS__</code></dt>
<dd><p>The <samp>-mshort-calls</samp> command line option is set.
</p>
</dd>
<dt><code>__AVR_PM_BASE_ADDRESS__=<var>addr</var></code></dt>
<dd><p>Some devices support reading from flash memory by means of <code>LD*</code>
instructions. The flash memory is seen in the data address space
at an offset of <code>__AVR_PM_BASE_ADDRESS__</code>. If this macro
is not defined, this feature is not available. If defined,
the address space is linear and there is no need to put
<code>.rodata</code> into RAM. This is handled by the default linker
description file, and is currently available for
<code>avrtiny</code> and <code>avrxmega3</code>. Even more convenient,
there is no need to use address spaces like <code>__flash</code> or
features like attribute <code>progmem</code> and <code>pgm_read_*</code>.
</p>
</dd>
<dt><code>__WITH_AVRLIBC__</code></dt>
<dd><p>The compiler is configured to be used together with AVR-Libc.
See the <samp>--with-avrlibc</samp> configure option.
</p>
</dd>
</dl>
<hr>
<a name="Blackfin-Options"></a>
<div class="header">
<p>
Next: <a href="#C6X-Options" accesskey="n" rel="next">C6X Options</a>, Previous: <a href="#AVR-Options" accesskey="p" rel="prev">AVR Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Blackfin-Options-1"></a>
<h4 class="subsection">3.18.6 Blackfin Options</h4>
<a name="index-Blackfin-Options"></a>
<dl compact="compact">
<dt><code>-mcpu=<var>cpu</var><span class="roman">[</span>-<var>sirevision</var><span class="roman">]</span></code></dt>
<dd><a name="index-mcpu_003d"></a>
<p>Specifies the name of the target Blackfin processor. Currently, <var>cpu</var>
can be one of ‘<samp>bf512</samp>’, ‘<samp>bf514</samp>’, ‘<samp>bf516</samp>’, ‘<samp>bf518</samp>’,
‘<samp>bf522</samp>’, ‘<samp>bf523</samp>’, ‘<samp>bf524</samp>’, ‘<samp>bf525</samp>’, ‘<samp>bf526</samp>’,
‘<samp>bf527</samp>’, ‘<samp>bf531</samp>’, ‘<samp>bf532</samp>’, ‘<samp>bf533</samp>’,
‘<samp>bf534</samp>’, ‘<samp>bf536</samp>’, ‘<samp>bf537</samp>’, ‘<samp>bf538</samp>’, ‘<samp>bf539</samp>’,
‘<samp>bf542</samp>’, ‘<samp>bf544</samp>’, ‘<samp>bf547</samp>’, ‘<samp>bf548</samp>’, ‘<samp>bf549</samp>’,
‘<samp>bf542m</samp>’, ‘<samp>bf544m</samp>’, ‘<samp>bf547m</samp>’, ‘<samp>bf548m</samp>’, ‘<samp>bf549m</samp>’,
‘<samp>bf561</samp>’, ‘<samp>bf592</samp>’.
</p>
<p>The optional <var>sirevision</var> specifies the silicon revision of the target
Blackfin processor. Any workarounds available for the targeted silicon revision
are enabled. If <var>sirevision</var> is ‘<samp>none</samp>’, no workarounds are enabled.
If <var>sirevision</var> is ‘<samp>any</samp>’, all workarounds for the targeted processor
are enabled. The <code>__SILICON_REVISION__</code> macro is defined to two
hexadecimal digits representing the major and minor numbers in the silicon
revision. If <var>sirevision</var> is ‘<samp>none</samp>’, the <code>__SILICON_REVISION__</code>
is not defined. If <var>sirevision</var> is ‘<samp>any</samp>’, the
<code>__SILICON_REVISION__</code> is defined to be <code>0xffff</code>.
If this optional <var>sirevision</var> is not used, GCC assumes the latest known
silicon revision of the targeted Blackfin processor.
</p>
<p>GCC defines a preprocessor macro for the specified <var>cpu</var>.
For the ‘<samp>bfin-elf</samp>’ toolchain, this option causes the hardware BSP
provided by libgloss to be linked in if <samp>-msim</samp> is not given.
</p>
<p>Without this option, ‘<samp>bf532</samp>’ is used as the processor by default.
</p>
<p>Note that support for ‘<samp>bf561</samp>’ is incomplete. For ‘<samp>bf561</samp>’,
only the preprocessor macro is defined.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim"></a>
<p>Specifies that the program will be run on the simulator. This causes
the simulator BSP provided by libgloss to be linked in. This option
has effect only for ‘<samp>bfin-elf</samp>’ toolchain.
Certain other options, such as <samp>-mid-shared-library</samp> and
<samp>-mfdpic</samp>, imply <samp>-msim</samp>.
</p>
</dd>
<dt><code>-momit-leaf-frame-pointer</code></dt>
<dd><a name="index-momit_002dleaf_002dframe_002dpointer-1"></a>
<p>Don’t keep the frame pointer in a register for leaf functions. This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions.
</p>
</dd>
<dt><code>-mspecld-anomaly</code></dt>
<dd><a name="index-mspecld_002danomaly"></a>
<p>When enabled, the compiler ensures that the generated code does not
contain speculative loads after jump instructions. If this option is used,
<code>__WORKAROUND_SPECULATIVE_LOADS</code> is defined.
</p>
</dd>
<dt><code>-mno-specld-anomaly</code></dt>
<dd><a name="index-mno_002dspecld_002danomaly"></a>
<p>Don’t generate extra code to prevent speculative loads from occurring.
</p>
</dd>
<dt><code>-mcsync-anomaly</code></dt>
<dd><a name="index-mcsync_002danomaly"></a>
<p>When enabled, the compiler ensures that the generated code does not
contain CSYNC or SSYNC instructions too soon after conditional branches.
If this option is used, <code>__WORKAROUND_SPECULATIVE_SYNCS</code> is defined.
</p>
</dd>
<dt><code>-mno-csync-anomaly</code></dt>
<dd><a name="index-mno_002dcsync_002danomaly"></a>
<p>Don’t generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.
</p>
</dd>
<dt><code>-mlow-64k</code></dt>
<dd><a name="index-mlow_002d64k"></a>
<p>When enabled, the compiler is free to take advantage of the knowledge that
the entire program fits into the low 64k of memory.
</p>
</dd>
<dt><code>-mno-low-64k</code></dt>
<dd><a name="index-mno_002dlow_002d64k"></a>
<p>Assume that the program is arbitrarily large. This is the default.
</p>
</dd>
<dt><code>-mstack-check-l1</code></dt>
<dd><a name="index-mstack_002dcheck_002dl1"></a>
<p>Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.
</p>
</dd>
<dt><code>-mid-shared-library</code></dt>
<dd><a name="index-mid_002dshared_002dlibrary"></a>
<p>Generate code that supports shared libraries via the library ID method.
This allows for execute in place and shared libraries in an environment
without virtual memory management. This option implies <samp>-fPIC</samp>.
With a ‘<samp>bfin-elf</samp>’ target, this option implies <samp>-msim</samp>.
</p>
</dd>
<dt><code>-mno-id-shared-library</code></dt>
<dd><a name="index-mno_002did_002dshared_002dlibrary"></a>
<p>Generate code that doesn’t assume ID-based shared libraries are being used.
This is the default.
</p>
</dd>
<dt><code>-mleaf-id-shared-library</code></dt>
<dd><a name="index-mleaf_002did_002dshared_002dlibrary"></a>
<p>Generate code that supports shared libraries via the library ID method,
but assumes that this library or executable won’t link against any other
ID shared libraries. That allows the compiler to use faster code for jumps
and calls.
</p>
</dd>
<dt><code>-mno-leaf-id-shared-library</code></dt>
<dd><a name="index-mno_002dleaf_002did_002dshared_002dlibrary"></a>
<p>Do not assume that the code being compiled won’t link against any ID shared
libraries. Slower code is generated for jump and call insns.
</p>
</dd>
<dt><code>-mshared-library-id=n</code></dt>
<dd><a name="index-mshared_002dlibrary_002did"></a>
<p>Specifies the identification number of the ID-based shared library being
compiled. Specifying a value of 0 generates more compact code; specifying
other values forces the allocation of that number to the current
library but is no more space- or time-efficient than omitting this option.
</p>
</dd>
<dt><code>-msep-data</code></dt>
<dd><a name="index-msep_002ddata"></a>
<p>Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute in place in
an environment without virtual memory management by eliminating relocations
against the text section.
</p>
</dd>
<dt><code>-mno-sep-data</code></dt>
<dd><a name="index-mno_002dsep_002ddata"></a>
<p>Generate code that assumes that the data segment follows the text segment.
This is the default.
</p>
</dd>
<dt><code>-mlong-calls</code></dt>
<dt><code>-mno-long-calls</code></dt>
<dd><a name="index-mlong_002dcalls-3"></a>
<a name="index-mno_002dlong_002dcalls-1"></a>
<p>Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register. This switch is needed if the target function
lies outside of the 24-bit addressing range of the offset-based
version of subroutine call instruction.
</p>
<p>This feature is not enabled by default. Specifying
<samp>-mno-long-calls</samp> restores the default behavior. Note these
switches have no effect on how the compiler generates code to handle
function calls via function pointers.
</p>
</dd>
<dt><code>-mfast-fp</code></dt>
<dd><a name="index-mfast_002dfp"></a>
<p>Link with the fast floating-point library. This library relaxes some of
the IEEE floating-point standard’s rules for checking inputs against
Not-a-Number (NAN), in the interest of performance.
</p>
</dd>
<dt><code>-minline-plt</code></dt>
<dd><a name="index-minline_002dplt"></a>
<p>Enable inlining of PLT entries in function calls to functions that are
not known to bind locally. It has no effect without <samp>-mfdpic</samp>.
</p>
</dd>
<dt><code>-mmulticore</code></dt>
<dd><a name="index-mmulticore"></a>
<p>Build a standalone application for multicore Blackfin processors.
This option causes proper start files and link scripts supporting
multicore to be used, and defines the macro <code>__BFIN_MULTICORE</code>.
It can only be used with <samp>-mcpu=bf561<span class="roman">[</span>-<var>sirevision</var><span class="roman">]</span></samp>.
</p>
<p>This option can be used with <samp>-mcorea</samp> or <samp>-mcoreb</samp>, which
selects the one-application-per-core programming model. Without
<samp>-mcorea</samp> or <samp>-mcoreb</samp>, the single-application/dual-core
programming model is used. In this model, the main function of Core B
should be named as <code>coreb_main</code>.
</p>
<p>If this option is not used, the single-core application programming
model is used.
</p>
</dd>
<dt><code>-mcorea</code></dt>
<dd><a name="index-mcorea"></a>
<p>Build a standalone application for Core A of BF561 when using
the one-application-per-core programming model. Proper start files
and link scripts are used to support Core A, and the macro
<code>__BFIN_COREA</code> is defined.
This option can only be used in conjunction with <samp>-mmulticore</samp>.
</p>
</dd>
<dt><code>-mcoreb</code></dt>
<dd><a name="index-mcoreb"></a>
<p>Build a standalone application for Core B of BF561 when using
the one-application-per-core programming model. Proper start files
and link scripts are used to support Core B, and the macro
<code>__BFIN_COREB</code> is defined. When this option is used, <code>coreb_main</code>
should be used instead of <code>main</code>.
This option can only be used in conjunction with <samp>-mmulticore</samp>.
</p>
</dd>
<dt><code>-msdram</code></dt>
<dd><a name="index-msdram"></a>
<p>Build a standalone application for SDRAM. Proper start files and
link scripts are used to put the application into SDRAM, and the macro
<code>__BFIN_SDRAM</code> is defined.
The loader should initialize SDRAM before loading the application.
</p>
</dd>
<dt><code>-micplb</code></dt>
<dd><a name="index-micplb"></a>
<p>Assume that ICPLBs are enabled at run time. This has an effect on certain
anomaly workarounds. For Linux targets, the default is to assume ICPLBs
are enabled; for standalone applications the default is off.
</p></dd>
</dl>
<hr>
<a name="C6X-Options"></a>
<div class="header">
<p>
Next: <a href="#CRIS-Options" accesskey="n" rel="next">CRIS Options</a>, Previous: <a href="#Blackfin-Options" accesskey="p" rel="prev">Blackfin Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C6X-Options-1"></a>
<h4 class="subsection">3.18.7 C6X Options</h4>
<a name="index-C6X-Options"></a>
<dl compact="compact">
<dt><code>-march=<var>name</var></code></dt>
<dd><a name="index-march-2"></a>
<p>This specifies the name of the target architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. Permissible names are: ‘<samp>c62x</samp>’,
‘<samp>c64x</samp>’, ‘<samp>c64x+</samp>’, ‘<samp>c67x</samp>’, ‘<samp>c67x+</samp>’, ‘<samp>c674x</samp>’.
</p>
</dd>
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig_002dendian-3"></a>
<p>Generate code for a big-endian target.
</p>
</dd>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle_002dendian-3"></a>
<p>Generate code for a little-endian target. This is the default.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim-1"></a>
<p>Choose startup files and linker script suitable for the simulator.
</p>
</dd>
<dt><code>-msdata=default</code></dt>
<dd><a name="index-msdata_003ddefault"></a>
<p>Put small global and static data in the <code>.neardata</code> section,
which is pointed to by register <code>B14</code>. Put small uninitialized
global and static data in the <code>.bss</code> section, which is adjacent
to the <code>.neardata</code> section. Put small read-only data into the
<code>.rodata</code> section. The corresponding sections used for large
pieces of data are <code>.fardata</code>, <code>.far</code> and <code>.const</code>.
</p>
</dd>
<dt><code>-msdata=all</code></dt>
<dd><a name="index-msdata_003dall"></a>
<p>Put all data, not just small objects, into the sections reserved for
small data, and use addressing relative to the <code>B14</code> register to
access them.
</p>
</dd>
<dt><code>-msdata=none</code></dt>
<dd><a name="index-msdata_003dnone"></a>
<p>Make no use of the sections reserved for small data, and use absolute
addresses to access all data. Put all initialized global and static
data in the <code>.fardata</code> section, and all uninitialized data in the
<code>.far</code> section. Put all constant data into the <code>.const</code>
section.
</p></dd>
</dl>
<hr>
<a name="CRIS-Options"></a>
<div class="header">
<p>
Next: <a href="#CR16-Options" accesskey="n" rel="next">CR16 Options</a>, Previous: <a href="#C6X-Options" accesskey="p" rel="prev">C6X Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="CRIS-Options-1"></a>
<h4 class="subsection">3.18.8 CRIS Options</h4>
<a name="index-CRIS-Options"></a>
<p>These options are defined specifically for the CRIS ports.
</p>
<dl compact="compact">
<dt><code>-march=<var>architecture-type</var></code></dt>
<dt><code>-mcpu=<var>architecture-type</var></code></dt>
<dd><a name="index-march-3"></a>
<a name="index-mcpu-3"></a>
<p>Generate code for the specified architecture. The choices for
<var>architecture-type</var> are ‘<samp>v3</samp>’, ‘<samp>v8</samp>’ and ‘<samp>v10</samp>’ for
respectively ETRAX <!-- /@w -->4, ETRAX <!-- /@w -->100, and ETRAX <!-- /@w -->100 <!-- /@w -->LX.
Default is ‘<samp>v0</samp>’ except for cris-axis-linux-gnu, where the default is
‘<samp>v10</samp>’.
</p>
</dd>
<dt><code>-mtune=<var>architecture-type</var></code></dt>
<dd><a name="index-mtune-4"></a>
<p>Tune to <var>architecture-type</var> everything applicable about the generated
code, except for the ABI and the set of available instructions. The
choices for <var>architecture-type</var> are the same as for
<samp>-march=<var>architecture-type</var></samp>.
</p>
</dd>
<dt><code>-mmax-stack-frame=<var>n</var></code></dt>
<dd><a name="index-mmax_002dstack_002dframe"></a>
<p>Warn when the stack frame of a function exceeds <var>n</var> bytes.
</p>
</dd>
<dt><code>-metrax4</code></dt>
<dt><code>-metrax100</code></dt>
<dd><a name="index-metrax4"></a>
<a name="index-metrax100"></a>
<p>The options <samp>-metrax4</samp> and <samp>-metrax100</samp> are synonyms for
<samp>-march=v3</samp> and <samp>-march=v8</samp> respectively.
</p>
</dd>
<dt><code>-mmul-bug-workaround</code></dt>
<dt><code>-mno-mul-bug-workaround</code></dt>
<dd><a name="index-mmul_002dbug_002dworkaround"></a>
<a name="index-mno_002dmul_002dbug_002dworkaround"></a>
<p>Work around a bug in the <code>muls</code> and <code>mulu</code> instructions for CPU
models where it applies. This option is active by default.
</p>
</dd>
<dt><code>-mpdebug</code></dt>
<dd><a name="index-mpdebug"></a>
<p>Enable CRIS-specific verbose debug-related information in the assembly
code. This option also has the effect of turning off the ‘<samp>#NO_APP</samp>’
formatted-code indicator to the assembler at the beginning of the
assembly file.
</p>
</dd>
<dt><code>-mcc-init</code></dt>
<dd><a name="index-mcc_002dinit"></a>
<p>Do not use condition-code results from previous instruction; always emit
compare and test instructions before use of condition codes.
</p>
</dd>
<dt><code>-mno-side-effects</code></dt>
<dd><a name="index-mno_002dside_002deffects"></a>
<p>Do not emit instructions with side effects in addressing modes other than
post-increment.
</p>
</dd>
<dt><code>-mstack-align</code></dt>
<dt><code>-mno-stack-align</code></dt>
<dt><code>-mdata-align</code></dt>
<dt><code>-mno-data-align</code></dt>
<dt><code>-mconst-align</code></dt>
<dt><code>-mno-const-align</code></dt>
<dd><a name="index-mstack_002dalign"></a>
<a name="index-mno_002dstack_002dalign"></a>
<a name="index-mdata_002dalign"></a>
<a name="index-mno_002ddata_002dalign"></a>
<a name="index-mconst_002dalign"></a>
<a name="index-mno_002dconst_002dalign"></a>
<p>These options (‘<samp>no-</samp>’ options) arrange (eliminate arrangements) for the
stack frame, individual data and constants to be aligned for the maximum
single data access size for the chosen CPU model. The default is to
arrange for 32-bit alignment. ABI details such as structure layout are
not affected by these options.
</p>
</dd>
<dt><code>-m32-bit</code></dt>
<dt><code>-m16-bit</code></dt>
<dt><code>-m8-bit</code></dt>
<dd><a name="index-m32_002dbit"></a>
<a name="index-m16_002dbit"></a>
<a name="index-m8_002dbit"></a>
<p>Similar to the stack- data- and const-align options above, these options
arrange for stack frame, writable data and constants to all be 32-bit,
16-bit or 8-bit aligned. The default is 32-bit alignment.
</p>
</dd>
<dt><code>-mno-prologue-epilogue</code></dt>
<dt><code>-mprologue-epilogue</code></dt>
<dd><a name="index-mno_002dprologue_002depilogue"></a>
<a name="index-mprologue_002depilogue"></a>
<p>With <samp>-mno-prologue-epilogue</samp>, the normal function prologue and
epilogue which set up the stack frame are omitted and no return
instructions or return sequences are generated in the code. Use this
option only together with visual inspection of the compiled code: no
warnings or errors are generated when call-saved registers must be saved,
or storage for local variables needs to be allocated.
</p>
</dd>
<dt><code>-mno-gotplt</code></dt>
<dt><code>-mgotplt</code></dt>
<dd><a name="index-mno_002dgotplt"></a>
<a name="index-mgotplt"></a>
<p>With <samp>-fpic</samp> and <samp>-fPIC</samp>, don’t generate (do generate)
instruction sequences that load addresses for functions from the PLT part
of the GOT rather than (traditional on other architectures) calls to the
PLT. The default is <samp>-mgotplt</samp>.
</p>
</dd>
<dt><code>-melf</code></dt>
<dd><a name="index-melf"></a>
<p>Legacy no-op option only recognized with the cris-axis-elf and
cris-axis-linux-gnu targets.
</p>
</dd>
<dt><code>-mlinux</code></dt>
<dd><a name="index-mlinux"></a>
<p>Legacy no-op option only recognized with the cris-axis-linux-gnu target.
</p>
</dd>
<dt><code>-sim</code></dt>
<dd><a name="index-sim"></a>
<p>This option, recognized for the cris-axis-elf, arranges
to link with input-output functions from a simulator library. Code,
initialized data and zero-initialized data are allocated consecutively.
</p>
</dd>
<dt><code>-sim2</code></dt>
<dd><a name="index-sim2"></a>
<p>Like <samp>-sim</samp>, but pass linker options to locate initialized data at
0x40000000 and zero-initialized data at 0x80000000.
</p></dd>
</dl>
<hr>
<a name="CR16-Options"></a>
<div class="header">
<p>
Next: <a href="#Darwin-Options" accesskey="n" rel="next">Darwin Options</a>, Previous: <a href="#CRIS-Options" accesskey="p" rel="prev">CRIS Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="CR16-Options-1"></a>
<h4 class="subsection">3.18.9 CR16 Options</h4>
<a name="index-CR16-Options"></a>
<p>These options are defined specifically for the CR16 ports.
</p>
<dl compact="compact">
<dt><code>-mmac</code></dt>
<dd><a name="index-mmac"></a>
<p>Enable the use of multiply-accumulate instructions. Disabled by default.
</p>
</dd>
<dt><code>-mcr16cplus</code></dt>
<dt><code>-mcr16c</code></dt>
<dd><a name="index-mcr16cplus"></a>
<a name="index-mcr16c"></a>
<p>Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
is default.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim-2"></a>
<p>Links the library libsim.a which is in compatible with simulator. Applicable
to ELF compiler only.
</p>
</dd>
<dt><code>-mint32</code></dt>
<dd><a name="index-mint32"></a>
<p>Choose integer type as 32-bit wide.
</p>
</dd>
<dt><code>-mbit-ops</code></dt>
<dd><a name="index-mbit_002dops"></a>
<p>Generates <code>sbit</code>/<code>cbit</code> instructions for bit manipulations.
</p>
</dd>
<dt><code>-mdata-model=<var>model</var></code></dt>
<dd><a name="index-mdata_002dmodel"></a>
<p>Choose a data model. The choices for <var>model</var> are ‘<samp>near</samp>’,
‘<samp>far</samp>’ or ‘<samp>medium</samp>’. ‘<samp>medium</samp>’ is default.
However, ‘<samp>far</samp>’ is not valid with <samp>-mcr16c</samp>, as the
CR16C architecture does not support the far data model.
</p></dd>
</dl>
<hr>
<a name="Darwin-Options"></a>
<div class="header">
<p>
Next: <a href="#DEC-Alpha-Options" accesskey="n" rel="next">DEC Alpha Options</a>, Previous: <a href="#CR16-Options" accesskey="p" rel="prev">CR16 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Darwin-Options-1"></a>
<h4 class="subsection">3.18.10 Darwin Options</h4>
<a name="index-Darwin-options"></a>
<p>These options are defined for all architectures running the Darwin operating
system.
</p>
<p>FSF GCC on Darwin does not create “fat” object files; it creates
an object file for the single architecture that GCC was built to
target. Apple’s GCC on Darwin does create “fat” files if multiple
<samp>-arch</samp> options are used; it does so by running the compiler or
linker multiple times and joining the results together with
<samp>lipo</samp>.
</p>
<p>The subtype of the file created (like ‘<samp>ppc7400</samp>’ or ‘<samp>ppc970</samp>’ or
‘<samp>i686</samp>’) is determined by the flags that specify the ISA
that GCC is targeting, like <samp>-mcpu</samp> or <samp>-march</samp>. The
<samp>-force_cpusubtype_ALL</samp> option can be used to override this.
</p>
<p>The Darwin tools vary in their behavior when presented with an ISA
mismatch. The assembler, <samp>as</samp>, only permits instructions to
be used that are valid for the subtype of the file it is generating,
so you cannot put 64-bit instructions in a ‘<samp>ppc750</samp>’ object file.
The linker for shared libraries, <samp>/usr/bin/libtool</samp>, fails
and prints an error if asked to create a shared library with a less
restrictive subtype than its input files (for instance, trying to put
a ‘<samp>ppc970</samp>’ object file in a ‘<samp>ppc7400</samp>’ library). The linker
for executables, <code>ld</code>, quietly gives the executable the most
restrictive subtype of any of its input files.
</p>
<dl compact="compact">
<dt><code>-F<var>dir</var></code></dt>
<dd><a name="index-F"></a>
<p>Add the framework directory <var>dir</var> to the head of the list of
directories to be searched for header files. These directories are
interleaved with those specified by <samp>-I</samp> options and are
scanned in a left-to-right order.
</p>
<p>A framework directory is a directory with frameworks in it. A
framework is a directory with a <samp>Headers</samp> and/or
<samp>PrivateHeaders</samp> directory contained directly in it that ends
in <samp>.framework</samp>. The name of a framework is the name of this
directory excluding the <samp>.framework</samp>. Headers associated with
the framework are found in one of those two directories, with
<samp>Headers</samp> being searched first. A subframework is a framework
directory that is in a framework’s <samp>Frameworks</samp> directory.
Includes of subframework headers can only appear in a header of a
framework that contains the subframework, or in a sibling subframework
header. Two subframeworks are siblings if they occur in the same
framework. A subframework should not have the same name as a
framework; a warning is issued if this is violated. Currently a
subframework cannot have subframeworks; in the future, the mechanism
may be extended to support this. The standard frameworks can be found
in <samp>/System/Library/Frameworks</samp> and
<samp>/Library/Frameworks</samp>. An example include looks like
<code>#include <Framework/header.h></code>, where <samp>Framework</samp> denotes
the name of the framework and <samp>header.h</samp> is found in the
<samp>PrivateHeaders</samp> or <samp>Headers</samp> directory.
</p>
</dd>
<dt><code>-iframework<var>dir</var></code></dt>
<dd><a name="index-iframework"></a>
<p>Like <samp>-F</samp> except the directory is a treated as a system
directory. The main difference between this <samp>-iframework</samp> and
<samp>-F</samp> is that with <samp>-iframework</samp> the compiler does not
warn about constructs contained within header files found via
<var>dir</var>. This option is valid only for the C family of languages.
</p>
</dd>
<dt><code>-gused</code></dt>
<dd><a name="index-gused"></a>
<p>Emit debugging information for symbols that are used. For stabs
debugging format, this enables <samp>-feliminate-unused-debug-symbols</samp>.
This is by default ON.
</p>
</dd>
<dt><code>-gfull</code></dt>
<dd><a name="index-gfull"></a>
<p>Emit debugging information for all symbols and types.
</p>
</dd>
<dt><code>-mmacosx-version-min=<var>version</var></code></dt>
<dd><p>The earliest version of MacOS X that this executable will run on
is <var>version</var>. Typical values of <var>version</var> include <code>10.1</code>,
<code>10.2</code>, and <code>10.3.9</code>.
</p>
<p>If the compiler was built to use the system’s headers by default,
then the default for this option is the system version on which the
compiler is running, otherwise the default is to make choices that
are compatible with as many systems and code bases as possible.
</p>
</dd>
<dt><code>-mkernel</code></dt>
<dd><a name="index-mkernel"></a>
<p>Enable kernel development mode. The <samp>-mkernel</samp> option sets
<samp>-static</samp>, <samp>-fno-common</samp>, <samp>-fno-use-cxa-atexit</samp>,
<samp>-fno-exceptions</samp>, <samp>-fno-non-call-exceptions</samp>,
<samp>-fapple-kext</samp>, <samp>-fno-weak</samp> and <samp>-fno-rtti</samp> where
applicable. This mode also sets <samp>-mno-altivec</samp>,
<samp>-msoft-float</samp>, <samp>-fno-builtin</samp> and
<samp>-mlong-branch</samp> for PowerPC targets.
</p>
</dd>
<dt><code>-mone-byte-bool</code></dt>
<dd><a name="index-mone_002dbyte_002dbool"></a>
<p>Override the defaults for <code>bool</code> so that <code>sizeof(bool)==1</code>.
By default <code>sizeof(bool)</code> is <code>4</code> when compiling for
Darwin/PowerPC and <code>1</code> when compiling for Darwin/x86, so this
option has no effect on x86.
</p>
<p><strong>Warning:</strong> The <samp>-mone-byte-bool</samp> switch causes GCC
to generate code that is not binary compatible with code generated
without that switch. Using this switch may require recompiling all
other modules in a program, including system libraries. Use this
switch to conform to a non-default data model.
</p>
</dd>
<dt><code>-mfix-and-continue</code></dt>
<dt><code>-ffix-and-continue</code></dt>
<dt><code>-findirect-data</code></dt>
<dd><a name="index-mfix_002dand_002dcontinue"></a>
<a name="index-ffix_002dand_002dcontinue"></a>
<a name="index-findirect_002ddata"></a>
<p>Generate code suitable for fast turnaround development, such as to
allow GDB to dynamically load <samp>.o</samp> files into already-running
programs. <samp>-findirect-data</samp> and <samp>-ffix-and-continue</samp>
are provided for backwards compatibility.
</p>
</dd>
<dt><code>-all_load</code></dt>
<dd><a name="index-all_005fload"></a>
<p>Loads all members of static archive libraries.
See man ld(1) for more information.
</p>
</dd>
<dt><code>-arch_errors_fatal</code></dt>
<dd><a name="index-arch_005ferrors_005ffatal"></a>
<p>Cause the errors having to do with files that have the wrong architecture
to be fatal.
</p>
</dd>
<dt><code>-bind_at_load</code></dt>
<dd><a name="index-bind_005fat_005fload"></a>
<p>Causes the output file to be marked such that the dynamic linker will
bind all undefined references when the file is loaded or launched.
</p>
</dd>
<dt><code>-bundle</code></dt>
<dd><a name="index-bundle"></a>
<p>Produce a Mach-o bundle format file.
See man ld(1) for more information.
</p>
</dd>
<dt><code>-bundle_loader <var>executable</var></code></dt>
<dd><a name="index-bundle_005floader"></a>
<p>This option specifies the <var>executable</var> that will load the build
output file being linked. See man ld(1) for more information.
</p>
</dd>
<dt><code>-dynamiclib</code></dt>
<dd><a name="index-dynamiclib"></a>
<p>When passed this option, GCC produces a dynamic library instead of
an executable when linking, using the Darwin <samp>libtool</samp> command.
</p>
</dd>
<dt><code>-force_cpusubtype_ALL</code></dt>
<dd><a name="index-force_005fcpusubtype_005fALL"></a>
<p>This causes GCC’s output file to have the ‘<samp>ALL</samp>’ subtype, instead of
one controlled by the <samp>-mcpu</samp> or <samp>-march</samp> option.
</p>
</dd>
<dt><code>-allowable_client <var>client_name</var></code></dt>
<dt><code>-client_name</code></dt>
<dt><code>-compatibility_version</code></dt>
<dt><code>-current_version</code></dt>
<dt><code>-dead_strip</code></dt>
<dt><code>-dependency-file</code></dt>
<dt><code>-dylib_file</code></dt>
<dt><code>-dylinker_install_name</code></dt>
<dt><code>-dynamic</code></dt>
<dt><code>-exported_symbols_list</code></dt>
<dt><code>-filelist</code></dt>
<dt><code>-flat_namespace</code></dt>
<dt><code>-force_flat_namespace</code></dt>
<dt><code>-headerpad_max_install_names</code></dt>
<dt><code>-image_base</code></dt>
<dt><code>-init</code></dt>
<dt><code>-install_name</code></dt>
<dt><code>-keep_private_externs</code></dt>
<dt><code>-multi_module</code></dt>
<dt><code>-multiply_defined</code></dt>
<dt><code>-multiply_defined_unused</code></dt>
<dt><code>-noall_load</code></dt>
<dt><code>-no_dead_strip_inits_and_terms</code></dt>
<dt><code>-nofixprebinding</code></dt>
<dt><code>-nomultidefs</code></dt>
<dt><code>-noprebind</code></dt>
<dt><code>-noseglinkedit</code></dt>
<dt><code>-pagezero_size</code></dt>
<dt><code>-prebind</code></dt>
<dt><code>-prebind_all_twolevel_modules</code></dt>
<dt><code>-private_bundle</code></dt>
<dt><code>-read_only_relocs</code></dt>
<dt><code>-sectalign</code></dt>
<dt><code>-sectobjectsymbols</code></dt>
<dt><code>-whyload</code></dt>
<dt><code>-seg1addr</code></dt>
<dt><code>-sectcreate</code></dt>
<dt><code>-sectobjectsymbols</code></dt>
<dt><code>-sectorder</code></dt>
<dt><code>-segaddr</code></dt>
<dt><code>-segs_read_only_addr</code></dt>
<dt><code>-segs_read_write_addr</code></dt>
<dt><code>-seg_addr_table</code></dt>
<dt><code>-seg_addr_table_filename</code></dt>
<dt><code>-seglinkedit</code></dt>
<dt><code>-segprot</code></dt>
<dt><code>-segs_read_only_addr</code></dt>
<dt><code>-segs_read_write_addr</code></dt>
<dt><code>-single_module</code></dt>
<dt><code>-static</code></dt>
<dt><code>-sub_library</code></dt>
<dt><code>-sub_umbrella</code></dt>
<dt><code>-twolevel_namespace</code></dt>
<dt><code>-umbrella</code></dt>
<dt><code>-undefined</code></dt>
<dt><code>-unexported_symbols_list</code></dt>
<dt><code>-weak_reference_mismatches</code></dt>
<dt><code>-whatsloaded</code></dt>
<dd><a name="index-allowable_005fclient"></a>
<a name="index-client_005fname"></a>
<a name="index-compatibility_005fversion"></a>
<a name="index-current_005fversion"></a>
<a name="index-dead_005fstrip"></a>
<a name="index-dependency_002dfile"></a>
<a name="index-dylib_005ffile"></a>
<a name="index-dylinker_005finstall_005fname"></a>
<a name="index-dynamic"></a>
<a name="index-exported_005fsymbols_005flist"></a>
<a name="index-filelist"></a>
<a name="index-flat_005fnamespace"></a>
<a name="index-force_005fflat_005fnamespace"></a>
<a name="index-headerpad_005fmax_005finstall_005fnames"></a>
<a name="index-image_005fbase"></a>
<a name="index-init"></a>
<a name="index-install_005fname"></a>
<a name="index-keep_005fprivate_005fexterns"></a>
<a name="index-multi_005fmodule"></a>
<a name="index-multiply_005fdefined"></a>
<a name="index-multiply_005fdefined_005funused"></a>
<a name="index-noall_005fload"></a>
<a name="index-no_005fdead_005fstrip_005finits_005fand_005fterms"></a>
<a name="index-nofixprebinding"></a>
<a name="index-nomultidefs"></a>
<a name="index-noprebind"></a>
<a name="index-noseglinkedit"></a>
<a name="index-pagezero_005fsize"></a>
<a name="index-prebind"></a>
<a name="index-prebind_005fall_005ftwolevel_005fmodules"></a>
<a name="index-private_005fbundle"></a>
<a name="index-read_005fonly_005frelocs"></a>
<a name="index-sectalign"></a>
<a name="index-sectobjectsymbols"></a>
<a name="index-whyload"></a>
<a name="index-seg1addr"></a>
<a name="index-sectcreate"></a>
<a name="index-sectobjectsymbols-1"></a>
<a name="index-sectorder"></a>
<a name="index-segaddr"></a>
<a name="index-segs_005fread_005fonly_005faddr"></a>
<a name="index-segs_005fread_005fwrite_005faddr"></a>
<a name="index-seg_005faddr_005ftable"></a>
<a name="index-seg_005faddr_005ftable_005ffilename"></a>
<a name="index-seglinkedit"></a>
<a name="index-segprot"></a>
<a name="index-segs_005fread_005fonly_005faddr-1"></a>
<a name="index-segs_005fread_005fwrite_005faddr-1"></a>
<a name="index-single_005fmodule"></a>
<a name="index-static-1"></a>
<a name="index-sub_005flibrary"></a>
<a name="index-sub_005fumbrella"></a>
<a name="index-twolevel_005fnamespace"></a>
<a name="index-umbrella"></a>
<a name="index-undefined"></a>
<a name="index-unexported_005fsymbols_005flist"></a>
<a name="index-weak_005freference_005fmismatches"></a>
<a name="index-whatsloaded"></a>
<p>These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.
</p></dd>
</dl>
<hr>
<a name="DEC-Alpha-Options"></a>
<div class="header">
<p>
Next: <a href="#FR30-Options" accesskey="n" rel="next">FR30 Options</a>, Previous: <a href="#Darwin-Options" accesskey="p" rel="prev">Darwin Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="DEC-Alpha-Options-1"></a>
<h4 class="subsection">3.18.11 DEC Alpha Options</h4>
<p>These ‘<samp>-m</samp>’ options are defined for the DEC Alpha implementations:
</p>
<dl compact="compact">
<dt><code>-mno-soft-float</code></dt>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-mno_002dsoft_002dfloat"></a>
<a name="index-msoft_002dfloat-1"></a>
<p>Use (do not use) the hardware floating-point instructions for
floating-point operations. When <samp>-msoft-float</samp> is specified,
functions in <samp>libgcc.a</samp> are used to perform floating-point
operations. Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call such
emulations routines, these routines issue floating-point
operations. If you are compiling for an Alpha without floating-point
operations, you must ensure that the library is built so as not to call
them.
</p>
<p>Note that Alpha implementations without floating-point operations are
required to have floating-point registers.
</p>
</dd>
<dt><code>-mfp-reg</code></dt>
<dt><code>-mno-fp-regs</code></dt>
<dd><a name="index-mfp_002dreg"></a>
<a name="index-mno_002dfp_002dregs"></a>
<p>Generate code that uses (does not use) the floating-point register set.
<samp>-mno-fp-regs</samp> implies <samp>-msoft-float</samp>. If the floating-point
register set is not used, floating-point operands are passed in integer
registers as if they were integers and floating-point results are passed
in <code>$0</code> instead of <code>$f0</code>. This is a non-standard calling sequence,
so any function with a floating-point argument or return value called by code
compiled with <samp>-mno-fp-regs</samp> must also be compiled with that
option.
</p>
<p>A typical use of this option is building a kernel that does not use,
and hence need not save and restore, any floating-point registers.
</p>
</dd>
<dt><code>-mieee</code></dt>
<dd><a name="index-mieee"></a>
<p>The Alpha architecture implements floating-point hardware optimized for
maximum performance. It is mostly compliant with the IEEE floating-point
standard. However, for full compliance, software assistance is
required. This option generates code fully IEEE-compliant code
<em>except</em> that the <var>inexact-flag</var> is not maintained (see below).
If this option is turned on, the preprocessor macro <code>_IEEE_FP</code> is
defined during compilation. The resulting code is less efficient but is
able to correctly support denormalized numbers and exceptional IEEE
values such as not-a-number and plus/minus infinity. Other Alpha
compilers call this option <samp>-ieee_with_no_inexact</samp>.
</p>
</dd>
<dt><code>-mieee-with-inexact</code></dt>
<dd><a name="index-mieee_002dwith_002dinexact"></a>
<p>This is like <samp>-mieee</samp> except the generated code also maintains
the IEEE <var>inexact-flag</var>. Turning on this option causes the
generated code to implement fully-compliant IEEE math. In addition to
<code>_IEEE_FP</code>, <code>_IEEE_FP_EXACT</code> is defined as a preprocessor
macro. On some Alpha implementations the resulting code may execute
significantly slower than the code generated by default. Since there is
very little code that depends on the <var>inexact-flag</var>, you should
normally not specify this option. Other Alpha compilers call this
option <samp>-ieee_with_inexact</samp>.
</p>
</dd>
<dt><code>-mfp-trap-mode=<var>trap-mode</var></code></dt>
<dd><a name="index-mfp_002dtrap_002dmode"></a>
<p>This option controls what floating-point related traps are enabled.
Other Alpha compilers call this option <samp>-fptm <var>trap-mode</var></samp>.
The trap mode can be set to one of four values:
</p>
<dl compact="compact">
<dt>‘<samp>n</samp>’</dt>
<dd><p>This is the default (normal) setting. The only traps that are enabled
are the ones that cannot be disabled in software (e.g., division by zero
trap).
</p>
</dd>
<dt>‘<samp>u</samp>’</dt>
<dd><p>In addition to the traps enabled by ‘<samp>n</samp>’, underflow traps are enabled
as well.
</p>
</dd>
<dt>‘<samp>su</samp>’</dt>
<dd><p>Like ‘<samp>u</samp>’, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).
</p>
</dd>
<dt>‘<samp>sui</samp>’</dt>
<dd><p>Like ‘<samp>su</samp>’, but inexact traps are enabled as well.
</p></dd>
</dl>
</dd>
<dt><code>-mfp-rounding-mode=<var>rounding-mode</var></code></dt>
<dd><a name="index-mfp_002drounding_002dmode"></a>
<p>Selects the IEEE rounding mode. Other Alpha compilers call this option
<samp>-fprm <var>rounding-mode</var></samp>. The <var>rounding-mode</var> can be one
of:
</p>
<dl compact="compact">
<dt>‘<samp>n</samp>’</dt>
<dd><p>Normal IEEE rounding mode. Floating-point numbers are rounded towards
the nearest machine number or towards the even machine number in case
of a tie.
</p>
</dd>
<dt>‘<samp>m</samp>’</dt>
<dd><p>Round towards minus infinity.
</p>
</dd>
<dt>‘<samp>c</samp>’</dt>
<dd><p>Chopped rounding mode. Floating-point numbers are rounded towards zero.
</p>
</dd>
<dt>‘<samp>d</samp>’</dt>
<dd><p>Dynamic rounding mode. A field in the floating-point control register
(<var>fpcr</var>, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies the
<var>fpcr</var>, ‘<samp>d</samp>’ corresponds to round towards plus infinity.
</p></dd>
</dl>
</dd>
<dt><code>-mtrap-precision=<var>trap-precision</var></code></dt>
<dd><a name="index-mtrap_002dprecision"></a>
<p>In the Alpha architecture, floating-point traps are imprecise. This
means without software assistance it is impossible to recover from a
floating trap and program execution normally needs to be terminated.
GCC can generate code that can assist operating system trap handlers
in determining the exact location that caused a floating-point trap.
Depending on the requirements of an application, different levels of
precisions can be selected:
</p>
<dl compact="compact">
<dt>‘<samp>p</samp>’</dt>
<dd><p>Program precision. This option is the default and means a trap handler
can only identify which program caused a floating-point exception.
</p>
</dd>
<dt>‘<samp>f</samp>’</dt>
<dd><p>Function precision. The trap handler can determine the function that
caused a floating-point exception.
</p>
</dd>
<dt>‘<samp>i</samp>’</dt>
<dd><p>Instruction precision. The trap handler can determine the exact
instruction that caused a floating-point exception.
</p></dd>
</dl>
<p>Other Alpha compilers provide the equivalent options called
<samp>-scope_safe</samp> and <samp>-resumption_safe</samp>.
</p>
</dd>
<dt><code>-mieee-conformant</code></dt>
<dd><a name="index-mieee_002dconformant"></a>
<p>This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify <samp>-mtrap-precision=i</samp> and either
<samp>-mfp-trap-mode=su</samp> or <samp>-mfp-trap-mode=sui</samp>. Its only effect
is to emit the line ‘<samp>.eflag 48</samp>’ in the function prologue of the
generated assembly file.
</p>
</dd>
<dt><code>-mbuild-constants</code></dt>
<dd><a name="index-mbuild_002dconstants"></a>
<p>Normally GCC examines a 32- or 64-bit integer constant to
see if it can construct it from smaller constants in two or three
instructions. If it cannot, it outputs the constant as a literal and
generates code to load it from the data segment at run time.
</p>
<p>Use this option to require GCC to construct <em>all</em> integer constants
using code, even if it takes more instructions (the maximum is six).
</p>
<p>You typically use this option to build a shared library dynamic
loader. Itself a shared library, it must relocate itself in memory
before it can find the variables and constants in its own data segment.
</p>
</dd>
<dt><code>-mbwx</code></dt>
<dt><code>-mno-bwx</code></dt>
<dt><code>-mcix</code></dt>
<dt><code>-mno-cix</code></dt>
<dt><code>-mfix</code></dt>
<dt><code>-mno-fix</code></dt>
<dt><code>-mmax</code></dt>
<dt><code>-mno-max</code></dt>
<dd><a name="index-mbwx"></a>
<a name="index-mno_002dbwx"></a>
<a name="index-mcix"></a>
<a name="index-mno_002dcix"></a>
<a name="index-mfix"></a>
<a name="index-mno_002dfix"></a>
<a name="index-mmax"></a>
<a name="index-mno_002dmax"></a>
<p>Indicate whether GCC should generate code to use the optional BWX,
CIX, FIX and MAX instruction sets. The default is to use the instruction
sets supported by the CPU type specified via <samp>-mcpu=</samp> option or that
of the CPU on which GCC was built if none is specified.
</p>
</dd>
<dt><code>-mfloat-vax</code></dt>
<dt><code>-mfloat-ieee</code></dt>
<dd><a name="index-mfloat_002dvax"></a>
<a name="index-mfloat_002dieee"></a>
<p>Generate code that uses (does not use) VAX F and G floating-point
arithmetic instead of IEEE single and double precision.
</p>
</dd>
<dt><code>-mexplicit-relocs</code></dt>
<dt><code>-mno-explicit-relocs</code></dt>
<dd><a name="index-mexplicit_002drelocs"></a>
<a name="index-mno_002dexplicit_002drelocs"></a>
<p>Older Alpha assemblers provided no way to generate symbol relocations
except via assembler macros. Use of these macros does not allow
optimal instruction scheduling. GNU binutils as of version 2.12
supports a new syntax that allows the compiler to explicitly mark
which relocations should apply to which instructions. This option
is mostly useful for debugging, as GCC detects the capabilities of
the assembler when it is built and sets the default accordingly.
</p>
</dd>
<dt><code>-msmall-data</code></dt>
<dt><code>-mlarge-data</code></dt>
<dd><a name="index-msmall_002ddata"></a>
<a name="index-mlarge_002ddata"></a>
<p>When <samp>-mexplicit-relocs</samp> is in effect, static data is
accessed via <em>gp-relative</em> relocations. When <samp>-msmall-data</samp>
is used, objects 8 bytes long or smaller are placed in a <em>small data area</em>
(the <code>.sdata</code> and <code>.sbss</code> sections) and are accessed via
16-bit relocations off of the <code>$gp</code> register. This limits the
size of the small data area to 64KB, but allows the variables to be
directly accessed via a single instruction.
</p>
<p>The default is <samp>-mlarge-data</samp>. With this option the data area
is limited to just below 2GB. Programs that require more than 2GB of
data must use <code>malloc</code> or <code>mmap</code> to allocate the data in the
heap instead of in the program’s data segment.
</p>
<p>When generating code for shared libraries, <samp>-fpic</samp> implies
<samp>-msmall-data</samp> and <samp>-fPIC</samp> implies <samp>-mlarge-data</samp>.
</p>
</dd>
<dt><code>-msmall-text</code></dt>
<dt><code>-mlarge-text</code></dt>
<dd><a name="index-msmall_002dtext"></a>
<a name="index-mlarge_002dtext"></a>
<p>When <samp>-msmall-text</samp> is used, the compiler assumes that the
code of the entire program (or shared library) fits in 4MB, and is
thus reachable with a branch instruction. When <samp>-msmall-data</samp>
is used, the compiler can assume that all local symbols share the
same <code>$gp</code> value, and thus reduce the number of instructions
required for a function call from 4 to 1.
</p>
<p>The default is <samp>-mlarge-text</samp>.
</p>
</dd>
<dt><code>-mcpu=<var>cpu_type</var></code></dt>
<dd><a name="index-mcpu-4"></a>
<p>Set the instruction set and instruction scheduling parameters for
machine type <var>cpu_type</var>. You can specify either the ‘<samp>EV</samp>’
style name or the corresponding chip number. GCC supports scheduling
parameters for the EV4, EV5 and EV6 family of processors and
chooses the default values for the instruction set from the processor
you specify. If you do not specify a processor type, GCC defaults
to the processor on which the compiler was built.
</p>
<p>Supported values for <var>cpu_type</var> are
</p>
<dl compact="compact">
<dt>‘<samp>ev4</samp>’</dt>
<dt>‘<samp>ev45</samp>’</dt>
<dt>‘<samp>21064</samp>’</dt>
<dd><p>Schedules as an EV4 and has no instruction set extensions.
</p>
</dd>
<dt>‘<samp>ev5</samp>’</dt>
<dt>‘<samp>21164</samp>’</dt>
<dd><p>Schedules as an EV5 and has no instruction set extensions.
</p>
</dd>
<dt>‘<samp>ev56</samp>’</dt>
<dt>‘<samp>21164a</samp>’</dt>
<dd><p>Schedules as an EV5 and supports the BWX extension.
</p>
</dd>
<dt>‘<samp>pca56</samp>’</dt>
<dt>‘<samp>21164pc</samp>’</dt>
<dt>‘<samp>21164PC</samp>’</dt>
<dd><p>Schedules as an EV5 and supports the BWX and MAX extensions.
</p>
</dd>
<dt>‘<samp>ev6</samp>’</dt>
<dt>‘<samp>21264</samp>’</dt>
<dd><p>Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
</p>
</dd>
<dt>‘<samp>ev67</samp>’</dt>
<dt>‘<samp>21264a</samp>’</dt>
<dd><p>Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
</p></dd>
</dl>
<p>Native toolchains also support the value ‘<samp>native</samp>’,
which selects the best architecture option for the host processor.
<samp>-mcpu=native</samp> has no effect if GCC does not recognize
the processor.
</p>
</dd>
<dt><code>-mtune=<var>cpu_type</var></code></dt>
<dd><a name="index-mtune-5"></a>
<p>Set only the instruction scheduling parameters for machine type
<var>cpu_type</var>. The instruction set is not changed.
</p>
<p>Native toolchains also support the value ‘<samp>native</samp>’,
which selects the best architecture option for the host processor.
<samp>-mtune=native</samp> has no effect if GCC does not recognize
the processor.
</p>
</dd>
<dt><code>-mmemory-latency=<var>time</var></code></dt>
<dd><a name="index-mmemory_002dlatency"></a>
<p>Sets the latency the scheduler should assume for typical memory
references as seen by the application. This number is highly
dependent on the memory access patterns used by the application
and the size of the external cache on the machine.
</p>
<p>Valid options for <var>time</var> are
</p>
<dl compact="compact">
<dt>‘<samp><var>number</var></samp>’</dt>
<dd><p>A decimal number representing clock cycles.
</p>
</dd>
<dt>‘<samp>L1</samp>’</dt>
<dt>‘<samp>L2</samp>’</dt>
<dt>‘<samp>L3</samp>’</dt>
<dt>‘<samp>main</samp>’</dt>
<dd><p>The compiler contains estimates of the number of clock cycles for
“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches
(also called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.
</p>
</dd>
</dl>
</dd>
</dl>
<hr>
<a name="FR30-Options"></a>
<div class="header">
<p>
Next: <a href="#FT32-Options" accesskey="n" rel="next">FT32 Options</a>, Previous: <a href="#DEC-Alpha-Options" accesskey="p" rel="prev">DEC Alpha Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="FR30-Options-1"></a>
<h4 class="subsection">3.18.12 FR30 Options</h4>
<a name="index-FR30-Options"></a>
<p>These options are defined specifically for the FR30 port.
</p>
<dl compact="compact">
<dt><code>-msmall-model</code></dt>
<dd><a name="index-msmall_002dmodel"></a>
<p>Use the small address space model. This can produce smaller code, but
it does assume that all symbolic values and addresses fit into a
20-bit range.
</p>
</dd>
<dt><code>-mno-lsim</code></dt>
<dd><a name="index-mno_002dlsim"></a>
<p>Assume that runtime support has been provided and so there is no need
to include the simulator library (<samp>libsim.a</samp>) on the linker
command line.
</p>
</dd>
</dl>
<hr>
<a name="FT32-Options"></a>
<div class="header">
<p>
Next: <a href="#FRV-Options" accesskey="n" rel="next">FRV Options</a>, Previous: <a href="#FR30-Options" accesskey="p" rel="prev">FR30 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="FT32-Options-1"></a>
<h4 class="subsection">3.18.13 FT32 Options</h4>
<a name="index-FT32-Options"></a>
<p>These options are defined specifically for the FT32 port.
</p>
<dl compact="compact">
<dt><code>-msim</code></dt>
<dd><a name="index-msim-3"></a>
<p>Specifies that the program will be run on the simulator. This causes
an alternate runtime startup and library to be linked.
You must not use this option when generating programs that will run on
real hardware; you must provide your own runtime library for whatever
I/O functions are needed.
</p>
</dd>
<dt><code>-mlra</code></dt>
<dd><a name="index-mlra-1"></a>
<p>Enable Local Register Allocation. This is still experimental for FT32,
so by default the compiler uses standard reload.
</p>
</dd>
<dt><code>-mnodiv</code></dt>
<dd><a name="index-mnodiv"></a>
<p>Do not use div and mod instructions.
</p>
</dd>
<dt><code>-mft32b</code></dt>
<dd><a name="index-mft32b"></a>
<p>Enable use of the extended instructions of the FT32B processor.
</p>
</dd>
<dt><code>-mcompress</code></dt>
<dd><a name="index-mcompress"></a>
<p>Compress all code using the Ft32B code compression scheme.
</p>
</dd>
<dt><code>-mnopm</code></dt>
<dd><a name="index-mnopm"></a>
<p>Do not generate code that reads program memory.
</p>
</dd>
</dl>
<hr>
<a name="FRV-Options"></a>
<div class="header">
<p>
Next: <a href="#GNU_002fLinux-Options" accesskey="n" rel="next">GNU/Linux Options</a>, Previous: <a href="#FT32-Options" accesskey="p" rel="prev">FT32 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="FRV-Options-1"></a>
<h4 class="subsection">3.18.14 FRV Options</h4>
<a name="index-FRV-Options"></a>
<dl compact="compact">
<dt><code>-mgpr-32</code></dt>
<dd><a name="index-mgpr_002d32"></a>
<p>Only use the first 32 general-purpose registers.
</p>
</dd>
<dt><code>-mgpr-64</code></dt>
<dd><a name="index-mgpr_002d64"></a>
<p>Use all 64 general-purpose registers.
</p>
</dd>
<dt><code>-mfpr-32</code></dt>
<dd><a name="index-mfpr_002d32"></a>
<p>Use only the first 32 floating-point registers.
</p>
</dd>
<dt><code>-mfpr-64</code></dt>
<dd><a name="index-mfpr_002d64"></a>
<p>Use all 64 floating-point registers.
</p>
</dd>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-mhard_002dfloat"></a>
<p>Use hardware instructions for floating-point operations.
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-msoft_002dfloat-2"></a>
<p>Use library routines for floating-point operations.
</p>
</dd>
<dt><code>-malloc-cc</code></dt>
<dd><a name="index-malloc_002dcc"></a>
<p>Dynamically allocate condition code registers.
</p>
</dd>
<dt><code>-mfixed-cc</code></dt>
<dd><a name="index-mfixed_002dcc"></a>
<p>Do not try to dynamically allocate condition code registers, only
use <code>icc0</code> and <code>fcc0</code>.
</p>
</dd>
<dt><code>-mdword</code></dt>
<dd><a name="index-mdword"></a>
<p>Change ABI to use double word insns.
</p>
</dd>
<dt><code>-mno-dword</code></dt>
<dd><a name="index-mno_002ddword"></a>
<p>Do not use double word instructions.
</p>
</dd>
<dt><code>-mdouble</code></dt>
<dd><a name="index-mdouble"></a>
<p>Use floating-point double instructions.
</p>
</dd>
<dt><code>-mno-double</code></dt>
<dd><a name="index-mno_002ddouble"></a>
<p>Do not use floating-point double instructions.
</p>
</dd>
<dt><code>-mmedia</code></dt>
<dd><a name="index-mmedia"></a>
<p>Use media instructions.
</p>
</dd>
<dt><code>-mno-media</code></dt>
<dd><a name="index-mno_002dmedia"></a>
<p>Do not use media instructions.
</p>
</dd>
<dt><code>-mmuladd</code></dt>
<dd><a name="index-mmuladd"></a>
<p>Use multiply and add/subtract instructions.
</p>
</dd>
<dt><code>-mno-muladd</code></dt>
<dd><a name="index-mno_002dmuladd"></a>
<p>Do not use multiply and add/subtract instructions.
</p>
</dd>
<dt><code>-mfdpic</code></dt>
<dd><a name="index-mfdpic"></a>
<p>Select the FDPIC ABI, which uses function descriptors to represent
pointers to functions. Without any PIC/PIE-related options, it
implies <samp>-fPIE</samp>. With <samp>-fpic</samp> or <samp>-fpie</samp>, it
assumes GOT entries and small data are within a 12-bit range from the
GOT base address; with <samp>-fPIC</samp> or <samp>-fPIE</samp>, GOT offsets
are computed with 32 bits.
With a ‘<samp>bfin-elf</samp>’ target, this option implies <samp>-msim</samp>.
</p>
</dd>
<dt><code>-minline-plt</code></dt>
<dd><a name="index-minline_002dplt-1"></a>
<p>Enable inlining of PLT entries in function calls to functions that are
not known to bind locally. It has no effect without <samp>-mfdpic</samp>.
It’s enabled by default if optimizing for speed and compiling for
shared libraries (i.e., <samp>-fPIC</samp> or <samp>-fpic</samp>), or when an
optimization option such as <samp>-O3</samp> or above is present in the
command line.
</p>
</dd>
<dt><code>-mTLS</code></dt>
<dd><a name="index-mTLS"></a>
<p>Assume a large TLS segment when generating thread-local code.
</p>
</dd>
<dt><code>-mtls</code></dt>
<dd><a name="index-mtls"></a>
<p>Do not assume a large TLS segment when generating thread-local code.
</p>
</dd>
<dt><code>-mgprel-ro</code></dt>
<dd><a name="index-mgprel_002dro"></a>
<p>Enable the use of <code>GPREL</code> relocations in the FDPIC ABI for data
that is known to be in read-only sections. It’s enabled by default,
except for <samp>-fpic</samp> or <samp>-fpie</samp>: even though it may help
make the global offset table smaller, it trades 1 instruction for 4.
With <samp>-fPIC</samp> or <samp>-fPIE</samp>, it trades 3 instructions for 4,
one of which may be shared by multiple symbols, and it avoids the need
for a GOT entry for the referenced symbol, so it’s more likely to be a
win. If it is not, <samp>-mno-gprel-ro</samp> can be used to disable it.
</p>
</dd>
<dt><code>-multilib-library-pic</code></dt>
<dd><a name="index-multilib_002dlibrary_002dpic"></a>
<p>Link with the (library, not FD) pic libraries. It’s implied by
<samp>-mlibrary-pic</samp>, as well as by <samp>-fPIC</samp> and
<samp>-fpic</samp> without <samp>-mfdpic</samp>. You should never have to use
it explicitly.
</p>
</dd>
<dt><code>-mlinked-fp</code></dt>
<dd><a name="index-mlinked_002dfp"></a>
<p>Follow the EABI requirement of always creating a frame pointer whenever
a stack frame is allocated. This option is enabled by default and can
be disabled with <samp>-mno-linked-fp</samp>.
</p>
</dd>
<dt><code>-mlong-calls</code></dt>
<dd><a name="index-mlong_002dcalls-4"></a>
<p>Use indirect addressing to call functions outside the current
compilation unit. This allows the functions to be placed anywhere
within the 32-bit address space.
</p>
</dd>
<dt><code>-malign-labels</code></dt>
<dd><a name="index-malign_002dlabels"></a>
<p>Try to align labels to an 8-byte boundary by inserting NOPs into the
previous packet. This option only has an effect when VLIW packing
is enabled. It doesn’t create new packets; it merely adds NOPs to
existing ones.
</p>
</dd>
<dt><code>-mlibrary-pic</code></dt>
<dd><a name="index-mlibrary_002dpic"></a>
<p>Generate position-independent EABI code.
</p>
</dd>
<dt><code>-macc-4</code></dt>
<dd><a name="index-macc_002d4"></a>
<p>Use only the first four media accumulator registers.
</p>
</dd>
<dt><code>-macc-8</code></dt>
<dd><a name="index-macc_002d8"></a>
<p>Use all eight media accumulator registers.
</p>
</dd>
<dt><code>-mpack</code></dt>
<dd><a name="index-mpack"></a>
<p>Pack VLIW instructions.
</p>
</dd>
<dt><code>-mno-pack</code></dt>
<dd><a name="index-mno_002dpack"></a>
<p>Do not pack VLIW instructions.
</p>
</dd>
<dt><code>-mno-eflags</code></dt>
<dd><a name="index-mno_002deflags"></a>
<p>Do not mark ABI switches in e_flags.
</p>
</dd>
<dt><code>-mcond-move</code></dt>
<dd><a name="index-mcond_002dmove"></a>
<p>Enable the use of conditional-move instructions (default).
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mno-cond-move</code></dt>
<dd><a name="index-mno_002dcond_002dmove"></a>
<p>Disable the use of conditional-move instructions.
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mscc</code></dt>
<dd><a name="index-mscc"></a>
<p>Enable the use of conditional set instructions (default).
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mno-scc</code></dt>
<dd><a name="index-mno_002dscc"></a>
<p>Disable the use of conditional set instructions.
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mcond-exec</code></dt>
<dd><a name="index-mcond_002dexec"></a>
<p>Enable the use of conditional execution (default).
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mno-cond-exec</code></dt>
<dd><a name="index-mno_002dcond_002dexec-1"></a>
<p>Disable the use of conditional execution.
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mvliw-branch</code></dt>
<dd><a name="index-mvliw_002dbranch"></a>
<p>Run a pass to pack branches into VLIW instructions (default).
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mno-vliw-branch</code></dt>
<dd><a name="index-mno_002dvliw_002dbranch"></a>
<p>Do not run a pass to pack branches into VLIW instructions.
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mmulti-cond-exec</code></dt>
<dd><a name="index-mmulti_002dcond_002dexec"></a>
<p>Enable optimization of <code>&&</code> and <code>||</code> in conditional execution
(default).
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mno-multi-cond-exec</code></dt>
<dd><a name="index-mno_002dmulti_002dcond_002dexec"></a>
<p>Disable optimization of <code>&&</code> and <code>||</code> in conditional execution.
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mnested-cond-exec</code></dt>
<dd><a name="index-mnested_002dcond_002dexec"></a>
<p>Enable nested conditional execution optimizations (default).
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-mno-nested-cond-exec</code></dt>
<dd><a name="index-mno_002dnested_002dcond_002dexec"></a>
<p>Disable nested conditional execution optimizations.
</p>
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
</p>
</dd>
<dt><code>-moptimize-membar</code></dt>
<dd><a name="index-moptimize_002dmembar"></a>
<p>This switch removes redundant <code>membar</code> instructions from the
compiler-generated code. It is enabled by default.
</p>
</dd>
<dt><code>-mno-optimize-membar</code></dt>
<dd><a name="index-mno_002doptimize_002dmembar"></a>
<p>This switch disables the automatic removal of redundant <code>membar</code>
instructions from the generated code.
</p>
</dd>
<dt><code>-mtomcat-stats</code></dt>
<dd><a name="index-mtomcat_002dstats"></a>
<p>Cause gas to print out tomcat statistics.
</p>
</dd>
<dt><code>-mcpu=<var>cpu</var></code></dt>
<dd><a name="index-mcpu-5"></a>
<p>Select the processor type for which to generate code. Possible values are
‘<samp>frv</samp>’, ‘<samp>fr550</samp>’, ‘<samp>tomcat</samp>’, ‘<samp>fr500</samp>’, ‘<samp>fr450</samp>’,
‘<samp>fr405</samp>’, ‘<samp>fr400</samp>’, ‘<samp>fr300</samp>’ and ‘<samp>simple</samp>’.
</p>
</dd>
</dl>
<hr>
<a name="GNU_002fLinux-Options"></a>
<div class="header">
<p>
Next: <a href="#H8_002f300-Options" accesskey="n" rel="next">H8/300 Options</a>, Previous: <a href="#FRV-Options" accesskey="p" rel="prev">FRV Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="GNU_002fLinux-Options-1"></a>
<h4 class="subsection">3.18.15 GNU/Linux Options</h4>
<p>These ‘<samp>-m</samp>’ options are defined for GNU/Linux targets:
</p>
<dl compact="compact">
<dt><code>-mglibc</code></dt>
<dd><a name="index-mglibc"></a>
<p>Use the GNU C library. This is the default except
on ‘<samp>*-*-linux-*uclibc*</samp>’, ‘<samp>*-*-linux-*musl*</samp>’ and
‘<samp>*-*-linux-*android*</samp>’ targets.
</p>
</dd>
<dt><code>-muclibc</code></dt>
<dd><a name="index-muclibc"></a>
<p>Use uClibc C library. This is the default on
‘<samp>*-*-linux-*uclibc*</samp>’ targets.
</p>
</dd>
<dt><code>-mmusl</code></dt>
<dd><a name="index-mmusl"></a>
<p>Use the musl C library. This is the default on
‘<samp>*-*-linux-*musl*</samp>’ targets.
</p>
</dd>
<dt><code>-mbionic</code></dt>
<dd><a name="index-mbionic"></a>
<p>Use Bionic C library. This is the default on
‘<samp>*-*-linux-*android*</samp>’ targets.
</p>
</dd>
<dt><code>-mandroid</code></dt>
<dd><a name="index-mandroid"></a>
<p>Compile code compatible with Android platform. This is the default on
‘<samp>*-*-linux-*android*</samp>’ targets.
</p>
<p>When compiling, this option enables <samp>-mbionic</samp>, <samp>-fPIC</samp>,
<samp>-fno-exceptions</samp> and <samp>-fno-rtti</samp> by default. When linking,
this option makes the GCC driver pass Android-specific options to the linker.
Finally, this option causes the preprocessor macro <code>__ANDROID__</code>
to be defined.
</p>
</dd>
<dt><code>-tno-android-cc</code></dt>
<dd><a name="index-tno_002dandroid_002dcc"></a>
<p>Disable compilation effects of <samp>-mandroid</samp>, i.e., do not enable
<samp>-mbionic</samp>, <samp>-fPIC</samp>, <samp>-fno-exceptions</samp> and
<samp>-fno-rtti</samp> by default.
</p>
</dd>
<dt><code>-tno-android-ld</code></dt>
<dd><a name="index-tno_002dandroid_002dld"></a>
<p>Disable linking effects of <samp>-mandroid</samp>, i.e., pass standard Linux
linking options to the linker.
</p>
</dd>
</dl>
<hr>
<a name="H8_002f300-Options"></a>
<div class="header">
<p>
Next: <a href="#HPPA-Options" accesskey="n" rel="next">HPPA Options</a>, Previous: <a href="#GNU_002fLinux-Options" accesskey="p" rel="prev">GNU/Linux Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="H8_002f300-Options-1"></a>
<h4 class="subsection">3.18.16 H8/300 Options</h4>
<p>These ‘<samp>-m</samp>’ options are defined for the H8/300 implementations:
</p>
<dl compact="compact">
<dt><code>-mrelax</code></dt>
<dd><a name="index-mrelax-1"></a>
<p>Shorten some address references at link time, when possible; uses the
linker option <samp>-relax</samp>. See <a href="http://sourceware.org/binutils/docs/ld/H8_002f300.html#H8_002f300"><code>ld</code> and the H8/300</a> in <cite>Using ld</cite>, for a fuller description.
</p>
</dd>
<dt><code>-mh</code></dt>
<dd><a name="index-mh"></a>
<p>Generate code for the H8/300H.
</p>
</dd>
<dt><code>-ms</code></dt>
<dd><a name="index-ms"></a>
<p>Generate code for the H8S.
</p>
</dd>
<dt><code>-mn</code></dt>
<dd><a name="index-mn"></a>
<p>Generate code for the H8S and H8/300H in the normal mode. This switch
must be used either with <samp>-mh</samp> or <samp>-ms</samp>.
</p>
</dd>
<dt><code>-ms2600</code></dt>
<dd><a name="index-ms2600"></a>
<p>Generate code for the H8S/2600. This switch must be used with <samp>-ms</samp>.
</p>
</dd>
<dt><code>-mexr</code></dt>
<dd><a name="index-mexr"></a>
<p>Extended registers are stored on stack before execution of function
with monitor attribute. Default option is <samp>-mexr</samp>.
This option is valid only for H8S targets.
</p>
</dd>
<dt><code>-mno-exr</code></dt>
<dd><a name="index-mno_002dexr"></a>
<p>Extended registers are not stored on stack before execution of function
with monitor attribute. Default option is <samp>-mno-exr</samp>.
This option is valid only for H8S targets.
</p>
</dd>
<dt><code>-mint32</code></dt>
<dd><a name="index-mint32-1"></a>
<p>Make <code>int</code> data 32 bits by default.
</p>
</dd>
<dt><code>-malign-300</code></dt>
<dd><a name="index-malign_002d300"></a>
<p>On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on
4-byte boundaries.
<samp>-malign-300</samp> causes them to be aligned on 2-byte boundaries.
This option has no effect on the H8/300.
</p></dd>
</dl>
<hr>
<a name="HPPA-Options"></a>
<div class="header">
<p>
Next: <a href="#IA_002d64-Options" accesskey="n" rel="next">IA-64 Options</a>, Previous: <a href="#H8_002f300-Options" accesskey="p" rel="prev">H8/300 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="HPPA-Options-1"></a>
<h4 class="subsection">3.18.17 HPPA Options</h4>
<a name="index-HPPA-Options"></a>
<p>These ‘<samp>-m</samp>’ options are defined for the HPPA family of computers:
</p>
<dl compact="compact">
<dt><code>-march=<var>architecture-type</var></code></dt>
<dd><a name="index-march-4"></a>
<p>Generate code for the specified architecture. The choices for
<var>architecture-type</var> are ‘<samp>1.0</samp>’ for PA 1.0, ‘<samp>1.1</samp>’ for PA
1.1, and ‘<samp>2.0</samp>’ for PA 2.0 processors. Refer to
<samp>/usr/lib/sched.models</samp> on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered
architectures runs on higher numbered architectures, but not the
other way around.
</p>
</dd>
<dt><code>-mpa-risc-1-0</code></dt>
<dt><code>-mpa-risc-1-1</code></dt>
<dt><code>-mpa-risc-2-0</code></dt>
<dd><a name="index-mpa_002drisc_002d1_002d0"></a>
<a name="index-mpa_002drisc_002d1_002d1"></a>
<a name="index-mpa_002drisc_002d2_002d0"></a>
<p>Synonyms for <samp>-march=1.0</samp>, <samp>-march=1.1</samp>, and <samp>-march=2.0</samp> respectively.
</p>
</dd>
<dt><code>-mcaller-copies</code></dt>
<dd><a name="index-mcaller_002dcopies"></a>
<p>The caller copies function arguments passed by hidden reference. This
option should be used with care as it is not compatible with the default
32-bit runtime. However, only aggregates larger than eight bytes are
passed by hidden reference and the option provides better compatibility
with OpenMP.
</p>
</dd>
<dt><code>-mjump-in-delay</code></dt>
<dd><a name="index-mjump_002din_002ddelay"></a>
<p>This option is ignored and provided for compatibility purposes only.
</p>
</dd>
<dt><code>-mdisable-fpregs</code></dt>
<dd><a name="index-mdisable_002dfpregs"></a>
<p>Prevent floating-point registers from being used in any manner. This is
necessary for compiling kernels that perform lazy context switching of
floating-point registers. If you use this option and attempt to perform
floating-point operations, the compiler aborts.
</p>
</dd>
<dt><code>-mdisable-indexing</code></dt>
<dd><a name="index-mdisable_002dindexing"></a>
<p>Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.
</p>
</dd>
<dt><code>-mno-space-regs</code></dt>
<dd><a name="index-mno_002dspace_002dregs"></a>
<p>Generate code that assumes the target has no space registers. This allows
GCC to generate faster indirect calls and use unscaled index address modes.
</p>
<p>Such code is suitable for level 0 PA systems and kernels.
</p>
</dd>
<dt><code>-mfast-indirect-calls</code></dt>
<dd><a name="index-mfast_002dindirect_002dcalls"></a>
<p>Generate code that assumes calls never cross space boundaries. This
allows GCC to emit code that performs faster indirect calls.
</p>
<p>This option does not work in the presence of shared libraries or nested
functions.
</p>
</dd>
<dt><code>-mfixed-range=<var>register-range</var></code></dt>
<dd><a name="index-mfixed_002drange"></a>
<p>Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
</p>
</dd>
<dt><code>-mlong-load-store</code></dt>
<dd><a name="index-mlong_002dload_002dstore"></a>
<p>Generate 3-instruction load and store sequences as sometimes required by
the HP-UX 10 linker. This is equivalent to the ‘<samp>+k</samp>’ option to
the HP compilers.
</p>
</dd>
<dt><code>-mportable-runtime</code></dt>
<dd><a name="index-mportable_002druntime"></a>
<p>Use the portable calling conventions proposed by HP for ELF systems.
</p>
</dd>
<dt><code>-mgas</code></dt>
<dd><a name="index-mgas"></a>
<p>Enable the use of assembler directives only GAS understands.
</p>
</dd>
<dt><code>-mschedule=<var>cpu-type</var></code></dt>
<dd><a name="index-mschedule"></a>
<p>Schedule code according to the constraints for the machine type
<var>cpu-type</var>. The choices for <var>cpu-type</var> are ‘<samp>700</samp>’
‘<samp>7100</samp>’, ‘<samp>7100LC</samp>’, ‘<samp>7200</samp>’, ‘<samp>7300</samp>’ and ‘<samp>8000</samp>’. Refer
to <samp>/usr/lib/sched.models</samp> on an HP-UX system to determine the
proper scheduling option for your machine. The default scheduling is
‘<samp>8000</samp>’.
</p>
</dd>
<dt><code>-mlinker-opt</code></dt>
<dd><a name="index-mlinker_002dopt"></a>
<p>Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-msoft_002dfloat-3"></a>
<p>Generate output containing library calls for floating point.
<strong>Warning:</strong> the requisite libraries are not available for all HPPA
targets. Normally the facilities of the machine’s usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation.
</p>
<p><samp>-msoft-float</samp> changes the calling convention in the output file;
therefore, it is only useful if you compile <em>all</em> of a program with
this option. In particular, you need to compile <samp>libgcc.a</samp>, the
library that comes with GCC, with <samp>-msoft-float</samp> in order for
this to work.
</p>
</dd>
<dt><code>-msio</code></dt>
<dd><a name="index-msio"></a>
<p>Generate the predefine, <code>_SIO</code>, for server IO. The default is
<samp>-mwsio</samp>. This generates the predefines, <code>__hp9000s700</code>,
<code>__hp9000s700__</code> and <code>_WSIO</code>, for workstation IO. These
options are available under HP-UX and HI-UX.
</p>
</dd>
<dt><code>-mgnu-ld</code></dt>
<dd><a name="index-mgnu_002dld"></a>
<p>Use options specific to GNU <code>ld</code>.
This passes <samp>-shared</samp> to <code>ld</code> when
building a shared library. It is the default when GCC is configured,
explicitly or implicitly, with the GNU linker. This option does not
affect which <code>ld</code> is called; it only changes what parameters
are passed to that <code>ld</code>.
The <code>ld</code> that is called is determined by the
<samp>--with-ld</samp> configure option, GCC’s program search path, and
finally by the user’s <code>PATH</code>. The linker used by GCC can be printed
using ‘<samp>which `gcc -print-prog-name=ld`</samp>’. This option is only available
on the 64-bit HP-UX GCC, i.e. configured with ‘<samp>hppa*64*-*-hpux*</samp>’.
</p>
</dd>
<dt><code>-mhp-ld</code></dt>
<dd><a name="index-mhp_002dld"></a>
<p>Use options specific to HP <code>ld</code>.
This passes <samp>-b</samp> to <code>ld</code> when building
a shared library and passes <samp>+Accept TypeMismatch</samp> to <code>ld</code> on all
links. It is the default when GCC is configured, explicitly or
implicitly, with the HP linker. This option does not affect
which <code>ld</code> is called; it only changes what parameters are passed to that
<code>ld</code>.
The <code>ld</code> that is called is determined by the <samp>--with-ld</samp>
configure option, GCC’s program search path, and finally by the user’s
<code>PATH</code>. The linker used by GCC can be printed using ‘<samp>which
`gcc -print-prog-name=ld`</samp>’. This option is only available on the 64-bit
HP-UX GCC, i.e. configured with ‘<samp>hppa*64*-*-hpux*</samp>’.
</p>
</dd>
<dt><code>-mlong-calls</code></dt>
<dd><a name="index-mno_002dlong_002dcalls-2"></a>
<p>Generate code that uses long call sequences. This ensures that a call
is always able to reach linker generated stubs. The default is to generate
long calls only when the distance from the call site to the beginning
of the function or translation unit, as the case may be, exceeds a
predefined limit set by the branch type being used. The limits for
normal calls are 7,600,000 and 240,000 bytes, respectively for the
PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
240,000 bytes.
</p>
<p>Distances are measured from the beginning of functions when using the
<samp>-ffunction-sections</samp> option, or when using the <samp>-mgas</samp>
and <samp>-mno-portable-runtime</samp> options together under HP-UX with
the SOM linker.
</p>
<p>It is normally not desirable to use this option as it degrades
performance. However, it may be useful in large applications,
particularly when partial linking is used to build the application.
</p>
<p>The types of long calls used depends on the capabilities of the
assembler and linker, and the type of code being generated. The
impact on systems that support long absolute calls, and long pic
symbol-difference or pc-relative calls should be relatively small.
However, an indirect call is used on 32-bit ELF systems in pic code
and it is quite long.
</p>
</dd>
<dt><code>-munix=<var>unix-std</var></code></dt>
<dd><a name="index-march-5"></a>
<p>Generate compiler predefines and select a startfile for the specified
UNIX standard. The choices for <var>unix-std</var> are ‘<samp>93</samp>’, ‘<samp>95</samp>’
and ‘<samp>98</samp>’. ‘<samp>93</samp>’ is supported on all HP-UX versions. ‘<samp>95</samp>’
is available on HP-UX 10.10 and later. ‘<samp>98</samp>’ is available on HP-UX
11.11 and later. The default values are ‘<samp>93</samp>’ for HP-UX 10.00,
‘<samp>95</samp>’ for HP-UX 10.10 though to 11.00, and ‘<samp>98</samp>’ for HP-UX 11.11
and later.
</p>
<p><samp>-munix=93</samp> provides the same predefines as GCC 3.3 and 3.4.
<samp>-munix=95</samp> provides additional predefines for <code>XOPEN_UNIX</code>
and <code>_XOPEN_SOURCE_EXTENDED</code>, and the startfile <samp>unix95.o</samp>.
<samp>-munix=98</samp> provides additional predefines for <code>_XOPEN_UNIX</code>,
<code>_XOPEN_SOURCE_EXTENDED</code>, <code>_INCLUDE__STDC_A1_SOURCE</code> and
<code>_INCLUDE_XOPEN_SOURCE_500</code>, and the startfile <samp>unix98.o</samp>.
</p>
<p>It is <em>important</em> to note that this option changes the interfaces
for various library routines. It also affects the operational behavior
of the C library. Thus, <em>extreme</em> care is needed in using this
option.
</p>
<p>Library code that is intended to operate with more than one UNIX
standard must test, set and restore the variable <code>__xpg4_extended_mask</code>
as appropriate. Most GNU software doesn’t provide this capability.
</p>
</dd>
<dt><code>-nolibdld</code></dt>
<dd><a name="index-nolibdld"></a>
<p>Suppress the generation of link options to search libdld.sl when the
<samp>-static</samp> option is specified on HP-UX 10 and later.
</p>
</dd>
<dt><code>-static</code></dt>
<dd><a name="index-static-2"></a>
<p>The HP-UX implementation of setlocale in libc has a dependency on
libdld.sl. There isn’t an archive version of libdld.sl. Thus,
when the <samp>-static</samp> option is specified, special link options
are needed to resolve this dependency.
</p>
<p>On HP-UX 10 and later, the GCC driver adds the necessary options to
link with libdld.sl when the <samp>-static</samp> option is specified.
This causes the resulting binary to be dynamic. On the 64-bit port,
the linkers generate dynamic binaries by default in any case. The
<samp>-nolibdld</samp> option can be used to prevent the GCC driver from
adding these link options.
</p>
</dd>
<dt><code>-threads</code></dt>
<dd><a name="index-threads"></a>
<p>Add support for multithreading with the <em>dce thread</em> library
under HP-UX. This option sets flags for both the preprocessor and
linker.
</p></dd>
</dl>
<hr>
<a name="IA_002d64-Options"></a>
<div class="header">
<p>
Next: <a href="#LM32-Options" accesskey="n" rel="next">LM32 Options</a>, Previous: <a href="#HPPA-Options" accesskey="p" rel="prev">HPPA Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="IA_002d64-Options-1"></a>
<h4 class="subsection">3.18.18 IA-64 Options</h4>
<a name="index-IA_002d64-Options"></a>
<p>These are the ‘<samp>-m</samp>’ options defined for the Intel IA-64 architecture.
</p>
<dl compact="compact">
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig_002dendian-4"></a>
<p>Generate code for a big-endian target. This is the default for HP-UX.
</p>
</dd>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle_002dendian-4"></a>
<p>Generate code for a little-endian target. This is the default for AIX5
and GNU/Linux.
</p>
</dd>
<dt><code>-mgnu-as</code></dt>
<dt><code>-mno-gnu-as</code></dt>
<dd><a name="index-mgnu_002das"></a>
<a name="index-mno_002dgnu_002das"></a>
<p>Generate (or don’t) code for the GNU assembler. This is the default.
</p>
</dd>
<dt><code>-mgnu-ld</code></dt>
<dt><code>-mno-gnu-ld</code></dt>
<dd><a name="index-mgnu_002dld-1"></a>
<a name="index-mno_002dgnu_002dld"></a>
<p>Generate (or don’t) code for the GNU linker. This is the default.
</p>
</dd>
<dt><code>-mno-pic</code></dt>
<dd><a name="index-mno_002dpic"></a>
<p>Generate code that does not use a global pointer register. The result
is not position independent code, and violates the IA-64 ABI.
</p>
</dd>
<dt><code>-mvolatile-asm-stop</code></dt>
<dt><code>-mno-volatile-asm-stop</code></dt>
<dd><a name="index-mvolatile_002dasm_002dstop"></a>
<a name="index-mno_002dvolatile_002dasm_002dstop"></a>
<p>Generate (or don’t) a stop bit immediately before and after volatile asm
statements.
</p>
</dd>
<dt><code>-mregister-names</code></dt>
<dt><code>-mno-register-names</code></dt>
<dd><a name="index-mregister_002dnames"></a>
<a name="index-mno_002dregister_002dnames"></a>
<p>Generate (or don’t) ‘<samp>in</samp>’, ‘<samp>loc</samp>’, and ‘<samp>out</samp>’ register names for
the stacked registers. This may make assembler output more readable.
</p>
</dd>
<dt><code>-mno-sdata</code></dt>
<dt><code>-msdata</code></dt>
<dd><a name="index-mno_002dsdata-1"></a>
<a name="index-msdata"></a>
<p>Disable (or enable) optimizations that use the small data section. This may
be useful for working around optimizer bugs.
</p>
</dd>
<dt><code>-mconstant-gp</code></dt>
<dd><a name="index-mconstant_002dgp"></a>
<p>Generate code that uses a single constant global pointer value. This is
useful when compiling kernel code.
</p>
</dd>
<dt><code>-mauto-pic</code></dt>
<dd><a name="index-mauto_002dpic"></a>
<p>Generate code that is self-relocatable. This implies <samp>-mconstant-gp</samp>.
This is useful when compiling firmware code.
</p>
</dd>
<dt><code>-minline-float-divide-min-latency</code></dt>
<dd><a name="index-minline_002dfloat_002ddivide_002dmin_002dlatency"></a>
<p>Generate code for inline divides of floating-point values
using the minimum latency algorithm.
</p>
</dd>
<dt><code>-minline-float-divide-max-throughput</code></dt>
<dd><a name="index-minline_002dfloat_002ddivide_002dmax_002dthroughput"></a>
<p>Generate code for inline divides of floating-point values
using the maximum throughput algorithm.
</p>
</dd>
<dt><code>-mno-inline-float-divide</code></dt>
<dd><a name="index-mno_002dinline_002dfloat_002ddivide"></a>
<p>Do not generate inline code for divides of floating-point values.
</p>
</dd>
<dt><code>-minline-int-divide-min-latency</code></dt>
<dd><a name="index-minline_002dint_002ddivide_002dmin_002dlatency"></a>
<p>Generate code for inline divides of integer values
using the minimum latency algorithm.
</p>
</dd>
<dt><code>-minline-int-divide-max-throughput</code></dt>
<dd><a name="index-minline_002dint_002ddivide_002dmax_002dthroughput"></a>
<p>Generate code for inline divides of integer values
using the maximum throughput algorithm.
</p>
</dd>
<dt><code>-mno-inline-int-divide</code></dt>
<dd><a name="index-mno_002dinline_002dint_002ddivide"></a>
<p>Do not generate inline code for divides of integer values.
</p>
</dd>
<dt><code>-minline-sqrt-min-latency</code></dt>
<dd><a name="index-minline_002dsqrt_002dmin_002dlatency"></a>
<p>Generate code for inline square roots
using the minimum latency algorithm.
</p>
</dd>
<dt><code>-minline-sqrt-max-throughput</code></dt>
<dd><a name="index-minline_002dsqrt_002dmax_002dthroughput"></a>
<p>Generate code for inline square roots
using the maximum throughput algorithm.
</p>
</dd>
<dt><code>-mno-inline-sqrt</code></dt>
<dd><a name="index-mno_002dinline_002dsqrt"></a>
<p>Do not generate inline code for <code>sqrt</code>.
</p>
</dd>
<dt><code>-mfused-madd</code></dt>
<dt><code>-mno-fused-madd</code></dt>
<dd><a name="index-mfused_002dmadd"></a>
<a name="index-mno_002dfused_002dmadd"></a>
<p>Do (don’t) generate code that uses the fused multiply/add or multiply/subtract
instructions. The default is to use these instructions.
</p>
</dd>
<dt><code>-mno-dwarf2-asm</code></dt>
<dt><code>-mdwarf2-asm</code></dt>
<dd><a name="index-mno_002ddwarf2_002dasm"></a>
<a name="index-mdwarf2_002dasm"></a>
<p>Don’t (or do) generate assembler code for the DWARF line number debugging
info. This may be useful when not using the GNU assembler.
</p>
</dd>
<dt><code>-mearly-stop-bits</code></dt>
<dt><code>-mno-early-stop-bits</code></dt>
<dd><a name="index-mearly_002dstop_002dbits"></a>
<a name="index-mno_002dearly_002dstop_002dbits"></a>
<p>Allow stop bits to be placed earlier than immediately preceding the
instruction that triggered the stop bit. This can improve instruction
scheduling, but does not always do so.
</p>
</dd>
<dt><code>-mfixed-range=<var>register-range</var></code></dt>
<dd><a name="index-mfixed_002drange-1"></a>
<p>Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
</p>
</dd>
<dt><code>-mtls-size=<var>tls-size</var></code></dt>
<dd><a name="index-mtls_002dsize-1"></a>
<p>Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
64.
</p>
</dd>
<dt><code>-mtune=<var>cpu-type</var></code></dt>
<dd><a name="index-mtune-6"></a>
<p>Tune the instruction scheduling for a particular CPU, Valid values are
‘<samp>itanium</samp>’, ‘<samp>itanium1</samp>’, ‘<samp>merced</samp>’, ‘<samp>itanium2</samp>’,
and ‘<samp>mckinley</samp>’.
</p>
</dd>
<dt><code>-milp32</code></dt>
<dt><code>-mlp64</code></dt>
<dd><a name="index-milp32"></a>
<a name="index-mlp64"></a>
<p>Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits. These are HP-UX specific flags.
</p>
</dd>
<dt><code>-mno-sched-br-data-spec</code></dt>
<dt><code>-msched-br-data-spec</code></dt>
<dd><a name="index-mno_002dsched_002dbr_002ddata_002dspec"></a>
<a name="index-msched_002dbr_002ddata_002dspec"></a>
<p>(Dis/En)able data speculative scheduling before reload.
This results in generation of <code>ld.a</code> instructions and
the corresponding check instructions (<code>ld.c</code> / <code>chk.a</code>).
The default setting is disabled.
</p>
</dd>
<dt><code>-msched-ar-data-spec</code></dt>
<dt><code>-mno-sched-ar-data-spec</code></dt>
<dd><a name="index-msched_002dar_002ddata_002dspec"></a>
<a name="index-mno_002dsched_002dar_002ddata_002dspec"></a>
<p>(En/Dis)able data speculative scheduling after reload.
This results in generation of <code>ld.a</code> instructions and
the corresponding check instructions (<code>ld.c</code> / <code>chk.a</code>).
The default setting is enabled.
</p>
</dd>
<dt><code>-mno-sched-control-spec</code></dt>
<dt><code>-msched-control-spec</code></dt>
<dd><a name="index-mno_002dsched_002dcontrol_002dspec"></a>
<a name="index-msched_002dcontrol_002dspec"></a>
<p>(Dis/En)able control speculative scheduling. This feature is
available only during region scheduling (i.e. before reload).
This results in generation of the <code>ld.s</code> instructions and
the corresponding check instructions <code>chk.s</code>.
The default setting is disabled.
</p>
</dd>
<dt><code>-msched-br-in-data-spec</code></dt>
<dt><code>-mno-sched-br-in-data-spec</code></dt>
<dd><a name="index-msched_002dbr_002din_002ddata_002dspec"></a>
<a name="index-mno_002dsched_002dbr_002din_002ddata_002dspec"></a>
<p>(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads before reload.
This is effective only with <samp>-msched-br-data-spec</samp> enabled.
The default setting is enabled.
</p>
</dd>
<dt><code>-msched-ar-in-data-spec</code></dt>
<dt><code>-mno-sched-ar-in-data-spec</code></dt>
<dd><a name="index-msched_002dar_002din_002ddata_002dspec"></a>
<a name="index-mno_002dsched_002dar_002din_002ddata_002dspec"></a>
<p>(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads after reload.
This is effective only with <samp>-msched-ar-data-spec</samp> enabled.
The default setting is enabled.
</p>
</dd>
<dt><code>-msched-in-control-spec</code></dt>
<dt><code>-mno-sched-in-control-spec</code></dt>
<dd><a name="index-msched_002din_002dcontrol_002dspec"></a>
<a name="index-mno_002dsched_002din_002dcontrol_002dspec"></a>
<p>(En/Dis)able speculative scheduling of the instructions that
are dependent on the control speculative loads.
This is effective only with <samp>-msched-control-spec</samp> enabled.
The default setting is enabled.
</p>
</dd>
<dt><code>-mno-sched-prefer-non-data-spec-insns</code></dt>
<dt><code>-msched-prefer-non-data-spec-insns</code></dt>
<dd><a name="index-mno_002dsched_002dprefer_002dnon_002ddata_002dspec_002dinsns"></a>
<a name="index-msched_002dprefer_002dnon_002ddata_002dspec_002dinsns"></a>
<p>If enabled, data-speculative instructions are chosen for schedule
only if there are no other choices at the moment. This makes
the use of the data speculation much more conservative.
The default setting is disabled.
</p>
</dd>
<dt><code>-mno-sched-prefer-non-control-spec-insns</code></dt>
<dt><code>-msched-prefer-non-control-spec-insns</code></dt>
<dd><a name="index-mno_002dsched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns"></a>
<a name="index-msched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns"></a>
<p>If enabled, control-speculative instructions are chosen for schedule
only if there are no other choices at the moment. This makes
the use of the control speculation much more conservative.
The default setting is disabled.
</p>
</dd>
<dt><code>-mno-sched-count-spec-in-critical-path</code></dt>
<dt><code>-msched-count-spec-in-critical-path</code></dt>
<dd><a name="index-mno_002dsched_002dcount_002dspec_002din_002dcritical_002dpath"></a>
<a name="index-msched_002dcount_002dspec_002din_002dcritical_002dpath"></a>
<p>If enabled, speculative dependencies are considered during
computation of the instructions priorities. This makes the use of the
speculation a bit more conservative.
The default setting is disabled.
</p>
</dd>
<dt><code>-msched-spec-ldc</code></dt>
<dd><a name="index-msched_002dspec_002dldc"></a>
<p>Use a simple data speculation check. This option is on by default.
</p>
</dd>
<dt><code>-msched-control-spec-ldc</code></dt>
<dd><a name="index-msched_002dspec_002dldc-1"></a>
<p>Use a simple check for control speculation. This option is on by default.
</p>
</dd>
<dt><code>-msched-stop-bits-after-every-cycle</code></dt>
<dd><a name="index-msched_002dstop_002dbits_002dafter_002devery_002dcycle"></a>
<p>Place a stop bit after every cycle when scheduling. This option is on
by default.
</p>
</dd>
<dt><code>-msched-fp-mem-deps-zero-cost</code></dt>
<dd><a name="index-msched_002dfp_002dmem_002ddeps_002dzero_002dcost"></a>
<p>Assume that floating-point stores and loads are not likely to cause a conflict
when placed into the same instruction group. This option is disabled by
default.
</p>
</dd>
<dt><code>-msel-sched-dont-check-control-spec</code></dt>
<dd><a name="index-msel_002dsched_002ddont_002dcheck_002dcontrol_002dspec"></a>
<p>Generate checks for control speculation in selective scheduling.
This flag is disabled by default.
</p>
</dd>
<dt><code>-msched-max-memory-insns=<var>max-insns</var></code></dt>
<dd><a name="index-msched_002dmax_002dmemory_002dinsns"></a>
<p>Limit on the number of memory insns per instruction group, giving lower
priority to subsequent memory insns attempting to schedule in the same
instruction group. Frequently useful to prevent cache bank conflicts.
The default value is 1.
</p>
</dd>
<dt><code>-msched-max-memory-insns-hard-limit</code></dt>
<dd><a name="index-msched_002dmax_002dmemory_002dinsns_002dhard_002dlimit"></a>
<p>Makes the limit specified by <samp>msched-max-memory-insns</samp> a hard limit,
disallowing more than that number in an instruction group.
Otherwise, the limit is “soft”, meaning that non-memory operations
are preferred when the limit is reached, but memory operations may still
be scheduled.
</p>
</dd>
</dl>
<hr>
<a name="LM32-Options"></a>
<div class="header">
<p>
Next: <a href="#M32C-Options" accesskey="n" rel="next">M32C Options</a>, Previous: <a href="#IA_002d64-Options" accesskey="p" rel="prev">IA-64 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="LM32-Options-1"></a>
<h4 class="subsection">3.18.19 LM32 Options</h4>
<a name="index-LM32-options"></a>
<p>These <samp>-m</samp> options are defined for the LatticeMico32 architecture:
</p>
<dl compact="compact">
<dt><code>-mbarrel-shift-enabled</code></dt>
<dd><a name="index-mbarrel_002dshift_002denabled"></a>
<p>Enable barrel-shift instructions.
</p>
</dd>
<dt><code>-mdivide-enabled</code></dt>
<dd><a name="index-mdivide_002denabled"></a>
<p>Enable divide and modulus instructions.
</p>
</dd>
<dt><code>-mmultiply-enabled</code></dt>
<dd><a name="index-multiply_002denabled"></a>
<p>Enable multiply instructions.
</p>
</dd>
<dt><code>-msign-extend-enabled</code></dt>
<dd><a name="index-msign_002dextend_002denabled"></a>
<p>Enable sign extend instructions.
</p>
</dd>
<dt><code>-muser-enabled</code></dt>
<dd><a name="index-muser_002denabled"></a>
<p>Enable user-defined instructions.
</p>
</dd>
</dl>
<hr>
<a name="M32C-Options"></a>
<div class="header">
<p>
Next: <a href="#M32R_002fD-Options" accesskey="n" rel="next">M32R/D Options</a>, Previous: <a href="#LM32-Options" accesskey="p" rel="prev">LM32 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="M32C-Options-1"></a>
<h4 class="subsection">3.18.20 M32C Options</h4>
<a name="index-M32C-options"></a>
<dl compact="compact">
<dt><code>-mcpu=<var>name</var></code></dt>
<dd><a name="index-mcpu_003d-1"></a>
<p>Select the CPU for which code is generated. <var>name</var> may be one of
‘<samp>r8c</samp>’ for the R8C/Tiny series, ‘<samp>m16c</samp>’ for the M16C (up to
/60) series, ‘<samp>m32cm</samp>’ for the M16C/80 series, or ‘<samp>m32c</samp>’ for
the M32C/80 series.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim-4"></a>
<p>Specifies that the program will be run on the simulator. This causes
an alternate runtime library to be linked in which supports, for
example, file I/O. You must not use this option when generating
programs that will run on real hardware; you must provide your own
runtime library for whatever I/O functions are needed.
</p>
</dd>
<dt><code>-memregs=<var>number</var></code></dt>
<dd><a name="index-memregs_003d"></a>
<p>Specifies the number of memory-based pseudo-registers GCC uses
during code generation. These pseudo-registers are used like real
registers, so there is a tradeoff between GCC’s ability to fit the
code into available registers, and the performance penalty of using
memory instead of registers. Note that all modules in a program must
be compiled with the same value for this option. Because of that, you
must not use this option with GCC’s default runtime libraries.
</p>
</dd>
</dl>
<hr>
<a name="M32R_002fD-Options"></a>
<div class="header">
<p>
Next: <a href="#M680x0-Options" accesskey="n" rel="next">M680x0 Options</a>, Previous: <a href="#M32C-Options" accesskey="p" rel="prev">M32C Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="M32R_002fD-Options-1"></a>
<h4 class="subsection">3.18.21 M32R/D Options</h4>
<a name="index-M32R_002fD-options"></a>
<p>These <samp>-m</samp> options are defined for Renesas M32R/D architectures:
</p>
<dl compact="compact">
<dt><code>-m32r2</code></dt>
<dd><a name="index-m32r2"></a>
<p>Generate code for the M32R/2.
</p>
</dd>
<dt><code>-m32rx</code></dt>
<dd><a name="index-m32rx"></a>
<p>Generate code for the M32R/X.
</p>
</dd>
<dt><code>-m32r</code></dt>
<dd><a name="index-m32r"></a>
<p>Generate code for the M32R. This is the default.
</p>
</dd>
<dt><code>-mmodel=small</code></dt>
<dd><a name="index-mmodel_003dsmall"></a>
<p>Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the <code>ld24</code> instruction), and assume all subroutines
are reachable with the <code>bl</code> instruction.
This is the default.
</p>
<p>The addressability of a particular object can be set with the
<code>model</code> attribute.
</p>
</dd>
<dt><code>-mmodel=medium</code></dt>
<dd><a name="index-mmodel_003dmedium"></a>
<p>Assume objects may be anywhere in the 32-bit address space (the compiler
generates <code>seth/add3</code> instructions to load their addresses), and
assume all subroutines are reachable with the <code>bl</code> instruction.
</p>
</dd>
<dt><code>-mmodel=large</code></dt>
<dd><a name="index-mmodel_003dlarge"></a>
<p>Assume objects may be anywhere in the 32-bit address space (the compiler
generates <code>seth/add3</code> instructions to load their addresses), and
assume subroutines may not be reachable with the <code>bl</code> instruction
(the compiler generates the much slower <code>seth/add3/jl</code>
instruction sequence).
</p>
</dd>
<dt><code>-msdata=none</code></dt>
<dd><a name="index-msdata_003dnone-1"></a>
<p>Disable use of the small data area. Variables are put into
one of <code>.data</code>, <code>.bss</code>, or <code>.rodata</code> (unless the
<code>section</code> attribute has been specified).
This is the default.
</p>
<p>The small data area consists of sections <code>.sdata</code> and <code>.sbss</code>.
Objects may be explicitly put in the small data area with the
<code>section</code> attribute using one of these sections.
</p>
</dd>
<dt><code>-msdata=sdata</code></dt>
<dd><a name="index-msdata_003dsdata"></a>
<p>Put small global and static data in the small data area, but do not
generate special code to reference them.
</p>
</dd>
<dt><code>-msdata=use</code></dt>
<dd><a name="index-msdata_003duse"></a>
<p>Put small global and static data in the small data area, and generate
special instructions to reference them.
</p>
</dd>
<dt><code>-G <var>num</var></code></dt>
<dd><a name="index-G-1"></a>
<a name="index-smaller-data-references"></a>
<p>Put global and static objects less than or equal to <var>num</var> bytes
into the small data or BSS sections instead of the normal data or BSS
sections. The default value of <var>num</var> is 8.
The <samp>-msdata</samp> option must be set to one of ‘<samp>sdata</samp>’ or ‘<samp>use</samp>’
for this option to have any effect.
</p>
<p>All modules should be compiled with the same <samp>-G <var>num</var></samp> value.
Compiling with different values of <var>num</var> may or may not work; if it
doesn’t the linker gives an error message—incorrect code is not
generated.
</p>
</dd>
<dt><code>-mdebug</code></dt>
<dd><a name="index-mdebug"></a>
<p>Makes the M32R-specific code in the compiler display some statistics
that might help in debugging programs.
</p>
</dd>
<dt><code>-malign-loops</code></dt>
<dd><a name="index-malign_002dloops"></a>
<p>Align all loops to a 32-byte boundary.
</p>
</dd>
<dt><code>-mno-align-loops</code></dt>
<dd><a name="index-mno_002dalign_002dloops"></a>
<p>Do not enforce a 32-byte alignment for loops. This is the default.
</p>
</dd>
<dt><code>-missue-rate=<var>number</var></code></dt>
<dd><a name="index-missue_002drate_003dnumber"></a>
<p>Issue <var>number</var> instructions per cycle. <var>number</var> can only be 1
or 2.
</p>
</dd>
<dt><code>-mbranch-cost=<var>number</var></code></dt>
<dd><a name="index-mbranch_002dcost_003dnumber"></a>
<p><var>number</var> can only be 1 or 2. If it is 1 then branches are
preferred over conditional code, if it is 2, then the opposite applies.
</p>
</dd>
<dt><code>-mflush-trap=<var>number</var></code></dt>
<dd><a name="index-mflush_002dtrap_003dnumber"></a>
<p>Specifies the trap number to use to flush the cache. The default is
12. Valid numbers are between 0 and 15 inclusive.
</p>
</dd>
<dt><code>-mno-flush-trap</code></dt>
<dd><a name="index-mno_002dflush_002dtrap"></a>
<p>Specifies that the cache cannot be flushed by using a trap.
</p>
</dd>
<dt><code>-mflush-func=<var>name</var></code></dt>
<dd><a name="index-mflush_002dfunc_003dname"></a>
<p>Specifies the name of the operating system function to call to flush
the cache. The default is ‘<samp>_flush_cache</samp>’, but a function call
is only used if a trap is not available.
</p>
</dd>
<dt><code>-mno-flush-func</code></dt>
<dd><a name="index-mno_002dflush_002dfunc"></a>
<p>Indicates that there is no OS function for flushing the cache.
</p>
</dd>
</dl>
<hr>
<a name="M680x0-Options"></a>
<div class="header">
<p>
Next: <a href="#MCore-Options" accesskey="n" rel="next">MCore Options</a>, Previous: <a href="#M32R_002fD-Options" accesskey="p" rel="prev">M32R/D Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="M680x0-Options-1"></a>
<h4 class="subsection">3.18.22 M680x0 Options</h4>
<a name="index-M680x0-options"></a>
<p>These are the ‘<samp>-m</samp>’ options defined for M680x0 and ColdFire processors.
The default settings depend on which architecture was selected when
the compiler was configured; the defaults for the most common choices
are given below.
</p>
<dl compact="compact">
<dt><code>-march=<var>arch</var></code></dt>
<dd><a name="index-march-6"></a>
<p>Generate code for a specific M680x0 or ColdFire instruction set
architecture. Permissible values of <var>arch</var> for M680x0
architectures are: ‘<samp>68000</samp>’, ‘<samp>68010</samp>’, ‘<samp>68020</samp>’,
‘<samp>68030</samp>’, ‘<samp>68040</samp>’, ‘<samp>68060</samp>’ and ‘<samp>cpu32</samp>’. ColdFire
architectures are selected according to Freescale’s ISA classification
and the permissible values are: ‘<samp>isaa</samp>’, ‘<samp>isaaplus</samp>’,
‘<samp>isab</samp>’ and ‘<samp>isac</samp>’.
</p>
<p>GCC defines a macro <code>__mcf<var>arch</var>__</code> whenever it is generating
code for a ColdFire target. The <var>arch</var> in this macro is one of the
<samp>-march</samp> arguments given above.
</p>
<p>When used together, <samp>-march</samp> and <samp>-mtune</samp> select code
that runs on a family of similar processors but that is optimized
for a particular microarchitecture.
</p>
</dd>
<dt><code>-mcpu=<var>cpu</var></code></dt>
<dd><a name="index-mcpu-6"></a>
<p>Generate code for a specific M680x0 or ColdFire processor.
The M680x0 <var>cpu</var>s are: ‘<samp>68000</samp>’, ‘<samp>68010</samp>’, ‘<samp>68020</samp>’,
‘<samp>68030</samp>’, ‘<samp>68040</samp>’, ‘<samp>68060</samp>’, ‘<samp>68302</samp>’, ‘<samp>68332</samp>’
and ‘<samp>cpu32</samp>’. The ColdFire <var>cpu</var>s are given by the table
below, which also classifies the CPUs into families:
</p>
<table>
<tr><td width="20%"><strong>Family</strong></td><td width="80%"><strong>‘<samp>-mcpu</samp>’ arguments</strong></td></tr>
<tr><td width="20%">‘<samp>51</samp>’</td><td width="80%">‘<samp>51</samp>’ ‘<samp>51ac</samp>’ ‘<samp>51ag</samp>’ ‘<samp>51cn</samp>’ ‘<samp>51em</samp>’ ‘<samp>51je</samp>’ ‘<samp>51jf</samp>’ ‘<samp>51jg</samp>’ ‘<samp>51jm</samp>’ ‘<samp>51mm</samp>’ ‘<samp>51qe</samp>’ ‘<samp>51qm</samp>’</td></tr>
<tr><td width="20%">‘<samp>5206</samp>’</td><td width="80%">‘<samp>5202</samp>’ ‘<samp>5204</samp>’ ‘<samp>5206</samp>’</td></tr>
<tr><td width="20%">‘<samp>5206e</samp>’</td><td width="80%">‘<samp>5206e</samp>’</td></tr>
<tr><td width="20%">‘<samp>5208</samp>’</td><td width="80%">‘<samp>5207</samp>’ ‘<samp>5208</samp>’</td></tr>
<tr><td width="20%">‘<samp>5211a</samp>’</td><td width="80%">‘<samp>5210a</samp>’ ‘<samp>5211a</samp>’</td></tr>
<tr><td width="20%">‘<samp>5213</samp>’</td><td width="80%">‘<samp>5211</samp>’ ‘<samp>5212</samp>’ ‘<samp>5213</samp>’</td></tr>
<tr><td width="20%">‘<samp>5216</samp>’</td><td width="80%">‘<samp>5214</samp>’ ‘<samp>5216</samp>’</td></tr>
<tr><td width="20%">‘<samp>52235</samp>’</td><td width="80%">‘<samp>52230</samp>’ ‘<samp>52231</samp>’ ‘<samp>52232</samp>’ ‘<samp>52233</samp>’ ‘<samp>52234</samp>’ ‘<samp>52235</samp>’</td></tr>
<tr><td width="20%">‘<samp>5225</samp>’</td><td width="80%">‘<samp>5224</samp>’ ‘<samp>5225</samp>’</td></tr>
<tr><td width="20%">‘<samp>52259</samp>’</td><td width="80%">‘<samp>52252</samp>’ ‘<samp>52254</samp>’ ‘<samp>52255</samp>’ ‘<samp>52256</samp>’ ‘<samp>52258</samp>’ ‘<samp>52259</samp>’</td></tr>
<tr><td width="20%">‘<samp>5235</samp>’</td><td width="80%">‘<samp>5232</samp>’ ‘<samp>5233</samp>’ ‘<samp>5234</samp>’ ‘<samp>5235</samp>’ ‘<samp>523x</samp>’</td></tr>
<tr><td width="20%">‘<samp>5249</samp>’</td><td width="80%">‘<samp>5249</samp>’</td></tr>
<tr><td width="20%">‘<samp>5250</samp>’</td><td width="80%">‘<samp>5250</samp>’</td></tr>
<tr><td width="20%">‘<samp>5271</samp>’</td><td width="80%">‘<samp>5270</samp>’ ‘<samp>5271</samp>’</td></tr>
<tr><td width="20%">‘<samp>5272</samp>’</td><td width="80%">‘<samp>5272</samp>’</td></tr>
<tr><td width="20%">‘<samp>5275</samp>’</td><td width="80%">‘<samp>5274</samp>’ ‘<samp>5275</samp>’</td></tr>
<tr><td width="20%">‘<samp>5282</samp>’</td><td width="80%">‘<samp>5280</samp>’ ‘<samp>5281</samp>’ ‘<samp>5282</samp>’ ‘<samp>528x</samp>’</td></tr>
<tr><td width="20%">‘<samp>53017</samp>’</td><td width="80%">‘<samp>53011</samp>’ ‘<samp>53012</samp>’ ‘<samp>53013</samp>’ ‘<samp>53014</samp>’ ‘<samp>53015</samp>’ ‘<samp>53016</samp>’ ‘<samp>53017</samp>’</td></tr>
<tr><td width="20%">‘<samp>5307</samp>’</td><td width="80%">‘<samp>5307</samp>’</td></tr>
<tr><td width="20%">‘<samp>5329</samp>’</td><td width="80%">‘<samp>5327</samp>’ ‘<samp>5328</samp>’ ‘<samp>5329</samp>’ ‘<samp>532x</samp>’</td></tr>
<tr><td width="20%">‘<samp>5373</samp>’</td><td width="80%">‘<samp>5372</samp>’ ‘<samp>5373</samp>’ ‘<samp>537x</samp>’</td></tr>
<tr><td width="20%">‘<samp>5407</samp>’</td><td width="80%">‘<samp>5407</samp>’</td></tr>
<tr><td width="20%">‘<samp>5475</samp>’</td><td width="80%">‘<samp>5470</samp>’ ‘<samp>5471</samp>’ ‘<samp>5472</samp>’ ‘<samp>5473</samp>’ ‘<samp>5474</samp>’ ‘<samp>5475</samp>’ ‘<samp>547x</samp>’ ‘<samp>5480</samp>’ ‘<samp>5481</samp>’ ‘<samp>5482</samp>’ ‘<samp>5483</samp>’ ‘<samp>5484</samp>’ ‘<samp>5485</samp>’</td></tr>
</table>
<p><samp>-mcpu=<var>cpu</var></samp> overrides <samp>-march=<var>arch</var></samp> if
<var>arch</var> is compatible with <var>cpu</var>. Other combinations of
<samp>-mcpu</samp> and <samp>-march</samp> are rejected.
</p>
<p>GCC defines the macro <code>__mcf_cpu_<var>cpu</var></code> when ColdFire target
<var>cpu</var> is selected. It also defines <code>__mcf_family_<var>family</var></code>,
where the value of <var>family</var> is given by the table above.
</p>
</dd>
<dt><code>-mtune=<var>tune</var></code></dt>
<dd><a name="index-mtune-7"></a>
<p>Tune the code for a particular microarchitecture within the
constraints set by <samp>-march</samp> and <samp>-mcpu</samp>.
The M680x0 microarchitectures are: ‘<samp>68000</samp>’, ‘<samp>68010</samp>’,
‘<samp>68020</samp>’, ‘<samp>68030</samp>’, ‘<samp>68040</samp>’, ‘<samp>68060</samp>’
and ‘<samp>cpu32</samp>’. The ColdFire microarchitectures
are: ‘<samp>cfv1</samp>’, ‘<samp>cfv2</samp>’, ‘<samp>cfv3</samp>’, ‘<samp>cfv4</samp>’ and ‘<samp>cfv4e</samp>’.
</p>
<p>You can also use <samp>-mtune=68020-40</samp> for code that needs
to run relatively well on 68020, 68030 and 68040 targets.
<samp>-mtune=68020-60</samp> is similar but includes 68060 targets
as well. These two options select the same tuning decisions as
<samp>-m68020-40</samp> and <samp>-m68020-60</samp> respectively.
</p>
<p>GCC defines the macros <code>__mc<var>arch</var></code> and <code>__mc<var>arch</var>__</code>
when tuning for 680x0 architecture <var>arch</var>. It also defines
<code>mc<var>arch</var></code> unless either <samp>-ansi</samp> or a non-GNU <samp>-std</samp>
option is used. If GCC is tuning for a range of architectures,
as selected by <samp>-mtune=68020-40</samp> or <samp>-mtune=68020-60</samp>,
it defines the macros for every architecture in the range.
</p>
<p>GCC also defines the macro <code>__m<var>uarch</var>__</code> when tuning for
ColdFire microarchitecture <var>uarch</var>, where <var>uarch</var> is one
of the arguments given above.
</p>
</dd>
<dt><code>-m68000</code></dt>
<dt><code>-mc68000</code></dt>
<dd><a name="index-m68000"></a>
<a name="index-mc68000"></a>
<p>Generate output for a 68000. This is the default
when the compiler is configured for 68000-based systems.
It is equivalent to <samp>-march=68000</samp>.
</p>
<p>Use this option for microcontrollers with a 68000 or EC000 core,
including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
</p>
</dd>
<dt><code>-m68010</code></dt>
<dd><a name="index-m68010"></a>
<p>Generate output for a 68010. This is the default
when the compiler is configured for 68010-based systems.
It is equivalent to <samp>-march=68010</samp>.
</p>
</dd>
<dt><code>-m68020</code></dt>
<dt><code>-mc68020</code></dt>
<dd><a name="index-m68020"></a>
<a name="index-mc68020"></a>
<p>Generate output for a 68020. This is the default
when the compiler is configured for 68020-based systems.
It is equivalent to <samp>-march=68020</samp>.
</p>
</dd>
<dt><code>-m68030</code></dt>
<dd><a name="index-m68030"></a>
<p>Generate output for a 68030. This is the default when the compiler is
configured for 68030-based systems. It is equivalent to
<samp>-march=68030</samp>.
</p>
</dd>
<dt><code>-m68040</code></dt>
<dd><a name="index-m68040"></a>
<p>Generate output for a 68040. This is the default when the compiler is
configured for 68040-based systems. It is equivalent to
<samp>-march=68040</samp>.
</p>
<p>This option inhibits the use of 68881/68882 instructions that have to be
emulated by software on the 68040. Use this option if your 68040 does not
have code to emulate those instructions.
</p>
</dd>
<dt><code>-m68060</code></dt>
<dd><a name="index-m68060"></a>
<p>Generate output for a 68060. This is the default when the compiler is
configured for 68060-based systems. It is equivalent to
<samp>-march=68060</samp>.
</p>
<p>This option inhibits the use of 68020 and 68881/68882 instructions that
have to be emulated by software on the 68060. Use this option if your 68060
does not have code to emulate those instructions.
</p>
</dd>
<dt><code>-mcpu32</code></dt>
<dd><a name="index-mcpu32"></a>
<p>Generate output for a CPU32. This is the default
when the compiler is configured for CPU32-based systems.
It is equivalent to <samp>-march=cpu32</samp>.
</p>
<p>Use this option for microcontrollers with a
CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
68336, 68340, 68341, 68349 and 68360.
</p>
</dd>
<dt><code>-m5200</code></dt>
<dd><a name="index-m5200"></a>
<p>Generate output for a 520X ColdFire CPU. This is the default
when the compiler is configured for 520X-based systems.
It is equivalent to <samp>-mcpu=5206</samp>, and is now deprecated
in favor of that option.
</p>
<p>Use this option for microcontroller with a 5200 core, including
the MCF5202, MCF5203, MCF5204 and MCF5206.
</p>
</dd>
<dt><code>-m5206e</code></dt>
<dd><a name="index-m5206e"></a>
<p>Generate output for a 5206e ColdFire CPU. The option is now
deprecated in favor of the equivalent <samp>-mcpu=5206e</samp>.
</p>
</dd>
<dt><code>-m528x</code></dt>
<dd><a name="index-m528x"></a>
<p>Generate output for a member of the ColdFire 528X family.
The option is now deprecated in favor of the equivalent
<samp>-mcpu=528x</samp>.
</p>
</dd>
<dt><code>-m5307</code></dt>
<dd><a name="index-m5307"></a>
<p>Generate output for a ColdFire 5307 CPU. The option is now deprecated
in favor of the equivalent <samp>-mcpu=5307</samp>.
</p>
</dd>
<dt><code>-m5407</code></dt>
<dd><a name="index-m5407"></a>
<p>Generate output for a ColdFire 5407 CPU. The option is now deprecated
in favor of the equivalent <samp>-mcpu=5407</samp>.
</p>
</dd>
<dt><code>-mcfv4e</code></dt>
<dd><a name="index-mcfv4e"></a>
<p>Generate output for a ColdFire V4e family CPU (e.g. 547x/548x).
This includes use of hardware floating-point instructions.
The option is equivalent to <samp>-mcpu=547x</samp>, and is now
deprecated in favor of that option.
</p>
</dd>
<dt><code>-m68020-40</code></dt>
<dd><a name="index-m68020_002d40"></a>
<p>Generate output for a 68040, without using any of the new instructions.
This results in code that can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the
68881 instructions that are emulated on the 68040.
</p>
<p>The option is equivalent to <samp>-march=68020</samp> <samp>-mtune=68020-40</samp>.
</p>
</dd>
<dt><code>-m68020-60</code></dt>
<dd><a name="index-m68020_002d60"></a>
<p>Generate output for a 68060, without using any of the new instructions.
This results in code that can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the
68881 instructions that are emulated on the 68060.
</p>
<p>The option is equivalent to <samp>-march=68020</samp> <samp>-mtune=68020-60</samp>.
</p>
</dd>
<dt><code>-mhard-float</code></dt>
<dt><code>-m68881</code></dt>
<dd><a name="index-mhard_002dfloat-1"></a>
<a name="index-m68881"></a>
<p>Generate floating-point instructions. This is the default for 68020
and above, and for ColdFire devices that have an FPU. It defines the
macro <code>__HAVE_68881__</code> on M680x0 targets and <code>__mcffpu__</code>
on ColdFire targets.
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-msoft_002dfloat-4"></a>
<p>Do not generate floating-point instructions; use library calls instead.
This is the default for 68000, 68010, and 68832 targets. It is also
the default for ColdFire devices that have no FPU.
</p>
</dd>
<dt><code>-mdiv</code></dt>
<dt><code>-mno-div</code></dt>
<dd><a name="index-mdiv"></a>
<a name="index-mno_002ddiv"></a>
<p>Generate (do not generate) ColdFire hardware divide and remainder
instructions. If <samp>-march</samp> is used without <samp>-mcpu</samp>,
the default is “on” for ColdFire architectures and “off” for M680x0
architectures. Otherwise, the default is taken from the target CPU
(either the default CPU, or the one specified by <samp>-mcpu</samp>). For
example, the default is “off” for <samp>-mcpu=5206</samp> and “on” for
<samp>-mcpu=5206e</samp>.
</p>
<p>GCC defines the macro <code>__mcfhwdiv__</code> when this option is enabled.
</p>
</dd>
<dt><code>-mshort</code></dt>
<dd><a name="index-mshort"></a>
<p>Consider type <code>int</code> to be 16 bits wide, like <code>short int</code>.
Additionally, parameters passed on the stack are also aligned to a
16-bit boundary even on targets whose API mandates promotion to 32-bit.
</p>
</dd>
<dt><code>-mno-short</code></dt>
<dd><a name="index-mno_002dshort"></a>
<p>Do not consider type <code>int</code> to be 16 bits wide. This is the default.
</p>
</dd>
<dt><code>-mnobitfield</code></dt>
<dt><code>-mno-bitfield</code></dt>
<dd><a name="index-mnobitfield"></a>
<a name="index-mno_002dbitfield"></a>
<p>Do not use the bit-field instructions. The <samp>-m68000</samp>, <samp>-mcpu32</samp>
and <samp>-m5200</samp> options imply <samp><span class="nolinebreak">-mnobitfield</span></samp><!-- /@w -->.
</p>
</dd>
<dt><code>-mbitfield</code></dt>
<dd><a name="index-mbitfield"></a>
<p>Do use the bit-field instructions. The <samp>-m68020</samp> option implies
<samp>-mbitfield</samp>. This is the default if you use a configuration
designed for a 68020.
</p>
</dd>
<dt><code>-mrtd</code></dt>
<dd><a name="index-mrtd"></a>
<p>Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the <code>rtd</code>
instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop
the arguments there.
</p>
<p>This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
</p>
<p>Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including <code>printf</code>);
otherwise incorrect code is generated for calls to those
functions.
</p>
<p>In addition, seriously incorrect code results if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
</p>
<p>The <code>rtd</code> instruction is supported by the 68010, 68020, 68030,
68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
</p>
</dd>
<dt><code>-mno-rtd</code></dt>
<dd><a name="index-mno_002drtd"></a>
<p>Do not use the calling conventions selected by <samp>-mrtd</samp>.
This is the default.
</p>
</dd>
<dt><code>-malign-int</code></dt>
<dt><code>-mno-align-int</code></dt>
<dd><a name="index-malign_002dint"></a>
<a name="index-mno_002dalign_002dint"></a>
<p>Control whether GCC aligns <code>int</code>, <code>long</code>, <code>long long</code>,
<code>float</code>, <code>double</code>, and <code>long double</code> variables on a 32-bit
boundary (<samp>-malign-int</samp>) or a 16-bit boundary (<samp>-mno-align-int</samp>).
Aligning variables on 32-bit boundaries produces code that runs somewhat
faster on processors with 32-bit busses at the expense of more memory.
</p>
<p><strong>Warning:</strong> if you use the <samp>-malign-int</samp> switch, GCC
aligns structures containing the above types differently than
most published application binary interface specifications for the m68k.
</p>
</dd>
<dt><code>-mpcrel</code></dt>
<dd><a name="index-mpcrel"></a>
<p>Use the pc-relative addressing mode of the 68000 directly, instead of
using a global offset table. At present, this option implies <samp>-fpic</samp>,
allowing at most a 16-bit offset for pc-relative addressing. <samp>-fPIC</samp> is
not presently supported with <samp>-mpcrel</samp>, though this could be supported for
68020 and higher processors.
</p>
</dd>
<dt><code>-mno-strict-align</code></dt>
<dt><code>-mstrict-align</code></dt>
<dd><a name="index-mno_002dstrict_002dalign"></a>
<a name="index-mstrict_002dalign-1"></a>
<p>Do not (do) assume that unaligned memory references are handled by
the system.
</p>
</dd>
<dt><code>-msep-data</code></dt>
<dd><p>Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute-in-place in
an environment without virtual memory management. This option implies
<samp>-fPIC</samp>.
</p>
</dd>
<dt><code>-mno-sep-data</code></dt>
<dd><p>Generate code that assumes that the data segment follows the text segment.
This is the default.
</p>
</dd>
<dt><code>-mid-shared-library</code></dt>
<dd><p>Generate code that supports shared libraries via the library ID method.
This allows for execute-in-place and shared libraries in an environment
without virtual memory management. This option implies <samp>-fPIC</samp>.
</p>
</dd>
<dt><code>-mno-id-shared-library</code></dt>
<dd><p>Generate code that doesn’t assume ID-based shared libraries are being used.
This is the default.
</p>
</dd>
<dt><code>-mshared-library-id=n</code></dt>
<dd><p>Specifies the identification number of the ID-based shared library being
compiled. Specifying a value of 0 generates more compact code; specifying
other values forces the allocation of that number to the current
library, but is no more space- or time-efficient than omitting this option.
</p>
</dd>
<dt><code>-mxgot</code></dt>
<dt><code>-mno-xgot</code></dt>
<dd><a name="index-mxgot"></a>
<a name="index-mno_002dxgot"></a>
<p>When generating position-independent code for ColdFire, generate code
that works if the GOT has more than 8192 entries. This code is
larger and slower than code generated without this option. On M680x0
processors, this option is not needed; <samp>-fPIC</samp> suffices.
</p>
<p>GCC normally uses a single instruction to load values from the GOT.
While this is relatively efficient, it only works if the GOT
is smaller than about 64k. Anything larger causes the linker
to report an error such as:
</p>
<a name="index-relocation-truncated-to-fit-_0028ColdFire_0029"></a>
<div class="smallexample">
<pre class="smallexample">relocation truncated to fit: R_68K_GOT16O foobar
</pre></div>
<p>If this happens, you should recompile your code with <samp>-mxgot</samp>.
It should then work with very large GOTs. However, code generated with
<samp>-mxgot</samp> is less efficient, since it takes 4 instructions to fetch
the value of a global symbol.
</p>
<p>Note that some linkers, including newer versions of the GNU linker,
can create multiple GOTs and sort GOT entries. If you have such a linker,
you should only need to use <samp>-mxgot</samp> when compiling a single
object file that accesses more than 8192 GOT entries. Very few do.
</p>
<p>These options have no effect unless GCC is generating
position-independent code.
</p>
</dd>
<dt><code>-mlong-jump-table-offsets</code></dt>
<dd><a name="index-mlong_002djump_002dtable_002doffsets"></a>
<p>Use 32-bit offsets in <code>switch</code> tables. The default is to use
16-bit offsets.
</p>
</dd>
</dl>
<hr>
<a name="MCore-Options"></a>
<div class="header">
<p>
Next: <a href="#MeP-Options" accesskey="n" rel="next">MeP Options</a>, Previous: <a href="#M680x0-Options" accesskey="p" rel="prev">M680x0 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MCore-Options-1"></a>
<h4 class="subsection">3.18.23 MCore Options</h4>
<a name="index-MCore-options"></a>
<p>These are the ‘<samp>-m</samp>’ options defined for the Motorola M*Core
processors.
</p>
<dl compact="compact">
<dt><code>-mhardlit</code></dt>
<dt><code>-mno-hardlit</code></dt>
<dd><a name="index-mhardlit"></a>
<a name="index-mno_002dhardlit"></a>
<p>Inline constants into the code stream if it can be done in two
instructions or less.
</p>
</dd>
<dt><code>-mdiv</code></dt>
<dt><code>-mno-div</code></dt>
<dd><a name="index-mdiv-1"></a>
<a name="index-mno_002ddiv-1"></a>
<p>Use the divide instruction. (Enabled by default).
</p>
</dd>
<dt><code>-mrelax-immediate</code></dt>
<dt><code>-mno-relax-immediate</code></dt>
<dd><a name="index-mrelax_002dimmediate"></a>
<a name="index-mno_002drelax_002dimmediate"></a>
<p>Allow arbitrary-sized immediates in bit operations.
</p>
</dd>
<dt><code>-mwide-bitfields</code></dt>
<dt><code>-mno-wide-bitfields</code></dt>
<dd><a name="index-mwide_002dbitfields"></a>
<a name="index-mno_002dwide_002dbitfields"></a>
<p>Always treat bit-fields as <code>int</code>-sized.
</p>
</dd>
<dt><code>-m4byte-functions</code></dt>
<dt><code>-mno-4byte-functions</code></dt>
<dd><a name="index-m4byte_002dfunctions"></a>
<a name="index-mno_002d4byte_002dfunctions"></a>
<p>Force all functions to be aligned to a 4-byte boundary.
</p>
</dd>
<dt><code>-mcallgraph-data</code></dt>
<dt><code>-mno-callgraph-data</code></dt>
<dd><a name="index-mcallgraph_002ddata"></a>
<a name="index-mno_002dcallgraph_002ddata"></a>
<p>Emit callgraph information.
</p>
</dd>
<dt><code>-mslow-bytes</code></dt>
<dt><code>-mno-slow-bytes</code></dt>
<dd><a name="index-mslow_002dbytes"></a>
<a name="index-mno_002dslow_002dbytes"></a>
<p>Prefer word access when reading byte quantities.
</p>
</dd>
<dt><code>-mlittle-endian</code></dt>
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mlittle_002dendian-5"></a>
<a name="index-mbig_002dendian-5"></a>
<p>Generate code for a little-endian target.
</p>
</dd>
<dt><code>-m210</code></dt>
<dt><code>-m340</code></dt>
<dd><a name="index-m210"></a>
<a name="index-m340"></a>
<p>Generate code for the 210 processor.
</p>
</dd>
<dt><code>-mno-lsim</code></dt>
<dd><a name="index-mno_002dlsim-1"></a>
<p>Assume that runtime support has been provided and so omit the
simulator library (<samp>libsim.a)</samp> from the linker command line.
</p>
</dd>
<dt><code>-mstack-increment=<var>size</var></code></dt>
<dd><a name="index-mstack_002dincrement"></a>
<p>Set the maximum amount for a single stack increment operation. Large
values can increase the speed of programs that contain functions
that need a large amount of stack space, but they can also trigger a
segmentation fault if the stack is extended too much. The default
value is 0x1000.
</p>
</dd>
</dl>
<hr>
<a name="MeP-Options"></a>
<div class="header">
<p>
Next: <a href="#MicroBlaze-Options" accesskey="n" rel="next">MicroBlaze Options</a>, Previous: <a href="#MCore-Options" accesskey="p" rel="prev">MCore Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MeP-Options-1"></a>
<h4 class="subsection">3.18.24 MeP Options</h4>
<a name="index-MeP-options"></a>
<dl compact="compact">
<dt><code>-mabsdiff</code></dt>
<dd><a name="index-mabsdiff"></a>
<p>Enables the <code>abs</code> instruction, which is the absolute difference
between two registers.
</p>
</dd>
<dt><code>-mall-opts</code></dt>
<dd><a name="index-mall_002dopts"></a>
<p>Enables all the optional instructions—average, multiply, divide, bit
operations, leading zero, absolute difference, min/max, clip, and
saturation.
</p>
</dd>
<dt><code>-maverage</code></dt>
<dd><a name="index-maverage"></a>
<p>Enables the <code>ave</code> instruction, which computes the average of two
registers.
</p>
</dd>
<dt><code>-mbased=<var>n</var></code></dt>
<dd><a name="index-mbased_003d"></a>
<p>Variables of size <var>n</var> bytes or smaller are placed in the
<code>.based</code> section by default. Based variables use the <code>$tp</code>
register as a base register, and there is a 128-byte limit to the
<code>.based</code> section.
</p>
</dd>
<dt><code>-mbitops</code></dt>
<dd><a name="index-mbitops"></a>
<p>Enables the bit operation instructions—bit test (<code>btstm</code>), set
(<code>bsetm</code>), clear (<code>bclrm</code>), invert (<code>bnotm</code>), and
test-and-set (<code>tas</code>).
</p>
</dd>
<dt><code>-mc=<var>name</var></code></dt>
<dd><a name="index-mc_003d"></a>
<p>Selects which section constant data is placed in. <var>name</var> may
be ‘<samp>tiny</samp>’, ‘<samp>near</samp>’, or ‘<samp>far</samp>’.
</p>
</dd>
<dt><code>-mclip</code></dt>
<dd><a name="index-mclip"></a>
<p>Enables the <code>clip</code> instruction. Note that <samp>-mclip</samp> is not
useful unless you also provide <samp>-mminmax</samp>.
</p>
</dd>
<dt><code>-mconfig=<var>name</var></code></dt>
<dd><a name="index-mconfig_003d"></a>
<p>Selects one of the built-in core configurations. Each MeP chip has
one or more modules in it; each module has a core CPU and a variety of
coprocessors, optional instructions, and peripherals. The
<code>MeP-Integrator</code> tool, not part of GCC, provides these
configurations through this option; using this option is the same as
using all the corresponding command-line options. The default
configuration is ‘<samp>default</samp>’.
</p>
</dd>
<dt><code>-mcop</code></dt>
<dd><a name="index-mcop"></a>
<p>Enables the coprocessor instructions. By default, this is a 32-bit
coprocessor. Note that the coprocessor is normally enabled via the
<samp>-mconfig=</samp> option.
</p>
</dd>
<dt><code>-mcop32</code></dt>
<dd><a name="index-mcop32"></a>
<p>Enables the 32-bit coprocessor’s instructions.
</p>
</dd>
<dt><code>-mcop64</code></dt>
<dd><a name="index-mcop64"></a>
<p>Enables the 64-bit coprocessor’s instructions.
</p>
</dd>
<dt><code>-mivc2</code></dt>
<dd><a name="index-mivc2"></a>
<p>Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
</p>
</dd>
<dt><code>-mdc</code></dt>
<dd><a name="index-mdc"></a>
<p>Causes constant variables to be placed in the <code>.near</code> section.
</p>
</dd>
<dt><code>-mdiv</code></dt>
<dd><a name="index-mdiv-2"></a>
<p>Enables the <code>div</code> and <code>divu</code> instructions.
</p>
</dd>
<dt><code>-meb</code></dt>
<dd><a name="index-meb"></a>
<p>Generate big-endian code.
</p>
</dd>
<dt><code>-mel</code></dt>
<dd><a name="index-mel"></a>
<p>Generate little-endian code.
</p>
</dd>
<dt><code>-mio-volatile</code></dt>
<dd><a name="index-mio_002dvolatile"></a>
<p>Tells the compiler that any variable marked with the <code>io</code>
attribute is to be considered volatile.
</p>
</dd>
<dt><code>-ml</code></dt>
<dd><a name="index-ml"></a>
<p>Causes variables to be assigned to the <code>.far</code> section by default.
</p>
</dd>
<dt><code>-mleadz</code></dt>
<dd><a name="index-mleadz"></a>
<p>Enables the <code>leadz</code> (leading zero) instruction.
</p>
</dd>
<dt><code>-mm</code></dt>
<dd><a name="index-mm"></a>
<p>Causes variables to be assigned to the <code>.near</code> section by default.
</p>
</dd>
<dt><code>-mminmax</code></dt>
<dd><a name="index-mminmax"></a>
<p>Enables the <code>min</code> and <code>max</code> instructions.
</p>
</dd>
<dt><code>-mmult</code></dt>
<dd><a name="index-mmult"></a>
<p>Enables the multiplication and multiply-accumulate instructions.
</p>
</dd>
<dt><code>-mno-opts</code></dt>
<dd><a name="index-mno_002dopts"></a>
<p>Disables all the optional instructions enabled by <samp>-mall-opts</samp>.
</p>
</dd>
<dt><code>-mrepeat</code></dt>
<dd><a name="index-mrepeat"></a>
<p>Enables the <code>repeat</code> and <code>erepeat</code> instructions, used for
low-overhead looping.
</p>
</dd>
<dt><code>-ms</code></dt>
<dd><a name="index-ms-1"></a>
<p>Causes all variables to default to the <code>.tiny</code> section. Note
that there is a 65536-byte limit to this section. Accesses to these
variables use the <code>%gp</code> base register.
</p>
</dd>
<dt><code>-msatur</code></dt>
<dd><a name="index-msatur"></a>
<p>Enables the saturation instructions. Note that the compiler does not
currently generate these itself, but this option is included for
compatibility with other tools, like <code>as</code>.
</p>
</dd>
<dt><code>-msdram</code></dt>
<dd><a name="index-msdram-1"></a>
<p>Link the SDRAM-based runtime instead of the default ROM-based runtime.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim-5"></a>
<p>Link the simulator run-time libraries.
</p>
</dd>
<dt><code>-msimnovec</code></dt>
<dd><a name="index-msimnovec"></a>
<p>Link the simulator runtime libraries, excluding built-in support
for reset and exception vectors and tables.
</p>
</dd>
<dt><code>-mtf</code></dt>
<dd><a name="index-mtf"></a>
<p>Causes all functions to default to the <code>.far</code> section. Without
this option, functions default to the <code>.near</code> section.
</p>
</dd>
<dt><code>-mtiny=<var>n</var></code></dt>
<dd><a name="index-mtiny_003d"></a>
<p>Variables that are <var>n</var> bytes or smaller are allocated to the
<code>.tiny</code> section. These variables use the <code>$gp</code> base
register. The default for this option is 4, but note that there’s a
65536-byte limit to the <code>.tiny</code> section.
</p>
</dd>
</dl>
<hr>
<a name="MicroBlaze-Options"></a>
<div class="header">
<p>
Next: <a href="#MIPS-Options" accesskey="n" rel="next">MIPS Options</a>, Previous: <a href="#MeP-Options" accesskey="p" rel="prev">MeP Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MicroBlaze-Options-1"></a>
<h4 class="subsection">3.18.25 MicroBlaze Options</h4>
<a name="index-MicroBlaze-Options"></a>
<dl compact="compact">
<dt><code>-msoft-float</code></dt>
<dd><a name="index-msoft_002dfloat-5"></a>
<p>Use software emulation for floating point (default).
</p>
</dd>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-mhard_002dfloat-2"></a>
<p>Use hardware floating-point instructions.
</p>
</dd>
<dt><code>-mmemcpy</code></dt>
<dd><a name="index-mmemcpy"></a>
<p>Do not optimize block moves, use <code>memcpy</code>.
</p>
</dd>
<dt><code>-mno-clearbss</code></dt>
<dd><a name="index-mno_002dclearbss"></a>
<p>This option is deprecated. Use <samp>-fno-zero-initialized-in-bss</samp> instead.
</p>
</dd>
<dt><code>-mcpu=<var>cpu-type</var></code></dt>
<dd><a name="index-mcpu_003d-2"></a>
<p>Use features of, and schedule code for, the given CPU.
Supported values are in the format ‘<samp>v<var>X</var>.<var>YY</var>.<var>Z</var></samp>’,
where <var>X</var> is a major version, <var>YY</var> is the minor version, and
<var>Z</var> is compatibility code. Example values are ‘<samp>v3.00.a</samp>’,
‘<samp>v4.00.b</samp>’, ‘<samp>v5.00.a</samp>’, ‘<samp>v5.00.b</samp>’, ‘<samp>v5.00.b</samp>’, ‘<samp>v6.00.a</samp>’.
</p>
</dd>
<dt><code>-mxl-soft-mul</code></dt>
<dd><a name="index-mxl_002dsoft_002dmul"></a>
<p>Use software multiply emulation (default).
</p>
</dd>
<dt><code>-mxl-soft-div</code></dt>
<dd><a name="index-mxl_002dsoft_002ddiv"></a>
<p>Use software emulation for divides (default).
</p>
</dd>
<dt><code>-mxl-barrel-shift</code></dt>
<dd><a name="index-mxl_002dbarrel_002dshift"></a>
<p>Use the hardware barrel shifter.
</p>
</dd>
<dt><code>-mxl-pattern-compare</code></dt>
<dd><a name="index-mxl_002dpattern_002dcompare"></a>
<p>Use pattern compare instructions.
</p>
</dd>
<dt><code>-msmall-divides</code></dt>
<dd><a name="index-msmall_002ddivides"></a>
<p>Use table lookup optimization for small signed integer divisions.
</p>
</dd>
<dt><code>-mxl-stack-check</code></dt>
<dd><a name="index-mxl_002dstack_002dcheck"></a>
<p>This option is deprecated. Use <samp>-fstack-check</samp> instead.
</p>
</dd>
<dt><code>-mxl-gp-opt</code></dt>
<dd><a name="index-mxl_002dgp_002dopt"></a>
<p>Use GP-relative <code>.sdata</code>/<code>.sbss</code> sections.
</p>
</dd>
<dt><code>-mxl-multiply-high</code></dt>
<dd><a name="index-mxl_002dmultiply_002dhigh"></a>
<p>Use multiply high instructions for high part of 32x32 multiply.
</p>
</dd>
<dt><code>-mxl-float-convert</code></dt>
<dd><a name="index-mxl_002dfloat_002dconvert"></a>
<p>Use hardware floating-point conversion instructions.
</p>
</dd>
<dt><code>-mxl-float-sqrt</code></dt>
<dd><a name="index-mxl_002dfloat_002dsqrt"></a>
<p>Use hardware floating-point square root instruction.
</p>
</dd>
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig_002dendian-6"></a>
<p>Generate code for a big-endian target.
</p>
</dd>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle_002dendian-6"></a>
<p>Generate code for a little-endian target.
</p>
</dd>
<dt><code>-mxl-reorder</code></dt>
<dd><a name="index-mxl_002dreorder"></a>
<p>Use reorder instructions (swap and byte reversed load/store).
</p>
</dd>
<dt><code>-mxl-mode-<var>app-model</var></code></dt>
<dd><p>Select application model <var>app-model</var>. Valid models are
</p><dl compact="compact">
<dt>‘<samp>executable</samp>’</dt>
<dd><p>normal executable (default), uses startup code <samp>crt0.o</samp>.
</p>
</dd>
<dt>‘<samp>xmdstub</samp>’</dt>
<dd><p>for use with Xilinx Microprocessor Debugger (XMD) based
software intrusive debug agent called xmdstub. This uses startup file
<samp>crt1.o</samp> and sets the start address of the program to 0x800.
</p>
</dd>
<dt>‘<samp>bootstrap</samp>’</dt>
<dd><p>for applications that are loaded using a bootloader.
This model uses startup file <samp>crt2.o</samp> which does not contain a processor
reset vector handler. This is suitable for transferring control on a
processor reset to the bootloader rather than the application.
</p>
</dd>
<dt>‘<samp>novectors</samp>’</dt>
<dd><p>for applications that do not require any of the
MicroBlaze vectors. This option may be useful for applications running
within a monitoring application. This model uses <samp>crt3.o</samp> as a startup file.
</p></dd>
</dl>
<p>Option <samp>-xl-mode-<var>app-model</var></samp> is a deprecated alias for
<samp>-mxl-mode-<var>app-model</var></samp>.
</p>
</dd>
</dl>
<hr>
<a name="MIPS-Options"></a>
<div class="header">
<p>
Next: <a href="#MMIX-Options" accesskey="n" rel="next">MMIX Options</a>, Previous: <a href="#MicroBlaze-Options" accesskey="p" rel="prev">MicroBlaze Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MIPS-Options-1"></a>
<h4 class="subsection">3.18.26 MIPS Options</h4>
<a name="index-MIPS-options"></a>
<dl compact="compact">
<dt><code>-EB</code></dt>
<dd><a name="index-EB-1"></a>
<p>Generate big-endian code.
</p>
</dd>
<dt><code>-EL</code></dt>
<dd><a name="index-EL-1"></a>
<p>Generate little-endian code. This is the default for ‘<samp>mips*el-*-*</samp>’
configurations.
</p>
</dd>
<dt><code>-march=<var>arch</var></code></dt>
<dd><a name="index-march-7"></a>
<p>Generate code that runs on <var>arch</var>, which can be the name of a
generic MIPS ISA, or the name of a particular processor.
The ISA names are:
‘<samp>mips1</samp>’, ‘<samp>mips2</samp>’, ‘<samp>mips3</samp>’, ‘<samp>mips4</samp>’,
‘<samp>mips32</samp>’, ‘<samp>mips32r2</samp>’, ‘<samp>mips32r3</samp>’, ‘<samp>mips32r5</samp>’,
‘<samp>mips32r6</samp>’, ‘<samp>mips64</samp>’, ‘<samp>mips64r2</samp>’, ‘<samp>mips64r3</samp>’,
‘<samp>mips64r5</samp>’ and ‘<samp>mips64r6</samp>’.
The processor names are:
‘<samp>4kc</samp>’, ‘<samp>4km</samp>’, ‘<samp>4kp</samp>’, ‘<samp>4ksc</samp>’,
‘<samp>4kec</samp>’, ‘<samp>4kem</samp>’, ‘<samp>4kep</samp>’, ‘<samp>4ksd</samp>’,
‘<samp>5kc</samp>’, ‘<samp>5kf</samp>’,
‘<samp>20kc</samp>’,
‘<samp>24kc</samp>’, ‘<samp>24kf2_1</samp>’, ‘<samp>24kf1_1</samp>’,
‘<samp>24kec</samp>’, ‘<samp>24kef2_1</samp>’, ‘<samp>24kef1_1</samp>’,
‘<samp>34kc</samp>’, ‘<samp>34kf2_1</samp>’, ‘<samp>34kf1_1</samp>’, ‘<samp>34kn</samp>’,
‘<samp>74kc</samp>’, ‘<samp>74kf2_1</samp>’, ‘<samp>74kf1_1</samp>’, ‘<samp>74kf3_2</samp>’,
‘<samp>1004kc</samp>’, ‘<samp>1004kf2_1</samp>’, ‘<samp>1004kf1_1</samp>’,
‘<samp>i6400</samp>’,
‘<samp>interaptiv</samp>’,
‘<samp>loongson2e</samp>’, ‘<samp>loongson2f</samp>’, ‘<samp>loongson3a</samp>’,
‘<samp>m4k</samp>’,
‘<samp>m14k</samp>’, ‘<samp>m14kc</samp>’, ‘<samp>m14ke</samp>’, ‘<samp>m14kec</samp>’,
‘<samp>m5100</samp>’, ‘<samp>m5101</samp>’,
‘<samp>octeon</samp>’, ‘<samp>octeon+</samp>’, ‘<samp>octeon2</samp>’, ‘<samp>octeon3</samp>’,
‘<samp>orion</samp>’,
‘<samp>p5600</samp>’,
‘<samp>r2000</samp>’, ‘<samp>r3000</samp>’, ‘<samp>r3900</samp>’, ‘<samp>r4000</samp>’, ‘<samp>r4400</samp>’,
‘<samp>r4600</samp>’, ‘<samp>r4650</samp>’, ‘<samp>r4700</samp>’, ‘<samp>r6000</samp>’, ‘<samp>r8000</samp>’,
‘<samp>rm7000</samp>’, ‘<samp>rm9000</samp>’,
‘<samp>r10000</samp>’, ‘<samp>r12000</samp>’, ‘<samp>r14000</samp>’, ‘<samp>r16000</samp>’,
‘<samp>sb1</samp>’,
‘<samp>sr71000</samp>’,
‘<samp>vr4100</samp>’, ‘<samp>vr4111</samp>’, ‘<samp>vr4120</samp>’, ‘<samp>vr4130</samp>’, ‘<samp>vr4300</samp>’,
‘<samp>vr5000</samp>’, ‘<samp>vr5400</samp>’, ‘<samp>vr5500</samp>’,
‘<samp>xlr</samp>’ and ‘<samp>xlp</samp>’.
The special value ‘<samp>from-abi</samp>’ selects the
most compatible architecture for the selected ABI (that is,
‘<samp>mips1</samp>’ for 32-bit ABIs and ‘<samp>mips3</samp>’ for 64-bit ABIs).
</p>
<p>The native Linux/GNU toolchain also supports the value ‘<samp>native</samp>’,
which selects the best architecture option for the host processor.
<samp>-march=native</samp> has no effect if GCC does not recognize
the processor.
</p>
<p>In processor names, a final ‘<samp>000</samp>’ can be abbreviated as ‘<samp>k</samp>’
(for example, <samp>-march=r2k</samp>). Prefixes are optional, and
‘<samp>vr</samp>’ may be written ‘<samp>r</samp>’.
</p>
<p>Names of the form ‘<samp><var>n</var>f2_1</samp>’ refer to processors with
FPUs clocked at half the rate of the core, names of the form
‘<samp><var>n</var>f1_1</samp>’ refer to processors with FPUs clocked at the same
rate as the core, and names of the form ‘<samp><var>n</var>f3_2</samp>’ refer to
processors with FPUs clocked a ratio of 3:2 with respect to the core.
For compatibility reasons, ‘<samp><var>n</var>f</samp>’ is accepted as a synonym
for ‘<samp><var>n</var>f2_1</samp>’ while ‘<samp><var>n</var>x</samp>’ and ‘<samp><var>b</var>fx</samp>’ are
accepted as synonyms for ‘<samp><var>n</var>f1_1</samp>’.
</p>
<p>GCC defines two macros based on the value of this option. The first
is <code>_MIPS_ARCH</code>, which gives the name of target architecture, as
a string. The second has the form <code>_MIPS_ARCH_<var>foo</var></code>,
where <var>foo</var> is the capitalized value of <code>_MIPS_ARCH</code>.
For example, <samp>-march=r2000</samp> sets <code>_MIPS_ARCH</code>
to <code>"r2000"</code> and defines the macro <code>_MIPS_ARCH_R2000</code>.
</p>
<p>Note that the <code>_MIPS_ARCH</code> macro uses the processor names given
above. In other words, it has the full prefix and does not
abbreviate ‘<samp>000</samp>’ as ‘<samp>k</samp>’. In the case of ‘<samp>from-abi</samp>’,
the macro names the resolved architecture (either <code>"mips1"</code> or
<code>"mips3"</code>). It names the default architecture when no
<samp>-march</samp> option is given.
</p>
</dd>
<dt><code>-mtune=<var>arch</var></code></dt>
<dd><a name="index-mtune-8"></a>
<p>Optimize for <var>arch</var>. Among other things, this option controls
the way instructions are scheduled, and the perceived cost of arithmetic
operations. The list of <var>arch</var> values is the same as for
<samp>-march</samp>.
</p>
<p>When this option is not used, GCC optimizes for the processor
specified by <samp>-march</samp>. By using <samp>-march</samp> and
<samp>-mtune</samp> together, it is possible to generate code that
runs on a family of processors, but optimize the code for one
particular member of that family.
</p>
<p><samp>-mtune</samp> defines the macros <code>_MIPS_TUNE</code> and
<code>_MIPS_TUNE_<var>foo</var></code>, which work in the same way as the
<samp>-march</samp> ones described above.
</p>
</dd>
<dt><code>-mips1</code></dt>
<dd><a name="index-mips1"></a>
<p>Equivalent to <samp>-march=mips1</samp>.
</p>
</dd>
<dt><code>-mips2</code></dt>
<dd><a name="index-mips2"></a>
<p>Equivalent to <samp>-march=mips2</samp>.
</p>
</dd>
<dt><code>-mips3</code></dt>
<dd><a name="index-mips3"></a>
<p>Equivalent to <samp>-march=mips3</samp>.
</p>
</dd>
<dt><code>-mips4</code></dt>
<dd><a name="index-mips4"></a>
<p>Equivalent to <samp>-march=mips4</samp>.
</p>
</dd>
<dt><code>-mips32</code></dt>
<dd><a name="index-mips32"></a>
<p>Equivalent to <samp>-march=mips32</samp>.
</p>
</dd>
<dt><code>-mips32r3</code></dt>
<dd><a name="index-mips32r3"></a>
<p>Equivalent to <samp>-march=mips32r3</samp>.
</p>
</dd>
<dt><code>-mips32r5</code></dt>
<dd><a name="index-mips32r5"></a>
<p>Equivalent to <samp>-march=mips32r5</samp>.
</p>
</dd>
<dt><code>-mips32r6</code></dt>
<dd><a name="index-mips32r6"></a>
<p>Equivalent to <samp>-march=mips32r6</samp>.
</p>
</dd>
<dt><code>-mips64</code></dt>
<dd><a name="index-mips64"></a>
<p>Equivalent to <samp>-march=mips64</samp>.
</p>
</dd>
<dt><code>-mips64r2</code></dt>
<dd><a name="index-mips64r2"></a>
<p>Equivalent to <samp>-march=mips64r2</samp>.
</p>
</dd>
<dt><code>-mips64r3</code></dt>
<dd><a name="index-mips64r3"></a>
<p>Equivalent to <samp>-march=mips64r3</samp>.
</p>
</dd>
<dt><code>-mips64r5</code></dt>
<dd><a name="index-mips64r5"></a>
<p>Equivalent to <samp>-march=mips64r5</samp>.
</p>
</dd>
<dt><code>-mips64r6</code></dt>
<dd><a name="index-mips64r6"></a>
<p>Equivalent to <samp>-march=mips64r6</samp>.
</p>
</dd>
<dt><code>-mips16</code></dt>
<dt><code>-mno-mips16</code></dt>
<dd><a name="index-mips16"></a>
<a name="index-mno_002dmips16"></a>
<p>Generate (do not generate) MIPS16 code. If GCC is targeting a
MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE.
</p>
<p>MIPS16 code generation can also be controlled on a per-function basis
by means of <code>mips16</code> and <code>nomips16</code> attributes.
See <a href="#Function-Attributes">Function Attributes</a>, for more information.
</p>
</dd>
<dt><code>-mflip-mips16</code></dt>
<dd><a name="index-mflip_002dmips16"></a>
<p>Generate MIPS16 code on alternating functions. This option is provided
for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
not intended for ordinary use in compiling user code.
</p>
</dd>
<dt><code>-minterlink-compressed</code></dt>
<dt><code>-mno-interlink-compressed</code></dt>
<dd><a name="index-minterlink_002dcompressed"></a>
<a name="index-mno_002dinterlink_002dcompressed"></a>
<p>Require (do not require) that code using the standard (uncompressed) MIPS ISA
be link-compatible with MIPS16 and microMIPS code, and vice versa.
</p>
<p>For example, code using the standard ISA encoding cannot jump directly
to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
<samp>-minterlink-compressed</samp> therefore disables direct jumps unless GCC
knows that the target of the jump is not compressed.
</p>
</dd>
<dt><code>-minterlink-mips16</code></dt>
<dt><code>-mno-interlink-mips16</code></dt>
<dd><a name="index-minterlink_002dmips16"></a>
<a name="index-mno_002dinterlink_002dmips16"></a>
<p>Aliases of <samp>-minterlink-compressed</samp> and
<samp>-mno-interlink-compressed</samp>. These options predate the microMIPS ASE
and are retained for backwards compatibility.
</p>
</dd>
<dt><code>-mabi=32</code></dt>
<dt><code>-mabi=o64</code></dt>
<dt><code>-mabi=n32</code></dt>
<dt><code>-mabi=64</code></dt>
<dt><code>-mabi=eabi</code></dt>
<dd><a name="index-mabi_003d32"></a>
<a name="index-mabi_003do64"></a>
<a name="index-mabi_003dn32"></a>
<a name="index-mabi_003d64"></a>
<a name="index-mabi_003deabi"></a>
<p>Generate code for the given ABI.
</p>
<p>Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
generates 64-bit code when you select a 64-bit architecture, but you
can use <samp>-mgp32</samp> to get 32-bit code instead.
</p>
<p>For information about the O64 ABI, see
<a href="http://gcc.gnu.org/projects/mipso64-abi.html">http://gcc.gnu.org/projects/mipso64-abi.html</a>.
</p>
<p>GCC supports a variant of the o32 ABI in which floating-point registers
are 64 rather than 32 bits wide. You can select this combination with
<samp>-mabi=32</samp> <samp>-mfp64</samp>. This ABI relies on the <code>mthc1</code>
and <code>mfhc1</code> instructions and is therefore only supported for
MIPS32R2, MIPS32R3 and MIPS32R5 processors.
</p>
<p>The register assignments for arguments and return values remain the
same, but each scalar value is passed in a single 64-bit register
rather than a pair of 32-bit registers. For example, scalar
floating-point values are returned in ‘<samp>$f0</samp>’ only, not a
‘<samp>$f0</samp>’/‘<samp>$f1</samp>’ pair. The set of call-saved registers also
remains the same in that the even-numbered double-precision registers
are saved.
</p>
<p>Two additional variants of the o32 ABI are supported to enable
a transition from 32-bit to 64-bit registers. These are FPXX
(<samp>-mfpxx</samp>) and FP64A (<samp>-mfp64</samp> <samp>-mno-odd-spreg</samp>).
The FPXX extension mandates that all code must execute correctly
when run using 32-bit or 64-bit registers. The code can be interlinked
with either FP32 or FP64, but not both.
The FP64A extension is similar to the FP64 extension but forbids the
use of odd-numbered single-precision registers. This can be used
in conjunction with the <code>FRE</code> mode of FPUs in MIPS32R5
processors and allows both FP32 and FP64A code to interlink and
run in the same process without changing FPU modes.
</p>
</dd>
<dt><code>-mabicalls</code></dt>
<dt><code>-mno-abicalls</code></dt>
<dd><a name="index-mabicalls"></a>
<a name="index-mno_002dabicalls"></a>
<p>Generate (do not generate) code that is suitable for SVR4-style
dynamic objects. <samp>-mabicalls</samp> is the default for SVR4-based
systems.
</p>
</dd>
<dt><code>-mshared</code></dt>
<dt><code>-mno-shared</code></dt>
<dd><p>Generate (do not generate) code that is fully position-independent,
and that can therefore be linked into shared libraries. This option
only affects <samp>-mabicalls</samp>.
</p>
<p>All <samp>-mabicalls</samp> code has traditionally been position-independent,
regardless of options like <samp>-fPIC</samp> and <samp>-fpic</samp>. However,
as an extension, the GNU toolchain allows executables to use absolute
accesses for locally-binding symbols. It can also use shorter GP
initialization sequences and generate direct calls to locally-defined
functions. This mode is selected by <samp>-mno-shared</samp>.
</p>
<p><samp>-mno-shared</samp> depends on binutils 2.16 or higher and generates
objects that can only be linked by the GNU linker. However, the option
does not affect the ABI of the final executable; it only affects the ABI
of relocatable objects. Using <samp>-mno-shared</samp> generally makes
executables both smaller and quicker.
</p>
<p><samp>-mshared</samp> is the default.
</p>
</dd>
<dt><code>-mplt</code></dt>
<dt><code>-mno-plt</code></dt>
<dd><a name="index-mplt"></a>
<a name="index-mno_002dplt"></a>
<p>Assume (do not assume) that the static and dynamic linkers
support PLTs and copy relocations. This option only affects
<samp>-mno-shared -mabicalls</samp>. For the n64 ABI, this option
has no effect without <samp>-msym32</samp>.
</p>
<p>You can make <samp>-mplt</samp> the default by configuring
GCC with <samp>--with-mips-plt</samp>. The default is
<samp>-mno-plt</samp> otherwise.
</p>
</dd>
<dt><code>-mxgot</code></dt>
<dt><code>-mno-xgot</code></dt>
<dd><a name="index-mxgot-1"></a>
<a name="index-mno_002dxgot-1"></a>
<p>Lift (do not lift) the usual restrictions on the size of the global
offset table.
</p>
<p>GCC normally uses a single instruction to load values from the GOT.
While this is relatively efficient, it only works if the GOT
is smaller than about 64k. Anything larger causes the linker
to report an error such as:
</p>
<a name="index-relocation-truncated-to-fit-_0028MIPS_0029"></a>
<div class="smallexample">
<pre class="smallexample">relocation truncated to fit: R_MIPS_GOT16 foobar
</pre></div>
<p>If this happens, you should recompile your code with <samp>-mxgot</samp>.
This works with very large GOTs, although the code is also
less efficient, since it takes three instructions to fetch the
value of a global symbol.
</p>
<p>Note that some linkers can create multiple GOTs. If you have such a
linker, you should only need to use <samp>-mxgot</samp> when a single object
file accesses more than 64k’s worth of GOT entries. Very few do.
</p>
<p>These options have no effect unless GCC is generating position
independent code.
</p>
</dd>
<dt><code>-mgp32</code></dt>
<dd><a name="index-mgp32"></a>
<p>Assume that general-purpose registers are 32 bits wide.
</p>
</dd>
<dt><code>-mgp64</code></dt>
<dd><a name="index-mgp64"></a>
<p>Assume that general-purpose registers are 64 bits wide.
</p>
</dd>
<dt><code>-mfp32</code></dt>
<dd><a name="index-mfp32"></a>
<p>Assume that floating-point registers are 32 bits wide.
</p>
</dd>
<dt><code>-mfp64</code></dt>
<dd><a name="index-mfp64"></a>
<p>Assume that floating-point registers are 64 bits wide.
</p>
</dd>
<dt><code>-mfpxx</code></dt>
<dd><a name="index-mfpxx"></a>
<p>Do not assume the width of floating-point registers.
</p>
</dd>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-mhard_002dfloat-3"></a>
<p>Use floating-point coprocessor instructions.
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-msoft_002dfloat-6"></a>
<p>Do not use floating-point coprocessor instructions. Implement
floating-point calculations using library calls instead.
</p>
</dd>
<dt><code>-mno-float</code></dt>
<dd><a name="index-mno_002dfloat"></a>
<p>Equivalent to <samp>-msoft-float</samp>, but additionally asserts that the
program being compiled does not perform any floating-point operations.
This option is presently supported only by some bare-metal MIPS
configurations, where it may select a special set of libraries
that lack all floating-point support (including, for example, the
floating-point <code>printf</code> formats).
If code compiled with <samp>-mno-float</samp> accidentally contains
floating-point operations, it is likely to suffer a link-time
or run-time failure.
</p>
</dd>
<dt><code>-msingle-float</code></dt>
<dd><a name="index-msingle_002dfloat"></a>
<p>Assume that the floating-point coprocessor only supports single-precision
operations.
</p>
</dd>
<dt><code>-mdouble-float</code></dt>
<dd><a name="index-mdouble_002dfloat"></a>
<p>Assume that the floating-point coprocessor supports double-precision
operations. This is the default.
</p>
</dd>
<dt><code>-modd-spreg</code></dt>
<dt><code>-mno-odd-spreg</code></dt>
<dd><a name="index-modd_002dspreg"></a>
<a name="index-mno_002dodd_002dspreg"></a>
<p>Enable the use of odd-numbered single-precision floating-point registers
for the o32 ABI. This is the default for processors that are known to
support these registers. When using the o32 FPXX ABI, <samp>-mno-odd-spreg</samp>
is set by default.
</p>
</dd>
<dt><code>-mabs=2008</code></dt>
<dt><code>-mabs=legacy</code></dt>
<dd><a name="index-mabs_003d2008"></a>
<a name="index-mabs_003dlegacy"></a>
<p>These options control the treatment of the special not-a-number (NaN)
IEEE 754 floating-point data with the <code>abs.<i>fmt</i></code> and
<code>neg.<i>fmt</i></code> machine instructions.
</p>
<p>By default or when <samp>-mabs=legacy</samp> is used the legacy
treatment is selected. In this case these instructions are considered
arithmetic and avoided where correct operation is required and the
input operand might be a NaN. A longer sequence of instructions that
manipulate the sign bit of floating-point datum manually is used
instead unless the <samp>-ffinite-math-only</samp> option has also been
specified.
</p>
<p>The <samp>-mabs=2008</samp> option selects the IEEE 754-2008 treatment. In
this case these instructions are considered non-arithmetic and therefore
operating correctly in all cases, including in particular where the
input operand is a NaN. These instructions are therefore always used
for the respective operations.
</p>
</dd>
<dt><code>-mnan=2008</code></dt>
<dt><code>-mnan=legacy</code></dt>
<dd><a name="index-mnan_003d2008"></a>
<a name="index-mnan_003dlegacy"></a>
<p>These options control the encoding of the special not-a-number (NaN)
IEEE 754 floating-point data.
</p>
<p>The <samp>-mnan=legacy</samp> option selects the legacy encoding. In this
case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
significand field being 0, whereas signaling NaNs (sNaNs) are denoted
by the first bit of their trailing significand field being 1.
</p>
<p>The <samp>-mnan=2008</samp> option selects the IEEE 754-2008 encoding. In
this case qNaNs are denoted by the first bit of their trailing
significand field being 1, whereas sNaNs are denoted by the first bit of
their trailing significand field being 0.
</p>
<p>The default is <samp>-mnan=legacy</samp> unless GCC has been configured with
<samp>--with-nan=2008</samp>.
</p>
</dd>
<dt><code>-mllsc</code></dt>
<dt><code>-mno-llsc</code></dt>
<dd><a name="index-mllsc"></a>
<a name="index-mno_002dllsc"></a>
<p>Use (do not use) ‘<samp>ll</samp>’, ‘<samp>sc</samp>’, and ‘<samp>sync</samp>’ instructions to
implement atomic memory built-in functions. When neither option is
specified, GCC uses the instructions if the target architecture
supports them.
</p>
<p><samp>-mllsc</samp> is useful if the runtime environment can emulate the
instructions and <samp>-mno-llsc</samp> can be useful when compiling for
nonstandard ISAs. You can make either option the default by
configuring GCC with <samp>--with-llsc</samp> and <samp>--without-llsc</samp>
respectively. <samp>--with-llsc</samp> is the default for some
configurations; see the installation documentation for details.
</p>
</dd>
<dt><code>-mdsp</code></dt>
<dt><code>-mno-dsp</code></dt>
<dd><a name="index-mdsp"></a>
<a name="index-mno_002ddsp"></a>
<p>Use (do not use) revision 1 of the MIPS DSP ASE.
See <a href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>. This option defines the
preprocessor macro <code>__mips_dsp</code>. It also defines
<code>__mips_dsp_rev</code> to 1.
</p>
</dd>
<dt><code>-mdspr2</code></dt>
<dt><code>-mno-dspr2</code></dt>
<dd><a name="index-mdspr2"></a>
<a name="index-mno_002ddspr2"></a>
<p>Use (do not use) revision 2 of the MIPS DSP ASE.
See <a href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>. This option defines the
preprocessor macros <code>__mips_dsp</code> and <code>__mips_dspr2</code>.
It also defines <code>__mips_dsp_rev</code> to 2.
</p>
</dd>
<dt><code>-msmartmips</code></dt>
<dt><code>-mno-smartmips</code></dt>
<dd><a name="index-msmartmips"></a>
<a name="index-mno_002dsmartmips"></a>
<p>Use (do not use) the MIPS SmartMIPS ASE.
</p>
</dd>
<dt><code>-mpaired-single</code></dt>
<dt><code>-mno-paired-single</code></dt>
<dd><a name="index-mpaired_002dsingle"></a>
<a name="index-mno_002dpaired_002dsingle"></a>
<p>Use (do not use) paired-single floating-point instructions.
See <a href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>. This option requires
hardware floating-point support to be enabled.
</p>
</dd>
<dt><code>-mdmx</code></dt>
<dt><code>-mno-mdmx</code></dt>
<dd><a name="index-mdmx"></a>
<a name="index-mno_002dmdmx"></a>
<p>Use (do not use) MIPS Digital Media Extension instructions.
This option can only be used when generating 64-bit code and requires
hardware floating-point support to be enabled.
</p>
</dd>
<dt><code>-mips3d</code></dt>
<dt><code>-mno-mips3d</code></dt>
<dd><a name="index-mips3d"></a>
<a name="index-mno_002dmips3d"></a>
<p>Use (do not use) the MIPS-3D ASE. See <a href="#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>.
The option <samp>-mips3d</samp> implies <samp>-mpaired-single</samp>.
</p>
</dd>
<dt><code>-mmicromips</code></dt>
<dt><code>-mno-micromips</code></dt>
<dd><a name="index-mmicromips"></a>
<a name="index-mno_002dmmicromips"></a>
<p>Generate (do not generate) microMIPS code.
</p>
<p>MicroMIPS code generation can also be controlled on a per-function basis
by means of <code>micromips</code> and <code>nomicromips</code> attributes.
See <a href="#Function-Attributes">Function Attributes</a>, for more information.
</p>
</dd>
<dt><code>-mmt</code></dt>
<dt><code>-mno-mt</code></dt>
<dd><a name="index-mmt"></a>
<a name="index-mno_002dmt"></a>
<p>Use (do not use) MT Multithreading instructions.
</p>
</dd>
<dt><code>-mmcu</code></dt>
<dt><code>-mno-mcu</code></dt>
<dd><a name="index-mmcu-1"></a>
<a name="index-mno_002dmcu"></a>
<p>Use (do not use) the MIPS MCU ASE instructions.
</p>
</dd>
<dt><code>-meva</code></dt>
<dt><code>-mno-eva</code></dt>
<dd><a name="index-meva"></a>
<a name="index-mno_002deva"></a>
<p>Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
</p>
</dd>
<dt><code>-mvirt</code></dt>
<dt><code>-mno-virt</code></dt>
<dd><a name="index-mvirt"></a>
<a name="index-mno_002dvirt"></a>
<p>Use (do not use) the MIPS Virtualization (VZ) instructions.
</p>
</dd>
<dt><code>-mxpa</code></dt>
<dt><code>-mno-xpa</code></dt>
<dd><a name="index-mxpa"></a>
<a name="index-mno_002dxpa"></a>
<p>Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
</p>
</dd>
<dt><code>-mlong64</code></dt>
<dd><a name="index-mlong64"></a>
<p>Force <code>long</code> types to be 64 bits wide. See <samp>-mlong32</samp> for
an explanation of the default and the way that the pointer size is
determined.
</p>
</dd>
<dt><code>-mlong32</code></dt>
<dd><a name="index-mlong32"></a>
<p>Force <code>long</code>, <code>int</code>, and pointer types to be 32 bits wide.
</p>
<p>The default size of <code>int</code>s, <code>long</code>s and pointers depends on
the ABI. All the supported ABIs use 32-bit <code>int</code>s. The n64 ABI
uses 64-bit <code>long</code>s, as does the 64-bit EABI; the others use
32-bit <code>long</code>s. Pointers are the same size as <code>long</code>s,
or the same size as integer registers, whichever is smaller.
</p>
</dd>
<dt><code>-msym32</code></dt>
<dt><code>-mno-sym32</code></dt>
<dd><a name="index-msym32"></a>
<a name="index-mno_002dsym32"></a>
<p>Assume (do not assume) that all symbols have 32-bit values, regardless
of the selected ABI. This option is useful in combination with
<samp>-mabi=64</samp> and <samp>-mno-abicalls</samp> because it allows GCC
to generate shorter and faster references to symbolic addresses.
</p>
</dd>
<dt><code>-G <var>num</var></code></dt>
<dd><a name="index-G-2"></a>
<p>Put definitions of externally-visible data in a small data section
if that data is no bigger than <var>num</var> bytes. GCC can then generate
more efficient accesses to the data; see <samp>-mgpopt</samp> for details.
</p>
<p>The default <samp>-G</samp> option depends on the configuration.
</p>
</dd>
<dt><code>-mlocal-sdata</code></dt>
<dt><code>-mno-local-sdata</code></dt>
<dd><a name="index-mlocal_002dsdata"></a>
<a name="index-mno_002dlocal_002dsdata"></a>
<p>Extend (do not extend) the <samp>-G</samp> behavior to local data too,
such as to static variables in C. <samp>-mlocal-sdata</samp> is the
default for all configurations.
</p>
<p>If the linker complains that an application is using too much small data,
you might want to try rebuilding the less performance-critical parts with
<samp>-mno-local-sdata</samp>. You might also want to build large
libraries with <samp>-mno-local-sdata</samp>, so that the libraries leave
more room for the main program.
</p>
</dd>
<dt><code>-mextern-sdata</code></dt>
<dt><code>-mno-extern-sdata</code></dt>
<dd><a name="index-mextern_002dsdata"></a>
<a name="index-mno_002dextern_002dsdata"></a>
<p>Assume (do not assume) that externally-defined data is in
a small data section if the size of that data is within the <samp>-G</samp> limit.
<samp>-mextern-sdata</samp> is the default for all configurations.
</p>
<p>If you compile a module <var>Mod</var> with <samp>-mextern-sdata</samp> <samp>-G
<var>num</var></samp> <samp>-mgpopt</samp>, and <var>Mod</var> references a variable <var>Var</var>
that is no bigger than <var>num</var> bytes, you must make sure that <var>Var</var>
is placed in a small data section. If <var>Var</var> is defined by another
module, you must either compile that module with a high-enough
<samp>-G</samp> setting or attach a <code>section</code> attribute to <var>Var</var>’s
definition. If <var>Var</var> is common, you must link the application
with a high-enough <samp>-G</samp> setting.
</p>
<p>The easiest way of satisfying these restrictions is to compile
and link every module with the same <samp>-G</samp> option. However,
you may wish to build a library that supports several different
small data limits. You can do this by compiling the library with
the highest supported <samp>-G</samp> setting and additionally using
<samp>-mno-extern-sdata</samp> to stop the library from making assumptions
about externally-defined data.
</p>
</dd>
<dt><code>-mgpopt</code></dt>
<dt><code>-mno-gpopt</code></dt>
<dd><a name="index-mgpopt"></a>
<a name="index-mno_002dgpopt"></a>
<p>Use (do not use) GP-relative accesses for symbols that are known to be
in a small data section; see <samp>-G</samp>, <samp>-mlocal-sdata</samp> and
<samp>-mextern-sdata</samp>. <samp>-mgpopt</samp> is the default for all
configurations.
</p>
<p><samp>-mno-gpopt</samp> is useful for cases where the <code>$gp</code> register
might not hold the value of <code>_gp</code>. For example, if the code is
part of a library that might be used in a boot monitor, programs that
call boot monitor routines pass an unknown value in <code>$gp</code>.
(In such situations, the boot monitor itself is usually compiled
with <samp>-G0</samp>.)
</p>
<p><samp>-mno-gpopt</samp> implies <samp>-mno-local-sdata</samp> and
<samp>-mno-extern-sdata</samp>.
</p>
</dd>
<dt><code>-membedded-data</code></dt>
<dt><code>-mno-embedded-data</code></dt>
<dd><a name="index-membedded_002ddata"></a>
<a name="index-mno_002dembedded_002ddata"></a>
<p>Allocate variables to the read-only data section first if possible, then
next in the small data section if possible, otherwise in data. This gives
slightly slower code than the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some embedded systems.
</p>
</dd>
<dt><code>-muninit-const-in-rodata</code></dt>
<dt><code>-mno-uninit-const-in-rodata</code></dt>
<dd><a name="index-muninit_002dconst_002din_002drodata"></a>
<a name="index-mno_002duninit_002dconst_002din_002drodata"></a>
<p>Put uninitialized <code>const</code> variables in the read-only data section.
This option is only meaningful in conjunction with <samp>-membedded-data</samp>.
</p>
</dd>
<dt><code>-mcode-readable=<var>setting</var></code></dt>
<dd><a name="index-mcode_002dreadable"></a>
<p>Specify whether GCC may generate code that reads from executable sections.
There are three possible settings:
</p>
<dl compact="compact">
<dt><code>-mcode-readable=yes</code></dt>
<dd><p>Instructions may freely access executable sections. This is the
default setting.
</p>
</dd>
<dt><code>-mcode-readable=pcrel</code></dt>
<dd><p>MIPS16 PC-relative load instructions can access executable sections,
but other instructions must not do so. This option is useful on 4KSc
and 4KSd processors when the code TLBs have the Read Inhibit bit set.
It is also useful on processors that can be configured to have a dual
instruction/data SRAM interface and that, like the M4K, automatically
redirect PC-relative loads to the instruction RAM.
</p>
</dd>
<dt><code>-mcode-readable=no</code></dt>
<dd><p>Instructions must not access executable sections. This option can be
useful on targets that are configured to have a dual instruction/data
SRAM interface but that (unlike the M4K) do not automatically redirect
PC-relative loads to the instruction RAM.
</p></dd>
</dl>
</dd>
<dt><code>-msplit-addresses</code></dt>
<dt><code>-mno-split-addresses</code></dt>
<dd><a name="index-msplit_002daddresses"></a>
<a name="index-mno_002dsplit_002daddresses"></a>
<p>Enable (disable) use of the <code>%hi()</code> and <code>%lo()</code> assembler
relocation operators. This option has been superseded by
<samp>-mexplicit-relocs</samp> but is retained for backwards compatibility.
</p>
</dd>
<dt><code>-mexplicit-relocs</code></dt>
<dt><code>-mno-explicit-relocs</code></dt>
<dd><a name="index-mexplicit_002drelocs-1"></a>
<a name="index-mno_002dexplicit_002drelocs-1"></a>
<p>Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by <samp>-mno-explicit-relocs</samp>,
is to use assembler macros instead.
</p>
<p><samp>-mexplicit-relocs</samp> is the default if GCC was configured
to use an assembler that supports relocation operators.
</p>
</dd>
<dt><code>-mcheck-zero-division</code></dt>
<dt><code>-mno-check-zero-division</code></dt>
<dd><a name="index-mcheck_002dzero_002ddivision"></a>
<a name="index-mno_002dcheck_002dzero_002ddivision"></a>
<p>Trap (do not trap) on integer division by zero.
</p>
<p>The default is <samp>-mcheck-zero-division</samp>.
</p>
</dd>
<dt><code>-mdivide-traps</code></dt>
<dt><code>-mdivide-breaks</code></dt>
<dd><a name="index-mdivide_002dtraps"></a>
<a name="index-mdivide_002dbreaks"></a>
<p>MIPS systems check for division by zero by generating either a
conditional trap or a break instruction. Using traps results in
smaller code, but is only supported on MIPS II and later. Also, some
versions of the Linux kernel have a bug that prevents trap from
generating the proper signal (<code>SIGFPE</code>). Use <samp>-mdivide-traps</samp> to
allow conditional traps on architectures that support them and
<samp>-mdivide-breaks</samp> to force the use of breaks.
</p>
<p>The default is usually <samp>-mdivide-traps</samp>, but this can be
overridden at configure time using <samp>--with-divide=breaks</samp>.
Divide-by-zero checks can be completely disabled using
<samp>-mno-check-zero-division</samp>.
</p>
</dd>
<dt><code>-mload-store-pairs</code></dt>
<dt><code>-mno-load-store-pairs</code></dt>
<dd><a name="index-mload_002dstore_002dpairs"></a>
<a name="index-mno_002dload_002dstore_002dpairs"></a>
<p>Enable (disable) an optimization that pairs consecutive load or store
instructions to enable load/store bonding. This option is enabled by
default but only takes effect when the selected architecture is known
to support bonding.
</p>
</dd>
<dt><code>-mmemcpy</code></dt>
<dt><code>-mno-memcpy</code></dt>
<dd><a name="index-mmemcpy-1"></a>
<a name="index-mno_002dmemcpy"></a>
<p>Force (do not force) the use of <code>memcpy</code> for non-trivial block
moves. The default is <samp>-mno-memcpy</samp>, which allows GCC to inline
most constant-sized copies.
</p>
</dd>
<dt><code>-mlong-calls</code></dt>
<dt><code>-mno-long-calls</code></dt>
<dd><a name="index-mlong_002dcalls-5"></a>
<a name="index-mno_002dlong_002dcalls-3"></a>
<p>Disable (do not disable) use of the <code>jal</code> instruction. Calling
functions using <code>jal</code> is more efficient but requires the caller
and callee to be in the same 256 megabyte segment.
</p>
<p>This option has no effect on abicalls code. The default is
<samp>-mno-long-calls</samp>.
</p>
</dd>
<dt><code>-mmad</code></dt>
<dt><code>-mno-mad</code></dt>
<dd><a name="index-mmad"></a>
<a name="index-mno_002dmad"></a>
<p>Enable (disable) use of the <code>mad</code>, <code>madu</code> and <code>mul</code>
instructions, as provided by the R4650 ISA.
</p>
</dd>
<dt><code>-mimadd</code></dt>
<dt><code>-mno-imadd</code></dt>
<dd><a name="index-mimadd"></a>
<a name="index-mno_002dimadd"></a>
<p>Enable (disable) use of the <code>madd</code> and <code>msub</code> integer
instructions. The default is <samp>-mimadd</samp> on architectures
that support <code>madd</code> and <code>msub</code> except for the 74k
architecture where it was found to generate slower code.
</p>
</dd>
<dt><code>-mfused-madd</code></dt>
<dt><code>-mno-fused-madd</code></dt>
<dd><a name="index-mfused_002dmadd-1"></a>
<a name="index-mno_002dfused_002dmadd-1"></a>
<p>Enable (disable) use of the floating-point multiply-accumulate
instructions, when they are available. The default is
<samp>-mfused-madd</samp>.
</p>
<p>On the R8000 CPU when multiply-accumulate instructions are used,
the intermediate product is calculated to infinite precision
and is not subject to the FCSR Flush to Zero bit. This may be
undesirable in some circumstances. On other processors the result
is numerically identical to the equivalent computation using
separate multiply, add, subtract and negate instructions.
</p>
</dd>
<dt><code>-nocpp</code></dt>
<dd><a name="index-nocpp"></a>
<p>Tell the MIPS assembler to not run its preprocessor over user
assembler files (with a ‘<samp>.s</samp>’ suffix) when assembling them.
</p>
</dd>
<dt><code>-mfix-24k</code></dt>
<dt><code>-mno-fix-24k</code></dt>
<dd><a name="index-mfix_002d24k"></a>
<a name="index-mno_002dfix_002d24k"></a>
<p>Work around the 24K E48 (lost data on stores during refill) errata.
The workarounds are implemented by the assembler rather than by GCC.
</p>
</dd>
<dt><code>-mfix-r4000</code></dt>
<dt><code>-mno-fix-r4000</code></dt>
<dd><a name="index-mfix_002dr4000"></a>
<a name="index-mno_002dfix_002dr4000"></a>
<p>Work around certain R4000 CPU errata:
</p><ul class="no-bullet">
<li>- A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
</li><li>- A double-word or a variable shift may give an incorrect result if executed
while an integer multiplication is in progress.
</li><li>- An integer division may give an incorrect result if started in a delay slot
of a taken branch or a jump.
</li></ul>
</dd>
<dt><code>-mfix-r4400</code></dt>
<dt><code>-mno-fix-r4400</code></dt>
<dd><a name="index-mfix_002dr4400"></a>
<a name="index-mno_002dfix_002dr4400"></a>
<p>Work around certain R4400 CPU errata:
</p><ul class="no-bullet">
<li>- A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
</li></ul>
</dd>
<dt><code>-mfix-r10000</code></dt>
<dt><code>-mno-fix-r10000</code></dt>
<dd><a name="index-mfix_002dr10000"></a>
<a name="index-mno_002dfix_002dr10000"></a>
<p>Work around certain R10000 errata:
</p><ul class="no-bullet">
<li>- <code>ll</code>/<code>sc</code> sequences may not behave atomically on revisions
prior to 3.0. They may deadlock on revisions 2.6 and earlier.
</li></ul>
<p>This option can only be used if the target architecture supports
branch-likely instructions. <samp>-mfix-r10000</samp> is the default when
<samp>-march=r10000</samp> is used; <samp>-mno-fix-r10000</samp> is the default
otherwise.
</p>
</dd>
<dt><code>-mfix-rm7000</code></dt>
<dt><code>-mno-fix-rm7000</code></dt>
<dd><a name="index-mfix_002drm7000"></a>
<p>Work around the RM7000 <code>dmult</code>/<code>dmultu</code> errata. The
workarounds are implemented by the assembler rather than by GCC.
</p>
</dd>
<dt><code>-mfix-vr4120</code></dt>
<dt><code>-mno-fix-vr4120</code></dt>
<dd><a name="index-mfix_002dvr4120"></a>
<p>Work around certain VR4120 errata:
</p><ul class="no-bullet">
<li>- <code>dmultu</code> does not always produce the correct result.
</li><li>- <code>div</code> and <code>ddiv</code> do not always produce the correct result if one
of the operands is negative.
</li></ul>
<p>The workarounds for the division errata rely on special functions in
<samp>libgcc.a</samp>. At present, these functions are only provided by
the <code>mips64vr*-elf</code> configurations.
</p>
<p>Other VR4120 errata require a NOP to be inserted between certain pairs of
instructions. These errata are handled by the assembler, not by GCC itself.
</p>
</dd>
<dt><code>-mfix-vr4130</code></dt>
<dd><a name="index-mfix_002dvr4130"></a>
<p>Work around the VR4130 <code>mflo</code>/<code>mfhi</code> errata. The
workarounds are implemented by the assembler rather than by GCC,
although GCC avoids using <code>mflo</code> and <code>mfhi</code> if the
VR4130 <code>macc</code>, <code>macchi</code>, <code>dmacc</code> and <code>dmacchi</code>
instructions are available instead.
</p>
</dd>
<dt><code>-mfix-sb1</code></dt>
<dt><code>-mno-fix-sb1</code></dt>
<dd><a name="index-mfix_002dsb1"></a>
<p>Work around certain SB-1 CPU core errata.
(This flag currently works around the SB-1 revision 2
“F1” and “F2” floating-point errata.)
</p>
</dd>
<dt><code>-mr10k-cache-barrier=<var>setting</var></code></dt>
<dd><a name="index-mr10k_002dcache_002dbarrier"></a>
<p>Specify whether GCC should insert cache barriers to avoid the
side effects of speculation on R10K processors.
</p>
<p>In common with many processors, the R10K tries to predict the outcome
of a conditional branch and speculatively executes instructions from
the “taken” branch. It later aborts these instructions if the
predicted outcome is wrong. However, on the R10K, even aborted
instructions can have side effects.
</p>
<p>This problem only affects kernel stores and, depending on the system,
kernel loads. As an example, a speculatively-executed store may load
the target memory into cache and mark the cache line as dirty, even if
the store itself is later aborted. If a DMA operation writes to the
same area of memory before the “dirty” line is flushed, the cached
data overwrites the DMA-ed data. See the R10K processor manual
for a full description, including other potential problems.
</p>
<p>One workaround is to insert cache barrier instructions before every memory
access that might be speculatively executed and that might have side
effects even if aborted. <samp>-mr10k-cache-barrier=<var>setting</var></samp>
controls GCC’s implementation of this workaround. It assumes that
aborted accesses to any byte in the following regions does not have
side effects:
</p>
<ol>
<li> the memory occupied by the current function’s stack frame;
</li><li> the memory occupied by an incoming stack argument;
</li><li> the memory occupied by an object with a link-time-constant address.
</li></ol>
<p>It is the kernel’s responsibility to ensure that speculative
accesses to these regions are indeed safe.
</p>
<p>If the input program contains a function declaration such as:
</p>
<div class="smallexample">
<pre class="smallexample">void foo (void);
</pre></div>
<p>then the implementation of <code>foo</code> must allow <code>j foo</code> and
<code>jal foo</code> to be executed speculatively. GCC honors this
restriction for functions it compiles itself. It expects non-GCC
functions (such as hand-written assembly code) to do the same.
</p>
<p>The option has three forms:
</p>
<dl compact="compact">
<dt><code>-mr10k-cache-barrier=load-store</code></dt>
<dd><p>Insert a cache barrier before a load or store that might be
speculatively executed and that might have side effects even
if aborted.
</p>
</dd>
<dt><code>-mr10k-cache-barrier=store</code></dt>
<dd><p>Insert a cache barrier before a store that might be speculatively
executed and that might have side effects even if aborted.
</p>
</dd>
<dt><code>-mr10k-cache-barrier=none</code></dt>
<dd><p>Disable the insertion of cache barriers. This is the default setting.
</p></dd>
</dl>
</dd>
<dt><code>-mflush-func=<var>func</var></code></dt>
<dt><code>-mno-flush-func</code></dt>
<dd><a name="index-mflush_002dfunc"></a>
<p>Specifies the function to call to flush the I and D caches, or to not
call any such function. If called, the function must take the same
arguments as the common <code>_flush_func</code>, that is, the address of the
memory range for which the cache is being flushed, the size of the
memory range, and the number 3 (to flush both caches). The default
depends on the target GCC was configured for, but commonly is either
<code>_flush_func</code> or <code>__cpu_flush</code>.
</p>
</dd>
<dt><code>mbranch-cost=<var>num</var></code></dt>
<dd><a name="index-mbranch_002dcost-2"></a>
<p>Set the cost of branches to roughly <var>num</var> “simple” instructions.
This cost is only a heuristic and is not guaranteed to produce
consistent results across releases. A zero cost redundantly selects
the default, which is based on the <samp>-mtune</samp> setting.
</p>
</dd>
<dt><code>-mbranch-likely</code></dt>
<dt><code>-mno-branch-likely</code></dt>
<dd><a name="index-mbranch_002dlikely"></a>
<a name="index-mno_002dbranch_002dlikely"></a>
<p>Enable or disable use of Branch Likely instructions, regardless of the
default for the selected architecture. By default, Branch Likely
instructions may be generated if they are supported by the selected
architecture. An exception is for the MIPS32 and MIPS64 architectures
and processors that implement those architectures; for those, Branch
Likely instructions are not be generated by default because the MIPS32
and MIPS64 architectures specifically deprecate their use.
</p>
</dd>
<dt><code>-mcompact-branches=never</code></dt>
<dt><code>-mcompact-branches=optimal</code></dt>
<dt><code>-mcompact-branches=always</code></dt>
<dd><a name="index-mcompact_002dbranches_003dnever"></a>
<a name="index-mcompact_002dbranches_003doptimal"></a>
<a name="index-mcompact_002dbranches_003dalways"></a>
<p>These options control which form of branches will be generated. The
default is <samp>-mcompact-branches=optimal</samp>.
</p>
<p>The <samp>-mcompact-branches=never</samp> option ensures that compact branch
instructions will never be generated.
</p>
<p>The <samp>-mcompact-branches=always</samp> option ensures that a compact
branch instruction will be generated if available. If a compact branch
instruction is not available, a delay slot form of the branch will be
used instead.
</p>
<p>This option is supported from MIPS Release 6 onwards.
</p>
<p>The <samp>-mcompact-branches=optimal</samp> option will cause a delay slot
branch to be used if one is available in the current ISA and the delay
slot is successfully filled. If the delay slot is not filled, a compact
branch will be chosen if one is available.
</p>
</dd>
<dt><code>-mfp-exceptions</code></dt>
<dt><code>-mno-fp-exceptions</code></dt>
<dd><a name="index-mfp_002dexceptions"></a>
<p>Specifies whether FP exceptions are enabled. This affects how
FP instructions are scheduled for some processors.
The default is that FP exceptions are
enabled.
</p>
<p>For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes. Otherwise, we can only use one
FP pipe.
</p>
</dd>
<dt><code>-mvr4130-align</code></dt>
<dt><code>-mno-vr4130-align</code></dt>
<dd><a name="index-mvr4130_002dalign"></a>
<p>The VR4130 pipeline is two-way superscalar, but can only issue two
instructions together if the first one is 8-byte aligned. When this
option is enabled, GCC aligns pairs of instructions that it
thinks should execute in parallel.
</p>
<p>This option only has an effect when optimizing for the VR4130.
It normally makes code faster, but at the expense of making it bigger.
It is enabled by default at optimization level <samp>-O3</samp>.
</p>
</dd>
<dt><code>-msynci</code></dt>
<dt><code>-mno-synci</code></dt>
<dd><a name="index-msynci"></a>
<p>Enable (disable) generation of <code>synci</code> instructions on
architectures that support it. The <code>synci</code> instructions (if
enabled) are generated when <code>__builtin___clear_cache</code> is
compiled.
</p>
<p>This option defaults to <samp>-mno-synci</samp>, but the default can be
overridden by configuring GCC with <samp>--with-synci</samp>.
</p>
<p>When compiling code for single processor systems, it is generally safe
to use <code>synci</code>. However, on many multi-core (SMP) systems, it
does not invalidate the instruction caches on all cores and may lead
to undefined behavior.
</p>
</dd>
<dt><code>-mrelax-pic-calls</code></dt>
<dt><code>-mno-relax-pic-calls</code></dt>
<dd><a name="index-mrelax_002dpic_002dcalls"></a>
<p>Try to turn PIC calls that are normally dispatched via register
<code>$25</code> into direct calls. This is only possible if the linker can
resolve the destination at link time and if the destination is within
range for a direct call.
</p>
<p><samp>-mrelax-pic-calls</samp> is the default if GCC was configured to use
an assembler and a linker that support the <code>.reloc</code> assembly
directive and <samp>-mexplicit-relocs</samp> is in effect. With
<samp>-mno-explicit-relocs</samp>, this optimization can be performed by the
assembler and the linker alone without help from the compiler.
</p>
</dd>
<dt><code>-mmcount-ra-address</code></dt>
<dt><code>-mno-mcount-ra-address</code></dt>
<dd><a name="index-mmcount_002dra_002daddress"></a>
<a name="index-mno_002dmcount_002dra_002daddress"></a>
<p>Emit (do not emit) code that allows <code>_mcount</code> to modify the
calling function’s return address. When enabled, this option extends
the usual <code>_mcount</code> interface with a new <var>ra-address</var>
parameter, which has type <code>intptr_t *</code> and is passed in register
<code>$12</code>. <code>_mcount</code> can then modify the return address by
doing both of the following:
</p><ul>
<li> Returning the new address in register <code>$31</code>.
</li><li> Storing the new address in <code>*<var>ra-address</var></code>,
if <var>ra-address</var> is nonnull.
</li></ul>
<p>The default is <samp>-mno-mcount-ra-address</samp>.
</p>
</dd>
<dt><code>-mframe-header-opt</code></dt>
<dt><code>-mno-frame-header-opt</code></dt>
<dd><a name="index-mframe_002dheader_002dopt"></a>
<p>Enable (disable) frame header optimization in the o32 ABI. When using the
o32 ABI, calling functions will allocate 16 bytes on the stack for the called
function to write out register arguments. When enabled, this optimization
will suppress the allocation of the frame header if it can be determined that
it is unused.
</p>
<p>This optimization is off by default at all optimization levels.
</p>
</dd>
<dt><code>-mlxc1-sxc1</code></dt>
<dt><code>-mno-lxc1-sxc1</code></dt>
<dd><a name="index-mlxc1_002dsxc1"></a>
<p>When applicable, enable (disable) the generation of <code>lwxc1</code>,
<code>swxc1</code>, <code>ldxc1</code>, <code>sdxc1</code> instructions. Enabled by default.
</p>
</dd>
<dt><code>-mmadd4</code></dt>
<dt><code>-mno-madd4</code></dt>
<dd><a name="index-mmadd4"></a>
<p>When applicable, enable (disable) the generation of 4-operand <code>madd.s</code>,
<code>madd.d</code> and related instructions. Enabled by default.
</p>
</dd>
</dl>
<hr>
<a name="MMIX-Options"></a>
<div class="header">
<p>
Next: <a href="#MN10300-Options" accesskey="n" rel="next">MN10300 Options</a>, Previous: <a href="#MIPS-Options" accesskey="p" rel="prev">MIPS Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MMIX-Options-1"></a>
<h4 class="subsection">3.18.27 MMIX Options</h4>
<a name="index-MMIX-Options"></a>
<p>These options are defined for the MMIX:
</p>
<dl compact="compact">
<dt><code>-mlibfuncs</code></dt>
<dt><code>-mno-libfuncs</code></dt>
<dd><a name="index-mlibfuncs"></a>
<a name="index-mno_002dlibfuncs"></a>
<p>Specify that intrinsic library functions are being compiled, passing all
values in registers, no matter the size.
</p>
</dd>
<dt><code>-mepsilon</code></dt>
<dt><code>-mno-epsilon</code></dt>
<dd><a name="index-mepsilon"></a>
<a name="index-mno_002depsilon"></a>
<p>Generate floating-point comparison instructions that compare with respect
to the <code>rE</code> epsilon register.
</p>
</dd>
<dt><code>-mabi=mmixware</code></dt>
<dt><code>-mabi=gnu</code></dt>
<dd><a name="index-mabi_003dmmixware"></a>
<a name="index-mabi_003dgnu"></a>
<p>Generate code that passes function parameters and return values that (in
the called function) are seen as registers <code>$0</code> and up, as opposed to
the GNU ABI which uses global registers <code>$231</code> and up.
</p>
</dd>
<dt><code>-mzero-extend</code></dt>
<dt><code>-mno-zero-extend</code></dt>
<dd><a name="index-mzero_002dextend"></a>
<a name="index-mno_002dzero_002dextend"></a>
<p>When reading data from memory in sizes shorter than 64 bits, use (do not
use) zero-extending load instructions by default, rather than
sign-extending ones.
</p>
</dd>
<dt><code>-mknuthdiv</code></dt>
<dt><code>-mno-knuthdiv</code></dt>
<dd><a name="index-mknuthdiv"></a>
<a name="index-mno_002dknuthdiv"></a>
<p>Make the result of a division yielding a remainder have the same sign as
the divisor. With the default, <samp>-mno-knuthdiv</samp>, the sign of the
remainder follows the sign of the dividend. Both methods are
arithmetically valid, the latter being almost exclusively used.
</p>
</dd>
<dt><code>-mtoplevel-symbols</code></dt>
<dt><code>-mno-toplevel-symbols</code></dt>
<dd><a name="index-mtoplevel_002dsymbols"></a>
<a name="index-mno_002dtoplevel_002dsymbols"></a>
<p>Prepend (do not prepend) a ‘<samp>:</samp>’ to all global symbols, so the assembly
code can be used with the <code>PREFIX</code> assembly directive.
</p>
</dd>
<dt><code>-melf</code></dt>
<dd><a name="index-melf-1"></a>
<p>Generate an executable in the ELF format, rather than the default
‘<samp>mmo</samp>’ format used by the <code>mmix</code> simulator.
</p>
</dd>
<dt><code>-mbranch-predict</code></dt>
<dt><code>-mno-branch-predict</code></dt>
<dd><a name="index-mbranch_002dpredict"></a>
<a name="index-mno_002dbranch_002dpredict"></a>
<p>Use (do not use) the probable-branch instructions, when static branch
prediction indicates a probable branch.
</p>
</dd>
<dt><code>-mbase-addresses</code></dt>
<dt><code>-mno-base-addresses</code></dt>
<dd><a name="index-mbase_002daddresses"></a>
<a name="index-mno_002dbase_002daddresses"></a>
<p>Generate (do not generate) code that uses <em>base addresses</em>. Using a
base address automatically generates a request (handled by the assembler
and the linker) for a constant to be set up in a global register. The
register is used for one or more base address requests within the range 0
to 255 from the value held in the register. The generally leads to short
and fast code, but the number of different data items that can be
addressed is limited. This means that a program that uses lots of static
data may require <samp>-mno-base-addresses</samp>.
</p>
</dd>
<dt><code>-msingle-exit</code></dt>
<dt><code>-mno-single-exit</code></dt>
<dd><a name="index-msingle_002dexit"></a>
<a name="index-mno_002dsingle_002dexit"></a>
<p>Force (do not force) generated code to have a single exit point in each
function.
</p></dd>
</dl>
<hr>
<a name="MN10300-Options"></a>
<div class="header">
<p>
Next: <a href="#Moxie-Options" accesskey="n" rel="next">Moxie Options</a>, Previous: <a href="#MMIX-Options" accesskey="p" rel="prev">MMIX Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MN10300-Options-1"></a>
<h4 class="subsection">3.18.28 MN10300 Options</h4>
<a name="index-MN10300-options"></a>
<p>These <samp>-m</samp> options are defined for Matsushita MN10300 architectures:
</p>
<dl compact="compact">
<dt><code>-mmult-bug</code></dt>
<dd><a name="index-mmult_002dbug"></a>
<p>Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.
</p>
</dd>
<dt><code>-mno-mult-bug</code></dt>
<dd><a name="index-mno_002dmult_002dbug"></a>
<p>Do not generate code to avoid bugs in the multiply instructions for the
MN10300 processors.
</p>
</dd>
<dt><code>-mam33</code></dt>
<dd><a name="index-mam33"></a>
<p>Generate code using features specific to the AM33 processor.
</p>
</dd>
<dt><code>-mno-am33</code></dt>
<dd><a name="index-mno_002dam33"></a>
<p>Do not generate code using features specific to the AM33 processor. This
is the default.
</p>
</dd>
<dt><code>-mam33-2</code></dt>
<dd><a name="index-mam33_002d2"></a>
<p>Generate code using features specific to the AM33/2.0 processor.
</p>
</dd>
<dt><code>-mam34</code></dt>
<dd><a name="index-mam34"></a>
<p>Generate code using features specific to the AM34 processor.
</p>
</dd>
<dt><code>-mtune=<var>cpu-type</var></code></dt>
<dd><a name="index-mtune-9"></a>
<p>Use the timing characteristics of the indicated CPU type when
scheduling instructions. This does not change the targeted processor
type. The CPU type must be one of ‘<samp>mn10300</samp>’, ‘<samp>am33</samp>’,
‘<samp>am33-2</samp>’ or ‘<samp>am34</samp>’.
</p>
</dd>
<dt><code>-mreturn-pointer-on-d0</code></dt>
<dd><a name="index-mreturn_002dpointer_002don_002dd0"></a>
<p>When generating a function that returns a pointer, return the pointer
in both <code>a0</code> and <code>d0</code>. Otherwise, the pointer is returned
only in <code>a0</code>, and attempts to call such functions without a prototype
result in errors. Note that this option is on by default; use
<samp>-mno-return-pointer-on-d0</samp> to disable it.
</p>
</dd>
<dt><code>-mno-crt0</code></dt>
<dd><a name="index-mno_002dcrt0"></a>
<p>Do not link in the C run-time initialization object file.
</p>
</dd>
<dt><code>-mrelax</code></dt>
<dd><a name="index-mrelax-2"></a>
<p>Indicate to the linker that it should perform a relaxation optimization pass
to shorten branches, calls and absolute memory addresses. This option only
has an effect when used on the command line for the final link step.
</p>
<p>This option makes symbolic debugging impossible.
</p>
</dd>
<dt><code>-mliw</code></dt>
<dd><a name="index-mliw"></a>
<p>Allow the compiler to generate <em>Long Instruction Word</em>
instructions if the target is the ‘<samp>AM33</samp>’ or later. This is the
default. This option defines the preprocessor macro <code>__LIW__</code>.
</p>
</dd>
<dt><code>-mnoliw</code></dt>
<dd><a name="index-mnoliw"></a>
<p>Do not allow the compiler to generate <em>Long Instruction Word</em>
instructions. This option defines the preprocessor macro
<code>__NO_LIW__</code>.
</p>
</dd>
<dt><code>-msetlb</code></dt>
<dd><a name="index-msetlb"></a>
<p>Allow the compiler to generate the <em>SETLB</em> and <em>Lcc</em>
instructions if the target is the ‘<samp>AM33</samp>’ or later. This is the
default. This option defines the preprocessor macro <code>__SETLB__</code>.
</p>
</dd>
<dt><code>-mnosetlb</code></dt>
<dd><a name="index-mnosetlb"></a>
<p>Do not allow the compiler to generate <em>SETLB</em> or <em>Lcc</em>
instructions. This option defines the preprocessor macro
<code>__NO_SETLB__</code>.
</p>
</dd>
</dl>
<hr>
<a name="Moxie-Options"></a>
<div class="header">
<p>
Next: <a href="#MSP430-Options" accesskey="n" rel="next">MSP430 Options</a>, Previous: <a href="#MN10300-Options" accesskey="p" rel="prev">MN10300 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Moxie-Options-1"></a>
<h4 class="subsection">3.18.29 Moxie Options</h4>
<a name="index-Moxie-Options"></a>
<dl compact="compact">
<dt><code>-meb</code></dt>
<dd><a name="index-meb-1"></a>
<p>Generate big-endian code. This is the default for ‘<samp>moxie-*-*</samp>’
configurations.
</p>
</dd>
<dt><code>-mel</code></dt>
<dd><a name="index-mel-1"></a>
<p>Generate little-endian code.
</p>
</dd>
<dt><code>-mmul.x</code></dt>
<dd><a name="index-mmul_002ex"></a>
<p>Generate mul.x and umul.x instructions. This is the default for
‘<samp>moxiebox-*-*</samp>’ configurations.
</p>
</dd>
<dt><code>-mno-crt0</code></dt>
<dd><a name="index-mno_002dcrt0-1"></a>
<p>Do not link in the C run-time initialization object file.
</p>
</dd>
</dl>
<hr>
<a name="MSP430-Options"></a>
<div class="header">
<p>
Next: <a href="#NDS32-Options" accesskey="n" rel="next">NDS32 Options</a>, Previous: <a href="#Moxie-Options" accesskey="p" rel="prev">Moxie Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MSP430-Options-1"></a>
<h4 class="subsection">3.18.30 MSP430 Options</h4>
<a name="index-MSP430-Options"></a>
<p>These options are defined for the MSP430:
</p>
<dl compact="compact">
<dt><code>-masm-hex</code></dt>
<dd><a name="index-masm_002dhex"></a>
<p>Force assembly output to always use hex constants. Normally such
constants are signed decimals, but this option is available for
testsuite and/or aesthetic purposes.
</p>
</dd>
<dt><code>-mmcu=</code></dt>
<dd><a name="index-mmcu_003d"></a>
<p>Select the MCU to target. This is used to create a C preprocessor
symbol based upon the MCU name, converted to upper case and pre- and
post-fixed with ‘<samp>__</samp>’. This in turn is used by the
<samp>msp430.h</samp> header file to select an MCU-specific supplementary
header file.
</p>
<p>The option also sets the ISA to use. If the MCU name is one that is
known to only support the 430 ISA then that is selected, otherwise the
430X ISA is selected. A generic MCU name of ‘<samp>msp430</samp>’ can also be
used to select the 430 ISA. Similarly the generic ‘<samp>msp430x</samp>’ MCU
name selects the 430X ISA.
</p>
<p>In addition an MCU-specific linker script is added to the linker
command line. The script’s name is the name of the MCU with
<samp>.ld</samp> appended. Thus specifying <samp>-mmcu=xxx</samp> on the <code>gcc</code>
command line defines the C preprocessor symbol <code>__XXX__</code> and
cause the linker to search for a script called <samp>xxx.ld</samp>.
</p>
<p>This option is also passed on to the assembler.
</p>
</dd>
<dt><code>-mwarn-mcu</code></dt>
<dt><code>-mno-warn-mcu</code></dt>
<dd><a name="index-mwarn_002dmcu"></a>
<a name="index-mno_002dwarn_002dmcu"></a>
<p>This option enables or disables warnings about conflicts between the
MCU name specified by the <samp>-mmcu</samp> option and the ISA set by the
<samp>-mcpu</samp> option and/or the hardware multiply support set by the
<samp>-mhwmult</samp> option. It also toggles warnings about unrecognized
MCU names. This option is on by default.
</p>
</dd>
<dt><code>-mcpu=</code></dt>
<dd><a name="index-mcpu_003d-3"></a>
<p>Specifies the ISA to use. Accepted values are ‘<samp>msp430</samp>’,
‘<samp>msp430x</samp>’ and ‘<samp>msp430xv2</samp>’. This option is deprecated. The
<samp>-mmcu=</samp> option should be used to select the ISA.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim-6"></a>
<p>Link to the simulator runtime libraries and linker script. Overrides
any scripts that would be selected by the <samp>-mmcu=</samp> option.
</p>
</dd>
<dt><code>-mlarge</code></dt>
<dd><a name="index-mlarge"></a>
<p>Use large-model addressing (20-bit pointers, 32-bit <code>size_t</code>).
</p>
</dd>
<dt><code>-msmall</code></dt>
<dd><a name="index-msmall"></a>
<p>Use small-model addressing (16-bit pointers, 16-bit <code>size_t</code>).
</p>
</dd>
<dt><code>-mrelax</code></dt>
<dd><a name="index-mrelax-3"></a>
<p>This option is passed to the assembler and linker, and allows the
linker to perform certain optimizations that cannot be done until
the final link.
</p>
</dd>
<dt><code>mhwmult=</code></dt>
<dd><a name="index-mhwmult_003d"></a>
<p>Describes the type of hardware multiply supported by the target.
Accepted values are ‘<samp>none</samp>’ for no hardware multiply, ‘<samp>16bit</samp>’
for the original 16-bit-only multiply supported by early MCUs.
‘<samp>32bit</samp>’ for the 16/32-bit multiply supported by later MCUs and
‘<samp>f5series</samp>’ for the 16/32-bit multiply supported by F5-series MCUs.
A value of ‘<samp>auto</samp>’ can also be given. This tells GCC to deduce
the hardware multiply support based upon the MCU name provided by the
<samp>-mmcu</samp> option. If no <samp>-mmcu</samp> option is specified or if
the MCU name is not recognized then no hardware multiply support is
assumed. <code>auto</code> is the default setting.
</p>
<p>Hardware multiplies are normally performed by calling a library
routine. This saves space in the generated code. When compiling at
<samp>-O3</samp> or higher however the hardware multiplier is invoked
inline. This makes for bigger, but faster code.
</p>
<p>The hardware multiply routines disable interrupts whilst running and
restore the previous interrupt state when they finish. This makes
them safe to use inside interrupt handlers as well as in normal code.
</p>
</dd>
<dt><code>-minrt</code></dt>
<dd><a name="index-minrt"></a>
<p>Enable the use of a minimum runtime environment - no static
initializers or constructors. This is intended for memory-constrained
devices. The compiler includes special symbols in some objects
that tell the linker and runtime which code fragments are required.
</p>
</dd>
<dt><code>-mcode-region=</code></dt>
<dt><code>-mdata-region=</code></dt>
<dd><a name="index-mcode_002dregion"></a>
<a name="index-mdata_002dregion"></a>
<p>These options tell the compiler where to place functions and data that
do not have one of the <code>lower</code>, <code>upper</code>, <code>either</code> or
<code>section</code> attributes. Possible values are <code>lower</code>,
<code>upper</code>, <code>either</code> or <code>any</code>. The first three behave
like the corresponding attribute. The fourth possible value -
<code>any</code> - is the default. It leaves placement entirely up to the
linker script and how it assigns the standard sections
(<code>.text</code>, <code>.data</code>, etc) to the memory regions.
</p>
</dd>
<dt><code>-msilicon-errata=</code></dt>
<dd><a name="index-msilicon_002derrata"></a>
<p>This option passes on a request to assembler to enable the fixes for
the named silicon errata.
</p>
</dd>
<dt><code>-msilicon-errata-warn=</code></dt>
<dd><a name="index-msilicon_002derrata_002dwarn"></a>
<p>This option passes on a request to the assembler to enable warning
messages when a silicon errata might need to be applied.
</p>
</dd>
</dl>
<hr>
<a name="NDS32-Options"></a>
<div class="header">
<p>
Next: <a href="#Nios-II-Options" accesskey="n" rel="next">Nios II Options</a>, Previous: <a href="#MSP430-Options" accesskey="p" rel="prev">MSP430 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="NDS32-Options-1"></a>
<h4 class="subsection">3.18.31 NDS32 Options</h4>
<a name="index-NDS32-Options"></a>
<p>These options are defined for NDS32 implementations:
</p>
<dl compact="compact">
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig_002dendian-7"></a>
<p>Generate code in big-endian mode.
</p>
</dd>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle_002dendian-7"></a>
<p>Generate code in little-endian mode.
</p>
</dd>
<dt><code>-mreduced-regs</code></dt>
<dd><a name="index-mreduced_002dregs"></a>
<p>Use reduced-set registers for register allocation.
</p>
</dd>
<dt><code>-mfull-regs</code></dt>
<dd><a name="index-mfull_002dregs"></a>
<p>Use full-set registers for register allocation.
</p>
</dd>
<dt><code>-mcmov</code></dt>
<dd><a name="index-mcmov"></a>
<p>Generate conditional move instructions.
</p>
</dd>
<dt><code>-mno-cmov</code></dt>
<dd><a name="index-mno_002dcmov"></a>
<p>Do not generate conditional move instructions.
</p>
</dd>
<dt><code>-mext-perf</code></dt>
<dd><a name="index-mperf_002dext"></a>
<p>Generate performance extension instructions.
</p>
</dd>
<dt><code>-mno-ext-perf</code></dt>
<dd><a name="index-mno_002dperf_002dext"></a>
<p>Do not generate performance extension instructions.
</p>
</dd>
<dt><code>-mext-perf2</code></dt>
<dd><a name="index-mperf_002dext-1"></a>
<p>Generate performance extension 2 instructions.
</p>
</dd>
<dt><code>-mno-ext-perf2</code></dt>
<dd><a name="index-mno_002dperf_002dext-1"></a>
<p>Do not generate performance extension 2 instructions.
</p>
</dd>
<dt><code>-mext-string</code></dt>
<dd><a name="index-mperf_002dext-2"></a>
<p>Generate string extension instructions.
</p>
</dd>
<dt><code>-mno-ext-string</code></dt>
<dd><a name="index-mno_002dperf_002dext-2"></a>
<p>Do not generate string extension instructions.
</p>
</dd>
<dt><code>-mv3push</code></dt>
<dd><a name="index-mv3push"></a>
<p>Generate v3 push25/pop25 instructions.
</p>
</dd>
<dt><code>-mno-v3push</code></dt>
<dd><a name="index-mno_002dv3push"></a>
<p>Do not generate v3 push25/pop25 instructions.
</p>
</dd>
<dt><code>-m16-bit</code></dt>
<dd><a name="index-m16_002dbit-1"></a>
<p>Generate 16-bit instructions.
</p>
</dd>
<dt><code>-mno-16-bit</code></dt>
<dd><a name="index-mno_002d16_002dbit"></a>
<p>Do not generate 16-bit instructions.
</p>
</dd>
<dt><code>-misr-vector-size=<var>num</var></code></dt>
<dd><a name="index-misr_002dvector_002dsize"></a>
<p>Specify the size of each interrupt vector, which must be 4 or 16.
</p>
</dd>
<dt><code>-mcache-block-size=<var>num</var></code></dt>
<dd><a name="index-mcache_002dblock_002dsize"></a>
<p>Specify the size of each cache block,
which must be a power of 2 between 4 and 512.
</p>
</dd>
<dt><code>-march=<var>arch</var></code></dt>
<dd><a name="index-march-8"></a>
<p>Specify the name of the target architecture.
</p>
</dd>
<dt><code>-mcmodel=<var>code-model</var></code></dt>
<dd><a name="index-mcmodel"></a>
<p>Set the code model to one of
</p><dl compact="compact">
<dt>‘<samp>small</samp>’</dt>
<dd><p>All the data and read-only data segments must be within 512KB addressing space.
The text segment must be within 16MB addressing space.
</p></dd>
<dt>‘<samp>medium</samp>’</dt>
<dd><p>The data segment must be within 512KB while the read-only data segment can be
within 4GB addressing space. The text segment should be still within 16MB
addressing space.
</p></dd>
<dt>‘<samp>large</samp>’</dt>
<dd><p>All the text and data segments can be within 4GB addressing space.
</p></dd>
</dl>
</dd>
<dt><code>-mctor-dtor</code></dt>
<dd><a name="index-mctor_002ddtor"></a>
<p>Enable constructor/destructor feature.
</p>
</dd>
<dt><code>-mrelax</code></dt>
<dd><a name="index-mrelax-4"></a>
<p>Guide linker to relax instructions.
</p>
</dd>
</dl>
<hr>
<a name="Nios-II-Options"></a>
<div class="header">
<p>
Next: <a href="#Nvidia-PTX-Options" accesskey="n" rel="next">Nvidia PTX Options</a>, Previous: <a href="#NDS32-Options" accesskey="p" rel="prev">NDS32 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Nios-II-Options-1"></a>
<h4 class="subsection">3.18.32 Nios II Options</h4>
<a name="index-Nios-II-options"></a>
<a name="index-Altera-Nios-II-options"></a>
<p>These are the options defined for the Altera Nios II processor.
</p>
<dl compact="compact">
<dt><code>-G <var>num</var></code></dt>
<dd><a name="index-G-3"></a>
<a name="index-smaller-data-references-1"></a>
<p>Put global and static objects less than or equal to <var>num</var> bytes
into the small data or BSS sections instead of the normal data or BSS
sections. The default value of <var>num</var> is 8.
</p>
</dd>
<dt><code>-mgpopt=<var>option</var></code></dt>
<dt><code>-mgpopt</code></dt>
<dt><code>-mno-gpopt</code></dt>
<dd><a name="index-mgpopt-1"></a>
<a name="index-mno_002dgpopt-1"></a>
<p>Generate (do not generate) GP-relative accesses. The following
<var>option</var> names are recognized:
</p>
<dl compact="compact">
<dt>‘<samp>none</samp>’</dt>
<dd><p>Do not generate GP-relative accesses.
</p>
</dd>
<dt>‘<samp>local</samp>’</dt>
<dd><p>Generate GP-relative accesses for small data objects that are not
external, weak, or uninitialized common symbols.
Also use GP-relative addressing for objects that
have been explicitly placed in a small data section via a <code>section</code>
attribute.
</p>
</dd>
<dt>‘<samp>global</samp>’</dt>
<dd><p>As for ‘<samp>local</samp>’, but also generate GP-relative accesses for
small data objects that are external, weak, or common. If you use this option,
you must ensure that all parts of your program (including libraries) are
compiled with the same <samp>-G</samp> setting.
</p>
</dd>
<dt>‘<samp>data</samp>’</dt>
<dd><p>Generate GP-relative accesses for all data objects in the program. If you
use this option, the entire data and BSS segments
of your program must fit in 64K of memory and you must use an appropriate
linker script to allocate them within the addressable range of the
global pointer.
</p>
</dd>
<dt>‘<samp>all</samp>’</dt>
<dd><p>Generate GP-relative addresses for function pointers as well as data
pointers. If you use this option, the entire text, data, and BSS segments
of your program must fit in 64K of memory and you must use an appropriate
linker script to allocate them within the addressable range of the
global pointer.
</p>
</dd>
</dl>
<p><samp>-mgpopt</samp> is equivalent to <samp>-mgpopt=local</samp>, and
<samp>-mno-gpopt</samp> is equivalent to <samp>-mgpopt=none</samp>.
</p>
<p>The default is <samp>-mgpopt</samp> except when <samp>-fpic</samp> or
<samp>-fPIC</samp> is specified to generate position-independent code.
Note that the Nios II ABI does not permit GP-relative accesses from
shared libraries.
</p>
<p>You may need to specify <samp>-mno-gpopt</samp> explicitly when building
programs that include large amounts of small data, including large
GOT data sections. In this case, the 16-bit offset for GP-relative
addressing may not be large enough to allow access to the entire
small data section.
</p>
</dd>
<dt><code>-mgprel-sec=<var>regexp</var></code></dt>
<dd><a name="index-mgprel_002dsec"></a>
<p>This option specifies additional section names that can be accessed via
GP-relative addressing. It is most useful in conjunction with
<code>section</code> attributes on variable declarations
(see <a href="#Common-Variable-Attributes">Common Variable Attributes</a>) and a custom linker script.
The <var>regexp</var> is a POSIX Extended Regular Expression.
</p>
<p>This option does not affect the behavior of the <samp>-G</samp> option, and
and the specified sections are in addition to the standard <code>.sdata</code>
and <code>.sbss</code> small-data sections that are recognized by <samp>-mgpopt</samp>.
</p>
</dd>
<dt><code>-mr0rel-sec=<var>regexp</var></code></dt>
<dd><a name="index-mr0rel_002dsec"></a>
<p>This option specifies names of sections that can be accessed via a
16-bit offset from <code>r0</code>; that is, in the low 32K or high 32K
of the 32-bit address space. It is most useful in conjunction with
<code>section</code> attributes on variable declarations
(see <a href="#Common-Variable-Attributes">Common Variable Attributes</a>) and a custom linker script.
The <var>regexp</var> is a POSIX Extended Regular Expression.
</p>
<p>In contrast to the use of GP-relative addressing for small data,
zero-based addressing is never generated by default and there are no
conventional section names used in standard linker scripts for sections
in the low or high areas of memory.
</p>
</dd>
<dt><code>-mel</code></dt>
<dt><code>-meb</code></dt>
<dd><a name="index-mel-2"></a>
<a name="index-meb-2"></a>
<p>Generate little-endian (default) or big-endian (experimental) code,
respectively.
</p>
</dd>
<dt><code>-march=<var>arch</var></code></dt>
<dd><a name="index-march-9"></a>
<p>This specifies the name of the target Nios II architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. Permissible names are: ‘<samp>r1</samp>’, ‘<samp>r2</samp>’.
</p>
<p>The preprocessor macro <code>__nios2_arch__</code> is available to programs,
with value 1 or 2, indicating the targeted ISA level.
</p>
</dd>
<dt><code>-mbypass-cache</code></dt>
<dt><code>-mno-bypass-cache</code></dt>
<dd><a name="index-mno_002dbypass_002dcache"></a>
<a name="index-mbypass_002dcache"></a>
<p>Force all load and store instructions to always bypass cache by
using I/O variants of the instructions. The default is not to
bypass the cache.
</p>
</dd>
<dt><code>-mno-cache-volatile</code></dt>
<dt><code>-mcache-volatile</code></dt>
<dd><a name="index-mcache_002dvolatile"></a>
<a name="index-mno_002dcache_002dvolatile"></a>
<p>Volatile memory access bypass the cache using the I/O variants of
the load and store instructions. The default is not to bypass the cache.
</p>
</dd>
<dt><code>-mno-fast-sw-div</code></dt>
<dt><code>-mfast-sw-div</code></dt>
<dd><a name="index-mno_002dfast_002dsw_002ddiv"></a>
<a name="index-mfast_002dsw_002ddiv"></a>
<p>Do not use table-based fast divide for small numbers. The default
is to use the fast divide at <samp>-O3</samp> and above.
</p>
</dd>
<dt><code>-mno-hw-mul</code></dt>
<dt><code>-mhw-mul</code></dt>
<dt><code>-mno-hw-mulx</code></dt>
<dt><code>-mhw-mulx</code></dt>
<dt><code>-mno-hw-div</code></dt>
<dt><code>-mhw-div</code></dt>
<dd><a name="index-mno_002dhw_002dmul"></a>
<a name="index-mhw_002dmul"></a>
<a name="index-mno_002dhw_002dmulx"></a>
<a name="index-mhw_002dmulx"></a>
<a name="index-mno_002dhw_002ddiv"></a>
<a name="index-mhw_002ddiv"></a>
<p>Enable or disable emitting <code>mul</code>, <code>mulx</code> and <code>div</code> family of
instructions by the compiler. The default is to emit <code>mul</code>
and not emit <code>div</code> and <code>mulx</code>.
</p>
</dd>
<dt><code>-mbmx</code></dt>
<dt><code>-mno-bmx</code></dt>
<dt><code>-mcdx</code></dt>
<dt><code>-mno-cdx</code></dt>
<dd><p>Enable or disable generation of Nios II R2 BMX (bit manipulation) and
CDX (code density) instructions. Enabling these instructions also
requires <samp>-march=r2</samp>. Since these instructions are optional
extensions to the R2 architecture, the default is not to emit them.
</p>
</dd>
<dt><code>-mcustom-<var>insn</var>=<var>N</var></code></dt>
<dt><code>-mno-custom-<var>insn</var></code></dt>
<dd><a name="index-mcustom_002dinsn"></a>
<a name="index-mno_002dcustom_002dinsn"></a>
<p>Each <samp>-mcustom-<var>insn</var>=<var>N</var></samp> option enables use of a
custom instruction with encoding <var>N</var> when generating code that uses
<var>insn</var>. For example, <samp>-mcustom-fadds=253</samp> generates custom
instruction 253 for single-precision floating-point add operations instead
of the default behavior of using a library call.
</p>
<p>The following values of <var>insn</var> are supported. Except as otherwise
noted, floating-point operations are expected to be implemented with
normal IEEE 754 semantics and correspond directly to the C operators or the
equivalent GCC built-in functions (see <a href="#Other-Builtins">Other Builtins</a>).
</p>
<p>Single-precision floating point:
</p><dl compact="compact">
<dt>‘<samp>fadds</samp>’, ‘<samp>fsubs</samp>’, ‘<samp>fdivs</samp>’, ‘<samp>fmuls</samp>’</dt>
<dd><p>Binary arithmetic operations.
</p>
</dd>
<dt>‘<samp>fnegs</samp>’</dt>
<dd><p>Unary negation.
</p>
</dd>
<dt>‘<samp>fabss</samp>’</dt>
<dd><p>Unary absolute value.
</p>
</dd>
<dt>‘<samp>fcmpeqs</samp>’, ‘<samp>fcmpges</samp>’, ‘<samp>fcmpgts</samp>’, ‘<samp>fcmples</samp>’, ‘<samp>fcmplts</samp>’, ‘<samp>fcmpnes</samp>’</dt>
<dd><p>Comparison operations.
</p>
</dd>
<dt>‘<samp>fmins</samp>’, ‘<samp>fmaxs</samp>’</dt>
<dd><p>Floating-point minimum and maximum. These instructions are only
generated if <samp>-ffinite-math-only</samp> is specified.
</p>
</dd>
<dt>‘<samp>fsqrts</samp>’</dt>
<dd><p>Unary square root operation.
</p>
</dd>
<dt>‘<samp>fcoss</samp>’, ‘<samp>fsins</samp>’, ‘<samp>ftans</samp>’, ‘<samp>fatans</samp>’, ‘<samp>fexps</samp>’, ‘<samp>flogs</samp>’</dt>
<dd><p>Floating-point trigonometric and exponential functions. These instructions
are only generated if <samp>-funsafe-math-optimizations</samp> is also specified.
</p>
</dd>
</dl>
<p>Double-precision floating point:
</p><dl compact="compact">
<dt>‘<samp>faddd</samp>’, ‘<samp>fsubd</samp>’, ‘<samp>fdivd</samp>’, ‘<samp>fmuld</samp>’</dt>
<dd><p>Binary arithmetic operations.
</p>
</dd>
<dt>‘<samp>fnegd</samp>’</dt>
<dd><p>Unary negation.
</p>
</dd>
<dt>‘<samp>fabsd</samp>’</dt>
<dd><p>Unary absolute value.
</p>
</dd>
<dt>‘<samp>fcmpeqd</samp>’, ‘<samp>fcmpged</samp>’, ‘<samp>fcmpgtd</samp>’, ‘<samp>fcmpled</samp>’, ‘<samp>fcmpltd</samp>’, ‘<samp>fcmpned</samp>’</dt>
<dd><p>Comparison operations.
</p>
</dd>
<dt>‘<samp>fmind</samp>’, ‘<samp>fmaxd</samp>’</dt>
<dd><p>Double-precision minimum and maximum. These instructions are only
generated if <samp>-ffinite-math-only</samp> is specified.
</p>
</dd>
<dt>‘<samp>fsqrtd</samp>’</dt>
<dd><p>Unary square root operation.
</p>
</dd>
<dt>‘<samp>fcosd</samp>’, ‘<samp>fsind</samp>’, ‘<samp>ftand</samp>’, ‘<samp>fatand</samp>’, ‘<samp>fexpd</samp>’, ‘<samp>flogd</samp>’</dt>
<dd><p>Double-precision trigonometric and exponential functions. These instructions
are only generated if <samp>-funsafe-math-optimizations</samp> is also specified.
</p>
</dd>
</dl>
<p>Conversions:
</p><dl compact="compact">
<dt>‘<samp>fextsd</samp>’</dt>
<dd><p>Conversion from single precision to double precision.
</p>
</dd>
<dt>‘<samp>ftruncds</samp>’</dt>
<dd><p>Conversion from double precision to single precision.
</p>
</dd>
<dt>‘<samp>fixsi</samp>’, ‘<samp>fixsu</samp>’, ‘<samp>fixdi</samp>’, ‘<samp>fixdu</samp>’</dt>
<dd><p>Conversion from floating point to signed or unsigned integer types, with
truncation towards zero.
</p>
</dd>
<dt>‘<samp>round</samp>’</dt>
<dd><p>Conversion from single-precision floating point to signed integer,
rounding to the nearest integer and ties away from zero.
This corresponds to the <code>__builtin_lroundf</code> function when
<samp>-fno-math-errno</samp> is used.
</p>
</dd>
<dt>‘<samp>floatis</samp>’, ‘<samp>floatus</samp>’, ‘<samp>floatid</samp>’, ‘<samp>floatud</samp>’</dt>
<dd><p>Conversion from signed or unsigned integer types to floating-point types.
</p>
</dd>
</dl>
<p>In addition, all of the following transfer instructions for internal
registers X and Y must be provided to use any of the double-precision
floating-point instructions. Custom instructions taking two
double-precision source operands expect the first operand in the
64-bit register X. The other operand (or only operand of a unary
operation) is given to the custom arithmetic instruction with the
least significant half in source register <var>src1</var> and the most
significant half in <var>src2</var>. A custom instruction that returns a
double-precision result returns the most significant 32 bits in the
destination register and the other half in 32-bit register Y.
GCC automatically generates the necessary code sequences to write
register X and/or read register Y when double-precision floating-point
instructions are used.
</p>
<dl compact="compact">
<dt>‘<samp>fwrx</samp>’</dt>
<dd><p>Write <var>src1</var> into the least significant half of X and <var>src2</var> into
the most significant half of X.
</p>
</dd>
<dt>‘<samp>fwry</samp>’</dt>
<dd><p>Write <var>src1</var> into Y.
</p>
</dd>
<dt>‘<samp>frdxhi</samp>’, ‘<samp>frdxlo</samp>’</dt>
<dd><p>Read the most or least (respectively) significant half of X and store it in
<var>dest</var>.
</p>
</dd>
<dt>‘<samp>frdy</samp>’</dt>
<dd><p>Read the value of Y and store it into <var>dest</var>.
</p></dd>
</dl>
<p>Note that you can gain more local control over generation of Nios II custom
instructions by using the <code>target("custom-<var>insn</var>=<var>N</var>")</code>
and <code>target("no-custom-<var>insn</var>")</code> function attributes
(see <a href="#Function-Attributes">Function Attributes</a>)
or pragmas (see <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>).
</p>
</dd>
<dt><code>-mcustom-fpu-cfg=<var>name</var></code></dt>
<dd><a name="index-mcustom_002dfpu_002dcfg"></a>
<p>This option enables a predefined, named set of custom instruction encodings
(see <samp>-mcustom-<var>insn</var></samp> above).
Currently, the following sets are defined:
</p>
<p><samp>-mcustom-fpu-cfg=60-1</samp> is equivalent to:
</p><div class="smallexample">
<pre class="smallexample">-mcustom-fmuls=252
-mcustom-fadds=253
-mcustom-fsubs=254
-fsingle-precision-constant
</pre></div>
<p><samp>-mcustom-fpu-cfg=60-2</samp> is equivalent to:
</p><div class="smallexample">
<pre class="smallexample">-mcustom-fmuls=252
-mcustom-fadds=253
-mcustom-fsubs=254
-mcustom-fdivs=255
-fsingle-precision-constant
</pre></div>
<p><samp>-mcustom-fpu-cfg=72-3</samp> is equivalent to:
</p><div class="smallexample">
<pre class="smallexample">-mcustom-floatus=243
-mcustom-fixsi=244
-mcustom-floatis=245
-mcustom-fcmpgts=246
-mcustom-fcmples=249
-mcustom-fcmpeqs=250
-mcustom-fcmpnes=251
-mcustom-fmuls=252
-mcustom-fadds=253
-mcustom-fsubs=254
-mcustom-fdivs=255
-fsingle-precision-constant
</pre></div>
<p>Custom instruction assignments given by individual
<samp>-mcustom-<var>insn</var>=</samp> options override those given by
<samp>-mcustom-fpu-cfg=</samp>, regardless of the
order of the options on the command line.
</p>
<p>Note that you can gain more local control over selection of a FPU
configuration by using the <code>target("custom-fpu-cfg=<var>name</var>")</code>
function attribute (see <a href="#Function-Attributes">Function Attributes</a>)
or pragma (see <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>).
</p>
</dd>
</dl>
<p>These additional ‘<samp>-m</samp>’ options are available for the Altera Nios II
ELF (bare-metal) target:
</p>
<dl compact="compact">
<dt><code>-mhal</code></dt>
<dd><a name="index-mhal"></a>
<p>Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
startup and termination code, and is typically used in conjunction with
<samp>-msys-crt0=</samp> to specify the location of the alternate startup code
provided by the HAL BSP.
</p>
</dd>
<dt><code>-msmallc</code></dt>
<dd><a name="index-msmallc"></a>
<p>Link with a limited version of the C library, <samp>-lsmallc</samp>, rather than
Newlib.
</p>
</dd>
<dt><code>-msys-crt0=<var>startfile</var></code></dt>
<dd><a name="index-msys_002dcrt0"></a>
<p><var>startfile</var> is the file name of the startfile (crt0) to use
when linking. This option is only useful in conjunction with <samp>-mhal</samp>.
</p>
</dd>
<dt><code>-msys-lib=<var>systemlib</var></code></dt>
<dd><a name="index-msys_002dlib"></a>
<p><var>systemlib</var> is the library name of the library that provides
low-level system calls required by the C library,
e.g. <code>read</code> and <code>write</code>.
This option is typically used to link with a library provided by a HAL BSP.
</p>
</dd>
</dl>
<hr>
<a name="Nvidia-PTX-Options"></a>
<div class="header">
<p>
Next: <a href="#PDP_002d11-Options" accesskey="n" rel="next">PDP-11 Options</a>, Previous: <a href="#Nios-II-Options" accesskey="p" rel="prev">Nios II Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Nvidia-PTX-Options-1"></a>
<h4 class="subsection">3.18.33 Nvidia PTX Options</h4>
<a name="index-Nvidia-PTX-options"></a>
<a name="index-nvptx-options"></a>
<p>These options are defined for Nvidia PTX:
</p>
<dl compact="compact">
<dt><code>-m32</code></dt>
<dt><code>-m64</code></dt>
<dd><a name="index-m32"></a>
<a name="index-m64"></a>
<p>Generate code for 32-bit or 64-bit ABI.
</p>
</dd>
<dt><code>-mmainkernel</code></dt>
<dd><a name="index-mmainkernel"></a>
<p>Link in code for a __main kernel. This is for stand-alone instead of
offloading execution.
</p>
</dd>
<dt><code>-moptimize</code></dt>
<dd><a name="index-moptimize"></a>
<p>Apply partitioned execution optimizations. This is the default when any
level of optimization is selected.
</p>
</dd>
<dt><code>-msoft-stack</code></dt>
<dd><a name="index-msoft_002dstack"></a>
<p>Generate code that does not use <code>.local</code> memory
directly for stack storage. Instead, a per-warp stack pointer is
maintained explicitly. This enables variable-length stack allocation (with
variable-length arrays or <code>alloca</code>), and when global memory is used for
underlying storage, makes it possible to access automatic variables from other
threads, or with atomic instructions. This code generation variant is used
for OpenMP offloading, but the option is exposed on its own for the purpose
of testing the compiler; to generate code suitable for linking into programs
using OpenMP offloading, use option <samp>-mgomp</samp>.
</p>
</dd>
<dt><code>-muniform-simt</code></dt>
<dd><a name="index-muniform_002dsimt"></a>
<p>Switch to code generation variant that allows to execute all threads in each
warp, while maintaining memory state and side effects as if only one thread
in each warp was active outside of OpenMP SIMD regions. All atomic operations
and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
current lane index equals the master lane index), and the register being
assigned is copied via a shuffle instruction from the master lane. Outside of
SIMD regions lane 0 is the master; inside, each thread sees itself as the
master. Shared memory array <code>int __nvptx_uni[]</code> stores all-zeros or
all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
regions). Each thread can bitwise-and the bitmask at position <code>tid.y</code>
with current lane index to compute the master lane index.
</p>
</dd>
<dt><code>-mgomp</code></dt>
<dd><a name="index-mgomp"></a>
<p>Generate code for use in OpenMP offloading: enables <samp>-msoft-stack</samp> and
<samp>-muniform-simt</samp> options, and selects corresponding multilib variant.
</p>
</dd>
</dl>
<hr>
<a name="PDP_002d11-Options"></a>
<div class="header">
<p>
Next: <a href="#picoChip-Options" accesskey="n" rel="next">picoChip Options</a>, Previous: <a href="#Nvidia-PTX-Options" accesskey="p" rel="prev">Nvidia PTX Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PDP_002d11-Options-1"></a>
<h4 class="subsection">3.18.34 PDP-11 Options</h4>
<a name="index-PDP_002d11-Options"></a>
<p>These options are defined for the PDP-11:
</p>
<dl compact="compact">
<dt><code>-mfpu</code></dt>
<dd><a name="index-mfpu-2"></a>
<p>Use hardware FPP floating point. This is the default. (FIS floating
point on the PDP-11/40 is not supported.)
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-msoft_002dfloat-7"></a>
<p>Do not use hardware floating point.
</p>
</dd>
<dt><code>-mac0</code></dt>
<dd><a name="index-mac0"></a>
<p>Return floating-point results in ac0 (fr0 in Unix assembler syntax).
</p>
</dd>
<dt><code>-mno-ac0</code></dt>
<dd><a name="index-mno_002dac0"></a>
<p>Return floating-point results in memory. This is the default.
</p>
</dd>
<dt><code>-m40</code></dt>
<dd><a name="index-m40"></a>
<p>Generate code for a PDP-11/40.
</p>
</dd>
<dt><code>-m45</code></dt>
<dd><a name="index-m45"></a>
<p>Generate code for a PDP-11/45. This is the default.
</p>
</dd>
<dt><code>-m10</code></dt>
<dd><a name="index-m10"></a>
<p>Generate code for a PDP-11/10.
</p>
</dd>
<dt><code>-mbcopy-builtin</code></dt>
<dd><a name="index-mbcopy_002dbuiltin"></a>
<p>Use inline <code>movmemhi</code> patterns for copying memory. This is the
default.
</p>
</dd>
<dt><code>-mbcopy</code></dt>
<dd><a name="index-mbcopy"></a>
<p>Do not use inline <code>movmemhi</code> patterns for copying memory.
</p>
</dd>
<dt><code>-mint16</code></dt>
<dt><code>-mno-int32</code></dt>
<dd><a name="index-mint16"></a>
<a name="index-mno_002dint32"></a>
<p>Use 16-bit <code>int</code>. This is the default.
</p>
</dd>
<dt><code>-mint32</code></dt>
<dt><code>-mno-int16</code></dt>
<dd><a name="index-mint32-2"></a>
<a name="index-mno_002dint16"></a>
<p>Use 32-bit <code>int</code>.
</p>
</dd>
<dt><code>-mfloat64</code></dt>
<dt><code>-mno-float32</code></dt>
<dd><a name="index-mfloat64"></a>
<a name="index-mno_002dfloat32"></a>
<p>Use 64-bit <code>float</code>. This is the default.
</p>
</dd>
<dt><code>-mfloat32</code></dt>
<dt><code>-mno-float64</code></dt>
<dd><a name="index-mfloat32"></a>
<a name="index-mno_002dfloat64"></a>
<p>Use 32-bit <code>float</code>.
</p>
</dd>
<dt><code>-mabshi</code></dt>
<dd><a name="index-mabshi"></a>
<p>Use <code>abshi2</code> pattern. This is the default.
</p>
</dd>
<dt><code>-mno-abshi</code></dt>
<dd><a name="index-mno_002dabshi"></a>
<p>Do not use <code>abshi2</code> pattern.
</p>
</dd>
<dt><code>-mbranch-expensive</code></dt>
<dd><a name="index-mbranch_002dexpensive"></a>
<p>Pretend that branches are expensive. This is for experimenting with
code generation only.
</p>
</dd>
<dt><code>-mbranch-cheap</code></dt>
<dd><a name="index-mbranch_002dcheap"></a>
<p>Do not pretend that branches are expensive. This is the default.
</p>
</dd>
<dt><code>-munix-asm</code></dt>
<dd><a name="index-munix_002dasm"></a>
<p>Use Unix assembler syntax. This is the default when configured for
‘<samp>pdp11-*-bsd</samp>’.
</p>
</dd>
<dt><code>-mdec-asm</code></dt>
<dd><a name="index-mdec_002dasm"></a>
<p>Use DEC assembler syntax. This is the default when configured for any
PDP-11 target other than ‘<samp>pdp11-*-bsd</samp>’.
</p></dd>
</dl>
<hr>
<a name="picoChip-Options"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-Options" accesskey="n" rel="next">PowerPC Options</a>, Previous: <a href="#PDP_002d11-Options" accesskey="p" rel="prev">PDP-11 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="picoChip-Options-1"></a>
<h4 class="subsection">3.18.35 picoChip Options</h4>
<a name="index-picoChip-options"></a>
<p>These ‘<samp>-m</samp>’ options are defined for picoChip implementations:
</p>
<dl compact="compact">
<dt><code>-mae=<var>ae_type</var></code></dt>
<dd><a name="index-mcpu-7"></a>
<p>Set the instruction set, register set, and instruction scheduling
parameters for array element type <var>ae_type</var>. Supported values
for <var>ae_type</var> are ‘<samp>ANY</samp>’, ‘<samp>MUL</samp>’, and ‘<samp>MAC</samp>’.
</p>
<p><samp>-mae=ANY</samp> selects a completely generic AE type. Code
generated with this option runs on any of the other AE types. The
code is not as efficient as it would be if compiled for a specific
AE type, and some types of operation (e.g., multiplication) do not
work properly on all types of AE.
</p>
<p><samp>-mae=MUL</samp> selects a MUL AE type. This is the most useful AE type
for compiled code, and is the default.
</p>
<p><samp>-mae=MAC</samp> selects a DSP-style MAC AE. Code compiled with this
option may suffer from poor performance of byte (char) manipulation,
since the DSP AE does not provide hardware support for byte load/stores.
</p>
</dd>
<dt><code>-msymbol-as-address</code></dt>
<dd><p>Enable the compiler to directly use a symbol name as an address in a
load/store instruction, without first loading it into a
register. Typically, the use of this option generates larger
programs, which run faster than when the option isn’t used. However, the
results vary from program to program, so it is left as a user option,
rather than being permanently enabled.
</p>
</dd>
<dt><code>-mno-inefficient-warnings</code></dt>
<dd><p>Disables warnings about the generation of inefficient code. These
warnings can be generated, for example, when compiling code that
performs byte-level memory operations on the MAC AE type. The MAC AE has
no hardware support for byte-level memory operations, so all byte
load/stores must be synthesized from word load/store operations. This is
inefficient and a warning is generated to indicate
that you should rewrite the code to avoid byte operations, or to target
an AE type that has the necessary hardware support. This option disables
these warnings.
</p>
</dd>
</dl>
<hr>
<a name="PowerPC-Options"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-SPE-Options" accesskey="n" rel="next">PowerPC SPE Options</a>, Previous: <a href="#picoChip-Options" accesskey="p" rel="prev">picoChip Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-Options-1"></a>
<h4 class="subsection">3.18.36 PowerPC Options</h4>
<a name="index-PowerPC-options"></a>
<p>These are listed under See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>.
</p>
<hr>
<a name="PowerPC-SPE-Options"></a>
<div class="header">
<p>
Next: <a href="#RISC_002dV-Options" accesskey="n" rel="next">RISC-V Options</a>, Previous: <a href="#PowerPC-Options" accesskey="p" rel="prev">PowerPC Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-SPE-Options-1"></a>
<h4 class="subsection">3.18.37 PowerPC SPE Options</h4>
<a name="index-PowerPC-SPE-options"></a>
<p>These ‘<samp>-m</samp>’ options are defined for PowerPC SPE:
</p><dl compact="compact">
<dt><code>-mmfcrf</code></dt>
<dt><code>-mno-mfcrf</code></dt>
<dt><code>-mpopcntb</code></dt>
<dt><code>-mno-popcntb</code></dt>
<dd><a name="index-mmfcrf"></a>
<a name="index-mno_002dmfcrf"></a>
<a name="index-mpopcntb"></a>
<a name="index-mno_002dpopcntb"></a>
<p>You use these options to specify which instructions are available on the
processor you are using. The default value of these options is
determined when configuring GCC. Specifying the
<samp>-mcpu=<var>cpu_type</var></samp> overrides the specification of these
options. We recommend you use the <samp>-mcpu=<var>cpu_type</var></samp> option
rather than the options listed above.
</p>
<p>The <samp>-mmfcrf</samp> option allows GCC to generate the move from
condition register field instruction implemented on the POWER4
processor and other processors that support the PowerPC V2.01
architecture.
The <samp>-mpopcntb</samp> option allows GCC to generate the popcount and
double-precision FP reciprocal estimate instruction implemented on the
POWER5 processor and other processors that support the PowerPC V2.02
architecture.
</p>
</dd>
<dt><code>-mcpu=<var>cpu_type</var></code></dt>
<dd><a name="index-mcpu-8"></a>
<p>Set architecture type, register usage, and
instruction scheduling parameters for machine type <var>cpu_type</var>.
Supported values for <var>cpu_type</var> are ‘<samp>8540</samp>’, ‘<samp>8548</samp>’,
and ‘<samp>native</samp>’.
</p>
<p><samp>-mcpu=powerpc</samp> specifies pure 32-bit PowerPC (either
endian), with an appropriate, generic processor model assumed for
scheduling purposes.
</p>
<p>Specifying ‘<samp>native</samp>’ as cpu type detects and selects the
architecture option that corresponds to the host processor of the
system performing the compilation.
<samp>-mcpu=native</samp> has no effect if GCC does not recognize the
processor.
</p>
<p>The other options specify a specific processor. Code generated under
those options runs best on that processor, and may not run at all on
others.
</p>
<p>The <samp>-mcpu</samp> options automatically enable or disable the
following options:
</p>
<div class="smallexample">
<pre class="smallexample">-mhard-float -mmfcrf -mmultiple
-mpopcntb -mpopcntd
-msingle-float -mdouble-float
-mfloat128
</pre></div>
<p>The particular options set for any particular CPU varies between
compiler versions, depending on what setting seems to produce optimal
code for that CPU; it doesn’t necessarily reflect the actual hardware’s
capabilities. If you wish to set an individual option to a particular
value, you may specify it after the <samp>-mcpu</samp> option, like
<samp>-mcpu=8548</samp>.
</p>
</dd>
<dt><code>-mtune=<var>cpu_type</var></code></dt>
<dd><a name="index-mtune-10"></a>
<p>Set the instruction scheduling parameters for machine type
<var>cpu_type</var>, but do not set the architecture type or register usage,
as <samp>-mcpu=<var>cpu_type</var></samp> does. The same
values for <var>cpu_type</var> are used for <samp>-mtune</samp> as for
<samp>-mcpu</samp>. If both are specified, the code generated uses the
architecture and registers set by <samp>-mcpu</samp>, but the
scheduling parameters set by <samp>-mtune</samp>.
</p>
</dd>
<dt><code>-msecure-plt</code></dt>
<dd><a name="index-msecure_002dplt"></a>
<p>Generate code that allows <code>ld</code> and <code>ld.so</code>
to build executables and shared
libraries with non-executable <code>.plt</code> and <code>.got</code> sections.
This is a PowerPC
32-bit SYSV ABI option.
</p>
</dd>
<dt><code>-mbss-plt</code></dt>
<dd><a name="index-mbss_002dplt"></a>
<p>Generate code that uses a BSS <code>.plt</code> section that <code>ld.so</code>
fills in, and
requires <code>.plt</code> and <code>.got</code>
sections that are both writable and executable.
This is a PowerPC 32-bit SYSV ABI option.
</p>
</dd>
<dt><code>-misel</code></dt>
<dt><code>-mno-isel</code></dt>
<dd><a name="index-misel"></a>
<a name="index-mno_002disel"></a>
<p>This switch enables or disables the generation of ISEL instructions.
</p>
</dd>
<dt><code>-misel=<var>yes/no</var></code></dt>
<dd><p>This switch has been deprecated. Use <samp>-misel</samp> and
<samp>-mno-isel</samp> instead.
</p>
</dd>
<dt><code>-mspe</code></dt>
<dt><code>-mno-spe</code></dt>
<dd><a name="index-mspe"></a>
<a name="index-mno_002dspe"></a>
<p>This switch enables or disables the generation of SPE simd
instructions.
</p>
</dd>
<dt><code>-mspe=<var>yes/no</var></code></dt>
<dd><p>This option has been deprecated. Use <samp>-mspe</samp> and
<samp>-mno-spe</samp> instead.
</p>
</dd>
<dt><code>-mfloat128</code></dt>
<dt><code>-mno-float128</code></dt>
<dd><a name="index-mfloat128"></a>
<a name="index-mno_002dfloat128"></a>
<p>Enable/disable the <var>__float128</var> keyword for IEEE 128-bit floating point
and use either software emulation for IEEE 128-bit floating point or
hardware instructions.
</p>
</dd>
<dt><code>-mfloat-gprs=<var>yes/single/double/no</var></code></dt>
<dt><code>-mfloat-gprs</code></dt>
<dd><a name="index-mfloat_002dgprs"></a>
<p>This switch enables or disables the generation of floating-point
operations on the general-purpose registers for architectures that
support it.
</p>
<p>The argument ‘<samp>yes</samp>’ or ‘<samp>single</samp>’ enables the use of
single-precision floating-point operations.
</p>
<p>The argument ‘<samp>double</samp>’ enables the use of single and
double-precision floating-point operations.
</p>
<p>The argument ‘<samp>no</samp>’ disables floating-point operations on the
general-purpose registers.
</p>
<p>This option is currently only available on the MPC854x.
</p>
</dd>
<dt><code>-mfull-toc</code></dt>
<dt><code>-mno-fp-in-toc</code></dt>
<dt><code>-mno-sum-in-toc</code></dt>
<dt><code>-mminimal-toc</code></dt>
<dd><a name="index-mfull_002dtoc"></a>
<a name="index-mno_002dfp_002din_002dtoc"></a>
<a name="index-mno_002dsum_002din_002dtoc"></a>
<a name="index-mminimal_002dtoc"></a>
<p>Modify generation of the TOC (Table Of Contents), which is created for
every executable file. The <samp>-mfull-toc</samp> option is selected by
default. In that case, GCC allocates at least one TOC entry for
each unique non-automatic variable reference in your program. GCC
also places floating-point constants in the TOC. However, only
16,384 entries are available in the TOC.
</p>
<p>If you receive a linker error message that saying you have overflowed
the available TOC space, you can reduce the amount of TOC space used
with the <samp>-mno-fp-in-toc</samp> and <samp>-mno-sum-in-toc</samp> options.
<samp>-mno-fp-in-toc</samp> prevents GCC from putting floating-point
constants in the TOC and <samp>-mno-sum-in-toc</samp> forces GCC to
generate code to calculate the sum of an address and a constant at
run time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly
slower and larger code at the expense of conserving TOC space.
</p>
<p>If you still run out of space in the TOC even when you specify both of
these options, specify <samp>-mminimal-toc</samp> instead. This option causes
GCC to make only one TOC entry for every file. When you specify this
option, GCC produces code that is slower and larger but which
uses extremely little TOC space. You may wish to use this option
only on files that contain less frequently-executed code.
</p>
</dd>
<dt><code>-maix32</code></dt>
<dd><a name="index-maix32"></a>
<p>Disables the 64-bit ABI. GCC defaults to <samp>-maix32</samp>.
</p>
</dd>
<dt><code>-mxl-compat</code></dt>
<dt><code>-mno-xl-compat</code></dt>
<dd><a name="index-mxl_002dcompat"></a>
<a name="index-mno_002dxl_002dcompat"></a>
<p>Produce code that conforms more closely to IBM XL compiler semantics
when using AIX-compatible ABI. Pass floating-point arguments to
prototyped functions beyond the register save area (RSA) on the stack
in addition to argument FPRs. Do not assume that most significant
double in 128-bit long double value is properly rounded when comparing
values and converting to double. Use XL symbol names for long double
support routines.
</p>
<p>The AIX calling convention was extended but not initially documented to
handle an obscure K&R C case of calling a function that takes the
address of its arguments with fewer arguments than declared. IBM XL
compilers access floating-point arguments that do not fit in the
RSA from the stack when a subroutine is compiled without
optimization. Because always storing floating-point arguments on the
stack is inefficient and rarely needed, this option is not enabled by
default and only is necessary when calling subroutines compiled by IBM
XL compilers without optimization.
</p>
</dd>
<dt><code>-malign-natural</code></dt>
<dt><code>-malign-power</code></dt>
<dd><a name="index-malign_002dnatural"></a>
<a name="index-malign_002dpower"></a>
<p>On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
<samp>-malign-natural</samp> overrides the ABI-defined alignment of larger
types, such as floating-point doubles, on their natural size-based boundary.
The option <samp>-malign-power</samp> instructs GCC to follow the ABI-specified
alignment rules. GCC defaults to the standard alignment defined in the ABI.
</p>
<p>On 64-bit Darwin, natural alignment is the default, and <samp>-malign-power</samp>
is not supported.
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-msoft_002dfloat-8"></a>
<a name="index-mhard_002dfloat-4"></a>
<p>Generate code that does not use (uses) the floating-point register set.
Software floating-point emulation is provided if you use the
<samp>-msoft-float</samp> option, and pass the option to GCC when linking.
</p>
</dd>
<dt><code>-msingle-float</code></dt>
<dt><code>-mdouble-float</code></dt>
<dd><a name="index-msingle_002dfloat-1"></a>
<a name="index-mdouble_002dfloat-1"></a>
<p>Generate code for single- or double-precision floating-point operations.
<samp>-mdouble-float</samp> implies <samp>-msingle-float</samp>.
</p>
</dd>
<dt><code>-mmultiple</code></dt>
<dt><code>-mno-multiple</code></dt>
<dd><a name="index-mmultiple"></a>
<a name="index-mno_002dmultiple"></a>
<p>Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions. These
instructions are generated by default on POWER systems, and not
generated on PowerPC systems. Do not use <samp>-mmultiple</samp> on little-endian
PowerPC systems, since those instructions do not work when the
processor is in little-endian mode. The exceptions are PPC740 and
PPC750 which permit these instructions in little-endian mode.
</p>
</dd>
<dt><code>-mupdate</code></dt>
<dt><code>-mno-update</code></dt>
<dd><a name="index-mupdate"></a>
<a name="index-mno_002dupdate"></a>
<p>Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location. These instructions are generated by default. If you use
<samp>-mno-update</samp>, there is a small window between the time that the
stack pointer is updated and the address of the previous frame is
stored, which means code that walks the stack frame across interrupts or
signals may get corrupted data.
</p>
</dd>
<dt><code>-mavoid-indexed-addresses</code></dt>
<dt><code>-mno-avoid-indexed-addresses</code></dt>
<dd><a name="index-mavoid_002dindexed_002daddresses"></a>
<a name="index-mno_002davoid_002dindexed_002daddresses"></a>
<p>Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions. These instructions can incur a performance
penalty on Power6 processors in certain situations, such as when
stepping through large arrays that cross a 16M boundary. This option
is enabled by default when targeting Power6 and disabled otherwise.
</p>
</dd>
<dt><code>-mfused-madd</code></dt>
<dt><code>-mno-fused-madd</code></dt>
<dd><a name="index-mfused_002dmadd-2"></a>
<a name="index-mno_002dfused_002dmadd-2"></a>
<p>Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default
if hardware floating point is used. The machine-dependent
<samp>-mfused-madd</samp> option is now mapped to the machine-independent
<samp>-ffp-contract=fast</samp> option, and <samp>-mno-fused-madd</samp> is
mapped to <samp>-ffp-contract=off</samp>.
</p>
</dd>
<dt><code>-mno-strict-align</code></dt>
<dt><code>-mstrict-align</code></dt>
<dd><a name="index-mno_002dstrict_002dalign-1"></a>
<a name="index-mstrict_002dalign-2"></a>
<p>On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references are handled by the system.
</p>
</dd>
<dt><code>-mrelocatable</code></dt>
<dt><code>-mno-relocatable</code></dt>
<dd><a name="index-mrelocatable"></a>
<a name="index-mno_002drelocatable"></a>
<p>Generate code that allows (does not allow) a static executable to be
relocated to a different address at run time. A simple embedded
PowerPC system loader should relocate the entire contents of
<code>.got2</code> and 4-byte locations listed in the <code>.fixup</code> section,
a table of 32-bit addresses generated by this option. For this to
work, all objects linked together must be compiled with
<samp>-mrelocatable</samp> or <samp>-mrelocatable-lib</samp>.
<samp>-mrelocatable</samp> code aligns the stack to an 8-byte boundary.
</p>
</dd>
<dt><code>-mrelocatable-lib</code></dt>
<dt><code>-mno-relocatable-lib</code></dt>
<dd><a name="index-mrelocatable_002dlib"></a>
<a name="index-mno_002drelocatable_002dlib"></a>
<p>Like <samp>-mrelocatable</samp>, <samp>-mrelocatable-lib</samp> generates a
<code>.fixup</code> section to allow static executables to be relocated at
run time, but <samp>-mrelocatable-lib</samp> does not use the smaller stack
alignment of <samp>-mrelocatable</samp>. Objects compiled with
<samp>-mrelocatable-lib</samp> may be linked with objects compiled with
any combination of the <samp>-mrelocatable</samp> options.
</p>
</dd>
<dt><code>-mno-toc</code></dt>
<dt><code>-mtoc</code></dt>
<dd><a name="index-mno_002dtoc"></a>
<a name="index-mtoc"></a>
<p>On System V.4 and embedded PowerPC systems do not (do) assume that
register 2 contains a pointer to a global area pointing to the addresses
used in the program.
</p>
</dd>
<dt><code>-mlittle</code></dt>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle"></a>
<a name="index-mlittle_002dendian-8"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
processor in little-endian mode. The <samp>-mlittle-endian</samp> option is
the same as <samp>-mlittle</samp>.
</p>
</dd>
<dt><code>-mbig</code></dt>
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig"></a>
<a name="index-mbig_002dendian-8"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
processor in big-endian mode. The <samp>-mbig-endian</samp> option is
the same as <samp>-mbig</samp>.
</p>
</dd>
<dt><code>-mdynamic-no-pic</code></dt>
<dd><a name="index-mdynamic_002dno_002dpic"></a>
<p>On Darwin and Mac OS X systems, compile code so that it is not
relocatable, but that its external references are relocatable. The
resulting code is suitable for applications, but not shared
libraries.
</p>
</dd>
<dt><code>-msingle-pic-base</code></dt>
<dd><a name="index-msingle_002dpic_002dbase-1"></a>
<p>Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
</p>
</dd>
<dt><code>-mprioritize-restricted-insns=<var>priority</var></code></dt>
<dd><a name="index-mprioritize_002drestricted_002dinsns"></a>
<p>This option controls the priority that is assigned to
dispatch-slot restricted instructions during the second scheduling
pass. The argument <var>priority</var> takes the value ‘<samp>0</samp>’, ‘<samp>1</samp>’,
or ‘<samp>2</samp>’ to assign no, highest, or second-highest (respectively)
priority to dispatch-slot restricted
instructions.
</p>
</dd>
<dt><code>-msched-costly-dep=<var>dependence_type</var></code></dt>
<dd><a name="index-msched_002dcostly_002ddep"></a>
<p>This option controls which dependences are considered costly
by the target during instruction scheduling. The argument
<var>dependence_type</var> takes one of the following values:
</p>
<dl compact="compact">
<dt>‘<samp>no</samp>’</dt>
<dd><p>No dependence is costly.
</p>
</dd>
<dt>‘<samp>all</samp>’</dt>
<dd><p>All dependences are costly.
</p>
</dd>
<dt>‘<samp>true_store_to_load</samp>’</dt>
<dd><p>A true dependence from store to load is costly.
</p>
</dd>
<dt>‘<samp>store_to_load</samp>’</dt>
<dd><p>Any dependence from store to load is costly.
</p>
</dd>
<dt><var>number</var></dt>
<dd><p>Any dependence for which the latency is greater than or equal to
<var>number</var> is costly.
</p></dd>
</dl>
</dd>
<dt><code>-minsert-sched-nops=<var>scheme</var></code></dt>
<dd><a name="index-minsert_002dsched_002dnops"></a>
<p>This option controls which NOP insertion scheme is used during
the second scheduling pass. The argument <var>scheme</var> takes one of the
following values:
</p>
<dl compact="compact">
<dt>‘<samp>no</samp>’</dt>
<dd><p>Don’t insert NOPs.
</p>
</dd>
<dt>‘<samp>pad</samp>’</dt>
<dd><p>Pad with NOPs any dispatch group that has vacant issue slots,
according to the scheduler’s grouping.
</p>
</dd>
<dt>‘<samp>regroup_exact</samp>’</dt>
<dd><p>Insert NOPs to force costly dependent insns into
separate groups. Insert exactly as many NOPs as needed to force an insn
to a new group, according to the estimated processor grouping.
</p>
</dd>
<dt><var>number</var></dt>
<dd><p>Insert NOPs to force costly dependent insns into
separate groups. Insert <var>number</var> NOPs to force an insn to a new group.
</p></dd>
</dl>
</dd>
<dt><code>-mcall-sysv</code></dt>
<dd><a name="index-mcall_002dsysv"></a>
<p>On System V.4 and embedded PowerPC systems compile code using calling
conventions that adhere to the March 1995 draft of the System V
Application Binary Interface, PowerPC processor supplement. This is the
default unless you configured GCC using ‘<samp>powerpc-*-eabiaix</samp>’.
</p>
</dd>
<dt><code>-mcall-sysv-eabi</code></dt>
<dt><code>-mcall-eabi</code></dt>
<dd><a name="index-mcall_002dsysv_002deabi"></a>
<a name="index-mcall_002deabi"></a>
<p>Specify both <samp>-mcall-sysv</samp> and <samp>-meabi</samp> options.
</p>
</dd>
<dt><code>-mcall-sysv-noeabi</code></dt>
<dd><a name="index-mcall_002dsysv_002dnoeabi"></a>
<p>Specify both <samp>-mcall-sysv</samp> and <samp>-mno-eabi</samp> options.
</p>
</dd>
<dt><code>-mcall-aixdesc</code></dt>
<dd><a name="index-m"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the AIX
operating system.
</p>
</dd>
<dt><code>-mcall-linux</code></dt>
<dd><a name="index-mcall_002dlinux"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.
</p>
</dd>
<dt><code>-mcall-freebsd</code></dt>
<dd><a name="index-mcall_002dfreebsd"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
FreeBSD operating system.
</p>
</dd>
<dt><code>-mcall-netbsd</code></dt>
<dd><a name="index-mcall_002dnetbsd"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
NetBSD operating system.
</p>
</dd>
<dt><code>-mcall-openbsd</code></dt>
<dd><a name="index-mcall_002dnetbsd-1"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
OpenBSD operating system.
</p>
</dd>
<dt><code>-maix-struct-return</code></dt>
<dd><a name="index-maix_002dstruct_002dreturn"></a>
<p>Return all structures in memory (as specified by the AIX ABI).
</p>
</dd>
<dt><code>-msvr4-struct-return</code></dt>
<dd><a name="index-msvr4_002dstruct_002dreturn"></a>
<p>Return structures smaller than 8 bytes in registers (as specified by the
SVR4 ABI).
</p>
</dd>
<dt><code>-mabi=<var>abi-type</var></code></dt>
<dd><a name="index-mabi-2"></a>
<p>Extend the current ABI with a particular extension, or remove such extension.
Valid values are ‘<samp>altivec</samp>’, ‘<samp>no-altivec</samp>’, ‘<samp>spe</samp>’,
‘<samp>no-spe</samp>’, ‘<samp>ibmlongdouble</samp>’, ‘<samp>ieeelongdouble</samp>’,
‘<samp>elfv1</samp>’, ‘<samp>elfv2</samp>’.
</p>
</dd>
<dt><code>-mabi=spe</code></dt>
<dd><a name="index-mabi_003dspe"></a>
<p>Extend the current ABI with SPE ABI extensions. This does not change
the default ABI, instead it adds the SPE ABI extensions to the current
ABI.
</p>
</dd>
<dt><code>-mabi=no-spe</code></dt>
<dd><a name="index-mabi_003dno_002dspe"></a>
<p>Disable Book-E SPE ABI extensions for the current ABI.
</p>
</dd>
<dt><code>-mabi=ibmlongdouble</code></dt>
<dd><a name="index-mabi_003dibmlongdouble"></a>
<p>Change the current ABI to use IBM extended-precision long double.
This is not likely to work if your system defaults to using IEEE
extended-precision long double. If you change the long double type
from IEEE extended-precision, the compiler will issue a warning unless
you use the <samp>-Wno-psabi</samp> option.
</p>
</dd>
<dt><code>-mabi=ieeelongdouble</code></dt>
<dd><a name="index-mabi_003dieeelongdouble"></a>
<p>Change the current ABI to use IEEE extended-precision long double.
This is not likely to work if your system defaults to using IBM
extended-precision long double. If you change the long double type
from IBM extended-precision, the compiler will issue a warning unless
you use the <samp>-Wno-psabi</samp> option.
</p>
</dd>
<dt><code>-mabi=elfv1</code></dt>
<dd><a name="index-mabi_003delfv1"></a>
<p>Change the current ABI to use the ELFv1 ABI.
This is the default ABI for big-endian PowerPC 64-bit Linux.
Overriding the default ABI requires special system support and is
likely to fail in spectacular ways.
</p>
</dd>
<dt><code>-mabi=elfv2</code></dt>
<dd><a name="index-mabi_003delfv2"></a>
<p>Change the current ABI to use the ELFv2 ABI.
This is the default ABI for little-endian PowerPC 64-bit Linux.
Overriding the default ABI requires special system support and is
likely to fail in spectacular ways.
</p>
</dd>
<dt><code>-mgnu-attribute</code></dt>
<dt><code>-mno-gnu-attribute</code></dt>
<dd><a name="index-mgnu_002dattribute"></a>
<a name="index-mno_002dgnu_002dattribute"></a>
<p>Emit .gnu_attribute assembly directives to set tag/value pairs in a
.gnu.attributes section that specify ABI variations in function
parameters or return values.
</p>
</dd>
<dt><code>-mprototype</code></dt>
<dt><code>-mno-prototype</code></dt>
<dd><a name="index-mprototype"></a>
<a name="index-mno_002dprototype"></a>
<p>On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped. Otherwise, the
compiler must insert an instruction before every non-prototyped call to
set or clear bit 6 of the condition code register (<code>CR</code>) to
indicate whether floating-point values are passed in the floating-point
registers in case the function takes variable arguments. With
<samp>-mprototype</samp>, only calls to prototyped variable argument functions
set or clear the bit.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim-7"></a>
<p>On embedded PowerPC systems, assume that the startup module is called
<samp>sim-crt0.o</samp> and that the standard C libraries are <samp>libsim.a</samp> and
<samp>libc.a</samp>. This is the default for ‘<samp>powerpc-*-eabisim</samp>’
configurations.
</p>
</dd>
<dt><code>-mmvme</code></dt>
<dd><a name="index-mmvme"></a>
<p>On embedded PowerPC systems, assume that the startup module is called
<samp>crt0.o</samp> and the standard C libraries are <samp>libmvme.a</samp> and
<samp>libc.a</samp>.
</p>
</dd>
<dt><code>-mads</code></dt>
<dd><a name="index-mads"></a>
<p>On embedded PowerPC systems, assume that the startup module is called
<samp>crt0.o</samp> and the standard C libraries are <samp>libads.a</samp> and
<samp>libc.a</samp>.
</p>
</dd>
<dt><code>-myellowknife</code></dt>
<dd><a name="index-myellowknife"></a>
<p>On embedded PowerPC systems, assume that the startup module is called
<samp>crt0.o</samp> and the standard C libraries are <samp>libyk.a</samp> and
<samp>libc.a</samp>.
</p>
</dd>
<dt><code>-mvxworks</code></dt>
<dd><a name="index-mvxworks"></a>
<p>On System V.4 and embedded PowerPC systems, specify that you are
compiling for a VxWorks system.
</p>
</dd>
<dt><code>-memb</code></dt>
<dd><a name="index-memb"></a>
<p>On embedded PowerPC systems, set the <code>PPC_EMB</code> bit in the ELF flags
header to indicate that ‘<samp>eabi</samp>’ extended relocations are used.
</p>
</dd>
<dt><code>-meabi</code></dt>
<dt><code>-mno-eabi</code></dt>
<dd><a name="index-meabi"></a>
<a name="index-mno_002deabi"></a>
<p>On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (EABI), which is a set of
modifications to the System V.4 specifications. Selecting <samp>-meabi</samp>
means that the stack is aligned to an 8-byte boundary, a function
<code>__eabi</code> is called from <code>main</code> to set up the EABI
environment, and the <samp>-msdata</samp> option can use both <code>r2</code> and
<code>r13</code> to point to two separate small data areas. Selecting
<samp>-mno-eabi</samp> means that the stack is aligned to a 16-byte boundary,
no EABI initialization function is called from <code>main</code>, and the
<samp>-msdata</samp> option only uses <code>r13</code> to point to a single
small data area. The <samp>-meabi</samp> option is on by default if you
configured GCC using one of the ‘<samp>powerpc*-*-eabi*</samp>’ options.
</p>
</dd>
<dt><code>-msdata=eabi</code></dt>
<dd><a name="index-msdata_003deabi"></a>
<p>On System V.4 and embedded PowerPC systems, put small initialized
<code>const</code> global and static data in the <code>.sdata2</code> section, which
is pointed to by register <code>r2</code>. Put small initialized
non-<code>const</code> global and static data in the <code>.sdata</code> section,
which is pointed to by register <code>r13</code>. Put small uninitialized
global and static data in the <code>.sbss</code> section, which is adjacent to
the <code>.sdata</code> section. The <samp>-msdata=eabi</samp> option is
incompatible with the <samp>-mrelocatable</samp> option. The
<samp>-msdata=eabi</samp> option also sets the <samp>-memb</samp> option.
</p>
</dd>
<dt><code>-msdata=sysv</code></dt>
<dd><a name="index-msdata_003dsysv"></a>
<p>On System V.4 and embedded PowerPC systems, put small global and static
data in the <code>.sdata</code> section, which is pointed to by register
<code>r13</code>. Put small uninitialized global and static data in the
<code>.sbss</code> section, which is adjacent to the <code>.sdata</code> section.
The <samp>-msdata=sysv</samp> option is incompatible with the
<samp>-mrelocatable</samp> option.
</p>
</dd>
<dt><code>-msdata=default</code></dt>
<dt><code>-msdata</code></dt>
<dd><a name="index-msdata_003ddefault-1"></a>
<a name="index-msdata-1"></a>
<p>On System V.4 and embedded PowerPC systems, if <samp>-meabi</samp> is used,
compile code the same as <samp>-msdata=eabi</samp>, otherwise compile code the
same as <samp>-msdata=sysv</samp>.
</p>
</dd>
<dt><code>-msdata=data</code></dt>
<dd><a name="index-msdata_003ddata"></a>
<p>On System V.4 and embedded PowerPC systems, put small global
data in the <code>.sdata</code> section. Put small uninitialized global
data in the <code>.sbss</code> section. Do not use register <code>r13</code>
to address small data however. This is the default behavior unless
other <samp>-msdata</samp> options are used.
</p>
</dd>
<dt><code>-msdata=none</code></dt>
<dt><code>-mno-sdata</code></dt>
<dd><a name="index-msdata_003dnone-2"></a>
<a name="index-mno_002dsdata-2"></a>
<p>On embedded PowerPC systems, put all initialized global and static data
in the <code>.data</code> section, and all uninitialized data in the
<code>.bss</code> section.
</p>
</dd>
<dt><code>-mblock-move-inline-limit=<var>num</var></code></dt>
<dd><a name="index-mblock_002dmove_002dinline_002dlimit"></a>
<p>Inline all block moves (such as calls to <code>memcpy</code> or structure
copies) less than or equal to <var>num</var> bytes. The minimum value for
<var>num</var> is 32 bytes on 32-bit targets and 64 bytes on 64-bit
targets. The default value is target-specific.
</p>
</dd>
<dt><code>-G <var>num</var></code></dt>
<dd><a name="index-G-4"></a>
<a name="index-smaller-data-references-_0028PowerPC_0029"></a>
<a name="index-_002esdata_002f_002esdata2-references-_0028PowerPC_0029"></a>
<p>On embedded PowerPC systems, put global and static items less than or
equal to <var>num</var> bytes into the small data or BSS sections instead of
the normal data or BSS section. By default, <var>num</var> is 8. The
<samp>-G <var>num</var></samp> switch is also passed to the linker.
All modules should be compiled with the same <samp>-G <var>num</var></samp> value.
</p>
</dd>
<dt><code>-mregnames</code></dt>
<dt><code>-mno-regnames</code></dt>
<dd><a name="index-mregnames"></a>
<a name="index-mno_002dregnames"></a>
<p>On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.
</p>
</dd>
<dt><code>-mlongcall</code></dt>
<dt><code>-mno-longcall</code></dt>
<dd><a name="index-mlongcall"></a>
<a name="index-mno_002dlongcall"></a>
<p>By default assume that all calls are far away so that a longer and more
expensive calling sequence is required. This is required for calls
farther than 32 megabytes (33,554,432 bytes) from the current location.
A short call is generated if the compiler knows
the call cannot be that far away. This setting can be overridden by
the <code>shortcall</code> function attribute, or by <code>#pragma
longcall(0)</code>.
</p>
<p>Some linkers are capable of detecting out-of-range calls and generating
glue code on the fly. On these systems, long calls are unnecessary and
generate slower code. As of this writing, the AIX linker can do this,
as can the GNU linker for PowerPC/64. It is planned to add this feature
to the GNU linker for 32-bit PowerPC systems as well.
</p>
<p>In the future, GCC may ignore all longcall specifications
when the linker is known to generate glue.
</p>
</dd>
<dt><code>-mtls-markers</code></dt>
<dt><code>-mno-tls-markers</code></dt>
<dd><a name="index-mtls_002dmarkers"></a>
<a name="index-mno_002dtls_002dmarkers"></a>
<p>Mark (do not mark) calls to <code>__tls_get_addr</code> with a relocation
specifying the function argument. The relocation allows the linker to
reliably associate function call with argument setup instructions for
TLS optimization, which in turn allows GCC to better schedule the
sequence.
</p>
</dd>
<dt><code>-mrecip</code></dt>
<dt><code>-mno-recip</code></dt>
<dd><a name="index-mrecip"></a>
<p>This option enables use of the reciprocal estimate and
reciprocal square root estimate instructions with additional
Newton-Raphson steps to increase precision instead of doing a divide or
square root and divide for floating-point arguments. You should use
the <samp>-ffast-math</samp> option when using <samp>-mrecip</samp> (or at
least <samp>-funsafe-math-optimizations</samp>,
<samp>-ffinite-math-only</samp>, <samp>-freciprocal-math</samp> and
<samp>-fno-trapping-math</samp>). Note that while the throughput of the
sequence is generally higher than the throughput of the non-reciprocal
instruction, the precision of the sequence can be decreased by up to 2
ulp (i.e. the inverse of 1.0 equals 0.99999994) for reciprocal square
roots.
</p>
</dd>
<dt><code>-mrecip=<var>opt</var></code></dt>
<dd><a name="index-mrecip_003dopt"></a>
<p>This option controls which reciprocal estimate instructions
may be used. <var>opt</var> is a comma-separated list of options, which may
be preceded by a <code>!</code> to invert the option:
</p>
<dl compact="compact">
<dt>‘<samp>all</samp>’</dt>
<dd><p>Enable all estimate instructions.
</p>
</dd>
<dt>‘<samp>default</samp>’</dt>
<dd><p>Enable the default instructions, equivalent to <samp>-mrecip</samp>.
</p>
</dd>
<dt>‘<samp>none</samp>’</dt>
<dd><p>Disable all estimate instructions, equivalent to <samp>-mno-recip</samp>.
</p>
</dd>
<dt>‘<samp>div</samp>’</dt>
<dd><p>Enable the reciprocal approximation instructions for both
single and double precision.
</p>
</dd>
<dt>‘<samp>divf</samp>’</dt>
<dd><p>Enable the single-precision reciprocal approximation instructions.
</p>
</dd>
<dt>‘<samp>divd</samp>’</dt>
<dd><p>Enable the double-precision reciprocal approximation instructions.
</p>
</dd>
<dt>‘<samp>rsqrt</samp>’</dt>
<dd><p>Enable the reciprocal square root approximation instructions for both
single and double precision.
</p>
</dd>
<dt>‘<samp>rsqrtf</samp>’</dt>
<dd><p>Enable the single-precision reciprocal square root approximation instructions.
</p>
</dd>
<dt>‘<samp>rsqrtd</samp>’</dt>
<dd><p>Enable the double-precision reciprocal square root approximation instructions.
</p>
</dd>
</dl>
<p>So, for example, <samp>-mrecip=all,!rsqrtd</samp> enables
all of the reciprocal estimate instructions, except for the
<code>FRSQRTE</code>, <code>XSRSQRTEDP</code>, and <code>XVRSQRTEDP</code> instructions
which handle the double-precision reciprocal square root calculations.
</p>
</dd>
<dt><code>-mrecip-precision</code></dt>
<dt><code>-mno-recip-precision</code></dt>
<dd><a name="index-mrecip_002dprecision"></a>
<p>Assume (do not assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the PowerPC
ABI. Selecting <samp>-mcpu=power6</samp>, <samp>-mcpu=power7</samp> or
<samp>-mcpu=power8</samp> automatically selects <samp>-mrecip-precision</samp>.
The double-precision square root estimate instructions are not generated by
default on low-precision machines, since they do not provide an
estimate that converges after three steps.
</p>
</dd>
<dt><code>-mpointers-to-nested-functions</code></dt>
<dt><code>-mno-pointers-to-nested-functions</code></dt>
<dd><a name="index-mpointers_002dto_002dnested_002dfunctions"></a>
<p>Generate (do not generate) code to load up the static chain register
(<code>r11</code>) when calling through a pointer on AIX and 64-bit Linux
systems where a function pointer points to a 3-word descriptor giving
the function address, TOC value to be loaded in register <code>r2</code>, and
static chain value to be loaded in register <code>r11</code>. The
<samp>-mpointers-to-nested-functions</samp> is on by default. You cannot
call through pointers to nested functions or pointers
to functions compiled in other languages that use the static chain if
you use <samp>-mno-pointers-to-nested-functions</samp>.
</p>
</dd>
<dt><code>-msave-toc-indirect</code></dt>
<dt><code>-mno-save-toc-indirect</code></dt>
<dd><a name="index-msave_002dtoc_002dindirect"></a>
<p>Generate (do not generate) code to save the TOC value in the reserved
stack location in the function prologue if the function calls through
a pointer on AIX and 64-bit Linux systems. If the TOC value is not
saved in the prologue, it is saved just before the call through the
pointer. The <samp>-mno-save-toc-indirect</samp> option is the default.
</p>
</dd>
<dt><code>-mcompat-align-parm</code></dt>
<dt><code>-mno-compat-align-parm</code></dt>
<dd><a name="index-mcompat_002dalign_002dparm"></a>
<p>Generate (do not generate) code to pass structure parameters with a
maximum alignment of 64 bits, for compatibility with older versions
of GCC.
</p>
<p>Older versions of GCC (prior to 4.9.0) incorrectly did not align a
structure parameter on a 128-bit boundary when that structure contained
a member requiring 128-bit alignment. This is corrected in more
recent versions of GCC. This option may be used to generate code
that is compatible with functions compiled with older versions of
GCC.
</p>
<p>The <samp>-mno-compat-align-parm</samp> option is the default.
</p>
</dd>
<dt><code>-mstack-protector-guard=<var>guard</var></code></dt>
<dt><code>-mstack-protector-guard-reg=<var>reg</var></code></dt>
<dt><code>-mstack-protector-guard-offset=<var>offset</var></code></dt>
<dt><code>-mstack-protector-guard-symbol=<var>symbol</var></code></dt>
<dd><a name="index-mstack_002dprotector_002dguard"></a>
<a name="index-mstack_002dprotector_002dguard_002dreg"></a>
<a name="index-mstack_002dprotector_002dguard_002doffset"></a>
<a name="index-mstack_002dprotector_002dguard_002dsymbol"></a>
<p>Generate stack protection code using canary at <var>guard</var>. Supported
locations are ‘<samp>global</samp>’ for global canary or ‘<samp>tls</samp>’ for per-thread
canary in the TLS block (the default with GNU libc version 2.4 or later).
</p>
<p>With the latter choice the options
<samp>-mstack-protector-guard-reg=<var>reg</var></samp> and
<samp>-mstack-protector-guard-offset=<var>offset</var></samp> furthermore specify
which register to use as base register for reading the canary, and from what
offset from that base register. The default for those is as specified in the
relevant ABI. <samp>-mstack-protector-guard-symbol=<var>symbol</var></samp> overrides
the offset with a symbol reference to a canary in the TLS block.
</p></dd>
</dl>
<hr>
<a name="RISC_002dV-Options"></a>
<div class="header">
<p>
Next: <a href="#RL78-Options" accesskey="n" rel="next">RL78 Options</a>, Previous: <a href="#PowerPC-SPE-Options" accesskey="p" rel="prev">PowerPC SPE Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RISC_002dV-Options-1"></a>
<h4 class="subsection">3.18.38 RISC-V Options</h4>
<a name="index-RISC_002dV-Options"></a>
<p>These command-line options are defined for RISC-V targets:
</p>
<dl compact="compact">
<dt><code>-mbranch-cost=<var>n</var></code></dt>
<dd><a name="index-mbranch_002dcost-3"></a>
<p>Set the cost of branches to roughly <var>n</var> instructions.
</p>
</dd>
<dt><code>-mplt</code></dt>
<dt><code>-mno-plt</code></dt>
<dd><a name="index-plt"></a>
<p>When generating PIC code, do or don’t allow the use of PLTs. Ignored for
non-PIC. The default is <samp>-mplt</samp>.
</p>
</dd>
<dt><code>-mabi=<var>ABI-string</var></code></dt>
<dd><a name="index-mabi-3"></a>
<p>Specify integer and floating-point calling convention. <var>ABI-string</var>
contains two parts: the size of integer types and the registers used for
floating-point types. For example ‘<samp>-march=rv64ifd -mabi=lp64d</samp>’ means that
‘<samp>long</samp>’ and pointers are 64-bit (implicitly defining ‘<samp>int</samp>’ to be
32-bit), and that floating-point values up to 64 bits wide are passed in F
registers. Contrast this with ‘<samp>-march=rv64ifd -mabi=lp64f</samp>’, which still
allows the compiler to generate code that uses the F and D extensions but only
allows floating-point values up to 32 bits long to be passed in registers; or
‘<samp>-march=rv64ifd -mabi=lp64</samp>’, in which no floating-point arguments will be
passed in registers.
</p>
<p>The default for this argument is system dependent, users who want a specific
calling convention should specify one explicitly. The valid calling
conventions are: ‘<samp>ilp32</samp>’, ‘<samp>ilp32f</samp>’, ‘<samp>ilp32d</samp>’, ‘<samp>lp64</samp>’,
‘<samp>lp64f</samp>’, and ‘<samp>lp64d</samp>’. Some calling conventions are impossible to
implement on some ISAs: for example, ‘<samp>-march=rv32if -mabi=ilp32d</samp>’ is
invalid because the ABI requires 64-bit values be passed in F registers, but F
registers are only 32 bits wide.
</p>
</dd>
<dt><code>-mfdiv</code></dt>
<dt><code>-mno-fdiv</code></dt>
<dd><a name="index-mfdiv"></a>
<p>Do or don’t use hardware floating-point divide and square root instructions.
This requires the F or D extensions for floating-point registers. The default
is to use them if the specified architecture has these instructions.
</p>
</dd>
<dt><code>-mdiv</code></dt>
<dt><code>-mno-div</code></dt>
<dd><a name="index-mdiv-3"></a>
<p>Do or don’t use hardware instructions for integer division. This requires the
M extension. The default is to use them if the specified architecture has
these instructions.
</p>
</dd>
<dt><code>-march=<var>ISA-string</var></code></dt>
<dd><a name="index-march-10"></a>
<p>Generate code for given RISC-V ISA (e.g. ‘<samp>rv64im</samp>’). ISA strings must be
lower-case. Examples include ‘<samp>rv64i</samp>’, ‘<samp>rv32g</samp>’, and ‘<samp>rv32imaf</samp>’.
</p>
</dd>
<dt><code>-mtune=<var>processor-string</var></code></dt>
<dd><a name="index-mtune-11"></a>
<p>Optimize the output for the given processor, specified by microarchitecture
name.
</p>
</dd>
<dt><code>-mpreferred-stack-boundary=<var>num</var></code></dt>
<dd><a name="index-mpreferred_002dstack_002dboundary"></a>
<p>Attempt to keep the stack boundary aligned to a 2 raised to <var>num</var>
byte boundary. If <samp>-mpreferred-stack-boundary</samp> is not specified,
the default is 4 (16 bytes or 128-bits).
</p>
<p><strong>Warning:</strong> If you use this switch, then you must build all modules with
the same value, including any libraries. This includes the system libraries
and startup modules.
</p>
</dd>
<dt><code>-msmall-data-limit=<var>n</var></code></dt>
<dd><a name="index-msmall_002ddata_002dlimit"></a>
<p>Put global and static data smaller than <var>n</var> bytes into a special section
(on some targets).
</p>
</dd>
<dt><code>-msave-restore</code></dt>
<dt><code>-mno-save-restore</code></dt>
<dd><a name="index-msave_002drestore"></a>
<p>Do or don’t use smaller but slower prologue and epilogue code that uses
library function calls. The default is to use fast inline prologues and
epilogues.
</p>
</dd>
<dt><code>-mstrict-align</code></dt>
<dt><code>-mno-strict-align</code></dt>
<dd><a name="index-mstrict_002dalign-3"></a>
<p>Do not or do generate unaligned memory accesses. The default is set depending
on whether the processor we are optimizing for supports fast unaligned access
or not.
</p>
</dd>
<dt><code>-mcmodel=medlow</code></dt>
<dd><a name="index-mcmodel_003dmedlow"></a>
<p>Generate code for the medium-low code model. The program and its statically
defined symbols must lie within a single 2 GiB address range and must lie
between absolute addresses -2 GiB and +2 GiB. Programs can be
statically or dynamically linked. This is the default code model.
</p>
</dd>
<dt><code>-mcmodel=medany</code></dt>
<dd><a name="index-mcmodel_003dmedany"></a>
<p>Generate code for the medium-any code model. The program and its statically
defined symbols must be within any single 2 GiB address range. Programs can be
statically or dynamically linked.
</p>
</dd>
<dt><code>-mexplicit-relocs</code></dt>
<dt><code>-mno-exlicit-relocs</code></dt>
<dd><p>Use or do not use assembler relocation operators when dealing with symbolic
addresses. The alternative is to use assembler macros instead, which may
limit optimization.
</p>
</dd>
<dt><code>-mrelax</code></dt>
<dt><code>-mno-relax</code></dt>
<dd><p>Take advantage of linker relaxations to reduce the number of instructions
required to materialize symbol addresses. The default is to take advantage of
linker relaxations.
</p>
</dd>
</dl>
<hr>
<a name="RL78-Options"></a>
<div class="header">
<p>
Next: <a href="#RS_002f6000-and-PowerPC-Options" accesskey="n" rel="next">RS/6000 and PowerPC Options</a>, Previous: <a href="#RISC_002dV-Options" accesskey="p" rel="prev">RISC-V Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RL78-Options-1"></a>
<h4 class="subsection">3.18.39 RL78 Options</h4>
<a name="index-RL78-Options"></a>
<dl compact="compact">
<dt><code>-msim</code></dt>
<dd><a name="index-msim-8"></a>
<p>Links in additional target libraries to support operation within a
simulator.
</p>
</dd>
<dt><code>-mmul=none</code></dt>
<dt><code>-mmul=g10</code></dt>
<dt><code>-mmul=g13</code></dt>
<dt><code>-mmul=g14</code></dt>
<dt><code>-mmul=rl78</code></dt>
<dd><a name="index-mmul"></a>
<p>Specifies the type of hardware multiplication and division support to
be used. The simplest is <code>none</code>, which uses software for both
multiplication and division. This is the default. The <code>g13</code>
value is for the hardware multiply/divide peripheral found on the
RL78/G13 (S2 core) targets. The <code>g14</code> value selects the use of
the multiplication and division instructions supported by the RL78/G14
(S3 core) parts. The value <code>rl78</code> is an alias for <code>g14</code> and
the value <code>mg10</code> is an alias for <code>none</code>.
</p>
<p>In addition a C preprocessor macro is defined, based upon the setting
of this option. Possible values are: <code>__RL78_MUL_NONE__</code>,
<code>__RL78_MUL_G13__</code> or <code>__RL78_MUL_G14__</code>.
</p>
</dd>
<dt><code>-mcpu=g10</code></dt>
<dt><code>-mcpu=g13</code></dt>
<dt><code>-mcpu=g14</code></dt>
<dt><code>-mcpu=rl78</code></dt>
<dd><a name="index-mcpu-9"></a>
<p>Specifies the RL78 core to target. The default is the G14 core, also
known as an S3 core or just RL78. The G13 or S2 core does not have
multiply or divide instructions, instead it uses a hardware peripheral
for these operations. The G10 or S1 core does not have register
banks, so it uses a different calling convention.
</p>
<p>If this option is set it also selects the type of hardware multiply
support to use, unless this is overridden by an explicit
<samp>-mmul=none</samp> option on the command line. Thus specifying
<samp>-mcpu=g13</samp> enables the use of the G13 hardware multiply
peripheral and specifying <samp>-mcpu=g10</samp> disables the use of
hardware multiplications altogether.
</p>
<p>Note, although the RL78/G14 core is the default target, specifying
<samp>-mcpu=g14</samp> or <samp>-mcpu=rl78</samp> on the command line does
change the behavior of the toolchain since it also enables G14
hardware multiply support. If these options are not specified on the
command line then software multiplication routines will be used even
though the code targets the RL78 core. This is for backwards
compatibility with older toolchains which did not have hardware
multiply and divide support.
</p>
<p>In addition a C preprocessor macro is defined, based upon the setting
of this option. Possible values are: <code>__RL78_G10__</code>,
<code>__RL78_G13__</code> or <code>__RL78_G14__</code>.
</p>
</dd>
<dt><code>-mg10</code></dt>
<dt><code>-mg13</code></dt>
<dt><code>-mg14</code></dt>
<dt><code>-mrl78</code></dt>
<dd><a name="index-mg10"></a>
<a name="index-mg13"></a>
<a name="index-mg14"></a>
<a name="index-mrl78"></a>
<p>These are aliases for the corresponding <samp>-mcpu=</samp> option. They
are provided for backwards compatibility.
</p>
</dd>
<dt><code>-mallregs</code></dt>
<dd><a name="index-mallregs"></a>
<p>Allow the compiler to use all of the available registers. By default
registers <code>r24..r31</code> are reserved for use in interrupt handlers.
With this option enabled these registers can be used in ordinary
functions as well.
</p>
</dd>
<dt><code>-m64bit-doubles</code></dt>
<dt><code>-m32bit-doubles</code></dt>
<dd><a name="index-m64bit_002ddoubles"></a>
<a name="index-m32bit_002ddoubles"></a>
<p>Make the <code>double</code> data type be 64 bits (<samp>-m64bit-doubles</samp>)
or 32 bits (<samp>-m32bit-doubles</samp>) in size. The default is
<samp>-m32bit-doubles</samp>.
</p>
</dd>
<dt><code>-msave-mduc-in-interrupts</code></dt>
<dt><code>-mno-save-mduc-in-interrupts</code></dt>
<dd><a name="index-msave_002dmduc_002din_002dinterrupts"></a>
<a name="index-mno_002dsave_002dmduc_002din_002dinterrupts"></a>
<p>Specifies that interrupt handler functions should preserve the
MDUC registers. This is only necessary if normal code might use
the MDUC registers, for example because it performs multiplication
and division operations. The default is to ignore the MDUC registers
as this makes the interrupt handlers faster. The target option -mg13
needs to be passed for this to work as this feature is only available
on the G13 target (S2 core). The MDUC registers will only be saved
if the interrupt handler performs a multiplication or division
operation or it calls another function.
</p>
</dd>
</dl>
<hr>
<a name="RS_002f6000-and-PowerPC-Options"></a>
<div class="header">
<p>
Next: <a href="#RX-Options" accesskey="n" rel="next">RX Options</a>, Previous: <a href="#RL78-Options" accesskey="p" rel="prev">RL78 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="IBM-RS_002f6000-and-PowerPC-Options"></a>
<h4 class="subsection">3.18.40 IBM RS/6000 and PowerPC Options</h4>
<a name="index-RS_002f6000-and-PowerPC-Options"></a>
<a name="index-IBM-RS_002f6000-and-PowerPC-Options"></a>
<p>These ‘<samp>-m</samp>’ options are defined for the IBM RS/6000 and PowerPC:
</p><dl compact="compact">
<dt><code>-mpowerpc-gpopt</code></dt>
<dt><code>-mno-powerpc-gpopt</code></dt>
<dt><code>-mpowerpc-gfxopt</code></dt>
<dt><code>-mno-powerpc-gfxopt</code></dt>
<dt><code>-mpowerpc64</code></dt>
<dt><code>-mno-powerpc64</code></dt>
<dt><code>-mmfcrf</code></dt>
<dt><code>-mno-mfcrf</code></dt>
<dt><code>-mpopcntb</code></dt>
<dt><code>-mno-popcntb</code></dt>
<dt><code>-mpopcntd</code></dt>
<dt><code>-mno-popcntd</code></dt>
<dt><code>-mfprnd</code></dt>
<dt><code>-mno-fprnd</code></dt>
<dt><code>-mcmpb</code></dt>
<dt><code>-mno-cmpb</code></dt>
<dt><code>-mmfpgpr</code></dt>
<dt><code>-mno-mfpgpr</code></dt>
<dt><code>-mhard-dfp</code></dt>
<dt><code>-mno-hard-dfp</code></dt>
<dd><a name="index-mpowerpc_002dgpopt"></a>
<a name="index-mno_002dpowerpc_002dgpopt"></a>
<a name="index-mpowerpc_002dgfxopt"></a>
<a name="index-mno_002dpowerpc_002dgfxopt"></a>
<a name="index-mpowerpc64"></a>
<a name="index-mno_002dpowerpc64"></a>
<a name="index-mmfcrf-1"></a>
<a name="index-mno_002dmfcrf-1"></a>
<a name="index-mpopcntb-1"></a>
<a name="index-mno_002dpopcntb-1"></a>
<a name="index-mpopcntd"></a>
<a name="index-mno_002dpopcntd"></a>
<a name="index-mfprnd"></a>
<a name="index-mno_002dfprnd"></a>
<a name="index-mcmpb"></a>
<a name="index-mno_002dcmpb"></a>
<a name="index-mmfpgpr"></a>
<a name="index-mno_002dmfpgpr"></a>
<a name="index-mhard_002ddfp"></a>
<a name="index-mno_002dhard_002ddfp"></a>
<p>You use these options to specify which instructions are available on the
processor you are using. The default value of these options is
determined when configuring GCC. Specifying the
<samp>-mcpu=<var>cpu_type</var></samp> overrides the specification of these
options. We recommend you use the <samp>-mcpu=<var>cpu_type</var></samp> option
rather than the options listed above.
</p>
<p>Specifying <samp>-mpowerpc-gpopt</samp> allows
GCC to use the optional PowerPC architecture instructions in the
General Purpose group, including floating-point square root. Specifying
<samp>-mpowerpc-gfxopt</samp> allows GCC to
use the optional PowerPC architecture instructions in the Graphics
group, including floating-point select.
</p>
<p>The <samp>-mmfcrf</samp> option allows GCC to generate the move from
condition register field instruction implemented on the POWER4
processor and other processors that support the PowerPC V2.01
architecture.
The <samp>-mpopcntb</samp> option allows GCC to generate the popcount and
double-precision FP reciprocal estimate instruction implemented on the
POWER5 processor and other processors that support the PowerPC V2.02
architecture.
The <samp>-mpopcntd</samp> option allows GCC to generate the popcount
instruction implemented on the POWER7 processor and other processors
that support the PowerPC V2.06 architecture.
The <samp>-mfprnd</samp> option allows GCC to generate the FP round to
integer instructions implemented on the POWER5+ processor and other
processors that support the PowerPC V2.03 architecture.
The <samp>-mcmpb</samp> option allows GCC to generate the compare bytes
instruction implemented on the POWER6 processor and other processors
that support the PowerPC V2.05 architecture.
The <samp>-mmfpgpr</samp> option allows GCC to generate the FP move to/from
general-purpose register instructions implemented on the POWER6X
processor and other processors that support the extended PowerPC V2.05
architecture.
The <samp>-mhard-dfp</samp> option allows GCC to generate the decimal
floating-point instructions implemented on some POWER processors.
</p>
<p>The <samp>-mpowerpc64</samp> option allows GCC to generate the additional
64-bit instructions that are found in the full PowerPC64 architecture
and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
<samp>-mno-powerpc64</samp>.
</p>
</dd>
<dt><code>-mcpu=<var>cpu_type</var></code></dt>
<dd><a name="index-mcpu-10"></a>
<p>Set architecture type, register usage, and
instruction scheduling parameters for machine type <var>cpu_type</var>.
Supported values for <var>cpu_type</var> are ‘<samp>401</samp>’, ‘<samp>403</samp>’,
‘<samp>405</samp>’, ‘<samp>405fp</samp>’, ‘<samp>440</samp>’, ‘<samp>440fp</samp>’, ‘<samp>464</samp>’, ‘<samp>464fp</samp>’,
‘<samp>476</samp>’, ‘<samp>476fp</samp>’, ‘<samp>505</samp>’, ‘<samp>601</samp>’, ‘<samp>602</samp>’, ‘<samp>603</samp>’,
‘<samp>603e</samp>’, ‘<samp>604</samp>’, ‘<samp>604e</samp>’, ‘<samp>620</samp>’, ‘<samp>630</samp>’, ‘<samp>740</samp>’,
‘<samp>7400</samp>’, ‘<samp>7450</samp>’, ‘<samp>750</samp>’, ‘<samp>801</samp>’, ‘<samp>821</samp>’, ‘<samp>823</samp>’,
‘<samp>860</samp>’, ‘<samp>970</samp>’, ‘<samp>8540</samp>’, ‘<samp>a2</samp>’, ‘<samp>e300c2</samp>’,
‘<samp>e300c3</samp>’, ‘<samp>e500mc</samp>’, ‘<samp>e500mc64</samp>’, ‘<samp>e5500</samp>’,
‘<samp>e6500</samp>’, ‘<samp>ec603e</samp>’, ‘<samp>G3</samp>’, ‘<samp>G4</samp>’, ‘<samp>G5</samp>’,
‘<samp>titan</samp>’, ‘<samp>power3</samp>’, ‘<samp>power4</samp>’, ‘<samp>power5</samp>’, ‘<samp>power5+</samp>’,
‘<samp>power6</samp>’, ‘<samp>power6x</samp>’, ‘<samp>power7</samp>’, ‘<samp>power8</samp>’,
‘<samp>power9</samp>’, ‘<samp>powerpc</samp>’, ‘<samp>powerpc64</samp>’, ‘<samp>powerpc64le</samp>’,
‘<samp>rs64</samp>’, and ‘<samp>native</samp>’.
</p>
<p><samp>-mcpu=powerpc</samp>, <samp>-mcpu=powerpc64</samp>, and
<samp>-mcpu=powerpc64le</samp> specify pure 32-bit PowerPC (either
endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
architecture machine types, with an appropriate, generic processor
model assumed for scheduling purposes.
</p>
<p>Specifying ‘<samp>native</samp>’ as cpu type detects and selects the
architecture option that corresponds to the host processor of the
system performing the compilation.
<samp>-mcpu=native</samp> has no effect if GCC does not recognize the
processor.
</p>
<p>The other options specify a specific processor. Code generated under
those options runs best on that processor, and may not run at all on
others.
</p>
<p>The <samp>-mcpu</samp> options automatically enable or disable the
following options:
</p>
<div class="smallexample">
<pre class="smallexample">-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
-mpopcntb -mpopcntd -mpowerpc64
-mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float
-msimple-fpu -mmulhw -mdlmzb -mmfpgpr -mvsx
-mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector
-mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware
</pre></div>
<p>The particular options set for any particular CPU varies between
compiler versions, depending on what setting seems to produce optimal
code for that CPU; it doesn’t necessarily reflect the actual hardware’s
capabilities. If you wish to set an individual option to a particular
value, you may specify it after the <samp>-mcpu</samp> option, like
<samp>-mcpu=970 -mno-altivec</samp>.
</p>
<p>On AIX, the <samp>-maltivec</samp> and <samp>-mpowerpc64</samp> options are
not enabled or disabled by the <samp>-mcpu</samp> option at present because
AIX does not have full support for these options. You may still
enable or disable them individually if you’re sure it’ll work in your
environment.
</p>
</dd>
<dt><code>-mtune=<var>cpu_type</var></code></dt>
<dd><a name="index-mtune-12"></a>
<p>Set the instruction scheduling parameters for machine type
<var>cpu_type</var>, but do not set the architecture type or register usage,
as <samp>-mcpu=<var>cpu_type</var></samp> does. The same
values for <var>cpu_type</var> are used for <samp>-mtune</samp> as for
<samp>-mcpu</samp>. If both are specified, the code generated uses the
architecture and registers set by <samp>-mcpu</samp>, but the
scheduling parameters set by <samp>-mtune</samp>.
</p>
</dd>
<dt><code>-mcmodel=small</code></dt>
<dd><a name="index-mcmodel_003dsmall-1"></a>
<p>Generate PowerPC64 code for the small model: The TOC is limited to
64k.
</p>
</dd>
<dt><code>-mcmodel=medium</code></dt>
<dd><a name="index-mcmodel_003dmedium"></a>
<p>Generate PowerPC64 code for the medium model: The TOC and other static
data may be up to a total of 4G in size. This is the default for 64-bit
Linux.
</p>
</dd>
<dt><code>-mcmodel=large</code></dt>
<dd><a name="index-mcmodel_003dlarge-1"></a>
<p>Generate PowerPC64 code for the large model: The TOC may be up to 4G
in size. Other data and code is only limited by the 64-bit address
space.
</p>
</dd>
<dt><code>-maltivec</code></dt>
<dt><code>-mno-altivec</code></dt>
<dd><a name="index-maltivec"></a>
<a name="index-mno_002daltivec"></a>
<p>Generate code that uses (does not use) AltiVec instructions, and also
enable the use of built-in functions that allow more direct access to
the AltiVec instruction set. You may also need to set
<samp>-mabi=altivec</samp> to adjust the current ABI with AltiVec ABI
enhancements.
</p>
<p>When <samp>-maltivec</samp> is used, rather than <samp>-maltivec=le</samp> or
<samp>-maltivec=be</samp>, the element order for AltiVec intrinsics such
as <code>vec_splat</code>, <code>vec_extract</code>, and <code>vec_insert</code>
match array element order corresponding to the endianness of the
target. That is, element zero identifies the leftmost element in a
vector register when targeting a big-endian platform, and identifies
the rightmost element in a vector register when targeting a
little-endian platform.
</p>
</dd>
<dt><code>-maltivec=be</code></dt>
<dd><a name="index-maltivec_003dbe"></a>
<p>Generate AltiVec instructions using big-endian element order,
regardless of whether the target is big- or little-endian. This is
the default when targeting a big-endian platform. Using this option
is currently deprecated. Support for this feature will be removed in
GCC 9.
</p>
<p>The element order is used to interpret element numbers in AltiVec
intrinsics such as <code>vec_splat</code>, <code>vec_extract</code>, and
<code>vec_insert</code>. By default, these match array element order
corresponding to the endianness for the target.
</p>
</dd>
<dt><code>-maltivec=le</code></dt>
<dd><a name="index-maltivec_003dle"></a>
<p>Generate AltiVec instructions using little-endian element order,
regardless of whether the target is big- or little-endian. This is
the default when targeting a little-endian platform. This option is
currently ignored when targeting a big-endian platform.
</p>
<p>The element order is used to interpret element numbers in AltiVec
intrinsics such as <code>vec_splat</code>, <code>vec_extract</code>, and
<code>vec_insert</code>. By default, these match array element order
corresponding to the endianness for the target.
</p>
</dd>
<dt><code>-mvrsave</code></dt>
<dt><code>-mno-vrsave</code></dt>
<dd><a name="index-mvrsave"></a>
<a name="index-mno_002dvrsave"></a>
<p>Generate VRSAVE instructions when generating AltiVec code.
</p>
</dd>
<dt><code>-msecure-plt</code></dt>
<dd><a name="index-msecure_002dplt-1"></a>
<p>Generate code that allows <code>ld</code> and <code>ld.so</code>
to build executables and shared
libraries with non-executable <code>.plt</code> and <code>.got</code> sections.
This is a PowerPC
32-bit SYSV ABI option.
</p>
</dd>
<dt><code>-mbss-plt</code></dt>
<dd><a name="index-mbss_002dplt-1"></a>
<p>Generate code that uses a BSS <code>.plt</code> section that <code>ld.so</code>
fills in, and
requires <code>.plt</code> and <code>.got</code>
sections that are both writable and executable.
This is a PowerPC 32-bit SYSV ABI option.
</p>
</dd>
<dt><code>-misel</code></dt>
<dt><code>-mno-isel</code></dt>
<dd><a name="index-misel-1"></a>
<a name="index-mno_002disel-1"></a>
<p>This switch enables or disables the generation of ISEL instructions.
</p>
</dd>
<dt><code>-misel=<var>yes/no</var></code></dt>
<dd><p>This switch has been deprecated. Use <samp>-misel</samp> and
<samp>-mno-isel</samp> instead.
</p>
</dd>
<dt><code>-mpaired</code></dt>
<dt><code>-mno-paired</code></dt>
<dd><a name="index-mpaired"></a>
<a name="index-mno_002dpaired"></a>
<p>This switch enables or disables the generation of PAIRED simd
instructions.
</p>
</dd>
<dt><code>-mvsx</code></dt>
<dt><code>-mno-vsx</code></dt>
<dd><a name="index-mvsx"></a>
<a name="index-mno_002dvsx"></a>
<p>Generate code that uses (does not use) vector/scalar (VSX)
instructions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set.
</p>
</dd>
<dt><code>-mcrypto</code></dt>
<dt><code>-mno-crypto</code></dt>
<dd><a name="index-mcrypto"></a>
<a name="index-mno_002dcrypto"></a>
<p>Enable the use (disable) of the built-in functions that allow direct
access to the cryptographic instructions that were added in version
2.07 of the PowerPC ISA.
</p>
</dd>
<dt><code>-mdirect-move</code></dt>
<dt><code>-mno-direct-move</code></dt>
<dd><a name="index-mdirect_002dmove"></a>
<a name="index-mno_002ddirect_002dmove"></a>
<p>Generate code that uses (does not use) the instructions to move data
between the general purpose registers and the vector/scalar (VSX)
registers that were added in version 2.07 of the PowerPC ISA.
</p>
</dd>
<dt><code>-mhtm</code></dt>
<dt><code>-mno-htm</code></dt>
<dd><a name="index-mhtm"></a>
<a name="index-mno_002dhtm"></a>
<p>Enable (disable) the use of the built-in functions that allow direct
access to the Hardware Transactional Memory (HTM) instructions that
were added in version 2.07 of the PowerPC ISA.
</p>
</dd>
<dt><code>-mpower8-fusion</code></dt>
<dt><code>-mno-power8-fusion</code></dt>
<dd><a name="index-mpower8_002dfusion"></a>
<a name="index-mno_002dpower8_002dfusion"></a>
<p>Generate code that keeps (does not keeps) some integer operations
adjacent so that the instructions can be fused together on power8 and
later processors.
</p>
</dd>
<dt><code>-mpower8-vector</code></dt>
<dt><code>-mno-power8-vector</code></dt>
<dd><a name="index-mpower8_002dvector"></a>
<a name="index-mno_002dpower8_002dvector"></a>
<p>Generate code that uses (does not use) the vector and scalar
instructions that were added in version 2.07 of the PowerPC ISA. Also
enable the use of built-in functions that allow more direct access to
the vector instructions.
</p>
</dd>
<dt><code>-mquad-memory</code></dt>
<dt><code>-mno-quad-memory</code></dt>
<dd><a name="index-mquad_002dmemory"></a>
<a name="index-mno_002dquad_002dmemory"></a>
<p>Generate code that uses (does not use) the non-atomic quad word memory
instructions. The <samp>-mquad-memory</samp> option requires use of
64-bit mode.
</p>
</dd>
<dt><code>-mquad-memory-atomic</code></dt>
<dt><code>-mno-quad-memory-atomic</code></dt>
<dd><a name="index-mquad_002dmemory_002datomic"></a>
<a name="index-mno_002dquad_002dmemory_002datomic"></a>
<p>Generate code that uses (does not use) the atomic quad word memory
instructions. The <samp>-mquad-memory-atomic</samp> option requires use of
64-bit mode.
</p>
</dd>
<dt><code>-mfloat128</code></dt>
<dt><code>-mno-float128</code></dt>
<dd><a name="index-mfloat128-1"></a>
<a name="index-mno_002dfloat128-1"></a>
<p>Enable/disable the <var>__float128</var> keyword for IEEE 128-bit floating point
and use either software emulation for IEEE 128-bit floating point or
hardware instructions.
</p>
<p>The VSX instruction set (<samp>-mvsx</samp>, <samp>-mcpu=power7</samp>,
<samp>-mcpu=power8</samp>), or <samp>-mcpu=power9</samp> must be enabled to
use the IEEE 128-bit floating point support. The IEEE 128-bit
floating point support only works on PowerPC Linux systems.
</p>
<p>The default for <samp>-mfloat128</samp> is enabled on PowerPC Linux
systems using the VSX instruction set, and disabled on other systems.
</p>
<p>If you use the ISA 3.0 instruction set (<samp>-mpower9-vector</samp> or
<samp>-mcpu=power9</samp>) on a 64-bit system, the IEEE 128-bit floating
point support will also enable the generation of ISA 3.0 IEEE 128-bit
floating point instructions. Otherwise, if you do not specify to
generate ISA 3.0 instructions or you are targeting a 32-bit big endian
system, IEEE 128-bit floating point will be done with software
emulation.
</p>
</dd>
<dt><code>-mfloat128-hardware</code></dt>
<dt><code>-mno-float128-hardware</code></dt>
<dd><a name="index-mfloat128_002dhardware"></a>
<a name="index-mno_002dfloat128_002dhardware"></a>
<p>Enable/disable using ISA 3.0 hardware instructions to support the
<var>__float128</var> data type.
</p>
<p>The default for <samp>-mfloat128-hardware</samp> is enabled on PowerPC
Linux systems using the ISA 3.0 instruction set, and disabled on other
systems.
</p>
</dd>
<dt><code>-m32</code></dt>
<dt><code>-m64</code></dt>
<dd><a name="index-m32-1"></a>
<a name="index-m64-1"></a>
<p>Generate code for 32-bit or 64-bit environments of Darwin and SVR4
targets (including GNU/Linux). The 32-bit environment sets int, long
and pointer to 32 bits and generates code that runs on any PowerPC
variant. The 64-bit environment sets int to 32 bits and long and
pointer to 64 bits, and generates code for PowerPC64, as for
<samp>-mpowerpc64</samp>.
</p>
</dd>
<dt><code>-mfull-toc</code></dt>
<dt><code>-mno-fp-in-toc</code></dt>
<dt><code>-mno-sum-in-toc</code></dt>
<dt><code>-mminimal-toc</code></dt>
<dd><a name="index-mfull_002dtoc-1"></a>
<a name="index-mno_002dfp_002din_002dtoc-1"></a>
<a name="index-mno_002dsum_002din_002dtoc-1"></a>
<a name="index-mminimal_002dtoc-1"></a>
<p>Modify generation of the TOC (Table Of Contents), which is created for
every executable file. The <samp>-mfull-toc</samp> option is selected by
default. In that case, GCC allocates at least one TOC entry for
each unique non-automatic variable reference in your program. GCC
also places floating-point constants in the TOC. However, only
16,384 entries are available in the TOC.
</p>
<p>If you receive a linker error message that saying you have overflowed
the available TOC space, you can reduce the amount of TOC space used
with the <samp>-mno-fp-in-toc</samp> and <samp>-mno-sum-in-toc</samp> options.
<samp>-mno-fp-in-toc</samp> prevents GCC from putting floating-point
constants in the TOC and <samp>-mno-sum-in-toc</samp> forces GCC to
generate code to calculate the sum of an address and a constant at
run time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly
slower and larger code at the expense of conserving TOC space.
</p>
<p>If you still run out of space in the TOC even when you specify both of
these options, specify <samp>-mminimal-toc</samp> instead. This option causes
GCC to make only one TOC entry for every file. When you specify this
option, GCC produces code that is slower and larger but which
uses extremely little TOC space. You may wish to use this option
only on files that contain less frequently-executed code.
</p>
</dd>
<dt><code>-maix64</code></dt>
<dt><code>-maix32</code></dt>
<dd><a name="index-maix64"></a>
<a name="index-maix32-1"></a>
<p>Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
<code>long</code> type, and the infrastructure needed to support them.
Specifying <samp>-maix64</samp> implies <samp>-mpowerpc64</samp>,
while <samp>-maix32</samp> disables the 64-bit ABI and
implies <samp>-mno-powerpc64</samp>. GCC defaults to <samp>-maix32</samp>.
</p>
</dd>
<dt><code>-mxl-compat</code></dt>
<dt><code>-mno-xl-compat</code></dt>
<dd><a name="index-mxl_002dcompat-1"></a>
<a name="index-mno_002dxl_002dcompat-1"></a>
<p>Produce code that conforms more closely to IBM XL compiler semantics
when using AIX-compatible ABI. Pass floating-point arguments to
prototyped functions beyond the register save area (RSA) on the stack
in addition to argument FPRs. Do not assume that most significant
double in 128-bit long double value is properly rounded when comparing
values and converting to double. Use XL symbol names for long double
support routines.
</p>
<p>The AIX calling convention was extended but not initially documented to
handle an obscure K&R C case of calling a function that takes the
address of its arguments with fewer arguments than declared. IBM XL
compilers access floating-point arguments that do not fit in the
RSA from the stack when a subroutine is compiled without
optimization. Because always storing floating-point arguments on the
stack is inefficient and rarely needed, this option is not enabled by
default and only is necessary when calling subroutines compiled by IBM
XL compilers without optimization.
</p>
</dd>
<dt><code>-mpe</code></dt>
<dd><a name="index-mpe"></a>
<p>Support <em>IBM RS/6000 SP</em> <em>Parallel Environment</em> (PE). Link an
application written to use message passing with special startup code to
enable the application to run. The system must have PE installed in the
standard location (<samp>/usr/lpp/ppe.poe/</samp>), or the <samp>specs</samp> file
must be overridden with the <samp>-specs=</samp> option to specify the
appropriate directory location. The Parallel Environment does not
support threads, so the <samp>-mpe</samp> option and the <samp>-pthread</samp>
option are incompatible.
</p>
</dd>
<dt><code>-malign-natural</code></dt>
<dt><code>-malign-power</code></dt>
<dd><a name="index-malign_002dnatural-1"></a>
<a name="index-malign_002dpower-1"></a>
<p>On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
<samp>-malign-natural</samp> overrides the ABI-defined alignment of larger
types, such as floating-point doubles, on their natural size-based boundary.
The option <samp>-malign-power</samp> instructs GCC to follow the ABI-specified
alignment rules. GCC defaults to the standard alignment defined in the ABI.
</p>
<p>On 64-bit Darwin, natural alignment is the default, and <samp>-malign-power</samp>
is not supported.
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-msoft_002dfloat-9"></a>
<a name="index-mhard_002dfloat-5"></a>
<p>Generate code that does not use (uses) the floating-point register set.
Software floating-point emulation is provided if you use the
<samp>-msoft-float</samp> option, and pass the option to GCC when linking.
</p>
</dd>
<dt><code>-msingle-float</code></dt>
<dt><code>-mdouble-float</code></dt>
<dd><a name="index-msingle_002dfloat-2"></a>
<a name="index-mdouble_002dfloat-2"></a>
<p>Generate code for single- or double-precision floating-point operations.
<samp>-mdouble-float</samp> implies <samp>-msingle-float</samp>.
</p>
</dd>
<dt><code>-msimple-fpu</code></dt>
<dd><a name="index-msimple_002dfpu"></a>
<p>Do not generate <code>sqrt</code> and <code>div</code> instructions for hardware
floating-point unit.
</p>
</dd>
<dt><code>-mfpu=<var>name</var></code></dt>
<dd><a name="index-mfpu-3"></a>
<p>Specify type of floating-point unit. Valid values for <var>name</var> are
‘<samp>sp_lite</samp>’ (equivalent to <samp>-msingle-float -msimple-fpu</samp>),
‘<samp>dp_lite</samp>’ (equivalent to <samp>-mdouble-float -msimple-fpu</samp>),
‘<samp>sp_full</samp>’ (equivalent to <samp>-msingle-float</samp>),
and ‘<samp>dp_full</samp>’ (equivalent to <samp>-mdouble-float</samp>).
</p>
</dd>
<dt><code>-mxilinx-fpu</code></dt>
<dd><a name="index-mxilinx_002dfpu"></a>
<p>Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
</p>
</dd>
<dt><code>-mmultiple</code></dt>
<dt><code>-mno-multiple</code></dt>
<dd><a name="index-mmultiple-1"></a>
<a name="index-mno_002dmultiple-1"></a>
<p>Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions. These
instructions are generated by default on POWER systems, and not
generated on PowerPC systems. Do not use <samp>-mmultiple</samp> on little-endian
PowerPC systems, since those instructions do not work when the
processor is in little-endian mode. The exceptions are PPC740 and
PPC750 which permit these instructions in little-endian mode.
</p>
</dd>
<dt><code>-mupdate</code></dt>
<dt><code>-mno-update</code></dt>
<dd><a name="index-mupdate-1"></a>
<a name="index-mno_002dupdate-1"></a>
<p>Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location. These instructions are generated by default. If you use
<samp>-mno-update</samp>, there is a small window between the time that the
stack pointer is updated and the address of the previous frame is
stored, which means code that walks the stack frame across interrupts or
signals may get corrupted data.
</p>
</dd>
<dt><code>-mavoid-indexed-addresses</code></dt>
<dt><code>-mno-avoid-indexed-addresses</code></dt>
<dd><a name="index-mavoid_002dindexed_002daddresses-1"></a>
<a name="index-mno_002davoid_002dindexed_002daddresses-1"></a>
<p>Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions. These instructions can incur a performance
penalty on Power6 processors in certain situations, such as when
stepping through large arrays that cross a 16M boundary. This option
is enabled by default when targeting Power6 and disabled otherwise.
</p>
</dd>
<dt><code>-mfused-madd</code></dt>
<dt><code>-mno-fused-madd</code></dt>
<dd><a name="index-mfused_002dmadd-3"></a>
<a name="index-mno_002dfused_002dmadd-3"></a>
<p>Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default
if hardware floating point is used. The machine-dependent
<samp>-mfused-madd</samp> option is now mapped to the machine-independent
<samp>-ffp-contract=fast</samp> option, and <samp>-mno-fused-madd</samp> is
mapped to <samp>-ffp-contract=off</samp>.
</p>
</dd>
<dt><code>-mmulhw</code></dt>
<dt><code>-mno-mulhw</code></dt>
<dd><a name="index-mmulhw"></a>
<a name="index-mno_002dmulhw"></a>
<p>Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
These instructions are generated by default when targeting those
processors.
</p>
</dd>
<dt><code>-mdlmzb</code></dt>
<dt><code>-mno-dlmzb</code></dt>
<dd><a name="index-mdlmzb"></a>
<a name="index-mno_002ddlmzb"></a>
<p>Generate code that uses (does not use) the string-search ‘<samp>dlmzb</samp>’
instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
generated by default when targeting those processors.
</p>
</dd>
<dt><code>-mno-bit-align</code></dt>
<dt><code>-mbit-align</code></dt>
<dd><a name="index-mno_002dbit_002dalign"></a>
<a name="index-mbit_002dalign"></a>
<p>On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the
bit-field.
</p>
<p>For example, by default a structure containing nothing but 8
<code>unsigned</code> bit-fields of length 1 is aligned to a 4-byte
boundary and has a size of 4 bytes. By using <samp>-mno-bit-align</samp>,
the structure is aligned to a 1-byte boundary and is 1 byte in
size.
</p>
</dd>
<dt><code>-mno-strict-align</code></dt>
<dt><code>-mstrict-align</code></dt>
<dd><a name="index-mno_002dstrict_002dalign-2"></a>
<a name="index-mstrict_002dalign-4"></a>
<p>On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references are handled by the system.
</p>
</dd>
<dt><code>-mrelocatable</code></dt>
<dt><code>-mno-relocatable</code></dt>
<dd><a name="index-mrelocatable-1"></a>
<a name="index-mno_002drelocatable-1"></a>
<p>Generate code that allows (does not allow) a static executable to be
relocated to a different address at run time. A simple embedded
PowerPC system loader should relocate the entire contents of
<code>.got2</code> and 4-byte locations listed in the <code>.fixup</code> section,
a table of 32-bit addresses generated by this option. For this to
work, all objects linked together must be compiled with
<samp>-mrelocatable</samp> or <samp>-mrelocatable-lib</samp>.
<samp>-mrelocatable</samp> code aligns the stack to an 8-byte boundary.
</p>
</dd>
<dt><code>-mrelocatable-lib</code></dt>
<dt><code>-mno-relocatable-lib</code></dt>
<dd><a name="index-mrelocatable_002dlib-1"></a>
<a name="index-mno_002drelocatable_002dlib-1"></a>
<p>Like <samp>-mrelocatable</samp>, <samp>-mrelocatable-lib</samp> generates a
<code>.fixup</code> section to allow static executables to be relocated at
run time, but <samp>-mrelocatable-lib</samp> does not use the smaller stack
alignment of <samp>-mrelocatable</samp>. Objects compiled with
<samp>-mrelocatable-lib</samp> may be linked with objects compiled with
any combination of the <samp>-mrelocatable</samp> options.
</p>
</dd>
<dt><code>-mno-toc</code></dt>
<dt><code>-mtoc</code></dt>
<dd><a name="index-mno_002dtoc-1"></a>
<a name="index-mtoc-1"></a>
<p>On System V.4 and embedded PowerPC systems do not (do) assume that
register 2 contains a pointer to a global area pointing to the addresses
used in the program.
</p>
</dd>
<dt><code>-mlittle</code></dt>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mlittle-1"></a>
<a name="index-mlittle_002dendian-9"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
processor in little-endian mode. The <samp>-mlittle-endian</samp> option is
the same as <samp>-mlittle</samp>.
</p>
</dd>
<dt><code>-mbig</code></dt>
<dt><code>-mbig-endian</code></dt>
<dd><a name="index-mbig-1"></a>
<a name="index-mbig_002dendian-9"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
processor in big-endian mode. The <samp>-mbig-endian</samp> option is
the same as <samp>-mbig</samp>.
</p>
</dd>
<dt><code>-mdynamic-no-pic</code></dt>
<dd><a name="index-mdynamic_002dno_002dpic-1"></a>
<p>On Darwin and Mac OS X systems, compile code so that it is not
relocatable, but that its external references are relocatable. The
resulting code is suitable for applications, but not shared
libraries.
</p>
</dd>
<dt><code>-msingle-pic-base</code></dt>
<dd><a name="index-msingle_002dpic_002dbase-2"></a>
<p>Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
</p>
</dd>
<dt><code>-mprioritize-restricted-insns=<var>priority</var></code></dt>
<dd><a name="index-mprioritize_002drestricted_002dinsns-1"></a>
<p>This option controls the priority that is assigned to
dispatch-slot restricted instructions during the second scheduling
pass. The argument <var>priority</var> takes the value ‘<samp>0</samp>’, ‘<samp>1</samp>’,
or ‘<samp>2</samp>’ to assign no, highest, or second-highest (respectively)
priority to dispatch-slot restricted
instructions.
</p>
</dd>
<dt><code>-msched-costly-dep=<var>dependence_type</var></code></dt>
<dd><a name="index-msched_002dcostly_002ddep-1"></a>
<p>This option controls which dependences are considered costly
by the target during instruction scheduling. The argument
<var>dependence_type</var> takes one of the following values:
</p>
<dl compact="compact">
<dt>‘<samp>no</samp>’</dt>
<dd><p>No dependence is costly.
</p>
</dd>
<dt>‘<samp>all</samp>’</dt>
<dd><p>All dependences are costly.
</p>
</dd>
<dt>‘<samp>true_store_to_load</samp>’</dt>
<dd><p>A true dependence from store to load is costly.
</p>
</dd>
<dt>‘<samp>store_to_load</samp>’</dt>
<dd><p>Any dependence from store to load is costly.
</p>
</dd>
<dt><var>number</var></dt>
<dd><p>Any dependence for which the latency is greater than or equal to
<var>number</var> is costly.
</p></dd>
</dl>
</dd>
<dt><code>-minsert-sched-nops=<var>scheme</var></code></dt>
<dd><a name="index-minsert_002dsched_002dnops-1"></a>
<p>This option controls which NOP insertion scheme is used during
the second scheduling pass. The argument <var>scheme</var> takes one of the
following values:
</p>
<dl compact="compact">
<dt>‘<samp>no</samp>’</dt>
<dd><p>Don’t insert NOPs.
</p>
</dd>
<dt>‘<samp>pad</samp>’</dt>
<dd><p>Pad with NOPs any dispatch group that has vacant issue slots,
according to the scheduler’s grouping.
</p>
</dd>
<dt>‘<samp>regroup_exact</samp>’</dt>
<dd><p>Insert NOPs to force costly dependent insns into
separate groups. Insert exactly as many NOPs as needed to force an insn
to a new group, according to the estimated processor grouping.
</p>
</dd>
<dt><var>number</var></dt>
<dd><p>Insert NOPs to force costly dependent insns into
separate groups. Insert <var>number</var> NOPs to force an insn to a new group.
</p></dd>
</dl>
</dd>
<dt><code>-mcall-sysv</code></dt>
<dd><a name="index-mcall_002dsysv-1"></a>
<p>On System V.4 and embedded PowerPC systems compile code using calling
conventions that adhere to the March 1995 draft of the System V
Application Binary Interface, PowerPC processor supplement. This is the
default unless you configured GCC using ‘<samp>powerpc-*-eabiaix</samp>’.
</p>
</dd>
<dt><code>-mcall-sysv-eabi</code></dt>
<dt><code>-mcall-eabi</code></dt>
<dd><a name="index-mcall_002dsysv_002deabi-1"></a>
<a name="index-mcall_002deabi-1"></a>
<p>Specify both <samp>-mcall-sysv</samp> and <samp>-meabi</samp> options.
</p>
</dd>
<dt><code>-mcall-sysv-noeabi</code></dt>
<dd><a name="index-mcall_002dsysv_002dnoeabi-1"></a>
<p>Specify both <samp>-mcall-sysv</samp> and <samp>-mno-eabi</samp> options.
</p>
</dd>
<dt><code>-mcall-aixdesc</code></dt>
<dd><a name="index-m-1"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the AIX
operating system.
</p>
</dd>
<dt><code>-mcall-linux</code></dt>
<dd><a name="index-mcall_002dlinux-1"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.
</p>
</dd>
<dt><code>-mcall-freebsd</code></dt>
<dd><a name="index-mcall_002dfreebsd-1"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
FreeBSD operating system.
</p>
</dd>
<dt><code>-mcall-netbsd</code></dt>
<dd><a name="index-mcall_002dnetbsd-2"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
NetBSD operating system.
</p>
</dd>
<dt><code>-mcall-openbsd</code></dt>
<dd><a name="index-mcall_002dnetbsd-3"></a>
<p>On System V.4 and embedded PowerPC systems compile code for the
OpenBSD operating system.
</p>
</dd>
<dt><code>-mtraceback=<var>traceback_type</var></code></dt>
<dd><a name="index-mtraceback"></a>
<p>Select the type of traceback table. Valid values for <var>traceback_type</var>
are ‘<samp>full</samp>’, ‘<samp>part</samp>’, and ‘<samp>no</samp>’.
</p>
</dd>
<dt><code>-maix-struct-return</code></dt>
<dd><a name="index-maix_002dstruct_002dreturn-1"></a>
<p>Return all structures in memory (as specified by the AIX ABI).
</p>
</dd>
<dt><code>-msvr4-struct-return</code></dt>
<dd><a name="index-msvr4_002dstruct_002dreturn-1"></a>
<p>Return structures smaller than 8 bytes in registers (as specified by the
SVR4 ABI).
</p>
</dd>
<dt><code>-mabi=<var>abi-type</var></code></dt>
<dd><a name="index-mabi-4"></a>
<p>Extend the current ABI with a particular extension, or remove such extension.
Valid values are ‘<samp>altivec</samp>’, ‘<samp>no-altivec</samp>’, ‘<samp>spe</samp>’,
‘<samp>no-spe</samp>’, ‘<samp>ibmlongdouble</samp>’, ‘<samp>ieeelongdouble</samp>’,
‘<samp>elfv1</samp>’, ‘<samp>elfv2</samp>’.
</p>
</dd>
<dt><code>-mabi=ibmlongdouble</code></dt>
<dd><a name="index-mabi_003dibmlongdouble-1"></a>
<p>Change the current ABI to use IBM extended-precision long double.
This is not likely to work if your system defaults to using IEEE
extended-precision long double. If you change the long double type
from IEEE extended-precision, the compiler will issue a warning unless
you use the <samp>-Wno-psabi</samp> option.
</p>
</dd>
<dt><code>-mabi=ieeelongdouble</code></dt>
<dd><a name="index-mabi_003dieeelongdouble-1"></a>
<p>Change the current ABI to use IEEE extended-precision long double.
This is not likely to work if your system defaults to using IBM
extended-precision long double. If you change the long double type
from IBM extended-precision, the compiler will issue a warning unless
you use the <samp>-Wno-psabi</samp> option.
</p>
</dd>
<dt><code>-mabi=elfv1</code></dt>
<dd><a name="index-mabi_003delfv1-1"></a>
<p>Change the current ABI to use the ELFv1 ABI.
This is the default ABI for big-endian PowerPC 64-bit Linux.
Overriding the default ABI requires special system support and is
likely to fail in spectacular ways.
</p>
</dd>
<dt><code>-mabi=elfv2</code></dt>
<dd><a name="index-mabi_003delfv2-1"></a>
<p>Change the current ABI to use the ELFv2 ABI.
This is the default ABI for little-endian PowerPC 64-bit Linux.
Overriding the default ABI requires special system support and is
likely to fail in spectacular ways.
</p>
</dd>
<dt><code>-mgnu-attribute</code></dt>
<dt><code>-mno-gnu-attribute</code></dt>
<dd><a name="index-mgnu_002dattribute-1"></a>
<a name="index-mno_002dgnu_002dattribute-1"></a>
<p>Emit .gnu_attribute assembly directives to set tag/value pairs in a
.gnu.attributes section that specify ABI variations in function
parameters or return values.
</p>
</dd>
<dt><code>-mprototype</code></dt>
<dt><code>-mno-prototype</code></dt>
<dd><a name="index-mprototype-1"></a>
<a name="index-mno_002dprototype-1"></a>
<p>On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped. Otherwise, the
compiler must insert an instruction before every non-prototyped call to
set or clear bit 6 of the condition code register (<code>CR</code>) to
indicate whether floating-point values are passed in the floating-point
registers in case the function takes variable arguments. With
<samp>-mprototype</samp>, only calls to prototyped variable argument functions
set or clear the bit.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim-9"></a>
<p>On embedded PowerPC systems, assume that the startup module is called
<samp>sim-crt0.o</samp> and that the standard C libraries are <samp>libsim.a</samp> and
<samp>libc.a</samp>. This is the default for ‘<samp>powerpc-*-eabisim</samp>’
configurations.
</p>
</dd>
<dt><code>-mmvme</code></dt>
<dd><a name="index-mmvme-1"></a>
<p>On embedded PowerPC systems, assume that the startup module is called
<samp>crt0.o</samp> and the standard C libraries are <samp>libmvme.a</samp> and
<samp>libc.a</samp>.
</p>
</dd>
<dt><code>-mads</code></dt>
<dd><a name="index-mads-1"></a>
<p>On embedded PowerPC systems, assume that the startup module is called
<samp>crt0.o</samp> and the standard C libraries are <samp>libads.a</samp> and
<samp>libc.a</samp>.
</p>
</dd>
<dt><code>-myellowknife</code></dt>
<dd><a name="index-myellowknife-1"></a>
<p>On embedded PowerPC systems, assume that the startup module is called
<samp>crt0.o</samp> and the standard C libraries are <samp>libyk.a</samp> and
<samp>libc.a</samp>.
</p>
</dd>
<dt><code>-mvxworks</code></dt>
<dd><a name="index-mvxworks-1"></a>
<p>On System V.4 and embedded PowerPC systems, specify that you are
compiling for a VxWorks system.
</p>
</dd>
<dt><code>-memb</code></dt>
<dd><a name="index-memb-1"></a>
<p>On embedded PowerPC systems, set the <code>PPC_EMB</code> bit in the ELF flags
header to indicate that ‘<samp>eabi</samp>’ extended relocations are used.
</p>
</dd>
<dt><code>-meabi</code></dt>
<dt><code>-mno-eabi</code></dt>
<dd><a name="index-meabi-1"></a>
<a name="index-mno_002deabi-1"></a>
<p>On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (EABI), which is a set of
modifications to the System V.4 specifications. Selecting <samp>-meabi</samp>
means that the stack is aligned to an 8-byte boundary, a function
<code>__eabi</code> is called from <code>main</code> to set up the EABI
environment, and the <samp>-msdata</samp> option can use both <code>r2</code> and
<code>r13</code> to point to two separate small data areas. Selecting
<samp>-mno-eabi</samp> means that the stack is aligned to a 16-byte boundary,
no EABI initialization function is called from <code>main</code>, and the
<samp>-msdata</samp> option only uses <code>r13</code> to point to a single
small data area. The <samp>-meabi</samp> option is on by default if you
configured GCC using one of the ‘<samp>powerpc*-*-eabi*</samp>’ options.
</p>
</dd>
<dt><code>-msdata=eabi</code></dt>
<dd><a name="index-msdata_003deabi-1"></a>
<p>On System V.4 and embedded PowerPC systems, put small initialized
<code>const</code> global and static data in the <code>.sdata2</code> section, which
is pointed to by register <code>r2</code>. Put small initialized
non-<code>const</code> global and static data in the <code>.sdata</code> section,
which is pointed to by register <code>r13</code>. Put small uninitialized
global and static data in the <code>.sbss</code> section, which is adjacent to
the <code>.sdata</code> section. The <samp>-msdata=eabi</samp> option is
incompatible with the <samp>-mrelocatable</samp> option. The
<samp>-msdata=eabi</samp> option also sets the <samp>-memb</samp> option.
</p>
</dd>
<dt><code>-msdata=sysv</code></dt>
<dd><a name="index-msdata_003dsysv-1"></a>
<p>On System V.4 and embedded PowerPC systems, put small global and static
data in the <code>.sdata</code> section, which is pointed to by register
<code>r13</code>. Put small uninitialized global and static data in the
<code>.sbss</code> section, which is adjacent to the <code>.sdata</code> section.
The <samp>-msdata=sysv</samp> option is incompatible with the
<samp>-mrelocatable</samp> option.
</p>
</dd>
<dt><code>-msdata=default</code></dt>
<dt><code>-msdata</code></dt>
<dd><a name="index-msdata_003ddefault-2"></a>
<a name="index-msdata-2"></a>
<p>On System V.4 and embedded PowerPC systems, if <samp>-meabi</samp> is used,
compile code the same as <samp>-msdata=eabi</samp>, otherwise compile code the
same as <samp>-msdata=sysv</samp>.
</p>
</dd>
<dt><code>-msdata=data</code></dt>
<dd><a name="index-msdata_003ddata-1"></a>
<p>On System V.4 and embedded PowerPC systems, put small global
data in the <code>.sdata</code> section. Put small uninitialized global
data in the <code>.sbss</code> section. Do not use register <code>r13</code>
to address small data however. This is the default behavior unless
other <samp>-msdata</samp> options are used.
</p>
</dd>
<dt><code>-msdata=none</code></dt>
<dt><code>-mno-sdata</code></dt>
<dd><a name="index-msdata_003dnone-3"></a>
<a name="index-mno_002dsdata-3"></a>
<p>On embedded PowerPC systems, put all initialized global and static data
in the <code>.data</code> section, and all uninitialized data in the
<code>.bss</code> section.
</p>
</dd>
<dt><code>-mreadonly-in-sdata</code></dt>
<dt><code>-mreadonly-in-sdata</code></dt>
<dd><a name="index-mreadonly_002din_002dsdata"></a>
<a name="index-mno_002dreadonly_002din_002dsdata"></a>
<p>Put read-only objects in the <code>.sdata</code> section as well. This is the
default.
</p>
</dd>
<dt><code>-mblock-move-inline-limit=<var>num</var></code></dt>
<dd><a name="index-mblock_002dmove_002dinline_002dlimit-1"></a>
<p>Inline all block moves (such as calls to <code>memcpy</code> or structure
copies) less than or equal to <var>num</var> bytes. The minimum value for
<var>num</var> is 32 bytes on 32-bit targets and 64 bytes on 64-bit
targets. The default value is target-specific.
</p>
</dd>
<dt><code>-mblock-compare-inline-limit=<var>num</var></code></dt>
<dd><a name="index-mblock_002dcompare_002dinline_002dlimit"></a>
<p>Generate non-looping inline code for all block compares (such as calls
to <code>memcmp</code> or structure compares) less than or equal to <var>num</var>
bytes. If <var>num</var> is 0, all inline expansion (non-loop and loop) of
block compare is disabled. The default value is target-specific.
</p>
</dd>
<dt><code>-mblock-compare-inline-loop-limit=<var>num</var></code></dt>
<dd><a name="index-mblock_002dcompare_002dinline_002dloop_002dlimit"></a>
<p>Generate an inline expansion using loop code for all block compares that
are less than or equal to <var>num</var> bytes, but greater than the limit
for non-loop inline block compare expansion. If the block length is not
constant, at most <var>num</var> bytes will be compared before <code>memcmp</code>
is called to compare the remainder of the block. The default value is
target-specific.
</p>
</dd>
<dt><code>-mstring-compare-inline-limit=<var>num</var></code></dt>
<dd><a name="index-mstring_002dcompare_002dinline_002dlimit"></a>
<p>Generate at most <var>num</var> pairs of load instructions to compare the
string inline. If the difference or end of string is not found at the
end of the inline compare a call to <code>strcmp</code> or <code>strncmp</code> will
take care of the rest of the comparison. The default is 8 pairs of
loads, which will compare 64 bytes on a 64-bit target and 32 bytes on a
32-bit target.
</p>
</dd>
<dt><code>-G <var>num</var></code></dt>
<dd><a name="index-G-5"></a>
<a name="index-smaller-data-references-_0028PowerPC_0029-1"></a>
<a name="index-_002esdata_002f_002esdata2-references-_0028PowerPC_0029-1"></a>
<p>On embedded PowerPC systems, put global and static items less than or
equal to <var>num</var> bytes into the small data or BSS sections instead of
the normal data or BSS section. By default, <var>num</var> is 8. The
<samp>-G <var>num</var></samp> switch is also passed to the linker.
All modules should be compiled with the same <samp>-G <var>num</var></samp> value.
</p>
</dd>
<dt><code>-mregnames</code></dt>
<dt><code>-mno-regnames</code></dt>
<dd><a name="index-mregnames-1"></a>
<a name="index-mno_002dregnames-1"></a>
<p>On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.
</p>
</dd>
<dt><code>-mlongcall</code></dt>
<dt><code>-mno-longcall</code></dt>
<dd><a name="index-mlongcall-1"></a>
<a name="index-mno_002dlongcall-1"></a>
<p>By default assume that all calls are far away so that a longer and more
expensive calling sequence is required. This is required for calls
farther than 32 megabytes (33,554,432 bytes) from the current location.
A short call is generated if the compiler knows
the call cannot be that far away. This setting can be overridden by
the <code>shortcall</code> function attribute, or by <code>#pragma
longcall(0)</code>.
</p>
<p>Some linkers are capable of detecting out-of-range calls and generating
glue code on the fly. On these systems, long calls are unnecessary and
generate slower code. As of this writing, the AIX linker can do this,
as can the GNU linker for PowerPC/64. It is planned to add this feature
to the GNU linker for 32-bit PowerPC systems as well.
</p>
<p>On Darwin/PPC systems, <code>#pragma longcall</code> generates <code>jbsr
callee, L42</code>, plus a <em>branch island</em> (glue code). The two target
addresses represent the callee and the branch island. The
Darwin/PPC linker prefers the first address and generates a <code>bl
callee</code> if the PPC <code>bl</code> instruction reaches the callee directly;
otherwise, the linker generates <code>bl L42</code> to call the branch
island. The branch island is appended to the body of the
calling function; it computes the full 32-bit address of the callee
and jumps to it.
</p>
<p>On Mach-O (Darwin) systems, this option directs the compiler emit to
the glue for every direct call, and the Darwin linker decides whether
to use or discard it.
</p>
<p>In the future, GCC may ignore all longcall specifications
when the linker is known to generate glue.
</p>
</dd>
<dt><code>-mtls-markers</code></dt>
<dt><code>-mno-tls-markers</code></dt>
<dd><a name="index-mtls_002dmarkers-1"></a>
<a name="index-mno_002dtls_002dmarkers-1"></a>
<p>Mark (do not mark) calls to <code>__tls_get_addr</code> with a relocation
specifying the function argument. The relocation allows the linker to
reliably associate function call with argument setup instructions for
TLS optimization, which in turn allows GCC to better schedule the
sequence.
</p>
</dd>
<dt><code>-mrecip</code></dt>
<dt><code>-mno-recip</code></dt>
<dd><a name="index-mrecip-1"></a>
<p>This option enables use of the reciprocal estimate and
reciprocal square root estimate instructions with additional
Newton-Raphson steps to increase precision instead of doing a divide or
square root and divide for floating-point arguments. You should use
the <samp>-ffast-math</samp> option when using <samp>-mrecip</samp> (or at
least <samp>-funsafe-math-optimizations</samp>,
<samp>-ffinite-math-only</samp>, <samp>-freciprocal-math</samp> and
<samp>-fno-trapping-math</samp>). Note that while the throughput of the
sequence is generally higher than the throughput of the non-reciprocal
instruction, the precision of the sequence can be decreased by up to 2
ulp (i.e. the inverse of 1.0 equals 0.99999994) for reciprocal square
roots.
</p>
</dd>
<dt><code>-mrecip=<var>opt</var></code></dt>
<dd><a name="index-mrecip_003dopt-1"></a>
<p>This option controls which reciprocal estimate instructions
may be used. <var>opt</var> is a comma-separated list of options, which may
be preceded by a <code>!</code> to invert the option:
</p>
<dl compact="compact">
<dt>‘<samp>all</samp>’</dt>
<dd><p>Enable all estimate instructions.
</p>
</dd>
<dt>‘<samp>default</samp>’</dt>
<dd><p>Enable the default instructions, equivalent to <samp>-mrecip</samp>.
</p>
</dd>
<dt>‘<samp>none</samp>’</dt>
<dd><p>Disable all estimate instructions, equivalent to <samp>-mno-recip</samp>.
</p>
</dd>
<dt>‘<samp>div</samp>’</dt>
<dd><p>Enable the reciprocal approximation instructions for both
single and double precision.
</p>
</dd>
<dt>‘<samp>divf</samp>’</dt>
<dd><p>Enable the single-precision reciprocal approximation instructions.
</p>
</dd>
<dt>‘<samp>divd</samp>’</dt>
<dd><p>Enable the double-precision reciprocal approximation instructions.
</p>
</dd>
<dt>‘<samp>rsqrt</samp>’</dt>
<dd><p>Enable the reciprocal square root approximation instructions for both
single and double precision.
</p>
</dd>
<dt>‘<samp>rsqrtf</samp>’</dt>
<dd><p>Enable the single-precision reciprocal square root approximation instructions.
</p>
</dd>
<dt>‘<samp>rsqrtd</samp>’</dt>
<dd><p>Enable the double-precision reciprocal square root approximation instructions.
</p>
</dd>
</dl>
<p>So, for example, <samp>-mrecip=all,!rsqrtd</samp> enables
all of the reciprocal estimate instructions, except for the
<code>FRSQRTE</code>, <code>XSRSQRTEDP</code>, and <code>XVRSQRTEDP</code> instructions
which handle the double-precision reciprocal square root calculations.
</p>
</dd>
<dt><code>-mrecip-precision</code></dt>
<dt><code>-mno-recip-precision</code></dt>
<dd><a name="index-mrecip_002dprecision-1"></a>
<p>Assume (do not assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the PowerPC
ABI. Selecting <samp>-mcpu=power6</samp>, <samp>-mcpu=power7</samp> or
<samp>-mcpu=power8</samp> automatically selects <samp>-mrecip-precision</samp>.
The double-precision square root estimate instructions are not generated by
default on low-precision machines, since they do not provide an
estimate that converges after three steps.
</p>
</dd>
<dt><code>-mveclibabi=<var>type</var></code></dt>
<dd><a name="index-mveclibabi"></a>
<p>Specifies the ABI type to use for vectorizing intrinsics using an
external library. The only type supported at present is ‘<samp>mass</samp>’,
which specifies to use IBM’s Mathematical Acceleration Subsystem
(MASS) libraries for vectorizing intrinsics using external libraries.
GCC currently emits calls to <code>acosd2</code>, <code>acosf4</code>,
<code>acoshd2</code>, <code>acoshf4</code>, <code>asind2</code>, <code>asinf4</code>,
<code>asinhd2</code>, <code>asinhf4</code>, <code>atan2d2</code>, <code>atan2f4</code>,
<code>atand2</code>, <code>atanf4</code>, <code>atanhd2</code>, <code>atanhf4</code>,
<code>cbrtd2</code>, <code>cbrtf4</code>, <code>cosd2</code>, <code>cosf4</code>,
<code>coshd2</code>, <code>coshf4</code>, <code>erfcd2</code>, <code>erfcf4</code>,
<code>erfd2</code>, <code>erff4</code>, <code>exp2d2</code>, <code>exp2f4</code>,
<code>expd2</code>, <code>expf4</code>, <code>expm1d2</code>, <code>expm1f4</code>,
<code>hypotd2</code>, <code>hypotf4</code>, <code>lgammad2</code>, <code>lgammaf4</code>,
<code>log10d2</code>, <code>log10f4</code>, <code>log1pd2</code>, <code>log1pf4</code>,
<code>log2d2</code>, <code>log2f4</code>, <code>logd2</code>, <code>logf4</code>,
<code>powd2</code>, <code>powf4</code>, <code>sind2</code>, <code>sinf4</code>, <code>sinhd2</code>,
<code>sinhf4</code>, <code>sqrtd2</code>, <code>sqrtf4</code>, <code>tand2</code>,
<code>tanf4</code>, <code>tanhd2</code>, and <code>tanhf4</code> when generating code
for power7. Both <samp>-ftree-vectorize</samp> and
<samp>-funsafe-math-optimizations</samp> must also be enabled. The MASS
libraries must be specified at link time.
</p>
</dd>
<dt><code>-mfriz</code></dt>
<dt><code>-mno-friz</code></dt>
<dd><a name="index-mfriz"></a>
<p>Generate (do not generate) the <code>friz</code> instruction when the
<samp>-funsafe-math-optimizations</samp> option is used to optimize
rounding of floating-point values to 64-bit integer and back to floating
point. The <code>friz</code> instruction does not return the same value if
the floating-point number is too large to fit in an integer.
</p>
</dd>
<dt><code>-mpointers-to-nested-functions</code></dt>
<dt><code>-mno-pointers-to-nested-functions</code></dt>
<dd><a name="index-mpointers_002dto_002dnested_002dfunctions-1"></a>
<p>Generate (do not generate) code to load up the static chain register
(<code>r11</code>) when calling through a pointer on AIX and 64-bit Linux
systems where a function pointer points to a 3-word descriptor giving
the function address, TOC value to be loaded in register <code>r2</code>, and
static chain value to be loaded in register <code>r11</code>. The
<samp>-mpointers-to-nested-functions</samp> is on by default. You cannot
call through pointers to nested functions or pointers
to functions compiled in other languages that use the static chain if
you use <samp>-mno-pointers-to-nested-functions</samp>.
</p>
</dd>
<dt><code>-msave-toc-indirect</code></dt>
<dt><code>-mno-save-toc-indirect</code></dt>
<dd><a name="index-msave_002dtoc_002dindirect-1"></a>
<p>Generate (do not generate) code to save the TOC value in the reserved
stack location in the function prologue if the function calls through
a pointer on AIX and 64-bit Linux systems. If the TOC value is not
saved in the prologue, it is saved just before the call through the
pointer. The <samp>-mno-save-toc-indirect</samp> option is the default.
</p>
</dd>
<dt><code>-mcompat-align-parm</code></dt>
<dt><code>-mno-compat-align-parm</code></dt>
<dd><a name="index-mcompat_002dalign_002dparm-1"></a>
<p>Generate (do not generate) code to pass structure parameters with a
maximum alignment of 64 bits, for compatibility with older versions
of GCC.
</p>
<p>Older versions of GCC (prior to 4.9.0) incorrectly did not align a
structure parameter on a 128-bit boundary when that structure contained
a member requiring 128-bit alignment. This is corrected in more
recent versions of GCC. This option may be used to generate code
that is compatible with functions compiled with older versions of
GCC.
</p>
<p>The <samp>-mno-compat-align-parm</samp> option is the default.
</p>
</dd>
<dt><code>-mstack-protector-guard=<var>guard</var></code></dt>
<dt><code>-mstack-protector-guard-reg=<var>reg</var></code></dt>
<dt><code>-mstack-protector-guard-offset=<var>offset</var></code></dt>
<dt><code>-mstack-protector-guard-symbol=<var>symbol</var></code></dt>
<dd><a name="index-mstack_002dprotector_002dguard-1"></a>
<a name="index-mstack_002dprotector_002dguard_002dreg-1"></a>
<a name="index-mstack_002dprotector_002dguard_002doffset-1"></a>
<a name="index-mstack_002dprotector_002dguard_002dsymbol-1"></a>
<p>Generate stack protection code using canary at <var>guard</var>. Supported
locations are ‘<samp>global</samp>’ for global canary or ‘<samp>tls</samp>’ for per-thread
canary in the TLS block (the default with GNU libc version 2.4 or later).
</p>
<p>With the latter choice the options
<samp>-mstack-protector-guard-reg=<var>reg</var></samp> and
<samp>-mstack-protector-guard-offset=<var>offset</var></samp> furthermore specify
which register to use as base register for reading the canary, and from what
offset from that base register. The default for those is as specified in the
relevant ABI. <samp>-mstack-protector-guard-symbol=<var>symbol</var></samp> overrides
the offset with a symbol reference to a canary in the TLS block.
</p></dd>
</dl>
<hr>
<a name="RX-Options"></a>
<div class="header">
<p>
Next: <a href="#S_002f390-and-zSeries-Options" accesskey="n" rel="next">S/390 and zSeries Options</a>, Previous: <a href="#RS_002f6000-and-PowerPC-Options" accesskey="p" rel="prev">RS/6000 and PowerPC Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RX-Options-1"></a>
<h4 class="subsection">3.18.41 RX Options</h4>
<a name="index-RX-Options"></a>
<p>These command-line options are defined for RX targets:
</p>
<dl compact="compact">
<dt><code>-m64bit-doubles</code></dt>
<dt><code>-m32bit-doubles</code></dt>
<dd><a name="index-m64bit_002ddoubles-1"></a>
<a name="index-m32bit_002ddoubles-1"></a>
<p>Make the <code>double</code> data type be 64 bits (<samp>-m64bit-doubles</samp>)
or 32 bits (<samp>-m32bit-doubles</samp>) in size. The default is
<samp>-m32bit-doubles</samp>. <em>Note</em> RX floating-point hardware only
works on 32-bit values, which is why the default is
<samp>-m32bit-doubles</samp>.
</p>
</dd>
<dt><code>-fpu</code></dt>
<dt><code>-nofpu</code></dt>
<dd><a name="index-fpu"></a>
<a name="index-nofpu"></a>
<p>Enables (<samp>-fpu</samp>) or disables (<samp>-nofpu</samp>) the use of RX
floating-point hardware. The default is enabled for the RX600
series and disabled for the RX200 series.
</p>
<p>Floating-point instructions are only generated for 32-bit floating-point
values, however, so the FPU hardware is not used for doubles if the
<samp>-m64bit-doubles</samp> option is used.
</p>
<p><em>Note</em> If the <samp>-fpu</samp> option is enabled then
<samp>-funsafe-math-optimizations</samp> is also enabled automatically.
This is because the RX FPU instructions are themselves unsafe.
</p>
</dd>
<dt><code>-mcpu=<var>name</var></code></dt>
<dd><a name="index-mcpu-11"></a>
<p>Selects the type of RX CPU to be targeted. Currently three types are
supported, the generic ‘<samp>RX600</samp>’ and ‘<samp>RX200</samp>’ series hardware and
the specific ‘<samp>RX610</samp>’ CPU. The default is ‘<samp>RX600</samp>’.
</p>
<p>The only difference between ‘<samp>RX600</samp>’ and ‘<samp>RX610</samp>’ is that the
‘<samp>RX610</samp>’ does not support the <code>MVTIPL</code> instruction.
</p>
<p>The ‘<samp>RX200</samp>’ series does not have a hardware floating-point unit
and so <samp>-nofpu</samp> is enabled by default when this type is
selected.
</p>
</dd>
<dt><code>-mbig-endian-data</code></dt>
<dt><code>-mlittle-endian-data</code></dt>
<dd><a name="index-mbig_002dendian_002ddata"></a>
<a name="index-mlittle_002dendian_002ddata"></a>
<p>Store data (but not code) in the big-endian format. The default is
<samp>-mlittle-endian-data</samp>, i.e. to store data in the little-endian
format.
</p>
</dd>
<dt><code>-msmall-data-limit=<var>N</var></code></dt>
<dd><a name="index-msmall_002ddata_002dlimit-1"></a>
<p>Specifies the maximum size in bytes of global and static variables
which can be placed into the small data area. Using the small data
area can lead to smaller and faster code, but the size of area is
limited and it is up to the programmer to ensure that the area does
not overflow. Also when the small data area is used one of the RX’s
registers (usually <code>r13</code>) is reserved for use pointing to this
area, so it is no longer available for use by the compiler. This
could result in slower and/or larger code if variables are pushed onto
the stack instead of being held in this register.
</p>
<p>Note, common variables (variables that have not been initialized) and
constants are not placed into the small data area as they are assigned
to other sections in the output executable.
</p>
<p>The default value is zero, which disables this feature. Note, this
feature is not enabled by default with higher optimization levels
(<samp>-O2</samp> etc) because of the potentially detrimental effects of
reserving a register. It is up to the programmer to experiment and
discover whether this feature is of benefit to their program. See the
description of the <samp>-mpid</samp> option for a description of how the
actual register to hold the small data area pointer is chosen.
</p>
</dd>
<dt><code>-msim</code></dt>
<dt><code>-mno-sim</code></dt>
<dd><a name="index-msim-10"></a>
<a name="index-mno_002dsim"></a>
<p>Use the simulator runtime. The default is to use the libgloss
board-specific runtime.
</p>
</dd>
<dt><code>-mas100-syntax</code></dt>
<dt><code>-mno-as100-syntax</code></dt>
<dd><a name="index-mas100_002dsyntax"></a>
<a name="index-mno_002das100_002dsyntax"></a>
<p>When generating assembler output use a syntax that is compatible with
Renesas’s AS100 assembler. This syntax can also be handled by the GAS
assembler, but it has some restrictions so it is not generated by default.
</p>
</dd>
<dt><code>-mmax-constant-size=<var>N</var></code></dt>
<dd><a name="index-mmax_002dconstant_002dsize"></a>
<p>Specifies the maximum size, in bytes, of a constant that can be used as
an operand in a RX instruction. Although the RX instruction set does
allow constants of up to 4 bytes in length to be used in instructions,
a longer value equates to a longer instruction. Thus in some
circumstances it can be beneficial to restrict the size of constants
that are used in instructions. Constants that are too big are instead
placed into a constant pool and referenced via register indirection.
</p>
<p>The value <var>N</var> can be between 0 and 4. A value of 0 (the default)
or 4 means that constants of any size are allowed.
</p>
</dd>
<dt><code>-mrelax</code></dt>
<dd><a name="index-mrelax-5"></a>
<p>Enable linker relaxation. Linker relaxation is a process whereby the
linker attempts to reduce the size of a program by finding shorter
versions of various instructions. Disabled by default.
</p>
</dd>
<dt><code>-mint-register=<var>N</var></code></dt>
<dd><a name="index-mint_002dregister"></a>
<p>Specify the number of registers to reserve for fast interrupt handler
functions. The value <var>N</var> can be between 0 and 4. A value of 1
means that register <code>r13</code> is reserved for the exclusive use
of fast interrupt handlers. A value of 2 reserves <code>r13</code> and
<code>r12</code>. A value of 3 reserves <code>r13</code>, <code>r12</code> and
<code>r11</code>, and a value of 4 reserves <code>r13</code> through <code>r10</code>.
A value of 0, the default, does not reserve any registers.
</p>
</dd>
<dt><code>-msave-acc-in-interrupts</code></dt>
<dd><a name="index-msave_002dacc_002din_002dinterrupts"></a>
<p>Specifies that interrupt handler functions should preserve the
accumulator register. This is only necessary if normal code might use
the accumulator register, for example because it performs 64-bit
multiplications. The default is to ignore the accumulator as this
makes the interrupt handlers faster.
</p>
</dd>
<dt><code>-mpid</code></dt>
<dt><code>-mno-pid</code></dt>
<dd><a name="index-mpid"></a>
<a name="index-mno_002dpid"></a>
<p>Enables the generation of position independent data. When enabled any
access to constant data is done via an offset from a base address
held in a register. This allows the location of constant data to be
determined at run time without requiring the executable to be
relocated, which is a benefit to embedded applications with tight
memory constraints. Data that can be modified is not affected by this
option.
</p>
<p>Note, using this feature reserves a register, usually <code>r13</code>, for
the constant data base address. This can result in slower and/or
larger code, especially in complicated functions.
</p>
<p>The actual register chosen to hold the constant data base address
depends upon whether the <samp>-msmall-data-limit</samp> and/or the
<samp>-mint-register</samp> command-line options are enabled. Starting
with register <code>r13</code> and proceeding downwards, registers are
allocated first to satisfy the requirements of <samp>-mint-register</samp>,
then <samp>-mpid</samp> and finally <samp>-msmall-data-limit</samp>. Thus it
is possible for the small data area register to be <code>r8</code> if both
<samp>-mint-register=4</samp> and <samp>-mpid</samp> are specified on the
command line.
</p>
<p>By default this feature is not enabled. The default can be restored
via the <samp>-mno-pid</samp> command-line option.
</p>
</dd>
<dt><code>-mno-warn-multiple-fast-interrupts</code></dt>
<dt><code>-mwarn-multiple-fast-interrupts</code></dt>
<dd><a name="index-mno_002dwarn_002dmultiple_002dfast_002dinterrupts"></a>
<a name="index-mwarn_002dmultiple_002dfast_002dinterrupts"></a>
<p>Prevents GCC from issuing a warning message if it finds more than one
fast interrupt handler when it is compiling a file. The default is to
issue a warning for each extra fast interrupt handler found, as the RX
only supports one such interrupt.
</p>
</dd>
<dt><code>-mallow-string-insns</code></dt>
<dt><code>-mno-allow-string-insns</code></dt>
<dd><a name="index-mallow_002dstring_002dinsns"></a>
<a name="index-mno_002dallow_002dstring_002dinsns"></a>
<p>Enables or disables the use of the string manipulation instructions
<code>SMOVF</code>, <code>SCMPU</code>, <code>SMOVB</code>, <code>SMOVU</code>, <code>SUNTIL</code>
<code>SWHILE</code> and also the <code>RMPA</code> instruction. These
instructions may prefetch data, which is not safe to do if accessing
an I/O register. (See section 12.2.7 of the RX62N Group User’s Manual
for more information).
</p>
<p>The default is to allow these instructions, but it is not possible for
GCC to reliably detect all circumstances where a string instruction
might be used to access an I/O register, so their use cannot be
disabled automatically. Instead it is reliant upon the programmer to
use the <samp>-mno-allow-string-insns</samp> option if their program
accesses I/O space.
</p>
<p>When the instructions are enabled GCC defines the C preprocessor
symbol <code>__RX_ALLOW_STRING_INSNS__</code>, otherwise it defines the
symbol <code>__RX_DISALLOW_STRING_INSNS__</code>.
</p>
</dd>
<dt><code>-mjsr</code></dt>
<dt><code>-mno-jsr</code></dt>
<dd><a name="index-mjsr"></a>
<a name="index-mno_002djsr"></a>
<p>Use only (or not only) <code>JSR</code> instructions to access functions.
This option can be used when code size exceeds the range of <code>BSR</code>
instructions. Note that <samp>-mno-jsr</samp> does not mean to not use
<code>JSR</code> but instead means that any type of branch may be used.
</p></dd>
</dl>
<p><em>Note:</em> The generic GCC command-line option <samp>-ffixed-<var>reg</var></samp>
has special significance to the RX port when used with the
<code>interrupt</code> function attribute. This attribute indicates a
function intended to process fast interrupts. GCC ensures
that it only uses the registers <code>r10</code>, <code>r11</code>, <code>r12</code>
and/or <code>r13</code> and only provided that the normal use of the
corresponding registers have been restricted via the
<samp>-ffixed-<var>reg</var></samp> or <samp>-mint-register</samp> command-line
options.
</p>
<hr>
<a name="S_002f390-and-zSeries-Options"></a>
<div class="header">
<p>
Next: <a href="#Score-Options" accesskey="n" rel="next">Score Options</a>, Previous: <a href="#RX-Options" accesskey="p" rel="prev">RX Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="S_002f390-and-zSeries-Options-1"></a>
<h4 class="subsection">3.18.42 S/390 and zSeries Options</h4>
<a name="index-S_002f390-and-zSeries-Options"></a>
<p>These are the ‘<samp>-m</samp>’ options defined for the S/390 and zSeries architecture.
</p>
<dl compact="compact">
<dt><code>-mhard-float</code></dt>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-mhard_002dfloat-6"></a>
<a name="index-msoft_002dfloat-10"></a>
<p>Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When <samp>-msoft-float</samp> is specified,
functions in <samp>libgcc.a</samp> are used to perform floating-point
operations. When <samp>-mhard-float</samp> is specified, the compiler
generates IEEE floating-point instructions. This is the default.
</p>
</dd>
<dt><code>-mhard-dfp</code></dt>
<dt><code>-mno-hard-dfp</code></dt>
<dd><a name="index-mhard_002ddfp-1"></a>
<a name="index-mno_002dhard_002ddfp-1"></a>
<p>Use (do not use) the hardware decimal-floating-point instructions for
decimal-floating-point operations. When <samp>-mno-hard-dfp</samp> is
specified, functions in <samp>libgcc.a</samp> are used to perform
decimal-floating-point operations. When <samp>-mhard-dfp</samp> is
specified, the compiler generates decimal-floating-point hardware
instructions. This is the default for <samp>-march=z9-ec</samp> or higher.
</p>
</dd>
<dt><code>-mlong-double-64</code></dt>
<dt><code>-mlong-double-128</code></dt>
<dd><a name="index-mlong_002ddouble_002d64"></a>
<a name="index-mlong_002ddouble_002d128"></a>
<p>These switches control the size of <code>long double</code> type. A size
of 64 bits makes the <code>long double</code> type equivalent to the <code>double</code>
type. This is the default.
</p>
</dd>
<dt><code>-mbackchain</code></dt>
<dt><code>-mno-backchain</code></dt>
<dd><a name="index-mbackchain"></a>
<a name="index-mno_002dbackchain"></a>
<p>Store (do not store) the address of the caller’s frame as backchain pointer
into the callee’s stack frame.
A backchain may be needed to allow debugging using tools that do not understand
DWARF call frame information.
When <samp>-mno-packed-stack</samp> is in effect, the backchain pointer is stored
at the bottom of the stack frame; when <samp>-mpacked-stack</samp> is in effect,
the backchain is placed into the topmost word of the 96/160 byte register
save area.
</p>
<p>In general, code compiled with <samp>-mbackchain</samp> is call-compatible with
code compiled with <samp>-mmo-backchain</samp>; however, use of the backchain
for debugging purposes usually requires that the whole binary is built with
<samp>-mbackchain</samp>. Note that the combination of <samp>-mbackchain</samp>,
<samp>-mpacked-stack</samp> and <samp>-mhard-float</samp> is not supported. In order
to build a linux kernel use <samp>-msoft-float</samp>.
</p>
<p>The default is to not maintain the backchain.
</p>
</dd>
<dt><code>-mpacked-stack</code></dt>
<dt><code>-mno-packed-stack</code></dt>
<dd><a name="index-mpacked_002dstack"></a>
<a name="index-mno_002dpacked_002dstack"></a>
<p>Use (do not use) the packed stack layout. When <samp>-mno-packed-stack</samp> is
specified, the compiler uses the all fields of the 96/160 byte register save
area only for their default purpose; unused fields still take up stack space.
When <samp>-mpacked-stack</samp> is specified, register save slots are densely
packed at the top of the register save area; unused space is reused for other
purposes, allowing for more efficient use of the available stack space.
However, when <samp>-mbackchain</samp> is also in effect, the topmost word of
the save area is always used to store the backchain, and the return address
register is always saved two words below the backchain.
</p>
<p>As long as the stack frame backchain is not used, code generated with
<samp>-mpacked-stack</samp> is call-compatible with code generated with
<samp>-mno-packed-stack</samp>. Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes. Such code is not call-compatible
with code compiled with <samp>-mpacked-stack</samp>. Also, note that the
combination of <samp>-mbackchain</samp>,
<samp>-mpacked-stack</samp> and <samp>-mhard-float</samp> is not supported. In order
to build a linux kernel use <samp>-msoft-float</samp>.
</p>
<p>The default is to not use the packed stack layout.
</p>
</dd>
<dt><code>-msmall-exec</code></dt>
<dt><code>-mno-small-exec</code></dt>
<dd><a name="index-msmall_002dexec"></a>
<a name="index-mno_002dsmall_002dexec"></a>
<p>Generate (or do not generate) code using the <code>bras</code> instruction
to do subroutine calls.
This only works reliably if the total executable size does not
exceed 64k. The default is to use the <code>basr</code> instruction instead,
which does not have this limitation.
</p>
</dd>
<dt><code>-m64</code></dt>
<dt><code>-m31</code></dt>
<dd><a name="index-m64-2"></a>
<a name="index-m31"></a>
<p>When <samp>-m31</samp> is specified, generate code compliant to the
GNU/Linux for S/390 ABI. When <samp>-m64</samp> is specified, generate
code compliant to the GNU/Linux for zSeries ABI. This allows GCC in
particular to generate 64-bit instructions. For the ‘<samp>s390</samp>’
targets, the default is <samp>-m31</samp>, while the ‘<samp>s390x</samp>’
targets default to <samp>-m64</samp>.
</p>
</dd>
<dt><code>-mzarch</code></dt>
<dt><code>-mesa</code></dt>
<dd><a name="index-mzarch"></a>
<a name="index-mesa"></a>
<p>When <samp>-mzarch</samp> is specified, generate code using the
instructions available on z/Architecture.
When <samp>-mesa</samp> is specified, generate code using the
instructions available on ESA/390. Note that <samp>-mesa</samp> is
not possible with <samp>-m64</samp>.
When generating code compliant to the GNU/Linux for S/390 ABI,
the default is <samp>-mesa</samp>. When generating code compliant
to the GNU/Linux for zSeries ABI, the default is <samp>-mzarch</samp>.
</p>
</dd>
<dt><code>-mhtm</code></dt>
<dt><code>-mno-htm</code></dt>
<dd><a name="index-mhtm-1"></a>
<a name="index-mno_002dhtm-1"></a>
<p>The <samp>-mhtm</samp> option enables a set of builtins making use of
instructions available with the transactional execution facility
introduced with the IBM zEnterprise EC12 machine generation
<a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a>.
<samp>-mhtm</samp> is enabled by default when using <samp>-march=zEC12</samp>.
</p>
</dd>
<dt><code>-mvx</code></dt>
<dt><code>-mno-vx</code></dt>
<dd><a name="index-mvx"></a>
<a name="index-mno_002dvx"></a>
<p>When <samp>-mvx</samp> is specified, generate code using the instructions
available with the vector extension facility introduced with the IBM
z13 machine generation.
This option changes the ABI for some vector type values with regard to
alignment and calling conventions. In case vector type values are
being used in an ABI-relevant context a GAS ‘<samp>.gnu_attribute</samp>’
command will be added to mark the resulting binary with the ABI used.
<samp>-mvx</samp> is enabled by default when using <samp>-march=z13</samp>.
</p>
</dd>
<dt><code>-mzvector</code></dt>
<dt><code>-mno-zvector</code></dt>
<dd><a name="index-mzvector"></a>
<a name="index-mno_002dzvector"></a>
<p>The <samp>-mzvector</samp> option enables vector language extensions and
builtins using instructions available with the vector extension
facility introduced with the IBM z13 machine generation.
This option adds support for ‘<samp>vector</samp>’ to be used as a keyword to
define vector type variables and arguments. ‘<samp>vector</samp>’ is only
available when GNU extensions are enabled. It will not be expanded
when requesting strict standard compliance e.g. with <samp>-std=c99</samp>.
In addition to the GCC low-level builtins <samp>-mzvector</samp> enables
a set of builtins added for compatibility with AltiVec-style
implementations like Power and Cell. In order to make use of these
builtins the header file <samp>vecintrin.h</samp> needs to be included.
<samp>-mzvector</samp> is disabled by default.
</p>
</dd>
<dt><code>-mmvcle</code></dt>
<dt><code>-mno-mvcle</code></dt>
<dd><a name="index-mmvcle"></a>
<a name="index-mno_002dmvcle"></a>
<p>Generate (or do not generate) code using the <code>mvcle</code> instruction
to perform block moves. When <samp>-mno-mvcle</samp> is specified,
use a <code>mvc</code> loop instead. This is the default unless optimizing for
size.
</p>
</dd>
<dt><code>-mdebug</code></dt>
<dt><code>-mno-debug</code></dt>
<dd><a name="index-mdebug-1"></a>
<a name="index-mno_002ddebug"></a>
<p>Print (or do not print) additional debug information when compiling.
The default is to not print debug information.
</p>
</dd>
<dt><code>-march=<var>cpu-type</var></code></dt>
<dd><a name="index-march-11"></a>
<p>Generate code that runs on <var>cpu-type</var>, which is the name of a
system representing a certain processor type. Possible values for
<var>cpu-type</var> are ‘<samp>z900</samp>’/‘<samp>arch5</samp>’, ‘<samp>z990</samp>’/‘<samp>arch6</samp>’,
‘<samp>z9-109</samp>’, ‘<samp>z9-ec</samp>’/‘<samp>arch7</samp>’, ‘<samp>z10</samp>’/‘<samp>arch8</samp>’,
‘<samp>z196</samp>’/‘<samp>arch9</samp>’, ‘<samp>zEC12</samp>’, ‘<samp>z13</samp>’/‘<samp>arch11</samp>’, and
‘<samp>native</samp>’.
</p>
<p>The default is <samp>-march=z900</samp>. ‘<samp>g5</samp>’/‘<samp>arch3</samp>’ and
‘<samp>g6</samp>’ are deprecated and will be removed with future releases.
</p>
<p>Specifying ‘<samp>native</samp>’ as cpu type can be used to select the best
architecture option for the host processor.
<samp>-march=native</samp> has no effect if GCC does not recognize the
processor.
</p>
</dd>
<dt><code>-mtune=<var>cpu-type</var></code></dt>
<dd><a name="index-mtune-13"></a>
<p>Tune to <var>cpu-type</var> everything applicable about the generated code,
except for the ABI and the set of available instructions.
The list of <var>cpu-type</var> values is the same as for <samp>-march</samp>.
The default is the value used for <samp>-march</samp>.
</p>
</dd>
<dt><code>-mtpf-trace</code></dt>
<dt><code>-mno-tpf-trace</code></dt>
<dd><a name="index-mtpf_002dtrace"></a>
<a name="index-mno_002dtpf_002dtrace"></a>
<p>Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system. This option is off by default, even
when compiling for the TPF OS.
</p>
</dd>
<dt><code>-mfused-madd</code></dt>
<dt><code>-mno-fused-madd</code></dt>
<dd><a name="index-mfused_002dmadd-4"></a>
<a name="index-mno_002dfused_002dmadd-4"></a>
<p>Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default if
hardware floating point is used.
</p>
</dd>
<dt><code>-mwarn-framesize=<var>framesize</var></code></dt>
<dd><a name="index-mwarn_002dframesize"></a>
<p>Emit a warning if the current function exceeds the given frame size. Because
this is a compile-time check it doesn’t need to be a real problem when the program
runs. It is intended to identify functions that most probably cause
a stack overflow. It is useful to be used in an environment with limited stack
size e.g. the linux kernel.
</p>
</dd>
<dt><code>-mwarn-dynamicstack</code></dt>
<dd><a name="index-mwarn_002ddynamicstack"></a>
<p>Emit a warning if the function calls <code>alloca</code> or uses dynamically-sized
arrays. This is generally a bad idea with a limited stack size.
</p>
</dd>
<dt><code>-mstack-guard=<var>stack-guard</var></code></dt>
<dt><code>-mstack-size=<var>stack-size</var></code></dt>
<dd><a name="index-mstack_002dguard"></a>
<a name="index-mstack_002dsize"></a>
<p>If these options are provided the S/390 back end emits additional instructions in
the function prologue that trigger a trap if the stack size is <var>stack-guard</var>
bytes above the <var>stack-size</var> (remember that the stack on S/390 grows downward).
If the <var>stack-guard</var> option is omitted the smallest power of 2 larger than
the frame size of the compiled function is chosen.
These options are intended to be used to help debugging stack overflow problems.
The additionally emitted code causes only little overhead and hence can also be
used in production-like systems without greater performance degradation. The given
values have to be exact powers of 2 and <var>stack-size</var> has to be greater than
<var>stack-guard</var> without exceeding 64k.
In order to be efficient the extra code makes the assumption that the stack starts
at an address aligned to the value given by <var>stack-size</var>.
The <var>stack-guard</var> option can only be used in conjunction with <var>stack-size</var>.
</p>
</dd>
<dt><code>-mhotpatch=<var>pre-halfwords</var>,<var>post-halfwords</var></code></dt>
<dd><a name="index-mhotpatch"></a>
<p>If the hotpatch option is enabled, a “hot-patching” function
prologue is generated for all functions in the compilation unit.
The funtion label is prepended with the given number of two-byte
NOP instructions (<var>pre-halfwords</var>, maximum 1000000). After
the label, 2 * <var>post-halfwords</var> bytes are appended, using the
largest NOP like instructions the architecture allows (maximum
1000000).
</p>
<p>If both arguments are zero, hotpatching is disabled.
</p>
<p>This option can be overridden for individual functions with the
<code>hotpatch</code> attribute.
</p></dd>
</dl>
<hr>
<a name="Score-Options"></a>
<div class="header">
<p>
Next: <a href="#SH-Options" accesskey="n" rel="next">SH Options</a>, Previous: <a href="#S_002f390-and-zSeries-Options" accesskey="p" rel="prev">S/390 and zSeries Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Score-Options-1"></a>
<h4 class="subsection">3.18.43 Score Options</h4>
<a name="index-Score-Options"></a>
<p>These options are defined for Score implementations:
</p>
<dl compact="compact">
<dt><code>-meb</code></dt>
<dd><a name="index-meb-3"></a>
<p>Compile code for big-endian mode. This is the default.
</p>
</dd>
<dt><code>-mel</code></dt>
<dd><a name="index-mel-3"></a>
<p>Compile code for little-endian mode.
</p>
</dd>
<dt><code>-mnhwloop</code></dt>
<dd><a name="index-mnhwloop"></a>
<p>Disable generation of <code>bcnz</code> instructions.
</p>
</dd>
<dt><code>-muls</code></dt>
<dd><a name="index-muls"></a>
<p>Enable generation of unaligned load and store instructions.
</p>
</dd>
<dt><code>-mmac</code></dt>
<dd><a name="index-mmac-1"></a>
<p>Enable the use of multiply-accumulate instructions. Disabled by default.
</p>
</dd>
<dt><code>-mscore5</code></dt>
<dd><a name="index-mscore5"></a>
<p>Specify the SCORE5 as the target architecture.
</p>
</dd>
<dt><code>-mscore5u</code></dt>
<dd><a name="index-mscore5u"></a>
<p>Specify the SCORE5U of the target architecture.
</p>
</dd>
<dt><code>-mscore7</code></dt>
<dd><a name="index-mscore7"></a>
<p>Specify the SCORE7 as the target architecture. This is the default.
</p>
</dd>
<dt><code>-mscore7d</code></dt>
<dd><a name="index-mscore7d"></a>
<p>Specify the SCORE7D as the target architecture.
</p></dd>
</dl>
<hr>
<a name="SH-Options"></a>
<div class="header">
<p>
Next: <a href="#Solaris-2-Options" accesskey="n" rel="next">Solaris 2 Options</a>, Previous: <a href="#Score-Options" accesskey="p" rel="prev">Score Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SH-Options-1"></a>
<h4 class="subsection">3.18.44 SH Options</h4>
<p>These ‘<samp>-m</samp>’ options are defined for the SH implementations:
</p>
<dl compact="compact">
<dt><code>-m1</code></dt>
<dd><a name="index-m1"></a>
<p>Generate code for the SH1.
</p>
</dd>
<dt><code>-m2</code></dt>
<dd><a name="index-m2"></a>
<p>Generate code for the SH2.
</p>
</dd>
<dt><code>-m2e</code></dt>
<dd><p>Generate code for the SH2e.
</p>
</dd>
<dt><code>-m2a-nofpu</code></dt>
<dd><a name="index-m2a_002dnofpu"></a>
<p>Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
that the floating-point unit is not used.
</p>
</dd>
<dt><code>-m2a-single-only</code></dt>
<dd><a name="index-m2a_002dsingle_002donly"></a>
<p>Generate code for the SH2a-FPU, in such a way that no double-precision
floating-point operations are used.
</p>
</dd>
<dt><code>-m2a-single</code></dt>
<dd><a name="index-m2a_002dsingle"></a>
<p>Generate code for the SH2a-FPU assuming the floating-point unit is in
single-precision mode by default.
</p>
</dd>
<dt><code>-m2a</code></dt>
<dd><a name="index-m2a"></a>
<p>Generate code for the SH2a-FPU assuming the floating-point unit is in
double-precision mode by default.
</p>
</dd>
<dt><code>-m3</code></dt>
<dd><a name="index-m3"></a>
<p>Generate code for the SH3.
</p>
</dd>
<dt><code>-m3e</code></dt>
<dd><a name="index-m3e"></a>
<p>Generate code for the SH3e.
</p>
</dd>
<dt><code>-m4-nofpu</code></dt>
<dd><a name="index-m4_002dnofpu"></a>
<p>Generate code for the SH4 without a floating-point unit.
</p>
</dd>
<dt><code>-m4-single-only</code></dt>
<dd><a name="index-m4_002dsingle_002donly"></a>
<p>Generate code for the SH4 with a floating-point unit that only
supports single-precision arithmetic.
</p>
</dd>
<dt><code>-m4-single</code></dt>
<dd><a name="index-m4_002dsingle"></a>
<p>Generate code for the SH4 assuming the floating-point unit is in
single-precision mode by default.
</p>
</dd>
<dt><code>-m4</code></dt>
<dd><a name="index-m4"></a>
<p>Generate code for the SH4.
</p>
</dd>
<dt><code>-m4-100</code></dt>
<dd><a name="index-m4_002d100"></a>
<p>Generate code for SH4-100.
</p>
</dd>
<dt><code>-m4-100-nofpu</code></dt>
<dd><a name="index-m4_002d100_002dnofpu"></a>
<p>Generate code for SH4-100 in such a way that the
floating-point unit is not used.
</p>
</dd>
<dt><code>-m4-100-single</code></dt>
<dd><a name="index-m4_002d100_002dsingle"></a>
<p>Generate code for SH4-100 assuming the floating-point unit is in
single-precision mode by default.
</p>
</dd>
<dt><code>-m4-100-single-only</code></dt>
<dd><a name="index-m4_002d100_002dsingle_002donly"></a>
<p>Generate code for SH4-100 in such a way that no double-precision
floating-point operations are used.
</p>
</dd>
<dt><code>-m4-200</code></dt>
<dd><a name="index-m4_002d200"></a>
<p>Generate code for SH4-200.
</p>
</dd>
<dt><code>-m4-200-nofpu</code></dt>
<dd><a name="index-m4_002d200_002dnofpu"></a>
<p>Generate code for SH4-200 without in such a way that the
floating-point unit is not used.
</p>
</dd>
<dt><code>-m4-200-single</code></dt>
<dd><a name="index-m4_002d200_002dsingle"></a>
<p>Generate code for SH4-200 assuming the floating-point unit is in
single-precision mode by default.
</p>
</dd>
<dt><code>-m4-200-single-only</code></dt>
<dd><a name="index-m4_002d200_002dsingle_002donly"></a>
<p>Generate code for SH4-200 in such a way that no double-precision
floating-point operations are used.
</p>
</dd>
<dt><code>-m4-300</code></dt>
<dd><a name="index-m4_002d300"></a>
<p>Generate code for SH4-300.
</p>
</dd>
<dt><code>-m4-300-nofpu</code></dt>
<dd><a name="index-m4_002d300_002dnofpu"></a>
<p>Generate code for SH4-300 without in such a way that the
floating-point unit is not used.
</p>
</dd>
<dt><code>-m4-300-single</code></dt>
<dd><a name="index-m4_002d300_002dsingle"></a>
<p>Generate code for SH4-300 in such a way that no double-precision
floating-point operations are used.
</p>
</dd>
<dt><code>-m4-300-single-only</code></dt>
<dd><a name="index-m4_002d300_002dsingle_002donly"></a>
<p>Generate code for SH4-300 in such a way that no double-precision
floating-point operations are used.
</p>
</dd>
<dt><code>-m4-340</code></dt>
<dd><a name="index-m4_002d340"></a>
<p>Generate code for SH4-340 (no MMU, no FPU).
</p>
</dd>
<dt><code>-m4-500</code></dt>
<dd><a name="index-m4_002d500"></a>
<p>Generate code for SH4-500 (no FPU). Passes <samp>-isa=sh4-nofpu</samp> to the
assembler.
</p>
</dd>
<dt><code>-m4a-nofpu</code></dt>
<dd><a name="index-m4a_002dnofpu"></a>
<p>Generate code for the SH4al-dsp, or for a SH4a in such a way that the
floating-point unit is not used.
</p>
</dd>
<dt><code>-m4a-single-only</code></dt>
<dd><a name="index-m4a_002dsingle_002donly"></a>
<p>Generate code for the SH4a, in such a way that no double-precision
floating-point operations are used.
</p>
</dd>
<dt><code>-m4a-single</code></dt>
<dd><a name="index-m4a_002dsingle"></a>
<p>Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.
</p>
</dd>
<dt><code>-m4a</code></dt>
<dd><a name="index-m4a"></a>
<p>Generate code for the SH4a.
</p>
</dd>
<dt><code>-m4al</code></dt>
<dd><a name="index-m4al"></a>
<p>Same as <samp>-m4a-nofpu</samp>, except that it implicitly passes
<samp>-dsp</samp> to the assembler. GCC doesn’t generate any DSP
instructions at the moment.
</p>
</dd>
<dt><code>-mb</code></dt>
<dd><a name="index-mb"></a>
<p>Compile code for the processor in big-endian mode.
</p>
</dd>
<dt><code>-ml</code></dt>
<dd><a name="index-ml-1"></a>
<p>Compile code for the processor in little-endian mode.
</p>
</dd>
<dt><code>-mdalign</code></dt>
<dd><a name="index-mdalign"></a>
<p>Align doubles at 64-bit boundaries. Note that this changes the calling
conventions, and thus some functions from the standard C library do
not work unless you recompile it first with <samp>-mdalign</samp>.
</p>
</dd>
<dt><code>-mrelax</code></dt>
<dd><a name="index-mrelax-6"></a>
<p>Shorten some address references at link time, when possible; uses the
linker option <samp>-relax</samp>.
</p>
</dd>
<dt><code>-mbigtable</code></dt>
<dd><a name="index-mbigtable"></a>
<p>Use 32-bit offsets in <code>switch</code> tables. The default is to use
16-bit offsets.
</p>
</dd>
<dt><code>-mbitops</code></dt>
<dd><a name="index-mbitops-1"></a>
<p>Enable the use of bit manipulation instructions on SH2A.
</p>
</dd>
<dt><code>-mfmovd</code></dt>
<dd><a name="index-mfmovd"></a>
<p>Enable the use of the instruction <code>fmovd</code>. Check <samp>-mdalign</samp> for
alignment constraints.
</p>
</dd>
<dt><code>-mrenesas</code></dt>
<dd><a name="index-mrenesas"></a>
<p>Comply with the calling conventions defined by Renesas.
</p>
</dd>
<dt><code>-mno-renesas</code></dt>
<dd><a name="index-mno_002drenesas"></a>
<p>Comply with the calling conventions defined for GCC before the Renesas
conventions were available. This option is the default for all
targets of the SH toolchain.
</p>
</dd>
<dt><code>-mnomacsave</code></dt>
<dd><a name="index-mnomacsave"></a>
<p>Mark the <code>MAC</code> register as call-clobbered, even if
<samp>-mrenesas</samp> is given.
</p>
</dd>
<dt><code>-mieee</code></dt>
<dt><code>-mno-ieee</code></dt>
<dd><a name="index-mieee-1"></a>
<a name="index-mno_002dieee"></a>
<p>Control the IEEE compliance of floating-point comparisons, which affects the
handling of cases where the result of a comparison is unordered. By default
<samp>-mieee</samp> is implicitly enabled. If <samp>-ffinite-math-only</samp> is
enabled <samp>-mno-ieee</samp> is implicitly set, which results in faster
floating-point greater-equal and less-equal comparisons. The implicit settings
can be overridden by specifying either <samp>-mieee</samp> or <samp>-mno-ieee</samp>.
</p>
</dd>
<dt><code>-minline-ic_invalidate</code></dt>
<dd><a name="index-minline_002dic_005finvalidate"></a>
<p>Inline code to invalidate instruction cache entries after setting up
nested function trampolines.
This option has no effect if <samp>-musermode</samp> is in effect and the selected
code generation option (e.g. <samp>-m4</samp>) does not allow the use of the <code>icbi</code>
instruction.
If the selected code generation option does not allow the use of the <code>icbi</code>
instruction, and <samp>-musermode</samp> is not in effect, the inlined code
manipulates the instruction cache address array directly with an associative
write. This not only requires privileged mode at run time, but it also
fails if the cache line had been mapped via the TLB and has become unmapped.
</p>
</dd>
<dt><code>-misize</code></dt>
<dd><a name="index-misize-1"></a>
<p>Dump instruction size and location in the assembly code.
</p>
</dd>
<dt><code>-mpadstruct</code></dt>
<dd><a name="index-mpadstruct"></a>
<p>This option is deprecated. It pads structures to multiple of 4 bytes,
which is incompatible with the SH ABI.
</p>
</dd>
<dt><code>-matomic-model=<var>model</var></code></dt>
<dd><a name="index-matomic_002dmodel_003dmodel"></a>
<p>Sets the model of atomic operations and additional parameters as a comma
separated list. For details on the atomic built-in functions see
<a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a>. The following models and parameters are supported:
</p>
<dl compact="compact">
<dt>‘<samp>none</samp>’</dt>
<dd><p>Disable compiler generated atomic sequences and emit library calls for atomic
operations. This is the default if the target is not <code>sh*-*-linux*</code>.
</p>
</dd>
<dt>‘<samp>soft-gusa</samp>’</dt>
<dd><p>Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
built-in functions. The generated atomic sequences require additional support
from the interrupt/exception handling code of the system and are only suitable
for SH3* and SH4* single-core systems. This option is enabled by default when
the target is <code>sh*-*-linux*</code> and SH3* or SH4*. When the target is SH4A,
this option also partially utilizes the hardware atomic instructions
<code>movli.l</code> and <code>movco.l</code> to create more efficient code, unless
‘<samp>strict</samp>’ is specified.
</p>
</dd>
<dt>‘<samp>soft-tcb</samp>’</dt>
<dd><p>Generate software atomic sequences that use a variable in the thread control
block. This is a variation of the gUSA sequences which can also be used on
SH1* and SH2* targets. The generated atomic sequences require additional
support from the interrupt/exception handling code of the system and are only
suitable for single-core systems. When using this model, the ‘<samp>gbr-offset=</samp>’
parameter has to be specified as well.
</p>
</dd>
<dt>‘<samp>soft-imask</samp>’</dt>
<dd><p>Generate software atomic sequences that temporarily disable interrupts by
setting <code>SR.IMASK = 1111</code>. This model works only when the program runs
in privileged mode and is only suitable for single-core systems. Additional
support from the interrupt/exception handling code of the system is not
required. This model is enabled by default when the target is
<code>sh*-*-linux*</code> and SH1* or SH2*.
</p>
</dd>
<dt>‘<samp>hard-llcs</samp>’</dt>
<dd><p>Generate hardware atomic sequences using the <code>movli.l</code> and <code>movco.l</code>
instructions only. This is only available on SH4A and is suitable for
multi-core systems. Since the hardware instructions support only 32 bit atomic
variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
Code compiled with this option is also compatible with other software
atomic model interrupt/exception handling systems if executed on an SH4A
system. Additional support from the interrupt/exception handling code of the
system is not required for this model.
</p>
</dd>
<dt>‘<samp>gbr-offset=</samp>’</dt>
<dd><p>This parameter specifies the offset in bytes of the variable in the thread
control block structure that should be used by the generated atomic sequences
when the ‘<samp>soft-tcb</samp>’ model has been selected. For other models this
parameter is ignored. The specified value must be an integer multiple of four
and in the range 0-1020.
</p>
</dd>
<dt>‘<samp>strict</samp>’</dt>
<dd><p>This parameter prevents mixed usage of multiple atomic models, even if they
are compatible, and makes the compiler generate atomic sequences of the
specified model only.
</p>
</dd>
</dl>
</dd>
<dt><code>-mtas</code></dt>
<dd><a name="index-mtas"></a>
<p>Generate the <code>tas.b</code> opcode for <code>__atomic_test_and_set</code>.
Notice that depending on the particular hardware and software configuration
this can degrade overall performance due to the operand cache line flushes
that are implied by the <code>tas.b</code> instruction. On multi-core SH4A
processors the <code>tas.b</code> instruction must be used with caution since it
can result in data corruption for certain cache configurations.
</p>
</dd>
<dt><code>-mprefergot</code></dt>
<dd><a name="index-mprefergot"></a>
<p>When generating position-independent code, emit function calls using
the Global Offset Table instead of the Procedure Linkage Table.
</p>
</dd>
<dt><code>-musermode</code></dt>
<dt><code>-mno-usermode</code></dt>
<dd><a name="index-musermode"></a>
<a name="index-mno_002dusermode"></a>
<p>Don’t allow (allow) the compiler generating privileged mode code. Specifying
<samp>-musermode</samp> also implies <samp>-mno-inline-ic_invalidate</samp> if the
inlined code would not work in user mode. <samp>-musermode</samp> is the default
when the target is <code>sh*-*-linux*</code>. If the target is SH1* or SH2*
<samp>-musermode</samp> has no effect, since there is no user mode.
</p>
</dd>
<dt><code>-multcost=<var>number</var></code></dt>
<dd><a name="index-multcost_003dnumber"></a>
<p>Set the cost to assume for a multiply insn.
</p>
</dd>
<dt><code>-mdiv=<var>strategy</var></code></dt>
<dd><a name="index-mdiv_003dstrategy"></a>
<p>Set the division strategy to be used for integer division operations.
<var>strategy</var> can be one of:
</p>
<dl compact="compact">
<dt>‘<samp>call-div1</samp>’</dt>
<dd><p>Calls a library function that uses the single-step division instruction
<code>div1</code> to perform the operation. Division by zero calculates an
unspecified result and does not trap. This is the default except for SH4,
SH2A and SHcompact.
</p>
</dd>
<dt>‘<samp>call-fp</samp>’</dt>
<dd><p>Calls a library function that performs the operation in double precision
floating point. Division by zero causes a floating-point exception. This is
the default for SHcompact with FPU. Specifying this for targets that do not
have a double precision FPU defaults to <code>call-div1</code>.
</p>
</dd>
<dt>‘<samp>call-table</samp>’</dt>
<dd><p>Calls a library function that uses a lookup table for small divisors and
the <code>div1</code> instruction with case distinction for larger divisors. Division
by zero calculates an unspecified result and does not trap. This is the default
for SH4. Specifying this for targets that do not have dynamic shift
instructions defaults to <code>call-div1</code>.
</p>
</dd>
</dl>
<p>When a division strategy has not been specified the default strategy is
selected based on the current target. For SH2A the default strategy is to
use the <code>divs</code> and <code>divu</code> instructions instead of library function
calls.
</p>
</dd>
<dt><code>-maccumulate-outgoing-args</code></dt>
<dd><a name="index-maccumulate_002doutgoing_002dargs"></a>
<p>Reserve space once for outgoing arguments in the function prologue rather
than around each call. Generally beneficial for performance and size. Also
needed for unwinding to avoid changing the stack frame around conditional code.
</p>
</dd>
<dt><code>-mdivsi3_libfunc=<var>name</var></code></dt>
<dd><a name="index-mdivsi3_005flibfunc_003dname"></a>
<p>Set the name of the library function used for 32-bit signed division to
<var>name</var>.
This only affects the name used in the ‘<samp>call</samp>’ division strategies, and
the compiler still expects the same sets of input/output/clobbered registers as
if this option were not present.
</p>
</dd>
<dt><code>-mfixed-range=<var>register-range</var></code></dt>
<dd><a name="index-mfixed_002drange-2"></a>
<p>Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator can not use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
</p>
</dd>
<dt><code>-mbranch-cost=<var>num</var></code></dt>
<dd><a name="index-mbranch_002dcost_003dnum"></a>
<p>Assume <var>num</var> to be the cost for a branch instruction. Higher numbers
make the compiler try to generate more branch-free code if possible.
If not specified the value is selected depending on the processor type that
is being compiled for.
</p>
</dd>
<dt><code>-mzdcbranch</code></dt>
<dt><code>-mno-zdcbranch</code></dt>
<dd><a name="index-mzdcbranch"></a>
<a name="index-mno_002dzdcbranch"></a>
<p>Assume (do not assume) that zero displacement conditional branch instructions
<code>bt</code> and <code>bf</code> are fast. If <samp>-mzdcbranch</samp> is specified, the
compiler prefers zero displacement branch code sequences. This is
enabled by default when generating code for SH4 and SH4A. It can be explicitly
disabled by specifying <samp>-mno-zdcbranch</samp>.
</p>
</dd>
<dt><code>-mcbranch-force-delay-slot</code></dt>
<dd><a name="index-mcbranch_002dforce_002ddelay_002dslot"></a>
<p>Force the usage of delay slots for conditional branches, which stuffs the delay
slot with a <code>nop</code> if a suitable instruction cannot be found. By default
this option is disabled. It can be enabled to work around hardware bugs as
found in the original SH7055.
</p>
</dd>
<dt><code>-mfused-madd</code></dt>
<dt><code>-mno-fused-madd</code></dt>
<dd><a name="index-mfused_002dmadd-5"></a>
<a name="index-mno_002dfused_002dmadd-5"></a>
<p>Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default
if hardware floating point is used. The machine-dependent
<samp>-mfused-madd</samp> option is now mapped to the machine-independent
<samp>-ffp-contract=fast</samp> option, and <samp>-mno-fused-madd</samp> is
mapped to <samp>-ffp-contract=off</samp>.
</p>
</dd>
<dt><code>-mfsca</code></dt>
<dt><code>-mno-fsca</code></dt>
<dd><a name="index-mfsca"></a>
<a name="index-mno_002dfsca"></a>
<p>Allow or disallow the compiler to emit the <code>fsca</code> instruction for sine
and cosine approximations. The option <samp>-mfsca</samp> must be used in
combination with <samp>-funsafe-math-optimizations</samp>. It is enabled by default
when generating code for SH4A. Using <samp>-mno-fsca</samp> disables sine and cosine
approximations even if <samp>-funsafe-math-optimizations</samp> is in effect.
</p>
</dd>
<dt><code>-mfsrra</code></dt>
<dt><code>-mno-fsrra</code></dt>
<dd><a name="index-mfsrra"></a>
<a name="index-mno_002dfsrra"></a>
<p>Allow or disallow the compiler to emit the <code>fsrra</code> instruction for
reciprocal square root approximations. The option <samp>-mfsrra</samp> must be used
in combination with <samp>-funsafe-math-optimizations</samp> and
<samp>-ffinite-math-only</samp>. It is enabled by default when generating code for
SH4A. Using <samp>-mno-fsrra</samp> disables reciprocal square root approximations
even if <samp>-funsafe-math-optimizations</samp> and <samp>-ffinite-math-only</samp> are
in effect.
</p>
</dd>
<dt><code>-mpretend-cmove</code></dt>
<dd><a name="index-mpretend_002dcmove"></a>
<p>Prefer zero-displacement conditional branches for conditional move instruction
patterns. This can result in faster code on the SH4 processor.
</p>
</dd>
<dt><code>-mfdpic</code></dt>
<dd><a name="index-fdpic"></a>
<p>Generate code using the FDPIC ABI.
</p>
</dd>
</dl>
<hr>
<a name="Solaris-2-Options"></a>
<div class="header">
<p>
Next: <a href="#SPARC-Options" accesskey="n" rel="next">SPARC Options</a>, Previous: <a href="#SH-Options" accesskey="p" rel="prev">SH Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Solaris-2-Options-1"></a>
<h4 class="subsection">3.18.45 Solaris 2 Options</h4>
<a name="index-Solaris-2-options"></a>
<p>These ‘<samp>-m</samp>’ options are supported on Solaris 2:
</p>
<dl compact="compact">
<dt><code>-mclear-hwcap</code></dt>
<dd><a name="index-mclear_002dhwcap"></a>
<p><samp>-mclear-hwcap</samp> tells the compiler to remove the hardware
capabilities generated by the Solaris assembler. This is only necessary
when object files use ISA extensions not supported by the current
machine, but check at runtime whether or not to use them.
</p>
</dd>
<dt><code>-mimpure-text</code></dt>
<dd><a name="index-mimpure_002dtext"></a>
<p><samp>-mimpure-text</samp>, used in addition to <samp>-shared</samp>, tells
the compiler to not pass <samp>-z text</samp> to the linker when linking a
shared object. Using this option, you can link position-dependent
code into a shared object.
</p>
<p><samp>-mimpure-text</samp> suppresses the “relocations remain against
allocatable but non-writable sections” linker error message.
However, the necessary relocations trigger copy-on-write, and the
shared object is not actually shared across processes. Instead of
using <samp>-mimpure-text</samp>, you should compile all source code with
<samp>-fpic</samp> or <samp>-fPIC</samp>.
</p>
</dd>
</dl>
<p>These switches are supported in addition to the above on Solaris 2:
</p>
<dl compact="compact">
<dt><code>-pthreads</code></dt>
<dd><a name="index-pthreads"></a>
<p>This is a synonym for <samp>-pthread</samp>.
</p></dd>
</dl>
<hr>
<a name="SPARC-Options"></a>
<div class="header">
<p>
Next: <a href="#SPU-Options" accesskey="n" rel="next">SPU Options</a>, Previous: <a href="#Solaris-2-Options" accesskey="p" rel="prev">Solaris 2 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SPARC-Options-1"></a>
<h4 class="subsection">3.18.46 SPARC Options</h4>
<a name="index-SPARC-options"></a>
<p>These ‘<samp>-m</samp>’ options are supported on the SPARC:
</p>
<dl compact="compact">
<dt><code>-mno-app-regs</code></dt>
<dt><code>-mapp-regs</code></dt>
<dd><a name="index-mno_002dapp_002dregs"></a>
<a name="index-mapp_002dregs"></a>
<p>Specify <samp>-mapp-regs</samp> to generate output using the global registers
2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
global register 1, each global register 2 through 4 is then treated as an
allocable register that is clobbered by function calls. This is the default.
</p>
<p>To be fully SVR4 ABI-compliant at the cost of some performance loss,
specify <samp>-mno-app-regs</samp>. You should compile libraries and system
software with this option.
</p>
</dd>
<dt><code>-mflat</code></dt>
<dt><code>-mno-flat</code></dt>
<dd><a name="index-mflat"></a>
<a name="index-mno_002dflat"></a>
<p>With <samp>-mflat</samp>, the compiler does not generate save/restore instructions
and uses a “flat” or single register window model. This model is compatible
with the regular register window model. The local registers and the input
registers (0–5) are still treated as “call-saved” registers and are
saved on the stack as needed.
</p>
<p>With <samp>-mno-flat</samp> (the default), the compiler generates save/restore
instructions (except for leaf functions). This is the normal operating mode.
</p>
</dd>
<dt><code>-mfpu</code></dt>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-mfpu-4"></a>
<a name="index-mhard_002dfloat-7"></a>
<p>Generate output containing floating-point instructions. This is the
default.
</p>
</dd>
<dt><code>-mno-fpu</code></dt>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-mno_002dfpu"></a>
<a name="index-msoft_002dfloat-11"></a>
<p>Generate output containing library calls for floating point.
<strong>Warning:</strong> the requisite libraries are not available for all SPARC
targets. Normally the facilities of the machine’s usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation. The embedded targets ‘<samp>sparc-*-aout</samp>’ and
‘<samp>sparclite-*-*</samp>’ do provide software floating-point support.
</p>
<p><samp>-msoft-float</samp> changes the calling convention in the output file;
therefore, it is only useful if you compile <em>all</em> of a program with
this option. In particular, you need to compile <samp>libgcc.a</samp>, the
library that comes with GCC, with <samp>-msoft-float</samp> in order for
this to work.
</p>
</dd>
<dt><code>-mhard-quad-float</code></dt>
<dd><a name="index-mhard_002dquad_002dfloat"></a>
<p>Generate output containing quad-word (long double) floating-point
instructions.
</p>
</dd>
<dt><code>-msoft-quad-float</code></dt>
<dd><a name="index-msoft_002dquad_002dfloat"></a>
<p>Generate output containing library calls for quad-word (long double)
floating-point instructions. The functions called are those specified
in the SPARC ABI. This is the default.
</p>
<p>As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating-point instructions. They all invoke
a trap handler for one of these instructions, and then the trap handler
emulates the effect of the instruction. Because of the trap handler overhead,
this is much slower than calling the ABI library routines. Thus the
<samp>-msoft-quad-float</samp> option is the default.
</p>
</dd>
<dt><code>-mno-unaligned-doubles</code></dt>
<dt><code>-munaligned-doubles</code></dt>
<dd><a name="index-mno_002dunaligned_002ddoubles"></a>
<a name="index-munaligned_002ddoubles"></a>
<p>Assume that doubles have 8-byte alignment. This is the default.
</p>
<p>With <samp>-munaligned-doubles</samp>, GCC assumes that doubles have 8-byte
alignment only if they are contained in another type, or if they have an
absolute address. Otherwise, it assumes they have 4-byte alignment.
Specifying this option avoids some rare compatibility problems with code
generated by other compilers. It is not the default because it results
in a performance loss, especially for floating-point code.
</p>
</dd>
<dt><code>-muser-mode</code></dt>
<dt><code>-mno-user-mode</code></dt>
<dd><a name="index-muser_002dmode"></a>
<a name="index-mno_002duser_002dmode"></a>
<p>Do not generate code that can only run in supervisor mode. This is relevant
only for the <code>casa</code> instruction emitted for the LEON3 processor. This
is the default.
</p>
</dd>
<dt><code>-mfaster-structs</code></dt>
<dt><code>-mno-faster-structs</code></dt>
<dd><a name="index-mfaster_002dstructs"></a>
<a name="index-mno_002dfaster_002dstructs"></a>
<p>With <samp>-mfaster-structs</samp>, the compiler assumes that structures
should have 8-byte alignment. This enables the use of pairs of
<code>ldd</code> and <code>std</code> instructions for copies in structure
assignment, in place of twice as many <code>ld</code> and <code>st</code> pairs.
However, the use of this changed alignment directly violates the SPARC
ABI. Thus, it’s intended only for use on targets where the developer
acknowledges that their resulting code is not directly in line with
the rules of the ABI.
</p>
</dd>
<dt><code>-mstd-struct-return</code></dt>
<dt><code>-mno-std-struct-return</code></dt>
<dd><a name="index-mstd_002dstruct_002dreturn"></a>
<a name="index-mno_002dstd_002dstruct_002dreturn"></a>
<p>With <samp>-mstd-struct-return</samp>, the compiler generates checking code
in functions returning structures or unions to detect size mismatches
between the two sides of function calls, as per the 32-bit ABI.
</p>
<p>The default is <samp>-mno-std-struct-return</samp>. This option has no effect
in 64-bit mode.
</p>
</dd>
<dt><code>-mlra</code></dt>
<dt><code>-mno-lra</code></dt>
<dd><a name="index-mlra-2"></a>
<a name="index-mno_002dlra"></a>
<p>Enable Local Register Allocation. This is the default for SPARC since GCC 7
so <samp>-mno-lra</samp> needs to be passed to get old Reload.
</p>
</dd>
<dt><code>-mcpu=<var>cpu_type</var></code></dt>
<dd><a name="index-mcpu-12"></a>
<p>Set the instruction set, register set, and instruction scheduling parameters
for machine type <var>cpu_type</var>. Supported values for <var>cpu_type</var> are
‘<samp>v7</samp>’, ‘<samp>cypress</samp>’, ‘<samp>v8</samp>’, ‘<samp>supersparc</samp>’, ‘<samp>hypersparc</samp>’,
‘<samp>leon</samp>’, ‘<samp>leon3</samp>’, ‘<samp>leon3v7</samp>’, ‘<samp>sparclite</samp>’, ‘<samp>f930</samp>’,
‘<samp>f934</samp>’, ‘<samp>sparclite86x</samp>’, ‘<samp>sparclet</samp>’, ‘<samp>tsc701</samp>’, ‘<samp>v9</samp>’,
‘<samp>ultrasparc</samp>’, ‘<samp>ultrasparc3</samp>’, ‘<samp>niagara</samp>’, ‘<samp>niagara2</samp>’,
‘<samp>niagara3</samp>’, ‘<samp>niagara4</samp>’, ‘<samp>niagara7</samp>’ and ‘<samp>m8</samp>’.
</p>
<p>Native Solaris and GNU/Linux toolchains also support the value ‘<samp>native</samp>’,
which selects the best architecture option for the host processor.
<samp>-mcpu=native</samp> has no effect if GCC does not recognize
the processor.
</p>
<p>Default instruction scheduling parameters are used for values that select
an architecture and not an implementation. These are ‘<samp>v7</samp>’, ‘<samp>v8</samp>’,
‘<samp>sparclite</samp>’, ‘<samp>sparclet</samp>’, ‘<samp>v9</samp>’.
</p>
<p>Here is a list of each supported architecture and their supported
implementations.
</p>
<dl compact="compact">
<dt>v7</dt>
<dd><p>cypress, leon3v7
</p>
</dd>
<dt>v8</dt>
<dd><p>supersparc, hypersparc, leon, leon3
</p>
</dd>
<dt>sparclite</dt>
<dd><p>f930, f934, sparclite86x
</p>
</dd>
<dt>sparclet</dt>
<dd><p>tsc701
</p>
</dd>
<dt>v9</dt>
<dd><p>ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
niagara7, m8
</p></dd>
</dl>
<p>By default (unless configured otherwise), GCC generates code for the V7
variant of the SPARC architecture. With <samp>-mcpu=cypress</samp>, the compiler
additionally optimizes it for the Cypress CY7C602 chip, as used in the
SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
SPARCStation 1, 2, IPX etc.
</p>
<p>With <samp>-mcpu=v8</samp>, GCC generates code for the V8 variant of the SPARC
architecture. The only difference from V7 code is that the compiler emits
the integer multiply and integer divide instructions which exist in SPARC-V8
but not in SPARC-V7. With <samp>-mcpu=supersparc</samp>, the compiler additionally
optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
2000 series.
</p>
<p>With <samp>-mcpu=sparclite</samp>, GCC generates code for the SPARClite variant of
the SPARC architecture. This adds the integer multiply, integer divide step
and scan (<code>ffs</code>) instructions which exist in SPARClite but not in SPARC-V7.
With <samp>-mcpu=f930</samp>, the compiler additionally optimizes it for the
Fujitsu MB86930 chip, which is the original SPARClite, with no FPU. With
<samp>-mcpu=f934</samp>, the compiler additionally optimizes it for the Fujitsu
MB86934 chip, which is the more recent SPARClite with FPU.
</p>
<p>With <samp>-mcpu=sparclet</samp>, GCC generates code for the SPARClet variant of
the SPARC architecture. This adds the integer multiply, multiply/accumulate,
integer divide step and scan (<code>ffs</code>) instructions which exist in SPARClet
but not in SPARC-V7. With <samp>-mcpu=tsc701</samp>, the compiler additionally
optimizes it for the TEMIC SPARClet chip.
</p>
<p>With <samp>-mcpu=v9</samp>, GCC generates code for the V9 variant of the SPARC
architecture. This adds 64-bit integer and floating-point move instructions,
3 additional floating-point condition code registers and conditional move
instructions. With <samp>-mcpu=ultrasparc</samp>, the compiler additionally
optimizes it for the Sun UltraSPARC I/II/IIi chips. With
<samp>-mcpu=ultrasparc3</samp>, the compiler additionally optimizes it for the
Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
<samp>-mcpu=niagara</samp>, the compiler additionally optimizes it for
Sun UltraSPARC T1 chips. With <samp>-mcpu=niagara2</samp>, the compiler
additionally optimizes it for Sun UltraSPARC T2 chips. With
<samp>-mcpu=niagara3</samp>, the compiler additionally optimizes it for Sun
UltraSPARC T3 chips. With <samp>-mcpu=niagara4</samp>, the compiler
additionally optimizes it for Sun UltraSPARC T4 chips. With
<samp>-mcpu=niagara7</samp>, the compiler additionally optimizes it for
Oracle SPARC M7 chips. With <samp>-mcpu=m8</samp>, the compiler
additionally optimizes it for Oracle M8 chips.
</p>
</dd>
<dt><code>-mtune=<var>cpu_type</var></code></dt>
<dd><a name="index-mtune-14"></a>
<p>Set the instruction scheduling parameters for machine type
<var>cpu_type</var>, but do not set the instruction set or register set that the
option <samp>-mcpu=<var>cpu_type</var></samp> does.
</p>
<p>The same values for <samp>-mcpu=<var>cpu_type</var></samp> can be used for
<samp>-mtune=<var>cpu_type</var></samp>, but the only useful values are those
that select a particular CPU implementation. Those are
‘<samp>cypress</samp>’, ‘<samp>supersparc</samp>’, ‘<samp>hypersparc</samp>’, ‘<samp>leon</samp>’,
‘<samp>leon3</samp>’, ‘<samp>leon3v7</samp>’, ‘<samp>f930</samp>’, ‘<samp>f934</samp>’,
‘<samp>sparclite86x</samp>’, ‘<samp>tsc701</samp>’, ‘<samp>ultrasparc</samp>’,
‘<samp>ultrasparc3</samp>’, ‘<samp>niagara</samp>’, ‘<samp>niagara2</samp>’, ‘<samp>niagara3</samp>’,
‘<samp>niagara4</samp>’, ‘<samp>niagara7</samp>’ and ‘<samp>m8</samp>’. With native Solaris
and GNU/Linux toolchains, ‘<samp>native</samp>’ can also be used.
</p>
</dd>
<dt><code>-mv8plus</code></dt>
<dt><code>-mno-v8plus</code></dt>
<dd><a name="index-mv8plus"></a>
<a name="index-mno_002dv8plus"></a>
<p>With <samp>-mv8plus</samp>, GCC generates code for the SPARC-V8+ ABI. The
difference from the V8 ABI is that the global and out registers are
considered 64 bits wide. This is enabled by default on Solaris in 32-bit
mode for all SPARC-V9 processors.
</p>
</dd>
<dt><code>-mvis</code></dt>
<dt><code>-mno-vis</code></dt>
<dd><a name="index-mvis"></a>
<a name="index-mno_002dvis"></a>
<p>With <samp>-mvis</samp>, GCC generates code that takes advantage of the UltraSPARC
Visual Instruction Set extensions. The default is <samp>-mno-vis</samp>.
</p>
</dd>
<dt><code>-mvis2</code></dt>
<dt><code>-mno-vis2</code></dt>
<dd><a name="index-mvis2"></a>
<a name="index-mno_002dvis2"></a>
<p>With <samp>-mvis2</samp>, GCC generates code that takes advantage of
version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
default is <samp>-mvis2</samp> when targeting a cpu that supports such
instructions, such as UltraSPARC-III and later. Setting <samp>-mvis2</samp>
also sets <samp>-mvis</samp>.
</p>
</dd>
<dt><code>-mvis3</code></dt>
<dt><code>-mno-vis3</code></dt>
<dd><a name="index-mvis3"></a>
<a name="index-mno_002dvis3"></a>
<p>With <samp>-mvis3</samp>, GCC generates code that takes advantage of
version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
default is <samp>-mvis3</samp> when targeting a cpu that supports such
instructions, such as niagara-3 and later. Setting <samp>-mvis3</samp>
also sets <samp>-mvis2</samp> and <samp>-mvis</samp>.
</p>
</dd>
<dt><code>-mvis4</code></dt>
<dt><code>-mno-vis4</code></dt>
<dd><a name="index-mvis4"></a>
<a name="index-mno_002dvis4"></a>
<p>With <samp>-mvis4</samp>, GCC generates code that takes advantage of
version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
default is <samp>-mvis4</samp> when targeting a cpu that supports such
instructions, such as niagara-7 and later. Setting <samp>-mvis4</samp>
also sets <samp>-mvis3</samp>, <samp>-mvis2</samp> and <samp>-mvis</samp>.
</p>
</dd>
<dt><code>-mvis4b</code></dt>
<dt><code>-mno-vis4b</code></dt>
<dd><a name="index-mvis4b"></a>
<a name="index-mno_002dvis4b"></a>
<p>With <samp>-mvis4b</samp>, GCC generates code that takes advantage of
version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
the additional VIS instructions introduced in the Oracle SPARC
Architecture 2017. The default is <samp>-mvis4b</samp> when targeting a
cpu that supports such instructions, such as m8 and later. Setting
<samp>-mvis4b</samp> also sets <samp>-mvis4</samp>, <samp>-mvis3</samp>,
<samp>-mvis2</samp> and <samp>-mvis</samp>.
</p>
</dd>
<dt><code>-mcbcond</code></dt>
<dt><code>-mno-cbcond</code></dt>
<dd><a name="index-mcbcond"></a>
<a name="index-mno_002dcbcond"></a>
<p>With <samp>-mcbcond</samp>, GCC generates code that takes advantage of the UltraSPARC
Compare-and-Branch-on-Condition instructions. The default is <samp>-mcbcond</samp>
when targeting a CPU that supports such instructions, such as Niagara-4 and
later.
</p>
</dd>
<dt><code>-mfmaf</code></dt>
<dt><code>-mno-fmaf</code></dt>
<dd><a name="index-mfmaf"></a>
<a name="index-mno_002dfmaf"></a>
<p>With <samp>-mfmaf</samp>, GCC generates code that takes advantage of the UltraSPARC
Fused Multiply-Add Floating-point instructions. The default is <samp>-mfmaf</samp>
when targeting a CPU that supports such instructions, such as Niagara-3 and
later.
</p>
</dd>
<dt><code>-mfsmuld</code></dt>
<dt><code>-mno-fsmuld</code></dt>
<dd><a name="index-mfsmuld"></a>
<a name="index-mno_002dfsmuld"></a>
<p>With <samp>-mfsmuld</samp>, GCC generates code that takes advantage of the
Floating-point Multiply Single to Double (FsMULd) instruction. The default is
<samp>-mfsmuld</samp> when targeting a CPU supporting the architecture versions V8
or V9 with FPU except <samp>-mcpu=leon</samp>.
</p>
</dd>
<dt><code>-mpopc</code></dt>
<dt><code>-mno-popc</code></dt>
<dd><a name="index-mpopc"></a>
<a name="index-mno_002dpopc"></a>
<p>With <samp>-mpopc</samp>, GCC generates code that takes advantage of the UltraSPARC
Population Count instruction. The default is <samp>-mpopc</samp>
when targeting a CPU that supports such an instruction, such as Niagara-2 and
later.
</p>
</dd>
<dt><code>-msubxc</code></dt>
<dt><code>-mno-subxc</code></dt>
<dd><a name="index-msubxc"></a>
<a name="index-mno_002dsubxc"></a>
<p>With <samp>-msubxc</samp>, GCC generates code that takes advantage of the UltraSPARC
Subtract-Extended-with-Carry instruction. The default is <samp>-msubxc</samp>
when targeting a CPU that supports such an instruction, such as Niagara-7 and
later.
</p>
</dd>
<dt><code>-mfix-at697f</code></dt>
<dd><a name="index-mfix_002dat697f"></a>
<p>Enable the documented workaround for the single erratum of the Atmel AT697F
processor (which corresponds to erratum #13 of the AT697E processor).
</p>
</dd>
<dt><code>-mfix-ut699</code></dt>
<dd><a name="index-mfix_002dut699"></a>
<p>Enable the documented workarounds for the floating-point errata and the data
cache nullify errata of the UT699 processor.
</p>
</dd>
<dt><code>-mfix-ut700</code></dt>
<dd><a name="index-mfix_002dut700"></a>
<p>Enable the documented workaround for the back-to-back store errata of
the UT699E/UT700 processor.
</p>
</dd>
<dt><code>-mfix-gr712rc</code></dt>
<dd><a name="index-mfix_002dgr712rc"></a>
<p>Enable the documented workaround for the back-to-back store errata of
the GR712RC processor.
</p></dd>
</dl>
<p>These ‘<samp>-m</samp>’ options are supported in addition to the above
on SPARC-V9 processors in 64-bit environments:
</p>
<dl compact="compact">
<dt><code>-m32</code></dt>
<dt><code>-m64</code></dt>
<dd><a name="index-m32-2"></a>
<a name="index-m64-3"></a>
<p>Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits.
</p>
</dd>
<dt><code>-mcmodel=<var>which</var></code></dt>
<dd><a name="index-mcmodel-1"></a>
<p>Set the code model to one of
</p>
<dl compact="compact">
<dt>‘<samp>medlow</samp>’</dt>
<dd><p>The Medium/Low code model: 64-bit addresses, programs
must be linked in the low 32 bits of memory. Programs can be statically
or dynamically linked.
</p>
</dd>
<dt>‘<samp>medmid</samp>’</dt>
<dd><p>The Medium/Middle code model: 64-bit addresses, programs
must be linked in the low 44 bits of memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.
</p>
</dd>
<dt>‘<samp>medany</samp>’</dt>
<dd><p>The Medium/Anywhere code model: 64-bit addresses, programs
may be linked anywhere in memory, the text and data segments must be less
than 2GB in size and the data segment must be located within 2GB of the
text segment.
</p>
</dd>
<dt>‘<samp>embmedany</samp>’</dt>
<dd><p>The Medium/Anywhere code model for embedded systems:
64-bit addresses, the text and data segments must be less than 2GB in
size, both starting anywhere in memory (determined at link time). The
global register %g4 points to the base of the data segment. Programs
are statically linked and PIC is not supported.
</p></dd>
</dl>
</dd>
<dt><code>-mmemory-model=<var>mem-model</var></code></dt>
<dd><a name="index-mmemory_002dmodel"></a>
<p>Set the memory model in force on the processor to one of
</p>
<dl compact="compact">
<dt>‘<samp>default</samp>’</dt>
<dd><p>The default memory model for the processor and operating system.
</p>
</dd>
<dt>‘<samp>rmo</samp>’</dt>
<dd><p>Relaxed Memory Order
</p>
</dd>
<dt>‘<samp>pso</samp>’</dt>
<dd><p>Partial Store Order
</p>
</dd>
<dt>‘<samp>tso</samp>’</dt>
<dd><p>Total Store Order
</p>
</dd>
<dt>‘<samp>sc</samp>’</dt>
<dd><p>Sequential Consistency
</p></dd>
</dl>
<p>These memory models are formally defined in Appendix D of the SPARC-V9
architecture manual, as set in the processor’s <code>PSTATE.MM</code> field.
</p>
</dd>
<dt><code>-mstack-bias</code></dt>
<dt><code>-mno-stack-bias</code></dt>
<dd><a name="index-mstack_002dbias"></a>
<a name="index-mno_002dstack_002dbias"></a>
<p>With <samp>-mstack-bias</samp>, GCC assumes that the stack pointer, and
frame pointer if present, are offset by -2047 which must be added back
when making stack frame references. This is the default in 64-bit mode.
Otherwise, assume no such offset is present.
</p></dd>
</dl>
<hr>
<a name="SPU-Options"></a>
<div class="header">
<p>
Next: <a href="#System-V-Options" accesskey="n" rel="next">System V Options</a>, Previous: <a href="#SPARC-Options" accesskey="p" rel="prev">SPARC Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SPU-Options-1"></a>
<h4 class="subsection">3.18.47 SPU Options</h4>
<a name="index-SPU-options"></a>
<p>These ‘<samp>-m</samp>’ options are supported on the SPU:
</p>
<dl compact="compact">
<dt><code>-mwarn-reloc</code></dt>
<dt><code>-merror-reloc</code></dt>
<dd><a name="index-mwarn_002dreloc"></a>
<a name="index-merror_002dreloc"></a>
<p>The loader for SPU does not handle dynamic relocations. By default, GCC
gives an error when it generates code that requires a dynamic
relocation. <samp>-mno-error-reloc</samp> disables the error,
<samp>-mwarn-reloc</samp> generates a warning instead.
</p>
</dd>
<dt><code>-msafe-dma</code></dt>
<dt><code>-munsafe-dma</code></dt>
<dd><a name="index-msafe_002ddma"></a>
<a name="index-munsafe_002ddma"></a>
<p>Instructions that initiate or test completion of DMA must not be
reordered with respect to loads and stores of the memory that is being
accessed.
With <samp>-munsafe-dma</samp> you must use the <code>volatile</code> keyword to protect
memory accesses, but that can lead to inefficient code in places where the
memory is known to not change. Rather than mark the memory as volatile,
you can use <samp>-msafe-dma</samp> to tell the compiler to treat
the DMA instructions as potentially affecting all memory.
</p>
</dd>
<dt><code>-mbranch-hints</code></dt>
<dd><a name="index-mbranch_002dhints"></a>
<p>By default, GCC generates a branch hint instruction to avoid
pipeline stalls for always-taken or probably-taken branches. A hint
is not generated closer than 8 instructions away from its branch.
There is little reason to disable them, except for debugging purposes,
or to make an object a little bit smaller.
</p>
</dd>
<dt><code>-msmall-mem</code></dt>
<dt><code>-mlarge-mem</code></dt>
<dd><a name="index-msmall_002dmem"></a>
<a name="index-mlarge_002dmem"></a>
<p>By default, GCC generates code assuming that addresses are never larger
than 18 bits. With <samp>-mlarge-mem</samp> code is generated that assumes
a full 32-bit address.
</p>
</dd>
<dt><code>-mstdmain</code></dt>
<dd><a name="index-mstdmain"></a>
<p>By default, GCC links against startup code that assumes the SPU-style
main function interface (which has an unconventional parameter list).
With <samp>-mstdmain</samp>, GCC links your program against startup
code that assumes a C99-style interface to <code>main</code>, including a
local copy of <code>argv</code> strings.
</p>
</dd>
<dt><code>-mfixed-range=<var>register-range</var></code></dt>
<dd><a name="index-mfixed_002drange-3"></a>
<p>Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
</p>
</dd>
<dt><code>-mea32</code></dt>
<dt><code>-mea64</code></dt>
<dd><a name="index-mea32"></a>
<a name="index-mea64"></a>
<p>Compile code assuming that pointers to the PPU address space accessed
via the <code>__ea</code> named address space qualifier are either 32 or 64
bits wide. The default is 32 bits. As this is an ABI-changing option,
all object code in an executable must be compiled with the same setting.
</p>
</dd>
<dt><code>-maddress-space-conversion</code></dt>
<dt><code>-mno-address-space-conversion</code></dt>
<dd><a name="index-maddress_002dspace_002dconversion"></a>
<a name="index-mno_002daddress_002dspace_002dconversion"></a>
<p>Allow/disallow treating the <code>__ea</code> address space as superset
of the generic address space. This enables explicit type casts
between <code>__ea</code> and generic pointer as well as implicit
conversions of generic pointers to <code>__ea</code> pointers. The
default is to allow address space pointer conversions.
</p>
</dd>
<dt><code>-mcache-size=<var>cache-size</var></code></dt>
<dd><a name="index-mcache_002dsize"></a>
<p>This option controls the version of libgcc that the compiler links to an
executable and selects a software-managed cache for accessing variables
in the <code>__ea</code> address space with a particular cache size. Possible
options for <var>cache-size</var> are ‘<samp>8</samp>’, ‘<samp>16</samp>’, ‘<samp>32</samp>’, ‘<samp>64</samp>’
and ‘<samp>128</samp>’. The default cache size is 64KB.
</p>
</dd>
<dt><code>-matomic-updates</code></dt>
<dt><code>-mno-atomic-updates</code></dt>
<dd><a name="index-matomic_002dupdates"></a>
<a name="index-mno_002datomic_002dupdates"></a>
<p>This option controls the version of libgcc that the compiler links to an
executable and selects whether atomic updates to the software-managed
cache of PPU-side variables are used. If you use atomic updates, changes
to a PPU variable from SPU code using the <code>__ea</code> named address space
qualifier do not interfere with changes to other PPU variables residing
in the same cache line from PPU code. If you do not use atomic updates,
such interference may occur; however, writing back cache lines is
more efficient. The default behavior is to use atomic updates.
</p>
</dd>
<dt><code>-mdual-nops</code></dt>
<dt><code>-mdual-nops=<var>n</var></code></dt>
<dd><a name="index-mdual_002dnops"></a>
<p>By default, GCC inserts NOPs to increase dual issue when it expects
it to increase performance. <var>n</var> can be a value from 0 to 10. A
smaller <var>n</var> inserts fewer NOPs. 10 is the default, 0 is the
same as <samp>-mno-dual-nops</samp>. Disabled with <samp>-Os</samp>.
</p>
</dd>
<dt><code>-mhint-max-nops=<var>n</var></code></dt>
<dd><a name="index-mhint_002dmax_002dnops"></a>
<p>Maximum number of NOPs to insert for a branch hint. A branch hint must
be at least 8 instructions away from the branch it is affecting. GCC
inserts up to <var>n</var> NOPs to enforce this, otherwise it does not
generate the branch hint.
</p>
</dd>
<dt><code>-mhint-max-distance=<var>n</var></code></dt>
<dd><a name="index-mhint_002dmax_002ddistance"></a>
<p>The encoding of the branch hint instruction limits the hint to be within
256 instructions of the branch it is affecting. By default, GCC makes
sure it is within 125.
</p>
</dd>
<dt><code>-msafe-hints</code></dt>
<dd><a name="index-msafe_002dhints"></a>
<p>Work around a hardware bug that causes the SPU to stall indefinitely.
By default, GCC inserts the <code>hbrp</code> instruction to make sure
this stall won’t happen.
</p>
</dd>
</dl>
<hr>
<a name="System-V-Options"></a>
<div class="header">
<p>
Next: <a href="#TILE_002dGx-Options" accesskey="n" rel="next">TILE-Gx Options</a>, Previous: <a href="#SPU-Options" accesskey="p" rel="prev">SPU Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-for-System-V"></a>
<h4 class="subsection">3.18.48 Options for System V</h4>
<p>These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:
</p>
<dl compact="compact">
<dt><code>-G</code></dt>
<dd><a name="index-G-6"></a>
<p>Create a shared object.
It is recommended that <samp>-symbolic</samp> or <samp>-shared</samp> be used instead.
</p>
</dd>
<dt><code>-Qy</code></dt>
<dd><a name="index-Qy"></a>
<p>Identify the versions of each tool used by the compiler, in a
<code>.ident</code> assembler directive in the output.
</p>
</dd>
<dt><code>-Qn</code></dt>
<dd><a name="index-Qn"></a>
<p>Refrain from adding <code>.ident</code> directives to the output file (this is
the default).
</p>
</dd>
<dt><code>-YP,<var>dirs</var></code></dt>
<dd><a name="index-YP"></a>
<p>Search the directories <var>dirs</var>, and no others, for libraries
specified with <samp>-l</samp>.
</p>
</dd>
<dt><code>-Ym,<var>dir</var></code></dt>
<dd><a name="index-Ym"></a>
<p>Look in the directory <var>dir</var> to find the M4 preprocessor.
The assembler uses this option.
</p></dd>
</dl>
<hr>
<a name="TILE_002dGx-Options"></a>
<div class="header">
<p>
Next: <a href="#TILEPro-Options" accesskey="n" rel="next">TILEPro Options</a>, Previous: <a href="#System-V-Options" accesskey="p" rel="prev">System V Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="TILE_002dGx-Options-1"></a>
<h4 class="subsection">3.18.49 TILE-Gx Options</h4>
<a name="index-TILE_002dGx-options"></a>
<p>These ‘<samp>-m</samp>’ options are supported on the TILE-Gx:
</p>
<dl compact="compact">
<dt><code>-mcmodel=small</code></dt>
<dd><a name="index-mcmodel_003dsmall-2"></a>
<p>Generate code for the small model. The distance for direct calls is
limited to 500M in either direction. PC-relative addresses are 32
bits. Absolute addresses support the full address range.
</p>
</dd>
<dt><code>-mcmodel=large</code></dt>
<dd><a name="index-mcmodel_003dlarge-2"></a>
<p>Generate code for the large model. There is no limitation on call
distance, pc-relative addresses, or absolute addresses.
</p>
</dd>
<dt><code>-mcpu=<var>name</var></code></dt>
<dd><a name="index-mcpu-13"></a>
<p>Selects the type of CPU to be targeted. Currently the only supported
type is ‘<samp>tilegx</samp>’.
</p>
</dd>
<dt><code>-m32</code></dt>
<dt><code>-m64</code></dt>
<dd><a name="index-m32-3"></a>
<a name="index-m64-4"></a>
<p>Generate code for a 32-bit or 64-bit environment. The 32-bit
environment sets int, long, and pointer to 32 bits. The 64-bit
environment sets int to 32 bits and long and pointer to 64 bits.
</p>
</dd>
<dt><code>-mbig-endian</code></dt>
<dt><code>-mlittle-endian</code></dt>
<dd><a name="index-mbig_002dendian-10"></a>
<a name="index-mlittle_002dendian-10"></a>
<p>Generate code in big/little endian mode, respectively.
</p></dd>
</dl>
<hr>
<a name="TILEPro-Options"></a>
<div class="header">
<p>
Next: <a href="#V850-Options" accesskey="n" rel="next">V850 Options</a>, Previous: <a href="#TILE_002dGx-Options" accesskey="p" rel="prev">TILE-Gx Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="TILEPro-Options-1"></a>
<h4 class="subsection">3.18.50 TILEPro Options</h4>
<a name="index-TILEPro-options"></a>
<p>These ‘<samp>-m</samp>’ options are supported on the TILEPro:
</p>
<dl compact="compact">
<dt><code>-mcpu=<var>name</var></code></dt>
<dd><a name="index-mcpu-14"></a>
<p>Selects the type of CPU to be targeted. Currently the only supported
type is ‘<samp>tilepro</samp>’.
</p>
</dd>
<dt><code>-m32</code></dt>
<dd><a name="index-m32-4"></a>
<p>Generate code for a 32-bit environment, which sets int, long, and
pointer to 32 bits. This is the only supported behavior so the flag
is essentially ignored.
</p></dd>
</dl>
<hr>
<a name="V850-Options"></a>
<div class="header">
<p>
Next: <a href="#VAX-Options" accesskey="n" rel="next">VAX Options</a>, Previous: <a href="#TILEPro-Options" accesskey="p" rel="prev">TILEPro Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="V850-Options-1"></a>
<h4 class="subsection">3.18.51 V850 Options</h4>
<a name="index-V850-Options"></a>
<p>These ‘<samp>-m</samp>’ options are defined for V850 implementations:
</p>
<dl compact="compact">
<dt><code>-mlong-calls</code></dt>
<dt><code>-mno-long-calls</code></dt>
<dd><a name="index-mlong_002dcalls-6"></a>
<a name="index-mno_002dlong_002dcalls-4"></a>
<p>Treat all calls as being far away (near). If calls are assumed to be
far away, the compiler always loads the function’s address into a
register, and calls indirect through the pointer.
</p>
</dd>
<dt><code>-mno-ep</code></dt>
<dt><code>-mep</code></dt>
<dd><a name="index-mno_002dep"></a>
<a name="index-mep"></a>
<p>Do not optimize (do optimize) basic blocks that use the same index
pointer 4 or more times to copy pointer into the <code>ep</code> register, and
use the shorter <code>sld</code> and <code>sst</code> instructions. The <samp>-mep</samp>
option is on by default if you optimize.
</p>
</dd>
<dt><code>-mno-prolog-function</code></dt>
<dt><code>-mprolog-function</code></dt>
<dd><a name="index-mno_002dprolog_002dfunction"></a>
<a name="index-mprolog_002dfunction"></a>
<p>Do not use (do use) external functions to save and restore registers
at the prologue and epilogue of a function. The external functions
are slower, but use less code space if more than one function saves
the same number of registers. The <samp>-mprolog-function</samp> option
is on by default if you optimize.
</p>
</dd>
<dt><code>-mspace</code></dt>
<dd><a name="index-mspace"></a>
<p>Try to make the code as small as possible. At present, this just turns
on the <samp>-mep</samp> and <samp>-mprolog-function</samp> options.
</p>
</dd>
<dt><code>-mtda=<var>n</var></code></dt>
<dd><a name="index-mtda"></a>
<p>Put static or global variables whose size is <var>n</var> bytes or less into
the tiny data area that register <code>ep</code> points to. The tiny data
area can hold up to 256 bytes in total (128 bytes for byte references).
</p>
</dd>
<dt><code>-msda=<var>n</var></code></dt>
<dd><a name="index-msda"></a>
<p>Put static or global variables whose size is <var>n</var> bytes or less into
the small data area that register <code>gp</code> points to. The small data
area can hold up to 64 kilobytes.
</p>
</dd>
<dt><code>-mzda=<var>n</var></code></dt>
<dd><a name="index-mzda"></a>
<p>Put static or global variables whose size is <var>n</var> bytes or less into
the first 32 kilobytes of memory.
</p>
</dd>
<dt><code>-mv850</code></dt>
<dd><a name="index-mv850"></a>
<p>Specify that the target processor is the V850.
</p>
</dd>
<dt><code>-mv850e3v5</code></dt>
<dd><a name="index-mv850e3v5"></a>
<p>Specify that the target processor is the V850E3V5. The preprocessor
constant <code>__v850e3v5__</code> is defined if this option is used.
</p>
</dd>
<dt><code>-mv850e2v4</code></dt>
<dd><a name="index-mv850e2v4"></a>
<p>Specify that the target processor is the V850E3V5. This is an alias for
the <samp>-mv850e3v5</samp> option.
</p>
</dd>
<dt><code>-mv850e2v3</code></dt>
<dd><a name="index-mv850e2v3"></a>
<p>Specify that the target processor is the V850E2V3. The preprocessor
constant <code>__v850e2v3__</code> is defined if this option is used.
</p>
</dd>
<dt><code>-mv850e2</code></dt>
<dd><a name="index-mv850e2"></a>
<p>Specify that the target processor is the V850E2. The preprocessor
constant <code>__v850e2__</code> is defined if this option is used.
</p>
</dd>
<dt><code>-mv850e1</code></dt>
<dd><a name="index-mv850e1"></a>
<p>Specify that the target processor is the V850E1. The preprocessor
constants <code>__v850e1__</code> and <code>__v850e__</code> are defined if
this option is used.
</p>
</dd>
<dt><code>-mv850es</code></dt>
<dd><a name="index-mv850es"></a>
<p>Specify that the target processor is the V850ES. This is an alias for
the <samp>-mv850e1</samp> option.
</p>
</dd>
<dt><code>-mv850e</code></dt>
<dd><a name="index-mv850e"></a>
<p>Specify that the target processor is the V850E. The preprocessor
constant <code>__v850e__</code> is defined if this option is used.
</p>
<p>If neither <samp>-mv850</samp> nor <samp>-mv850e</samp> nor <samp>-mv850e1</samp>
nor <samp>-mv850e2</samp> nor <samp>-mv850e2v3</samp> nor <samp>-mv850e3v5</samp>
are defined then a default target processor is chosen and the
relevant ‘<samp>__v850*__</samp>’ preprocessor constant is defined.
</p>
<p>The preprocessor constants <code>__v850</code> and <code>__v851__</code> are always
defined, regardless of which processor variant is the target.
</p>
</dd>
<dt><code>-mdisable-callt</code></dt>
<dt><code>-mno-disable-callt</code></dt>
<dd><a name="index-mdisable_002dcallt"></a>
<a name="index-mno_002ddisable_002dcallt"></a>
<p>This option suppresses generation of the <code>CALLT</code> instruction for the
v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
architecture.
</p>
<p>This option is enabled by default when the RH850 ABI is
in use (see <samp>-mrh850-abi</samp>), and disabled by default when the
GCC ABI is in use. If <code>CALLT</code> instructions are being generated
then the C preprocessor symbol <code>__V850_CALLT__</code> is defined.
</p>
</dd>
<dt><code>-mrelax</code></dt>
<dt><code>-mno-relax</code></dt>
<dd><a name="index-mrelax-7"></a>
<a name="index-mno_002drelax"></a>
<p>Pass on (or do not pass on) the <samp>-mrelax</samp> command-line option
to the assembler.
</p>
</dd>
<dt><code>-mlong-jumps</code></dt>
<dt><code>-mno-long-jumps</code></dt>
<dd><a name="index-mlong_002djumps"></a>
<a name="index-mno_002dlong_002djumps"></a>
<p>Disable (or re-enable) the generation of PC-relative jump instructions.
</p>
</dd>
<dt><code>-msoft-float</code></dt>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-msoft_002dfloat-12"></a>
<a name="index-mhard_002dfloat-8"></a>
<p>Disable (or re-enable) the generation of hardware floating point
instructions. This option is only significant when the target
architecture is ‘<samp>V850E2V3</samp>’ or higher. If hardware floating point
instructions are being generated then the C preprocessor symbol
<code>__FPU_OK__</code> is defined, otherwise the symbol
<code>__NO_FPU__</code> is defined.
</p>
</dd>
<dt><code>-mloop</code></dt>
<dd><a name="index-mloop"></a>
<p>Enables the use of the e3v5 LOOP instruction. The use of this
instruction is not enabled by default when the e3v5 architecture is
selected because its use is still experimental.
</p>
</dd>
<dt><code>-mrh850-abi</code></dt>
<dt><code>-mghs</code></dt>
<dd><a name="index-mrh850_002dabi"></a>
<a name="index-mghs"></a>
<p>Enables support for the RH850 version of the V850 ABI. This is the
default. With this version of the ABI the following rules apply:
</p>
<ul>
<li> Integer sized structures and unions are returned via a memory pointer
rather than a register.
</li><li> Large structures and unions (more than 8 bytes in size) are passed by
value.
</li><li> Functions are aligned to 16-bit boundaries.
</li><li> The <samp>-m8byte-align</samp> command-line option is supported.
</li><li> The <samp>-mdisable-callt</samp> command-line option is enabled by
default. The <samp>-mno-disable-callt</samp> command-line option is not
supported.
</li></ul>
<p>When this version of the ABI is enabled the C preprocessor symbol
<code>__V850_RH850_ABI__</code> is defined.
</p>
</dd>
<dt><code>-mgcc-abi</code></dt>
<dd><a name="index-mgcc_002dabi"></a>
<p>Enables support for the old GCC version of the V850 ABI. With this
version of the ABI the following rules apply:
</p>
<ul>
<li> Integer sized structures and unions are returned in register <code>r10</code>.
</li><li> Large structures and unions (more than 8 bytes in size) are passed by
reference.
</li><li> Functions are aligned to 32-bit boundaries, unless optimizing for
size.
</li><li> The <samp>-m8byte-align</samp> command-line option is not supported.
</li><li> The <samp>-mdisable-callt</samp> command-line option is supported but not
enabled by default.
</li></ul>
<p>When this version of the ABI is enabled the C preprocessor symbol
<code>__V850_GCC_ABI__</code> is defined.
</p>
</dd>
<dt><code>-m8byte-align</code></dt>
<dt><code>-mno-8byte-align</code></dt>
<dd><a name="index-m8byte_002dalign"></a>
<a name="index-mno_002d8byte_002dalign"></a>
<p>Enables support for <code>double</code> and <code>long long</code> types to be
aligned on 8-byte boundaries. The default is to restrict the
alignment of all objects to at most 4-bytes. When
<samp>-m8byte-align</samp> is in effect the C preprocessor symbol
<code>__V850_8BYTE_ALIGN__</code> is defined.
</p>
</dd>
<dt><code>-mbig-switch</code></dt>
<dd><a name="index-mbig_002dswitch"></a>
<p>Generate code suitable for big switch tables. Use this option only if
the assembler/linker complain about out of range branches within a switch
table.
</p>
</dd>
<dt><code>-mapp-regs</code></dt>
<dd><a name="index-mapp_002dregs-1"></a>
<p>This option causes r2 and r5 to be used in the code generated by
the compiler. This setting is the default.
</p>
</dd>
<dt><code>-mno-app-regs</code></dt>
<dd><a name="index-mno_002dapp_002dregs-1"></a>
<p>This option causes r2 and r5 to be treated as fixed registers.
</p>
</dd>
</dl>
<hr>
<a name="VAX-Options"></a>
<div class="header">
<p>
Next: <a href="#Visium-Options" accesskey="n" rel="next">Visium Options</a>, Previous: <a href="#V850-Options" accesskey="p" rel="prev">V850 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="VAX-Options-1"></a>
<h4 class="subsection">3.18.52 VAX Options</h4>
<a name="index-VAX-options"></a>
<p>These ‘<samp>-m</samp>’ options are defined for the VAX:
</p>
<dl compact="compact">
<dt><code>-munix</code></dt>
<dd><a name="index-munix"></a>
<p>Do not output certain jump instructions (<code>aobleq</code> and so on)
that the Unix assembler for the VAX cannot handle across long
ranges.
</p>
</dd>
<dt><code>-mgnu</code></dt>
<dd><a name="index-mgnu"></a>
<p>Do output those jump instructions, on the assumption that the
GNU assembler is being used.
</p>
</dd>
<dt><code>-mg</code></dt>
<dd><a name="index-mg"></a>
<p>Output code for G-format floating-point numbers instead of D-format.
</p></dd>
</dl>
<hr>
<a name="Visium-Options"></a>
<div class="header">
<p>
Next: <a href="#VMS-Options" accesskey="n" rel="next">VMS Options</a>, Previous: <a href="#VAX-Options" accesskey="p" rel="prev">VAX Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Visium-Options-1"></a>
<h4 class="subsection">3.18.53 Visium Options</h4>
<a name="index-Visium-options"></a>
<dl compact="compact">
<dt><code>-mdebug</code></dt>
<dd><a name="index-mdebug-2"></a>
<p>A program which performs file I/O and is destined to run on an MCM target
should be linked with this option. It causes the libraries libc.a and
libdebug.a to be linked. The program should be run on the target under
the control of the GDB remote debugging stub.
</p>
</dd>
<dt><code>-msim</code></dt>
<dd><a name="index-msim-11"></a>
<p>A program which performs file I/O and is destined to run on the simulator
should be linked with option. This causes libraries libc.a and libsim.a to
be linked.
</p>
</dd>
<dt><code>-mfpu</code></dt>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-mfpu-5"></a>
<a name="index-mhard_002dfloat-9"></a>
<p>Generate code containing floating-point instructions. This is the
default.
</p>
</dd>
<dt><code>-mno-fpu</code></dt>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-mno_002dfpu-1"></a>
<a name="index-msoft_002dfloat-13"></a>
<p>Generate code containing library calls for floating-point.
</p>
<p><samp>-msoft-float</samp> changes the calling convention in the output file;
therefore, it is only useful if you compile <em>all</em> of a program with
this option. In particular, you need to compile <samp>libgcc.a</samp>, the
library that comes with GCC, with <samp>-msoft-float</samp> in order for
this to work.
</p>
</dd>
<dt><code>-mcpu=<var>cpu_type</var></code></dt>
<dd><a name="index-mcpu-15"></a>
<p>Set the instruction set, register set, and instruction scheduling parameters
for machine type <var>cpu_type</var>. Supported values for <var>cpu_type</var> are
‘<samp>mcm</samp>’, ‘<samp>gr5</samp>’ and ‘<samp>gr6</samp>’.
</p>
<p>‘<samp>mcm</samp>’ is a synonym of ‘<samp>gr5</samp>’ present for backward compatibility.
</p>
<p>By default (unless configured otherwise), GCC generates code for the GR5
variant of the Visium architecture.
</p>
<p>With <samp>-mcpu=gr6</samp>, GCC generates code for the GR6 variant of the Visium
architecture. The only difference from GR5 code is that the compiler will
generate block move instructions.
</p>
</dd>
<dt><code>-mtune=<var>cpu_type</var></code></dt>
<dd><a name="index-mtune-15"></a>
<p>Set the instruction scheduling parameters for machine type <var>cpu_type</var>,
but do not set the instruction set or register set that the option
<samp>-mcpu=<var>cpu_type</var></samp> would.
</p>
</dd>
<dt><code>-msv-mode</code></dt>
<dd><a name="index-msv_002dmode"></a>
<p>Generate code for the supervisor mode, where there are no restrictions on
the access to general registers. This is the default.
</p>
</dd>
<dt><code>-muser-mode</code></dt>
<dd><a name="index-muser_002dmode-1"></a>
<p>Generate code for the user mode, where the access to some general registers
is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
mode; on the GR6, only registers r29 to r31 are affected.
</p></dd>
</dl>
<hr>
<a name="VMS-Options"></a>
<div class="header">
<p>
Next: <a href="#VxWorks-Options" accesskey="n" rel="next">VxWorks Options</a>, Previous: <a href="#Visium-Options" accesskey="p" rel="prev">Visium Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="VMS-Options-1"></a>
<h4 class="subsection">3.18.54 VMS Options</h4>
<p>These ‘<samp>-m</samp>’ options are defined for the VMS implementations:
</p>
<dl compact="compact">
<dt><code>-mvms-return-codes</code></dt>
<dd><a name="index-mvms_002dreturn_002dcodes"></a>
<p>Return VMS condition codes from <code>main</code>. The default is to return POSIX-style
condition (e.g. error) codes.
</p>
</dd>
<dt><code>-mdebug-main=<var>prefix</var></code></dt>
<dd><a name="index-mdebug_002dmain_003dprefix"></a>
<p>Flag the first routine whose name starts with <var>prefix</var> as the main
routine for the debugger.
</p>
</dd>
<dt><code>-mmalloc64</code></dt>
<dd><a name="index-mmalloc64"></a>
<p>Default to 64-bit memory allocation routines.
</p>
</dd>
<dt><code>-mpointer-size=<var>size</var></code></dt>
<dd><a name="index-mpointer_002dsize_003dsize"></a>
<p>Set the default size of pointers. Possible options for <var>size</var> are
‘<samp>32</samp>’ or ‘<samp>short</samp>’ for 32 bit pointers, ‘<samp>64</samp>’ or ‘<samp>long</samp>’
for 64 bit pointers, and ‘<samp>no</samp>’ for supporting only 32 bit pointers.
The later option disables <code>pragma pointer_size</code>.
</p></dd>
</dl>
<hr>
<a name="VxWorks-Options"></a>
<div class="header">
<p>
Next: <a href="#x86-Options" accesskey="n" rel="next">x86 Options</a>, Previous: <a href="#VMS-Options" accesskey="p" rel="prev">VMS Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="VxWorks-Options-1"></a>
<h4 class="subsection">3.18.55 VxWorks Options</h4>
<a name="index-VxWorks-Options"></a>
<p>The options in this section are defined for all VxWorks targets.
Options specific to the target hardware are listed with the other
options for that target.
</p>
<dl compact="compact">
<dt><code>-mrtp</code></dt>
<dd><a name="index-mrtp"></a>
<p>GCC can generate code for both VxWorks kernels and real time processes
(RTPs). This option switches from the former to the latter. It also
defines the preprocessor macro <code>__RTP__</code>.
</p>
</dd>
<dt><code>-non-static</code></dt>
<dd><a name="index-non_002dstatic"></a>
<p>Link an RTP executable against shared libraries rather than static
libraries. The options <samp>-static</samp> and <samp>-shared</samp> can
also be used for RTPs (see <a href="#Link-Options">Link Options</a>); <samp>-static</samp>
is the default.
</p>
</dd>
<dt><code>-Bstatic</code></dt>
<dt><code>-Bdynamic</code></dt>
<dd><a name="index-Bstatic"></a>
<a name="index-Bdynamic"></a>
<p>These options are passed down to the linker. They are defined for
compatibility with Diab.
</p>
</dd>
<dt><code>-Xbind-lazy</code></dt>
<dd><a name="index-Xbind_002dlazy"></a>
<p>Enable lazy binding of function calls. This option is equivalent to
<samp>-Wl,-z,now</samp> and is defined for compatibility with Diab.
</p>
</dd>
<dt><code>-Xbind-now</code></dt>
<dd><a name="index-Xbind_002dnow"></a>
<p>Disable lazy binding of function calls. This option is the default and
is defined for compatibility with Diab.
</p></dd>
</dl>
<hr>
<a name="x86-Options"></a>
<div class="header">
<p>
Next: <a href="#x86-Windows-Options" accesskey="n" rel="next">x86 Windows Options</a>, Previous: <a href="#VxWorks-Options" accesskey="p" rel="prev">VxWorks Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86-Options-1"></a>
<h4 class="subsection">3.18.56 x86 Options</h4>
<a name="index-x86-Options"></a>
<p>These ‘<samp>-m</samp>’ options are defined for the x86 family of computers.
</p>
<dl compact="compact">
<dt><code>-march=<var>cpu-type</var></code></dt>
<dd><a name="index-march-12"></a>
<p>Generate instructions for the machine type <var>cpu-type</var>. In contrast to
<samp>-mtune=<var>cpu-type</var></samp>, which merely tunes the generated code
for the specified <var>cpu-type</var>, <samp>-march=<var>cpu-type</var></samp> allows GCC
to generate code that may not run at all on processors other than the one
indicated. Specifying <samp>-march=<var>cpu-type</var></samp> implies
<samp>-mtune=<var>cpu-type</var></samp>.
</p>
<p>The choices for <var>cpu-type</var> are:
</p>
<dl compact="compact">
<dt>‘<samp>native</samp>’</dt>
<dd><p>This selects the CPU to generate code for at compilation time by determining
the processor type of the compiling machine. Using <samp>-march=native</samp>
enables all instruction subsets supported by the local machine (hence
the result might not run on different machines). Using <samp>-mtune=native</samp>
produces code optimized for the local machine under the constraints
of the selected instruction set.
</p>
</dd>
<dt>‘<samp>x86-64</samp>’</dt>
<dd><p>A generic CPU with 64-bit extensions.
</p>
</dd>
<dt>‘<samp>i386</samp>’</dt>
<dd><p>Original Intel i386 CPU.
</p>
</dd>
<dt>‘<samp>i486</samp>’</dt>
<dd><p>Intel i486 CPU. (No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>i586</samp>’</dt>
<dt>‘<samp>pentium</samp>’</dt>
<dd><p>Intel Pentium CPU with no MMX support.
</p>
</dd>
<dt>‘<samp>lakemont</samp>’</dt>
<dd><p>Intel Lakemont MCU, based on Intel Pentium CPU.
</p>
</dd>
<dt>‘<samp>pentium-mmx</samp>’</dt>
<dd><p>Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
</p>
</dd>
<dt>‘<samp>pentiumpro</samp>’</dt>
<dd><p>Intel Pentium Pro CPU.
</p>
</dd>
<dt>‘<samp>i686</samp>’</dt>
<dd><p>When used with <samp>-march</samp>, the Pentium Pro
instruction set is used, so the code runs on all i686 family chips.
When used with <samp>-mtune</samp>, it has the same meaning as ‘<samp>generic</samp>’.
</p>
</dd>
<dt>‘<samp>pentium2</samp>’</dt>
<dd><p>Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
support.
</p>
</dd>
<dt>‘<samp>pentium3</samp>’</dt>
<dt>‘<samp>pentium3m</samp>’</dt>
<dd><p>Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
set support.
</p>
</dd>
<dt>‘<samp>pentium-m</samp>’</dt>
<dd><p>Intel Pentium M; low-power version of Intel Pentium III CPU
with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
</p>
</dd>
<dt>‘<samp>pentium4</samp>’</dt>
<dt>‘<samp>pentium4m</samp>’</dt>
<dd><p>Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
</p>
</dd>
<dt>‘<samp>prescott</samp>’</dt>
<dd><p>Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
set support.
</p>
</dd>
<dt>‘<samp>nocona</samp>’</dt>
<dd><p>Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
SSE2 and SSE3 instruction set support.
</p>
</dd>
<dt>‘<samp>core2</samp>’</dt>
<dd><p>Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
</p>
</dd>
<dt>‘<samp>nehalem</samp>’</dt>
<dd><p>Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2 and POPCNT instruction set support.
</p>
</dd>
<dt>‘<samp>westmere</samp>’</dt>
<dd><p>Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
</p>
</dd>
<dt>‘<samp>sandybridge</samp>’</dt>
<dd><p>Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
</p>
</dd>
<dt>‘<samp>ivybridge</samp>’</dt>
<dd><p>Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
instruction set support.
</p>
</dd>
<dt>‘<samp>haswell</samp>’</dt>
<dd><p>Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
BMI, BMI2 and F16C instruction set support.
</p>
</dd>
<dt>‘<samp>broadwell</samp>’</dt>
<dd><p>Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
</p>
</dd>
<dt>‘<samp>skylake</samp>’</dt>
<dd><p>Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
XSAVES instruction set support.
</p>
</dd>
<dt>‘<samp>bonnell</samp>’</dt>
<dd><p>Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
</p>
</dd>
<dt>‘<samp>silvermont</samp>’</dt>
<dd><p>Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
</p>
</dd>
<dt>‘<samp>knl</samp>’</dt>
<dd><p>Intel Knight’s Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
AVX512CD instruction set support.
</p>
</dd>
<dt>‘<samp>knm</samp>’</dt>
<dd><p>Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
</p>
</dd>
<dt>‘<samp>skylake-avx512</samp>’</dt>
<dd><p>Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
</p>
</dd>
<dt>‘<samp>cannonlake</samp>’</dt>
<dd><p>Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
AVX512IFMA, SHA and UMIP instruction set support.
</p>
</dd>
<dt>‘<samp>icelake-client</samp>’</dt>
<dd><p>Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
</p>
</dd>
<dt>‘<samp>icelake-server</samp>’</dt>
<dd><p>Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
set support.
</p>
</dd>
<dt>‘<samp>k6</samp>’</dt>
<dd><p>AMD K6 CPU with MMX instruction set support.
</p>
</dd>
<dt>‘<samp>k6-2</samp>’</dt>
<dt>‘<samp>k6-3</samp>’</dt>
<dd><p>Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set support.
</p>
</dd>
<dt>‘<samp>athlon</samp>’</dt>
<dt>‘<samp>athlon-tbird</samp>’</dt>
<dd><p>AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch instructions
support.
</p>
</dd>
<dt>‘<samp>athlon-4</samp>’</dt>
<dt>‘<samp>athlon-xp</samp>’</dt>
<dt>‘<samp>athlon-mp</samp>’</dt>
<dd><p>Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE
instruction set support.
</p>
</dd>
<dt>‘<samp>k8</samp>’</dt>
<dt>‘<samp>opteron</samp>’</dt>
<dt>‘<samp>athlon64</samp>’</dt>
<dt>‘<samp>athlon-fx</samp>’</dt>
<dd><p>Processors based on the AMD K8 core with x86-64 instruction set support,
including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit
instruction set extensions.)
</p>
</dd>
<dt>‘<samp>k8-sse3</samp>’</dt>
<dt>‘<samp>opteron-sse3</samp>’</dt>
<dt>‘<samp>athlon64-sse3</samp>’</dt>
<dd><p>Improved versions of AMD K8 cores with SSE3 instruction set support.
</p>
</dd>
<dt>‘<samp>amdfam10</samp>’</dt>
<dt>‘<samp>barcelona</samp>’</dt>
<dd><p>CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
instruction set extensions.)
</p>
</dd>
<dt>‘<samp>bdver1</samp>’</dt>
<dd><p>CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
</p></dd>
<dt>‘<samp>bdver2</samp>’</dt>
<dd><p>AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
extensions.)
</p></dd>
<dt>‘<samp>bdver3</samp>’</dt>
<dd><p>AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
64-bit instruction set extensions.
</p></dd>
<dt>‘<samp>bdver4</samp>’</dt>
<dd><p>AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
SSE4.2, ABM and 64-bit instruction set extensions.
</p>
</dd>
<dt>‘<samp>znver1</samp>’</dt>
<dd><p>AMD Family 17h core based CPUs with x86-64 instruction set support. (This
supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
instruction set extensions.
</p>
</dd>
<dt>‘<samp>btver1</samp>’</dt>
<dd><p>CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
instruction set extensions.)
</p>
</dd>
<dt>‘<samp>btver2</samp>’</dt>
<dd><p>CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
</p>
</dd>
<dt>‘<samp>winchip-c6</samp>’</dt>
<dd><p>IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
set support.
</p>
</dd>
<dt>‘<samp>winchip2</samp>’</dt>
<dd><p>IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!
instruction set support.
</p>
</dd>
<dt>‘<samp>c3</samp>’</dt>
<dd><p>VIA C3 CPU with MMX and 3DNow! instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>c3-2</samp>’</dt>
<dd><p>VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>c7</samp>’</dt>
<dd><p>VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>samuel-2</samp>’</dt>
<dd><p>VIA Eden Samuel 2 CPU with MMX and 3DNow! instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>nehemiah</samp>’</dt>
<dd><p>VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>esther</samp>’</dt>
<dd><p>VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>eden-x2</samp>’</dt>
<dd><p>VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>eden-x4</samp>’</dt>
<dd><p>VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
AVX and AVX2 instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>nano</samp>’</dt>
<dd><p>Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>nano-1000</samp>’</dt>
<dd><p>VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>nano-2000</samp>’</dt>
<dd><p>VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>nano-3000</samp>’</dt>
<dd><p>VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>nano-x2</samp>’</dt>
<dd><p>VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>nano-x4</samp>’</dt>
<dd><p>VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
instruction set support.
(No scheduling is implemented for this chip.)
</p>
</dd>
<dt>‘<samp>geode</samp>’</dt>
<dd><p>AMD Geode embedded processor with MMX and 3DNow! instruction set support.
</p></dd>
</dl>
</dd>
<dt><code>-mtune=<var>cpu-type</var></code></dt>
<dd><a name="index-mtune-16"></a>
<p>Tune to <var>cpu-type</var> everything applicable about the generated code, except
for the ABI and the set of available instructions.
While picking a specific <var>cpu-type</var> schedules things appropriately
for that particular chip, the compiler does not generate any code that
cannot run on the default machine type unless you use a
<samp>-march=<var>cpu-type</var></samp> option.
For example, if GCC is configured for i686-pc-linux-gnu
then <samp>-mtune=pentium4</samp> generates code that is tuned for Pentium 4
but still runs on i686 machines.
</p>
<p>The choices for <var>cpu-type</var> are the same as for <samp>-march</samp>.
In addition, <samp>-mtune</samp> supports 2 extra choices for <var>cpu-type</var>:
</p>
<dl compact="compact">
<dt>‘<samp>generic</samp>’</dt>
<dd><p>Produce code optimized for the most common IA32/AMD64/EM64T processors.
If you know the CPU on which your code will run, then you should use
the corresponding <samp>-mtune</samp> or <samp>-march</samp> option instead of
<samp>-mtune=generic</samp>. But, if you do not know exactly what CPU users
of your application will have, then you should use this option.
</p>
<p>As new processors are deployed in the marketplace, the behavior of this
option will change. Therefore, if you upgrade to a newer version of
GCC, code generation controlled by this option will change to reflect
the processors
that are most common at the time that version of GCC is released.
</p>
<p>There is no <samp>-march=generic</samp> option because <samp>-march</samp>
indicates the instruction set the compiler can use, and there is no
generic instruction set applicable to all processors. In contrast,
<samp>-mtune</samp> indicates the processor (or, in this case, collection of
processors) for which the code is optimized.
</p>
</dd>
<dt>‘<samp>intel</samp>’</dt>
<dd><p>Produce code optimized for the most current Intel processors, which are
Haswell and Silvermont for this version of GCC. If you know the CPU
on which your code will run, then you should use the corresponding
<samp>-mtune</samp> or <samp>-march</samp> option instead of <samp>-mtune=intel</samp>.
But, if you want your application performs better on both Haswell and
Silvermont, then you should use this option.
</p>
<p>As new Intel processors are deployed in the marketplace, the behavior of
this option will change. Therefore, if you upgrade to a newer version of
GCC, code generation controlled by this option will change to reflect
the most current Intel processors at the time that version of GCC is
released.
</p>
<p>There is no <samp>-march=intel</samp> option because <samp>-march</samp> indicates
the instruction set the compiler can use, and there is no common
instruction set applicable to all processors. In contrast,
<samp>-mtune</samp> indicates the processor (or, in this case, collection of
processors) for which the code is optimized.
</p></dd>
</dl>
</dd>
<dt><code>-mcpu=<var>cpu-type</var></code></dt>
<dd><a name="index-mcpu-16"></a>
<p>A deprecated synonym for <samp>-mtune</samp>.
</p>
</dd>
<dt><code>-mfpmath=<var>unit</var></code></dt>
<dd><a name="index-mfpmath-1"></a>
<p>Generate floating-point arithmetic for selected unit <var>unit</var>. The choices
for <var>unit</var> are:
</p>
<dl compact="compact">
<dt>‘<samp>387</samp>’</dt>
<dd><p>Use the standard 387 floating-point coprocessor present on the majority of chips and
emulated otherwise. Code compiled with this option runs almost everywhere.
The temporary results are computed in 80-bit precision instead of the precision
specified by the type, resulting in slightly different results compared to most
of other chips. See <samp>-ffloat-store</samp> for more detailed description.
</p>
<p>This is the default choice for non-Darwin x86-32 targets.
</p>
</dd>
<dt>‘<samp>sse</samp>’</dt>
<dd><p>Use scalar floating-point instructions present in the SSE instruction set.
This instruction set is supported by Pentium III and newer chips,
and in the AMD line
by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
instruction set supports only single-precision arithmetic, thus the double and
extended-precision arithmetic are still done using 387. A later version, present
only in Pentium 4 and AMD x86-64 chips, supports double-precision
arithmetic too.
</p>
<p>For the x86-32 compiler, you must use <samp>-march=<var>cpu-type</var></samp>, <samp>-msse</samp>
or <samp>-msse2</samp> switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by default.
</p>
<p>The resulting code should be considerably faster in the majority of cases and avoid
the numerical instability problems of 387 code, but may break some existing
code that expects temporaries to be 80 bits.
</p>
<p>This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
and the default choice for x86-32 targets with the SSE2 instruction set
when <samp>-ffast-math</samp> is enabled.
</p>
</dd>
<dt>‘<samp>sse,387</samp>’</dt>
<dt>‘<samp>sse+387</samp>’</dt>
<dt>‘<samp>both</samp>’</dt>
<dd><p>Attempt to utilize both instruction sets at once. This effectively doubles the
amount of available registers, and on chips with separate execution units for
387 and SSE the execution resources too. Use this option with care, as it is
still experimental, because the GCC register allocator does not model separate
functional units well, resulting in unstable performance.
</p></dd>
</dl>
</dd>
<dt><code>-masm=<var>dialect</var></code></dt>
<dd><a name="index-masm_003ddialect"></a>
<p>Output assembly instructions using selected <var>dialect</var>. Also affects
which dialect is used for basic <code>asm</code> (see <a href="#Basic-Asm">Basic Asm</a>) and
extended <code>asm</code> (see <a href="#Extended-Asm">Extended Asm</a>). Supported choices (in dialect
order) are ‘<samp>att</samp>’ or ‘<samp>intel</samp>’. The default is ‘<samp>att</samp>’. Darwin does
not support ‘<samp>intel</samp>’.
</p>
</dd>
<dt><code>-mieee-fp</code></dt>
<dt><code>-mno-ieee-fp</code></dt>
<dd><a name="index-mieee_002dfp"></a>
<a name="index-mno_002dieee_002dfp"></a>
<p>Control whether or not the compiler uses IEEE floating-point
comparisons. These correctly handle the case where the result of a
comparison is unordered.
</p>
</dd>
<dt><code>-m80387</code></dt>
<dt><code>-mhard-float</code></dt>
<dd><a name="index-80387"></a>
<a name="index-mhard_002dfloat-10"></a>
<p>Generate output containing 80387 instructions for floating point.
</p>
</dd>
<dt><code>-mno-80387</code></dt>
<dt><code>-msoft-float</code></dt>
<dd><a name="index-no_002d80387"></a>
<a name="index-msoft_002dfloat-14"></a>
<p>Generate output containing library calls for floating point.
</p>
<p><strong>Warning:</strong> the requisite libraries are not part of GCC.
Normally the facilities of the machine’s usual C compiler are used, but
this cannot be done directly in cross-compilation. You must make your
own arrangements to provide suitable library functions for
cross-compilation.
</p>
<p>On machines where a function returns floating-point results in the 80387
register stack, some floating-point opcodes may be emitted even if
<samp>-msoft-float</samp> is used.
</p>
</dd>
<dt><code>-mno-fp-ret-in-387</code></dt>
<dd><a name="index-mno_002dfp_002dret_002din_002d387"></a>
<p>Do not use the FPU registers for return values of functions.
</p>
<p>The usual calling convention has functions return values of types
<code>float</code> and <code>double</code> in an FPU register, even if there
is no FPU. The idea is that the operating system should emulate
an FPU.
</p>
<p>The option <samp>-mno-fp-ret-in-387</samp> causes such values to be returned
in ordinary CPU registers instead.
</p>
</dd>
<dt><code>-mno-fancy-math-387</code></dt>
<dd><a name="index-mno_002dfancy_002dmath_002d387"></a>
<p>Some 387 emulators do not support the <code>sin</code>, <code>cos</code> and
<code>sqrt</code> instructions for the 387. Specify this option to avoid
generating those instructions. This option is the default on
OpenBSD and NetBSD. This option is overridden when <samp>-march</samp>
indicates that the target CPU always has an FPU and so the
instruction does not need emulation. These
instructions are not generated unless you also use the
<samp>-funsafe-math-optimizations</samp> switch.
</p>
</dd>
<dt><code>-malign-double</code></dt>
<dt><code>-mno-align-double</code></dt>
<dd><a name="index-malign_002ddouble"></a>
<a name="index-mno_002dalign_002ddouble"></a>
<p>Control whether GCC aligns <code>double</code>, <code>long double</code>, and
<code>long long</code> variables on a two-word boundary or a one-word
boundary. Aligning <code>double</code> variables on a two-word boundary
produces code that runs somewhat faster on a Pentium at the
expense of more memory.
</p>
<p>On x86-64, <samp>-malign-double</samp> is enabled by default.
</p>
<p><strong>Warning:</strong> if you use the <samp>-malign-double</samp> switch,
structures containing the above types are aligned differently than
the published application binary interface specifications for the x86-32
and are not binary compatible with structures in code compiled
without that switch.
</p>
</dd>
<dt><code>-m96bit-long-double</code></dt>
<dt><code>-m128bit-long-double</code></dt>
<dd><a name="index-m96bit_002dlong_002ddouble"></a>
<a name="index-m128bit_002dlong_002ddouble"></a>
<p>These switches control the size of <code>long double</code> type. The x86-32
application binary interface specifies the size to be 96 bits,
so <samp>-m96bit-long-double</samp> is the default in 32-bit mode.
</p>
<p>Modern architectures (Pentium and newer) prefer <code>long double</code>
to be aligned to an 8- or 16-byte boundary. In arrays or structures
conforming to the ABI, this is not possible. So specifying
<samp>-m128bit-long-double</samp> aligns <code>long double</code>
to a 16-byte boundary by padding the <code>long double</code> with an additional
32-bit zero.
</p>
<p>In the x86-64 compiler, <samp>-m128bit-long-double</samp> is the default choice as
its ABI specifies that <code>long double</code> is aligned on 16-byte boundary.
</p>
<p>Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a <code>long double</code>.
</p>
<p><strong>Warning:</strong> if you override the default value for your target ABI, this
changes the size of
structures and arrays containing <code>long double</code> variables,
as well as modifying the function calling convention for functions taking
<code>long double</code>. Hence they are not binary-compatible
with code compiled without that switch.
</p>
</dd>
<dt><code>-mlong-double-64</code></dt>
<dt><code>-mlong-double-80</code></dt>
<dt><code>-mlong-double-128</code></dt>
<dd><a name="index-mlong_002ddouble_002d64-1"></a>
<a name="index-mlong_002ddouble_002d80"></a>
<a name="index-mlong_002ddouble_002d128-1"></a>
<p>These switches control the size of <code>long double</code> type. A size
of 64 bits makes the <code>long double</code> type equivalent to the <code>double</code>
type. This is the default for 32-bit Bionic C library. A size
of 128 bits makes the <code>long double</code> type equivalent to the
<code>__float128</code> type. This is the default for 64-bit Bionic C library.
</p>
<p><strong>Warning:</strong> if you override the default value for your target ABI, this
changes the size of
structures and arrays containing <code>long double</code> variables,
as well as modifying the function calling convention for functions taking
<code>long double</code>. Hence they are not binary-compatible
with code compiled without that switch.
</p>
</dd>
<dt><code>-malign-data=<var>type</var></code></dt>
<dd><a name="index-malign_002ddata"></a>
<p>Control how GCC aligns variables. Supported values for <var>type</var> are
‘<samp>compat</samp>’ uses increased alignment value compatible uses GCC 4.8
and earlier, ‘<samp>abi</samp>’ uses alignment value as specified by the
psABI, and ‘<samp>cacheline</samp>’ uses increased alignment value to match
the cache line size. ‘<samp>compat</samp>’ is the default.
</p>
</dd>
<dt><code>-mlarge-data-threshold=<var>threshold</var></code></dt>
<dd><a name="index-mlarge_002ddata_002dthreshold"></a>
<p>When <samp>-mcmodel=medium</samp> is specified, data objects larger than
<var>threshold</var> are placed in the large data section. This value must be the
same across all objects linked into the binary, and defaults to 65535.
</p>
</dd>
<dt><code>-mrtd</code></dt>
<dd><a name="index-mrtd-1"></a>
<p>Use a different function-calling convention, in which functions that
take a fixed number of arguments return with the <code>ret <var>num</var></code>
instruction, which pops their arguments while returning. This saves one
instruction in the caller since there is no need to pop the arguments
there.
</p>
<p>You can specify that an individual function is called with this calling
sequence with the function attribute <code>stdcall</code>. You can also
override the <samp>-mrtd</samp> option by using the function attribute
<code>cdecl</code>. See <a href="#Function-Attributes">Function Attributes</a>.
</p>
<p><strong>Warning:</strong> this calling convention is incompatible with the one
normally used on Unix, so you cannot use it if you need to call
libraries compiled with the Unix compiler.
</p>
<p>Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including <code>printf</code>);
otherwise incorrect code is generated for calls to those
functions.
</p>
<p>In addition, seriously incorrect code results if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
</p>
</dd>
<dt><code>-mregparm=<var>num</var></code></dt>
<dd><a name="index-mregparm"></a>
<p>Control how many registers are used to pass integer arguments. By
default, no registers are used to pass arguments, and at most 3
registers can be used. You can control this behavior for a specific
function by using the function attribute <code>regparm</code>.
See <a href="#Function-Attributes">Function Attributes</a>.
</p>
<p><strong>Warning:</strong> if you use this switch, and
<var>num</var> is nonzero, then you must build all modules with the same
value, including any libraries. This includes the system libraries and
startup modules.
</p>
</dd>
<dt><code>-msseregparm</code></dt>
<dd><a name="index-msseregparm"></a>
<p>Use SSE register passing conventions for float and double arguments
and return values. You can control this behavior for a specific
function by using the function attribute <code>sseregparm</code>.
See <a href="#Function-Attributes">Function Attributes</a>.
</p>
<p><strong>Warning:</strong> if you use this switch then you must build all
modules with the same value, including any libraries. This includes
the system libraries and startup modules.
</p>
</dd>
<dt><code>-mvect8-ret-in-mem</code></dt>
<dd><a name="index-mvect8_002dret_002din_002dmem"></a>
<p>Return 8-byte vectors in memory instead of MMX registers. This is the
default on Solaris 8 and 9 and VxWorks to match the ABI of the Sun
Studio compilers until version 12. Later compiler versions (starting
with Studio 12 Update 1) follow the ABI used by other x86 targets, which
is the default on Solaris 10 and later. <em>Only</em> use this option if
you need to remain compatible with existing code produced by those
previous compiler versions or older versions of GCC.
</p>
</dd>
<dt><code>-mpc32</code></dt>
<dt><code>-mpc64</code></dt>
<dt><code>-mpc80</code></dt>
<dd><a name="index-mpc32"></a>
<a name="index-mpc64"></a>
<a name="index-mpc80"></a>
<p>Set 80387 floating-point precision to 32, 64 or 80 bits. When <samp>-mpc32</samp>
is specified, the significands of results of floating-point operations are
rounded to 24 bits (single precision); <samp>-mpc64</samp> rounds the
significands of results of floating-point operations to 53 bits (double
precision) and <samp>-mpc80</samp> rounds the significands of results of
floating-point operations to 64 bits (extended double precision), which is
the default. When this option is used, floating-point operations in higher
precisions are not available to the programmer without setting the FPU
control word explicitly.
</p>
<p>Setting the rounding of floating-point operations to less than the default
80 bits can speed some programs by 2% or more. Note that some mathematical
libraries assume that extended-precision (80-bit) floating-point operations
are enabled by default; routines in such libraries could suffer significant
loss of accuracy, typically through so-called “catastrophic cancellation”,
when this option is used to set the precision to less than extended precision.
</p>
</dd>
<dt><code>-mstackrealign</code></dt>
<dd><a name="index-mstackrealign"></a>
<p>Realign the stack at entry. On the x86, the <samp>-mstackrealign</samp>
option generates an alternate prologue and epilogue that realigns the
run-time stack if necessary. This supports mixing legacy codes that keep
4-byte stack alignment with modern codes that keep 16-byte stack alignment for
SSE compatibility. See also the attribute <code>force_align_arg_pointer</code>,
applicable to individual functions.
</p>
</dd>
<dt><code>-mpreferred-stack-boundary=<var>num</var></code></dt>
<dd><a name="index-mpreferred_002dstack_002dboundary-1"></a>
<p>Attempt to keep the stack boundary aligned to a 2 raised to <var>num</var>
byte boundary. If <samp>-mpreferred-stack-boundary</samp> is not specified,
the default is 4 (16 bytes or 128 bits).
</p>
<p><strong>Warning:</strong> When generating code for the x86-64 architecture with
SSE extensions disabled, <samp>-mpreferred-stack-boundary=3</samp> can be
used to keep the stack boundary aligned to 8 byte boundary. Since
x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
intended to be used in controlled environment where stack space is
important limitation. This option leads to wrong code when functions
compiled with 16 byte stack alignment (such as functions from a standard
library) are called with misaligned stack. In this case, SSE
instructions may lead to misaligned memory access traps. In addition,
variable arguments are handled incorrectly for 16 byte aligned
objects (including x87 long double and __int128), leading to wrong
results. You must build all modules with
<samp>-mpreferred-stack-boundary=3</samp>, including any libraries. This
includes the system libraries and startup modules.
</p>
</dd>
<dt><code>-mincoming-stack-boundary=<var>num</var></code></dt>
<dd><a name="index-mincoming_002dstack_002dboundary"></a>
<p>Assume the incoming stack is aligned to a 2 raised to <var>num</var> byte
boundary. If <samp>-mincoming-stack-boundary</samp> is not specified,
the one specified by <samp>-mpreferred-stack-boundary</samp> is used.
</p>
<p>On Pentium and Pentium Pro, <code>double</code> and <code>long double</code> values
should be aligned to an 8-byte boundary (see <samp>-malign-double</samp>) or
suffer significant run time performance penalties. On Pentium III, the
Streaming SIMD Extension (SSE) data type <code>__m128</code> may not work
properly if it is not 16-byte aligned.
</p>
<p>To ensure proper alignment of this values on the stack, the stack boundary
must be as aligned as that required by any value stored on the stack.
Further, every function must be generated such that it keeps the stack
aligned. Thus calling a function compiled with a higher preferred
stack boundary from a function compiled with a lower preferred stack
boundary most likely misaligns the stack. It is recommended that
libraries that use callbacks always use the default setting.
</p>
<p>This extra alignment does consume extra stack space, and generally
increases code size. Code that is sensitive to stack space usage, such
as embedded systems and operating system kernels, may want to reduce the
preferred alignment to <samp>-mpreferred-stack-boundary=2</samp>.
</p>
</dd>
<dt><code>-mmmx</code></dt>
<dd><a name="index-mmmx"></a>
</dd>
<dt><code>-msse</code></dt>
<dd><a name="index-msse"></a>
</dd>
<dt><code>-msse2</code></dt>
<dd><a name="index-msse2"></a>
</dd>
<dt><code>-msse3</code></dt>
<dd><a name="index-msse3"></a>
</dd>
<dt><code>-mssse3</code></dt>
<dd><a name="index-mssse3"></a>
</dd>
<dt><code>-msse4</code></dt>
<dd><a name="index-msse4"></a>
</dd>
<dt><code>-msse4a</code></dt>
<dd><a name="index-msse4a"></a>
</dd>
<dt><code>-msse4.1</code></dt>
<dd><a name="index-msse4_002e1"></a>
</dd>
<dt><code>-msse4.2</code></dt>
<dd><a name="index-msse4_002e2"></a>
</dd>
<dt><code>-mavx</code></dt>
<dd><a name="index-mavx"></a>
</dd>
<dt><code>-mavx2</code></dt>
<dd><a name="index-mavx2"></a>
</dd>
<dt><code>-mavx512f</code></dt>
<dd><a name="index-mavx512f"></a>
</dd>
<dt><code>-mavx512pf</code></dt>
<dd><a name="index-mavx512pf"></a>
</dd>
<dt><code>-mavx512er</code></dt>
<dd><a name="index-mavx512er"></a>
</dd>
<dt><code>-mavx512cd</code></dt>
<dd><a name="index-mavx512cd"></a>
</dd>
<dt><code>-mavx512vl</code></dt>
<dd><a name="index-mavx512vl"></a>
</dd>
<dt><code>-mavx512bw</code></dt>
<dd><a name="index-mavx512bw"></a>
</dd>
<dt><code>-mavx512dq</code></dt>
<dd><a name="index-mavx512dq"></a>
</dd>
<dt><code>-mavx512ifma</code></dt>
<dd><a name="index-mavx512ifma"></a>
</dd>
<dt><code>-mavx512vbmi</code></dt>
<dd><a name="index-mavx512vbmi"></a>
</dd>
<dt><code>-msha</code></dt>
<dd><a name="index-msha"></a>
</dd>
<dt><code>-maes</code></dt>
<dd><a name="index-maes"></a>
</dd>
<dt><code>-mpclmul</code></dt>
<dd><a name="index-mpclmul"></a>
</dd>
<dt><code>-mclflushopt</code></dt>
<dd><a name="index-mclflushopt"></a>
</dd>
<dt><code>-mfsgsbase</code></dt>
<dd><a name="index-mfsgsbase"></a>
</dd>
<dt><code>-mrdrnd</code></dt>
<dd><a name="index-mrdrnd"></a>
</dd>
<dt><code>-mf16c</code></dt>
<dd><a name="index-mf16c"></a>
</dd>
<dt><code>-mfma</code></dt>
<dd><a name="index-mfma"></a>
</dd>
<dt><code>-mpconfig</code></dt>
<dd><a name="index-mpconfig"></a>
</dd>
<dt><code>-mwbnoinvd</code></dt>
<dd><a name="index-mwbnoinvd"></a>
</dd>
<dt><code>-mfma4</code></dt>
<dd><a name="index-mfma4"></a>
</dd>
<dt><code>-mprefetchwt1</code></dt>
<dd><a name="index-mprefetchwt1"></a>
</dd>
<dt><code>-mxop</code></dt>
<dd><a name="index-mxop"></a>
</dd>
<dt><code>-mlwp</code></dt>
<dd><a name="index-mlwp"></a>
</dd>
<dt><code>-m3dnow</code></dt>
<dd><a name="index-m3dnow"></a>
</dd>
<dt><code>-m3dnowa</code></dt>
<dd><a name="index-m3dnowa"></a>
</dd>
<dt><code>-mpopcnt</code></dt>
<dd><a name="index-mpopcnt"></a>
</dd>
<dt><code>-mabm</code></dt>
<dd><a name="index-mabm"></a>
</dd>
<dt><code>-mbmi</code></dt>
<dd><a name="index-mbmi"></a>
</dd>
<dt><code>-mbmi2</code></dt>
<dt><code>-mlzcnt</code></dt>
<dd><a name="index-mlzcnt"></a>
</dd>
<dt><code>-mfxsr</code></dt>
<dd><a name="index-mfxsr"></a>
</dd>
<dt><code>-mxsave</code></dt>
<dd><a name="index-mxsave"></a>
</dd>
<dt><code>-mxsaveopt</code></dt>
<dd><a name="index-mxsaveopt"></a>
</dd>
<dt><code>-mxsavec</code></dt>
<dd><a name="index-mxsavec"></a>
</dd>
<dt><code>-mxsaves</code></dt>
<dd><a name="index-mxsaves"></a>
</dd>
<dt><code>-mrtm</code></dt>
<dd><a name="index-mrtm"></a>
</dd>
<dt><code>-mtbm</code></dt>
<dd><a name="index-mtbm"></a>
</dd>
<dt><code>-mmpx</code></dt>
<dd><a name="index-mmpx"></a>
</dd>
<dt><code>-mmwaitx</code></dt>
<dd><a name="index-mmwaitx"></a>
</dd>
<dt><code>-mclzero</code></dt>
<dd><a name="index-mclzero"></a>
</dd>
<dt><code>-mpku</code></dt>
<dd><a name="index-mpku"></a>
</dd>
<dt><code>-mcet</code></dt>
<dd><a name="index-mcet"></a>
</dd>
<dt><code>-mavx512vbmi2</code></dt>
<dd><a name="index-mavx512vbmi2"></a>
</dd>
<dt><code>-mgfni</code></dt>
<dd><a name="index-mgfni"></a>
</dd>
<dt><code>-mvaes</code></dt>
<dd><a name="index-mvaes"></a>
</dd>
<dt><code>-mvpclmulqdq</code></dt>
<dd><a name="index-mvpclmulqdq"></a>
</dd>
<dt><code>-mavx512bitalg</code></dt>
<dd><a name="index-mavx512bitalg"></a>
</dd>
<dt><code>-mavx512vpopcntdq</code></dt>
<dd><a name="index-mavx512vpopcntdq"></a>
<p>These switches enable the use of instructions in the MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, BMI, BMI2, VAES,
FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, IBT, SHSTK, AVX512VBMI2,
GFNI, VPCLMULQDQ, AVX512BITALG, AVX512VPOPCNTDQ3DNow! or enhanced 3DNow!
extended instruction sets.
Each has a corresponding <samp>-mno-</samp> option to disable use of these
instructions.
</p>
<p>These extensions are also available as built-in functions: see
<a href="#x86-Built_002din-Functions">x86 Built-in Functions</a>, for details of the functions enabled and
disabled by these switches.
</p>
<p>To generate SSE/SSE2 instructions automatically from floating-point
code (as opposed to 387 instructions), see <samp>-mfpmath=sse</samp>.
</p>
<p>GCC depresses SSEx instructions when <samp>-mavx</samp> is used. Instead, it
generates new AVX instructions or AVX equivalence for all SSEx instructions
when needed.
</p>
<p>These options enable GCC to use these extended instructions in
generated code, even without <samp>-mfpmath=sse</samp>. Applications that
perform run-time CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular,
the file containing the CPU detection code should be compiled without
these options.
</p>
<p>The <samp>-mcet</samp> option turns on the <samp>-mibt</samp> and <samp>-mshstk</samp>
options. The <samp>-mibt</samp> option enables indirect branch tracking support
and the <samp>-mshstk</samp> option enables shadow stack support from
Intel Control-flow Enforcement Technology (CET). The compiler also provides
a number of built-in functions for fine-grained control in a CET-based
application. See See <a href="#x86-Built_002din-Functions">x86 Built-in Functions</a>, for more information.
</p>
</dd>
<dt><code>-mdump-tune-features</code></dt>
<dd><a name="index-mdump_002dtune_002dfeatures"></a>
<p>This option instructs GCC to dump the names of the x86 performance
tuning features and default settings. The names can be used in
<samp>-mtune-ctrl=<var>feature-list</var></samp>.
</p>
</dd>
<dt><code>-mtune-ctrl=<var>feature-list</var></code></dt>
<dd><a name="index-mtune_002dctrl_003dfeature_002dlist"></a>
<p>This option is used to do fine grain control of x86 code generation features.
<var>feature-list</var> is a comma separated list of <var>feature</var> names. See also
<samp>-mdump-tune-features</samp>. When specified, the <var>feature</var> is turned
on if it is not preceded with ‘<samp>^</samp>’, otherwise, it is turned off.
<samp>-mtune-ctrl=<var>feature-list</var></samp> is intended to be used by GCC
developers. Using it may lead to code paths not covered by testing and can
potentially result in compiler ICEs or runtime errors.
</p>
</dd>
<dt><code>-mno-default</code></dt>
<dd><a name="index-mno_002ddefault"></a>
<p>This option instructs GCC to turn off all tunable features. See also
<samp>-mtune-ctrl=<var>feature-list</var></samp> and <samp>-mdump-tune-features</samp>.
</p>
</dd>
<dt><code>-mcld</code></dt>
<dd><a name="index-mcld"></a>
<p>This option instructs GCC to emit a <code>cld</code> instruction in the prologue
of functions that use string instructions. String instructions depend on
the DF flag to select between autoincrement or autodecrement mode. While the
ABI specifies the DF flag to be cleared on function entry, some operating
systems violate this specification by not clearing the DF flag in their
exception dispatchers. The exception handler can be invoked with the DF flag
set, which leads to wrong direction mode when string instructions are used.
This option can be enabled by default on 32-bit x86 targets by configuring
GCC with the <samp>--enable-cld</samp> configure option. Generation of <code>cld</code>
instructions can be suppressed with the <samp>-mno-cld</samp> compiler option
in this case.
</p>
</dd>
<dt><code>-mvzeroupper</code></dt>
<dd><a name="index-mvzeroupper"></a>
<p>This option instructs GCC to emit a <code>vzeroupper</code> instruction
before a transfer of control flow out of the function to minimize
the AVX to SSE transition penalty as well as remove unnecessary <code>zeroupper</code>
intrinsics.
</p>
</dd>
<dt><code>-mprefer-avx128</code></dt>
<dd><a name="index-mprefer_002davx128"></a>
<p>This option instructs GCC to use 128-bit AVX instructions instead of
256-bit AVX instructions in the auto-vectorizer.
</p>
</dd>
<dt><code>-mprefer-vector-width=<var>opt</var></code></dt>
<dd><a name="index-mprefer_002dvector_002dwidth"></a>
<p>This option instructs GCC to use <var>opt</var>-bit vector width in instructions
instead of default on the selected platform.
</p>
<dl compact="compact">
<dt>‘<samp>none</samp>’</dt>
<dd><p>No extra limitations applied to GCC other than defined by the selected platform.
</p>
</dd>
<dt>‘<samp>128</samp>’</dt>
<dd><p>Prefer 128-bit vector width for instructions.
</p>
</dd>
<dt>‘<samp>256</samp>’</dt>
<dd><p>Prefer 256-bit vector width for instructions.
</p>
</dd>
<dt>‘<samp>512</samp>’</dt>
<dd><p>Prefer 512-bit vector width for instructions.
</p></dd>
</dl>
</dd>
<dt><code>-mcx16</code></dt>
<dd><a name="index-mcx16"></a>
<p>This option enables GCC to generate <code>CMPXCHG16B</code> instructions in 64-bit
code to implement compare-and-exchange operations on 16-byte aligned 128-bit
objects. This is useful for atomic updates of data structures exceeding one
machine word in size. The compiler uses this instruction to implement
<a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a>. However, for <a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a> operating on
128-bit integers, a library call is always used.
</p>
</dd>
<dt><code>-msahf</code></dt>
<dd><a name="index-msahf"></a>
<p>This option enables generation of <code>SAHF</code> instructions in 64-bit code.
Early Intel Pentium 4 CPUs with Intel 64 support,
prior to the introduction of Pentium 4 G1 step in December 2005,
lacked the <code>LAHF</code> and <code>SAHF</code> instructions
which are supported by AMD64.
These are load and store instructions, respectively, for certain status flags.
In 64-bit mode, the <code>SAHF</code> instruction is used to optimize <code>fmod</code>,
<code>drem</code>, and <code>remainder</code> built-in functions;
see <a href="#Other-Builtins">Other Builtins</a> for details.
</p>
</dd>
<dt><code>-mmovbe</code></dt>
<dd><a name="index-mmovbe"></a>
<p>This option enables use of the <code>movbe</code> instruction to implement
<code>__builtin_bswap32</code> and <code>__builtin_bswap64</code>.
</p>
</dd>
<dt><code>-mibt</code></dt>
<dd><a name="index-mibt"></a>
<p>This option tells the compiler to use indirect branch tracking support
(for indirect calls and jumps) from x86 Control-flow Enforcement
Technology (CET). The option has effect only if the
<samp>-fcf-protection=full</samp> or <samp>-fcf-protection=branch</samp> option
is specified. The option <samp>-mibt</samp> is on by default when the
<code>-mcet</code> option is specified.
</p>
</dd>
<dt><code>-mshstk</code></dt>
<dd><a name="index-mshstk"></a>
<p>This option tells the compiler to use shadow stack support (return
address tracking) from x86 Control-flow Enforcement Technology (CET).
The option has effect only if the <samp>-fcf-protection=full</samp> or
<samp>-fcf-protection=return</samp> option is specified. The option
<samp>-mshstk</samp> is on by default when the <samp>-mcet</samp> option is
specified.
</p>
</dd>
<dt><code>-mcrc32</code></dt>
<dd><a name="index-mcrc32"></a>
<p>This option enables built-in functions <code>__builtin_ia32_crc32qi</code>,
<code>__builtin_ia32_crc32hi</code>, <code>__builtin_ia32_crc32si</code> and
<code>__builtin_ia32_crc32di</code> to generate the <code>crc32</code> machine instruction.
</p>
</dd>
<dt><code>-mrecip</code></dt>
<dd><a name="index-mrecip-2"></a>
<p>This option enables use of <code>RCPSS</code> and <code>RSQRTSS</code> instructions
(and their vectorized variants <code>RCPPS</code> and <code>RSQRTPS</code>)
with an additional Newton-Raphson step
to increase precision instead of <code>DIVSS</code> and <code>SQRTSS</code>
(and their vectorized
variants) for single-precision floating-point arguments. These instructions
are generated only when <samp>-funsafe-math-optimizations</samp> is enabled
together with <samp>-ffinite-math-only</samp> and <samp>-fno-trapping-math</samp>.
Note that while the throughput of the sequence is higher than the throughput
of the non-reciprocal instruction, the precision of the sequence can be
decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
</p>
<p>Note that GCC implements <code>1.0f/sqrtf(<var>x</var>)</code> in terms of <code>RSQRTSS</code>
(or <code>RSQRTPS</code>) already with <samp>-ffast-math</samp> (or the above option
combination), and doesn’t need <samp>-mrecip</samp>.
</p>
<p>Also note that GCC emits the above sequence with additional Newton-Raphson step
for vectorized single-float division and vectorized <code>sqrtf(<var>x</var>)</code>
already with <samp>-ffast-math</samp> (or the above option combination), and
doesn’t need <samp>-mrecip</samp>.
</p>
</dd>
<dt><code>-mrecip=<var>opt</var></code></dt>
<dd><a name="index-mrecip_003dopt-2"></a>
<p>This option controls which reciprocal estimate instructions
may be used. <var>opt</var> is a comma-separated list of options, which may
be preceded by a ‘<samp>!</samp>’ to invert the option:
</p>
<dl compact="compact">
<dt>‘<samp>all</samp>’</dt>
<dd><p>Enable all estimate instructions.
</p>
</dd>
<dt>‘<samp>default</samp>’</dt>
<dd><p>Enable the default instructions, equivalent to <samp>-mrecip</samp>.
</p>
</dd>
<dt>‘<samp>none</samp>’</dt>
<dd><p>Disable all estimate instructions, equivalent to <samp>-mno-recip</samp>.
</p>
</dd>
<dt>‘<samp>div</samp>’</dt>
<dd><p>Enable the approximation for scalar division.
</p>
</dd>
<dt>‘<samp>vec-div</samp>’</dt>
<dd><p>Enable the approximation for vectorized division.
</p>
</dd>
<dt>‘<samp>sqrt</samp>’</dt>
<dd><p>Enable the approximation for scalar square root.
</p>
</dd>
<dt>‘<samp>vec-sqrt</samp>’</dt>
<dd><p>Enable the approximation for vectorized square root.
</p></dd>
</dl>
<p>So, for example, <samp>-mrecip=all,!sqrt</samp> enables
all of the reciprocal approximations, except for square root.
</p>
</dd>
<dt><code>-mveclibabi=<var>type</var></code></dt>
<dd><a name="index-mveclibabi-1"></a>
<p>Specifies the ABI type to use for vectorizing intrinsics using an
external library. Supported values for <var>type</var> are ‘<samp>svml</samp>’
for the Intel short
vector math library and ‘<samp>acml</samp>’ for the AMD math core library.
To use this option, both <samp>-ftree-vectorize</samp> and
<samp>-funsafe-math-optimizations</samp> have to be enabled, and an SVML or ACML
ABI-compatible library must be specified at link time.
</p>
<p>GCC currently emits calls to <code>vmldExp2</code>,
<code>vmldLn2</code>, <code>vmldLog102</code>, <code>vmldLog102</code>, <code>vmldPow2</code>,
<code>vmldTanh2</code>, <code>vmldTan2</code>, <code>vmldAtan2</code>, <code>vmldAtanh2</code>,
<code>vmldCbrt2</code>, <code>vmldSinh2</code>, <code>vmldSin2</code>, <code>vmldAsinh2</code>,
<code>vmldAsin2</code>, <code>vmldCosh2</code>, <code>vmldCos2</code>, <code>vmldAcosh2</code>,
<code>vmldAcos2</code>, <code>vmlsExp4</code>, <code>vmlsLn4</code>, <code>vmlsLog104</code>,
<code>vmlsLog104</code>, <code>vmlsPow4</code>, <code>vmlsTanh4</code>, <code>vmlsTan4</code>,
<code>vmlsAtan4</code>, <code>vmlsAtanh4</code>, <code>vmlsCbrt4</code>, <code>vmlsSinh4</code>,
<code>vmlsSin4</code>, <code>vmlsAsinh4</code>, <code>vmlsAsin4</code>, <code>vmlsCosh4</code>,
<code>vmlsCos4</code>, <code>vmlsAcosh4</code> and <code>vmlsAcos4</code> for corresponding
function type when <samp>-mveclibabi=svml</samp> is used, and <code>__vrd2_sin</code>,
<code>__vrd2_cos</code>, <code>__vrd2_exp</code>, <code>__vrd2_log</code>, <code>__vrd2_log2</code>,
<code>__vrd2_log10</code>, <code>__vrs4_sinf</code>, <code>__vrs4_cosf</code>,
<code>__vrs4_expf</code>, <code>__vrs4_logf</code>, <code>__vrs4_log2f</code>,
<code>__vrs4_log10f</code> and <code>__vrs4_powf</code> for the corresponding function type
when <samp>-mveclibabi=acml</samp> is used.
</p>
</dd>
<dt><code>-mabi=<var>name</var></code></dt>
<dd><a name="index-mabi-5"></a>
<p>Generate code for the specified calling convention. Permissible values
are ‘<samp>sysv</samp>’ for the ABI used on GNU/Linux and other systems, and
‘<samp>ms</samp>’ for the Microsoft ABI. The default is to use the Microsoft
ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
You can control this behavior for specific functions by
using the function attributes <code>ms_abi</code> and <code>sysv_abi</code>.
See <a href="#Function-Attributes">Function Attributes</a>.
</p>
</dd>
<dt><code>-mforce-indirect-call</code></dt>
<dd><a name="index-mforce_002dindirect_002dcall"></a>
<p>Force all calls to functions to be indirect. This is useful
when using Intel Processor Trace where it generates more precise timing
information for function calls.
</p>
</dd>
<dt><code>-mcall-ms2sysv-xlogues</code></dt>
<dd><a name="index-mcall_002dms2sysv_002dxlogues"></a>
<a name="index-mno_002dcall_002dms2sysv_002dxlogues"></a>
<p>Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
default, the code for saving and restoring these registers is emitted inline,
resulting in fairly lengthy prologues and epilogues. Using
<samp>-mcall-ms2sysv-xlogues</samp> emits prologues and epilogues that
use stubs in the static portion of libgcc to perform these saves and restores,
thus reducing function size at the cost of a few extra instructions.
</p>
</dd>
<dt><code>-mtls-dialect=<var>type</var></code></dt>
<dd><a name="index-mtls_002ddialect-1"></a>
<p>Generate code to access thread-local storage using the ‘<samp>gnu</samp>’ or
‘<samp>gnu2</samp>’ conventions. ‘<samp>gnu</samp>’ is the conservative default;
‘<samp>gnu2</samp>’ is more efficient, but it may add compile- and run-time
requirements that cannot be satisfied on all systems.
</p>
</dd>
<dt><code>-mpush-args</code></dt>
<dt><code>-mno-push-args</code></dt>
<dd><a name="index-mpush_002dargs"></a>
<a name="index-mno_002dpush_002dargs"></a>
<p>Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.
</p>
</dd>
<dt><code>-maccumulate-outgoing-args</code></dt>
<dd><a name="index-maccumulate_002doutgoing_002dargs-1"></a>
<p>If enabled, the maximum amount of space required for outgoing arguments is
computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when the preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies <samp>-mno-push-args</samp>.
</p>
</dd>
<dt><code>-mthreads</code></dt>
<dd><a name="index-mthreads"></a>
<p>Support thread-safe exception handling on MinGW. Programs that rely
on thread-safe exception handling must compile and link all code with the
<samp>-mthreads</samp> option. When compiling, <samp>-mthreads</samp> defines
<samp>-D_MT</samp>; when linking, it links in a special thread helper library
<samp>-lmingwthrd</samp> which cleans up per-thread exception-handling data.
</p>
</dd>
<dt><code>-mms-bitfields</code></dt>
<dt><code>-mno-ms-bitfields</code></dt>
<dd><a name="index-mms_002dbitfields"></a>
<a name="index-mno_002dms_002dbitfields"></a>
<p>Enable/disable bit-field layout compatible with the native Microsoft
Windows compiler.
</p>
<p>If <code>packed</code> is used on a structure, or if bit-fields are used,
it may be that the Microsoft ABI lays out the structure differently
than the way GCC normally does. Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.
</p>
<p>This option is enabled by default for Microsoft Windows
targets. This behavior can also be controlled locally by use of variable
or type attributes. For more information, see <a href="#x86-Variable-Attributes">x86 Variable Attributes</a>
and <a href="#x86-Type-Attributes">x86 Type Attributes</a>.
</p>
<p>The Microsoft structure layout algorithm is fairly simple with the exception
of the bit-field packing.
The padding and alignment of members of structures and whether a bit-field
can straddle a storage-unit boundary are determine by these rules:
</p>
<ol>
<li> Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address and the last member
the highest.
</li><li> Every data object has an alignment requirement. The alignment requirement
for all data except structures, unions, and arrays is either the size of the
object or the current packing size (specified with either the
<code>aligned</code> attribute or the <code>pack</code> pragma),
whichever is less. For structures, unions, and arrays,
the alignment requirement is the largest alignment requirement of its members.
Every object is allocated an offset so that:
<div class="smallexample">
<pre class="smallexample">offset % alignment_requirement == 0
</pre></div>
</li><li> Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
unit if the integral types are the same size and if the next bit-field fits
into the current allocation unit without crossing the boundary imposed by the
common alignment requirements of the bit-fields.
</li></ol>
<p>MSVC interprets zero-length bit-fields in the following ways:
</p>
<ol>
<li> If a zero-length bit-field is inserted between two bit-fields that
are normally coalesced, the bit-fields are not coalesced.
<p>For example:
</p>
<div class="smallexample">
<pre class="smallexample">struct
{
unsigned long bf_1 : 12;
unsigned long : 0;
unsigned long bf_2 : 12;
} t1;
</pre></div>
<p>The size of <code>t1</code> is 8 bytes with the zero-length bit-field. If the
zero-length bit-field were removed, <code>t1</code>’s size would be 4 bytes.
</p>
</li><li> If a zero-length bit-field is inserted after a bit-field, <code>foo</code>, and the
alignment of the zero-length bit-field is greater than the member that follows it,
<code>bar</code>, <code>bar</code> is aligned as the type of the zero-length bit-field.
<p>For example:
</p>
<div class="smallexample">
<pre class="smallexample">struct
{
char foo : 4;
short : 0;
char bar;
} t2;
struct
{
char foo : 4;
short : 0;
double bar;
} t3;
</pre></div>
<p>For <code>t2</code>, <code>bar</code> is placed at offset 2, rather than offset 1.
Accordingly, the size of <code>t2</code> is 4. For <code>t3</code>, the zero-length
bit-field does not affect the alignment of <code>bar</code> or, as a result, the size
of the structure.
</p>
<p>Taking this into account, it is important to note the following:
</p>
<ol>
<li> If a zero-length bit-field follows a normal bit-field, the type of the
zero-length bit-field may affect the alignment of the structure as whole. For
example, <code>t2</code> has a size of 4 bytes, since the zero-length bit-field follows a
normal bit-field, and is of type short.
</li><li> Even if a zero-length bit-field is not followed by a normal bit-field, it may
still affect the alignment of the structure:
<div class="smallexample">
<pre class="smallexample">struct
{
char foo : 6;
long : 0;
} t4;
</pre></div>
<p>Here, <code>t4</code> takes up 4 bytes.
</p></li></ol>
</li><li> Zero-length bit-fields following non-bit-field members are ignored:
<div class="smallexample">
<pre class="smallexample">struct
{
char foo;
long : 0;
char bar;
} t5;
</pre></div>
<p>Here, <code>t5</code> takes up 2 bytes.
</p></li></ol>
</dd>
<dt><code>-mno-align-stringops</code></dt>
<dd><a name="index-mno_002dalign_002dstringops"></a>
<p>Do not align the destination of inlined string operations. This switch reduces
code size and improves performance in case the destination is already aligned,
but GCC doesn’t know about it.
</p>
</dd>
<dt><code>-minline-all-stringops</code></dt>
<dd><a name="index-minline_002dall_002dstringops"></a>
<p>By default GCC inlines string operations only when the destination is
known to be aligned to least a 4-byte boundary.
This enables more inlining and increases code
size, but may improve performance of code that depends on fast
<code>memcpy</code>, <code>strlen</code>,
and <code>memset</code> for short lengths.
</p>
</dd>
<dt><code>-minline-stringops-dynamically</code></dt>
<dd><a name="index-minline_002dstringops_002ddynamically"></a>
<p>For string operations of unknown size, use run-time checks with
inline code for small blocks and a library call for large blocks.
</p>
</dd>
<dt><code>-mstringop-strategy=<var>alg</var></code></dt>
<dd><a name="index-mstringop_002dstrategy_003dalg"></a>
<p>Override the internal decision heuristic for the particular algorithm to use
for inlining string operations. The allowed values for <var>alg</var> are:
</p>
<dl compact="compact">
<dt>‘<samp>rep_byte</samp>’</dt>
<dt>‘<samp>rep_4byte</samp>’</dt>
<dt>‘<samp>rep_8byte</samp>’</dt>
<dd><p>Expand using i386 <code>rep</code> prefix of the specified size.
</p>
</dd>
<dt>‘<samp>byte_loop</samp>’</dt>
<dt>‘<samp>loop</samp>’</dt>
<dt>‘<samp>unrolled_loop</samp>’</dt>
<dd><p>Expand into an inline loop.
</p>
</dd>
<dt>‘<samp>libcall</samp>’</dt>
<dd><p>Always use a library call.
</p></dd>
</dl>
</dd>
<dt><code>-mmemcpy-strategy=<var>strategy</var></code></dt>
<dd><a name="index-mmemcpy_002dstrategy_003dstrategy"></a>
<p>Override the internal decision heuristic to decide if <code>__builtin_memcpy</code>
should be inlined and what inline algorithm to use when the expected size
of the copy operation is known. <var>strategy</var>
is a comma-separated list of <var>alg</var>:<var>max_size</var>:<var>dest_align</var> triplets.
<var>alg</var> is specified in <samp>-mstringop-strategy</samp>, <var>max_size</var> specifies
the max byte size with which inline algorithm <var>alg</var> is allowed. For the last
triplet, the <var>max_size</var> must be <code>-1</code>. The <var>max_size</var> of the triplets
in the list must be specified in increasing order. The minimal byte size for
<var>alg</var> is <code>0</code> for the first triplet and <code><var>max_size</var> + 1</code> of the
preceding range.
</p>
</dd>
<dt><code>-mmemset-strategy=<var>strategy</var></code></dt>
<dd><a name="index-mmemset_002dstrategy_003dstrategy"></a>
<p>The option is similar to <samp>-mmemcpy-strategy=</samp> except that it is to control
<code>__builtin_memset</code> expansion.
</p>
</dd>
<dt><code>-momit-leaf-frame-pointer</code></dt>
<dd><a name="index-momit_002dleaf_002dframe_002dpointer-2"></a>
<p>Don’t keep the frame pointer in a register for leaf functions. This
avoids the instructions to save, set up, and restore frame pointers and
makes an extra register available in leaf functions. The option
<samp>-fomit-leaf-frame-pointer</samp> removes the frame pointer for leaf functions,
which might make debugging harder.
</p>
</dd>
<dt><code>-mtls-direct-seg-refs</code></dt>
<dt><code>-mno-tls-direct-seg-refs</code></dt>
<dd><a name="index-mtls_002ddirect_002dseg_002drefs"></a>
<p>Controls whether TLS variables may be accessed with offsets from the
TLS segment register (<code>%gs</code> for 32-bit, <code>%fs</code> for 64-bit),
or whether the thread base pointer must be added. Whether or not this
is valid depends on the operating system, and whether it maps the
segment to cover the entire TLS area.
</p>
<p>For systems that use the GNU C Library, the default is on.
</p>
</dd>
<dt><code>-msse2avx</code></dt>
<dt><code>-mno-sse2avx</code></dt>
<dd><a name="index-msse2avx"></a>
<p>Specify that the assembler should encode SSE instructions with VEX
prefix. The option <samp>-mavx</samp> turns this on by default.
</p>
</dd>
<dt><code>-mfentry</code></dt>
<dt><code>-mno-fentry</code></dt>
<dd><a name="index-mfentry"></a>
<p>If profiling is active (<samp>-pg</samp>), put the profiling
counter call before the prologue.
Note: On x86 architectures the attribute <code>ms_hook_prologue</code>
isn’t possible at the moment for <samp>-mfentry</samp> and <samp>-pg</samp>.
</p>
</dd>
<dt><code>-mrecord-mcount</code></dt>
<dt><code>-mno-record-mcount</code></dt>
<dd><a name="index-mrecord_002dmcount"></a>
<p>If profiling is active (<samp>-pg</samp>), generate a __mcount_loc section
that contains pointers to each profiling call. This is useful for
automatically patching and out calls.
</p>
</dd>
<dt><code>-mnop-mcount</code></dt>
<dt><code>-mno-nop-mcount</code></dt>
<dd><a name="index-mnop_002dmcount"></a>
<p>If profiling is active (<samp>-pg</samp>), generate the calls to
the profiling functions as NOPs. This is useful when they
should be patched in later dynamically. This is likely only
useful together with <samp>-mrecord-mcount</samp>.
</p>
</dd>
<dt><code>-mskip-rax-setup</code></dt>
<dt><code>-mno-skip-rax-setup</code></dt>
<dd><a name="index-mskip_002drax_002dsetup"></a>
<p>When generating code for the x86-64 architecture with SSE extensions
disabled, <samp>-mskip-rax-setup</samp> can be used to skip setting up RAX
register when there are no variable arguments passed in vector registers.
</p>
<p><strong>Warning:</strong> Since RAX register is used to avoid unnecessarily
saving vector registers on stack when passing variable arguments, the
impacts of this option are callees may waste some stack space,
misbehave or jump to a random location. GCC 4.4 or newer don’t have
those issues, regardless the RAX register value.
</p>
</dd>
<dt><code>-m8bit-idiv</code></dt>
<dt><code>-mno-8bit-idiv</code></dt>
<dd><a name="index-m8bit_002didiv"></a>
<p>On some processors, like Intel Atom, 8-bit unsigned integer divide is
much faster than 32-bit/64-bit integer divide. This option generates a
run-time check. If both dividend and divisor are within range of 0
to 255, 8-bit unsigned integer divide is used instead of
32-bit/64-bit integer divide.
</p>
</dd>
<dt><code>-mavx256-split-unaligned-load</code></dt>
<dt><code>-mavx256-split-unaligned-store</code></dt>
<dd><a name="index-mavx256_002dsplit_002dunaligned_002dload"></a>
<a name="index-mavx256_002dsplit_002dunaligned_002dstore"></a>
<p>Split 32-byte AVX unaligned load and store.
</p>
</dd>
<dt><code>-mstack-protector-guard=<var>guard</var></code></dt>
<dt><code>-mstack-protector-guard-reg=<var>reg</var></code></dt>
<dt><code>-mstack-protector-guard-offset=<var>offset</var></code></dt>
<dd><a name="index-mstack_002dprotector_002dguard-2"></a>
<a name="index-mstack_002dprotector_002dguard_002dreg-2"></a>
<a name="index-mstack_002dprotector_002dguard_002doffset-2"></a>
<p>Generate stack protection code using canary at <var>guard</var>. Supported
locations are ‘<samp>global</samp>’ for global canary or ‘<samp>tls</samp>’ for per-thread
canary in the TLS block (the default). This option has effect only when
<samp>-fstack-protector</samp> or <samp>-fstack-protector-all</samp> is specified.
</p>
<p>With the latter choice the options
<samp>-mstack-protector-guard-reg=<var>reg</var></samp> and
<samp>-mstack-protector-guard-offset=<var>offset</var></samp> furthermore specify
which segment register (<code>%fs</code> or <code>%gs</code>) to use as base register
for reading the canary, and from what offset from that base register.
The default for those is as specified in the relevant ABI.
</p>
</dd>
<dt><code>-mmitigate-rop</code></dt>
<dd><a name="index-mmitigate_002drop"></a>
<p>Try to avoid generating code sequences that contain unintended return
opcodes, to mitigate against certain forms of attack. At the moment,
this option is limited in what it can do and should not be relied
on to provide serious protection.
</p>
</dd>
<dt><code>-mgeneral-regs-only</code></dt>
<dd><a name="index-mgeneral_002dregs_002donly-1"></a>
<p>Generate code that uses only the general-purpose registers. This
prevents the compiler from using floating-point, vector, mask and bound
registers.
</p>
</dd>
<dt><code>-mindirect-branch=<var>choice</var></code></dt>
<dd><a name="index-_002dmindirect_002dbranch"></a>
<p>Convert indirect call and jump with <var>choice</var>. The default is
‘<samp>keep</samp>’, which keeps indirect call and jump unmodified.
‘<samp>thunk</samp>’ converts indirect call and jump to call and return thunk.
‘<samp>thunk-inline</samp>’ converts indirect call and jump to inlined call
and return thunk. ‘<samp>thunk-extern</samp>’ converts indirect call and jump
to external call and return thunk provided in a separate object file.
You can control this behavior for a specific function by using the
function attribute <code>indirect_branch</code>. See <a href="#Function-Attributes">Function Attributes</a>.
</p>
<p>Note that <samp>-mcmodel=large</samp> is incompatible with
<samp>-mindirect-branch=thunk</samp> and
<samp>-mindirect-branch=thunk-extern</samp> since the thunk function may
not be reachable in the large code model.
</p>
<p>Note that <samp>-mindirect-branch=thunk-extern</samp> is incompatible with
<samp>-fcf-protection=branch</samp> and <samp>-fcheck-pointer-bounds</samp>
since the external thunk can not be modified to disable control-flow
check.
</p>
</dd>
<dt><code>-mfunction-return=<var>choice</var></code></dt>
<dd><a name="index-_002dmfunction_002dreturn"></a>
<p>Convert function return with <var>choice</var>. The default is ‘<samp>keep</samp>’,
which keeps function return unmodified. ‘<samp>thunk</samp>’ converts function
return to call and return thunk. ‘<samp>thunk-inline</samp>’ converts function
return to inlined call and return thunk. ‘<samp>thunk-extern</samp>’ converts
function return to external call and return thunk provided in a separate
object file. You can control this behavior for a specific function by
using the function attribute <code>function_return</code>.
See <a href="#Function-Attributes">Function Attributes</a>.
</p>
<p>Note that <samp>-mcmodel=large</samp> is incompatible with
<samp>-mfunction-return=thunk</samp> and
<samp>-mfunction-return=thunk-extern</samp> since the thunk function may
not be reachable in the large code model.
</p>
</dd>
<dt><code>-mindirect-branch-register</code></dt>
<dd><a name="index-_002dmindirect_002dbranch_002dregister"></a>
<p>Force indirect call and jump via register.
</p>
</dd>
</dl>
<p>These ‘<samp>-m</samp>’ switches are supported in addition to the above
on x86-64 processors in 64-bit environments.
</p>
<dl compact="compact">
<dt><code>-m32</code></dt>
<dt><code>-m64</code></dt>
<dt><code>-mx32</code></dt>
<dt><code>-m16</code></dt>
<dt><code>-miamcu</code></dt>
<dd><a name="index-m32-5"></a>
<a name="index-m64-5"></a>
<a name="index-mx32"></a>
<a name="index-m16"></a>
<a name="index-miamcu"></a>
<p>Generate code for a 16-bit, 32-bit or 64-bit environment.
The <samp>-m32</samp> option sets <code>int</code>, <code>long</code>, and pointer types
to 32 bits, and
generates code that runs on any i386 system.
</p>
<p>The <samp>-m64</samp> option sets <code>int</code> to 32 bits and <code>long</code> and pointer
types to 64 bits, and generates code for the x86-64 architecture.
For Darwin only the <samp>-m64</samp> option also turns off the <samp>-fno-pic</samp>
and <samp>-mdynamic-no-pic</samp> options.
</p>
<p>The <samp>-mx32</samp> option sets <code>int</code>, <code>long</code>, and pointer types
to 32 bits, and
generates code for the x86-64 architecture.
</p>
<p>The <samp>-m16</samp> option is the same as <samp>-m32</samp>, except for that
it outputs the <code>.code16gcc</code> assembly directive at the beginning of
the assembly output so that the binary can run in 16-bit mode.
</p>
<p>The <samp>-miamcu</samp> option generates code which conforms to Intel MCU
psABI. It requires the <samp>-m32</samp> option to be turned on.
</p>
</dd>
<dt><code>-mno-red-zone</code></dt>
<dd><a name="index-mno_002dred_002dzone"></a>
<p>Do not use a so-called “red zone” for x86-64 code. The red zone is mandated
by the x86-64 ABI; it is a 128-byte area beyond the location of the
stack pointer that is not modified by signal or interrupt handlers
and therefore can be used for temporary data without adjusting the stack
pointer. The flag <samp>-mno-red-zone</samp> disables this red zone.
</p>
</dd>
<dt><code>-mcmodel=small</code></dt>
<dd><a name="index-mcmodel_003dsmall-3"></a>
<p>Generate code for the small code model: the program and its symbols must
be linked in the lower 2 GB of the address space. Pointers are 64 bits.
Programs can be statically or dynamically linked. This is the default
code model.
</p>
</dd>
<dt><code>-mcmodel=kernel</code></dt>
<dd><a name="index-mcmodel_003dkernel"></a>
<p>Generate code for the kernel code model. The kernel runs in the
negative 2 GB of the address space.
This model has to be used for Linux kernel code.
</p>
</dd>
<dt><code>-mcmodel=medium</code></dt>
<dd><a name="index-mcmodel_003dmedium-1"></a>
<p>Generate code for the medium model: the program is linked in the lower 2
GB of the address space. Small symbols are also placed there. Symbols
with sizes larger than <samp>-mlarge-data-threshold</samp> are put into
large data or BSS sections and can be located above 2GB. Programs can
be statically or dynamically linked.
</p>
</dd>
<dt><code>-mcmodel=large</code></dt>
<dd><a name="index-mcmodel_003dlarge-3"></a>
<p>Generate code for the large model. This model makes no assumptions
about addresses and sizes of sections.
</p>
</dd>
<dt><code>-maddress-mode=long</code></dt>
<dd><a name="index-maddress_002dmode_003dlong"></a>
<p>Generate code for long address mode. This is only supported for 64-bit
and x32 environments. It is the default address mode for 64-bit
environments.
</p>
</dd>
<dt><code>-maddress-mode=short</code></dt>
<dd><a name="index-maddress_002dmode_003dshort"></a>
<p>Generate code for short address mode. This is only supported for 32-bit
and x32 environments. It is the default address mode for 32-bit and
x32 environments.
</p></dd>
</dl>
<hr>
<a name="x86-Windows-Options"></a>
<div class="header">
<p>
Next: <a href="#Xstormy16-Options" accesskey="n" rel="next">Xstormy16 Options</a>, Previous: <a href="#x86-Options" accesskey="p" rel="prev">x86 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86-Windows-Options-1"></a>
<h4 class="subsection">3.18.57 x86 Windows Options</h4>
<a name="index-x86-Windows-Options"></a>
<a name="index-Windows-Options-for-x86"></a>
<p>These additional options are available for Microsoft Windows targets:
</p>
<dl compact="compact">
<dt><code>-mconsole</code></dt>
<dd><a name="index-mconsole"></a>
<p>This option
specifies that a console application is to be generated, by
instructing the linker to set the PE header subsystem type
required for console applications.
This option is available for Cygwin and MinGW targets and is
enabled by default on those targets.
</p>
</dd>
<dt><code>-mdll</code></dt>
<dd><a name="index-mdll"></a>
<p>This option is available for Cygwin and MinGW targets. It
specifies that a DLL—a dynamic link library—is to be
generated, enabling the selection of the required runtime
startup object and entry point.
</p>
</dd>
<dt><code>-mnop-fun-dllimport</code></dt>
<dd><a name="index-mnop_002dfun_002ddllimport"></a>
<p>This option is available for Cygwin and MinGW targets. It
specifies that the <code>dllimport</code> attribute should be ignored.
</p>
</dd>
<dt><code>-mthread</code></dt>
<dd><a name="index-mthread"></a>
<p>This option is available for MinGW targets. It specifies
that MinGW-specific thread support is to be used.
</p>
</dd>
<dt><code>-municode</code></dt>
<dd><a name="index-municode"></a>
<p>This option is available for MinGW-w64 targets. It causes
the <code>UNICODE</code> preprocessor macro to be predefined, and
chooses Unicode-capable runtime startup code.
</p>
</dd>
<dt><code>-mwin32</code></dt>
<dd><a name="index-mwin32"></a>
<p>This option is available for Cygwin and MinGW targets. It
specifies that the typical Microsoft Windows predefined macros are to
be set in the pre-processor, but does not influence the choice
of runtime library/startup code.
</p>
</dd>
<dt><code>-mwindows</code></dt>
<dd><a name="index-mwindows"></a>
<p>This option is available for Cygwin and MinGW targets. It
specifies that a GUI application is to be generated by
instructing the linker to set the PE header subsystem type
appropriately.
</p>
</dd>
<dt><code>-fno-set-stack-executable</code></dt>
<dd><a name="index-fno_002dset_002dstack_002dexecutable"></a>
<p>This option is available for MinGW targets. It specifies that
the executable flag for the stack used by nested functions isn’t
set. This is necessary for binaries running in kernel mode of
Microsoft Windows, as there the User32 API, which is used to set executable
privileges, isn’t available.
</p>
</dd>
<dt><code>-fwritable-relocated-rdata</code></dt>
<dd><a name="index-fno_002dwritable_002drelocated_002drdata"></a>
<p>This option is available for MinGW and Cygwin targets. It specifies
that relocated-data in read-only section is put into the <code>.data</code>
section. This is a necessary for older runtimes not supporting
modification of <code>.rdata</code> sections for pseudo-relocation.
</p>
</dd>
<dt><code>-mpe-aligned-commons</code></dt>
<dd><a name="index-mpe_002daligned_002dcommons"></a>
<p>This option is available for Cygwin and MinGW targets. It
specifies that the GNU extension to the PE file format that
permits the correct alignment of COMMON variables should be
used when generating code. It is enabled by default if
GCC detects that the target assembler found during configuration
supports the feature.
</p></dd>
</dl>
<p>See also under <a href="#x86-Options">x86 Options</a> for standard options.
</p>
<hr>
<a name="Xstormy16-Options"></a>
<div class="header">
<p>
Next: <a href="#Xtensa-Options" accesskey="n" rel="next">Xtensa Options</a>, Previous: <a href="#x86-Windows-Options" accesskey="p" rel="prev">x86 Windows Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Xstormy16-Options-1"></a>
<h4 class="subsection">3.18.58 Xstormy16 Options</h4>
<a name="index-Xstormy16-Options"></a>
<p>These options are defined for Xstormy16:
</p>
<dl compact="compact">
<dt><code>-msim</code></dt>
<dd><a name="index-msim-12"></a>
<p>Choose startup files and linker script suitable for the simulator.
</p></dd>
</dl>
<hr>
<a name="Xtensa-Options"></a>
<div class="header">
<p>
Next: <a href="#zSeries-Options" accesskey="n" rel="next">zSeries Options</a>, Previous: <a href="#Xstormy16-Options" accesskey="p" rel="prev">Xstormy16 Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Xtensa-Options-1"></a>
<h4 class="subsection">3.18.59 Xtensa Options</h4>
<a name="index-Xtensa-Options"></a>
<p>These options are supported for Xtensa targets:
</p>
<dl compact="compact">
<dt><code>-mconst16</code></dt>
<dt><code>-mno-const16</code></dt>
<dd><a name="index-mconst16"></a>
<a name="index-mno_002dconst16"></a>
<p>Enable or disable use of <code>CONST16</code> instructions for loading
constant values. The <code>CONST16</code> instruction is currently not a
standard option from Tensilica. When enabled, <code>CONST16</code>
instructions are always used in place of the standard <code>L32R</code>
instructions. The use of <code>CONST16</code> is enabled by default only if
the <code>L32R</code> instruction is not available.
</p>
</dd>
<dt><code>-mfused-madd</code></dt>
<dt><code>-mno-fused-madd</code></dt>
<dd><a name="index-mfused_002dmadd-6"></a>
<a name="index-mno_002dfused_002dmadd-6"></a>
<p>Enable or disable use of fused multiply/add and multiply/subtract
instructions in the floating-point option. This has no effect if the
floating-point option is not also enabled. Disabling fused multiply/add
and multiply/subtract instructions forces the compiler to use separate
instructions for the multiply and add/subtract operations. This may be
desirable in some cases where strict IEEE 754-compliant results are
required: the fused multiply add/subtract instructions do not round the
intermediate result, thereby producing results with <em>more</em> bits of
precision than specified by the IEEE standard. Disabling fused multiply
add/subtract instructions also ensures that the program output is not
sensitive to the compiler’s ability to combine multiply and add/subtract
operations.
</p>
</dd>
<dt><code>-mserialize-volatile</code></dt>
<dt><code>-mno-serialize-volatile</code></dt>
<dd><a name="index-mserialize_002dvolatile"></a>
<a name="index-mno_002dserialize_002dvolatile"></a>
<p>When this option is enabled, GCC inserts <code>MEMW</code> instructions before
<code>volatile</code> memory references to guarantee sequential consistency.
The default is <samp>-mserialize-volatile</samp>. Use
<samp>-mno-serialize-volatile</samp> to omit the <code>MEMW</code> instructions.
</p>
</dd>
<dt><code>-mforce-no-pic</code></dt>
<dd><a name="index-mforce_002dno_002dpic"></a>
<p>For targets, like GNU/Linux, where all user-mode Xtensa code must be
position-independent code (PIC), this option disables PIC for compiling
kernel code.
</p>
</dd>
<dt><code>-mtext-section-literals</code></dt>
<dt><code>-mno-text-section-literals</code></dt>
<dd><a name="index-mtext_002dsection_002dliterals"></a>
<a name="index-mno_002dtext_002dsection_002dliterals"></a>
<p>These options control the treatment of literal pools. The default is
<samp>-mno-text-section-literals</samp>, which places literals in a separate
section in the output file. This allows the literal pool to be placed
in a data RAM/ROM, and it also allows the linker to combine literal
pools from separate object files to remove redundant literals and
improve code size. With <samp>-mtext-section-literals</samp>, the literals
are interspersed in the text section in order to keep them as close as
possible to their references. This may be necessary for large assembly
files. Literals for each function are placed right before that function.
</p>
</dd>
<dt><code>-mauto-litpools</code></dt>
<dt><code>-mno-auto-litpools</code></dt>
<dd><a name="index-mauto_002dlitpools"></a>
<a name="index-mno_002dauto_002dlitpools"></a>
<p>These options control the treatment of literal pools. The default is
<samp>-mno-auto-litpools</samp>, which places literals in a separate
section in the output file unless <samp>-mtext-section-literals</samp> is
used. With <samp>-mauto-litpools</samp> the literals are interspersed in
the text section by the assembler. Compiler does not produce explicit
<code>.literal</code> directives and loads literals into registers with
<code>MOVI</code> instructions instead of <code>L32R</code> to let the assembler
do relaxation and place literals as necessary. This option allows
assembler to create several literal pools per function and assemble
very big functions, which may not be possible with
<samp>-mtext-section-literals</samp>.
</p>
</dd>
<dt><code>-mtarget-align</code></dt>
<dt><code>-mno-target-align</code></dt>
<dd><a name="index-mtarget_002dalign"></a>
<a name="index-mno_002dtarget_002dalign"></a>
<p>When this option is enabled, GCC instructs the assembler to
automatically align instructions to reduce branch penalties at the
expense of some code density. The assembler attempts to widen density
instructions to align branch targets and the instructions following call
instructions. If there are not enough preceding safe density
instructions to align a target, no widening is performed. The
default is <samp>-mtarget-align</samp>. These options do not affect the
treatment of auto-aligned instructions like <code>LOOP</code>, which the
assembler always aligns, either by widening density instructions or
by inserting NOP instructions.
</p>
</dd>
<dt><code>-mlongcalls</code></dt>
<dt><code>-mno-longcalls</code></dt>
<dd><a name="index-mlongcalls"></a>
<a name="index-mno_002dlongcalls"></a>
<p>When this option is enabled, GCC instructs the assembler to translate
direct calls to indirect calls unless it can determine that the target
of a direct call is in the range allowed by the call instruction. This
translation typically occurs for calls to functions in other source
files. Specifically, the assembler translates a direct <code>CALL</code>
instruction into an <code>L32R</code> followed by a <code>CALLX</code> instruction.
The default is <samp>-mno-longcalls</samp>. This option should be used in
programs where the call target can potentially be out of range. This
option is implemented in the assembler, not the compiler, so the
assembly code generated by GCC still shows direct call
instructions—look at the disassembled object code to see the actual
instructions. Note that the assembler uses an indirect call for
every cross-file call, not just those that really are out of range.
</p></dd>
</dl>
<hr>
<a name="zSeries-Options"></a>
<div class="header">
<p>
Previous: <a href="#Xtensa-Options" accesskey="p" rel="prev">Xtensa Options</a>, Up: <a href="#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="zSeries-Options-1"></a>
<h4 class="subsection">3.18.60 zSeries Options</h4>
<a name="index-zSeries-options"></a>
<p>These are listed under See <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>.
</p>
<hr>
<a name="Spec-Files"></a>
<div class="header">
<p>
Next: <a href="#Environment-Variables" accesskey="n" rel="next">Environment Variables</a>, Previous: <a href="#Submodel-Options" accesskey="p" rel="prev">Submodel Options</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Specifying-Subprocesses-and-the-Switches-to-Pass-to-Them"></a>
<h3 class="section">3.19 Specifying Subprocesses and the Switches to Pass to Them</h3>
<a name="index-Spec-Files"></a>
<p><code>gcc</code> is a driver program. It performs its job by invoking a
sequence of other programs to do the work of compiling, assembling and
linking. GCC interprets its command-line parameters and uses these to
deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled
by <em>spec strings</em>. In most cases there is one spec string for each
program that GCC can invoke, but a few programs have multiple spec
strings to control their behavior. The spec strings built into GCC can
be overridden by using the <samp>-specs=</samp> command-line switch to specify
a spec file.
</p>
<p><em>Spec files</em> are plain-text files that are used to construct spec
strings. They consist of a sequence of directives separated by blank
lines. The type of directive is determined by the first non-whitespace
character on the line, which can be one of the following:
</p>
<dl compact="compact">
<dt><code>%<var>command</var></code></dt>
<dd><p>Issues a <var>command</var> to the spec file processor. The commands that can
appear here are:
</p>
<dl compact="compact">
<dt><code>%include <<var>file</var>></code></dt>
<dd><a name="index-_0025include"></a>
<p>Search for <var>file</var> and insert its text at the current point in the
specs file.
</p>
</dd>
<dt><code>%include_noerr <<var>file</var>></code></dt>
<dd><a name="index-_0025include_005fnoerr"></a>
<p>Just like ‘<samp>%include</samp>’, but do not generate an error message if the include
file cannot be found.
</p>
</dd>
<dt><code>%rename <var>old_name</var> <var>new_name</var></code></dt>
<dd><a name="index-_0025rename"></a>
<p>Rename the spec string <var>old_name</var> to <var>new_name</var>.
</p>
</dd>
</dl>
</dd>
<dt><code>*[<var>spec_name</var>]:</code></dt>
<dd><p>This tells the compiler to create, override or delete the named spec
string. All lines after this directive up to the next directive or
blank line are considered to be the text for the spec string. If this
results in an empty string then the spec is deleted. (Or, if the
spec did not exist, then nothing happens.) Otherwise, if the spec
does not currently exist a new spec is created. If the spec does
exist then its contents are overridden by the text of this
directive, unless the first character of that text is the ‘<samp>+</samp>’
character, in which case the text is appended to the spec.
</p>
</dd>
<dt><code>[<var>suffix</var>]:</code></dt>
<dd><p>Creates a new ‘<samp>[<var>suffix</var>] spec</samp>’ pair. All lines after this directive
and up to the next directive or blank line are considered to make up the
spec string for the indicated suffix. When the compiler encounters an
input file with the named suffix, it processes the spec string in
order to work out how to compile that file. For example:
</p>
<div class="smallexample">
<pre class="smallexample">.ZZ:
z-compile -input %i
</pre></div>
<p>This says that any input file whose name ends in ‘<samp>.ZZ</samp>’ should be
passed to the program ‘<samp>z-compile</samp>’, which should be invoked with the
command-line switch <samp>-input</samp> and with the result of performing the
‘<samp>%i</samp>’ substitution. (See below.)
</p>
<p>As an alternative to providing a spec string, the text following a
suffix directive can be one of the following:
</p>
<dl compact="compact">
<dt><code>@<var>language</var></code></dt>
<dd><p>This says that the suffix is an alias for a known <var>language</var>. This is
similar to using the <samp>-x</samp> command-line switch to GCC to specify a
language explicitly. For example:
</p>
<div class="smallexample">
<pre class="smallexample">.ZZ:
@c++
</pre></div>
<p>Says that .ZZ files are, in fact, C++ source files.
</p>
</dd>
<dt><code>#<var>name</var></code></dt>
<dd><p>This causes an error messages saying:
</p>
<div class="smallexample">
<pre class="smallexample"><var>name</var> compiler not installed on this system.
</pre></div>
</dd>
</dl>
<p>GCC already has an extensive list of suffixes built into it.
This directive adds an entry to the end of the list of suffixes, but
since the list is searched from the end backwards, it is effectively
possible to override earlier entries using this technique.
</p>
</dd>
</dl>
<p>GCC has the following spec strings built into it. Spec files can
override these strings or create their own. Note that individual
targets can also add their own spec strings to this list.
</p>
<div class="smallexample">
<pre class="smallexample">asm Options to pass to the assembler
asm_final Options to pass to the assembler post-processor
cpp Options to pass to the C preprocessor
cc1 Options to pass to the C compiler
cc1plus Options to pass to the C++ compiler
endfile Object files to include at the end of the link
link Options to pass to the linker
lib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker
predefines Defines to be passed to the C preprocessor
signed_char Defines to pass to CPP to say whether <code>char</code> is signed
by default
startfile Object files to include at the start of the link
</pre></div>
<p>Here is a small example of a spec file:
</p>
<div class="smallexample">
<pre class="smallexample">%rename lib old_lib
*lib:
--start-group -lgcc -lc -leval1 --end-group %(old_lib)
</pre></div>
<p>This example renames the spec called ‘<samp>lib</samp>’ to ‘<samp>old_lib</samp>’ and
then overrides the previous definition of ‘<samp>lib</samp>’ with a new one.
The new definition adds in some extra command-line options before
including the text of the old definition.
</p>
<p><em>Spec strings</em> are a list of command-line options to be passed to their
corresponding program. In addition, the spec strings can contain
‘<samp>%</samp>’-prefixed sequences to substitute variable text or to
conditionally insert text into the command line. Using these constructs
it is possible to generate quite complex command lines.
</p>
<p>Here is a table of all defined ‘<samp>%</samp>’-sequences for spec
strings. Note that spaces are not generated automatically around the
results of expanding these sequences. Therefore you can concatenate them
together or combine them with constant text in a single argument.
</p>
<dl compact="compact">
<dt><code>%%</code></dt>
<dd><p>Substitute one ‘<samp>%</samp>’ into the program name or argument.
</p>
</dd>
<dt><code>%i</code></dt>
<dd><p>Substitute the name of the input file being processed.
</p>
</dd>
<dt><code>%b</code></dt>
<dd><p>Substitute the basename of the input file being processed.
This is the substring up to (and not including) the last period
and not including the directory.
</p>
</dd>
<dt><code>%B</code></dt>
<dd><p>This is the same as ‘<samp>%b</samp>’, but include the file suffix (text after
the last period).
</p>
</dd>
<dt><code>%d</code></dt>
<dd><p>Marks the argument containing or following the ‘<samp>%d</samp>’ as a
temporary file name, so that that file is deleted if GCC exits
successfully. Unlike ‘<samp>%g</samp>’, this contributes no text to the
argument.
</p>
</dd>
<dt><code>%g<var>suffix</var></code></dt>
<dd><p>Substitute a file name that has suffix <var>suffix</var> and is chosen
once per compilation, and mark the argument in the same way as
‘<samp>%d</samp>’. To reduce exposure to denial-of-service attacks, the file
name is now chosen in a way that is hard to predict even when previously
chosen file names are known. For example, ‘<samp>%g.s … %g.o … %g.s</samp>’
might turn into ‘<samp>ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s</samp>’. <var>suffix</var> matches
the regexp ‘<samp>[.A-Za-z]*</samp>’ or the special string ‘<samp>%O</samp>’, which is
treated exactly as if ‘<samp>%O</samp>’ had been preprocessed. Previously, ‘<samp>%g</samp>’
was simply substituted with a file name chosen once per compilation,
without regard to any appended suffix (which was therefore treated
just like ordinary text), making such attacks more likely to succeed.
</p>
</dd>
<dt><code>%u<var>suffix</var></code></dt>
<dd><p>Like ‘<samp>%g</samp>’, but generates a new temporary file name
each time it appears instead of once per compilation.
</p>
</dd>
<dt><code>%U<var>suffix</var></code></dt>
<dd><p>Substitutes the last file name generated with ‘<samp>%u<var>suffix</var></samp>’, generating a
new one if there is no such last file name. In the absence of any
‘<samp>%u<var>suffix</var></samp>’, this is just like ‘<samp>%g<var>suffix</var></samp>’, except they don’t share
the same suffix <em>space</em>, so ‘<samp>%g.s … %U.s … %g.s … %U.s</samp>’
involves the generation of two distinct file names, one
for each ‘<samp>%g.s</samp>’ and another for each ‘<samp>%U.s</samp>’. Previously, ‘<samp>%U</samp>’ was
simply substituted with a file name chosen for the previous ‘<samp>%u</samp>’,
without regard to any appended suffix.
</p>
</dd>
<dt><code>%j<var>suffix</var></code></dt>
<dd><p>Substitutes the name of the <code>HOST_BIT_BUCKET</code>, if any, and if it is
writable, and if <samp>-save-temps</samp> is not used;
otherwise, substitute the name
of a temporary file, just like ‘<samp>%u</samp>’. This temporary file is not
meant for communication between processes, but rather as a junk
disposal mechanism.
</p>
</dd>
<dt><code>%|<var>suffix</var></code></dt>
<dt><code>%m<var>suffix</var></code></dt>
<dd><p>Like ‘<samp>%g</samp>’, except if <samp>-pipe</samp> is in effect. In that case
‘<samp>%|</samp>’ substitutes a single dash and ‘<samp>%m</samp>’ substitutes nothing at
all. These are the two most common ways to instruct a program that it
should read from standard input or write to standard output. If you
need something more elaborate you can use an ‘<samp>%{pipe:<code>X</code>}</samp>’
construct: see for example <samp>f/lang-specs.h</samp>.
</p>
</dd>
<dt><code>%.<var>SUFFIX</var></code></dt>
<dd><p>Substitutes <var>.SUFFIX</var> for the suffixes of a matched switch’s args
when it is subsequently output with ‘<samp>%*</samp>’. <var>SUFFIX</var> is
terminated by the next space or %.
</p>
</dd>
<dt><code>%w</code></dt>
<dd><p>Marks the argument containing or following the ‘<samp>%w</samp>’ as the
designated output file of this compilation. This puts the argument
into the sequence of arguments that ‘<samp>%o</samp>’ substitutes.
</p>
</dd>
<dt><code>%o</code></dt>
<dd><p>Substitutes the names of all the output files, with spaces
automatically placed around them. You should write spaces
around the ‘<samp>%o</samp>’ as well or the results are undefined.
‘<samp>%o</samp>’ is for use in the specs for running the linker.
Input files whose names have no recognized suffix are not compiled
at all, but they are included among the output files, so they are
linked.
</p>
</dd>
<dt><code>%O</code></dt>
<dd><p>Substitutes the suffix for object files. Note that this is
handled specially when it immediately follows ‘<samp>%g, %u, or %U</samp>’,
because of the need for those to form complete file names. The
handling is such that ‘<samp>%O</samp>’ is treated exactly as if it had already
been substituted, except that ‘<samp>%g, %u, and %U</samp>’ do not currently
support additional <var>suffix</var> characters following ‘<samp>%O</samp>’ as they do
following, for example, ‘<samp>.o</samp>’.
</p>
</dd>
<dt><code>%p</code></dt>
<dd><p>Substitutes the standard macro predefinitions for the
current target machine. Use this when running <code>cpp</code>.
</p>
</dd>
<dt><code>%P</code></dt>
<dd><p>Like ‘<samp>%p</samp>’, but puts ‘<samp>__</samp>’ before and after the name of each
predefined macro, except for macros that start with ‘<samp>__</samp>’ or with
‘<samp>_<var>L</var></samp>’, where <var>L</var> is an uppercase letter. This is for ISO
C.
</p>
</dd>
<dt><code>%I</code></dt>
<dd><p>Substitute any of <samp>-iprefix</samp> (made from <code>GCC_EXEC_PREFIX</code>),
<samp>-isysroot</samp> (made from <code>TARGET_SYSTEM_ROOT</code>),
<samp>-isystem</samp> (made from <code>COMPILER_PATH</code> and <samp>-B</samp> options)
and <samp>-imultilib</samp> as necessary.
</p>
</dd>
<dt><code>%s</code></dt>
<dd><p>Current argument is the name of a library or startup file of some sort.
Search for that file in a standard list of directories and substitute
the full name found. The current working directory is included in the
list of directories scanned.
</p>
</dd>
<dt><code>%T</code></dt>
<dd><p>Current argument is the name of a linker script. Search for that file
in the current list of directories to scan for libraries. If the file
is located insert a <samp>--script</samp> option into the command line
followed by the full path name found. If the file is not found then
generate an error message. Note: the current working directory is not
searched.
</p>
</dd>
<dt><code>%e<var>str</var></code></dt>
<dd><p>Print <var>str</var> as an error message. <var>str</var> is terminated by a newline.
Use this when inconsistent options are detected.
</p>
</dd>
<dt><code>%(<var>name</var>)</code></dt>
<dd><p>Substitute the contents of spec string <var>name</var> at this point.
</p>
</dd>
<dt><code>%x{<var>option</var>}</code></dt>
<dd><p>Accumulate an option for ‘<samp>%X</samp>’.
</p>
</dd>
<dt><code>%X</code></dt>
<dd><p>Output the accumulated linker options specified by <samp>-Wl</samp> or a ‘<samp>%x</samp>’
spec string.
</p>
</dd>
<dt><code>%Y</code></dt>
<dd><p>Output the accumulated assembler options specified by <samp>-Wa</samp>.
</p>
</dd>
<dt><code>%Z</code></dt>
<dd><p>Output the accumulated preprocessor options specified by <samp>-Wp</samp>.
</p>
</dd>
<dt><code>%a</code></dt>
<dd><p>Process the <code>asm</code> spec. This is used to compute the
switches to be passed to the assembler.
</p>
</dd>
<dt><code>%A</code></dt>
<dd><p>Process the <code>asm_final</code> spec. This is a spec string for
passing switches to an assembler post-processor, if such a program is
needed.
</p>
</dd>
<dt><code>%l</code></dt>
<dd><p>Process the <code>link</code> spec. This is the spec for computing the
command line passed to the linker. Typically it makes use of the
‘<samp>%L %G %S %D and %E</samp>’ sequences.
</p>
</dd>
<dt><code>%D</code></dt>
<dd><p>Dump out a <samp>-L</samp> option for each directory that GCC believes might
contain startup files. If the target supports multilibs then the
current multilib directory is prepended to each of these paths.
</p>
</dd>
<dt><code>%L</code></dt>
<dd><p>Process the <code>lib</code> spec. This is a spec string for deciding which
libraries are included on the command line to the linker.
</p>
</dd>
<dt><code>%G</code></dt>
<dd><p>Process the <code>libgcc</code> spec. This is a spec string for deciding
which GCC support library is included on the command line to the linker.
</p>
</dd>
<dt><code>%S</code></dt>
<dd><p>Process the <code>startfile</code> spec. This is a spec for deciding which
object files are the first ones passed to the linker. Typically
this might be a file named <samp>crt0.o</samp>.
</p>
</dd>
<dt><code>%E</code></dt>
<dd><p>Process the <code>endfile</code> spec. This is a spec string that specifies
the last object files that are passed to the linker.
</p>
</dd>
<dt><code>%C</code></dt>
<dd><p>Process the <code>cpp</code> spec. This is used to construct the arguments
to be passed to the C preprocessor.
</p>
</dd>
<dt><code>%1</code></dt>
<dd><p>Process the <code>cc1</code> spec. This is used to construct the options to be
passed to the actual C compiler (<code>cc1</code>).
</p>
</dd>
<dt><code>%2</code></dt>
<dd><p>Process the <code>cc1plus</code> spec. This is used to construct the options to be
passed to the actual C++ compiler (<code>cc1plus</code>).
</p>
</dd>
<dt><code>%*</code></dt>
<dd><p>Substitute the variable part of a matched option. See below.
Note that each comma in the substituted string is replaced by
a single space.
</p>
</dd>
<dt><code>%<S</code></dt>
<dd><p>Remove all occurrences of <code>-S</code> from the command line. Note—this
command is position dependent. ‘<samp>%</samp>’ commands in the spec string
before this one see <code>-S</code>, ‘<samp>%</samp>’ commands in the spec string
after this one do not.
</p>
</dd>
<dt><code>%:<var>function</var>(<var>args</var>)</code></dt>
<dd><p>Call the named function <var>function</var>, passing it <var>args</var>.
<var>args</var> is first processed as a nested spec string, then split
into an argument vector in the usual fashion. The function returns
a string which is processed as if it had appeared literally as part
of the current spec.
</p>
<p>The following built-in spec functions are provided:
</p>
<dl compact="compact">
<dt><code><code>getenv</code></code></dt>
<dd><p>The <code>getenv</code> spec function takes two arguments: an environment
variable name and a string. If the environment variable is not
defined, a fatal error is issued. Otherwise, the return value is the
value of the environment variable concatenated with the string. For
example, if <code>TOPDIR</code> is defined as <samp>/path/to/top</samp>, then:
</p>
<div class="smallexample">
<pre class="smallexample">%:getenv(TOPDIR /include)
</pre></div>
<p>expands to <samp>/path/to/top/include</samp>.
</p>
</dd>
<dt><code><code>if-exists</code></code></dt>
<dd><p>The <code>if-exists</code> spec function takes one argument, an absolute
pathname to a file. If the file exists, <code>if-exists</code> returns the
pathname. Here is a small example of its usage:
</p>
<div class="smallexample">
<pre class="smallexample">*startfile:
crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
</pre></div>
</dd>
<dt><code><code>if-exists-else</code></code></dt>
<dd><p>The <code>if-exists-else</code> spec function is similar to the <code>if-exists</code>
spec function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, <code>if-exists-else</code>
returns the pathname. If it does not exist, it returns the second argument.
This way, <code>if-exists-else</code> can be used to select one file or another,
based on the existence of the first. Here is a small example of its usage:
</p>
<div class="smallexample">
<pre class="smallexample">*startfile:
crt0%O%s %:if-exists(crti%O%s) \
%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
</pre></div>
</dd>
<dt><code><code>replace-outfile</code></code></dt>
<dd><p>The <code>replace-outfile</code> spec function takes two arguments. It looks for the
first argument in the outfiles array and replaces it with the second argument. Here
is a small example of its usage:
</p>
<div class="smallexample">
<pre class="smallexample">%{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}
</pre></div>
</dd>
<dt><code><code>remove-outfile</code></code></dt>
<dd><p>The <code>remove-outfile</code> spec function takes one argument. It looks for the
first argument in the outfiles array and removes it. Here is a small example
its usage:
</p>
<div class="smallexample">
<pre class="smallexample">%:remove-outfile(-lm)
</pre></div>
</dd>
<dt><code><code>pass-through-libs</code></code></dt>
<dd><p>The <code>pass-through-libs</code> spec function takes any number of arguments. It
finds any <samp>-l</samp> options and any non-options ending in <samp>.a</samp> (which it
assumes are the names of linker input library archive files) and returns a
result containing all the found arguments each prepended by
<samp>-plugin-opt=-pass-through=</samp> and joined by spaces. This list is
intended to be passed to the LTO linker plugin.
</p>
<div class="smallexample">
<pre class="smallexample">%:pass-through-libs(%G %L %G)
</pre></div>
</dd>
<dt><code><code>print-asm-header</code></code></dt>
<dd><p>The <code>print-asm-header</code> function takes no arguments and simply
prints a banner like:
</p>
<div class="smallexample">
<pre class="smallexample">Assembler options
=================
Use "-Wa,OPTION" to pass "OPTION" to the assembler.
</pre></div>
<p>It is used to separate compiler options from assembler options
in the <samp>--target-help</samp> output.
</p></dd>
</dl>
</dd>
<dt><code>%{S}</code></dt>
<dd><p>Substitutes the <code>-S</code> switch, if that switch is given to GCC.
If that switch is not specified, this substitutes nothing. Note that
the leading dash is omitted when specifying this option, and it is
automatically inserted if the substitution is performed. Thus the spec
string ‘<samp>%{foo}</samp>’ matches the command-line option <samp>-foo</samp>
and outputs the command-line option <samp>-foo</samp>.
</p>
</dd>
<dt><code>%W{S}</code></dt>
<dd><p>Like %{<code>S</code>} but mark last argument supplied within as a file to be
deleted on failure.
</p>
</dd>
<dt><code>%{S*}</code></dt>
<dd><p>Substitutes all the switches specified to GCC whose names start
with <code>-S</code>, but which also take an argument. This is used for
switches like <samp>-o</samp>, <samp>-D</samp>, <samp>-I</samp>, etc.
GCC considers <samp>-o foo</samp> as being
one switch whose name starts with ‘<samp>o</samp>’. %{o*} substitutes this
text, including the space. Thus two arguments are generated.
</p>
</dd>
<dt><code>%{S*&T*}</code></dt>
<dd><p>Like %{<code>S</code>*}, but preserve order of <code>S</code> and <code>T</code> options
(the order of <code>S</code> and <code>T</code> in the spec is not significant).
There can be any number of ampersand-separated variables; for each the
wild card is optional. Useful for CPP as ‘<samp>%{D*&U*&A*}</samp>’.
</p>
</dd>
<dt><code>%{S:X}</code></dt>
<dd><p>Substitutes <code>X</code>, if the <samp>-S</samp> switch is given to GCC.
</p>
</dd>
<dt><code>%{!S:X}</code></dt>
<dd><p>Substitutes <code>X</code>, if the <samp>-S</samp> switch is <em>not</em> given to GCC.
</p>
</dd>
<dt><code>%{S*:X}</code></dt>
<dd><p>Substitutes <code>X</code> if one or more switches whose names start with
<code>-S</code> are specified to GCC. Normally <code>X</code> is substituted only
once, no matter how many such switches appeared. However, if <code>%*</code>
appears somewhere in <code>X</code>, then <code>X</code> is substituted once
for each matching switch, with the <code>%*</code> replaced by the part of
that switch matching the <code>*</code>.
</p>
<p>If <code>%*</code> appears as the last part of a spec sequence then a space
is added after the end of the last substitution. If there is more
text in the sequence, however, then a space is not generated. This
allows the <code>%*</code> substitution to be used as part of a larger
string. For example, a spec string like this:
</p>
<div class="smallexample">
<pre class="smallexample">%{mcu=*:--script=%*/memory.ld}
</pre></div>
<p>when matching an option like <samp>-mcu=newchip</samp> produces:
</p>
<div class="smallexample">
<pre class="smallexample">--script=newchip/memory.ld
</pre></div>
</dd>
<dt><code>%{.S:X}</code></dt>
<dd><p>Substitutes <code>X</code>, if processing a file with suffix <code>S</code>.
</p>
</dd>
<dt><code>%{!.S:X}</code></dt>
<dd><p>Substitutes <code>X</code>, if <em>not</em> processing a file with suffix <code>S</code>.
</p>
</dd>
<dt><code>%{,S:X}</code></dt>
<dd><p>Substitutes <code>X</code>, if processing a file for language <code>S</code>.
</p>
</dd>
<dt><code>%{!,S:X}</code></dt>
<dd><p>Substitutes <code>X</code>, if not processing a file for language <code>S</code>.
</p>
</dd>
<dt><code>%{S|P:X}</code></dt>
<dd><p>Substitutes <code>X</code> if either <code>-S</code> or <code>-P</code> is given to
GCC. This may be combined with ‘<samp>!</samp>’, ‘<samp>.</samp>’, ‘<samp>,</samp>’, and
<code>*</code> sequences as well, although they have a stronger binding than
the ‘<samp>|</samp>’. If <code>%*</code> appears in <code>X</code>, all of the
alternatives must be starred, and only the first matching alternative
is substituted.
</p>
<p>For example, a spec string like this:
</p>
<div class="smallexample">
<pre class="smallexample">%{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}
</pre></div>
<p>outputs the following command-line options from the following input
command-line options:
</p>
<div class="smallexample">
<pre class="smallexample">fred.c -foo -baz
jim.d -bar -boggle
-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle
</pre></div>
</dd>
<dt><code>%{S:X; T:Y; :D}</code></dt>
<dd>
<p>If <code>S</code> is given to GCC, substitutes <code>X</code>; else if <code>T</code> is
given to GCC, substitutes <code>Y</code>; else substitutes <code>D</code>. There can
be as many clauses as you need. This may be combined with <code>.</code>,
<code>,</code>, <code>!</code>, <code>|</code>, and <code>*</code> as needed.
</p>
</dd>
</dl>
<p>The switch matching text <code>S</code> in a ‘<samp>%{S}</samp>’, ‘<samp>%{S:X}</samp>’
or similar construct can use a backslash to ignore the special meaning
of the character following it, thus allowing literal matching of a
character that is otherwise specially treated. For example,
‘<samp>%{std=iso9899\:1999:X}</samp>’ substitutes <code>X</code> if the
<samp>-std=iso9899:1999</samp> option is given.
</p>
<p>The conditional text <code>X</code> in a ‘<samp>%{S:X}</samp>’ or similar
construct may contain other nested ‘<samp>%</samp>’ constructs or spaces, or
even newlines. They are processed as usual, as described above.
Trailing white space in <code>X</code> is ignored. White space may also
appear anywhere on the left side of the colon in these constructs,
except between <code>.</code> or <code>*</code> and the corresponding word.
</p>
<p>The <samp>-O</samp>, <samp>-f</samp>, <samp>-m</samp>, and <samp>-W</samp> switches are
handled specifically in these constructs. If another value of
<samp>-O</samp> or the negated form of a <samp>-f</samp>, <samp>-m</samp>, or
<samp>-W</samp> switch is found later in the command line, the earlier
switch value is ignored, except with {<code>S</code>*} where <code>S</code> is
just one letter, which passes all matching options.
</p>
<p>The character ‘<samp>|</samp>’ at the beginning of the predicate text is used to
indicate that a command should be piped to the following command, but
only if <samp>-pipe</samp> is specified.
</p>
<p>It is built into GCC which switches take arguments and which do not.
(You might think it would be useful to generalize this to allow each
compiler’s spec to say which switches take arguments. But this cannot
be done in a consistent fashion. GCC cannot even decide which input
files have been specified without knowing which switches take arguments,
and it must know which input files to compile in order to tell which
compilers to run).
</p>
<p>GCC also knows implicitly that arguments starting in <samp>-l</samp> are to be
treated as compiler output files, and passed to the linker in their
proper position among the other output files.
</p>
<hr>
<a name="Environment-Variables"></a>
<div class="header">
<p>
Next: <a href="#Precompiled-Headers" accesskey="n" rel="next">Precompiled Headers</a>, Previous: <a href="#Spec-Files" accesskey="p" rel="prev">Spec Files</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Environment-Variables-Affecting-GCC"></a>
<h3 class="section">3.20 Environment Variables Affecting GCC</h3>
<a name="index-environment-variables"></a>
<p>This section describes several environment variables that affect how GCC
operates. Some of them work by specifying directories or prefixes to use
when searching for various kinds of files. Some are used to specify other
aspects of the compilation environment.
</p>
<p>Note that you can also specify places to search using options such as
<samp>-B</samp>, <samp>-I</samp> and <samp>-L</samp> (see <a href="#Directory-Options">Directory Options</a>). These
take precedence over places specified using environment variables, which
in turn take precedence over those specified by the configuration of GCC.
See <a href="x86_64-linux-gnu-gccint-8.html#Driver">Controlling the Compilation Driver <samp>gcc</samp></a> in <cite>GNU Compiler Collection (GCC) Internals</cite>.
</p>
<dl compact="compact">
<dt><code>LANG</code></dt>
<dt><code>LC_CTYPE</code></dt>
<dt><code>LC_MESSAGES</code></dt>
<dt><code>LC_ALL</code></dt>
<dd><a name="index-LANG"></a>
<a name="index-LC_005fCTYPE"></a>
<a name="index-LC_005fMESSAGES"></a>
<a name="index-LC_005fALL"></a>
<a name="index-locale"></a>
<p>These environment variables control the way that GCC uses
localization information which allows GCC to work with different
national conventions. GCC inspects the locale categories
<code>LC_CTYPE</code> and <code>LC_MESSAGES</code> if it has been configured to do
so. These locale categories can be set to any value supported by your
installation. A typical value is ‘<samp>en_GB.UTF-8</samp>’ for English in the United
Kingdom encoded in UTF-8.
</p>
<p>The <code>LC_CTYPE</code> environment variable specifies character
classification. GCC uses it to determine the character boundaries in
a string; this is needed for some multibyte encodings that contain quote
and escape characters that are otherwise interpreted as a string
end or escape.
</p>
<p>The <code>LC_MESSAGES</code> environment variable specifies the language to
use in diagnostic messages.
</p>
<p>If the <code>LC_ALL</code> environment variable is set, it overrides the value
of <code>LC_CTYPE</code> and <code>LC_MESSAGES</code>; otherwise, <code>LC_CTYPE</code>
and <code>LC_MESSAGES</code> default to the value of the <code>LANG</code>
environment variable. If none of these variables are set, GCC
defaults to traditional C English behavior.
</p>
</dd>
<dt><code>TMPDIR</code></dt>
<dd><a name="index-TMPDIR"></a>
<p>If <code>TMPDIR</code> is set, it specifies the directory to use for temporary
files. GCC uses temporary files to hold the output of one stage of
compilation which is to be used as input to the next stage: for example,
the output of the preprocessor, which is the input to the compiler
proper.
</p>
</dd>
<dt><code>GCC_COMPARE_DEBUG</code></dt>
<dd><a name="index-GCC_005fCOMPARE_005fDEBUG"></a>
<p>Setting <code>GCC_COMPARE_DEBUG</code> is nearly equivalent to passing
<samp>-fcompare-debug</samp> to the compiler driver. See the documentation
of this option for more details.
</p>
</dd>
<dt><code>GCC_EXEC_PREFIX</code></dt>
<dd><a name="index-GCC_005fEXEC_005fPREFIX"></a>
<p>If <code>GCC_EXEC_PREFIX</code> is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No slash is added
when this prefix is combined with the name of a subprogram, but you can
specify a prefix that ends with a slash if you wish.
</p>
<p>If <code>GCC_EXEC_PREFIX</code> is not set, GCC attempts to figure out
an appropriate prefix to use based on the pathname it is invoked with.
</p>
<p>If GCC cannot find the subprogram using the specified prefix, it
tries looking in the usual places for the subprogram.
</p>
<p>The default value of <code>GCC_EXEC_PREFIX</code> is
<samp><var>prefix</var>/lib/gcc/</samp> where <var>prefix</var> is the prefix to
the installed compiler. In many cases <var>prefix</var> is the value
of <code>prefix</code> when you ran the <samp>configure</samp> script.
</p>
<p>Other prefixes specified with <samp>-B</samp> take precedence over this prefix.
</p>
<p>This prefix is also used for finding files such as <samp>crt0.o</samp> that are
used for linking.
</p>
<p>In addition, the prefix is used in an unusual way in finding the
directories to search for header files. For each of the standard
directories whose name normally begins with ‘<samp>/usr/local/lib/gcc</samp>’
(more precisely, with the value of <code>GCC_INCLUDE_DIR</code>), GCC tries
replacing that beginning with the specified prefix to produce an
alternate directory name. Thus, with <samp>-Bfoo/</samp>, GCC searches
<samp>foo/bar</samp> just before it searches the standard directory
<samp>/usr/local/lib/bar</samp>.
If a standard directory begins with the configured
<var>prefix</var> then the value of <var>prefix</var> is replaced by
<code>GCC_EXEC_PREFIX</code> when looking for header files.
</p>
</dd>
<dt><code>COMPILER_PATH</code></dt>
<dd><a name="index-COMPILER_005fPATH"></a>
<p>The value of <code>COMPILER_PATH</code> is a colon-separated list of
directories, much like <code>PATH</code>. GCC tries the directories thus
specified when searching for subprograms, if it cannot find the
subprograms using <code>GCC_EXEC_PREFIX</code>.
</p>
</dd>
<dt><code>LIBRARY_PATH</code></dt>
<dd><a name="index-LIBRARY_005fPATH"></a>
<p>The value of <code>LIBRARY_PATH</code> is a colon-separated list of
directories, much like <code>PATH</code>. When configured as a native compiler,
GCC tries the directories thus specified when searching for special
linker files, if it cannot find them using <code>GCC_EXEC_PREFIX</code>. Linking
using GCC also uses these directories when searching for ordinary
libraries for the <samp>-l</samp> option (but directories specified with
<samp>-L</samp> come first).
</p>
</dd>
<dt><code>LANG</code></dt>
<dd><a name="index-LANG-1"></a>
<a name="index-locale-definition"></a>
<p>This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used
when character literals, string literals and comments are parsed in C and C++.
When the compiler is configured to allow multibyte characters,
the following values for <code>LANG</code> are recognized:
</p>
<dl compact="compact">
<dt>‘<samp>C-JIS</samp>’</dt>
<dd><p>Recognize JIS characters.
</p></dd>
<dt>‘<samp>C-SJIS</samp>’</dt>
<dd><p>Recognize SJIS characters.
</p></dd>
<dt>‘<samp>C-EUCJP</samp>’</dt>
<dd><p>Recognize EUCJP characters.
</p></dd>
</dl>
<p>If <code>LANG</code> is not defined, or if it has some other value, then the
compiler uses <code>mblen</code> and <code>mbtowc</code> as defined by the default locale to
recognize and translate multibyte characters.
</p></dd>
</dl>
<p>Some additional environment variables affect the behavior of the
preprocessor.
</p>
<dl compact="compact">
<dt><code>CPATH</code>
<a name="index-CPATH"></a>
</dt>
<dt><code>C_INCLUDE_PATH</code>
<a name="index-C_005fINCLUDE_005fPATH"></a>
</dt>
<dt><code>CPLUS_INCLUDE_PATH</code>
<a name="index-CPLUS_005fINCLUDE_005fPATH"></a>
</dt>
<dt><code>OBJC_INCLUDE_PATH</code>
<a name="index-OBJC_005fINCLUDE_005fPATH"></a>
</dt>
<dd><p>Each variable’s value is a list of directories separated by a special
character, much like <code>PATH</code>, in which to look for header files.
The special character, <code>PATH_SEPARATOR</code>, is target-dependent and
determined at GCC build time. For Microsoft Windows-based targets it is a
semicolon, and for almost all other targets it is a colon.
</p>
<p><code>CPATH</code> specifies a list of directories to be searched as if
specified with <samp>-I</samp>, but after any paths given with <samp>-I</samp>
options on the command line. This environment variable is used
regardless of which language is being preprocessed.
</p>
<p>The remaining environment variables apply only when preprocessing the
particular language indicated. Each specifies a list of directories
to be searched as if specified with <samp>-isystem</samp>, but after any
paths given with <samp>-isystem</samp> options on the command line.
</p>
<p>In all these variables, an empty element instructs the compiler to
search its current working directory. Empty elements can appear at the
beginning or end of a path. For instance, if the value of
<code>CPATH</code> is <code>:/special/include</code>, that has the same
effect as ‘<samp><span class="nolinebreak">-I.</span> <span class="nolinebreak">-I/special/include</span><!-- /@w --></samp>’.
</p>
</dd>
<dt><code>DEPENDENCIES_OUTPUT</code>
<a name="index-DEPENDENCIES_005fOUTPUT"></a>
</dt>
<dd><a name="index-dependencies-for-make-as-output"></a>
<p>If this variable is set, its value specifies how to output
dependencies for Make based on the non-system header files processed
by the compiler. System header files are ignored in the dependency
output.
</p>
<p>The value of <code>DEPENDENCIES_OUTPUT</code> can be just a file name, in
which case the Make rules are written to that file, guessing the target
name from the source file name. Or the value can have the form
‘<samp><var>file</var> <var>target</var></samp>’, in which case the rules are written to
file <var>file</var> using <var>target</var> as the target name.
</p>
<p>In other words, this environment variable is equivalent to combining
the options <samp>-MM</samp> and <samp>-MF</samp>
(see <a href="#Preprocessor-Options">Preprocessor Options</a>),
with an optional <samp>-MT</samp> switch too.
</p>
</dd>
<dt><code>SUNPRO_DEPENDENCIES</code>
<a name="index-SUNPRO_005fDEPENDENCIES"></a>
</dt>
<dd><a name="index-dependencies-for-make-as-output-1"></a>
<p>This variable is the same as <code>DEPENDENCIES_OUTPUT</code> (see above),
except that system header files are not ignored, so it implies
<samp>-M</samp> rather than <samp>-MM</samp>. However, the dependence on the
main input file is omitted.
See <a href="#Preprocessor-Options">Preprocessor Options</a>.
</p>
</dd>
<dt><code>SOURCE_DATE_EPOCH</code>
<a name="index-SOURCE_005fDATE_005fEPOCH"></a>
</dt>
<dd><p>If this variable is set, its value specifies a UNIX timestamp to be
used in replacement of the current date and time in the <code>__DATE__</code>
and <code>__TIME__</code> macros, so that the embedded timestamps become
reproducible.
</p>
<p>The value of <code>SOURCE_DATE_EPOCH</code> must be a UNIX timestamp,
defined as the number of seconds (excluding leap seconds) since
01 Jan 1970 00:00:00 represented in ASCII; identical to the output of
‘<samp><code>date +%s</code></samp>’ on GNU/Linux and other systems that support the
<code>%s</code> extension in the <code>date</code> command.
</p>
<p>The value should be a known timestamp such as the last modification
time of the source or package and it should be set by the build
process.
</p>
</dd>
</dl>
<hr>
<a name="Precompiled-Headers"></a>
<div class="header">
<p>
Previous: <a href="#Environment-Variables" accesskey="p" rel="prev">Environment Variables</a>, Up: <a href="#Invoking-GCC" accesskey="u" rel="up">Invoking GCC</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-Precompiled-Headers"></a>
<h3 class="section">3.21 Using Precompiled Headers</h3>
<a name="index-precompiled-headers"></a>
<a name="index-speed-of-compilation"></a>
<p>Often large projects have many header files that are included in every
source file. The time the compiler takes to process these header files
over and over again can account for nearly all of the time required to
build the project. To make builds faster, GCC allows you to
<em>precompile</em> a header file.
</p>
<p>To create a precompiled header file, simply compile it as you would any
other file, if necessary using the <samp>-x</samp> option to make the driver
treat it as a C or C++ header file. You may want to use a
tool like <code>make</code> to keep the precompiled header up-to-date when
the headers it contains change.
</p>
<p>A precompiled header file is searched for when <code>#include</code> is
seen in the compilation. As it searches for the included file
(see <a href="x86_64-linux-gnu-cpp-8.html#Search-Path">Search Path</a> in <cite>The C Preprocessor</cite>) the
compiler looks for a precompiled header in each directory just before it
looks for the include file in that directory. The name searched for is
the name specified in the <code>#include</code> with ‘<samp>.gch</samp>’ appended. If
the precompiled header file cannot be used, it is ignored.
</p>
<p>For instance, if you have <code>#include "all.h"</code>, and you have
<samp>all.h.gch</samp> in the same directory as <samp>all.h</samp>, then the
precompiled header file is used if possible, and the original
header is used otherwise.
</p>
<p>Alternatively, you might decide to put the precompiled header file in a
directory and use <samp>-I</samp> to ensure that directory is searched
before (or instead of) the directory containing the original header.
Then, if you want to check that the precompiled header file is always
used, you can put a file of the same name as the original header in this
directory containing an <code>#error</code> command.
</p>
<p>This also works with <samp>-include</samp>. So yet another way to use
precompiled headers, good for projects not designed with precompiled
header files in mind, is to simply take most of the header files used by
a project, include them from another header file, precompile that header
file, and <samp>-include</samp> the precompiled header. If the header files
have guards against multiple inclusion, they are skipped because
they’ve already been included (in the precompiled header).
</p>
<p>If you need to precompile the same header file for different
languages, targets, or compiler options, you can instead make a
<em>directory</em> named like <samp>all.h.gch</samp>, and put each precompiled
header in the directory, perhaps using <samp>-o</samp>. It doesn’t matter
what you call the files in the directory; every precompiled header in
the directory is considered. The first precompiled header
encountered in the directory that is valid for this compilation is
used; they’re searched in no particular order.
</p>
<p>There are many other possibilities, limited only by your imagination,
good sense, and the constraints of your build system.
</p>
<p>A precompiled header file can be used only when these conditions apply:
</p>
<ul>
<li> Only one precompiled header can be used in a particular compilation.
</li><li> A precompiled header cannot be used once the first C token is seen. You
can have preprocessor directives before a precompiled header; you cannot
include a precompiled header from inside another header.
</li><li> The precompiled header file must be produced for the same language as
the current compilation. You cannot use a C precompiled header for a C++
compilation.
</li><li> The precompiled header file must have been produced by the same compiler
binary as the current compilation is using.
</li><li> Any macros defined before the precompiled header is included must
either be defined in the same way as when the precompiled header was
generated, or must not affect the precompiled header, which usually
means that they don’t appear in the precompiled header at all.
<p>The <samp>-D</samp> option is one way to define a macro before a
precompiled header is included; using a <code>#define</code> can also do it.
There are also some options that define macros implicitly, like
<samp>-O</samp> and <samp>-Wdeprecated</samp>; the same rule applies to macros
defined this way.
</p>
</li><li> If debugging information is output when using the precompiled
header, using <samp>-g</samp> or similar, the same kind of debugging information
must have been output when building the precompiled header. However,
a precompiled header built using <samp>-g</samp> can be used in a compilation
when no debugging information is being output.
</li><li> The same <samp>-m</samp> options must generally be used when building
and using the precompiled header. See <a href="#Submodel-Options">Submodel Options</a>,
for any cases where this rule is relaxed.
</li><li> Each of the following options must be the same when building and using
the precompiled header:
<div class="smallexample">
<pre class="smallexample">-fexceptions
</pre></div>
</li><li> Some other command-line options starting with <samp>-f</samp>,
<samp>-p</samp>, or <samp>-O</samp> must be defined in the same way as when
the precompiled header was generated. At present, it’s not clear
which options are safe to change and which are not; the safest choice
is to use exactly the same options when generating and using the
precompiled header. The following are known to be safe:
<div class="smallexample">
<pre class="smallexample">-fmessage-length= -fpreprocessed -fsched-interblock
-fsched-spec -fsched-spec-load -fsched-spec-load-dangerous
-fsched-verbose=<var>number</var> -fschedule-insns -fvisibility=
-pedantic-errors
</pre></div>
</li></ul>
<p>For all of these except the last, the compiler automatically
ignores the precompiled header if the conditions aren’t met. If you
find an option combination that doesn’t work and doesn’t cause the
precompiled header to be ignored, please consider filing a bug report,
see <a href="#Bugs">Bugs</a>.
</p>
<p>If you do use differing options when generating and using the
precompiled header, the actual behavior is a mixture of the
behavior for the options. For instance, if you use <samp>-g</samp> to
generate the precompiled header but not when using it, you may or may
not get debugging information for routines in the precompiled header.
</p>
<hr>
<a name="C-Implementation"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b-Implementation" accesskey="n" rel="next">C++ Implementation</a>, Previous: <a href="#Invoking-GCC" accesskey="p" rel="prev">Invoking GCC</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C-Implementation_002dDefined-Behavior"></a>
<h2 class="chapter">4 C Implementation-Defined Behavior</h2>
<a name="index-implementation_002ddefined-behavior_002c-C-language"></a>
<p>A conforming implementation of ISO C is required to document its
choice of behavior in each of the areas that are designated
“implementation defined”. The following lists all such areas,
along with the section numbers from the ISO/IEC 9899:1990, ISO/IEC
9899:1999 and ISO/IEC 9899:2011 standards. Some areas are only
implementation-defined in one version of the standard.
</p>
<p>Some choices depend on the externally determined ABI for the platform
(including standard character encodings) which GCC follows; these are
listed as “determined by ABI” below. See <a href="#Compatibility">Binary
Compatibility</a>, and <a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>. Some
choices are documented in the preprocessor manual.
See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>. Some choices are made by the
library and operating system (or other environment when compiling for
a freestanding environment); refer to their documentation for details.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Translation-implementation" accesskey="1">Translation implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Environment-implementation" accesskey="2">Environment implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Identifiers-implementation" accesskey="3">Identifiers implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Characters-implementation" accesskey="4">Characters implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Integers-implementation" accesskey="5">Integers implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Floating-point-implementation" accesskey="6">Floating point implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Arrays-and-pointers-implementation" accesskey="7">Arrays and pointers implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Hints-implementation" accesskey="8">Hints implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation" accesskey="9">Structures unions enumerations and bit-fields implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Qualifiers-implementation">Qualifiers implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Declarators-implementation">Declarators implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Statements-implementation">Statements implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Preprocessing-directives-implementation">Preprocessing directives implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Library-functions-implementation">Library functions implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Architecture-implementation">Architecture implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Locale_002dspecific-behavior-implementation">Locale-specific behavior implementation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Translation-implementation"></a>
<div class="header">
<p>
Next: <a href="#Environment-implementation" accesskey="n" rel="next">Environment implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Translation"></a>
<h3 class="section">4.1 Translation</h3>
<ul>
<li> <cite>How a diagnostic is identified (C90 3.7, C99 and C11 3.10, C90,
C99 and C11 5.1.1.3).</cite>
<p>Diagnostics consist of all the output sent to stderr by GCC.
</p>
</li><li> <cite>Whether each nonempty sequence of white-space characters other than
new-line is retained or replaced by one space character in translation
phase 3 (C90, C99 and C11 5.1.1.2).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>.
</p>
</li></ul>
<hr>
<a name="Environment-implementation"></a>
<div class="header">
<p>
Next: <a href="#Identifiers-implementation" accesskey="n" rel="next">Identifiers implementation</a>, Previous: <a href="#Translation-implementation" accesskey="p" rel="prev">Translation implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Environment"></a>
<h3 class="section">4.2 Environment</h3>
<p>The behavior of most of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.
</p>
<ul>
<li> <cite>The mapping between physical source file multibyte characters
and the source character set in translation phase 1 (C90, C99 and C11
5.1.1.2).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>.
</p>
</li></ul>
<hr>
<a name="Identifiers-implementation"></a>
<div class="header">
<p>
Next: <a href="#Characters-implementation" accesskey="n" rel="next">Characters implementation</a>, Previous: <a href="#Environment-implementation" accesskey="p" rel="prev">Environment implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Identifiers"></a>
<h3 class="section">4.3 Identifiers</h3>
<ul>
<li> <cite>Which additional multibyte characters may appear in identifiers
and their correspondence to universal character names (C99 and C11 6.4.2).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>.
</p>
</li><li> <cite>The number of significant initial characters in an identifier
(C90 6.1.2, C90, C99 and C11 5.2.4.1, C99 and C11 6.4.2).</cite>
<p>For internal names, all characters are significant. For external names,
the number of significant characters are defined by the linker; for
almost all targets, all characters are significant.
</p>
</li><li> <cite>Whether case distinctions are significant in an identifier with
external linkage (C90 6.1.2).</cite>
<p>This is a property of the linker. C99 and C11 require that case distinctions
are always significant in identifiers with external linkage and
systems without this property are not supported by GCC.
</p>
</li></ul>
<hr>
<a name="Characters-implementation"></a>
<div class="header">
<p>
Next: <a href="#Integers-implementation" accesskey="n" rel="next">Integers implementation</a>, Previous: <a href="#Identifiers-implementation" accesskey="p" rel="prev">Identifiers implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Characters"></a>
<h3 class="section">4.4 Characters</h3>
<ul>
<li> <cite>The number of bits in a byte (C90 3.4, C99 and C11 3.6).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>The values of the members of the execution character set (C90,
C99 and C11 5.2.1).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>The unique value of the member of the execution character set produced
for each of the standard alphabetic escape sequences (C90, C99 and C11
5.2.2).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>The value of a <code>char</code> object into which has been stored any
character other than a member of the basic execution character set
(C90 6.1.2.5, C99 and C11 6.2.5).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>Which of <code>signed char</code> or <code>unsigned char</code> has the same
range, representation, and behavior as “plain” <code>char</code> (C90
6.1.2.5, C90 6.2.1.1, C99 and C11 6.2.5, C99 and C11 6.3.1.1).</cite>
<a name="index-fsigned_002dchar-1"></a>
<a name="index-funsigned_002dchar-1"></a>
<p>Determined by ABI. The options <samp>-funsigned-char</samp> and
<samp>-fsigned-char</samp> change the default. See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
</p>
</li><li> <cite>The mapping of members of the source character set (in character
constants and string literals) to members of the execution character
set (C90 6.1.3.4, C99 and C11 6.4.4.4, C90, C99 and C11 5.1.1.2).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>The value of an integer character constant containing more than one
character or containing a character or escape sequence that does not map
to a single-byte execution character (C90 6.1.3.4, C99 and C11 6.4.4.4).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>.
</p>
</li><li> <cite>The value of a wide character constant containing more than one
multibyte character or a single multibyte character that maps to
multiple members of the extended execution character set, or
containing a multibyte character or escape sequence not represented in
the extended execution character set (C90 6.1.3.4, C99 and C11
6.4.4.4).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>.
</p>
</li><li> <cite>The current locale used to convert a wide character constant consisting
of a single multibyte character that maps to a member of the extended
execution character set into a corresponding wide character code (C90
6.1.3.4, C99 and C11 6.4.4.4).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>.
</p>
</li><li> <cite>Whether differently-prefixed wide string literal tokens can be
concatenated and, if so, the treatment of the resulting multibyte
character sequence (C11 6.4.5).</cite>
<p>Such tokens may not be concatenated.
</p>
</li><li> <cite>The current locale used to convert a wide string literal into
corresponding wide character codes (C90 6.1.4, C99 and C11 6.4.5).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>.
</p>
</li><li> <cite>The value of a string literal containing a multibyte character or escape
sequence not represented in the execution character set (C90 6.1.4,
C99 and C11 6.4.5).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>.
</p>
</li><li> <cite>The encoding of any of <code>wchar_t</code>, <code>char16_t</code>, and
<code>char32_t</code> where the corresponding standard encoding macro
(<code>__STDC_ISO_10646__</code>, <code>__STDC_UTF_16__</code>, or
<code>__STDC_UTF_32__</code>) is not defined (C11 6.10.8.2).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>. <code>char16_t</code> and
<code>char32_t</code> literals are always encoded in UTF-16 and UTF-32
respectively.
</p>
</li></ul>
<hr>
<a name="Integers-implementation"></a>
<div class="header">
<p>
Next: <a href="#Floating-point-implementation" accesskey="n" rel="next">Floating point implementation</a>, Previous: <a href="#Characters-implementation" accesskey="p" rel="prev">Characters implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Integers"></a>
<h3 class="section">4.5 Integers</h3>
<ul>
<li> <cite>Any extended integer types that exist in the implementation (C99
and C11 6.2.5).</cite>
<p>GCC does not support any extended integer types.
</p>
</li><li> <cite>Whether signed integer types are represented using sign and magnitude,
two’s complement, or one’s complement, and whether the extraordinary value
is a trap representation or an ordinary value (C99 and C11 6.2.6.2).</cite>
<p>GCC supports only two’s complement integer types, and all bit patterns
are ordinary values.
</p>
</li><li> <cite>The rank of any extended integer type relative to another extended
integer type with the same precision (C99 and C11 6.3.1.1).</cite>
<p>GCC does not support any extended integer types.
</p>
</li><li> <cite>The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in an object of
that type (C90 6.2.1.2, C99 and C11 6.3.1.3).</cite>
<p>For conversion to a type of width <em>N</em>, the value is reduced
modulo <em>2^N</em> to be within range of the type; no signal is raised.
</p>
</li><li> <cite>The results of some bitwise operations on signed integers (C90
6.3, C99 and C11 6.5).</cite>
<p>Bitwise operators act on the representation of the value including
both the sign and value bits, where the sign bit is considered
immediately above the highest-value value bit. Signed ‘<samp>>></samp>’ acts
on negative numbers by sign extension.
</p>
<p>As an extension to the C language, GCC does not use the latitude given in
C99 and C11 only to treat certain aspects of signed ‘<samp><<</samp>’ as undefined.
However, <samp>-fsanitize=shift</samp> (and <samp>-fsanitize=undefined</samp>) will
diagnose such cases. They are also diagnosed where constant
expressions are required.
</p>
</li><li> <cite>The sign of the remainder on integer division (C90 6.3.5).</cite>
<p>GCC always follows the C99 and C11 requirement that the result of division is
truncated towards zero.
</p>
</li></ul>
<hr>
<a name="Floating-point-implementation"></a>
<div class="header">
<p>
Next: <a href="#Arrays-and-pointers-implementation" accesskey="n" rel="next">Arrays and pointers implementation</a>, Previous: <a href="#Integers-implementation" accesskey="p" rel="prev">Integers implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Floating-Point"></a>
<h3 class="section">4.6 Floating Point</h3>
<ul>
<li> <cite>The accuracy of the floating-point operations and of the library
functions in <code><math.h></code> and <code><complex.h></code> that return floating-point
results (C90, C99 and C11 5.2.4.2.2).</cite>
<p>The accuracy is unknown.
</p>
</li><li> <cite>The rounding behaviors characterized by non-standard values
of <code>FLT_ROUNDS</code>
(C90, C99 and C11 5.2.4.2.2).</cite>
<p>GCC does not use such values.
</p>
</li><li> <cite>The evaluation methods characterized by non-standard negative
values of <code>FLT_EVAL_METHOD</code> (C99 and C11 5.2.4.2.2).</cite>
<p>GCC does not use such values.
</p>
</li><li> <cite>The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original
value (C90 6.2.1.3, C99 and C11 6.3.1.4).</cite>
<p>C99 Annex F is followed.
</p>
</li><li> <cite>The direction of rounding when a floating-point number is
converted to a narrower floating-point number (C90 6.2.1.4, C99 and C11
6.3.1.5).</cite>
<p>C99 Annex F is followed.
</p>
</li><li> <cite>How the nearest representable value or the larger or smaller
representable value immediately adjacent to the nearest representable
value is chosen for certain floating constants (C90 6.1.3.1, C99 and C11
6.4.4.2).</cite>
<p>C99 Annex F is followed.
</p>
</li><li> <cite>Whether and how floating expressions are contracted when not
disallowed by the <code>FP_CONTRACT</code> pragma (C99 and C11 6.5).</cite>
<p>Expressions are currently only contracted if <samp>-ffp-contract=fast</samp>,
<samp>-funsafe-math-optimizations</samp> or <samp>-ffast-math</samp> are used.
This is subject to change.
</p>
</li><li> <cite>The default state for the <code>FENV_ACCESS</code> pragma (C99 and C11
7.6.1).</cite>
<p>This pragma is not implemented, but the default is to “off” unless
<samp>-frounding-math</samp> is used in which case it is “on”.
</p>
</li><li> <cite>Additional floating-point exceptions, rounding modes, environments,
and classifications, and their macro names (C99 and C11 7.6, C99 and
C11 7.12).</cite>
<p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.
</p>
</li><li> <cite>The default state for the <code>FP_CONTRACT</code> pragma (C99 and C11
7.12.2).</cite>
<p>This pragma is not implemented. Expressions are currently only
contracted if <samp>-ffp-contract=fast</samp>,
<samp>-funsafe-math-optimizations</samp> or <samp>-ffast-math</samp> are used.
This is subject to change.
</p>
</li><li> <cite>Whether the “inexact” floating-point exception can be raised
when the rounded result actually does equal the mathematical result
in an IEC 60559 conformant implementation (C99 F.9).</cite>
<p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.
</p>
</li><li> <cite>Whether the “underflow” (and “inexact”) floating-point
exception can be raised when a result is tiny but not inexact in an
IEC 60559 conformant implementation (C99 F.9).</cite>
<p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.
</p>
</li></ul>
<hr>
<a name="Arrays-and-pointers-implementation"></a>
<div class="header">
<p>
Next: <a href="#Hints-implementation" accesskey="n" rel="next">Hints implementation</a>, Previous: <a href="#Floating-point-implementation" accesskey="p" rel="prev">Floating point implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Arrays-and-Pointers"></a>
<h3 class="section">4.7 Arrays and Pointers</h3>
<ul>
<li> <cite>The result of converting a pointer to an integer or
vice versa (C90 6.3.4, C99 and C11 6.3.2.3).</cite>
<p>A cast from pointer to integer discards most-significant bits if the
pointer representation is larger than the integer type,
sign-extends<a name="DOCF2" href="#FOOT2"><sup>2</sup></a>
if the pointer representation is smaller than the integer type, otherwise
the bits are unchanged.
</p>
<p>A cast from integer to pointer discards most-significant bits if the
pointer representation is smaller than the integer type, extends according
to the signedness of the integer type if the pointer representation
is larger than the integer type, otherwise the bits are unchanged.
</p>
<p>When casting from pointer to integer and back again, the resulting
pointer must reference the same object as the original pointer, otherwise
the behavior is undefined. That is, one may not use integer arithmetic to
avoid the undefined behavior of pointer arithmetic as proscribed in
C99 and C11 6.5.6/8.
</p>
</li><li> <cite>The size of the result of subtracting two pointers to elements
of the same array (C90 6.3.6, C99 and C11 6.5.6).</cite>
<p>The value is as specified in the standard and the type is determined
by the ABI.
</p>
</li></ul>
<hr>
<a name="Hints-implementation"></a>
<div class="header">
<p>
Next: <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation" accesskey="n" rel="next">Structures unions enumerations and bit-fields implementation</a>, Previous: <a href="#Arrays-and-pointers-implementation" accesskey="p" rel="prev">Arrays and pointers implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hints"></a>
<h3 class="section">4.8 Hints</h3>
<ul>
<li> <cite>The extent to which suggestions made by using the <code>register</code>
storage-class specifier are effective (C90 6.5.1, C99 and C11 6.7.1).</cite>
<p>The <code>register</code> specifier affects code generation only in these ways:
</p>
<ul>
<li> When used as part of the register variable extension, see
<a href="#Explicit-Register-Variables">Explicit Register Variables</a>.
</li><li> When <samp>-O0</samp> is in use, the compiler allocates distinct stack
memory for all variables that do not have the <code>register</code>
storage-class specifier; if <code>register</code> is specified, the variable
may have a shorter lifespan than the code would indicate and may never
be placed in memory.
</li><li> On some rare x86 targets, <code>setjmp</code> doesn’t save the registers in
all circumstances. In those cases, GCC doesn’t allocate any variables
in registers unless they are marked <code>register</code>.
</li></ul>
</li><li> <cite>The extent to which suggestions made by using the inline function
specifier are effective (C99 and C11 6.7.4).</cite>
<p>GCC will not inline any functions if the <samp>-fno-inline</samp> option is
used or if <samp>-O0</samp> is used. Otherwise, GCC may still be unable to
inline a function for many reasons; the <samp>-Winline</samp> option may be
used to determine if a function has not been inlined and why not.
</p>
</li></ul>
<hr>
<a name="Structures-unions-enumerations-and-bit_002dfields-implementation"></a>
<div class="header">
<p>
Next: <a href="#Qualifiers-implementation" accesskey="n" rel="next">Qualifiers implementation</a>, Previous: <a href="#Hints-implementation" accesskey="p" rel="prev">Hints implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Structures_002c-Unions_002c-Enumerations_002c-and-Bit_002dFields"></a>
<h3 class="section">4.9 Structures, Unions, Enumerations, and Bit-Fields</h3>
<ul>
<li> <cite>A member of a union object is accessed using a member of a
different type (C90 6.3.2.3).</cite>
<p>The relevant bytes of the representation of the object are treated as
an object of the type used for the access. See <a href="#Type_002dpunning">Type-punning</a>. This
may be a trap representation.
</p>
</li><li> <cite>Whether a “plain” <code>int</code> bit-field is treated as a
<code>signed int</code> bit-field or as an <code>unsigned int</code> bit-field
(C90 6.5.2, C90 6.5.2.1, C99 and C11 6.7.2, C99 and C11 6.7.2.1).</cite>
<a name="index-funsigned_002dbitfields-1"></a>
<p>By default it is treated as <code>signed int</code> but this may be changed
by the <samp>-funsigned-bitfields</samp> option.
</p>
</li><li> <cite>Allowable bit-field types other than <code>_Bool</code>, <code>signed int</code>,
and <code>unsigned int</code> (C99 and C11 6.7.2.1).</cite>
<p>Other integer types, such as <code>long int</code>, and enumerated types are
permitted even in strictly conforming mode.
</p>
</li><li> <cite>Whether atomic types are permitted for bit-fields (C11 6.7.2.1).</cite>
<p>Atomic types are not permitted for bit-fields.
</p>
</li><li> <cite>Whether a bit-field can straddle a storage-unit boundary (C90
6.5.2.1, C99 and C11 6.7.2.1).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>The order of allocation of bit-fields within a unit (C90
6.5.2.1, C99 and C11 6.7.2.1).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>The alignment of non-bit-field members of structures (C90
6.5.2.1, C99 and C11 6.7.2.1).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>The integer type compatible with each enumerated type (C90
6.5.2.2, C99 and C11 6.7.2.2).</cite>
<a name="index-fshort_002denums-1"></a>
<p>Normally, the type is <code>unsigned int</code> if there are no negative
values in the enumeration, otherwise <code>int</code>. If
<samp>-fshort-enums</samp> is specified, then if there are negative values
it is the first of <code>signed char</code>, <code>short</code> and <code>int</code>
that can represent all the values, otherwise it is the first of
<code>unsigned char</code>, <code>unsigned short</code> and <code>unsigned int</code>
that can represent all the values.
</p>
<p>On some targets, <samp>-fshort-enums</samp> is the default; this is
determined by the ABI.
</p>
</li></ul>
<hr>
<a name="Qualifiers-implementation"></a>
<div class="header">
<p>
Next: <a href="#Declarators-implementation" accesskey="n" rel="next">Declarators implementation</a>, Previous: <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation" accesskey="p" rel="prev">Structures unions enumerations and bit-fields implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Qualifiers"></a>
<h3 class="section">4.10 Qualifiers</h3>
<ul>
<li> <cite>What constitutes an access to an object that has volatile-qualified
type (C90 6.5.3, C99 and C11 6.7.3).</cite>
<p>Such an object is normally accessed by pointers and used for accessing
hardware. In most expressions, it is intuitively obvious what is a read
and what is a write. For example
</p>
<div class="smallexample">
<pre class="smallexample">volatile int *dst = <var>somevalue</var>;
volatile int *src = <var>someothervalue</var>;
*dst = *src;
</pre></div>
<p>will cause a read of the volatile object pointed to by <var>src</var> and store the
value into the volatile object pointed to by <var>dst</var>. There is no
guarantee that these reads and writes are atomic, especially for objects
larger than <code>int</code>.
</p>
<p>However, if the volatile storage is not being modified, and the value of
the volatile storage is not used, then the situation is less obvious.
For example
</p>
<div class="smallexample">
<pre class="smallexample">volatile int *src = <var>somevalue</var>;
*src;
</pre></div>
<p>According to the C standard, such an expression is an rvalue whose type
is the unqualified version of its original type, i.e. <code>int</code>. Whether
GCC interprets this as a read of the volatile object being pointed to or
only as a request to evaluate the expression for its side effects depends
on this type.
</p>
<p>If it is a scalar type, or on most targets an aggregate type whose only
member object is of a scalar type, or a union type whose member objects
are of scalar types, the expression is interpreted by GCC as a read of
the volatile object; in the other cases, the expression is only evaluated
for its side effects.
</p>
</li></ul>
<hr>
<a name="Declarators-implementation"></a>
<div class="header">
<p>
Next: <a href="#Statements-implementation" accesskey="n" rel="next">Statements implementation</a>, Previous: <a href="#Qualifiers-implementation" accesskey="p" rel="prev">Qualifiers implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Declarators"></a>
<h3 class="section">4.11 Declarators</h3>
<ul>
<li> <cite>The maximum number of declarators that may modify an arithmetic,
structure or union type (C90 6.5.4).</cite>
<p>GCC is only limited by available memory.
</p>
</li></ul>
<hr>
<a name="Statements-implementation"></a>
<div class="header">
<p>
Next: <a href="#Preprocessing-directives-implementation" accesskey="n" rel="next">Preprocessing directives implementation</a>, Previous: <a href="#Declarators-implementation" accesskey="p" rel="prev">Declarators implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Statements"></a>
<h3 class="section">4.12 Statements</h3>
<ul>
<li> <cite>The maximum number of <code>case</code> values in a <code>switch</code>
statement (C90 6.6.4.2).</cite>
<p>GCC is only limited by available memory.
</p>
</li></ul>
<hr>
<a name="Preprocessing-directives-implementation"></a>
<div class="header">
<p>
Next: <a href="#Library-functions-implementation" accesskey="n" rel="next">Library functions implementation</a>, Previous: <a href="#Statements-implementation" accesskey="p" rel="prev">Statements implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Preprocessing-Directives"></a>
<h3 class="section">4.13 Preprocessing Directives</h3>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>, for details of these aspects of
implementation-defined behavior.
</p>
<ul>
<li> <cite>The locations within <code>#pragma</code> directives where header name
preprocessing tokens are recognized (C11 6.4, C11 6.4.7).</cite>
</li><li> <cite>How sequences in both forms of header names are mapped to headers
or external source file names (C90 6.1.7, C99 and C11 6.4.7).</cite>
</li><li> <cite>Whether the value of a character constant in a constant expression
that controls conditional inclusion matches the value of the same character
constant in the execution character set (C90 6.8.1, C99 and C11 6.10.1).</cite>
</li><li> <cite>Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion may have a
negative value (C90 6.8.1, C99 and C11 6.10.1).</cite>
</li><li> <cite>The places that are searched for an included ‘<samp><></samp>’ delimited
header, and how the places are specified or the header is
identified (C90 6.8.2, C99 and C11 6.10.2).</cite>
</li><li> <cite>How the named source file is searched for in an included ‘<samp>""</samp>’
delimited header (C90 6.8.2, C99 and C11 6.10.2).</cite>
</li><li> <cite>The method by which preprocessing tokens (possibly resulting from
macro expansion) in a <code>#include</code> directive are combined into a header
name (C90 6.8.2, C99 and C11 6.10.2).</cite>
</li><li> <cite>The nesting limit for <code>#include</code> processing (C90 6.8.2, C99
and C11 6.10.2).</cite>
</li><li> <cite>Whether the ‘<samp>#</samp>’ operator inserts a ‘<samp>\</samp>’ character before
the ‘<samp>\</samp>’ character that begins a universal character name in a
character constant or string literal (C99 and C11 6.10.3.2).</cite>
</li><li> <cite>The behavior on each recognized non-<code>STDC #pragma</code>
directive (C90 6.8.6, C99 and C11 6.10.6).</cite>
<p>See <a href="http://gcc.gnu.org/onlinedocs/cpp/Pragmas.html#Pragmas">Pragmas</a> in <cite>The C Preprocessor</cite>, for details of
pragmas accepted by GCC on all targets. See <a href="#Pragmas">Pragmas
Accepted by GCC</a>, for details of target-specific pragmas.
</p>
</li><li> <cite>The definitions for <code>__DATE__</code> and <code>__TIME__</code> when
respectively, the date and time of translation are not available (C90
6.8.8, C99 6.10.8, C11 6.10.8.1).</cite>
</li></ul>
<hr>
<a name="Library-functions-implementation"></a>
<div class="header">
<p>
Next: <a href="#Architecture-implementation" accesskey="n" rel="next">Architecture implementation</a>, Previous: <a href="#Preprocessing-directives-implementation" accesskey="p" rel="prev">Preprocessing directives implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Library-Functions"></a>
<h3 class="section">4.14 Library Functions</h3>
<p>The behavior of most of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.
</p>
<ul>
<li> <cite>The null pointer constant to which the macro <code>NULL</code> expands
(C90 7.1.6, C99 7.17, C11 7.19).</cite>
<p>In <code><stddef.h></code>, <code>NULL</code> expands to <code>((void *)0)</code>. GCC
does not provide the other headers which define <code>NULL</code> and some
library implementations may use other definitions in those headers.
</p>
</li></ul>
<hr>
<a name="Architecture-implementation"></a>
<div class="header">
<p>
Next: <a href="#Locale_002dspecific-behavior-implementation" accesskey="n" rel="next">Locale-specific behavior implementation</a>, Previous: <a href="#Library-functions-implementation" accesskey="p" rel="prev">Library functions implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Architecture"></a>
<h3 class="section">4.15 Architecture</h3>
<ul>
<li> <cite>The values or expressions assigned to the macros specified in the
headers <code><float.h></code>, <code><limits.h></code>, and <code><stdint.h></code>
(C90, C99 and C11 5.2.4.2, C99 7.18.2, C99 7.18.3, C11 7.20.2, C11 7.20.3).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>The result of attempting to indirectly access an object with
automatic or thread storage duration from a thread other than the one
with which it is associated (C11 6.2.4).</cite>
<p>Such accesses are supported, subject to the same requirements for
synchronization for concurrent accesses as for concurrent accesses to
any object.
</p>
</li><li> <cite>The number, order, and encoding of bytes in any object
(when not explicitly specified in this International Standard) (C99
and C11 6.2.6.1).</cite>
<p>Determined by ABI.
</p>
</li><li> <cite>Whether any extended alignments are supported and the contexts
in which they are supported (C11 6.2.8).</cite>
<p>Extended alignments up to <em>2^{28}</em> (bytes) are supported for
objects of automatic storage duration. Alignments supported for
objects of static and thread storage duration are determined by the
ABI.
</p>
</li><li> <cite>Valid alignment values other than those returned by an _Alignof
expression for fundamental types, if any (C11 6.2.8).</cite>
<p>Valid alignments are powers of 2 up to and including <em>2^{28}</em>.
</p>
</li><li> <cite>The value of the result of the <code>sizeof</code> and <code>_Alignof</code>
operators (C90 6.3.3.4, C99 and C11 6.5.3.4).</cite>
<p>Determined by ABI.
</p>
</li></ul>
<hr>
<a name="Locale_002dspecific-behavior-implementation"></a>
<div class="header">
<p>
Previous: <a href="#Architecture-implementation" accesskey="p" rel="prev">Architecture implementation</a>, Up: <a href="#C-Implementation" accesskey="u" rel="up">C Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Locale_002dSpecific-Behavior"></a>
<h3 class="section">4.16 Locale-Specific Behavior</h3>
<p>The behavior of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.
</p>
<hr>
<a name="C_002b_002b-Implementation"></a>
<div class="header">
<p>
Next: <a href="#C-Extensions" accesskey="n" rel="next">C Extensions</a>, Previous: <a href="#C-Implementation" accesskey="p" rel="prev">C Implementation</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C_002b_002b-Implementation_002dDefined-Behavior"></a>
<h2 class="chapter">5 C++ Implementation-Defined Behavior</h2>
<a name="index-implementation_002ddefined-behavior_002c-C_002b_002b-language"></a>
<p>A conforming implementation of ISO C++ is required to document its
choice of behavior in each of the areas that are designated
“implementation defined”. The following lists all such areas,
along with the section numbers from the ISO/IEC 14882:1998 and ISO/IEC
14882:2003 standards. Some areas are only implementation-defined in
one version of the standard.
</p>
<p>Some choices depend on the externally determined ABI for the platform
(including standard character encodings) which GCC follows; these are
listed as “determined by ABI” below. See <a href="#Compatibility">Binary
Compatibility</a>, and <a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>. Some
choices are documented in the preprocessor manual.
See <a href="http://gcc.gnu.org/onlinedocs/cpp/Implementation_002ddefined-behavior.html#Implementation_002ddefined-behavior">Implementation-defined
behavior</a> in <cite>The C Preprocessor</cite>. Some choices are documented in
the corresponding document for the C language. See <a href="#C-Implementation">C Implementation</a>. Some choices are made by the library and operating
system (or other environment when compiling for a freestanding
environment); refer to their documentation for details.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Conditionally_002dsupported-behavior" accesskey="1">Conditionally-supported behavior</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Exception-handling" accesskey="2">Exception handling</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Conditionally_002dsupported-behavior"></a>
<div class="header">
<p>
Next: <a href="#Exception-handling" accesskey="n" rel="next">Exception handling</a>, Up: <a href="#C_002b_002b-Implementation" accesskey="u" rel="up">C++ Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Conditionally_002dSupported-Behavior"></a>
<h3 class="section">5.1 Conditionally-Supported Behavior</h3>
<p><cite>Each implementation shall include documentation that identifies
all conditionally-supported constructs that it does not support (C++0x
1.4).</cite>
</p>
<ul>
<li> <cite>Whether an argument of class type with a non-trivial copy
constructor or destructor can be passed to ... (C++0x 5.2.2).</cite>
<p>Such argument passing is supported, using the same
pass-by-invisible-reference approach used for normal function
arguments of such types.
</p>
</li></ul>
<hr>
<a name="Exception-handling"></a>
<div class="header">
<p>
Previous: <a href="#Conditionally_002dsupported-behavior" accesskey="p" rel="prev">Conditionally-supported behavior</a>, Up: <a href="#C_002b_002b-Implementation" accesskey="u" rel="up">C++ Implementation</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Exception-Handling"></a>
<h3 class="section">5.2 Exception Handling</h3>
<ul>
<li> <cite>In the situation where no matching handler is found, it is
implementation-defined whether or not the stack is unwound before
std::terminate() is called (C++98 15.5.1).</cite>
<p>The stack is not unwound before std::terminate is called.
</p>
</li></ul>
<p>c Copyright (C) 1988-2018 Free Software Foundation, Inc.
</p>
<hr>
<a name="C-Extensions"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b-Extensions" accesskey="n" rel="next">C++ Extensions</a>, Previous: <a href="#C_002b_002b-Implementation" accesskey="p" rel="prev">C++ Implementation</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Extensions-to-the-C-Language-Family"></a>
<h2 class="chapter">6 Extensions to the C Language Family</h2>
<a name="index-extensions_002c-C-language"></a>
<a name="index-C-language-extensions"></a>
<a name="index-pedantic-2"></a>
<p>GNU C provides several language features not found in ISO standard C.
(The <samp>-pedantic</samp> option directs GCC to print a warning message if
any of these features is used.) To test for the availability of these
features in conditional compilation, check for a predefined macro
<code>__GNUC__</code>, which is always defined under GCC.
</p>
<p>These extensions are available in C and Objective-C. Most of them are
also available in C++. See <a href="#C_002b_002b-Extensions">Extensions to the
C++ Language</a>, for extensions that apply <em>only</em> to C++.
</p>
<p>Some features that are in ISO C99 but not C90 or C++ are also, as
extensions, accepted by GCC in C90 mode and in C++.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Statement-Exprs" accesskey="1">Statement Exprs</a>:</td><td> </td><td align="left" valign="top">Putting statements and declarations inside expressions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Local-Labels" accesskey="2">Local Labels</a>:</td><td> </td><td align="left" valign="top">Labels local to a block.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Labels-as-Values" accesskey="3">Labels as Values</a>:</td><td> </td><td align="left" valign="top">Getting pointers to labels, and computed gotos.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Nested-Functions" accesskey="4">Nested Functions</a>:</td><td> </td><td align="left" valign="top">As in Algol and Pascal, lexical scoping of functions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Constructing-Calls" accesskey="5">Constructing Calls</a>:</td><td> </td><td align="left" valign="top">Dispatching a call to another function.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Typeof" accesskey="6">Typeof</a>:</td><td> </td><td align="left" valign="top"><code>typeof</code>: referring to the type of an expression.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Conditionals" accesskey="7">Conditionals</a>:</td><td> </td><td align="left" valign="top">Omitting the middle operand of a ‘<samp>?:</samp>’ expression.
</td></tr>
<tr><td align="left" valign="top">• <a href="#g_t_005f_005fint128" accesskey="8">__int128</a>:</td><td> </td><td align="left" valign="top">128-bit integers—<code>__int128</code>.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Long-Long" accesskey="9">Long Long</a>:</td><td> </td><td align="left" valign="top">Double-word integers—<code>long long int</code>.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Complex">Complex</a>:</td><td> </td><td align="left" valign="top">Data types for complex numbers.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Floating-Types">Floating Types</a>:</td><td> </td><td align="left" valign="top">Additional Floating Types.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Half_002dPrecision">Half-Precision</a>:</td><td> </td><td align="left" valign="top">Half-Precision Floating Point.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Decimal-Float">Decimal Float</a>:</td><td> </td><td align="left" valign="top">Decimal Floating Types.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Hex-Floats">Hex Floats</a>:</td><td> </td><td align="left" valign="top">Hexadecimal floating-point constants.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Fixed_002dPoint">Fixed-Point</a>:</td><td> </td><td align="left" valign="top">Fixed-Point Types.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Named-Address-Spaces">Named Address Spaces</a>:</td><td> </td><td align="left" valign="top">Named address spaces.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Zero-Length">Zero Length</a>:</td><td> </td><td align="left" valign="top">Zero-length arrays.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Empty-Structures">Empty Structures</a>:</td><td> </td><td align="left" valign="top">Structures with no members.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Variable-Length">Variable Length</a>:</td><td> </td><td align="left" valign="top">Arrays whose length is computed at run time.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Variadic-Macros">Variadic Macros</a>:</td><td> </td><td align="left" valign="top">Macros with a variable number of arguments.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Escaped-Newlines">Escaped Newlines</a>:</td><td> </td><td align="left" valign="top">Slightly looser rules for escaped newlines.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Subscripting">Subscripting</a>:</td><td> </td><td align="left" valign="top">Any array can be subscripted, even if not an lvalue.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Pointer-Arith">Pointer Arith</a>:</td><td> </td><td align="left" valign="top">Arithmetic on <code>void</code>-pointers and function pointers.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Pointers-to-Arrays">Pointers to Arrays</a>:</td><td> </td><td align="left" valign="top">Pointers to arrays with qualifiers work as expected.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Initializers">Initializers</a>:</td><td> </td><td align="left" valign="top">Non-constant initializers.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Compound-Literals">Compound Literals</a>:</td><td> </td><td align="left" valign="top">Compound literals give structures, unions
or arrays as values.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Designated-Inits">Designated Inits</a>:</td><td> </td><td align="left" valign="top">Labeling elements of initializers.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Case-Ranges">Case Ranges</a>:</td><td> </td><td align="left" valign="top">‘case 1 ... 9’ and such.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Cast-to-Union">Cast to Union</a>:</td><td> </td><td align="left" valign="top">Casting to union type from any member of the union.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Mixed-Declarations">Mixed Declarations</a>:</td><td> </td><td align="left" valign="top">Mixing declarations and code.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Function-Attributes">Function Attributes</a>:</td><td> </td><td align="left" valign="top">Declaring that functions have no side effects,
or that they can never return.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Variable-Attributes">Variable Attributes</a>:</td><td> </td><td align="left" valign="top">Specifying attributes of variables.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Type-Attributes">Type Attributes</a>:</td><td> </td><td align="left" valign="top">Specifying attributes of types.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Label-Attributes">Label Attributes</a>:</td><td> </td><td align="left" valign="top">Specifying attributes on labels.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Enumerator-Attributes">Enumerator Attributes</a>:</td><td> </td><td align="left" valign="top">Specifying attributes on enumerators.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Statement-Attributes">Statement Attributes</a>:</td><td> </td><td align="left" valign="top">Specifying attributes on statements.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Attribute-Syntax">Attribute Syntax</a>:</td><td> </td><td align="left" valign="top">Formal syntax for attributes.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Function-Prototypes">Function Prototypes</a>:</td><td> </td><td align="left" valign="top">Prototype declarations and old-style definitions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Comments">C++ Comments</a>:</td><td> </td><td align="left" valign="top">C++ comments are recognized.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Dollar-Signs">Dollar Signs</a>:</td><td> </td><td align="left" valign="top">Dollar sign is allowed in identifiers.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Character-Escapes">Character Escapes</a>:</td><td> </td><td align="left" valign="top">‘<samp>\e</samp>’ stands for the character <tt class="key">ESC</tt>.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Alignment">Alignment</a>:</td><td> </td><td align="left" valign="top">Inquiring about the alignment of a type or variable.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Inline">Inline</a>:</td><td> </td><td align="left" valign="top">Defining inline functions (as fast as macros).
</td></tr>
<tr><td align="left" valign="top">• <a href="#Volatiles">Volatiles</a>:</td><td> </td><td align="left" valign="top">What constitutes an access to a volatile object.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Using-Assembly-Language-with-C">Using Assembly Language with C</a>:</td><td> </td><td align="left" valign="top">Instructions and extensions for interfacing C with assembler.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Alternate-Keywords">Alternate Keywords</a>:</td><td> </td><td align="left" valign="top"><code>__const__</code>, <code>__asm__</code>, etc., for header files.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Incomplete-Enums">Incomplete Enums</a>:</td><td> </td><td align="left" valign="top"><code>enum foo;</code>, with details to follow.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Function-Names">Function Names</a>:</td><td> </td><td align="left" valign="top">Printable strings which are the name of the current
function.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Return-Address">Return Address</a>:</td><td> </td><td align="left" valign="top">Getting the return or frame address of a function.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Vector-Extensions">Vector Extensions</a>:</td><td> </td><td align="left" valign="top">Using vector instructions through built-in functions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Offsetof">Offsetof</a>:</td><td> </td><td align="left" valign="top">Special syntax for implementing <code>offsetof</code>.
</td></tr>
<tr><td align="left" valign="top">• <a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a>:</td><td> </td><td align="left" valign="top">Legacy built-in functions for atomic memory access.
</td></tr>
<tr><td align="left" valign="top">• <a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a>:</td><td> </td><td align="left" valign="top">Atomic built-in functions with memory model.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a>:</td><td> </td><td align="left" valign="top">Built-in functions to perform arithmetics and
arithmetic overflow checking.
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-specific-memory-model-extensions-for-transactional-memory">x86 specific memory model extensions for transactional memory</a>:</td><td> </td><td align="left" valign="top">x86 memory models.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Object-Size-Checking">Object Size Checking</a>:</td><td> </td><td align="left" valign="top">Built-in functions for limited buffer overflow
checking.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a>:</td><td> </td><td align="left" valign="top">Built-in functions for Pointer Bounds Checker.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Other-Builtins">Other Builtins</a>:</td><td> </td><td align="left" valign="top">Other built-in functions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Target-Builtins">Target Builtins</a>:</td><td> </td><td align="left" valign="top">Built-in functions specific to particular targets.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Target-Format-Checks">Target Format Checks</a>:</td><td> </td><td align="left" valign="top">Format checks specific to particular targets.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Pragmas">Pragmas</a>:</td><td> </td><td align="left" valign="top">Pragmas accepted by GCC.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Unnamed-Fields">Unnamed Fields</a>:</td><td> </td><td align="left" valign="top">Unnamed struct/union fields within structs/unions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Thread_002dLocal">Thread-Local</a>:</td><td> </td><td align="left" valign="top">Per-thread variables.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Binary-constants">Binary constants</a>:</td><td> </td><td align="left" valign="top">Binary constants using the ‘<samp>0b</samp>’ prefix.
</td></tr>
</table>
<hr>
<a name="Statement-Exprs"></a>
<div class="header">
<p>
Next: <a href="#Local-Labels" accesskey="n" rel="next">Local Labels</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Statements-and-Declarations-in-Expressions"></a>
<h3 class="section">6.1 Statements and Declarations in Expressions</h3>
<a name="index-statements-inside-expressions"></a>
<a name="index-declarations-inside-expressions"></a>
<a name="index-expressions-containing-statements"></a>
<a name="index-macros_002c-statements-in-expressions"></a>
<p>A compound statement enclosed in parentheses may appear as an expression
in GNU C. This allows you to use loops, switches, and local variables
within an expression.
</p>
<p>Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces. For
example:
</p>
<div class="smallexample">
<pre class="smallexample">({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })
</pre></div>
<p>is a valid (though slightly more complex than necessary) expression
for the absolute value of <code>foo ()</code>.
</p>
<p>The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type <code>void</code>, and thus
effectively no value.)
</p>
<p>This feature is especially useful in making macro definitions “safe” (so
that they evaluate each operand exactly once). For example, the
“maximum” function is commonly defined as a macro in standard C as
follows:
</p>
<div class="smallexample">
<pre class="smallexample">#define max(a,b) ((a) > (b) ? (a) : (b))
</pre></div>
<p><a name="index-side-effects_002c-macro-argument"></a>
But this definition computes either <var>a</var> or <var>b</var> twice, with bad
results if the operand has side effects. In GNU C, if you know the
type of the operands (here taken as <code>int</code>), you can define
the macro safely as follows:
</p>
<div class="smallexample">
<pre class="smallexample">#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })
</pre></div>
<p>Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit-field, or
the initial value of a static variable.
</p>
<p>If you don’t know the type of the operand, you can still do this, but you
must use <code>typeof</code> or <code>__auto_type</code> (see <a href="#Typeof">Typeof</a>).
</p>
<p>In G++, the result value of a statement expression undergoes array and
function pointer decay, and is returned by value to the enclosing
expression. For instance, if <code>A</code> is a class, then
</p>
<div class="smallexample">
<pre class="smallexample"> A a;
({a;}).Foo ()
</pre></div>
<p>constructs a temporary <code>A</code> object to hold the result of the
statement expression, and that is used to invoke <code>Foo</code>.
Therefore the <code>this</code> pointer observed by <code>Foo</code> is not the
address of <code>a</code>.
</p>
<p>In a statement expression, any temporaries created within a statement
are destroyed at that statement’s end. This makes statement
expressions inside macros slightly different from function calls. In
the latter case temporaries introduced during argument evaluation are
destroyed at the end of the statement that includes the function
call. In the statement expression case they are destroyed during
the statement expression. For instance,
</p>
<div class="smallexample">
<pre class="smallexample">#define macro(a) ({__typeof__(a) b = (a); b + 3; })
template<typename T> T function(T a) { T b = a; return b + 3; }
void foo ()
{
macro (X ());
function (X ());
}
</pre></div>
<p>has different places where temporaries are destroyed. For the
<code>macro</code> case, the temporary <code>X</code> is destroyed just after
the initialization of <code>b</code>. In the <code>function</code> case that
temporary is destroyed when the function returns.
</p>
<p>These considerations mean that it is probably a bad idea to use
statement expressions of this form in header files that are designed to
work with C++. (Note that some versions of the GNU C Library contained
header files using statement expressions that lead to precisely this
bug.)
</p>
<p>Jumping into a statement expression with <code>goto</code> or using a
<code>switch</code> statement outside the statement expression with a
<code>case</code> or <code>default</code> label inside the statement expression is
not permitted. Jumping into a statement expression with a computed
<code>goto</code> (see <a href="#Labels-as-Values">Labels as Values</a>) has undefined behavior.
Jumping out of a statement expression is permitted, but if the
statement expression is part of a larger expression then it is
unspecified which other subexpressions of that expression have been
evaluated except where the language definition requires certain
subexpressions to be evaluated before or after the statement
expression. In any case, as with a function call, the evaluation of a
statement expression is not interleaved with the evaluation of other
parts of the containing expression. For example,
</p>
<div class="smallexample">
<pre class="smallexample"> foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();
</pre></div>
<p>calls <code>foo</code> and <code>bar1</code> and does not call <code>baz</code> but
may or may not call <code>bar2</code>. If <code>bar2</code> is called, it is
called after <code>foo</code> and before <code>bar1</code>.
</p>
<hr>
<a name="Local-Labels"></a>
<div class="header">
<p>
Next: <a href="#Labels-as-Values" accesskey="n" rel="next">Labels as Values</a>, Previous: <a href="#Statement-Exprs" accesskey="p" rel="prev">Statement Exprs</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Locally-Declared-Labels"></a>
<h3 class="section">6.2 Locally Declared Labels</h3>
<a name="index-local-labels"></a>
<a name="index-macros_002c-local-labels"></a>
<p>GCC allows you to declare <em>local labels</em> in any nested block
scope. A local label is just like an ordinary label, but you can
only reference it (with a <code>goto</code> statement, or by taking its
address) within the block in which it is declared.
</p>
<p>A local label declaration looks like this:
</p>
<div class="smallexample">
<pre class="smallexample">__label__ <var>label</var>;
</pre></div>
<p>or
</p>
<div class="smallexample">
<pre class="smallexample">__label__ <var>label1</var>, <var>label2</var>, /* <span class="roman">…</span> */;
</pre></div>
<p>Local label declarations must come at the beginning of the block,
before any ordinary declarations or statements.
</p>
<p>The label declaration defines the label <em>name</em>, but does not define
the label itself. You must do this in the usual way, with
<code><var>label</var>:</code>, within the statements of the statement expression.
</p>
<p>The local label feature is useful for complex macros. If a macro
contains nested loops, a <code>goto</code> can be useful for breaking out of
them. However, an ordinary label whose scope is the whole function
cannot be used: if the macro can be expanded several times in one
function, the label is multiply defined in that function. A
local label avoids this problem. For example:
</p>
<div class="smallexample">
<pre class="smallexample">#define SEARCH(value, array, target) \
do { \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ (value) = i; goto found; } \
(value) = -1; \
found:; \
} while (0)
</pre></div>
<p>This could also be written using a statement expression:
</p>
<div class="smallexample">
<pre class="smallexample">#define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \
value = -1; \
found: \
value; \
})
</pre></div>
<p>Local label declarations also make the labels they declare visible to
nested functions, if there are any. See <a href="#Nested-Functions">Nested Functions</a>, for details.
</p>
<hr>
<a name="Labels-as-Values"></a>
<div class="header">
<p>
Next: <a href="#Nested-Functions" accesskey="n" rel="next">Nested Functions</a>, Previous: <a href="#Local-Labels" accesskey="p" rel="prev">Local Labels</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Labels-as-Values-1"></a>
<h3 class="section">6.3 Labels as Values</h3>
<a name="index-labels-as-values"></a>
<a name="index-computed-gotos"></a>
<a name="index-goto-with-computed-label"></a>
<a name="index-address-of-a-label"></a>
<p>You can get the address of a label defined in the current function
(or a containing function) with the unary operator ‘<samp>&&</samp>’. The
value has type <code>void *</code>. This value is a constant and can be used
wherever a constant of that type is valid. For example:
</p>
<div class="smallexample">
<pre class="smallexample">void *ptr;
/* <span class="roman">…</span> */
ptr = &&foo;
</pre></div>
<p>To use these values, you need to be able to jump to one. This is done
with the computed goto statement<a name="DOCF3" href="#FOOT3"><sup>3</sup></a>, <code>goto *<var>exp</var>;</code>. For example,
</p>
<div class="smallexample">
<pre class="smallexample">goto *ptr;
</pre></div>
<p>Any expression of type <code>void *</code> is allowed.
</p>
<p>One way of using these constants is in initializing a static array that
serves as a jump table:
</p>
<div class="smallexample">
<pre class="smallexample">static void *array[] = { &&foo, &&bar, &&hack };
</pre></div>
<p>Then you can select a label with indexing, like this:
</p>
<div class="smallexample">
<pre class="smallexample">goto *array[i];
</pre></div>
<p>Note that this does not check whether the subscript is in bounds—array
indexing in C never does that.
</p>
<p>Such an array of label values serves a purpose much like that of the
<code>switch</code> statement. The <code>switch</code> statement is cleaner, so
use that rather than an array unless the problem does not fit a
<code>switch</code> statement very well.
</p>
<p>Another use of label values is in an interpreter for threaded code.
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.
</p>
<p>You may not use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things happen. The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.
</p>
<p>An alternate way to write the above example is
</p>
<div class="smallexample">
<pre class="smallexample">static const int array[] = { &&foo - &&foo, &&bar - &&foo,
&&hack - &&foo };
goto *(&&foo + array[i]);
</pre></div>
<p>This is more friendly to code living in shared libraries, as it reduces
the number of dynamic relocations that are needed, and by consequence,
allows the data to be read-only.
This alternative with label differences is not supported for the AVR target,
please use the first approach for AVR programs.
</p>
<p>The <code>&&foo</code> expressions for the same label might have different
values if the containing function is inlined or cloned. If a program
relies on them being always the same,
<code>__attribute__((__noinline__,__noclone__))</code> should be used to
prevent inlining and cloning. If <code>&&foo</code> is used in a static
variable initializer, inlining and cloning is forbidden.
</p>
<hr>
<a name="Nested-Functions"></a>
<div class="header">
<p>
Next: <a href="#Constructing-Calls" accesskey="n" rel="next">Constructing Calls</a>, Previous: <a href="#Labels-as-Values" accesskey="p" rel="prev">Labels as Values</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Nested-Functions-1"></a>
<h3 class="section">6.4 Nested Functions</h3>
<a name="index-nested-functions"></a>
<a name="index-downward-funargs"></a>
<a name="index-thunks"></a>
<p>A <em>nested function</em> is a function defined inside another function.
Nested functions are supported as an extension in GNU C, but are not
supported by GNU C++.
</p>
<p>The nested function’s name is local to the block where it is defined.
For example, here we define a nested function named <code>square</code>, and
call it twice:
</p>
<div class="smallexample">
<pre class="smallexample">foo (double a, double b)
{
double square (double z) { return z * z; }
return square (a) + square (b);
}
</pre></div>
<p>The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is
called <em>lexical scoping</em>. For example, here we show a nested
function which uses an inherited variable named <code>offset</code>:
</p>
<div class="smallexample">
<pre class="smallexample">bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return array[index + offset]; }
int i;
/* <span class="roman">…</span> */
for (i = 0; i < size; i++)
/* <span class="roman">…</span> */ access (array, i) /* <span class="roman">…</span> */
}
</pre></div>
<p>Nested function definitions are permitted within functions in the places
where variable definitions are allowed; that is, in any block, mixed
with the other declarations and statements in the block.
</p>
<p>It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:
</p>
<div class="smallexample">
<pre class="smallexample">hack (int *array, int size)
{
void store (int index, int value)
{ array[index] = value; }
intermediate (store, size);
}
</pre></div>
<p>Here, the function <code>intermediate</code> receives the address of
<code>store</code> as an argument. If <code>intermediate</code> calls <code>store</code>,
the arguments given to <code>store</code> are used to store into <code>array</code>.
But this technique works only so long as the containing function
(<code>hack</code>, in this example) does not exit.
</p>
<p>If you try to call the nested function through its address after the
containing function exits, all hell breaks loose. If you try
to call it after a containing scope level exits, and if it refers
to some of the variables that are no longer in scope, you may be lucky,
but it’s not wise to take the risk. If, however, the nested function
does not refer to anything that has gone out of scope, you should be
safe.
</p>
<p>GCC implements taking the address of a nested function using a technique
called <em>trampolines</em>. This technique was described in
<cite>Lexical Closures for C++</cite> (Thomas M. Breuel, USENIX
C++ Conference Proceedings, October 17-21, 1988).
</p>
<p>A nested function can jump to a label inherited from a containing
function, provided the label is explicitly declared in the containing
function (see <a href="#Local-Labels">Local Labels</a>). Such a jump returns instantly to the
containing function, exiting the nested function that did the
<code>goto</code> and any intermediate functions as well. Here is an example:
</p>
<div class="smallexample">
<pre class="smallexample">bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];
}
int i;
/* <span class="roman">…</span> */
for (i = 0; i < size; i++)
/* <span class="roman">…</span> */ access (array, i) /* <span class="roman">…</span> */
/* <span class="roman">…</span> */
return 0;
/* <span class="roman">Control comes here from <code>access</code>
if it detects an error.</span> */
failure:
return -1;
}
</pre></div>
<p>A nested function always has no linkage. Declaring one with
<code>extern</code> or <code>static</code> is erroneous. If you need to declare the nested function
before its definition, use <code>auto</code> (which is otherwise meaningless
for function declarations).
</p>
<div class="smallexample">
<pre class="smallexample">bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
/* <span class="roman">…</span> */
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];
}
/* <span class="roman">…</span> */
}
</pre></div>
<hr>
<a name="Constructing-Calls"></a>
<div class="header">
<p>
Next: <a href="#Typeof" accesskey="n" rel="next">Typeof</a>, Previous: <a href="#Nested-Functions" accesskey="p" rel="prev">Nested Functions</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constructing-Function-Calls"></a>
<h3 class="section">6.5 Constructing Function Calls</h3>
<a name="index-constructing-calls"></a>
<a name="index-forwarding-calls"></a>
<p>Using the built-in functions described below, you can record
the arguments a function received, and call another function
with the same arguments, without knowing the number or types
of the arguments.
</p>
<p>You can also record the return value of that function call,
and later return that value, without knowing what data type
the function tried to return (as long as your caller expects
that data type).
</p>
<p>However, these built-in functions may interact badly with some
sophisticated features or other extensions of the language. It
is, therefore, not recommended to use them outside very simple
functions acting as mere forwarders for their arguments.
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fapply_005fargs"></a>Built-in Function: <em>void *</em> <strong>__builtin_apply_args</strong> <em>()</em></dt>
<dd><p>This built-in function returns a pointer to data
describing how to perform a call with the same arguments as are passed
to the current function.
</p>
<p>The function saves the arg pointer register, structure value address,
and all registers that might be used to pass arguments to a function
into a block of memory allocated on the stack. Then it returns the
address of that block.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fapply"></a>Built-in Function: <em>void *</em> <strong>__builtin_apply</strong> <em>(void (*<var>function</var>)(), void *<var>arguments</var>, size_t <var>size</var>)</em></dt>
<dd><p>This built-in function invokes <var>function</var>
with a copy of the parameters described by <var>arguments</var>
and <var>size</var>.
</p>
<p>The value of <var>arguments</var> should be the value returned by
<code>__builtin_apply_args</code>. The argument <var>size</var> specifies the size
of the stack argument data, in bytes.
</p>
<p>This function returns a pointer to data describing
how to return whatever value is returned by <var>function</var>. The data
is saved in a block of memory allocated on the stack.
</p>
<p>It is not always simple to compute the proper value for <var>size</var>. The
value is used by <code>__builtin_apply</code> to compute the amount of data
that should be pushed on the stack and copied from the incoming argument
area.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005freturn"></a>Built-in Function: <em>void</em> <strong>__builtin_return</strong> <em>(void *<var>result</var>)</em></dt>
<dd><p>This built-in function returns the value described by <var>result</var> from
the containing function. You should specify, for <var>result</var>, a value
returned by <code>__builtin_apply</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fva_005farg_005fpack"></a>Built-in Function: <em></em> <strong>__builtin_va_arg_pack</strong> <em>()</em></dt>
<dd><p>This built-in function represents all anonymous arguments of an inline
function. It can be used only in inline functions that are always
inlined, never compiled as a separate function, such as those using
<code>__attribute__ ((__always_inline__))</code> or
<code>__attribute__ ((__gnu_inline__))</code> extern inline functions.
It must be only passed as last argument to some other function
with variable arguments. This is useful for writing small wrapper
inlines for variable argument functions, when using preprocessor
macros is undesirable. For example:
</p><div class="smallexample">
<pre class="smallexample">extern int myprintf (FILE *f, const char *format, ...);
extern inline __attribute__ ((__gnu_inline__)) int
myprintf (FILE *f, const char *format, ...)
{
int r = fprintf (f, "myprintf: ");
if (r < 0)
return r;
int s = fprintf (f, format, __builtin_va_arg_pack ());
if (s < 0)
return s;
return r + s;
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fva_005farg_005fpack_005flen"></a>Built-in Function: <em>size_t</em> <strong>__builtin_va_arg_pack_len</strong> <em>()</em></dt>
<dd><p>This built-in function returns the number of anonymous arguments of
an inline function. It can be used only in inline functions that
are always inlined, never compiled as a separate function, such
as those using <code>__attribute__ ((__always_inline__))</code> or
<code>__attribute__ ((__gnu_inline__))</code> extern inline functions.
For example following does link- or run-time checking of open
arguments for optimized code:
</p><div class="smallexample">
<pre class="smallexample">#ifdef __OPTIMIZE__
extern inline __attribute__((__gnu_inline__)) int
myopen (const char *path, int oflag, ...)
{
if (__builtin_va_arg_pack_len () > 1)
warn_open_too_many_arguments ();
if (__builtin_constant_p (oflag))
{
if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
{
warn_open_missing_mode ();
return __open_2 (path, oflag);
}
return open (path, oflag, __builtin_va_arg_pack ());
}
if (__builtin_va_arg_pack_len () < 1)
return __open_2 (path, oflag);
return open (path, oflag, __builtin_va_arg_pack ());
}
#endif
</pre></div>
</dd></dl>
<hr>
<a name="Typeof"></a>
<div class="header">
<p>
Next: <a href="#Conditionals" accesskey="n" rel="next">Conditionals</a>, Previous: <a href="#Constructing-Calls" accesskey="p" rel="prev">Constructing Calls</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Referring-to-a-Type-with-typeof"></a>
<h3 class="section">6.6 Referring to a Type with <code>typeof</code></h3>
<a name="index-typeof"></a>
<a name="index-sizeof"></a>
<a name="index-macros_002c-types-of-arguments"></a>
<p>Another way to refer to the type of an expression is with <code>typeof</code>.
The syntax of using of this keyword looks like <code>sizeof</code>, but the
construct acts semantically like a type name defined with <code>typedef</code>.
</p>
<p>There are two ways of writing the argument to <code>typeof</code>: with an
expression or with a type. Here is an example with an expression:
</p>
<div class="smallexample">
<pre class="smallexample">typeof (x[0](1))
</pre></div>
<p>This assumes that <code>x</code> is an array of pointers to functions;
the type described is that of the values of the functions.
</p>
<p>Here is an example with a typename as the argument:
</p>
<div class="smallexample">
<pre class="smallexample">typeof (int *)
</pre></div>
<p>Here the type described is that of pointers to <code>int</code>.
</p>
<p>If you are writing a header file that must work when included in ISO C
programs, write <code>__typeof__</code> instead of <code>typeof</code>.
See <a href="#Alternate-Keywords">Alternate Keywords</a>.
</p>
<p>A <code>typeof</code> construct can be used anywhere a typedef name can be
used. For example, you can use it in a declaration, in a cast, or inside
of <code>sizeof</code> or <code>typeof</code>.
</p>
<p>The operand of <code>typeof</code> is evaluated for its side effects if and
only if it is an expression of variably modified type or the name of
such a type.
</p>
<p><code>typeof</code> is often useful in conjunction with
statement expressions (see <a href="#Statement-Exprs">Statement Exprs</a>).
Here is how the two together can
be used to define a safe “maximum” macro which operates on any
arithmetic type and evaluates each of its arguments exactly once:
</p>
<div class="smallexample">
<pre class="smallexample">#define max(a,b) \
({ typeof (a) _a = (a); \
typeof (b) _b = (b); \
_a > _b ? _a : _b; })
</pre></div>
<a name="index-underscores-in-variables-in-macros"></a>
<a name="index-_005f-in-variables-in-macros"></a>
<a name="index-local-variables-in-macros"></a>
<a name="index-variables_002c-local_002c-in-macros"></a>
<a name="index-macros_002c-local-variables-in"></a>
<p>The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for <code>a</code> and <code>b</code>. Eventually we
hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.
</p>
<p>Some more examples of the use of <code>typeof</code>:
</p>
<ul>
<li> This declares <code>y</code> with the type of what <code>x</code> points to.
<div class="smallexample">
<pre class="smallexample">typeof (*x) y;
</pre></div>
</li><li> This declares <code>y</code> as an array of such values.
<div class="smallexample">
<pre class="smallexample">typeof (*x) y[4];
</pre></div>
</li><li> This declares <code>y</code> as an array of pointers to characters:
<div class="smallexample">
<pre class="smallexample">typeof (typeof (char *)[4]) y;
</pre></div>
<p>It is equivalent to the following traditional C declaration:
</p>
<div class="smallexample">
<pre class="smallexample">char *y[4];
</pre></div>
<p>To see the meaning of the declaration using <code>typeof</code>, and why it
might be a useful way to write, rewrite it with these macros:
</p>
<div class="smallexample">
<pre class="smallexample">#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])
</pre></div>
<p>Now the declaration can be rewritten this way:
</p>
<div class="smallexample">
<pre class="smallexample">array (pointer (char), 4) y;
</pre></div>
<p>Thus, <code>array (pointer (char), 4)</code> is the type of arrays of 4
pointers to <code>char</code>.
</p></li></ul>
<p>In GNU C, but not GNU C++, you may also declare the type of a variable
as <code>__auto_type</code>. In that case, the declaration must declare
only one variable, whose declarator must just be an identifier, the
declaration must be initialized, and the type of the variable is
determined by the initializer; the name of the variable is not in
scope until after the initializer. (In C++, you should use C++11
<code>auto</code> for this purpose.) Using <code>__auto_type</code>, the
“maximum” macro above could be written as:
</p>
<div class="smallexample">
<pre class="smallexample">#define max(a,b) \
({ __auto_type _a = (a); \
__auto_type _b = (b); \
_a > _b ? _a : _b; })
</pre></div>
<p>Using <code>__auto_type</code> instead of <code>typeof</code> has two advantages:
</p>
<ul>
<li> Each argument to the macro appears only once in the expansion of
the macro. This prevents the size of the macro expansion growing
exponentially when calls to such macros are nested inside arguments of
such macros.
</li><li> If the argument to the macro has variably modified type, it is
evaluated only once when using <code>__auto_type</code>, but twice if
<code>typeof</code> is used.
</li></ul>
<hr>
<a name="Conditionals"></a>
<div class="header">
<p>
Next: <a href="#g_t_005f_005fint128" accesskey="n" rel="next">__int128</a>, Previous: <a href="#Typeof" accesskey="p" rel="prev">Typeof</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Conditionals-with-Omitted-Operands"></a>
<h3 class="section">6.7 Conditionals with Omitted Operands</h3>
<a name="index-conditional-expressions_002c-extensions"></a>
<a name="index-omitted-middle_002doperands"></a>
<a name="index-middle_002doperands_002c-omitted"></a>
<a name="index-extensions_002c-_003f_003a"></a>
<a name="index-_003f_003a-extensions"></a>
<p>The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the conditional
expression.
</p>
<p>Therefore, the expression
</p>
<div class="smallexample">
<pre class="smallexample">x ? : y
</pre></div>
<p>has the value of <code>x</code> if that is nonzero; otherwise, the value of
<code>y</code>.
</p>
<p>This example is perfectly equivalent to
</p>
<div class="smallexample">
<pre class="smallexample">x ? x : y
</pre></div>
<a name="index-side-effect-in-_003f_003a"></a>
<a name="index-_003f_003a-side-effect"></a>
<p>In this simple case, the ability to omit the middle operand is not
especially useful. When it becomes useful is when the first operand does,
or may (if it is a macro argument), contain a side effect. Then repeating
the operand in the middle would perform the side effect twice. Omitting
the middle operand uses the value already computed without the undesirable
effects of recomputing it.
</p>
<hr>
<a name="g_t_005f_005fint128"></a>
<div class="header">
<p>
Next: <a href="#Long-Long" accesskey="n" rel="next">Long Long</a>, Previous: <a href="#Conditionals" accesskey="p" rel="prev">Conditionals</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="g_t128_002dbit-Integers"></a>
<h3 class="section">6.8 128-bit Integers</h3>
<a name="index-_005f_005fint128-data-types"></a>
<p>As an extension the integer scalar type <code>__int128</code> is supported for
targets which have an integer mode wide enough to hold 128 bits.
Simply write <code>__int128</code> for a signed 128-bit integer, or
<code>unsigned __int128</code> for an unsigned 128-bit integer. There is no
support in GCC for expressing an integer constant of type <code>__int128</code>
for targets with <code>long long</code> integer less than 128 bits wide.
</p>
<hr>
<a name="Long-Long"></a>
<div class="header">
<p>
Next: <a href="#Complex" accesskey="n" rel="next">Complex</a>, Previous: <a href="#g_t_005f_005fint128" accesskey="p" rel="prev">__int128</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Double_002dWord-Integers"></a>
<h3 class="section">6.9 Double-Word Integers</h3>
<a name="index-long-long-data-types"></a>
<a name="index-double_002dword-arithmetic"></a>
<a name="index-multiprecision-arithmetic"></a>
<a name="index-LL-integer-suffix"></a>
<a name="index-ULL-integer-suffix"></a>
<p>ISO C99 supports data types for integers that are at least 64 bits wide,
and as an extension GCC supports them in C90 mode and in C++.
Simply write <code>long long int</code> for a signed integer, or
<code>unsigned long long int</code> for an unsigned integer. To make an
integer constant of type <code>long long int</code>, add the suffix ‘<samp>LL</samp>’
to the integer. To make an integer constant of type <code>unsigned long
long int</code>, add the suffix ‘<samp>ULL</samp>’ to the integer.
</p>
<p>You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types
are open-coded on all types of machines. Multiplication is open-coded
if the machine supports a fullword-to-doubleword widening multiply
instruction. Division and shifts are open-coded only on machines that
provide special support. The operations that are not open-coded use
special library routines that come with GCC.
</p>
<p>There may be pitfalls when you use <code>long long</code> types for function
arguments without function prototypes. If a function
expects type <code>int</code> for its argument, and you pass a value of type
<code>long long int</code>, confusion results because the caller and the
subroutine disagree about the number of bytes for the argument.
Likewise, if the function expects <code>long long int</code> and you pass
<code>int</code>. The best way to avoid such problems is to use prototypes.
</p>
<hr>
<a name="Complex"></a>
<div class="header">
<p>
Next: <a href="#Floating-Types" accesskey="n" rel="next">Floating Types</a>, Previous: <a href="#Long-Long" accesskey="p" rel="prev">Long Long</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Complex-Numbers"></a>
<h3 class="section">6.10 Complex Numbers</h3>
<a name="index-complex-numbers"></a>
<a name="index-_005fComplex-keyword"></a>
<a name="index-_005f_005fcomplex_005f_005f-keyword"></a>
<p>ISO C99 supports complex floating data types, and as an extension GCC
supports them in C90 mode and in C++. GCC also supports complex integer data
types which are not part of ISO C99. You can declare complex types
using the keyword <code>_Complex</code>. As an extension, the older GNU
keyword <code>__complex__</code> is also supported.
</p>
<p>For example, ‘<samp>_Complex double x;</samp>’ declares <code>x</code> as a
variable whose real part and imaginary part are both of type
<code>double</code>. ‘<samp>_Complex short int y;</samp>’ declares <code>y</code> to
have real and imaginary parts of type <code>short int</code>; this is not
likely to be useful, but it shows that the set of complex types is
complete.
</p>
<p>To write a constant with a complex data type, use the suffix ‘<samp>i</samp>’ or
‘<samp>j</samp>’ (either one; they are equivalent). For example, <code>2.5fi</code>
has type <code>_Complex float</code> and <code>3i</code> has type
<code>_Complex int</code>. Such a constant always has a pure imaginary
value, but you can form any complex value you like by adding one to a
real constant. This is a GNU extension; if you have an ISO C99
conforming C library (such as the GNU C Library), and want to construct complex
constants of floating type, you should include <code><complex.h></code> and
use the macros <code>I</code> or <code>_Complex_I</code> instead.
</p>
<p>The ISO C++14 library also defines the ‘<samp>i</samp>’ suffix, so C++14 code
that includes the ‘<samp><complex></samp>’ header cannot use ‘<samp>i</samp>’ for the
GNU extension. The ‘<samp>j</samp>’ suffix still has the GNU meaning.
</p>
<a name="index-_005f_005freal_005f_005f-keyword"></a>
<a name="index-_005f_005fimag_005f_005f-keyword"></a>
<p>To extract the real part of a complex-valued expression <var>exp</var>, write
<code>__real__ <var>exp</var></code>. Likewise, use <code>__imag__</code> to
extract the imaginary part. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions <code>crealf</code>,
<code>creal</code>, <code>creall</code>, <code>cimagf</code>, <code>cimag</code> and
<code>cimagl</code>, declared in <code><complex.h></code> and also provided as
built-in functions by GCC.
</p>
<a name="index-complex-conjugation"></a>
<p>The operator ‘<samp>~</samp>’ performs complex conjugation when used on a value
with a complex type. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions <code>conjf</code>,
<code>conj</code> and <code>conjl</code>, declared in <code><complex.h></code> and also
provided as built-in functions by GCC.
</p>
<p>GCC can allocate complex automatic variables in a noncontiguous
fashion; it’s even possible for the real part to be in a register while
the imaginary part is on the stack (or vice versa). Only the DWARF
debug info format can represent this, so use of DWARF is recommended.
If you are using the stabs debug info format, GCC describes a noncontiguous
complex variable as if it were two separate variables of noncomplex type.
If the variable’s actual name is <code>foo</code>, the two fictitious
variables are named <code>foo$real</code> and <code>foo$imag</code>. You can
examine and set these two fictitious variables with your debugger.
</p>
<hr>
<a name="Floating-Types"></a>
<div class="header">
<p>
Next: <a href="#Half_002dPrecision" accesskey="n" rel="next">Half-Precision</a>, Previous: <a href="#Complex" accesskey="p" rel="prev">Complex</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Additional-Floating-Types"></a>
<h3 class="section">6.11 Additional Floating Types</h3>
<a name="index-additional-floating-types"></a>
<a name="index-_005fFloatn-data-types"></a>
<a name="index-_005fFloatnx-data-types"></a>
<a name="index-_005f_005ffloat80-data-type"></a>
<a name="index-_005f_005ffloat128-data-type"></a>
<a name="index-_005f_005fibm128-data-type"></a>
<a name="index-w-floating-point-suffix"></a>
<a name="index-q-floating-point-suffix"></a>
<a name="index-W-floating-point-suffix"></a>
<a name="index-Q-floating-point-suffix"></a>
<p>ISO/IEC TS 18661-3:2015 defines C support for additional floating
types <code>_Float<var>n</var></code> and <code>_Float<var>n</var>x</code>, and GCC supports
these type names; the set of types supported depends on the target
architecture. These types are not supported when compiling C++.
Constants with these types use suffixes <code>f<var>n</var></code> or
<code>F<var>n</var></code> and <code>f<var>n</var>x</code> or <code>F<var>n</var>x</code>. These type
names can be used together with <code>_Complex</code> to declare complex
types.
</p>
<p>As an extension, GNU C and GNU C++ support additional floating
types, which are not supported by all targets.
</p><ul>
<li> <code>__float128</code> is available on i386, x86_64, IA-64, and
hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
the vector scalar (VSX) instruction set. <code>__float128</code> supports
the 128-bit floating type. On i386, x86_64, PowerPC, and IA-64
other than HP-UX, <code>__float128</code> is an alias for <code>_Float128</code>.
On hppa and IA-64 HP-UX, <code>__float128</code> is an alias for <code>long
double</code>.
</li><li> <code>__float80</code> is available on the i386, x86_64, and IA-64
targets, and supports the 80-bit (<code>XFmode</code>) floating type. It is
an alias for the type name <code>_Float64x</code> on these targets.
</li><li> <code>__ibm128</code> is available on PowerPC targets, and provides
access to the IBM extended double format which is the current format
used for <code>long double</code>. When <code>long double</code> transitions to
<code>__float128</code> on PowerPC in the future, <code>__ibm128</code> will remain
for use in conversions between the two types.
</li></ul>
<p>Support for these additional types includes the arithmetic operators:
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types. Use a suffix ‘<samp>w</samp>’ or ‘<samp>W</samp>’
in a literal constant of type <code>__float80</code> or type
<code>__ibm128</code>. Use a suffix ‘<samp>q</samp>’ or ‘<samp>Q</samp>’ for <code>_float128</code>.
</p>
<p>In order to use <code>_Float128</code>, <code>__float128</code>, and <code>__ibm128</code>
on PowerPC Linux systems, you must use the <samp>-mfloat128</samp> option. It is
expected in future versions of GCC that <code>_Float128</code> and <code>__float128</code>
will be enabled automatically.
</p>
<p>The <code>_Float128</code> type is supported on all systems where
<code>__float128</code> is supported or where <code>long double</code> has the
IEEE binary128 format. The <code>_Float64x</code> type is supported on all
systems where <code>__float128</code> is supported. The <code>_Float32</code>
type is supported on all systems supporting IEEE binary32; the
<code>_Float64</code> and <code>_Float32x</code> types are supported on all systems
supporting IEEE binary64. The <code>_Float16</code> type is supported on AArch64
systems by default, and on ARM systems when the IEEE format for 16-bit
floating-point types is selected with <samp>-mfp16-format=ieee</samp>.
GCC does not currently support <code>_Float128x</code> on any systems.
</p>
<p>On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
types using the corresponding internal complex type, <code>XCmode</code> for
<code>__float80</code> type and <code>TCmode</code> for <code>__float128</code> type:
</p>
<div class="smallexample">
<pre class="smallexample">typedef _Complex float __attribute__((mode(TC))) _Complex128;
typedef _Complex float __attribute__((mode(XC))) _Complex80;
</pre></div>
<p>On the PowerPC Linux VSX targets, you can declare complex types using
the corresponding internal complex type, <code>KCmode</code> for
<code>__float128</code> type and <code>ICmode</code> for <code>__ibm128</code> type:
</p>
<div class="smallexample">
<pre class="smallexample">typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
</pre></div>
<hr>
<a name="Half_002dPrecision"></a>
<div class="header">
<p>
Next: <a href="#Decimal-Float" accesskey="n" rel="next">Decimal Float</a>, Previous: <a href="#Floating-Types" accesskey="p" rel="prev">Floating Types</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Half_002dPrecision-Floating-Point"></a>
<h3 class="section">6.12 Half-Precision Floating Point</h3>
<a name="index-half_002dprecision-floating-point"></a>
<a name="index-_005f_005ffp16-data-type"></a>
<p>On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
point via the <code>__fp16</code> type defined in the ARM C Language Extensions.
On ARM systems, you must enable this type explicitly with the
<samp>-mfp16-format</samp> command-line option in order to use it.
</p>
<p>ARM targets support two incompatible representations for half-precision
floating-point values. You must choose one of the representations and
use it consistently in your program.
</p>
<p>Specifying <samp>-mfp16-format=ieee</samp> selects the IEEE 754-2008 format.
This format can represent normalized values in the range of <em>2^{-14}</em> to 65504.
There are 11 bits of significand precision, approximately 3
decimal digits.
</p>
<p>Specifying <samp>-mfp16-format=alternative</samp> selects the ARM
alternative format. This representation is similar to the IEEE
format, but does not support infinities or NaNs. Instead, the range
of exponents is extended, so that this format can represent normalized
values in the range of <em>2^{-14}</em> to 131008.
</p>
<p>The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
not require use of the <samp>-mfp16-format</samp> command-line option.
</p>
<p>The <code>__fp16</code> type may only be used as an argument to intrinsics defined
in <code><arm_fp16.h></code>, or as a storage format. For purposes of
arithmetic and other operations, <code>__fp16</code> values in C or C++
expressions are automatically promoted to <code>float</code>.
</p>
<p>The ARM target provides hardware support for conversions between
<code>__fp16</code> and <code>float</code> values
as an extension to VFP and NEON (Advanced SIMD), and from ARMv8-A provides
hardware support for conversions between <code>__fp16</code> and <code>double</code>
values. GCC generates code using these hardware instructions if you
compile with options to select an FPU that provides them;
for example, <samp>-mfpu=neon-fp16 -mfloat-abi=softfp</samp>,
in addition to the <samp>-mfp16-format</samp> option to select
a half-precision format.
</p>
<p>Language-level support for the <code>__fp16</code> data type is
independent of whether GCC generates code using hardware floating-point
instructions. In cases where hardware support is not specified, GCC
implements conversions between <code>__fp16</code> and other types as library
calls.
</p>
<p>It is recommended that portable code use the <code>_Float16</code> type defined
by ISO/IEC TS 18661-3:2015. See <a href="#Floating-Types">Floating Types</a>.
</p>
<hr>
<a name="Decimal-Float"></a>
<div class="header">
<p>
Next: <a href="#Hex-Floats" accesskey="n" rel="next">Hex Floats</a>, Previous: <a href="#Half_002dPrecision" accesskey="p" rel="prev">Half-Precision</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Decimal-Floating-Types"></a>
<h3 class="section">6.13 Decimal Floating Types</h3>
<a name="index-decimal-floating-types"></a>
<a name="index-_005fDecimal32-data-type"></a>
<a name="index-_005fDecimal64-data-type"></a>
<a name="index-_005fDecimal128-data-type"></a>
<a name="index-df-integer-suffix"></a>
<a name="index-dd-integer-suffix"></a>
<a name="index-dl-integer-suffix"></a>
<a name="index-DF-integer-suffix"></a>
<a name="index-DD-integer-suffix"></a>
<a name="index-DL-integer-suffix"></a>
<p>As an extension, GNU C supports decimal floating types as
defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
floating types in GCC will evolve as the draft technical report changes.
Calling conventions for any target might also change. Not all targets
support decimal floating types.
</p>
<p>The decimal floating types are <code>_Decimal32</code>, <code>_Decimal64</code>, and
<code>_Decimal128</code>. They use a radix of ten, unlike the floating types
<code>float</code>, <code>double</code>, and <code>long double</code> whose radix is not
specified by the C standard but is usually two.
</p>
<p>Support for decimal floating types includes the arithmetic operators
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types. Use a suffix ‘<samp>df</samp>’ or
‘<samp>DF</samp>’ in a literal constant of type <code>_Decimal32</code>, ‘<samp>dd</samp>’
or ‘<samp>DD</samp>’ for <code>_Decimal64</code>, and ‘<samp>dl</samp>’ or ‘<samp>DL</samp>’ for
<code>_Decimal128</code>.
</p>
<p>GCC support of decimal float as specified by the draft technical report
is incomplete:
</p>
<ul>
<li> When the value of a decimal floating type cannot be represented in the
integer type to which it is being converted, the result is undefined
rather than the result value specified by the draft technical report.
</li><li> GCC does not provide the C library functionality associated with
<samp>math.h</samp>, <samp>fenv.h</samp>, <samp>stdio.h</samp>, <samp>stdlib.h</samp>, and
<samp>wchar.h</samp>, which must come from a separate C library implementation.
Because of this the GNU C compiler does not define macro
<code>__STDC_DEC_FP__</code> to indicate that the implementation conforms to
the technical report.
</li></ul>
<p>Types <code>_Decimal32</code>, <code>_Decimal64</code>, and <code>_Decimal128</code>
are supported by the DWARF debug information format.
</p>
<hr>
<a name="Hex-Floats"></a>
<div class="header">
<p>
Next: <a href="#Fixed_002dPoint" accesskey="n" rel="next">Fixed-Point</a>, Previous: <a href="#Decimal-Float" accesskey="p" rel="prev">Decimal Float</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hex-Floats-1"></a>
<h3 class="section">6.14 Hex Floats</h3>
<a name="index-hex-floats"></a>
<p>ISO C99 supports floating-point numbers written not only in the usual
decimal notation, such as <code>1.55e1</code>, but also numbers such as
<code>0x1.fp3</code> written in hexadecimal format. As a GNU extension, GCC
supports this in C90 mode (except in some cases when strictly
conforming) and in C++. In that format the
‘<samp>0x</samp>’ hex introducer and the ‘<samp>p</samp>’ or ‘<samp>P</samp>’ exponent field are
mandatory. The exponent is a decimal number that indicates the power of
2 by which the significant part is multiplied. Thus ‘<samp>0x1.f</samp>’ is
1 15/16,
‘<samp>p3</samp>’ multiplies it by 8, and the value of <code>0x1.fp3</code>
is the same as <code>1.55e1</code>.
</p>
<p>Unlike for floating-point numbers in the decimal notation the exponent
is always required in the hexadecimal notation. Otherwise the compiler
would not be able to resolve the ambiguity of, e.g., <code>0x1.f</code>. This
could mean <code>1.0f</code> or <code>1.9375</code> since ‘<samp>f</samp>’ is also the
extension for floating-point constants of type <code>float</code>.
</p>
<hr>
<a name="Fixed_002dPoint"></a>
<div class="header">
<p>
Next: <a href="#Named-Address-Spaces" accesskey="n" rel="next">Named Address Spaces</a>, Previous: <a href="#Hex-Floats" accesskey="p" rel="prev">Hex Floats</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Fixed_002dPoint-Types"></a>
<h3 class="section">6.15 Fixed-Point Types</h3>
<a name="index-fixed_002dpoint-types"></a>
<a name="index-_005fFract-data-type"></a>
<a name="index-_005fAccum-data-type"></a>
<a name="index-_005fSat-data-type"></a>
<a name="index-hr-fixed_002dsuffix"></a>
<a name="index-r-fixed_002dsuffix"></a>
<a name="index-lr-fixed_002dsuffix"></a>
<a name="index-llr-fixed_002dsuffix"></a>
<a name="index-uhr-fixed_002dsuffix"></a>
<a name="index-ur-fixed_002dsuffix"></a>
<a name="index-ulr-fixed_002dsuffix"></a>
<a name="index-ullr-fixed_002dsuffix"></a>
<a name="index-hk-fixed_002dsuffix"></a>
<a name="index-k-fixed_002dsuffix"></a>
<a name="index-lk-fixed_002dsuffix"></a>
<a name="index-llk-fixed_002dsuffix"></a>
<a name="index-uhk-fixed_002dsuffix"></a>
<a name="index-uk-fixed_002dsuffix"></a>
<a name="index-ulk-fixed_002dsuffix"></a>
<a name="index-ullk-fixed_002dsuffix"></a>
<a name="index-HR-fixed_002dsuffix"></a>
<a name="index-R-fixed_002dsuffix"></a>
<a name="index-LR-fixed_002dsuffix"></a>
<a name="index-LLR-fixed_002dsuffix"></a>
<a name="index-UHR-fixed_002dsuffix"></a>
<a name="index-UR-fixed_002dsuffix"></a>
<a name="index-ULR-fixed_002dsuffix"></a>
<a name="index-ULLR-fixed_002dsuffix"></a>
<a name="index-HK-fixed_002dsuffix"></a>
<a name="index-K-fixed_002dsuffix"></a>
<a name="index-LK-fixed_002dsuffix"></a>
<a name="index-LLK-fixed_002dsuffix"></a>
<a name="index-UHK-fixed_002dsuffix"></a>
<a name="index-UK-fixed_002dsuffix"></a>
<a name="index-ULK-fixed_002dsuffix"></a>
<a name="index-ULLK-fixed_002dsuffix"></a>
<p>As an extension, GNU C supports fixed-point types as
defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
types in GCC will evolve as the draft technical report changes.
Calling conventions for any target might also change. Not all targets
support fixed-point types.
</p>
<p>The fixed-point types are
<code>short _Fract</code>,
<code>_Fract</code>,
<code>long _Fract</code>,
<code>long long _Fract</code>,
<code>unsigned short _Fract</code>,
<code>unsigned _Fract</code>,
<code>unsigned long _Fract</code>,
<code>unsigned long long _Fract</code>,
<code>_Sat short _Fract</code>,
<code>_Sat _Fract</code>,
<code>_Sat long _Fract</code>,
<code>_Sat long long _Fract</code>,
<code>_Sat unsigned short _Fract</code>,
<code>_Sat unsigned _Fract</code>,
<code>_Sat unsigned long _Fract</code>,
<code>_Sat unsigned long long _Fract</code>,
<code>short _Accum</code>,
<code>_Accum</code>,
<code>long _Accum</code>,
<code>long long _Accum</code>,
<code>unsigned short _Accum</code>,
<code>unsigned _Accum</code>,
<code>unsigned long _Accum</code>,
<code>unsigned long long _Accum</code>,
<code>_Sat short _Accum</code>,
<code>_Sat _Accum</code>,
<code>_Sat long _Accum</code>,
<code>_Sat long long _Accum</code>,
<code>_Sat unsigned short _Accum</code>,
<code>_Sat unsigned _Accum</code>,
<code>_Sat unsigned long _Accum</code>,
<code>_Sat unsigned long long _Accum</code>.
</p>
<p>Fixed-point data values contain fractional and optional integral parts.
The format of fixed-point data varies and depends on the target machine.
</p>
<p>Support for fixed-point types includes:
</p><ul>
<li> prefix and postfix increment and decrement operators (<code>++</code>, <code>--</code>)
</li><li> unary arithmetic operators (<code>+</code>, <code>-</code>, <code>!</code>)
</li><li> binary arithmetic operators (<code>+</code>, <code>-</code>, <code>*</code>, <code>/</code>)
</li><li> binary shift operators (<code><<</code>, <code>>></code>)
</li><li> relational operators (<code><</code>, <code><=</code>, <code>>=</code>, <code>></code>)
</li><li> equality operators (<code>==</code>, <code>!=</code>)
</li><li> assignment operators (<code>+=</code>, <code>-=</code>, <code>*=</code>, <code>/=</code>,
<code><<=</code>, <code>>>=</code>)
</li><li> conversions to and from integer, floating-point, or fixed-point types
</li></ul>
<p>Use a suffix in a fixed-point literal constant:
</p><ul>
<li> ‘<samp>hr</samp>’ or ‘<samp>HR</samp>’ for <code>short _Fract</code> and
<code>_Sat short _Fract</code>
</li><li> ‘<samp>r</samp>’ or ‘<samp>R</samp>’ for <code>_Fract</code> and <code>_Sat _Fract</code>
</li><li> ‘<samp>lr</samp>’ or ‘<samp>LR</samp>’ for <code>long _Fract</code> and
<code>_Sat long _Fract</code>
</li><li> ‘<samp>llr</samp>’ or ‘<samp>LLR</samp>’ for <code>long long _Fract</code> and
<code>_Sat long long _Fract</code>
</li><li> ‘<samp>uhr</samp>’ or ‘<samp>UHR</samp>’ for <code>unsigned short _Fract</code> and
<code>_Sat unsigned short _Fract</code>
</li><li> ‘<samp>ur</samp>’ or ‘<samp>UR</samp>’ for <code>unsigned _Fract</code> and
<code>_Sat unsigned _Fract</code>
</li><li> ‘<samp>ulr</samp>’ or ‘<samp>ULR</samp>’ for <code>unsigned long _Fract</code> and
<code>_Sat unsigned long _Fract</code>
</li><li> ‘<samp>ullr</samp>’ or ‘<samp>ULLR</samp>’ for <code>unsigned long long _Fract</code>
and <code>_Sat unsigned long long _Fract</code>
</li><li> ‘<samp>hk</samp>’ or ‘<samp>HK</samp>’ for <code>short _Accum</code> and
<code>_Sat short _Accum</code>
</li><li> ‘<samp>k</samp>’ or ‘<samp>K</samp>’ for <code>_Accum</code> and <code>_Sat _Accum</code>
</li><li> ‘<samp>lk</samp>’ or ‘<samp>LK</samp>’ for <code>long _Accum</code> and
<code>_Sat long _Accum</code>
</li><li> ‘<samp>llk</samp>’ or ‘<samp>LLK</samp>’ for <code>long long _Accum</code> and
<code>_Sat long long _Accum</code>
</li><li> ‘<samp>uhk</samp>’ or ‘<samp>UHK</samp>’ for <code>unsigned short _Accum</code> and
<code>_Sat unsigned short _Accum</code>
</li><li> ‘<samp>uk</samp>’ or ‘<samp>UK</samp>’ for <code>unsigned _Accum</code> and
<code>_Sat unsigned _Accum</code>
</li><li> ‘<samp>ulk</samp>’ or ‘<samp>ULK</samp>’ for <code>unsigned long _Accum</code> and
<code>_Sat unsigned long _Accum</code>
</li><li> ‘<samp>ullk</samp>’ or ‘<samp>ULLK</samp>’ for <code>unsigned long long _Accum</code>
and <code>_Sat unsigned long long _Accum</code>
</li></ul>
<p>GCC support of fixed-point types as specified by the draft technical report
is incomplete:
</p>
<ul>
<li> Pragmas to control overflow and rounding behaviors are not implemented.
</li></ul>
<p>Fixed-point types are supported by the DWARF debug information format.
</p>
<hr>
<a name="Named-Address-Spaces"></a>
<div class="header">
<p>
Next: <a href="#Zero-Length" accesskey="n" rel="next">Zero Length</a>, Previous: <a href="#Fixed_002dPoint" accesskey="p" rel="prev">Fixed-Point</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Named-Address-Spaces-1"></a>
<h3 class="section">6.16 Named Address Spaces</h3>
<a name="index-Named-Address-Spaces"></a>
<p>As an extension, GNU C supports named address spaces as
defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
address spaces in GCC will evolve as the draft technical report
changes. Calling conventions for any target might also change. At
present, only the AVR, SPU, M32C, RL78, and x86 targets support
address spaces other than the generic address space.
</p>
<p>Address space identifiers may be used exactly like any other C type
qualifier (e.g., <code>const</code> or <code>volatile</code>). See the N1275
document for more details.
</p>
<a name="AVR-Named-Address-Spaces"></a><a name="AVR-Named-Address-Spaces-1"></a>
<h4 class="subsection">6.16.1 AVR Named Address Spaces</h4>
<p>On the AVR target, there are several address spaces that can be used
in order to put read-only data into the flash memory and access that
data by means of the special instructions <code>LPM</code> or <code>ELPM</code>
needed to read from flash.
</p>
<p>Devices belonging to <code>avrtiny</code> and <code>avrxmega3</code> can access
flash memory by means of <code>LD*</code> instructions because the flash
memory is mapped into the RAM address space. There is <em>no need</em>
for language extensions like <code>__flash</code> or attribute
<a href="#AVR-Variable-Attributes"><code>progmem</code></a>.
The default linker description files for these devices cater for that
feature and <code>.rodata</code> stays in flash: The compiler just generates
<code>LD*</code> instructions, and the linker script adds core specific
offsets to all <code>.rodata</code> symbols: <code>0x4000</code> in the case of
<code>avrtiny</code> and <code>0x8000</code> in the case of <code>avrxmega3</code>.
See <a href="#AVR-Options">AVR Options</a> for a list of respective devices.
</p>
<p>For devices not in <code>avrtiny</code> or <code>avrxmega3</code>,
any data including read-only data is located in RAM (the generic
address space) because flash memory is not visible in the RAM address
space. In order to locate read-only data in flash memory <em>and</em>
to generate the right instructions to access this data without
using (inline) assembler code, special address spaces are needed.
</p>
<dl compact="compact">
<dt><code>__flash</code></dt>
<dd><a name="index-_005f_005fflash-AVR-Named-Address-Spaces"></a>
<p>The <code>__flash</code> qualifier locates data in the
<code>.progmem.data</code> section. Data is read using the <code>LPM</code>
instruction. Pointers to this address space are 16 bits wide.
</p>
</dd>
<dt><code>__flash1</code></dt>
<dt><code>__flash2</code></dt>
<dt><code>__flash3</code></dt>
<dt><code>__flash4</code></dt>
<dt><code>__flash5</code></dt>
<dd><a name="index-_005f_005fflash1-AVR-Named-Address-Spaces"></a>
<a name="index-_005f_005fflash2-AVR-Named-Address-Spaces"></a>
<a name="index-_005f_005fflash3-AVR-Named-Address-Spaces"></a>
<a name="index-_005f_005fflash4-AVR-Named-Address-Spaces"></a>
<a name="index-_005f_005fflash5-AVR-Named-Address-Spaces"></a>
<p>These are 16-bit address spaces locating data in section
<code>.progmem<var>N</var>.data</code> where <var>N</var> refers to
address space <code>__flash<var>N</var></code>.
The compiler sets the <code>RAMPZ</code> segment register appropriately
before reading data by means of the <code>ELPM</code> instruction.
</p>
</dd>
<dt><code>__memx</code></dt>
<dd><a name="index-_005f_005fmemx-AVR-Named-Address-Spaces"></a>
<p>This is a 24-bit address space that linearizes flash and RAM:
If the high bit of the address is set, data is read from
RAM using the lower two bytes as RAM address.
If the high bit of the address is clear, data is read from flash
with <code>RAMPZ</code> set according to the high byte of the address.
See <a href="#AVR-Built_002din-Functions"><code>__builtin_avr_flash_segment</code></a>.
</p>
<p>Objects in this address space are located in <code>.progmemx.data</code>.
</p></dd>
</dl>
<p><b>Example</b>
</p>
<div class="smallexample">
<pre class="smallexample">char my_read (const __flash char ** p)
{
/* p is a pointer to RAM that points to a pointer to flash.
The first indirection of p reads that flash pointer
from RAM and the second indirection reads a char from this
flash address. */
return **p;
}
/* Locate array[] in flash memory */
const __flash int array[] = { 3, 5, 7, 11, 13, 17, 19 };
int i = 1;
int main (void)
{
/* Return 17 by reading from flash memory */
return array[array[i]];
}
</pre></div>
<p>For each named address space supported by avr-gcc there is an equally
named but uppercase built-in macro defined.
The purpose is to facilitate testing if respective address space
support is available or not:
</p>
<div class="smallexample">
<pre class="smallexample">#ifdef __FLASH
const __flash int var = 1;
int read_var (void)
{
return var;
}
#else
#include <avr/pgmspace.h> /* From AVR-LibC */
const int var PROGMEM = 1;
int read_var (void)
{
return (int) pgm_read_word (&var);
}
#endif /* __FLASH */
</pre></div>
<p>Notice that attribute <a href="#AVR-Variable-Attributes"><code>progmem</code></a>
locates data in flash but
accesses to these data read from generic address space, i.e.
from RAM,
so that you need special accessors like <code>pgm_read_byte</code>
from <a href="http://nongnu.org/avr-libc/user-manual/"><span class="nolinebreak">AVR-LibC</span></a><!-- /@w -->
together with attribute <code>progmem</code>.
</p>
<p><b>Limitations and caveats</b>
</p>
<ul>
<li> Reading across the 64 KiB section boundary of
the <code>__flash</code> or <code>__flash<var>N</var></code> address spaces
shows undefined behavior. The only address space that
supports reading across the 64 KiB flash segment boundaries is
<code>__memx</code>.
</li><li> If you use one of the <code>__flash<var>N</var></code> address spaces
you must arrange your linker script to locate the
<code>.progmem<var>N</var>.data</code> sections according to your needs.
</li><li> Any data or pointers to the non-generic address spaces must
be qualified as <code>const</code>, i.e. as read-only data.
This still applies if the data in one of these address
spaces like software version number or calibration lookup table are intended to
be changed after load time by, say, a boot loader. In this case
the right qualification is <code>const</code> <code>volatile</code> so that the compiler
must not optimize away known values or insert them
as immediates into operands of instructions.
</li><li> The following code initializes a variable <code>pfoo</code>
located in static storage with a 24-bit address:
<div class="smallexample">
<pre class="smallexample">extern const __memx char foo;
const __memx void *pfoo = &foo;
</pre></div>
</li><li> On the reduced Tiny devices like ATtiny40, no address spaces are supported.
Just use vanilla C / C++ code without overhead as outlined above.
Attribute <code>progmem</code> is supported but works differently,
see <a href="#AVR-Variable-Attributes">AVR Variable Attributes</a>.
</li></ul>
<a name="M32C-Named-Address-Spaces"></a>
<h4 class="subsection">6.16.2 M32C Named Address Spaces</h4>
<a name="index-_005f_005ffar-M32C-Named-Address-Spaces"></a>
<p>On the M32C target, with the R8C and M16C CPU variants, variables
qualified with <code>__far</code> are accessed using 32-bit addresses in
order to access memory beyond the first 64 Ki bytes. If
<code>__far</code> is used with the M32CM or M32C CPU variants, it has no
effect.
</p>
<a name="RL78-Named-Address-Spaces"></a>
<h4 class="subsection">6.16.3 RL78 Named Address Spaces</h4>
<a name="index-_005f_005ffar-RL78-Named-Address-Spaces"></a>
<p>On the RL78 target, variables qualified with <code>__far</code> are accessed
with 32-bit pointers (20-bit addresses) rather than the default 16-bit
addresses. Non-far variables are assumed to appear in the topmost
64 KiB of the address space.
</p>
<a name="SPU-Named-Address-Spaces"></a>
<h4 class="subsection">6.16.4 SPU Named Address Spaces</h4>
<a name="index-_005f_005fea-SPU-Named-Address-Spaces"></a>
<p>On the SPU target variables may be declared as
belonging to another address space by qualifying the type with the
<code>__ea</code> address space identifier:
</p>
<div class="smallexample">
<pre class="smallexample">extern int __ea i;
</pre></div>
<p>The compiler generates special code to access the variable <code>i</code>.
It may use runtime library
support, or generate special machine instructions to access that address
space.
</p>
<a name="x86-Named-Address-Spaces"></a>
<h4 class="subsection">6.16.5 x86 Named Address Spaces</h4>
<a name="index-x86-named-address-spaces"></a>
<p>On the x86 target, variables may be declared as being relative
to the <code>%fs</code> or <code>%gs</code> segments.
</p>
<dl compact="compact">
<dt><code>__seg_fs</code></dt>
<dt><code>__seg_gs</code></dt>
<dd><a name="index-_005f_005fseg_005ffs-x86-named-address-space"></a>
<a name="index-_005f_005fseg_005fgs-x86-named-address-space"></a>
<p>The object is accessed with the respective segment override prefix.
</p>
<p>The respective segment base must be set via some method specific to
the operating system. Rather than require an expensive system call
to retrieve the segment base, these address spaces are not considered
to be subspaces of the generic (flat) address space. This means that
explicit casts are required to convert pointers between these address
spaces and the generic address space. In practice the application
should cast to <code>uintptr_t</code> and apply the segment base offset
that it installed previously.
</p>
<p>The preprocessor symbols <code>__SEG_FS</code> and <code>__SEG_GS</code> are
defined when these address spaces are supported.
</p></dd>
</dl>
<hr>
<a name="Zero-Length"></a>
<div class="header">
<p>
Next: <a href="#Empty-Structures" accesskey="n" rel="next">Empty Structures</a>, Previous: <a href="#Named-Address-Spaces" accesskey="p" rel="prev">Named Address Spaces</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Arrays-of-Length-Zero"></a>
<h3 class="section">6.17 Arrays of Length Zero</h3>
<a name="index-arrays-of-length-zero"></a>
<a name="index-zero_002dlength-arrays"></a>
<a name="index-length_002dzero-arrays"></a>
<a name="index-flexible-array-members"></a>
<p>Zero-length arrays are allowed in GNU C. They are very useful as the
last element of a structure that is really a header for a variable-length
object:
</p>
<div class="smallexample">
<pre class="smallexample">struct line {
int length;
char contents[0];
};
struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
</pre></div>
<p>In ISO C90, you would have to give <code>contents</code> a length of 1, which
means either you waste space or complicate the argument to <code>malloc</code>.
</p>
<p>In ISO C99, you would use a <em>flexible array member</em>, which is
slightly different in syntax and semantics:
</p>
<ul>
<li> Flexible array members are written as <code>contents[]</code> without
the <code>0</code>.
</li><li> Flexible array members have incomplete type, and so the <code>sizeof</code>
operator may not be applied. As a quirk of the original implementation
of zero-length arrays, <code>sizeof</code> evaluates to zero.
</li><li> Flexible array members may only appear as the last member of a
<code>struct</code> that is otherwise non-empty.
</li><li> A structure containing a flexible array member, or a union containing
such a structure (possibly recursively), may not be a member of a
structure or an element of an array. (However, these uses are
permitted by GCC as extensions.)
</li></ul>
<p>Non-empty initialization of zero-length
arrays is treated like any case where there are more initializer
elements than the array holds, in that a suitable warning about “excess
elements in array” is given, and the excess elements (all of them, in
this case) are ignored.
</p>
<p>GCC allows static initialization of flexible array members.
This is equivalent to defining a new structure containing the original
structure followed by an array of sufficient size to contain the data.
E.g. in the following, <code>f1</code> is constructed as if it were declared
like <code>f2</code>.
</p>
<div class="smallexample">
<pre class="smallexample">struct f1 {
int x; int y[];
} f1 = { 1, { 2, 3, 4 } };
struct f2 {
struct f1 f1; int data[3];
} f2 = { { 1 }, { 2, 3, 4 } };
</pre></div>
<p>The convenience of this extension is that <code>f1</code> has the desired
type, eliminating the need to consistently refer to <code>f2.f1</code>.
</p>
<p>This has symmetry with normal static arrays, in that an array of
unknown size is also written with <code>[]</code>.
</p>
<p>Of course, this extension only makes sense if the extra data comes at
the end of a top-level object, as otherwise we would be overwriting
data at subsequent offsets. To avoid undue complication and confusion
with initialization of deeply nested arrays, we simply disallow any
non-empty initialization except when the structure is the top-level
object. For example:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo { int x; int y[]; };
struct bar { struct foo z; };
struct foo a = { 1, { 2, 3, 4 } }; // <span class="roman">Valid.</span>
struct bar b = { { 1, { 2, 3, 4 } } }; // <span class="roman">Invalid.</span>
struct bar c = { { 1, { } } }; // <span class="roman">Valid.</span>
struct foo d[1] = { { 1, { 2, 3, 4 } } }; // <span class="roman">Invalid.</span>
</pre></div>
<hr>
<a name="Empty-Structures"></a>
<div class="header">
<p>
Next: <a href="#Variable-Length" accesskey="n" rel="next">Variable Length</a>, Previous: <a href="#Zero-Length" accesskey="p" rel="prev">Zero Length</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Structures-with-No-Members"></a>
<h3 class="section">6.18 Structures with No Members</h3>
<a name="index-empty-structures"></a>
<a name="index-zero_002dsize-structures"></a>
<p>GCC permits a C structure to have no members:
</p>
<div class="smallexample">
<pre class="smallexample">struct empty {
};
</pre></div>
<p>The structure has size zero. In C++, empty structures are part
of the language. G++ treats empty structures as if they had a single
member of type <code>char</code>.
</p>
<hr>
<a name="Variable-Length"></a>
<div class="header">
<p>
Next: <a href="#Variadic-Macros" accesskey="n" rel="next">Variadic Macros</a>, Previous: <a href="#Empty-Structures" accesskey="p" rel="prev">Empty Structures</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Arrays-of-Variable-Length"></a>
<h3 class="section">6.19 Arrays of Variable Length</h3>
<a name="index-variable_002dlength-arrays"></a>
<a name="index-arrays-of-variable-length"></a>
<a name="index-VLAs"></a>
<p>Variable-length automatic arrays are allowed in ISO C99, and as an
extension GCC accepts them in C90 mode and in C++. These arrays are
declared like any other automatic arrays, but with a length that is not
a constant expression. The storage is allocated at the point of
declaration and deallocated when the block scope containing the declaration
exits. For
example:
</p>
<div class="smallexample">
<pre class="smallexample">FILE *
concat_fopen (char *s1, char *s2, char *mode)
{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);
}
</pre></div>
<a name="index-scope-of-a-variable-length-array"></a>
<a name="index-variable_002dlength-array-scope"></a>
<a name="index-deallocating-variable-length-arrays"></a>
<p>Jumping or breaking out of the scope of the array name deallocates the
storage. Jumping into the scope is not allowed; you get an error
message for it.
</p>
<a name="index-variable_002dlength-array-in-a-structure"></a>
<p>As an extension, GCC accepts variable-length arrays as a member of
a structure or a union. For example:
</p>
<div class="smallexample">
<pre class="smallexample">void
foo (int n)
{
struct S { int x[n]; };
}
</pre></div>
<a name="index-alloca-vs-variable_002dlength-arrays"></a>
<p>You can use the function <code>alloca</code> to get an effect much like
variable-length arrays. The function <code>alloca</code> is available in
many other C implementations (but not in all). On the other hand,
variable-length arrays are more elegant.
</p>
<p>There are other differences between these two methods. Space allocated
with <code>alloca</code> exists until the containing <em>function</em> returns.
The space for a variable-length array is deallocated as soon as the array
name’s scope ends, unless you also use <code>alloca</code> in this scope.
</p>
<p>You can also use variable-length arrays as arguments to functions:
</p>
<div class="smallexample">
<pre class="smallexample">struct entry
tester (int len, char data[len][len])
{
/* <span class="roman">…</span> */
}
</pre></div>
<p>The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
<code>sizeof</code>.
</p>
<p>If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list—another GNU extension.
</p>
<div class="smallexample">
<pre class="smallexample">struct entry
tester (int len; char data[len][len], int len)
{
/* <span class="roman">…</span> */
}
</pre></div>
<a name="index-parameter-forward-declaration"></a>
<p>The ‘<samp>int len</samp>’ before the semicolon is a <em>parameter forward
declaration</em>, and it serves the purpose of making the name <code>len</code>
known when the declaration of <code>data</code> is parsed.
</p>
<p>You can write any number of such parameter forward declarations in the
parameter list. They can be separated by commas or semicolons, but the
last one must end with a semicolon, which is followed by the “real”
parameter declarations. Each forward declaration must match a “real”
declaration in parameter name and data type. ISO C99 does not support
parameter forward declarations.
</p>
<hr>
<a name="Variadic-Macros"></a>
<div class="header">
<p>
Next: <a href="#Escaped-Newlines" accesskey="n" rel="next">Escaped Newlines</a>, Previous: <a href="#Variable-Length" accesskey="p" rel="prev">Variable Length</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Macros-with-a-Variable-Number-of-Arguments_002e"></a>
<h3 class="section">6.20 Macros with a Variable Number of Arguments.</h3>
<a name="index-variable-number-of-arguments"></a>
<a name="index-macro-with-variable-arguments"></a>
<a name="index-rest-argument-_0028in-macro_0029"></a>
<a name="index-variadic-macros"></a>
<p>In the ISO C standard of 1999, a macro can be declared to accept a
variable number of arguments much as a function can. The syntax for
defining the macro is similar to that of a function. Here is an
example:
</p>
<div class="smallexample">
<pre class="smallexample">#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
</pre></div>
<p>Here ‘<samp>…</samp>’ is a <em>variable argument</em>. In the invocation of
such a macro, it represents the zero or more tokens until the closing
parenthesis that ends the invocation, including any commas. This set of
tokens replaces the identifier <code>__VA_ARGS__</code> in the macro body
wherever it appears. See the CPP manual for more information.
</p>
<p>GCC has long supported variadic macros, and used a different syntax that
allowed you to give a name to the variable arguments just like any other
argument. Here is an example:
</p>
<div class="smallexample">
<pre class="smallexample">#define debug(format, args...) fprintf (stderr, format, args)
</pre></div>
<p>This is in all ways equivalent to the ISO C example above, but arguably
more readable and descriptive.
</p>
<p>GNU CPP has two further variadic macro extensions, and permits them to
be used with either of the above forms of macro definition.
</p>
<p>In standard C, you are not allowed to leave the variable argument out
entirely; but you are allowed to pass an empty argument. For example,
this invocation is invalid in ISO C, because there is no comma after
the string:
</p>
<div class="smallexample">
<pre class="smallexample">debug ("A message")
</pre></div>
<p>GNU CPP permits you to completely omit the variable arguments in this
way. In the above examples, the compiler would complain, though since
the expansion of the macro still has the extra comma after the format
string.
</p>
<p>To help solve this problem, CPP behaves specially for variable arguments
used with the token paste operator, ‘<samp>##</samp>’. If instead you write
</p>
<div class="smallexample">
<pre class="smallexample">#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
</pre></div>
<p>and if the variable arguments are omitted or empty, the ‘<samp>##</samp>’
operator causes the preprocessor to remove the comma before it. If you
do provide some variable arguments in your macro invocation, GNU CPP
does not complain about the paste operation and instead places the
variable arguments after the comma. Just like any other pasted macro
argument, these arguments are not macro expanded.
</p>
<hr>
<a name="Escaped-Newlines"></a>
<div class="header">
<p>
Next: <a href="#Subscripting" accesskey="n" rel="next">Subscripting</a>, Previous: <a href="#Variadic-Macros" accesskey="p" rel="prev">Variadic Macros</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Slightly-Looser-Rules-for-Escaped-Newlines"></a>
<h3 class="section">6.21 Slightly Looser Rules for Escaped Newlines</h3>
<a name="index-escaped-newlines"></a>
<a name="index-newlines-_0028escaped_0029"></a>
<p>The preprocessor treatment of escaped newlines is more relaxed
than that specified by the C90 standard, which requires the newline
to immediately follow a backslash.
GCC’s implementation allows whitespace in the form
of spaces, horizontal and vertical tabs, and form feeds between the
backslash and the subsequent newline. The preprocessor issues a
warning, but treats it as a valid escaped newline and combines the two
lines to form a single logical line. This works within comments and
tokens, as well as between tokens. Comments are <em>not</em> treated as
whitespace for the purposes of this relaxation, since they have not
yet been replaced with spaces.
</p>
<hr>
<a name="Subscripting"></a>
<div class="header">
<p>
Next: <a href="#Pointer-Arith" accesskey="n" rel="next">Pointer Arith</a>, Previous: <a href="#Escaped-Newlines" accesskey="p" rel="prev">Escaped Newlines</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Non_002dLvalue-Arrays-May-Have-Subscripts"></a>
<h3 class="section">6.22 Non-Lvalue Arrays May Have Subscripts</h3>
<a name="index-subscripting"></a>
<a name="index-arrays_002c-non_002dlvalue"></a>
<a name="index-subscripting-and-function-values"></a>
<p>In ISO C99, arrays that are not lvalues still decay to pointers, and
may be subscripted, although they may not be modified or used after
the next sequence point and the unary ‘<samp>&</samp>’ operator may not be
applied to them. As an extension, GNU C allows such arrays to be
subscripted in C90 mode, though otherwise they do not decay to
pointers outside C99 mode. For example,
this is valid in GNU C though not valid in C90:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo {int a[4];};
struct foo f();
bar (int index)
{
return f().a[index];
}
</pre></div>
<hr>
<a name="Pointer-Arith"></a>
<div class="header">
<p>
Next: <a href="#Pointers-to-Arrays" accesskey="n" rel="next">Pointers to Arrays</a>, Previous: <a href="#Subscripting" accesskey="p" rel="prev">Subscripting</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Arithmetic-on-void_002d-and-Function_002dPointers"></a>
<h3 class="section">6.23 Arithmetic on <code>void</code>- and Function-Pointers</h3>
<a name="index-void-pointers_002c-arithmetic"></a>
<a name="index-void_002c-size-of-pointer-to"></a>
<a name="index-function-pointers_002c-arithmetic"></a>
<a name="index-function_002c-size-of-pointer-to"></a>
<p>In GNU C, addition and subtraction operations are supported on pointers to
<code>void</code> and on pointers to functions. This is done by treating the
size of a <code>void</code> or of a function as 1.
</p>
<p>A consequence of this is that <code>sizeof</code> is also allowed on <code>void</code>
and on function types, and returns 1.
</p>
<a name="index-Wpointer_002darith-1"></a>
<p>The option <samp>-Wpointer-arith</samp> requests a warning if these extensions
are used.
</p>
<hr>
<a name="Pointers-to-Arrays"></a>
<div class="header">
<p>
Next: <a href="#Initializers" accesskey="n" rel="next">Initializers</a>, Previous: <a href="#Pointer-Arith" accesskey="p" rel="prev">Pointer Arith</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Pointers-to-Arrays-with-Qualifiers-Work-as-Expected"></a>
<h3 class="section">6.24 Pointers to Arrays with Qualifiers Work as Expected</h3>
<a name="index-pointers-to-arrays"></a>
<a name="index-const-qualifier"></a>
<p>In GNU C, pointers to arrays with qualifiers work similar to pointers
to other qualified types. For example, a value of type <code>int (*)[5]</code>
can be used to initialize a variable of type <code>const int (*)[5]</code>.
These types are incompatible in ISO C because the <code>const</code> qualifier
is formally attached to the element type of the array and not the
array itself.
</p>
<div class="smallexample">
<pre class="smallexample">extern void
transpose (int N, int M, double out[M][N], const double in[N][M]);
double x[3][2];
double y[2][3];
<span class="roman">…</span>
transpose(3, 2, y, x);
</pre></div>
<hr>
<a name="Initializers"></a>
<div class="header">
<p>
Next: <a href="#Compound-Literals" accesskey="n" rel="next">Compound Literals</a>, Previous: <a href="#Pointers-to-Arrays" accesskey="p" rel="prev">Pointers to Arrays</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Non_002dConstant-Initializers"></a>
<h3 class="section">6.25 Non-Constant Initializers</h3>
<a name="index-initializers_002c-non_002dconstant"></a>
<a name="index-non_002dconstant-initializers"></a>
<p>As in standard C++ and ISO C99, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU C.
Here is an example of an initializer with run-time varying elements:
</p>
<div class="smallexample">
<pre class="smallexample">foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
/* <span class="roman">…</span> */
}
</pre></div>
<hr>
<a name="Compound-Literals"></a>
<div class="header">
<p>
Next: <a href="#Designated-Inits" accesskey="n" rel="next">Designated Inits</a>, Previous: <a href="#Initializers" accesskey="p" rel="prev">Initializers</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Compound-Literals-1"></a>
<h3 class="section">6.26 Compound Literals</h3>
<a name="index-constructor-expressions"></a>
<a name="index-initializations-in-expressions"></a>
<a name="index-structures_002c-constructor-expression"></a>
<a name="index-expressions_002c-constructor"></a>
<a name="index-compound-literals"></a>
<p>A compound literal looks like a cast of a brace-enclosed aggregate
initializer list. Its value is an object of the type specified in
the cast, containing the elements specified in the initializer.
Unlike the result of a cast, a compound literal is an lvalue. ISO
C99 and later support compound literals. As an extension, GCC
supports compound literals also in C90 mode and in C++, although
as explained below, the C++ semantics are somewhat different.
</p>
<p>Usually, the specified type of a compound literal is a structure. Assume
that <code>struct foo</code> and <code>structure</code> are declared as shown:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo {int a; char b[2];} structure;
</pre></div>
<p>Here is an example of constructing a <code>struct foo</code> with a compound literal:
</p>
<div class="smallexample">
<pre class="smallexample">structure = ((struct foo) {x + y, 'a', 0});
</pre></div>
<p>This is equivalent to writing the following:
</p>
<div class="smallexample">
<pre class="smallexample">{
struct foo temp = {x + y, 'a', 0};
structure = temp;
}
</pre></div>
<p>You can also construct an array, though this is dangerous in C++, as
explained below. If all the elements of the compound literal are
(made up of) simple constant expressions suitable for use in
initializers of objects of static storage duration, then the compound
literal can be coerced to a pointer to its first element and used in
such an initializer, as shown here:
</p>
<div class="smallexample">
<pre class="smallexample">char **foo = (char *[]) { "x", "y", "z" };
</pre></div>
<p>Compound literals for scalar types and union types are also allowed. In
the following example the variable <code>i</code> is initialized to the value
<code>2</code>, the result of incrementing the unnamed object created by
the compound literal.
</p>
<div class="smallexample">
<pre class="smallexample">int i = ++(int) { 1 };
</pre></div>
<p>As a GNU extension, GCC allows initialization of objects with static storage
duration by compound literals (which is not possible in ISO C99 because
the initializer is not a constant).
It is handled as if the object were initialized only with the brace-enclosed
list if the types of the compound literal and the object match.
The elements of the compound literal must be constant.
If the object being initialized has array type of unknown size, the size is
determined by the size of the compound literal.
</p>
<div class="smallexample">
<pre class="smallexample">static struct foo x = (struct foo) {1, 'a', 'b'};
static int y[] = (int []) {1, 2, 3};
static int z[] = (int [3]) {1};
</pre></div>
<p>The above lines are equivalent to the following:
</p><div class="smallexample">
<pre class="smallexample">static struct foo x = {1, 'a', 'b'};
static int y[] = {1, 2, 3};
static int z[] = {1, 0, 0};
</pre></div>
<p>In C, a compound literal designates an unnamed object with static or
automatic storage duration. In C++, a compound literal designates a
temporary object that only lives until the end of its full-expression.
As a result, well-defined C code that takes the address of a subobject
of a compound literal can be undefined in C++, so G++ rejects
the conversion of a temporary array to a pointer. For instance, if
the array compound literal example above appeared inside a function,
any subsequent use of <code>foo</code> in C++ would have undefined behavior
because the lifetime of the array ends after the declaration of <code>foo</code>.
</p>
<p>As an optimization, G++ sometimes gives array compound literals longer
lifetimes: when the array either appears outside a function or has
a <code>const</code>-qualified type. If <code>foo</code> and its initializer had
elements of type <code>char *const</code> rather than <code>char *</code>, or if
<code>foo</code> were a global variable, the array would have static storage
duration. But it is probably safest just to avoid the use of array
compound literals in C++ code.
</p>
<hr>
<a name="Designated-Inits"></a>
<div class="header">
<p>
Next: <a href="#Case-Ranges" accesskey="n" rel="next">Case Ranges</a>, Previous: <a href="#Compound-Literals" accesskey="p" rel="prev">Compound Literals</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Designated-Initializers"></a>
<h3 class="section">6.27 Designated Initializers</h3>
<a name="index-initializers-with-labeled-elements"></a>
<a name="index-labeled-elements-in-initializers"></a>
<a name="index-case-labels-in-initializers"></a>
<a name="index-designated-initializers"></a>
<p>Standard C90 requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.
</p>
<p>In ISO C99 you can give the elements in any order, specifying the array
indices or structure field names they apply to, and GNU C allows this as
an extension in C90 mode as well. This extension is not
implemented in GNU C++.
</p>
<p>To specify an array index, write
‘<samp>[<var>index</var>] =</samp>’ before the element value. For example,
</p>
<div class="smallexample">
<pre class="smallexample">int a[6] = { [4] = 29, [2] = 15 };
</pre></div>
<p>is equivalent to
</p>
<div class="smallexample">
<pre class="smallexample">int a[6] = { 0, 0, 15, 0, 29, 0 };
</pre></div>
<p>The index values must be constant expressions, even if the array being
initialized is automatic.
</p>
<p>An alternative syntax for this that has been obsolete since GCC 2.5 but
GCC still accepts is to write ‘<samp>[<var>index</var>]</samp>’ before the element
value, with no ‘<samp>=</samp>’.
</p>
<p>To initialize a range of elements to the same value, write
‘<samp>[<var>first</var> ... <var>last</var>] = <var>value</var></samp>’. This is a GNU
extension. For example,
</p>
<div class="smallexample">
<pre class="smallexample">int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };
</pre></div>
<p>If the value in it has side effects, the side effects happen only once,
not for each initialized field by the range initializer.
</p>
<p>Note that the length of the array is the highest value specified
plus one.
</p>
<p>In a structure initializer, specify the name of a field to initialize
with ‘<samp>.<var>fieldname</var> =</samp>’ before the element value. For example,
given the following structure,
</p>
<div class="smallexample">
<pre class="smallexample">struct point { int x, y; };
</pre></div>
<p>the following initialization
</p>
<div class="smallexample">
<pre class="smallexample">struct point p = { .y = yvalue, .x = xvalue };
</pre></div>
<p>is equivalent to
</p>
<div class="smallexample">
<pre class="smallexample">struct point p = { xvalue, yvalue };
</pre></div>
<p>Another syntax that has the same meaning, obsolete since GCC 2.5, is
‘<samp><var>fieldname</var>:</samp>’, as shown here:
</p>
<div class="smallexample">
<pre class="smallexample">struct point p = { y: yvalue, x: xvalue };
</pre></div>
<p>Omitted field members are implicitly initialized the same as objects
that have static storage duration.
</p>
<a name="index-designators"></a>
<p>The ‘<samp>[<var>index</var>]</samp>’ or ‘<samp>.<var>fieldname</var></samp>’ is known as a
<em>designator</em>. You can also use a designator (or the obsolete colon
syntax) when initializing a union, to specify which element of the union
should be used. For example,
</p>
<div class="smallexample">
<pre class="smallexample">union foo { int i; double d; };
union foo f = { .d = 4 };
</pre></div>
<p>converts 4 to a <code>double</code> to store it in the union using
the second element. By contrast, casting 4 to type <code>union foo</code>
stores it into the union as the integer <code>i</code>, since it is
an integer. See <a href="#Cast-to-Union">Cast to Union</a>.
</p>
<p>You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that
does not have a designator applies to the next consecutive element of the
array or structure. For example,
</p>
<div class="smallexample">
<pre class="smallexample">int a[6] = { [1] = v1, v2, [4] = v4 };
</pre></div>
<p>is equivalent to
</p>
<div class="smallexample">
<pre class="smallexample">int a[6] = { 0, v1, v2, 0, v4, 0 };
</pre></div>
<p>Labeling the elements of an array initializer is especially useful
when the indices are characters or belong to an <code>enum</code> type.
For example:
</p>
<div class="smallexample">
<pre class="smallexample">int whitespace[256]
= { [' '] = 1, ['\t'] = 1, ['\h'] = 1,
['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };
</pre></div>
<a name="index-designator-lists"></a>
<p>You can also write a series of ‘<samp>.<var>fieldname</var></samp>’ and
‘<samp>[<var>index</var>]</samp>’ designators before an ‘<samp>=</samp>’ to specify a
nested subobject to initialize; the list is taken relative to the
subobject corresponding to the closest surrounding brace pair. For
example, with the ‘<samp>struct point</samp>’ declaration above:
</p>
<div class="smallexample">
<pre class="smallexample">struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };
</pre></div>
<p>If the same field is initialized multiple times, it has the value from
the last initialization. If any such overridden initialization has
side effect, it is unspecified whether the side effect happens or not.
Currently, GCC discards them and issues a warning.
</p>
<hr>
<a name="Case-Ranges"></a>
<div class="header">
<p>
Next: <a href="#Cast-to-Union" accesskey="n" rel="next">Cast to Union</a>, Previous: <a href="#Designated-Inits" accesskey="p" rel="prev">Designated Inits</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Case-Ranges-1"></a>
<h3 class="section">6.28 Case Ranges</h3>
<a name="index-case-ranges"></a>
<a name="index-ranges-in-case-statements"></a>
<p>You can specify a range of consecutive values in a single <code>case</code> label,
like this:
</p>
<div class="smallexample">
<pre class="smallexample">case <var>low</var> ... <var>high</var>:
</pre></div>
<p>This has the same effect as the proper number of individual <code>case</code>
labels, one for each integer value from <var>low</var> to <var>high</var>, inclusive.
</p>
<p>This feature is especially useful for ranges of ASCII character codes:
</p>
<div class="smallexample">
<pre class="smallexample">case 'A' ... 'Z':
</pre></div>
<p><strong>Be careful:</strong> Write spaces around the <code>...</code>, for otherwise
it may be parsed wrong when you use it with integer values. For example,
write this:
</p>
<div class="smallexample">
<pre class="smallexample">case 1 ... 5:
</pre></div>
<p>rather than this:
</p>
<div class="smallexample">
<pre class="smallexample">case 1...5:
</pre></div>
<hr>
<a name="Cast-to-Union"></a>
<div class="header">
<p>
Next: <a href="#Mixed-Declarations" accesskey="n" rel="next">Mixed Declarations</a>, Previous: <a href="#Case-Ranges" accesskey="p" rel="prev">Case Ranges</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Cast-to-a-Union-Type"></a>
<h3 class="section">6.29 Cast to a Union Type</h3>
<a name="index-cast-to-a-union"></a>
<a name="index-union_002c-casting-to-a"></a>
<p>A cast to union type looks similar to other casts, except that the type
specified is a union type. You can specify the type either with the
<code>union</code> keyword or with a <code>typedef</code> name that refers to
a union. A cast to a union actually creates a compound literal and
yields an lvalue, not an rvalue like true casts do.
See <a href="#Compound-Literals">Compound Literals</a>.
</p>
<p>The types that may be cast to the union type are those of the members
of the union. Thus, given the following union and variables:
</p>
<div class="smallexample">
<pre class="smallexample">union foo { int i; double d; };
int x;
double y;
</pre></div>
<p>both <code>x</code> and <code>y</code> can be cast to type <code>union foo</code>.
</p>
<p>Using the cast as the right-hand side of an assignment to a variable of
union type is equivalent to storing in a member of the union:
</p>
<div class="smallexample">
<pre class="smallexample">union foo u;
/* <span class="roman">…</span> */
u = (union foo) x ≡ u.i = x
u = (union foo) y ≡ u.d = y
</pre></div>
<p>You can also use the union cast as a function argument:
</p>
<div class="smallexample">
<pre class="smallexample">void hack (union foo);
/* <span class="roman">…</span> */
hack ((union foo) x);
</pre></div>
<hr>
<a name="Mixed-Declarations"></a>
<div class="header">
<p>
Next: <a href="#Function-Attributes" accesskey="n" rel="next">Function Attributes</a>, Previous: <a href="#Cast-to-Union" accesskey="p" rel="prev">Cast to Union</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Mixed-Declarations-and-Code"></a>
<h3 class="section">6.30 Mixed Declarations and Code</h3>
<a name="index-mixed-declarations-and-code"></a>
<a name="index-declarations_002c-mixed-with-code"></a>
<a name="index-code_002c-mixed-with-declarations"></a>
<p>ISO C99 and ISO C++ allow declarations and code to be freely mixed
within compound statements. As an extension, GNU C also allows this in
C90 mode. For example, you could do:
</p>
<div class="smallexample">
<pre class="smallexample">int i;
/* <span class="roman">…</span> */
i++;
int j = i + 2;
</pre></div>
<p>Each identifier is visible from where it is declared until the end of
the enclosing block.
</p>
<hr>
<a name="Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Variable-Attributes" accesskey="n" rel="next">Variable Attributes</a>, Previous: <a href="#Mixed-Declarations" accesskey="p" rel="prev">Mixed Declarations</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Declaring-Attributes-of-Functions"></a>
<h3 class="section">6.31 Declaring Attributes of Functions</h3>
<a name="index-function-attributes"></a>
<a name="index-declaring-attributes-of-functions"></a>
<a name="index-volatile-applied-to-function"></a>
<a name="index-const-applied-to-function"></a>
<p>In GNU C, you can use function attributes to declare certain things
about functions called in your program which help the compiler
optimize calls and check your code more carefully. For example, you
can use attributes to declare that a function never returns
(<code>noreturn</code>), returns a value depending only on its arguments
(<code>pure</code>), or has <code>printf</code>-style arguments (<code>format</code>).
</p>
<p>You can also use attributes to control memory placement, code
generation options or call/return conventions within the function
being annotated. Many of these attributes are target-specific. For
example, many targets support attributes for defining interrupt
handler functions, which typically must follow special register usage
and return conventions.
</p>
<p>Function attributes are introduced by the <code>__attribute__</code> keyword
on a declaration, followed by an attribute specification inside double
parentheses. You can specify multiple attributes in a declaration by
separating them by commas within the double parentheses or by
immediately following an attribute declaration with another attribute
declaration. See <a href="#Attribute-Syntax">Attribute Syntax</a>, for the exact rules on attribute
syntax and placement. Compatible attribute specifications on distinct
declarations of the same function are merged. An attribute specification
that is not compatible with attributes already applied to a declaration
of the same function is ignored with a warning.
</p>
<p>GCC also supports attributes on
variable declarations (see <a href="#Variable-Attributes">Variable Attributes</a>),
labels (see <a href="#Label-Attributes">Label Attributes</a>),
enumerators (see <a href="#Enumerator-Attributes">Enumerator Attributes</a>),
statements (see <a href="#Statement-Attributes">Statement Attributes</a>),
and types (see <a href="#Type-Attributes">Type Attributes</a>).
</p>
<p>There is some overlap between the purposes of attributes and pragmas
(see <a href="#Pragmas">Pragmas Accepted by GCC</a>). It has been
found convenient to use <code>__attribute__</code> to achieve a natural
attachment of attributes to their corresponding declarations, whereas
<code>#pragma</code> is of use for compatibility with other compilers
or constructs that do not naturally form part of the grammar.
</p>
<p>In addition to the attributes documented here,
GCC plugins may provide their own attributes.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Common-Function-Attributes" accesskey="1">Common Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#AArch64-Function-Attributes" accesskey="2">AArch64 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARC-Function-Attributes" accesskey="3">ARC Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARM-Function-Attributes" accesskey="4">ARM Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#AVR-Function-Attributes" accesskey="5">AVR Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Blackfin-Function-Attributes" accesskey="6">Blackfin Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#CR16-Function-Attributes" accesskey="7">CR16 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Epiphany-Function-Attributes" accesskey="8">Epiphany Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#H8_002f300-Function-Attributes" accesskey="9">H8/300 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#IA_002d64-Function-Attributes">IA-64 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#M32C-Function-Attributes">M32C Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#M32R_002fD-Function-Attributes">M32R/D Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#m68k-Function-Attributes">m68k Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MCORE-Function-Attributes">MCORE Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MeP-Function-Attributes">MeP Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MicroBlaze-Function-Attributes">MicroBlaze Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Microsoft-Windows-Function-Attributes">Microsoft Windows Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MIPS-Function-Attributes">MIPS Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Nios-II-Function-Attributes">Nios II Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Nvidia-PTX-Function-Attributes">Nvidia PTX Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RISC_002dV-Function-Attributes">RISC-V Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RL78-Function-Attributes">RL78 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RX-Function-Attributes">RX Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#S_002f390-Function-Attributes">S/390 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SH-Function-Attributes">SH Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SPU-Function-Attributes">SPU Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Symbian-OS-Function-Attributes">Symbian OS Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#V850-Function-Attributes">V850 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Visium-Function-Attributes">Visium Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-Function-Attributes">x86 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Xstormy16-Function-Attributes">Xstormy16 Function Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Common-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#AArch64-Function-Attributes" accesskey="n" rel="next">AArch64 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Common-Function-Attributes-1"></a>
<h4 class="subsection">6.31.1 Common Function Attributes</h4>
<p>The following attributes are supported on most targets.
</p>
<dl compact="compact">
<dt><code>alias ("<var>target</var>")</code></dt>
<dd><a name="index-alias-function-attribute"></a>
<p>The <code>alias</code> attribute causes the declaration to be emitted as an
alias for another symbol, which must be specified. For instance,
</p>
<div class="smallexample">
<pre class="smallexample">void __f () { /* <span class="roman">Do something.</span> */; }
void f () __attribute__ ((weak, alias ("__f")));
</pre></div>
<p>defines ‘<samp>f</samp>’ to be a weak alias for ‘<samp>__f</samp>’. In C++, the
mangled name for the target must be used. It is an error if ‘<samp>__f</samp>’
is not defined in the same translation unit.
</p>
<p>This attribute requires assembler and object file support,
and may not be available on all targets.
</p>
</dd>
<dt><code>aligned (<var>alignment</var>)</code></dt>
<dd><a name="index-aligned-function-attribute"></a>
<p>This attribute specifies a minimum alignment for the function,
measured in bytes.
</p>
<p>You cannot use this attribute to decrease the alignment of a function,
only to increase it. However, when you explicitly specify a function
alignment this overrides the effect of the
<samp>-falign-functions</samp> (see <a href="#Optimize-Options">Optimize Options</a>) option for this
function.
</p>
<p>Note that the effectiveness of <code>aligned</code> attributes may be
limited by inherent limitations in your linker. On many systems, the
linker is only able to arrange for functions to be aligned up to a
certain maximum alignment. (For some linkers, the maximum supported
alignment may be very very small.) See your linker documentation for
further information.
</p>
<p>The <code>aligned</code> attribute can also be used for variables and fields
(see <a href="#Variable-Attributes">Variable Attributes</a>.)
</p>
</dd>
<dt><code>alloc_align</code></dt>
<dd><a name="index-alloc_005falign-function-attribute"></a>
<p>The <code>alloc_align</code> attribute is used to tell the compiler that the
function return value points to memory, where the returned pointer minimum
alignment is given by one of the functions parameters. GCC uses this
information to improve pointer alignment analysis.
</p>
<p>The function parameter denoting the allocated alignment is specified by
one integer argument, whose number is the argument of the attribute.
Argument numbering starts at one.
</p>
<p>For instance,
</p>
<div class="smallexample">
<pre class="smallexample">void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
</pre></div>
<p>declares that <code>my_memalign</code> returns memory with minimum alignment
given by parameter 1.
</p>
</dd>
<dt><code>alloc_size</code></dt>
<dd><a name="index-alloc_005fsize-function-attribute"></a>
<p>The <code>alloc_size</code> attribute is used to tell the compiler that the
function return value points to memory, where the size is given by
one or two of the functions parameters. GCC uses this
information to improve the correctness of <code>__builtin_object_size</code>.
</p>
<p>The function parameter(s) denoting the allocated size are specified by
one or two integer arguments supplied to the attribute. The allocated size
is either the value of the single function argument specified or the product
of the two function arguments specified. Argument numbering starts at
one.
</p>
<p>For instance,
</p>
<div class="smallexample">
<pre class="smallexample">void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
</pre></div>
<p>declares that <code>my_calloc</code> returns memory of the size given by
the product of parameter 1 and 2 and that <code>my_realloc</code> returns memory
of the size given by parameter 2.
</p>
</dd>
<dt><code>always_inline</code></dt>
<dd><a name="index-always_005finline-function-attribute"></a>
<p>Generally, functions are not inlined unless optimization is specified.
For functions declared inline, this attribute inlines the function
independent of any restrictions that otherwise apply to inlining.
Failure to inline such a function is diagnosed as an error.
Note that if such a function is called indirectly the compiler may
or may not inline it depending on optimization level and a failure
to inline an indirect call may or may not be diagnosed.
</p>
</dd>
<dt><code>artificial</code></dt>
<dd><a name="index-artificial-function-attribute"></a>
<p>This attribute is useful for small inline wrappers that if possible
should appear during debugging as a unit. Depending on the debug
info format it either means marking the function as artificial
or using the caller location for all instructions within the inlined
body.
</p>
</dd>
<dt><code>assume_aligned</code></dt>
<dd><a name="index-assume_005faligned-function-attribute"></a>
<p>The <code>assume_aligned</code> attribute is used to tell the compiler that the
function return value points to memory, where the returned pointer minimum
alignment is given by the first argument.
If the attribute has two arguments, the second argument is misalignment offset.
</p>
<p>For instance
</p>
<div class="smallexample">
<pre class="smallexample">void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
</pre></div>
<p>declares that <code>my_alloc1</code> returns 16-byte aligned pointer and
that <code>my_alloc2</code> returns a pointer whose value modulo 32 is equal
to 8.
</p>
</dd>
<dt><code>bnd_instrument</code></dt>
<dd><a name="index-bnd_005finstrument-function-attribute"></a>
<p>The <code>bnd_instrument</code> attribute on functions is used to inform the
compiler that the function should be instrumented when compiled
with the <samp>-fchkp-instrument-marked-only</samp> option.
</p>
</dd>
<dt><code>bnd_legacy</code></dt>
<dd><a name="index-bnd_005flegacy-function-attribute"></a>
<a name="index-Pointer-Bounds-Checker-attributes"></a>
<p>The <code>bnd_legacy</code> attribute on functions is used to inform the
compiler that the function should not be instrumented when compiled
with the <samp>-fcheck-pointer-bounds</samp> option.
</p>
</dd>
<dt><code>cold</code></dt>
<dd><a name="index-cold-function-attribute"></a>
<p>The <code>cold</code> attribute on functions is used to inform the compiler that
the function is unlikely to be executed. The function is optimized for
size rather than speed and on many targets it is placed into a special
subsection of the text section so all cold functions appear close together,
improving code locality of non-cold parts of program. The paths leading
to calls of cold functions within code are marked as unlikely by the branch
prediction mechanism. It is thus useful to mark functions used to handle
unlikely conditions, such as <code>perror</code>, as cold to improve optimization
of hot functions that do call marked functions in rare occasions.
</p>
<p>When profile feedback is available, via <samp>-fprofile-use</samp>, cold functions
are automatically detected and this attribute is ignored.
</p>
</dd>
<dt><code>const</code></dt>
<dd><a name="index-const-function-attribute"></a>
<a name="index-functions-that-have-no-side-effects"></a>
<p>Many functions do not examine any values except their arguments, and
have no effects except to return a value. Calls to such functions lend
themselves to optimization such as common subexpression elimination.
The <code>const</code> attribute imposes greater restrictions on a function’s
definition than the similar <code>pure</code> attribute below because it prohibits
the function from reading global variables. Consequently, the presence of
the attribute on a function declaration allows GCC to emit more efficient
code for some calls to the function. Decorating the same function with
both the <code>const</code> and the <code>pure</code> attribute is diagnosed.
</p>
<a name="index-pointer-arguments"></a>
<p>Note that a function that has pointer arguments and examines the data
pointed to must <em>not</em> be declared <code>const</code>. Likewise, a
function that calls a non-<code>const</code> function usually must not be
<code>const</code>. Because a <code>const</code> function cannot have any side
effects it does not make sense for such a function to return <code>void</code>.
Declaring such a function is diagnosed.
</p>
</dd>
<dt><code>constructor</code></dt>
<dt><code>destructor</code></dt>
<dt><code>constructor (<var>priority</var>)</code></dt>
<dt><code>destructor (<var>priority</var>)</code></dt>
<dd><a name="index-constructor-function-attribute"></a>
<a name="index-destructor-function-attribute"></a>
<p>The <code>constructor</code> attribute causes the function to be called
automatically before execution enters <code>main ()</code>. Similarly, the
<code>destructor</code> attribute causes the function to be called
automatically after <code>main ()</code> completes or <code>exit ()</code> is
called. Functions with these attributes are useful for
initializing data that is used implicitly during the execution of
the program.
</p>
<p>You may provide an optional integer priority to control the order in
which constructor and destructor functions are run. A constructor
with a smaller priority number runs before a constructor with a larger
priority number; the opposite relationship holds for destructors. So,
if you have a constructor that allocates a resource and a destructor
that deallocates the same resource, both functions typically have the
same priority. The priorities for constructor and destructor
functions are the same as those specified for namespace-scope C++
objects (see <a href="#C_002b_002b-Attributes">C++ Attributes</a>). However, at present, the order in which
constructors for C++ objects with static storage duration and functions
decorated with attribute <code>constructor</code> are invoked is unspecified.
In mixed declarations, attribute <code>init_priority</code> can be used to
impose a specific ordering.
</p>
</dd>
<dt><code>deprecated</code></dt>
<dt><code>deprecated (<var>msg</var>)</code></dt>
<dd><a name="index-deprecated-function-attribute"></a>
<p>The <code>deprecated</code> attribute results in a warning if the function
is used anywhere in the source file. This is useful when identifying
functions that are expected to be removed in a future version of a
program. The warning also includes the location of the declaration
of the deprecated function, to enable users to easily find further
information about why the function is deprecated, or what they should
do instead. Note that the warnings only occurs for uses:
</p>
<div class="smallexample">
<pre class="smallexample">int old_fn () __attribute__ ((deprecated));
int old_fn ();
int (*fn_ptr)() = old_fn;
</pre></div>
<p>results in a warning on line 3 but not line 2. The optional <var>msg</var>
argument, which must be a string, is printed in the warning if
present.
</p>
<p>The <code>deprecated</code> attribute can also be used for variables and
types (see <a href="#Variable-Attributes">Variable Attributes</a>, see <a href="#Type-Attributes">Type Attributes</a>.)
</p>
</dd>
<dt><code>error ("<var>message</var>")</code></dt>
<dt><code>warning ("<var>message</var>")</code></dt>
<dd><a name="index-error-function-attribute"></a>
<a name="index-warning-function-attribute"></a>
<p>If the <code>error</code> or <code>warning</code> attribute
is used on a function declaration and a call to such a function
is not eliminated through dead code elimination or other optimizations,
an error or warning (respectively) that includes <var>message</var> is diagnosed.
This is useful
for compile-time checking, especially together with <code>__builtin_constant_p</code>
and inline functions where checking the inline function arguments is not
possible through <code>extern char [(condition) ? 1 : -1];</code> tricks.
</p>
<p>While it is possible to leave the function undefined and thus invoke
a link failure (to define the function with
a message in <code>.gnu.warning*</code> section),
when using these attributes the problem is diagnosed
earlier and with exact location of the call even in presence of inline
functions or when not emitting debugging information.
</p>
</dd>
<dt><code>externally_visible</code></dt>
<dd><a name="index-externally_005fvisible-function-attribute"></a>
<p>This attribute, attached to a global variable or function, nullifies
the effect of the <samp>-fwhole-program</samp> command-line option, so the
object remains visible outside the current compilation unit.
</p>
<p>If <samp>-fwhole-program</samp> is used together with <samp>-flto</samp> and
<code>gold</code> is used as the linker plugin,
<code>externally_visible</code> attributes are automatically added to functions
(not variable yet due to a current <code>gold</code> issue)
that are accessed outside of LTO objects according to resolution file
produced by <code>gold</code>.
For other linkers that cannot generate resolution file,
explicit <code>externally_visible</code> attributes are still necessary.
</p>
</dd>
<dt><code>flatten</code></dt>
<dd><a name="index-flatten-function-attribute"></a>
<p>Generally, inlining into a function is limited. For a function marked with
this attribute, every call inside this function is inlined, if possible.
Whether the function itself is considered for inlining depends on its size and
the current inlining parameters.
</p>
</dd>
<dt><code>format (<var>archetype</var>, <var>string-index</var>, <var>first-to-check</var>)</code></dt>
<dd><a name="index-format-function-attribute"></a>
<a name="index-functions-with-printf_002c-scanf_002c-strftime-or-strfmon-style-arguments"></a>
<a name="index-Wformat-3"></a>
<p>The <code>format</code> attribute specifies that a function takes <code>printf</code>,
<code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style arguments that
should be type-checked against a format string. For example, the
declaration:
</p>
<div class="smallexample">
<pre class="smallexample">extern int
my_printf (void *my_object, const char *my_format, ...)
__attribute__ ((format (printf, 2, 3)));
</pre></div>
<p>causes the compiler to check the arguments in calls to <code>my_printf</code>
for consistency with the <code>printf</code> style format string argument
<code>my_format</code>.
</p>
<p>The parameter <var>archetype</var> determines how the format string is
interpreted, and should be <code>printf</code>, <code>scanf</code>, <code>strftime</code>,
<code>gnu_printf</code>, <code>gnu_scanf</code>, <code>gnu_strftime</code> or
<code>strfmon</code>. (You can also use <code>__printf__</code>,
<code>__scanf__</code>, <code>__strftime__</code> or <code>__strfmon__</code>.) On
MinGW targets, <code>ms_printf</code>, <code>ms_scanf</code>, and
<code>ms_strftime</code> are also present.
<var>archetype</var> values such as <code>printf</code> refer to the formats accepted
by the system’s C runtime library,
while values prefixed with ‘<samp>gnu_</samp>’ always refer
to the formats accepted by the GNU C Library. On Microsoft Windows
targets, values prefixed with ‘<samp>ms_</samp>’ refer to the formats accepted by the
<samp>msvcrt.dll</samp> library.
The parameter <var>string-index</var>
specifies which argument is the format string argument (starting
from 1), while <var>first-to-check</var> is the number of the first
argument to check against the format string. For functions
where the arguments are not available to be checked (such as
<code>vprintf</code>), specify the third parameter as zero. In this case the
compiler only checks the format string for consistency. For
<code>strftime</code> formats, the third parameter is required to be zero.
Since non-static C++ methods have an implicit <code>this</code> argument, the
arguments of such methods should be counted from two, not one, when
giving values for <var>string-index</var> and <var>first-to-check</var>.
</p>
<p>In the example above, the format string (<code>my_format</code>) is the second
argument of the function <code>my_print</code>, and the arguments to check
start with the third argument, so the correct parameters for the format
attribute are 2 and 3.
</p>
<a name="index-ffreestanding-3"></a>
<a name="index-fno_002dbuiltin-2"></a>
<p>The <code>format</code> attribute allows you to identify your own functions
that take format strings as arguments, so that GCC can check the
calls to these functions for errors. The compiler always (unless
<samp>-ffreestanding</samp> or <samp>-fno-builtin</samp> is used) checks formats
for the standard library functions <code>printf</code>, <code>fprintf</code>,
<code>sprintf</code>, <code>scanf</code>, <code>fscanf</code>, <code>sscanf</code>, <code>strftime</code>,
<code>vprintf</code>, <code>vfprintf</code> and <code>vsprintf</code> whenever such
warnings are requested (using <samp>-Wformat</samp>), so there is no need to
modify the header file <samp>stdio.h</samp>. In C99 mode, the functions
<code>snprintf</code>, <code>vsnprintf</code>, <code>vscanf</code>, <code>vfscanf</code> and
<code>vsscanf</code> are also checked. Except in strictly conforming C
standard modes, the X/Open function <code>strfmon</code> is also checked as
are <code>printf_unlocked</code> and <code>fprintf_unlocked</code>.
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
</p>
<p>For Objective-C dialects, <code>NSString</code> (or <code>__NSString__</code>) is
recognized in the same context. Declarations including these format attributes
are parsed for correct syntax, however the result of checking of such format
strings is not yet defined, and is not carried out by this version of the
compiler.
</p>
<p>The target may also provide additional types of format checks.
See <a href="#Target-Format-Checks">Format Checks Specific to Particular
Target Machines</a>.
</p>
</dd>
<dt><code>format_arg (<var>string-index</var>)</code></dt>
<dd><a name="index-format_005farg-function-attribute"></a>
<a name="index-Wformat_002dnonliteral-1"></a>
<p>The <code>format_arg</code> attribute specifies that a function takes a format
string for a <code>printf</code>, <code>scanf</code>, <code>strftime</code> or
<code>strfmon</code> style function and modifies it (for example, to translate
it into another language), so the result can be passed to a
<code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style
function (with the remaining arguments to the format function the same
as they would have been for the unmodified string). For example, the
declaration:
</p>
<div class="smallexample">
<pre class="smallexample">extern char *
my_dgettext (char *my_domain, const char *my_format)
__attribute__ ((format_arg (2)));
</pre></div>
<p>causes the compiler to check the arguments in calls to a <code>printf</code>,
<code>scanf</code>, <code>strftime</code> or <code>strfmon</code> type function, whose
format string argument is a call to the <code>my_dgettext</code> function, for
consistency with the format string argument <code>my_format</code>. If the
<code>format_arg</code> attribute had not been specified, all the compiler
could tell in such calls to format functions would be that the format
string argument is not constant; this would generate a warning when
<samp>-Wformat-nonliteral</samp> is used, but the calls could not be checked
without the attribute.
</p>
<p>The parameter <var>string-index</var> specifies which argument is the format
string argument (starting from one). Since non-static C++ methods have
an implicit <code>this</code> argument, the arguments of such methods should
be counted from two.
</p>
<p>The <code>format_arg</code> attribute allows you to identify your own
functions that modify format strings, so that GCC can check the
calls to <code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code>
type function whose operands are a call to one of your own function.
The compiler always treats <code>gettext</code>, <code>dgettext</code>, and
<code>dcgettext</code> in this manner except when strict ISO C support is
requested by <samp>-ansi</samp> or an appropriate <samp>-std</samp> option, or
<samp>-ffreestanding</samp> or <samp>-fno-builtin</samp>
is used. See <a href="#C-Dialect-Options">Options
Controlling C Dialect</a>.
</p>
<p>For Objective-C dialects, the <code>format-arg</code> attribute may refer to an
<code>NSString</code> reference for compatibility with the <code>format</code> attribute
above.
</p>
<p>The target may also allow additional types in <code>format-arg</code> attributes.
See <a href="#Target-Format-Checks">Format Checks Specific to Particular
Target Machines</a>.
</p>
</dd>
<dt><code>gnu_inline</code></dt>
<dd><a name="index-gnu_005finline-function-attribute"></a>
<p>This attribute should be used with a function that is also declared
with the <code>inline</code> keyword. It directs GCC to treat the function
as if it were defined in gnu90 mode even when compiling in C99 or
gnu99 mode.
</p>
<p>If the function is declared <code>extern</code>, then this definition of the
function is used only for inlining. In no case is the function
compiled as a standalone function, not even if you take its address
explicitly. Such an address becomes an external reference, as if you
had only declared the function, and had not defined it. This has
almost the effect of a macro. The way to use this is to put a
function definition in a header file with this attribute, and put
another copy of the function, without <code>extern</code>, in a library
file. The definition in the header file causes most calls to the
function to be inlined. If any uses of the function remain, they
refer to the single copy in the library. Note that the two
definitions of the functions need not be precisely the same, although
if they do not have the same effect your program may behave oddly.
</p>
<p>In C, if the function is neither <code>extern</code> nor <code>static</code>, then
the function is compiled as a standalone function, as well as being
inlined where possible.
</p>
<p>This is how GCC traditionally handled functions declared
<code>inline</code>. Since ISO C99 specifies a different semantics for
<code>inline</code>, this function attribute is provided as a transition
measure and as a useful feature in its own right. This attribute is
available in GCC 4.1.3 and later. It is available if either of the
preprocessor macros <code>__GNUC_GNU_INLINE__</code> or
<code>__GNUC_STDC_INLINE__</code> are defined. See <a href="#Inline">An Inline
Function is As Fast As a Macro</a>.
</p>
<p>In C++, this attribute does not depend on <code>extern</code> in any way,
but it still requires the <code>inline</code> keyword to enable its special
behavior.
</p>
</dd>
<dt><code>hot</code></dt>
<dd><a name="index-hot-function-attribute"></a>
<p>The <code>hot</code> attribute on a function is used to inform the compiler that
the function is a hot spot of the compiled program. The function is
optimized more aggressively and on many targets it is placed into a special
subsection of the text section so all hot functions appear close together,
improving locality.
</p>
<p>When profile feedback is available, via <samp>-fprofile-use</samp>, hot functions
are automatically detected and this attribute is ignored.
</p>
</dd>
<dt><code>ifunc ("<var>resolver</var>")</code></dt>
<dd><a name="index-ifunc-function-attribute"></a>
<a name="index-indirect-functions"></a>
<a name="index-functions-that-are-dynamically-resolved"></a>
<p>The <code>ifunc</code> attribute is used to mark a function as an indirect
function using the STT_GNU_IFUNC symbol type extension to the ELF
standard. This allows the resolution of the symbol value to be
determined dynamically at load time, and an optimized version of the
routine to be selected for the particular processor or other system
characteristics determined then. To use this attribute, first define
the implementation functions available, and a resolver function that
returns a pointer to the selected implementation function. The
implementation functions’ declarations must match the API of the
function being implemented. The resolver should be declared to
be a function taking no arguments and returning a pointer to
a function of the same type as the implementation. For example:
</p>
<div class="smallexample">
<pre class="smallexample">void *my_memcpy (void *dst, const void *src, size_t len)
{
…
return dst;
}
static void * (*resolve_memcpy (void))(void *, const void *, size_t)
{
return my_memcpy; // we will just always select this routine
}
</pre></div>
<p>The exported header file declaring the function the user calls would
contain:
</p>
<div class="smallexample">
<pre class="smallexample">extern void *memcpy (void *, const void *, size_t);
</pre></div>
<p>allowing the user to call <code>memcpy</code> as a regular function, unaware of
the actual implementation. Finally, the indirect function needs to be
defined in the same translation unit as the resolver function:
</p>
<div class="smallexample">
<pre class="smallexample">void *memcpy (void *, const void *, size_t)
__attribute__ ((ifunc ("resolve_memcpy")));
</pre></div>
<p>In C++, the <code>ifunc</code> attribute takes a string that is the mangled name
of the resolver function. A C++ resolver for a non-static member function
of class <code>C</code> should be declared to return a pointer to a non-member
function taking pointer to <code>C</code> as the first argument, followed by
the same arguments as of the implementation function. G++ checks
the signatures of the two functions and issues
a <samp>-Wattribute-alias</samp> warning for mismatches. To suppress a warning
for the necessary cast from a pointer to the implementation member function
to the type of the corresponding non-member function use
the <samp>-Wno-pmf-conversions</samp> option. For example:
</p>
<div class="smallexample">
<pre class="smallexample">class S
{
private:
int debug_impl (int);
int optimized_impl (int);
typedef int Func (S*, int);
static Func* resolver ();
public:
int interface (int);
};
int S::debug_impl (int) { /* <span class="roman">…</span> */ }
int S::optimized_impl (int) { /* <span class="roman">…</span> */ }
S::Func* S::resolver ()
{
int (S::*pimpl) (int)
= getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;
// Cast triggers -Wno-pmf-conversions.
return reinterpret_cast<Func*>(pimpl);
}
int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
</pre></div>
<p>Indirect functions cannot be weak. Binutils version 2.20.1 or higher
and GNU C Library version 2.11.1 are required to use this feature.
</p>
</dd>
<dt><code>interrupt</code></dt>
<dt><code>interrupt_handler</code></dt>
<dd><p>Many GCC back ends support attributes to indicate that a function is
an interrupt handler, which tells the compiler to generate function
entry and exit sequences that differ from those from regular
functions. The exact syntax and behavior are target-specific;
refer to the following subsections for details.
</p>
</dd>
<dt><code>leaf</code></dt>
<dd><a name="index-leaf-function-attribute"></a>
<p>Calls to external functions with this attribute must return to the
current compilation unit only by return or by exception handling. In
particular, a leaf function is not allowed to invoke callback functions
passed to it from the current compilation unit, directly call functions
exported by the unit, or <code>longjmp</code> into the unit. Leaf functions
might still call functions from other compilation units and thus they
are not necessarily leaf in the sense that they contain no function
calls at all.
</p>
<p>The attribute is intended for library functions to improve dataflow
analysis. The compiler takes the hint that any data not escaping the
current compilation unit cannot be used or modified by the leaf
function. For example, the <code>sin</code> function is a leaf function, but
<code>qsort</code> is not.
</p>
<p>Note that leaf functions might indirectly run a signal handler defined
in the current compilation unit that uses static variables. Similarly,
when lazy symbol resolution is in effect, leaf functions might invoke
indirect functions whose resolver function or implementation function is
defined in the current compilation unit and uses static variables. There
is no standard-compliant way to write such a signal handler, resolver
function, or implementation function, and the best that you can do is to
remove the <code>leaf</code> attribute or mark all such static variables
<code>volatile</code>. Lastly, for ELF-based systems that support symbol
interposition, care should be taken that functions defined in the
current compilation unit do not unexpectedly interpose other symbols
based on the defined standards mode and defined feature test macros;
otherwise an inadvertent callback would be added.
</p>
<p>The attribute has no effect on functions defined within the current
compilation unit. This is to allow easy merging of multiple compilation
units into one, for example, by using the link-time optimization. For
this reason the attribute is not allowed on types to annotate indirect
calls.
</p>
</dd>
<dt><code>malloc</code></dt>
<dd><a name="index-malloc-function-attribute"></a>
<a name="index-functions-that-behave-like-malloc"></a>
<p>This tells the compiler that a function is <code>malloc</code>-like, i.e.,
that the pointer <var>P</var> returned by the function cannot alias any
other pointer valid when the function returns, and moreover no
pointers to valid objects occur in any storage addressed by <var>P</var>.
</p>
<p>Using this attribute can improve optimization. Functions like
<code>malloc</code> and <code>calloc</code> have this property because they return
a pointer to uninitialized or zeroed-out storage. However, functions
like <code>realloc</code> do not have this property, as they can return a
pointer to storage containing pointers.
</p>
</dd>
<dt><code>no_icf</code></dt>
<dd><a name="index-no_005ficf-function-attribute"></a>
<p>This function attribute prevents a functions from being merged with another
semantically equivalent function.
</p>
</dd>
<dt><code>no_instrument_function</code></dt>
<dd><a name="index-no_005finstrument_005ffunction-function-attribute"></a>
<a name="index-finstrument_002dfunctions-1"></a>
<p>If <samp>-finstrument-functions</samp> is given, profiling function calls are
generated at entry and exit of most user-compiled functions.
Functions with this attribute are not so instrumented.
</p>
</dd>
<dt><code>no_profile_instrument_function</code></dt>
<dd><a name="index-no_005fprofile_005finstrument_005ffunction-function-attribute"></a>
<p>The <code>no_profile_instrument_function</code> attribute on functions is used
to inform the compiler that it should not process any profile feedback based
optimization code instrumentation.
</p>
</dd>
<dt><code>no_reorder</code></dt>
<dd><a name="index-no_005freorder-function-attribute"></a>
<p>Do not reorder functions or variables marked <code>no_reorder</code>
against each other or top level assembler statements the executable.
The actual order in the program will depend on the linker command
line. Static variables marked like this are also not removed.
This has a similar effect
as the <samp>-fno-toplevel-reorder</samp> option, but only applies to the
marked symbols.
</p>
</dd>
<dt><code>no_sanitize ("<var>sanitize_option</var>")</code></dt>
<dd><a name="index-no_005fsanitize-function-attribute"></a>
<p>The <code>no_sanitize</code> attribute on functions is used
to inform the compiler that it should not do sanitization of all options
mentioned in <var>sanitize_option</var>. A list of values acceptable by
<samp>-fsanitize</samp> option can be provided.
</p>
<div class="smallexample">
<pre class="smallexample">void __attribute__ ((no_sanitize ("alignment", "object-size")))
f () { /* <span class="roman">Do something.</span> */; }
</pre></div>
</dd>
<dt><code>no_sanitize_address</code></dt>
<dt><code>no_address_safety_analysis</code></dt>
<dd><a name="index-no_005fsanitize_005faddress-function-attribute"></a>
<p>The <code>no_sanitize_address</code> attribute on functions is used
to inform the compiler that it should not instrument memory accesses
in the function when compiling with the <samp>-fsanitize=address</samp> option.
The <code>no_address_safety_analysis</code> is a deprecated alias of the
<code>no_sanitize_address</code> attribute, new code should use
<code>no_sanitize_address</code>.
</p>
</dd>
<dt><code>no_sanitize_thread</code></dt>
<dd><a name="index-no_005fsanitize_005fthread-function-attribute"></a>
<p>The <code>no_sanitize_thread</code> attribute on functions is used
to inform the compiler that it should not instrument memory accesses
in the function when compiling with the <samp>-fsanitize=thread</samp> option.
</p>
</dd>
<dt><code>no_sanitize_undefined</code></dt>
<dd><a name="index-no_005fsanitize_005fundefined-function-attribute"></a>
<p>The <code>no_sanitize_undefined</code> attribute on functions is used
to inform the compiler that it should not check for undefined behavior
in the function when compiling with the <samp>-fsanitize=undefined</samp> option.
</p>
</dd>
<dt><code>no_split_stack</code></dt>
<dd><a name="index-no_005fsplit_005fstack-function-attribute"></a>
<a name="index-fsplit_002dstack-1"></a>
<p>If <samp>-fsplit-stack</samp> is given, functions have a small
prologue which decides whether to split the stack. Functions with the
<code>no_split_stack</code> attribute do not have that prologue, and thus
may run with only a small amount of stack space available.
</p>
</dd>
<dt><code>no_stack_limit</code></dt>
<dd><a name="index-no_005fstack_005flimit-function-attribute"></a>
<p>This attribute locally overrides the <samp>-fstack-limit-register</samp>
and <samp>-fstack-limit-symbol</samp> command-line options; it has the effect
of disabling stack limit checking in the function it applies to.
</p>
</dd>
<dt><code>noclone</code></dt>
<dd><a name="index-noclone-function-attribute"></a>
<p>This function attribute prevents a function from being considered for
cloning—a mechanism that produces specialized copies of functions
and which is (currently) performed by interprocedural constant
propagation.
</p>
</dd>
<dt><code>noinline</code></dt>
<dd><a name="index-noinline-function-attribute"></a>
<p>This function attribute prevents a function from being considered for
inlining.
If the function does not have side effects, there are optimizations
other than inlining that cause function calls to be optimized away,
although the function call is live. To keep such calls from being
optimized away, put
</p><div class="smallexample">
<pre class="smallexample">asm ("");
</pre></div>
<p>(see <a href="#Extended-Asm">Extended Asm</a>) in the called function, to serve as a special
side effect.
</p>
</dd>
<dt><code>noipa</code></dt>
<dd><a name="index-noipa-function-attribute"></a>
<p>Disable interprocedural optimizations between the function with this
attribute and its callers, as if the body of the function is not available
when optimizing callers and the callers are unavailable when optimizing
the body. This attribute implies <code>noinline</code>, <code>noclone</code> and
<code>no_icf</code> attributes. However, this attribute is not equivalent
to a combination of other attributes, because its purpose is to suppress
existing and future optimizations employing interprocedural analysis,
including those that do not have an attribute suitable for disabling
them individually. This attribute is supported mainly for the purpose
of testing the compiler.
</p>
</dd>
<dt><code>nonnull (<var>arg-index</var>, …)</code></dt>
<dd><a name="index-nonnull-function-attribute"></a>
<a name="index-functions-with-non_002dnull-pointer-arguments"></a>
<p>The <code>nonnull</code> attribute specifies that some function parameters should
be non-null pointers. For instance, the declaration:
</p>
<div class="smallexample">
<pre class="smallexample">extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull (1, 2)));
</pre></div>
<p>causes the compiler to check that, in calls to <code>my_memcpy</code>,
arguments <var>dest</var> and <var>src</var> are non-null. If the compiler
determines that a null pointer is passed in an argument slot marked
as non-null, and the <samp>-Wnonnull</samp> option is enabled, a warning
is issued. The compiler may also choose to make optimizations based
on the knowledge that certain function arguments will never be null.
</p>
<p>If no argument index list is given to the <code>nonnull</code> attribute,
all pointer arguments are marked as non-null. To illustrate, the
following declaration is equivalent to the previous example:
</p>
<div class="smallexample">
<pre class="smallexample">extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull));
</pre></div>
</dd>
<dt><code>noplt</code></dt>
<dd><a name="index-noplt-function-attribute"></a>
<p>The <code>noplt</code> attribute is the counterpart to option <samp>-fno-plt</samp>.
Calls to functions marked with this attribute in position-independent code
do not use the PLT.
</p>
<div class="smallexample">
<pre class="smallexample">/* Externally defined function foo. */
int foo () __attribute__ ((noplt));
int
main (/* <span class="roman">…</span> */)
{
/* <span class="roman">…</span> */
foo ();
/* <span class="roman">…</span> */
}
</pre></div>
<p>The <code>noplt</code> attribute on function <code>foo</code>
tells the compiler to assume that
the function <code>foo</code> is externally defined and that the call to
<code>foo</code> must avoid the PLT
in position-independent code.
</p>
<p>In position-dependent code, a few targets also convert calls to
functions that are marked to not use the PLT to use the GOT instead.
</p>
</dd>
<dt><code>noreturn</code></dt>
<dd><a name="index-noreturn-function-attribute"></a>
<a name="index-functions-that-never-return"></a>
<p>A few standard library functions, such as <code>abort</code> and <code>exit</code>,
cannot return. GCC knows this automatically. Some programs define
their own functions that never return. You can declare them
<code>noreturn</code> to tell the compiler this fact. For example,
</p>
<div class="smallexample">
<pre class="smallexample">void fatal () __attribute__ ((noreturn));
void
fatal (/* <span class="roman">…</span> */)
{
/* <span class="roman">…</span> */ /* <span class="roman">Print error message.</span> */ /* <span class="roman">…</span> */
exit (1);
}
</pre></div>
<p>The <code>noreturn</code> keyword tells the compiler to assume that
<code>fatal</code> cannot return. It can then optimize without regard to what
would happen if <code>fatal</code> ever did return. This makes slightly
better code. More importantly, it helps avoid spurious warnings of
uninitialized variables.
</p>
<p>The <code>noreturn</code> keyword does not affect the exceptional path when that
applies: a <code>noreturn</code>-marked function may still return to the caller
by throwing an exception or calling <code>longjmp</code>.
</p>
<p>Do not assume that registers saved by the calling function are
restored before calling the <code>noreturn</code> function.
</p>
<p>It does not make sense for a <code>noreturn</code> function to have a return
type other than <code>void</code>.
</p>
</dd>
<dt><code>nothrow</code></dt>
<dd><a name="index-nothrow-function-attribute"></a>
<p>The <code>nothrow</code> attribute is used to inform the compiler that a
function cannot throw an exception. For example, most functions in
the standard C library can be guaranteed not to throw an exception
with the notable exceptions of <code>qsort</code> and <code>bsearch</code> that
take function pointer arguments.
</p>
</dd>
<dt><code>optimize</code></dt>
<dd><a name="index-optimize-function-attribute"></a>
<p>The <code>optimize</code> attribute is used to specify that a function is to
be compiled with different optimization options than specified on the
command line. Arguments can either be numbers or strings. Numbers
are assumed to be an optimization level. Strings that begin with
<code>O</code> are assumed to be an optimization option, while other options
are assumed to be used with a <code>-f</code> prefix. You can also use the
‘<samp>#pragma GCC optimize</samp>’ pragma to set the optimization options
that affect more than one function.
See <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>, for details about the
‘<samp>#pragma GCC optimize</samp>’ pragma.
</p>
<p>This attribute should be used for debugging purposes only. It is not
suitable in production code.
</p>
</dd>
<dt><code>patchable_function_entry</code></dt>
<dd><a name="index-patchable_005ffunction_005fentry-function-attribute"></a>
<a name="index-extra-NOP-instructions-at-the-function-entry-point"></a>
<p>In case the target’s text segment can be made writable at run time by
any means, padding the function entry with a number of NOPs can be
used to provide a universal tool for instrumentation.
</p>
<p>The <code>patchable_function_entry</code> function attribute can be used to
change the number of NOPs to any desired value. The two-value syntax
is the same as for the command-line switch
<samp>-fpatchable-function-entry=N,M</samp>, generating <var>N</var> NOPs, with
the function entry point before the <var>M</var>th NOP instruction.
<var>M</var> defaults to 0 if omitted e.g. function entry point is before
the first NOP.
</p>
<p>If patchable function entries are enabled globally using the command-line
option <samp>-fpatchable-function-entry=N,M</samp>, then you must disable
instrumentation on all functions that are part of the instrumentation
framework with the attribute <code>patchable_function_entry (0)</code>
to prevent recursion.
</p>
</dd>
<dt><code>pure</code></dt>
<dd><a name="index-pure-function-attribute"></a>
<a name="index-functions-that-have-no-side-effects-1"></a>
<p>Many functions have no effects except the return value and their
return value depends only on the parameters and/or global variables.
Calls to such functions can be subject
to common subexpression elimination and loop optimization just as an
arithmetic operator would be. These functions should be declared
with the attribute <code>pure</code>. For example,
</p>
<div class="smallexample">
<pre class="smallexample">int square (int) __attribute__ ((pure));
</pre></div>
<p>says that the hypothetical function <code>square</code> is safe to call
fewer times than the program says.
</p>
<p>Some common examples of pure functions are <code>strlen</code> or <code>memcmp</code>.
Interesting non-pure functions are functions with infinite loops or those
depending on volatile memory or other system resource, that may change between
two consecutive calls (such as <code>feof</code> in a multithreading environment).
</p>
<p>The <code>pure</code> attribute imposes similar but looser restrictions on
a function’s defintion than the <code>const</code> attribute: it allows the
function to read global variables. Decorating the same function with
both the <code>pure</code> and the <code>const</code> attribute is diagnosed.
Because a <code>pure</code> function cannot have any side effects it does not
make sense for such a function to return <code>void</code>. Declaring such
a function is diagnosed.
</p>
</dd>
<dt><code>returns_nonnull</code></dt>
<dd><a name="index-returns_005fnonnull-function-attribute"></a>
<p>The <code>returns_nonnull</code> attribute specifies that the function
return value should be a non-null pointer. For instance, the declaration:
</p>
<div class="smallexample">
<pre class="smallexample">extern void *
mymalloc (size_t len) __attribute__((returns_nonnull));
</pre></div>
<p>lets the compiler optimize callers based on the knowledge
that the return value will never be null.
</p>
</dd>
<dt><code>returns_twice</code></dt>
<dd><a name="index-returns_005ftwice-function-attribute"></a>
<a name="index-functions-that-return-more-than-once"></a>
<p>The <code>returns_twice</code> attribute tells the compiler that a function may
return more than one time. The compiler ensures that all registers
are dead before calling such a function and emits a warning about
the variables that may be clobbered after the second return from the
function. Examples of such functions are <code>setjmp</code> and <code>vfork</code>.
The <code>longjmp</code>-like counterpart of such function, if any, might need
to be marked with the <code>noreturn</code> attribute.
</p>
</dd>
<dt><code>section ("<var>section-name</var>")</code></dt>
<dd><a name="index-section-function-attribute"></a>
<a name="index-functions-in-arbitrary-sections"></a>
<p>Normally, the compiler places the code it generates in the <code>text</code> section.
Sometimes, however, you need additional sections, or you need certain
particular functions to appear in special sections. The <code>section</code>
attribute specifies that a function lives in a particular section.
For example, the declaration:
</p>
<div class="smallexample">
<pre class="smallexample">extern void foobar (void) __attribute__ ((section ("bar")));
</pre></div>
<p>puts the function <code>foobar</code> in the <code>bar</code> section.
</p>
<p>Some file formats do not support arbitrary sections so the <code>section</code>
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.
</p>
</dd>
<dt><code>sentinel</code></dt>
<dd><a name="index-sentinel-function-attribute"></a>
<p>This function attribute ensures that a parameter in a function call is
an explicit <code>NULL</code>. The attribute is only valid on variadic
functions. By default, the sentinel is located at position zero, the
last parameter of the function call. If an optional integer position
argument P is supplied to the attribute, the sentinel must be located at
position P counting backwards from the end of the argument list.
</p>
<div class="smallexample">
<pre class="smallexample">__attribute__ ((sentinel))
is equivalent to
__attribute__ ((sentinel(0)))
</pre></div>
<p>The attribute is automatically set with a position of 0 for the built-in
functions <code>execl</code> and <code>execlp</code>. The built-in function
<code>execle</code> has the attribute set with a position of 1.
</p>
<p>A valid <code>NULL</code> in this context is defined as zero with any pointer
type. If your system defines the <code>NULL</code> macro with an integer type
then you need to add an explicit cast. GCC replaces <code>stddef.h</code>
with a copy that redefines NULL appropriately.
</p>
<p>The warnings for missing or incorrect sentinels are enabled with
<samp>-Wformat</samp>.
</p>
</dd>
<dt><code>simd</code></dt>
<dt><code>simd("<var>mask</var>")</code></dt>
<dd><a name="index-simd-function-attribute"></a>
<p>This attribute enables creation of one or more function versions that
can process multiple arguments using SIMD instructions from a
single invocation. Specifying this attribute allows compiler to
assume that such versions are available at link time (provided
in the same or another translation unit). Generated versions are
target-dependent and described in the corresponding Vector ABI document. For
x86_64 target this document can be found
<a href="https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt">here</a><!-- /@w -->.
</p>
<p>The optional argument <var>mask</var> may have the value
<code>notinbranch</code> or <code>inbranch</code>,
and instructs the compiler to generate non-masked or masked
clones correspondingly. By default, all clones are generated.
</p>
<p>If the attribute is specified and <code>#pragma omp declare simd</code> is
present on a declaration and the <samp>-fopenmp</samp> or <samp>-fopenmp-simd</samp>
switch is specified, then the attribute is ignored.
</p>
</dd>
<dt><code>stack_protect</code></dt>
<dd><a name="index-stack_005fprotect-function-attribute"></a>
<p>This attribute adds stack protection code to the function if
flags <samp>-fstack-protector</samp>, <samp>-fstack-protector-strong</samp>
or <samp>-fstack-protector-explicit</samp> are set.
</p>
</dd>
<dt><code>target (<var>options</var>)</code></dt>
<dd><a name="index-target-function-attribute"></a>
<p>Multiple target back ends implement the <code>target</code> attribute
to specify that a function is to
be compiled with different target options than specified on the
command line. This can be used for instance to have functions
compiled with a different ISA (instruction set architecture) than the
default. You can also use the ‘<samp>#pragma GCC target</samp>’ pragma to set
more than one function to be compiled with specific target options.
See <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>, for details about the
‘<samp>#pragma GCC target</samp>’ pragma.
</p>
<p>For instance, on an x86, you could declare one function with the
<code>target("sse4.1,arch=core2")</code> attribute and another with
<code>target("sse4a,arch=amdfam10")</code>. This is equivalent to
compiling the first function with <samp>-msse4.1</samp> and
<samp>-march=core2</samp> options, and the second function with
<samp>-msse4a</samp> and <samp>-march=amdfam10</samp> options. It is up to you
to make sure that a function is only invoked on a machine that
supports the particular ISA it is compiled for (for example by using
<code>cpuid</code> on x86 to determine what feature bits and architecture
family are used).
</p>
<div class="smallexample">
<pre class="smallexample">int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
int sse3_func (void) __attribute__ ((__target__ ("sse3")));
</pre></div>
<p>You can either use multiple
strings separated by commas to specify multiple options,
or separate the options with a comma (‘<samp>,</samp>’) within a single string.
</p>
<p>The options supported are specific to each target; refer to <a href="#x86-Function-Attributes">x86 Function Attributes</a>, <a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a>,
<a href="#ARM-Function-Attributes">ARM Function Attributes</a>, <a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a>,
<a href="#Nios-II-Function-Attributes">Nios II Function Attributes</a>, and <a href="#S_002f390-Function-Attributes">S/390 Function Attributes</a>
for details.
</p>
</dd>
<dt><code>target_clones (<var>options</var>)</code></dt>
<dd><a name="index-target_005fclones-function-attribute"></a>
<p>The <code>target_clones</code> attribute is used to specify that a function
be cloned into multiple versions compiled with different target options
than specified on the command line. The supported options and restrictions
are the same as for <code>target</code> attribute.
</p>
<p>For instance, on an x86, you could compile a function with
<code>target_clones("sse4.1,avx")</code>. GCC creates two function clones,
one compiled with <samp>-msse4.1</samp> and another with <samp>-mavx</samp>.
</p>
<p>On a PowerPC, you can compile a function with
<code>target_clones("cpu=power9,default")</code>. GCC will create two
function clones, one compiled with <samp>-mcpu=power9</samp> and another
with the default options. GCC must be configured to use GLIBC 2.23 or
newer in order to use the <code>target_clones</code> attribute.
</p>
<p>It also creates a resolver function (see
the <code>ifunc</code> attribute above) that dynamically selects a clone
suitable for current architecture. The resolver is created only if there
is a usage of a function with <code>target_clones</code> attribute.
</p>
</dd>
<dt><code>unused</code></dt>
<dd><a name="index-unused-function-attribute"></a>
<p>This attribute, attached to a function, means that the function is meant
to be possibly unused. GCC does not produce a warning for this
function.
</p>
</dd>
<dt><code>used</code></dt>
<dd><a name="index-used-function-attribute"></a>
<p>This attribute, attached to a function, means that code must be emitted
for the function even if it appears that the function is not referenced.
This is useful, for example, when the function is referenced only in
inline assembly.
</p>
<p>When applied to a member function of a C++ class template, the
attribute also means that the function is instantiated if the
class itself is instantiated.
</p>
</dd>
<dt><code>visibility ("<var>visibility_type</var>")</code></dt>
<dd><a name="index-visibility-function-attribute"></a>
<p>This attribute affects the linkage of the declaration to which it is attached.
It can be applied to variables (see <a href="#Common-Variable-Attributes">Common Variable Attributes</a>) and types
(see <a href="#Common-Type-Attributes">Common Type Attributes</a>) as well as functions.
</p>
<p>There are four supported <var>visibility_type</var> values: default,
hidden, protected or internal visibility.
</p>
<div class="smallexample">
<pre class="smallexample">void __attribute__ ((visibility ("protected")))
f () { /* <span class="roman">Do something.</span> */; }
int i __attribute__ ((visibility ("hidden")));
</pre></div>
<p>The possible values of <var>visibility_type</var> correspond to the
visibility settings in the ELF gABI.
</p>
<dl compact="compact">
<dt><code>default</code></dt>
<dd><p>Default visibility is the normal case for the object file format.
This value is available for the visibility attribute to override other
options that may change the assumed visibility of entities.
</p>
<p>On ELF, default visibility means that the declaration is visible to other
modules and, in shared libraries, means that the declared entity may be
overridden.
</p>
<p>On Darwin, default visibility means that the declaration is visible to
other modules.
</p>
<p>Default visibility corresponds to “external linkage” in the language.
</p>
</dd>
<dt><code>hidden</code></dt>
<dd><p>Hidden visibility indicates that the entity declared has a new
form of linkage, which we call “hidden linkage”. Two
declarations of an object with hidden linkage refer to the same object
if they are in the same shared object.
</p>
</dd>
<dt><code>internal</code></dt>
<dd><p>Internal visibility is like hidden visibility, but with additional
processor specific semantics. Unless otherwise specified by the
psABI, GCC defines internal visibility to mean that a function is
<em>never</em> called from another module. Compare this with hidden
functions which, while they cannot be referenced directly by other
modules, can be referenced indirectly via function pointers. By
indicating that a function cannot be called from outside the module,
GCC may for instance omit the load of a PIC register since it is known
that the calling function loaded the correct value.
</p>
</dd>
<dt><code>protected</code></dt>
<dd><p>Protected visibility is like default visibility except that it
indicates that references within the defining module bind to the
definition in that module. That is, the declared entity cannot be
overridden by another module.
</p>
</dd>
</dl>
<p>All visibilities are supported on many, but not all, ELF targets
(supported when the assembler supports the ‘<samp>.visibility</samp>’
pseudo-op). Default visibility is supported everywhere. Hidden
visibility is supported on Darwin targets.
</p>
<p>The visibility attribute should be applied only to declarations that
would otherwise have external linkage. The attribute should be applied
consistently, so that the same entity should not be declared with
different settings of the attribute.
</p>
<p>In C++, the visibility attribute applies to types as well as functions
and objects, because in C++ types have linkage. A class must not have
greater visibility than its non-static data member types and bases,
and class members default to the visibility of their class. Also, a
declaration without explicit visibility is limited to the visibility
of its type.
</p>
<p>In C++, you can mark member functions and static member variables of a
class with the visibility attribute. This is useful if you know a
particular method or static member variable should only be used from
one shared object; then you can mark it hidden while the rest of the
class has default visibility. Care must be taken to avoid breaking
the One Definition Rule; for example, it is usually not useful to mark
an inline method as hidden without marking the whole class as hidden.
</p>
<p>A C++ namespace declaration can also have the visibility attribute.
</p>
<div class="smallexample">
<pre class="smallexample">namespace nspace1 __attribute__ ((visibility ("protected")))
{ /* <span class="roman">Do something.</span> */; }
</pre></div>
<p>This attribute applies only to the particular namespace body, not to
other definitions of the same namespace; it is equivalent to using
‘<samp>#pragma GCC visibility</samp>’ before and after the namespace
definition (see <a href="#Visibility-Pragmas">Visibility Pragmas</a>).
</p>
<p>In C++, if a template argument has limited visibility, this
restriction is implicitly propagated to the template instantiation.
Otherwise, template instantiations and specializations default to the
visibility of their template.
</p>
<p>If both the template and enclosing class have explicit visibility, the
visibility from the template is used.
</p>
</dd>
<dt><code>warn_unused_result</code></dt>
<dd><a name="index-warn_005funused_005fresult-function-attribute"></a>
<p>The <code>warn_unused_result</code> attribute causes a warning to be emitted
if a caller of the function with this attribute does not use its
return value. This is useful for functions where not checking
the result is either a security problem or always a bug, such as
<code>realloc</code>.
</p>
<div class="smallexample">
<pre class="smallexample">int fn () __attribute__ ((warn_unused_result));
int foo ()
{
if (fn () < 0) return -1;
fn ();
return 0;
}
</pre></div>
<p>results in warning on line 5.
</p>
</dd>
<dt><code>weak</code></dt>
<dd><a name="index-weak-function-attribute"></a>
<p>The <code>weak</code> attribute causes the declaration to be emitted as a weak
symbol rather than a global. This is primarily useful in defining
library functions that can be overridden in user code, though it can
also be used with non-function declarations. Weak symbols are supported
for ELF targets, and also for a.out targets when using the GNU assembler
and linker.
</p>
</dd>
<dt><code>weakref</code></dt>
<dt><code>weakref ("<var>target</var>")</code></dt>
<dd><a name="index-weakref-function-attribute"></a>
<p>The <code>weakref</code> attribute marks a declaration as a weak reference.
Without arguments, it should be accompanied by an <code>alias</code> attribute
naming the target symbol. Optionally, the <var>target</var> may be given as
an argument to <code>weakref</code> itself. In either case, <code>weakref</code>
implicitly marks the declaration as <code>weak</code>. Without a
<var>target</var>, given as an argument to <code>weakref</code> or to <code>alias</code>,
<code>weakref</code> is equivalent to <code>weak</code>.
</p>
<div class="smallexample">
<pre class="smallexample">static int x() __attribute__ ((weakref ("y")));
/* is equivalent to... */
static int x() __attribute__ ((weak, weakref, alias ("y")));
/* and to... */
static int x() __attribute__ ((weakref));
static int x() __attribute__ ((alias ("y")));
</pre></div>
<p>A weak reference is an alias that does not by itself require a
definition to be given for the target symbol. If the target symbol is
only referenced through weak references, then it becomes a <code>weak</code>
undefined symbol. If it is directly referenced, however, then such
strong references prevail, and a definition is required for the
symbol, not necessarily in the same translation unit.
</p>
<p>The effect is equivalent to moving all references to the alias to a
separate translation unit, renaming the alias to the aliased symbol,
declaring it as weak, compiling the two separate translation units and
performing a reloadable link on them.
</p>
<p>At present, a declaration to which <code>weakref</code> is attached can
only be <code>static</code>.
</p>
</dd>
</dl>
<hr>
<a name="AArch64-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#ARC-Function-Attributes" accesskey="n" rel="next">ARC Function Attributes</a>, Previous: <a href="#Common-Function-Attributes" accesskey="p" rel="prev">Common Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="AArch64-Function-Attributes-1"></a>
<h4 class="subsection">6.31.2 AArch64 Function Attributes</h4>
<p>The following target-specific function attributes are available for the
AArch64 target. For the most part, these options mirror the behavior of
similar command-line options (see <a href="#AArch64-Options">AArch64 Options</a>), but on a
per-function basis.
</p>
<dl compact="compact">
<dt><code>general-regs-only</code></dt>
<dd><a name="index-general_002dregs_002donly-function-attribute_002c-AArch64"></a>
<p>Indicates that no floating-point or Advanced SIMD registers should be
used when generating code for this function. If the function explicitly
uses floating-point code, then the compiler gives an error. This is
the same behavior as that of the command-line option
<samp>-mgeneral-regs-only</samp>.
</p>
</dd>
<dt><code>fix-cortex-a53-835769</code></dt>
<dd><a name="index-fix_002dcortex_002da53_002d835769-function-attribute_002c-AArch64"></a>
<p>Indicates that the workaround for the Cortex-A53 erratum 835769 should be
applied to this function. To explicitly disable the workaround for this
function specify the negated form: <code>no-fix-cortex-a53-835769</code>.
This corresponds to the behavior of the command line options
<samp>-mfix-cortex-a53-835769</samp> and <samp>-mno-fix-cortex-a53-835769</samp>.
</p>
</dd>
<dt><code>cmodel=</code></dt>
<dd><a name="index-cmodel_003d-function-attribute_002c-AArch64"></a>
<p>Indicates that code should be generated for a particular code model for
this function. The behavior and permissible arguments are the same as
for the command line option <samp>-mcmodel=</samp>.
</p>
</dd>
<dt><code>strict-align</code></dt>
<dd><a name="index-strict_002dalign-function-attribute_002c-AArch64"></a>
<p>Indicates that the compiler should not assume that unaligned memory references
are handled by the system. The behavior is the same as for the command-line
option <samp>-mstrict-align</samp>.
</p>
</dd>
<dt><code>omit-leaf-frame-pointer</code></dt>
<dd><a name="index-omit_002dleaf_002dframe_002dpointer-function-attribute_002c-AArch64"></a>
<p>Indicates that the frame pointer should be omitted for a leaf function call.
To keep the frame pointer, the inverse attribute
<code>no-omit-leaf-frame-pointer</code> can be specified. These attributes have
the same behavior as the command-line options <samp>-momit-leaf-frame-pointer</samp>
and <samp>-mno-omit-leaf-frame-pointer</samp>.
</p>
</dd>
<dt><code>tls-dialect=</code></dt>
<dd><a name="index-tls_002ddialect_003d-function-attribute_002c-AArch64"></a>
<p>Specifies the TLS dialect to use for this function. The behavior and
permissible arguments are the same as for the command-line option
<samp>-mtls-dialect=</samp>.
</p>
</dd>
<dt><code>arch=</code></dt>
<dd><a name="index-arch_003d-function-attribute_002c-AArch64"></a>
<p>Specifies the architecture version and architectural extensions to use
for this function. The behavior and permissible arguments are the same as
for the <samp>-march=</samp> command-line option.
</p>
</dd>
<dt><code>tune=</code></dt>
<dd><a name="index-tune_003d-function-attribute_002c-AArch64"></a>
<p>Specifies the core for which to tune the performance of this function.
The behavior and permissible arguments are the same as for the <samp>-mtune=</samp>
command-line option.
</p>
</dd>
<dt><code>cpu=</code></dt>
<dd><a name="index-cpu_003d-function-attribute_002c-AArch64"></a>
<p>Specifies the core for which to tune the performance of this function and also
whose architectural features to use. The behavior and valid arguments are the
same as for the <samp>-mcpu=</samp> command-line option.
</p>
</dd>
<dt><code>sign-return-address</code></dt>
<dd><a name="index-sign_002dreturn_002daddress-function-attribute_002c-AArch64"></a>
<p>Select the function scope on which return address signing will be applied. The
behavior and permissible arguments are the same as for the command-line option
<samp>-msign-return-address=</samp>. The default value is <code>none</code>.
</p>
</dd>
</dl>
<p>The above target attributes can be specified as follows:
</p>
<div class="smallexample">
<pre class="smallexample">__attribute__((target("<var>attr-string</var>")))
int
f (int a)
{
return a + 5;
}
</pre></div>
<p>where <code><var>attr-string</var></code> is one of the attribute strings specified above.
</p>
<p>Additionally, the architectural extension string may be specified on its
own. This can be used to turn on and off particular architectural extensions
without having to specify a particular architecture version or core. Example:
</p>
<div class="smallexample">
<pre class="smallexample">__attribute__((target("+crc+nocrypto")))
int
foo (int a)
{
return a + 5;
}
</pre></div>
<p>In this example <code>target("+crc+nocrypto")</code> enables the <code>crc</code>
extension and disables the <code>crypto</code> extension for the function <code>foo</code>
without modifying an existing <samp>-march=</samp> or <samp>-mcpu</samp> option.
</p>
<p>Multiple target function attributes can be specified by separating them with
a comma. For example:
</p><div class="smallexample">
<pre class="smallexample">__attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
int
foo (int a)
{
return a + 5;
}
</pre></div>
<p>is valid and compiles function <code>foo</code> for ARMv8-A with <code>crc</code>
and <code>crypto</code> extensions and tunes it for <code>cortex-a53</code>.
</p>
<a name="Inlining-rules"></a>
<h4 class="subsubsection">6.31.2.1 Inlining rules</h4>
<p>Specifying target attributes on individual functions or performing link-time
optimization across translation units compiled with different target options
can affect function inlining rules:
</p>
<p>In particular, a caller function can inline a callee function only if the
architectural features available to the callee are a subset of the features
available to the caller.
For example: A function <code>foo</code> compiled with <samp>-march=armv8-a+crc</samp>,
or tagged with the equivalent <code>arch=armv8-a+crc</code> attribute,
can inline a function <code>bar</code> compiled with <samp>-march=armv8-a+nocrc</samp>
because the all the architectural features that function <code>bar</code> requires
are available to function <code>foo</code>. Conversely, function <code>bar</code> cannot
inline function <code>foo</code>.
</p>
<p>Additionally inlining a function compiled with <samp>-mstrict-align</samp> into a
function compiled without <code>-mstrict-align</code> is not allowed.
However, inlining a function compiled without <samp>-mstrict-align</samp> into a
function compiled with <samp>-mstrict-align</samp> is allowed.
</p>
<p>Note that CPU tuning options and attributes such as the <samp>-mcpu=</samp>,
<samp>-mtune=</samp> do not inhibit inlining unless the CPU specified by the
<samp>-mcpu=</samp> option or the <code>cpu=</code> attribute conflicts with the
architectural feature rules specified above.
</p>
<hr>
<a name="ARC-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#ARM-Function-Attributes" accesskey="n" rel="next">ARM Function Attributes</a>, Previous: <a href="#AArch64-Function-Attributes" accesskey="p" rel="prev">AArch64 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARC-Function-Attributes-1"></a>
<h4 class="subsection">6.31.3 ARC Function Attributes</h4>
<p>These function attributes are supported by the ARC back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-ARC"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p>
<p>On the ARC, you must specify the kind of interrupt to be handled
in a parameter to the interrupt attribute like this:
</p>
<div class="smallexample">
<pre class="smallexample">void f () __attribute__ ((interrupt ("ilink1")));
</pre></div>
<p>Permissible values for this parameter are: <code>ilink1</code><!-- /@w --> and
<code>ilink2</code><!-- /@w -->.
</p>
</dd>
<dt><code>long_call</code></dt>
<dt><code>medium_call</code></dt>
<dt><code>short_call</code></dt>
<dd><a name="index-long_005fcall-function-attribute_002c-ARC"></a>
<a name="index-medium_005fcall-function-attribute_002c-ARC"></a>
<a name="index-short_005fcall-function-attribute_002c-ARC"></a>
<a name="index-indirect-calls_002c-ARC"></a>
<p>These attributes specify how a particular function is called.
These attributes override the
<samp>-mlong-calls</samp> and <samp>-mmedium-calls</samp> (see <a href="#ARC-Options">ARC Options</a>)
command-line switches and <code>#pragma long_calls</code> settings.
</p>
<p>For ARC, a function marked with the <code>long_call</code> attribute is
always called using register-indirect jump-and-link instructions,
thereby enabling the called function to be placed anywhere within the
32-bit address space. A function marked with the <code>medium_call</code>
attribute will always be close enough to be called with an unconditional
branch-and-link instruction, which has a 25-bit offset from
the call site. A function marked with the <code>short_call</code>
attribute will always be close enough to be called with a conditional
branch-and-link instruction, which has a 21-bit offset from
the call site.
</p>
</dd>
<dt><code>jli_always</code></dt>
<dd><a name="index-jli_005falways-function-attribute_002c-ARC"></a>
<p>Forces a particular function to be called using <code>jli</code>
instruction. The <code>jli</code> instruction makes use of a table stored
into <code>.jlitab</code> section, which holds the location of the functions
which are addressed using this instruction.
</p>
</dd>
<dt><code>jli_fixed</code></dt>
<dd><a name="index-jli_005ffixed-function-attribute_002c-ARC"></a>
<p>Identical like the above one, but the location of the function in the
<code>jli</code> table is known and given as an attribute parameter.
</p>
</dd>
<dt><code>secure_call</code></dt>
<dd><a name="index-secure_005fcall-function-attribute_002c-ARC"></a>
<p>This attribute allows one to mark secure-code functions that are
callable from normal mode. The location of the secure call function
into the <code>sjli</code> table needs to be passed as argument.
</p>
</dd>
</dl>
<hr>
<a name="ARM-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#AVR-Function-Attributes" accesskey="n" rel="next">AVR Function Attributes</a>, Previous: <a href="#ARC-Function-Attributes" accesskey="p" rel="prev">ARC Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARM-Function-Attributes-1"></a>
<h4 class="subsection">6.31.4 ARM Function Attributes</h4>
<p>These function attributes are supported for ARM targets:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-ARM"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p>
<p>You can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:
</p>
<div class="smallexample">
<pre class="smallexample">void f () __attribute__ ((interrupt ("IRQ")));
</pre></div>
<p>Permissible values for this parameter are: <code>IRQ</code>, <code>FIQ</code>,
<code>SWI</code>, <code>ABORT</code> and <code>UNDEF</code>.
</p>
<p>On ARMv7-M the interrupt type is ignored, and the attribute means the function
may be called with a word-aligned stack pointer.
</p>
</dd>
<dt><code>isr</code></dt>
<dd><a name="index-isr-function-attribute_002c-ARM"></a>
<p>Use this attribute on ARM to write Interrupt Service Routines. This is an
alias to the <code>interrupt</code> attribute above.
</p>
</dd>
<dt><code>long_call</code></dt>
<dt><code>short_call</code></dt>
<dd><a name="index-long_005fcall-function-attribute_002c-ARM"></a>
<a name="index-short_005fcall-function-attribute_002c-ARM"></a>
<a name="index-indirect-calls_002c-ARM"></a>
<p>These attributes specify how a particular function is called.
These attributes override the
<samp>-mlong-calls</samp> (see <a href="#ARM-Options">ARM Options</a>)
command-line switch and <code>#pragma long_calls</code> settings. For ARM, the
<code>long_call</code> attribute indicates that the function might be far
away from the call site and require a different (more expensive)
calling sequence. The <code>short_call</code> attribute always places
the offset to the function from the call site into the ‘<samp>BL</samp>’
instruction directly.
</p>
</dd>
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-ARM"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p>
</dd>
<dt><code>pcs</code></dt>
<dd><a name="index-pcs-function-attribute_002c-ARM"></a>
<p>The <code>pcs</code> attribute can be used to control the calling convention
used for a function on ARM. The attribute takes an argument that specifies
the calling convention to use.
</p>
<p>When compiling using the AAPCS ABI (or a variant of it) then valid
values for the argument are <code>"aapcs"</code> and <code>"aapcs-vfp"</code>. In
order to use a variant other than <code>"aapcs"</code> then the compiler must
be permitted to use the appropriate co-processor registers (i.e., the
VFP registers must be available in order to use <code>"aapcs-vfp"</code>).
For example,
</p>
<div class="smallexample">
<pre class="smallexample">/* Argument passed in r0, and result returned in r0+r1. */
double f2d (float) __attribute__((pcs("aapcs")));
</pre></div>
<p>Variadic functions always use the <code>"aapcs"</code> calling convention and
the compiler rejects attempts to specify an alternative.
</p>
</dd>
<dt><code>target (<var>options</var>)</code></dt>
<dd><a name="index-target-function-attribute-1"></a>
<p>As discussed in <a href="#Common-Function-Attributes">Common Function Attributes</a>, this attribute
allows specification of target-specific compilation options.
</p>
<p>On ARM, the following options are allowed:
</p>
<dl compact="compact">
<dt>‘<samp>thumb</samp>’</dt>
<dd><a name="index-target_0028_0022thumb_0022_0029-function-attribute_002c-ARM"></a>
<p>Force code generation in the Thumb (T16/T32) ISA, depending on the
architecture level.
</p>
</dd>
<dt>‘<samp>arm</samp>’</dt>
<dd><a name="index-target_0028_0022arm_0022_0029-function-attribute_002c-ARM"></a>
<p>Force code generation in the ARM (A32) ISA.
</p>
<p>Functions from different modes can be inlined in the caller’s mode.
</p>
</dd>
<dt>‘<samp>fpu=</samp>’</dt>
<dd><a name="index-target_0028_0022fpu_003d_0022_0029-function-attribute_002c-ARM"></a>
<p>Specifies the fpu for which to tune the performance of this function.
The behavior and permissible arguments are the same as for the <samp>-mfpu=</samp>
command-line option.
</p>
</dd>
<dt>‘<samp>arch=</samp>’</dt>
<dd><a name="index-arch_003d-function-attribute_002c-ARM"></a>
<p>Specifies the architecture version and architectural extensions to use
for this function. The behavior and permissible arguments are the same as
for the <samp>-march=</samp> command-line option.
</p>
<p>The above target attributes can be specified as follows:
</p>
<div class="smallexample">
<pre class="smallexample">__attribute__((target("arch=armv8-a+crc")))
int
f (int a)
{
return a + 5;
}
</pre></div>
<p>Additionally, the architectural extension string may be specified on its
own. This can be used to turn on and off particular architectural extensions
without having to specify a particular architecture version or core. Example:
</p>
<div class="smallexample">
<pre class="smallexample">__attribute__((target("+crc+nocrypto")))
int
foo (int a)
{
return a + 5;
}
</pre></div>
<p>In this example <code>target("+crc+nocrypto")</code> enables the <code>crc</code>
extension and disables the <code>crypto</code> extension for the function <code>foo</code>
without modifying an existing <samp>-march=</samp> or <samp>-mcpu</samp> option.
</p>
</dd>
</dl>
</dd>
</dl>
<hr>
<a name="AVR-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Blackfin-Function-Attributes" accesskey="n" rel="next">Blackfin Function Attributes</a>, Previous: <a href="#ARM-Function-Attributes" accesskey="p" rel="prev">ARM Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="AVR-Function-Attributes-1"></a>
<h4 class="subsection">6.31.5 AVR Function Attributes</h4>
<p>These function attributes are supported by the AVR back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-AVR"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p>
<p>On the AVR, the hardware globally disables interrupts when an
interrupt is executed. The first instruction of an interrupt handler
declared with this attribute is a <code>SEI</code> instruction to
re-enable interrupts. See also the <code>signal</code> function attribute
that does not insert a <code>SEI</code> instruction. If both <code>signal</code> and
<code>interrupt</code> are specified for the same function, <code>signal</code>
is silently ignored.
</p>
</dd>
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-AVR"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p>
</dd>
<dt><code>no_gccisr</code></dt>
<dd><a name="index-no_005fgccisr-function-attribute_002c-AVR"></a>
<p>Do not use <code>__gcc_isr</code> pseudo instructions in a function with
the <code>interrupt</code> or <code>signal</code> attribute aka. interrupt
service routine (ISR).
Use this attribute if the preamble of the ISR prologue should always read
</p><div class="example">
<pre class="example">push __zero_reg__
push __tmp_reg__
in __tmp_reg__, __SREG__
push __tmp_reg__
clr __zero_reg__
</pre></div>
<p>and accordingly for the postamble of the epilogue — no matter whether
the mentioned registers are actually used in the ISR or not.
Situations where you might want to use this attribute include:
</p><ul>
<li> Code that (effectively) clobbers bits of <code>SREG</code> other than the
<code>I</code>-flag by writing to the memory location of <code>SREG</code>.
</li><li> Code that uses inline assembler to jump to a different function which
expects (parts of) the prologue code as outlined above to be present.
</li></ul>
<p>To disable <code>__gcc_isr</code> generation for the whole compilation unit,
there is option <samp>-mno-gas-isr-prologues</samp>, see <a href="#AVR-Options">AVR Options</a>.
</p>
</dd>
<dt><code>OS_main</code></dt>
<dt><code>OS_task</code></dt>
<dd><a name="index-OS_005fmain-function-attribute_002c-AVR"></a>
<a name="index-OS_005ftask-function-attribute_002c-AVR"></a>
<p>On AVR, functions with the <code>OS_main</code> or <code>OS_task</code> attribute
do not save/restore any call-saved register in their prologue/epilogue.
</p>
<p>The <code>OS_main</code> attribute can be used when there <em>is
guarantee</em> that interrupts are disabled at the time when the function
is entered. This saves resources when the stack pointer has to be
changed to set up a frame for local variables.
</p>
<p>The <code>OS_task</code> attribute can be used when there is <em>no
guarantee</em> that interrupts are disabled at that time when the function
is entered like for, e.g. task functions in a multi-threading operating
system. In that case, changing the stack pointer register is
guarded by save/clear/restore of the global interrupt enable flag.
</p>
<p>The differences to the <code>naked</code> function attribute are:
</p><ul>
<li> <code>naked</code> functions do not have a return instruction whereas
<code>OS_main</code> and <code>OS_task</code> functions have a <code>RET</code> or
<code>RETI</code> return instruction.
</li><li> <code>naked</code> functions do not set up a frame for local variables
or a frame pointer whereas <code>OS_main</code> and <code>OS_task</code> do this
as needed.
</li></ul>
</dd>
<dt><code>signal</code></dt>
<dd><a name="index-signal-function-attribute_002c-AVR"></a>
<p>Use this attribute on the AVR to indicate that the specified
function is an interrupt handler. The compiler generates function
entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.
</p>
<p>See also the <code>interrupt</code> function attribute.
</p>
<p>The AVR hardware globally disables interrupts when an interrupt is executed.
Interrupt handler functions defined with the <code>signal</code> attribute
do not re-enable interrupts. It is save to enable interrupts in a
<code>signal</code> handler. This “save” only applies to the code
generated by the compiler and not to the IRQ layout of the
application which is responsibility of the application.
</p>
<p>If both <code>signal</code> and <code>interrupt</code> are specified for the same
function, <code>signal</code> is silently ignored.
</p></dd>
</dl>
<hr>
<a name="Blackfin-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#CR16-Function-Attributes" accesskey="n" rel="next">CR16 Function Attributes</a>, Previous: <a href="#AVR-Function-Attributes" accesskey="p" rel="prev">AVR Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Blackfin-Function-Attributes-1"></a>
<h4 class="subsection">6.31.6 Blackfin Function Attributes</h4>
<p>These function attributes are supported by the Blackfin back end:
</p>
<dl compact="compact">
<dt><code>exception_handler</code></dt>
<dd><a name="index-exception_005fhandler-function-attribute"></a>
<a name="index-exception-handler-functions_002c-Blackfin"></a>
<p>Use this attribute on the Blackfin to indicate that the specified function
is an exception handler. The compiler generates function entry and
exit sequences suitable for use in an exception handler when this
attribute is present.
</p>
</dd>
<dt><code>interrupt_handler</code></dt>
<dd><a name="index-interrupt_005fhandler-function-attribute_002c-Blackfin"></a>
<p>Use this attribute to
indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.
</p>
</dd>
<dt><code>kspisusp</code></dt>
<dd><a name="index-kspisusp-function-attribute_002c-Blackfin"></a>
<a name="index-User-stack-pointer-in-interrupts-on-the-Blackfin"></a>
<p>When used together with <code>interrupt_handler</code>, <code>exception_handler</code>
or <code>nmi_handler</code>, code is generated to load the stack pointer
from the USP register in the function prologue.
</p>
</dd>
<dt><code>l1_text</code></dt>
<dd><a name="index-l1_005ftext-function-attribute_002c-Blackfin"></a>
<p>This attribute specifies a function to be placed into L1 Instruction
SRAM. The function is put into a specific section named <code>.l1.text</code>.
With <samp>-mfdpic</samp>, function calls with a such function as the callee
or caller uses inlined PLT.
</p>
</dd>
<dt><code>l2</code></dt>
<dd><a name="index-l2-function-attribute_002c-Blackfin"></a>
<p>This attribute specifies a function to be placed into L2
SRAM. The function is put into a specific section named
<code>.l2.text</code>. With <samp>-mfdpic</samp>, callers of such functions use
an inlined PLT.
</p>
</dd>
<dt><code>longcall</code></dt>
<dt><code>shortcall</code></dt>
<dd><a name="index-indirect-calls_002c-Blackfin"></a>
<a name="index-longcall-function-attribute_002c-Blackfin"></a>
<a name="index-shortcall-function-attribute_002c-Blackfin"></a>
<p>The <code>longcall</code> attribute
indicates that the function might be far away from the call site and
require a different (more expensive) calling sequence. The
<code>shortcall</code> attribute indicates that the function is always close
enough for the shorter calling sequence to be used. These attributes
override the <samp>-mlongcall</samp> switch.
</p>
</dd>
<dt><code>nesting</code></dt>
<dd><a name="index-nesting-function-attribute_002c-Blackfin"></a>
<a name="index-Allow-nesting-in-an-interrupt-handler-on-the-Blackfin-processor"></a>
<p>Use this attribute together with <code>interrupt_handler</code>,
<code>exception_handler</code> or <code>nmi_handler</code> to indicate that the function
entry code should enable nested interrupts or exceptions.
</p>
</dd>
<dt><code>nmi_handler</code></dt>
<dd><a name="index-nmi_005fhandler-function-attribute_002c-Blackfin"></a>
<a name="index-NMI-handler-functions-on-the-Blackfin-processor"></a>
<p>Use this attribute on the Blackfin to indicate that the specified function
is an NMI handler. The compiler generates function entry and
exit sequences suitable for use in an NMI handler when this
attribute is present.
</p>
</dd>
<dt><code>saveall</code></dt>
<dd><a name="index-saveall-function-attribute_002c-Blackfin"></a>
<a name="index-save-all-registers-on-the-Blackfin"></a>
<p>Use this attribute to indicate that
all registers except the stack pointer should be saved in the prologue
regardless of whether they are used or not.
</p></dd>
</dl>
<hr>
<a name="CR16-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Epiphany-Function-Attributes" accesskey="n" rel="next">Epiphany Function Attributes</a>, Previous: <a href="#Blackfin-Function-Attributes" accesskey="p" rel="prev">Blackfin Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="CR16-Function-Attributes-1"></a>
<h4 class="subsection">6.31.7 CR16 Function Attributes</h4>
<p>These function attributes are supported by the CR16 back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-CR16"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p></dd>
</dl>
<hr>
<a name="Epiphany-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#H8_002f300-Function-Attributes" accesskey="n" rel="next">H8/300 Function Attributes</a>, Previous: <a href="#CR16-Function-Attributes" accesskey="p" rel="prev">CR16 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Epiphany-Function-Attributes-1"></a>
<h4 class="subsection">6.31.8 Epiphany Function Attributes</h4>
<p>These function attributes are supported by the Epiphany back end:
</p>
<dl compact="compact">
<dt><code>disinterrupt</code></dt>
<dd><a name="index-disinterrupt-function-attribute_002c-Epiphany"></a>
<p>This attribute causes the compiler to emit
instructions to disable interrupts for the duration of the given
function.
</p>
</dd>
<dt><code>forwarder_section</code></dt>
<dd><a name="index-forwarder_005fsection-function-attribute_002c-Epiphany"></a>
<p>This attribute modifies the behavior of an interrupt handler.
The interrupt handler may be in external memory which cannot be
reached by a branch instruction, so generate a local memory trampoline
to transfer control. The single parameter identifies the section where
the trampoline is placed.
</p>
</dd>
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-Epiphany"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present. It may also generate
a special section with code to initialize the interrupt vector table.
</p>
<p>On Epiphany targets one or more optional parameters can be added like this:
</p>
<div class="smallexample">
<pre class="smallexample">void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
</pre></div>
<p>Permissible values for these parameters are: <code>reset</code><!-- /@w -->,
<code><span class="nolinebreak">software_exception</span></code><!-- /@w -->, <code><span class="nolinebreak">page_miss</span></code><!-- /@w -->,
<code>timer0</code><!-- /@w -->, <code>timer1</code><!-- /@w -->, <code>message</code><!-- /@w -->,
<code>dma0</code><!-- /@w -->, <code>dma1</code><!-- /@w -->, <code>wand</code><!-- /@w --> and <code>swi</code><!-- /@w -->.
Multiple parameters indicate that multiple entries in the interrupt
vector table should be initialized for this function, i.e. for each
parameter <var>name</var><!-- /@w -->, a jump to the function is emitted in
the section <span class="nolinebreak">ivt_entry_</span><var>name</var><!-- /@w -->. The parameter(s) may be omitted
entirely, in which case no interrupt vector table entry is provided.
</p>
<p>Note that interrupts are enabled inside the function
unless the <code>disinterrupt</code> attribute is also specified.
</p>
<p>The following examples are all valid uses of these attributes on
Epiphany targets:
</p><div class="smallexample">
<pre class="smallexample">void __attribute__ ((interrupt)) universal_handler ();
void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
void __attribute__ ((interrupt ("dma0, dma1")))
universal_dma_handler ();
void __attribute__ ((interrupt ("timer0"), disinterrupt))
fast_timer_handler ();
void __attribute__ ((interrupt ("dma0, dma1"),
forwarder_section ("tramp")))
external_dma_handler ();
</pre></div>
</dd>
<dt><code>long_call</code></dt>
<dt><code>short_call</code></dt>
<dd><a name="index-long_005fcall-function-attribute_002c-Epiphany"></a>
<a name="index-short_005fcall-function-attribute_002c-Epiphany"></a>
<a name="index-indirect-calls_002c-Epiphany"></a>
<p>These attributes specify how a particular function is called.
These attributes override the
<samp>-mlong-calls</samp> (see <a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a>)
command-line switch and <code>#pragma long_calls</code> settings.
</p></dd>
</dl>
<hr>
<a name="H8_002f300-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#IA_002d64-Function-Attributes" accesskey="n" rel="next">IA-64 Function Attributes</a>, Previous: <a href="#Epiphany-Function-Attributes" accesskey="p" rel="prev">Epiphany Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="H8_002f300-Function-Attributes-1"></a>
<h4 class="subsection">6.31.9 H8/300 Function Attributes</h4>
<p>These function attributes are available for H8/300 targets:
</p>
<dl compact="compact">
<dt><code>function_vector</code></dt>
<dd><a name="index-function_005fvector-function-attribute_002c-H8_002f300"></a>
<p>Use this attribute on the H8/300, H8/300H, and H8S to indicate
that the specified function should be called through the function vector.
Calling a function through the function vector reduces code size; however,
the function vector has a limited size (maximum 128 entries on the H8/300
and 64 entries on the H8/300H and H8S)
and shares space with the interrupt vector.
</p>
</dd>
<dt><code>interrupt_handler</code></dt>
<dd><a name="index-interrupt_005fhandler-function-attribute_002c-H8_002f300"></a>
<p>Use this attribute on the H8/300, H8/300H, and H8S to
indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.
</p>
</dd>
<dt><code>saveall</code></dt>
<dd><a name="index-saveall-function-attribute_002c-H8_002f300"></a>
<a name="index-save-all-registers-on-the-H8_002f300_002c-H8_002f300H_002c-and-H8S"></a>
<p>Use this attribute on the H8/300, H8/300H, and H8S to indicate that
all registers except the stack pointer should be saved in the prologue
regardless of whether they are used or not.
</p></dd>
</dl>
<hr>
<a name="IA_002d64-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#M32C-Function-Attributes" accesskey="n" rel="next">M32C Function Attributes</a>, Previous: <a href="#H8_002f300-Function-Attributes" accesskey="p" rel="prev">H8/300 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="IA_002d64-Function-Attributes-1"></a>
<h4 class="subsection">6.31.10 IA-64 Function Attributes</h4>
<p>These function attributes are supported on IA-64 targets:
</p>
<dl compact="compact">
<dt><code>syscall_linkage</code></dt>
<dd><a name="index-syscall_005flinkage-function-attribute_002c-IA_002d64"></a>
<p>This attribute is used to modify the IA-64 calling convention by marking
all input registers as live at all function exits. This makes it possible
to restart a system call after an interrupt without having to save/restore
the input registers. This also prevents kernel data from leaking into
application code.
</p>
</dd>
<dt><code>version_id</code></dt>
<dd><a name="index-version_005fid-function-attribute_002c-IA_002d64"></a>
<p>This IA-64 HP-UX attribute, attached to a global variable or function, renames a
symbol to contain a version string, thus allowing for function level
versioning. HP-UX system header files may use function level versioning
for some system calls.
</p>
<div class="smallexample">
<pre class="smallexample">extern int foo () __attribute__((version_id ("20040821")));
</pre></div>
<p>Calls to <code>foo</code> are mapped to calls to <code>foo{20040821}</code>.
</p></dd>
</dl>
<hr>
<a name="M32C-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#M32R_002fD-Function-Attributes" accesskey="n" rel="next">M32R/D Function Attributes</a>, Previous: <a href="#IA_002d64-Function-Attributes" accesskey="p" rel="prev">IA-64 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="M32C-Function-Attributes-1"></a>
<h4 class="subsection">6.31.11 M32C Function Attributes</h4>
<p>These function attributes are supported by the M32C back end:
</p>
<dl compact="compact">
<dt><code>bank_switch</code></dt>
<dd><a name="index-bank_005fswitch-function-attribute_002c-M32C"></a>
<p>When added to an interrupt handler with the M32C port, causes the
prologue and epilogue to use bank switching to preserve the registers
rather than saving them on the stack.
</p>
</dd>
<dt><code>fast_interrupt</code></dt>
<dd><a name="index-fast_005finterrupt-function-attribute_002c-M32C"></a>
<p>Use this attribute on the M32C port to indicate that the specified
function is a fast interrupt handler. This is just like the
<code>interrupt</code> attribute, except that <code>freit</code> is used to return
instead of <code>reit</code>.
</p>
</dd>
<dt><code>function_vector</code></dt>
<dd><a name="index-function_005fvector-function-attribute_002c-M16C_002fM32C"></a>
<p>On M16C/M32C targets, the <code>function_vector</code> attribute declares a
special page subroutine call function. Use of this attribute reduces
the code size by 2 bytes for each call generated to the
subroutine. The argument to the attribute is the vector number entry
from the special page vector table which contains the 16 low-order
bits of the subroutine’s entry address. Each vector table has special
page number (18 to 255) that is used in <code>jsrs</code> instructions.
Jump addresses of the routines are generated by adding 0x0F0000 (in
case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
2-byte addresses set in the vector table. Therefore you need to ensure
that all the special page vector routines should get mapped within the
address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
(for M32C).
</p>
<p>In the following example 2 bytes are saved for each call to
function <code>foo</code>.
</p>
<div class="smallexample">
<pre class="smallexample">void foo (void) __attribute__((function_vector(0x18)));
void foo (void)
{
}
void bar (void)
{
foo();
}
</pre></div>
<p>If functions are defined in one file and are called in another file,
then be sure to write this declaration in both files.
</p>
<p>This attribute is ignored for R8C target.
</p>
</dd>
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-M32C"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p></dd>
</dl>
<hr>
<a name="M32R_002fD-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#m68k-Function-Attributes" accesskey="n" rel="next">m68k Function Attributes</a>, Previous: <a href="#M32C-Function-Attributes" accesskey="p" rel="prev">M32C Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="M32R_002fD-Function-Attributes-1"></a>
<h4 class="subsection">6.31.12 M32R/D Function Attributes</h4>
<p>These function attributes are supported by the M32R/D back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-M32R_002fD"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p>
</dd>
<dt><code>model (<var>model-name</var>)</code></dt>
<dd><a name="index-model-function-attribute_002c-M32R_002fD"></a>
<a name="index-function-addressability-on-the-M32R_002fD"></a>
<p>On the M32R/D, use this attribute to set the addressability of an
object, and of the code generated for a function. The identifier
<var>model-name</var> is one of <code>small</code>, <code>medium</code>, or
<code>large</code>, representing each of the code models.
</p>
<p>Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the <code>ld24</code> instruction), and are
callable with the <code>bl</code> instruction.
</p>
<p>Medium model objects may live anywhere in the 32-bit address space (the
compiler generates <code>seth/add3</code> instructions to load their addresses),
and are callable with the <code>bl</code> instruction.
</p>
<p>Large model objects may live anywhere in the 32-bit address space (the
compiler generates <code>seth/add3</code> instructions to load their addresses),
and may not be reachable with the <code>bl</code> instruction (the compiler
generates the much slower <code>seth/add3/jl</code> instruction sequence).
</p></dd>
</dl>
<hr>
<a name="m68k-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#MCORE-Function-Attributes" accesskey="n" rel="next">MCORE Function Attributes</a>, Previous: <a href="#M32R_002fD-Function-Attributes" accesskey="p" rel="prev">M32R/D Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="m68k-Function-Attributes-1"></a>
<h4 class="subsection">6.31.13 m68k Function Attributes</h4>
<p>These function attributes are supported by the m68k back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dt><code>interrupt_handler</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-m68k"></a>
<a name="index-interrupt_005fhandler-function-attribute_002c-m68k"></a>
<p>Use this attribute to
indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present. Either name may be used.
</p>
</dd>
<dt><code>interrupt_thread</code></dt>
<dd><a name="index-interrupt_005fthread-function-attribute_002c-fido"></a>
<p>Use this attribute on fido, a subarchitecture of the m68k, to indicate
that the specified function is an interrupt handler that is designed
to run as a thread. The compiler omits generate prologue/epilogue
sequences and replaces the return instruction with a <code>sleep</code>
instruction. This attribute is available only on fido.
</p></dd>
</dl>
<hr>
<a name="MCORE-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#MeP-Function-Attributes" accesskey="n" rel="next">MeP Function Attributes</a>, Previous: <a href="#m68k-Function-Attributes" accesskey="p" rel="prev">m68k Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MCORE-Function-Attributes-1"></a>
<h4 class="subsection">6.31.14 MCORE Function Attributes</h4>
<p>These function attributes are supported by the MCORE back end:
</p>
<dl compact="compact">
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-MCORE"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p></dd>
</dl>
<hr>
<a name="MeP-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#MicroBlaze-Function-Attributes" accesskey="n" rel="next">MicroBlaze Function Attributes</a>, Previous: <a href="#MCORE-Function-Attributes" accesskey="p" rel="prev">MCORE Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MeP-Function-Attributes-1"></a>
<h4 class="subsection">6.31.15 MeP Function Attributes</h4>
<p>These function attributes are supported by the MeP back end:
</p>
<dl compact="compact">
<dt><code>disinterrupt</code></dt>
<dd><a name="index-disinterrupt-function-attribute_002c-MeP"></a>
<p>On MeP targets, this attribute causes the compiler to emit
instructions to disable interrupts for the duration of the given
function.
</p>
</dd>
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-MeP"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p>
</dd>
<dt><code>near</code></dt>
<dd><a name="index-near-function-attribute_002c-MeP"></a>
<p>This attribute causes the compiler to assume the called
function is close enough to use the normal calling convention,
overriding the <samp>-mtf</samp> command-line option.
</p>
</dd>
<dt><code>far</code></dt>
<dd><a name="index-far-function-attribute_002c-MeP"></a>
<p>On MeP targets this causes the compiler to use a calling convention
that assumes the called function is too far away for the built-in
addressing modes.
</p>
</dd>
<dt><code>vliw</code></dt>
<dd><a name="index-vliw-function-attribute_002c-MeP"></a>
<p>The <code>vliw</code> attribute tells the compiler to emit
instructions in VLIW mode instead of core mode. Note that this
attribute is not allowed unless a VLIW coprocessor has been configured
and enabled through command-line options.
</p></dd>
</dl>
<hr>
<a name="MicroBlaze-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Microsoft-Windows-Function-Attributes" accesskey="n" rel="next">Microsoft Windows Function Attributes</a>, Previous: <a href="#MeP-Function-Attributes" accesskey="p" rel="prev">MeP Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MicroBlaze-Function-Attributes-1"></a>
<h4 class="subsection">6.31.16 MicroBlaze Function Attributes</h4>
<p>These function attributes are supported on MicroBlaze targets:
</p>
<dl compact="compact">
<dt><code>save_volatiles</code></dt>
<dd><a name="index-save_005fvolatiles-function-attribute_002c-MicroBlaze"></a>
<p>Use this attribute to indicate that the function is
an interrupt handler. All volatile registers (in addition to non-volatile
registers) are saved in the function prologue. If the function is a leaf
function, only volatiles used by the function are saved. A normal function
return is generated instead of a return from interrupt.
</p>
</dd>
<dt><code>break_handler</code></dt>
<dd><a name="index-break_005fhandler-function-attribute_002c-MicroBlaze"></a>
<a name="index-break-handler-functions"></a>
<p>Use this attribute to indicate that
the specified function is a break handler. The compiler generates function
entry and exit sequences suitable for use in an break handler when this
attribute is present. The return from <code>break_handler</code> is done through
the <code>rtbd</code> instead of <code>rtsd</code>.
</p>
<div class="smallexample">
<pre class="smallexample">void f () __attribute__ ((break_handler));
</pre></div>
</dd>
<dt><code>interrupt_handler</code></dt>
<dt><code>fast_interrupt</code></dt>
<dd><a name="index-interrupt_005fhandler-function-attribute_002c-MicroBlaze"></a>
<a name="index-fast_005finterrupt-function-attribute_002c-MicroBlaze"></a>
<p>These attributes indicate that the specified function is an interrupt
handler. Use the <code>fast_interrupt</code> attribute to indicate handlers
used in low-latency interrupt mode, and <code>interrupt_handler</code> for
interrupts that do not use low-latency handlers. In both cases, GCC
emits appropriate prologue code and generates a return from the handler
using <code>rtid</code> instead of <code>rtsd</code>.
</p></dd>
</dl>
<hr>
<a name="Microsoft-Windows-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#MIPS-Function-Attributes" accesskey="n" rel="next">MIPS Function Attributes</a>, Previous: <a href="#MicroBlaze-Function-Attributes" accesskey="p" rel="prev">MicroBlaze Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Microsoft-Windows-Function-Attributes-1"></a>
<h4 class="subsection">6.31.17 Microsoft Windows Function Attributes</h4>
<p>The following attributes are available on Microsoft Windows and Symbian OS
targets.
</p>
<dl compact="compact">
<dt><code>dllexport</code></dt>
<dd><a name="index-dllexport-function-attribute"></a>
<a name="index-_005f_005fdeclspec_0028dllexport_0029"></a>
<p>On Microsoft Windows targets and Symbian OS targets the
<code>dllexport</code> attribute causes the compiler to provide a global
pointer to a pointer in a DLL, so that it can be referenced with the
<code>dllimport</code> attribute. On Microsoft Windows targets, the pointer
name is formed by combining <code>_imp__</code> and the function or variable
name.
</p>
<p>You can use <code>__declspec(dllexport)</code> as a synonym for
<code>__attribute__ ((dllexport))</code> for compatibility with other
compilers.
</p>
<p>On systems that support the <code>visibility</code> attribute, this
attribute also implies “default” visibility. It is an error to
explicitly specify any other visibility.
</p>
<p>GCC’s default behavior is to emit all inline functions with the
<code>dllexport</code> attribute. Since this can cause object file-size bloat,
you can use <samp>-fno-keep-inline-dllexport</samp>, which tells GCC to
ignore the attribute for inlined functions unless the
<samp>-fkeep-inline-functions</samp> flag is used instead.
</p>
<p>The attribute is ignored for undefined symbols.
</p>
<p>When applied to C++ classes, the attribute marks defined non-inlined
member functions and static data members as exports. Static consts
initialized in-class are not marked unless they are also defined
out-of-class.
</p>
<p>For Microsoft Windows targets there are alternative methods for
including the symbol in the DLL’s export table such as using a
<samp>.def</samp> file with an <code>EXPORTS</code> section or, with GNU ld, using
the <samp>--export-all</samp> linker flag.
</p>
</dd>
<dt><code>dllimport</code></dt>
<dd><a name="index-dllimport-function-attribute"></a>
<a name="index-_005f_005fdeclspec_0028dllimport_0029"></a>
<p>On Microsoft Windows and Symbian OS targets, the <code>dllimport</code>
attribute causes the compiler to reference a function or variable via
a global pointer to a pointer that is set up by the DLL exporting the
symbol. The attribute implies <code>extern</code>. On Microsoft Windows
targets, the pointer name is formed by combining <code>_imp__</code> and the
function or variable name.
</p>
<p>You can use <code>__declspec(dllimport)</code> as a synonym for
<code>__attribute__ ((dllimport))</code> for compatibility with other
compilers.
</p>
<p>On systems that support the <code>visibility</code> attribute, this
attribute also implies “default” visibility. It is an error to
explicitly specify any other visibility.
</p>
<p>Currently, the attribute is ignored for inlined functions. If the
attribute is applied to a symbol <em>definition</em>, an error is reported.
If a symbol previously declared <code>dllimport</code> is later defined, the
attribute is ignored in subsequent references, and a warning is emitted.
The attribute is also overridden by a subsequent declaration as
<code>dllexport</code>.
</p>
<p>When applied to C++ classes, the attribute marks non-inlined
member functions and static data members as imports. However, the
attribute is ignored for virtual methods to allow creation of vtables
using thunks.
</p>
<p>On the SH Symbian OS target the <code>dllimport</code> attribute also has
another affect—it can cause the vtable and run-time type information
for a class to be exported. This happens when the class has a
dllimported constructor or a non-inline, non-pure virtual function
and, for either of those two conditions, the class also has an inline
constructor or destructor and has a key function that is defined in
the current translation unit.
</p>
<p>For Microsoft Windows targets the use of the <code>dllimport</code>
attribute on functions is not necessary, but provides a small
performance benefit by eliminating a thunk in the DLL. The use of the
<code>dllimport</code> attribute on imported variables can be avoided by passing the
<samp>--enable-auto-import</samp> switch to the GNU linker. As with
functions, using the attribute for a variable eliminates a thunk in
the DLL.
</p>
<p>One drawback to using this attribute is that a pointer to a
<em>variable</em> marked as <code>dllimport</code> cannot be used as a constant
address. However, a pointer to a <em>function</em> with the
<code>dllimport</code> attribute can be used as a constant initializer; in
this case, the address of a stub function in the import lib is
referenced. On Microsoft Windows targets, the attribute can be disabled
for functions by setting the <samp>-mnop-fun-dllimport</samp> flag.
</p></dd>
</dl>
<hr>
<a name="MIPS-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#MSP430-Function-Attributes" accesskey="n" rel="next">MSP430 Function Attributes</a>, Previous: <a href="#Microsoft-Windows-Function-Attributes" accesskey="p" rel="prev">Microsoft Windows Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MIPS-Function-Attributes-1"></a>
<h4 class="subsection">6.31.18 MIPS Function Attributes</h4>
<p>These function attributes are supported by the MIPS back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-MIPS"></a>
<p>Use this attribute to indicate that the specified function is an interrupt
handler. The compiler generates function entry and exit sequences suitable
for use in an interrupt handler when this attribute is present.
An optional argument is supported for the interrupt attribute which allows
the interrupt mode to be described. By default GCC assumes the external
interrupt controller (EIC) mode is in use, this can be explicitly set using
<code>eic</code>. When interrupts are non-masked then the requested Interrupt
Priority Level (IPL) is copied to the current IPL which has the effect of only
enabling higher priority interrupts. To use vectored interrupt mode use
the argument <code>vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]</code>, this will change
the behavior of the non-masked interrupt support and GCC will arrange to mask
all interrupts from sw0 up to and including the specified interrupt vector.
</p>
<p>You can use the following attributes to modify the behavior
of an interrupt handler:
</p><dl compact="compact">
<dt><code>use_shadow_register_set</code></dt>
<dd><a name="index-use_005fshadow_005fregister_005fset-function-attribute_002c-MIPS"></a>
<p>Assume that the handler uses a shadow register set, instead of
the main general-purpose registers. An optional argument <code>intstack</code> is
supported to indicate that the shadow register set contains a valid stack
pointer.
</p>
</dd>
<dt><code>keep_interrupts_masked</code></dt>
<dd><a name="index-keep_005finterrupts_005fmasked-function-attribute_002c-MIPS"></a>
<p>Keep interrupts masked for the whole function. Without this attribute,
GCC tries to reenable interrupts for as much of the function as it can.
</p>
</dd>
<dt><code>use_debug_exception_return</code></dt>
<dd><a name="index-use_005fdebug_005fexception_005freturn-function-attribute_002c-MIPS"></a>
<p>Return using the <code>deret</code> instruction. Interrupt handlers that don’t
have this attribute return using <code>eret</code> instead.
</p></dd>
</dl>
<p>You can use any combination of these attributes, as shown below:
</p><div class="smallexample">
<pre class="smallexample">void __attribute__ ((interrupt)) v0 ();
void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
void __attribute__ ((interrupt, use_shadow_register_set,
keep_interrupts_masked)) v4 ();
void __attribute__ ((interrupt, use_shadow_register_set,
use_debug_exception_return)) v5 ();
void __attribute__ ((interrupt, keep_interrupts_masked,
use_debug_exception_return)) v6 ();
void __attribute__ ((interrupt, use_shadow_register_set,
keep_interrupts_masked,
use_debug_exception_return)) v7 ();
void __attribute__ ((interrupt("eic"))) v8 ();
void __attribute__ ((interrupt("vector=hw3"))) v9 ();
</pre></div>
</dd>
<dt><code>long_call</code></dt>
<dt><code>short_call</code></dt>
<dt><code>near</code></dt>
<dt><code>far</code></dt>
<dd><a name="index-indirect-calls_002c-MIPS"></a>
<a name="index-long_005fcall-function-attribute_002c-MIPS"></a>
<a name="index-short_005fcall-function-attribute_002c-MIPS"></a>
<a name="index-near-function-attribute_002c-MIPS"></a>
<a name="index-far-function-attribute_002c-MIPS"></a>
<p>These attributes specify how a particular function is called on MIPS.
The attributes override the <samp>-mlong-calls</samp> (see <a href="#MIPS-Options">MIPS Options</a>)
command-line switch. The <code>long_call</code> and <code>far</code> attributes are
synonyms, and cause the compiler to always call
the function by first loading its address into a register, and then using
the contents of that register. The <code>short_call</code> and <code>near</code>
attributes are synonyms, and have the opposite
effect; they specify that non-PIC calls should be made using the more
efficient <code>jal</code> instruction.
</p>
</dd>
<dt><code>mips16</code></dt>
<dt><code>nomips16</code></dt>
<dd><a name="index-mips16-function-attribute_002c-MIPS"></a>
<a name="index-nomips16-function-attribute_002c-MIPS"></a>
<p>On MIPS targets, you can use the <code>mips16</code> and <code>nomips16</code>
function attributes to locally select or turn off MIPS16 code generation.
A function with the <code>mips16</code> attribute is emitted as MIPS16 code,
while MIPS16 code generation is disabled for functions with the
<code>nomips16</code> attribute. These attributes override the
<samp>-mips16</samp> and <samp>-mno-mips16</samp> options on the command line
(see <a href="#MIPS-Options">MIPS Options</a>).
</p>
<p>When compiling files containing mixed MIPS16 and non-MIPS16 code, the
preprocessor symbol <code>__mips16</code> reflects the setting on the command line,
not that within individual functions. Mixed MIPS16 and non-MIPS16 code
may interact badly with some GCC extensions such as <code>__builtin_apply</code>
(see <a href="#Constructing-Calls">Constructing Calls</a>).
</p>
</dd>
<dt><code>micromips, MIPS</code></dt>
<dt><code>nomicromips, MIPS</code></dt>
<dd><a name="index-micromips-function-attribute"></a>
<a name="index-nomicromips-function-attribute"></a>
<p>On MIPS targets, you can use the <code>micromips</code> and <code>nomicromips</code>
function attributes to locally select or turn off microMIPS code generation.
A function with the <code>micromips</code> attribute is emitted as microMIPS code,
while microMIPS code generation is disabled for functions with the
<code>nomicromips</code> attribute. These attributes override the
<samp>-mmicromips</samp> and <samp>-mno-micromips</samp> options on the command line
(see <a href="#MIPS-Options">MIPS Options</a>).
</p>
<p>When compiling files containing mixed microMIPS and non-microMIPS code, the
preprocessor symbol <code>__mips_micromips</code> reflects the setting on the
command line,
not that within individual functions. Mixed microMIPS and non-microMIPS code
may interact badly with some GCC extensions such as <code>__builtin_apply</code>
(see <a href="#Constructing-Calls">Constructing Calls</a>).
</p>
</dd>
<dt><code>nocompression</code></dt>
<dd><a name="index-nocompression-function-attribute_002c-MIPS"></a>
<p>On MIPS targets, you can use the <code>nocompression</code> function attribute
to locally turn off MIPS16 and microMIPS code generation. This attribute
overrides the <samp>-mips16</samp> and <samp>-mmicromips</samp> options on the
command line (see <a href="#MIPS-Options">MIPS Options</a>).
</p></dd>
</dl>
<hr>
<a name="MSP430-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#NDS32-Function-Attributes" accesskey="n" rel="next">NDS32 Function Attributes</a>, Previous: <a href="#MIPS-Function-Attributes" accesskey="p" rel="prev">MIPS Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MSP430-Function-Attributes-1"></a>
<h4 class="subsection">6.31.19 MSP430 Function Attributes</h4>
<p>These function attributes are supported by the MSP430 back end:
</p>
<dl compact="compact">
<dt><code>critical</code></dt>
<dd><a name="index-critical-function-attribute_002c-MSP430"></a>
<p>Critical functions disable interrupts upon entry and restore the
previous interrupt state upon exit. Critical functions cannot also
have the <code>naked</code> or <code>reentrant</code> attributes. They can have
the <code>interrupt</code> attribute.
</p>
</dd>
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-MSP430"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p>
<p>You can provide an argument to the interrupt
attribute which specifies a name or number. If the argument is a
number it indicates the slot in the interrupt vector table (0 - 31) to
which this handler should be assigned. If the argument is a name it
is treated as a symbolic name for the vector slot. These names should
match up with appropriate entries in the linker script. By default
the names <code>watchdog</code> for vector 26, <code>nmi</code> for vector 30 and
<code>reset</code> for vector 31 are recognized.
</p>
</dd>
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-MSP430"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p>
</dd>
<dt><code>reentrant</code></dt>
<dd><a name="index-reentrant-function-attribute_002c-MSP430"></a>
<p>Reentrant functions disable interrupts upon entry and enable them
upon exit. Reentrant functions cannot also have the <code>naked</code>
or <code>critical</code> attributes. They can have the <code>interrupt</code>
attribute.
</p>
</dd>
<dt><code>wakeup</code></dt>
<dd><a name="index-wakeup-function-attribute_002c-MSP430"></a>
<p>This attribute only applies to interrupt functions. It is silently
ignored if applied to a non-interrupt function. A wakeup interrupt
function will rouse the processor from any low-power state that it
might be in when the function exits.
</p>
</dd>
<dt><code>lower</code></dt>
<dt><code>upper</code></dt>
<dt><code>either</code></dt>
<dd><a name="index-lower-function-attribute_002c-MSP430"></a>
<a name="index-upper-function-attribute_002c-MSP430"></a>
<a name="index-either-function-attribute_002c-MSP430"></a>
<p>On the MSP430 target these attributes can be used to specify whether
the function or variable should be placed into low memory, high
memory, or the placement should be left to the linker to decide. The
attributes are only significant if compiling for the MSP430X
architecture.
</p>
<p>The attributes work in conjunction with a linker script that has been
augmented to specify where to place sections with a <code>.lower</code> and
a <code>.upper</code> prefix. So, for example, as well as placing the
<code>.data</code> section, the script also specifies the placement of a
<code>.lower.data</code> and a <code>.upper.data</code> section. The intention
is that <code>lower</code> sections are placed into a small but easier to
access memory region and the upper sections are placed into a larger, but
slower to access, region.
</p>
<p>The <code>either</code> attribute is special. It tells the linker to place
the object into the corresponding <code>lower</code> section if there is
room for it. If there is insufficient room then the object is placed
into the corresponding <code>upper</code> section instead. Note that the
placement algorithm is not very sophisticated. It does not attempt to
find an optimal packing of the <code>lower</code> sections. It just makes
one pass over the objects and does the best that it can. Using the
<samp>-ffunction-sections</samp> and <samp>-fdata-sections</samp> command-line
options can help the packing, however, since they produce smaller,
easier to pack regions.
</p></dd>
</dl>
<hr>
<a name="NDS32-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Nios-II-Function-Attributes" accesskey="n" rel="next">Nios II Function Attributes</a>, Previous: <a href="#MSP430-Function-Attributes" accesskey="p" rel="prev">MSP430 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="NDS32-Function-Attributes-1"></a>
<h4 class="subsection">6.31.20 NDS32 Function Attributes</h4>
<p>These function attributes are supported by the NDS32 back end:
</p>
<dl compact="compact">
<dt><code>exception</code></dt>
<dd><a name="index-exception-function-attribute"></a>
<a name="index-exception-handler-functions_002c-NDS32"></a>
<p>Use this attribute on the NDS32 target to indicate that the specified function
is an exception handler. The compiler will generate corresponding sections
for use in an exception handler.
</p>
</dd>
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-NDS32"></a>
<p>On NDS32 target, this attribute indicates that the specified function
is an interrupt handler. The compiler generates corresponding sections
for use in an interrupt handler. You can use the following attributes
to modify the behavior:
</p><dl compact="compact">
<dt><code>nested</code></dt>
<dd><a name="index-nested-function-attribute_002c-NDS32"></a>
<p>This interrupt service routine is interruptible.
</p></dd>
<dt><code>not_nested</code></dt>
<dd><a name="index-not_005fnested-function-attribute_002c-NDS32"></a>
<p>This interrupt service routine is not interruptible.
</p></dd>
<dt><code>nested_ready</code></dt>
<dd><a name="index-nested_005fready-function-attribute_002c-NDS32"></a>
<p>This interrupt service routine is interruptible after <code>PSW.GIE</code>
(global interrupt enable) is set. This allows interrupt service routine to
finish some short critical code before enabling interrupts.
</p></dd>
<dt><code>save_all</code></dt>
<dd><a name="index-save_005fall-function-attribute_002c-NDS32"></a>
<p>The system will help save all registers into stack before entering
interrupt handler.
</p></dd>
<dt><code>partial_save</code></dt>
<dd><a name="index-partial_005fsave-function-attribute_002c-NDS32"></a>
<p>The system will help save caller registers into stack before entering
interrupt handler.
</p></dd>
</dl>
</dd>
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-NDS32"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p>
</dd>
<dt><code>reset</code></dt>
<dd><a name="index-reset-function-attribute_002c-NDS32"></a>
<a name="index-reset-handler-functions"></a>
<p>Use this attribute on the NDS32 target to indicate that the specified function
is a reset handler. The compiler will generate corresponding sections
for use in a reset handler. You can use the following attributes
to provide extra exception handling:
</p><dl compact="compact">
<dt><code>nmi</code></dt>
<dd><a name="index-nmi-function-attribute_002c-NDS32"></a>
<p>Provide a user-defined function to handle NMI exception.
</p></dd>
<dt><code>warm</code></dt>
<dd><a name="index-warm-function-attribute_002c-NDS32"></a>
<p>Provide a user-defined function to handle warm reset exception.
</p></dd>
</dl>
</dd>
</dl>
<hr>
<a name="Nios-II-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Nvidia-PTX-Function-Attributes" accesskey="n" rel="next">Nvidia PTX Function Attributes</a>, Previous: <a href="#NDS32-Function-Attributes" accesskey="p" rel="prev">NDS32 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Nios-II-Function-Attributes-1"></a>
<h4 class="subsection">6.31.21 Nios II Function Attributes</h4>
<p>These function attributes are supported by the Nios II back end:
</p>
<dl compact="compact">
<dt><code>target (<var>options</var>)</code></dt>
<dd><a name="index-target-function-attribute-2"></a>
<p>As discussed in <a href="#Common-Function-Attributes">Common Function Attributes</a>, this attribute
allows specification of target-specific compilation options.
</p>
<p>When compiling for Nios II, the following options are allowed:
</p>
<dl compact="compact">
<dt>‘<samp>custom-<var>insn</var>=<var>N</var></samp>’</dt>
<dt>‘<samp>no-custom-<var>insn</var></samp>’</dt>
<dd><a name="index-target_0028_0022custom_002dinsn_003dN_0022_0029-function-attribute_002c-Nios-II"></a>
<a name="index-target_0028_0022no_002dcustom_002dinsn_0022_0029-function-attribute_002c-Nios-II"></a>
<p>Each ‘<samp>custom-<var>insn</var>=<var>N</var></samp>’ attribute locally enables use of a
custom instruction with encoding <var>N</var> when generating code that uses
<var>insn</var>. Similarly, ‘<samp>no-custom-<var>insn</var></samp>’ locally inhibits use of
the custom instruction <var>insn</var>.
These target attributes correspond to the
<samp>-mcustom-<var>insn</var>=<var>N</var></samp> and <samp>-mno-custom-<var>insn</var></samp>
command-line options, and support the same set of <var>insn</var> keywords.
See <a href="#Nios-II-Options">Nios II Options</a>, for more information.
</p>
</dd>
<dt>‘<samp>custom-fpu-cfg=<var>name</var></samp>’</dt>
<dd><a name="index-target_0028_0022custom_002dfpu_002dcfg_003dname_0022_0029-function-attribute_002c-Nios-II"></a>
<p>This attribute corresponds to the <samp>-mcustom-fpu-cfg=<var>name</var></samp>
command-line option, to select a predefined set of custom instructions
named <var>name</var>.
See <a href="#Nios-II-Options">Nios II Options</a>, for more information.
</p></dd>
</dl>
</dd>
</dl>
<hr>
<a name="Nvidia-PTX-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-Function-Attributes" accesskey="n" rel="next">PowerPC Function Attributes</a>, Previous: <a href="#Nios-II-Function-Attributes" accesskey="p" rel="prev">Nios II Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Nvidia-PTX-Function-Attributes-1"></a>
<h4 class="subsection">6.31.22 Nvidia PTX Function Attributes</h4>
<p>These function attributes are supported by the Nvidia PTX back end:
</p>
<dl compact="compact">
<dt><code>kernel</code></dt>
<dd><a name="index-kernel-attribute_002c-Nvidia-PTX"></a>
<p>This attribute indicates that the corresponding function should be compiled
as a kernel function, which can be invoked from the host via the CUDA RT
library.
By default functions are only callable only from other PTX functions.
</p>
<p>Kernel functions must have <code>void</code> return type.
</p></dd>
</dl>
<hr>
<a name="PowerPC-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#RISC_002dV-Function-Attributes" accesskey="n" rel="next">RISC-V Function Attributes</a>, Previous: <a href="#Nvidia-PTX-Function-Attributes" accesskey="p" rel="prev">Nvidia PTX Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-Function-Attributes-1"></a>
<h4 class="subsection">6.31.23 PowerPC Function Attributes</h4>
<p>These function attributes are supported by the PowerPC back end:
</p>
<dl compact="compact">
<dt><code>longcall</code></dt>
<dt><code>shortcall</code></dt>
<dd><a name="index-indirect-calls_002c-PowerPC"></a>
<a name="index-longcall-function-attribute_002c-PowerPC"></a>
<a name="index-shortcall-function-attribute_002c-PowerPC"></a>
<p>The <code>longcall</code> attribute
indicates that the function might be far away from the call site and
require a different (more expensive) calling sequence. The
<code>shortcall</code> attribute indicates that the function is always close
enough for the shorter calling sequence to be used. These attributes
override both the <samp>-mlongcall</samp> switch and
the <code>#pragma longcall</code> setting.
</p>
<p>See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>, for more information on whether long
calls are necessary.
</p>
</dd>
<dt><code>target (<var>options</var>)</code></dt>
<dd><a name="index-target-function-attribute-3"></a>
<p>As discussed in <a href="#Common-Function-Attributes">Common Function Attributes</a>, this attribute
allows specification of target-specific compilation options.
</p>
<p>On the PowerPC, the following options are allowed:
</p>
<dl compact="compact">
<dt>‘<samp>altivec</samp>’</dt>
<dt>‘<samp>no-altivec</samp>’</dt>
<dd><a name="index-target_0028_0022altivec_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) AltiVec instructions. In
32-bit code, you cannot enable AltiVec instructions unless
<samp>-mabi=altivec</samp> is used on the command line.
</p>
</dd>
<dt>‘<samp>cmpb</samp>’</dt>
<dt>‘<samp>no-cmpb</samp>’</dt>
<dd><a name="index-target_0028_0022cmpb_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the compare bytes instruction
implemented on the POWER6 processor and other processors that support
the PowerPC V2.05 architecture.
</p>
</dd>
<dt>‘<samp>dlmzb</samp>’</dt>
<dt>‘<samp>no-dlmzb</samp>’</dt>
<dd><a name="index-target_0028_0022dlmzb_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the string-search ‘<samp>dlmzb</samp>’
instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
generated by default when targeting those processors.
</p>
</dd>
<dt>‘<samp>fprnd</samp>’</dt>
<dt>‘<samp>no-fprnd</samp>’</dt>
<dd><a name="index-target_0028_0022fprnd_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the FP round to integer
instructions implemented on the POWER5+ processor and other processors
that support the PowerPC V2.03 architecture.
</p>
</dd>
<dt>‘<samp>hard-dfp</samp>’</dt>
<dt>‘<samp>no-hard-dfp</samp>’</dt>
<dd><a name="index-target_0028_0022hard_002ddfp_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the decimal floating-point
instructions implemented on some POWER processors.
</p>
</dd>
<dt>‘<samp>isel</samp>’</dt>
<dt>‘<samp>no-isel</samp>’</dt>
<dd><a name="index-target_0028_0022isel_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) ISEL instruction.
</p>
</dd>
<dt>‘<samp>mfcrf</samp>’</dt>
<dt>‘<samp>no-mfcrf</samp>’</dt>
<dd><a name="index-target_0028_0022mfcrf_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the move from condition
register field instruction implemented on the POWER4 processor and
other processors that support the PowerPC V2.01 architecture.
</p>
</dd>
<dt>‘<samp>mfpgpr</samp>’</dt>
<dt>‘<samp>no-mfpgpr</samp>’</dt>
<dd><a name="index-target_0028_0022mfpgpr_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the FP move to/from general
purpose register instructions implemented on the POWER6X processor and
other processors that support the extended PowerPC V2.05 architecture.
</p>
</dd>
<dt>‘<samp>mulhw</samp>’</dt>
<dt>‘<samp>no-mulhw</samp>’</dt>
<dd><a name="index-target_0028_0022mulhw_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
These instructions are generated by default when targeting those
processors.
</p>
</dd>
<dt>‘<samp>multiple</samp>’</dt>
<dt>‘<samp>no-multiple</samp>’</dt>
<dd><a name="index-target_0028_0022multiple_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions.
</p>
</dd>
<dt>‘<samp>update</samp>’</dt>
<dt>‘<samp>no-update</samp>’</dt>
<dd><a name="index-target_0028_0022update_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location.
</p>
</dd>
<dt>‘<samp>popcntb</samp>’</dt>
<dt>‘<samp>no-popcntb</samp>’</dt>
<dd><a name="index-target_0028_0022popcntb_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the popcount and double-precision
FP reciprocal estimate instruction implemented on the POWER5
processor and other processors that support the PowerPC V2.02
architecture.
</p>
</dd>
<dt>‘<samp>popcntd</samp>’</dt>
<dt>‘<samp>no-popcntd</samp>’</dt>
<dd><a name="index-target_0028_0022popcntd_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the popcount instruction
implemented on the POWER7 processor and other processors that support
the PowerPC V2.06 architecture.
</p>
</dd>
<dt>‘<samp>powerpc-gfxopt</samp>’</dt>
<dt>‘<samp>no-powerpc-gfxopt</samp>’</dt>
<dd><a name="index-target_0028_0022powerpc_002dgfxopt_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the optional PowerPC
architecture instructions in the Graphics group, including
floating-point select.
</p>
</dd>
<dt>‘<samp>powerpc-gpopt</samp>’</dt>
<dt>‘<samp>no-powerpc-gpopt</samp>’</dt>
<dd><a name="index-target_0028_0022powerpc_002dgpopt_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the optional PowerPC
architecture instructions in the General Purpose group, including
floating-point square root.
</p>
</dd>
<dt>‘<samp>recip-precision</samp>’</dt>
<dt>‘<samp>no-recip-precision</samp>’</dt>
<dd><a name="index-target_0028_0022recip_002dprecision_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Assume (do not assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the PowerPC
ABI.
</p>
</dd>
<dt>‘<samp>string</samp>’</dt>
<dt>‘<samp>no-string</samp>’</dt>
<dd><a name="index-target_0028_0022string_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the load string instructions
and the store string word instructions to save multiple registers and
do small block moves.
</p>
</dd>
<dt>‘<samp>vsx</samp>’</dt>
<dt>‘<samp>no-vsx</samp>’</dt>
<dd><a name="index-target_0028_0022vsx_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) vector/scalar (VSX)
instructions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set. In 32-bit code, you
cannot enable VSX or AltiVec instructions unless
<samp>-mabi=altivec</samp> is used on the command line.
</p>
</dd>
<dt>‘<samp>friz</samp>’</dt>
<dt>‘<samp>no-friz</samp>’</dt>
<dd><a name="index-target_0028_0022friz_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate (do not generate) the <code>friz</code> instruction when the
<samp>-funsafe-math-optimizations</samp> option is used to optimize
rounding a floating-point value to 64-bit integer and back to floating
point. The <code>friz</code> instruction does not return the same value if
the floating-point number is too large to fit in an integer.
</p>
</dd>
<dt>‘<samp>avoid-indexed-addresses</samp>’</dt>
<dt>‘<samp>no-avoid-indexed-addresses</samp>’</dt>
<dd><a name="index-target_0028_0022avoid_002dindexed_002daddresses_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions.
</p>
</dd>
<dt>‘<samp>paired</samp>’</dt>
<dt>‘<samp>no-paired</samp>’</dt>
<dd><a name="index-target_0028_0022paired_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that uses (does not use) the generation of PAIRED simd
instructions.
</p>
</dd>
<dt>‘<samp>longcall</samp>’</dt>
<dt>‘<samp>no-longcall</samp>’</dt>
<dd><a name="index-target_0028_0022longcall_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Generate code that assumes (does not assume) that all calls are far
away so that a longer more expensive calling sequence is required.
</p>
</dd>
<dt>‘<samp>cpu=<var>CPU</var></samp>’</dt>
<dd><a name="index-target_0028_0022cpu_003dCPU_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Specify the architecture to generate code for when compiling the
function. If you select the <code>target("cpu=power7")</code> attribute when
generating 32-bit code, VSX and AltiVec instructions are not generated
unless you use the <samp>-mabi=altivec</samp> option on the command line.
</p>
</dd>
<dt>‘<samp>tune=<var>TUNE</var></samp>’</dt>
<dd><a name="index-target_0028_0022tune_003dTUNE_0022_0029-function-attribute_002c-PowerPC"></a>
<p>Specify the architecture to tune for when compiling the function. If
you do not specify the <code>target("tune=<var>TUNE</var>")</code> attribute and
you do specify the <code>target("cpu=<var>CPU</var>")</code> attribute,
compilation tunes for the <var>CPU</var> architecture, and not the
default tuning specified on the command line.
</p></dd>
</dl>
<p>On the PowerPC, the inliner does not inline a
function that has different target options than the caller, unless the
callee has a subset of the target options of the caller.
</p></dd>
</dl>
<hr>
<a name="RISC_002dV-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#RL78-Function-Attributes" accesskey="n" rel="next">RL78 Function Attributes</a>, Previous: <a href="#PowerPC-Function-Attributes" accesskey="p" rel="prev">PowerPC Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RISC_002dV-Function-Attributes-1"></a>
<h4 class="subsection">6.31.24 RISC-V Function Attributes</h4>
<p>These function attributes are supported by the RISC-V back end:
</p>
<dl compact="compact">
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-RISC_002dV"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p></dd>
</dl>
<hr>
<a name="RL78-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#RX-Function-Attributes" accesskey="n" rel="next">RX Function Attributes</a>, Previous: <a href="#RISC_002dV-Function-Attributes" accesskey="p" rel="prev">RISC-V Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RL78-Function-Attributes-1"></a>
<h4 class="subsection">6.31.25 RL78 Function Attributes</h4>
<p>These function attributes are supported by the RL78 back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dt><code>brk_interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-RL78"></a>
<a name="index-brk_005finterrupt-function-attribute_002c-RL78"></a>
<p>These attributes indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p>
<p>Use <code>brk_interrupt</code> instead of <code>interrupt</code> for
handlers intended to be used with the <code>BRK</code> opcode (i.e. those
that must end with <code>RETB</code> instead of <code>RETI</code>).
</p>
</dd>
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-RL78"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p></dd>
</dl>
<hr>
<a name="RX-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#S_002f390-Function-Attributes" accesskey="n" rel="next">S/390 Function Attributes</a>, Previous: <a href="#RL78-Function-Attributes" accesskey="p" rel="prev">RL78 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RX-Function-Attributes-1"></a>
<h4 class="subsection">6.31.26 RX Function Attributes</h4>
<p>These function attributes are supported by the RX back end:
</p>
<dl compact="compact">
<dt><code>fast_interrupt</code></dt>
<dd><a name="index-fast_005finterrupt-function-attribute_002c-RX"></a>
<p>Use this attribute on the RX port to indicate that the specified
function is a fast interrupt handler. This is just like the
<code>interrupt</code> attribute, except that <code>freit</code> is used to return
instead of <code>reit</code>.
</p>
</dd>
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-RX"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p>
<p>On RX and RL78 targets, you may specify one or more vector numbers as arguments
to the attribute, as well as naming an alternate table name.
Parameters are handled sequentially, so one handler can be assigned to
multiple entries in multiple tables. One may also pass the magic
string <code>"$default"</code> which causes the function to be used for any
unfilled slots in the current table.
</p>
<p>This example shows a simple assignment of a function to one vector in
the default table (note that preprocessor macros may be used for
chip-specific symbolic vector names):
</p><div class="smallexample">
<pre class="smallexample">void __attribute__ ((interrupt (5))) txd1_handler ();
</pre></div>
<p>This example assigns a function to two slots in the default table
(using preprocessor macros defined elsewhere) and makes it the default
for the <code>dct</code> table:
</p><div class="smallexample">
<pre class="smallexample">void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
txd1_handler ();
</pre></div>
</dd>
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-RX"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p>
</dd>
<dt><code>vector</code></dt>
<dd><a name="index-vector-function-attribute_002c-RX"></a>
<p>This RX attribute is similar to the <code>interrupt</code> attribute, including its
parameters, but does not make the function an interrupt-handler type
function (i.e. it retains the normal C function calling ABI). See the
<code>interrupt</code> attribute for a description of its arguments.
</p></dd>
</dl>
<hr>
<a name="S_002f390-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#SH-Function-Attributes" accesskey="n" rel="next">SH Function Attributes</a>, Previous: <a href="#RX-Function-Attributes" accesskey="p" rel="prev">RX Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="S_002f390-Function-Attributes-1"></a>
<h4 class="subsection">6.31.27 S/390 Function Attributes</h4>
<p>These function attributes are supported on the S/390:
</p>
<dl compact="compact">
<dt><code>hotpatch (<var>halfwords-before-function-label</var>,<var>halfwords-after-function-label</var>)</code></dt>
<dd><a name="index-hotpatch-function-attribute_002c-S_002f390"></a>
<p>On S/390 System z targets, you can use this function attribute to
make GCC generate a “hot-patching” function prologue. If the
<samp>-mhotpatch=</samp> command-line option is used at the same time,
the <code>hotpatch</code> attribute takes precedence. The first of the
two arguments specifies the number of halfwords to be added before
the function label. A second argument can be used to specify the
number of halfwords to be added after the function label. For
both arguments the maximum allowed value is 1000000.
</p>
<p>If both arguments are zero, hotpatching is disabled.
</p>
</dd>
<dt><code>target (<var>options</var>)</code></dt>
<dd><a name="index-target-function-attribute-4"></a>
<p>As discussed in <a href="#Common-Function-Attributes">Common Function Attributes</a>, this attribute
allows specification of target-specific compilation options.
</p>
<p>On S/390, the following options are supported:
</p>
<dl compact="compact">
<dt>‘<samp>arch=</samp>’</dt>
<dt>‘<samp>tune=</samp>’</dt>
<dt>‘<samp>stack-guard=</samp>’</dt>
<dt>‘<samp>stack-size=</samp>’</dt>
<dt>‘<samp>branch-cost=</samp>’</dt>
<dt>‘<samp>warn-framesize=</samp>’</dt>
<dt>‘<samp>backchain</samp>’</dt>
<dt>‘<samp>no-backchain</samp>’</dt>
<dt>‘<samp>hard-dfp</samp>’</dt>
<dt>‘<samp>no-hard-dfp</samp>’</dt>
<dt>‘<samp>hard-float</samp>’</dt>
<dt>‘<samp>soft-float</samp>’</dt>
<dt>‘<samp>htm</samp>’</dt>
<dt>‘<samp>no-htm</samp>’</dt>
<dt>‘<samp>vx</samp>’</dt>
<dt>‘<samp>no-vx</samp>’</dt>
<dt>‘<samp>packed-stack</samp>’</dt>
<dt>‘<samp>no-packed-stack</samp>’</dt>
<dt>‘<samp>small-exec</samp>’</dt>
<dt>‘<samp>no-small-exec</samp>’</dt>
<dt>‘<samp>mvcle</samp>’</dt>
<dt>‘<samp>no-mvcle</samp>’</dt>
<dt>‘<samp>warn-dynamicstack</samp>’</dt>
<dt>‘<samp>no-warn-dynamicstack</samp>’</dt>
</dl>
<p>The options work exactly like the S/390 specific command line
options (without the prefix <samp>-m</samp>) except that they do not
change any feature macros. For example,
</p>
<div class="smallexample">
<pre class="smallexample"><code>target("no-vx")</code>
</pre></div>
<p>does not undefine the <code>__VEC__</code> macro.
</p></dd>
</dl>
<hr>
<a name="SH-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#SPU-Function-Attributes" accesskey="n" rel="next">SPU Function Attributes</a>, Previous: <a href="#S_002f390-Function-Attributes" accesskey="p" rel="prev">S/390 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SH-Function-Attributes-1"></a>
<h4 class="subsection">6.31.28 SH Function Attributes</h4>
<p>These function attributes are supported on the SH family of processors:
</p>
<dl compact="compact">
<dt><code>function_vector</code></dt>
<dd><a name="index-function_005fvector-function-attribute_002c-SH"></a>
<a name="index-calling-functions-through-the-function-vector-on-SH2A"></a>
<p>On SH2A targets, this attribute declares a function to be called using the
TBR relative addressing mode. The argument to this attribute is the entry
number of the same function in a vector table containing all the TBR
relative addressable functions. For correct operation the TBR must be setup
accordingly to point to the start of the vector table before any functions with
this attribute are invoked. Usually a good place to do the initialization is
the startup routine. The TBR relative vector table can have at max 256 function
entries. The jumps to these functions are generated using a SH2A specific,
non delayed branch instruction JSR/N @(disp8,TBR). You must use GAS and GLD
from GNU binutils version 2.7 or later for this attribute to work correctly.
</p>
<p>In an application, for a function being called once, this attribute
saves at least 8 bytes of code; and if other successive calls are being
made to the same function, it saves 2 bytes of code per each of these
calls.
</p>
</dd>
<dt><code>interrupt_handler</code></dt>
<dd><a name="index-interrupt_005fhandler-function-attribute_002c-SH"></a>
<p>Use this attribute to
indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.
</p>
</dd>
<dt><code>nosave_low_regs</code></dt>
<dd><a name="index-nosave_005flow_005fregs-function-attribute_002c-SH"></a>
<p>Use this attribute on SH targets to indicate that an <code>interrupt_handler</code>
function should not save and restore registers R0..R7. This can be used on SH3*
and SH4* targets that have a second R0..R7 register bank for non-reentrant
interrupt handlers.
</p>
</dd>
<dt><code>renesas</code></dt>
<dd><a name="index-renesas-function-attribute_002c-SH"></a>
<p>On SH targets this attribute specifies that the function or struct follows the
Renesas ABI.
</p>
</dd>
<dt><code>resbank</code></dt>
<dd><a name="index-resbank-function-attribute_002c-SH"></a>
<p>On the SH2A target, this attribute enables the high-speed register
saving and restoration using a register bank for <code>interrupt_handler</code>
routines. Saving to the bank is performed automatically after the CPU
accepts an interrupt that uses a register bank.
</p>
<p>The nineteen 32-bit registers comprising general register R0 to R14,
control register GBR, and system registers MACH, MACL, and PR and the
vector table address offset are saved into a register bank. Register
banks are stacked in first-in last-out (FILO) sequence. Restoration
from the bank is executed by issuing a RESBANK instruction.
</p>
</dd>
<dt><code>sp_switch</code></dt>
<dd><a name="index-sp_005fswitch-function-attribute_002c-SH"></a>
<p>Use this attribute on the SH to indicate an <code>interrupt_handler</code>
function should switch to an alternate stack. It expects a string
argument that names a global variable holding the address of the
alternate stack.
</p>
<div class="smallexample">
<pre class="smallexample">void *alt_stack;
void f () __attribute__ ((interrupt_handler,
sp_switch ("alt_stack")));
</pre></div>
</dd>
<dt><code>trap_exit</code></dt>
<dd><a name="index-trap_005fexit-function-attribute_002c-SH"></a>
<p>Use this attribute on the SH for an <code>interrupt_handler</code> to return using
<code>trapa</code> instead of <code>rte</code>. This attribute expects an integer
argument specifying the trap number to be used.
</p>
</dd>
<dt><code>trapa_handler</code></dt>
<dd><a name="index-trapa_005fhandler-function-attribute_002c-SH"></a>
<p>On SH targets this function attribute is similar to <code>interrupt_handler</code>
but it does not save and restore all registers.
</p></dd>
</dl>
<hr>
<a name="SPU-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Symbian-OS-Function-Attributes" accesskey="n" rel="next">Symbian OS Function Attributes</a>, Previous: <a href="#SH-Function-Attributes" accesskey="p" rel="prev">SH Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SPU-Function-Attributes-1"></a>
<h4 class="subsection">6.31.29 SPU Function Attributes</h4>
<p>These function attributes are supported by the SPU back end:
</p>
<dl compact="compact">
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-SPU"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p></dd>
</dl>
<hr>
<a name="Symbian-OS-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#V850-Function-Attributes" accesskey="n" rel="next">V850 Function Attributes</a>, Previous: <a href="#SPU-Function-Attributes" accesskey="p" rel="prev">SPU Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Symbian-OS-Function-Attributes-1"></a>
<h4 class="subsection">6.31.30 Symbian OS Function Attributes</h4>
<p>See <a href="#Microsoft-Windows-Function-Attributes">Microsoft Windows Function Attributes</a>, for discussion of the
<code>dllexport</code> and <code>dllimport</code> attributes.
</p>
<hr>
<a name="V850-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Visium-Function-Attributes" accesskey="n" rel="next">Visium Function Attributes</a>, Previous: <a href="#Symbian-OS-Function-Attributes" accesskey="p" rel="prev">Symbian OS Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="V850-Function-Attributes-1"></a>
<h4 class="subsection">6.31.31 V850 Function Attributes</h4>
<p>The V850 back end supports these function attributes:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dt><code>interrupt_handler</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-V850"></a>
<a name="index-interrupt_005fhandler-function-attribute_002c-V850"></a>
<p>Use these attributes to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when either attribute is present.
</p></dd>
</dl>
<hr>
<a name="Visium-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#x86-Function-Attributes" accesskey="n" rel="next">x86 Function Attributes</a>, Previous: <a href="#V850-Function-Attributes" accesskey="p" rel="prev">V850 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Visium-Function-Attributes-1"></a>
<h4 class="subsection">6.31.32 Visium Function Attributes</h4>
<p>These function attributes are supported by the Visium back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-Visium"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p></dd>
</dl>
<hr>
<a name="x86-Function-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Xstormy16-Function-Attributes" accesskey="n" rel="next">Xstormy16 Function Attributes</a>, Previous: <a href="#Visium-Function-Attributes" accesskey="p" rel="prev">Visium Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86-Function-Attributes-1"></a>
<h4 class="subsection">6.31.33 x86 Function Attributes</h4>
<p>These function attributes are supported by the x86 back end:
</p>
<dl compact="compact">
<dt><code>cdecl</code></dt>
<dd><a name="index-cdecl-function-attribute_002c-x86_002d32"></a>
<a name="index-functions-that-pop-the-argument-stack-on-x86_002d32"></a>
<a name="index-mrtd-2"></a>
<p>On the x86-32 targets, the <code>cdecl</code> attribute causes the compiler to
assume that the calling function pops off the stack space used to
pass arguments. This is
useful to override the effects of the <samp>-mrtd</samp> switch.
</p>
</dd>
<dt><code>fastcall</code></dt>
<dd><a name="index-fastcall-function-attribute_002c-x86_002d32"></a>
<a name="index-functions-that-pop-the-argument-stack-on-x86_002d32-1"></a>
<p>On x86-32 targets, the <code>fastcall</code> attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX and
the second argument (if of integral type) in the register EDX. Subsequent
and other typed arguments are passed on the stack. The called function
pops the arguments off the stack. If the number of arguments is variable all
arguments are pushed on the stack.
</p>
</dd>
<dt><code>thiscall</code></dt>
<dd><a name="index-thiscall-function-attribute_002c-x86_002d32"></a>
<a name="index-functions-that-pop-the-argument-stack-on-x86_002d32-2"></a>
<p>On x86-32 targets, the <code>thiscall</code> attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX.
Subsequent and other typed arguments are passed on the stack. The called
function pops the arguments off the stack.
If the number of arguments is variable all arguments are pushed on the
stack.
The <code>thiscall</code> attribute is intended for C++ non-static member functions.
As a GCC extension, this calling convention can be used for C functions
and for static member methods.
</p>
</dd>
<dt><code>ms_abi</code></dt>
<dt><code>sysv_abi</code></dt>
<dd><a name="index-ms_005fabi-function-attribute_002c-x86"></a>
<a name="index-sysv_005fabi-function-attribute_002c-x86"></a>
<p>On 32-bit and 64-bit x86 targets, you can use an ABI attribute
to indicate which calling convention should be used for a function. The
<code>ms_abi</code> attribute tells the compiler to use the Microsoft ABI,
while the <code>sysv_abi</code> attribute tells the compiler to use the ABI
used on GNU/Linux and other systems. The default is to use the Microsoft ABI
when targeting Windows. On all other systems, the default is the x86/AMD ABI.
</p>
<p>Note, the <code>ms_abi</code> attribute for Microsoft Windows 64-bit targets currently
requires the <samp>-maccumulate-outgoing-args</samp> option.
</p>
</dd>
<dt><code>callee_pop_aggregate_return (<var>number</var>)</code></dt>
<dd><a name="index-callee_005fpop_005faggregate_005freturn-function-attribute_002c-x86"></a>
<p>On x86-32 targets, you can use this attribute to control how
aggregates are returned in memory. If the caller is responsible for
popping the hidden pointer together with the rest of the arguments, specify
<var>number</var> equal to zero. If callee is responsible for popping the
hidden pointer, specify <var>number</var> equal to one.
</p>
<p>The default x86-32 ABI assumes that the callee pops the
stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
the compiler assumes that the
caller pops the stack for hidden pointer.
</p>
</dd>
<dt><code>ms_hook_prologue</code></dt>
<dd><a name="index-ms_005fhook_005fprologue-function-attribute_002c-x86"></a>
<p>On 32-bit and 64-bit x86 targets, you can use
this function attribute to make GCC generate the “hot-patching” function
prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
and newer.
</p>
</dd>
<dt><code>naked</code></dt>
<dd><a name="index-naked-function-attribute_002c-x86"></a>
<p>This attribute allows the compiler to construct the
requisite function declaration, while allowing the body of the
function to be assembly code. The specified function will not have
prologue/epilogue sequences generated by the compiler. Only basic
<code>asm</code> statements can safely be included in naked functions
(see <a href="#Basic-Asm">Basic Asm</a>). While using extended <code>asm</code> or a mixture of
basic <code>asm</code> and C code may appear to work, they cannot be
depended upon to work reliably and are not supported.
</p>
</dd>
<dt><code>regparm (<var>number</var>)</code></dt>
<dd><a name="index-regparm-function-attribute_002c-x86"></a>
<a name="index-functions-that-are-passed-arguments-in-registers-on-x86_002d32"></a>
<p>On x86-32 targets, the <code>regparm</code> attribute causes the compiler to
pass arguments number one to <var>number</var> if they are of integral type
in registers EAX, EDX, and ECX instead of on the stack. Functions that
take a variable number of arguments continue to be passed all of their
arguments on the stack.
</p>
<p>Beware that on some ELF systems this attribute is unsuitable for
global functions in shared libraries with lazy binding (which is the
default). Lazy binding sends the first call via resolving code in
the loader, which might assume EAX, EDX and ECX can be clobbered, as
per the standard calling conventions. Solaris 8 is affected by this.
Systems with the GNU C Library version 2.1 or higher
and FreeBSD are believed to be
safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
disabled with the linker or the loader if desired, to avoid the
problem.)
</p>
</dd>
<dt><code>sseregparm</code></dt>
<dd><a name="index-sseregparm-function-attribute_002c-x86"></a>
<p>On x86-32 targets with SSE support, the <code>sseregparm</code> attribute
causes the compiler to pass up to 3 floating-point arguments in
SSE registers instead of on the stack. Functions that take a
variable number of arguments continue to pass all of their
floating-point arguments on the stack.
</p>
</dd>
<dt><code>force_align_arg_pointer</code></dt>
<dd><a name="index-force_005falign_005farg_005fpointer-function-attribute_002c-x86"></a>
<p>On x86 targets, the <code>force_align_arg_pointer</code> attribute may be
applied to individual function definitions, generating an alternate
prologue and epilogue that realigns the run-time stack if necessary.
This supports mixing legacy codes that run with a 4-byte aligned stack
with modern codes that keep a 16-byte stack for SSE compatibility.
</p>
</dd>
<dt><code>stdcall</code></dt>
<dd><a name="index-stdcall-function-attribute_002c-x86_002d32"></a>
<a name="index-functions-that-pop-the-argument-stack-on-x86_002d32-3"></a>
<p>On x86-32 targets, the <code>stdcall</code> attribute causes the compiler to
assume that the called function pops off the stack space used to
pass arguments, unless it takes a variable number of arguments.
</p>
</dd>
<dt><code>no_caller_saved_registers</code></dt>
<dd><a name="index-no_005fcaller_005fsaved_005fregisters-function-attribute_002c-x86"></a>
<p>Use this attribute to indicate that the specified function has no
caller-saved registers. That is, all registers are callee-saved. For
example, this attribute can be used for a function called from an
interrupt handler. The compiler generates proper function entry and
exit sequences to save and restore any modified registers, except for
the EFLAGS register. Since GCC doesn’t preserve MPX, SSE, MMX nor x87
states, the GCC option <samp>-mgeneral-regs-only</samp> should be used to
compile functions with <code>no_caller_saved_registers</code> attribute.
</p>
</dd>
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-x86"></a>
<p>Use this attribute to indicate that the specified function is an
interrupt handler or an exception handler (depending on parameters passed
to the function, explained further). The compiler generates function
entry and exit sequences suitable for use in an interrupt handler when
this attribute is present. The <code>IRET</code> instruction, instead of the
<code>RET</code> instruction, is used to return from interrupt handlers. All
registers, except for the EFLAGS register which is restored by the
<code>IRET</code> instruction, are preserved by the compiler. Since GCC
doesn’t preserve MPX, SSE, MMX nor x87 states, the GCC option
<samp>-mgeneral-regs-only</samp> should be used to compile interrupt and
exception handlers.
</p>
<p>Any interruptible-without-stack-switch code must be compiled with
<samp>-mno-red-zone</samp> since interrupt handlers can and will, because
of the hardware design, touch the red zone.
</p>
<p>An interrupt handler must be declared with a mandatory pointer
argument:
</p>
<div class="smallexample">
<pre class="smallexample">struct interrupt_frame;
__attribute__ ((interrupt))
void
f (struct interrupt_frame *frame)
{
}
</pre></div>
<p>and you must define <code>struct interrupt_frame</code> as described in the
processor’s manual.
</p>
<p>Exception handlers differ from interrupt handlers because the system
pushes an error code on the stack. An exception handler declaration is
similar to that for an interrupt handler, but with a different mandatory
function signature. The compiler arranges to pop the error code off the
stack before the <code>IRET</code> instruction.
</p>
<div class="smallexample">
<pre class="smallexample">#ifdef __x86_64__
typedef unsigned long long int uword_t;
#else
typedef unsigned int uword_t;
#endif
struct interrupt_frame;
__attribute__ ((interrupt))
void
f (struct interrupt_frame *frame, uword_t error_code)
{
...
}
</pre></div>
<p>Exception handlers should only be used for exceptions that push an error
code; you should use an interrupt handler in other cases. The system
will crash if the wrong kind of handler is used.
</p>
</dd>
<dt><code>target (<var>options</var>)</code></dt>
<dd><a name="index-target-function-attribute-5"></a>
<p>As discussed in <a href="#Common-Function-Attributes">Common Function Attributes</a>, this attribute
allows specification of target-specific compilation options.
</p>
<p>On the x86, the following options are allowed:
</p><dl compact="compact">
<dt>‘<samp>abm</samp>’</dt>
<dt>‘<samp>no-abm</samp>’</dt>
<dd><a name="index-target_0028_0022abm_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the advanced bit instructions.
</p>
</dd>
<dt>‘<samp>aes</samp>’</dt>
<dt>‘<samp>no-aes</samp>’</dt>
<dd><a name="index-target_0028_0022aes_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the AES instructions.
</p>
</dd>
<dt>‘<samp>default</samp>’</dt>
<dd><a name="index-target_0028_0022default_0022_0029-function-attribute_002c-x86"></a>
<p>See <a href="#Function-Multiversioning">Function Multiversioning</a>, where it is used to specify the
default function version.
</p>
</dd>
<dt>‘<samp>mmx</samp>’</dt>
<dt>‘<samp>no-mmx</samp>’</dt>
<dd><a name="index-target_0028_0022mmx_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the MMX instructions.
</p>
</dd>
<dt>‘<samp>pclmul</samp>’</dt>
<dt>‘<samp>no-pclmul</samp>’</dt>
<dd><a name="index-target_0028_0022pclmul_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the PCLMUL instructions.
</p>
</dd>
<dt>‘<samp>popcnt</samp>’</dt>
<dt>‘<samp>no-popcnt</samp>’</dt>
<dd><a name="index-target_0028_0022popcnt_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the POPCNT instruction.
</p>
</dd>
<dt>‘<samp>sse</samp>’</dt>
<dt>‘<samp>no-sse</samp>’</dt>
<dd><a name="index-target_0028_0022sse_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the SSE instructions.
</p>
</dd>
<dt>‘<samp>sse2</samp>’</dt>
<dt>‘<samp>no-sse2</samp>’</dt>
<dd><a name="index-target_0028_0022sse2_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the SSE2 instructions.
</p>
</dd>
<dt>‘<samp>sse3</samp>’</dt>
<dt>‘<samp>no-sse3</samp>’</dt>
<dd><a name="index-target_0028_0022sse3_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the SSE3 instructions.
</p>
</dd>
<dt>‘<samp>sse4</samp>’</dt>
<dt>‘<samp>no-sse4</samp>’</dt>
<dd><a name="index-target_0028_0022sse4_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the SSE4 instructions (both SSE4.1
and SSE4.2).
</p>
</dd>
<dt>‘<samp>sse4.1</samp>’</dt>
<dt>‘<samp>no-sse4.1</samp>’</dt>
<dd><a name="index-target_0028_0022sse4_002e1_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the sse4.1 instructions.
</p>
</dd>
<dt>‘<samp>sse4.2</samp>’</dt>
<dt>‘<samp>no-sse4.2</samp>’</dt>
<dd><a name="index-target_0028_0022sse4_002e2_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the sse4.2 instructions.
</p>
</dd>
<dt>‘<samp>sse4a</samp>’</dt>
<dt>‘<samp>no-sse4a</samp>’</dt>
<dd><a name="index-target_0028_0022sse4a_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the SSE4A instructions.
</p>
</dd>
<dt>‘<samp>fma4</samp>’</dt>
<dt>‘<samp>no-fma4</samp>’</dt>
<dd><a name="index-target_0028_0022fma4_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the FMA4 instructions.
</p>
</dd>
<dt>‘<samp>xop</samp>’</dt>
<dt>‘<samp>no-xop</samp>’</dt>
<dd><a name="index-target_0028_0022xop_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the XOP instructions.
</p>
</dd>
<dt>‘<samp>lwp</samp>’</dt>
<dt>‘<samp>no-lwp</samp>’</dt>
<dd><a name="index-target_0028_0022lwp_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the LWP instructions.
</p>
</dd>
<dt>‘<samp>ssse3</samp>’</dt>
<dt>‘<samp>no-ssse3</samp>’</dt>
<dd><a name="index-target_0028_0022ssse3_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the SSSE3 instructions.
</p>
</dd>
<dt>‘<samp>cld</samp>’</dt>
<dt>‘<samp>no-cld</samp>’</dt>
<dd><a name="index-target_0028_0022cld_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the CLD before string moves.
</p>
</dd>
<dt>‘<samp>fancy-math-387</samp>’</dt>
<dt>‘<samp>no-fancy-math-387</samp>’</dt>
<dd><a name="index-target_0028_0022fancy_002dmath_002d387_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the <code>sin</code>, <code>cos</code>, and
<code>sqrt</code> instructions on the 387 floating-point unit.
</p>
</dd>
<dt>‘<samp>ieee-fp</samp>’</dt>
<dt>‘<samp>no-ieee-fp</samp>’</dt>
<dd><a name="index-target_0028_0022ieee_002dfp_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of floating point that depends on IEEE arithmetic.
</p>
</dd>
<dt>‘<samp>inline-all-stringops</samp>’</dt>
<dt>‘<samp>no-inline-all-stringops</samp>’</dt>
<dd><a name="index-target_0028_0022inline_002dall_002dstringops_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable inlining of string operations.
</p>
</dd>
<dt>‘<samp>inline-stringops-dynamically</samp>’</dt>
<dt>‘<samp>no-inline-stringops-dynamically</samp>’</dt>
<dd><a name="index-target_0028_0022inline_002dstringops_002ddynamically_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of the inline code to do small string
operations and calling the library routines for large operations.
</p>
</dd>
<dt>‘<samp>align-stringops</samp>’</dt>
<dt>‘<samp>no-align-stringops</samp>’</dt>
<dd><a name="index-target_0028_0022align_002dstringops_0022_0029-function-attribute_002c-x86"></a>
<p>Do/do not align destination of inlined string operations.
</p>
</dd>
<dt>‘<samp>recip</samp>’</dt>
<dt>‘<samp>no-recip</samp>’</dt>
<dd><a name="index-target_0028_0022recip_0022_0029-function-attribute_002c-x86"></a>
<p>Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
instructions followed an additional Newton-Raphson step instead of
doing a floating-point division.
</p>
</dd>
<dt>‘<samp>arch=<var>ARCH</var></samp>’</dt>
<dd><a name="index-target_0028_0022arch_003dARCH_0022_0029-function-attribute_002c-x86"></a>
<p>Specify the architecture to generate code for in compiling the function.
</p>
</dd>
<dt>‘<samp>tune=<var>TUNE</var></samp>’</dt>
<dd><a name="index-target_0028_0022tune_003dTUNE_0022_0029-function-attribute_002c-x86"></a>
<p>Specify the architecture to tune for in compiling the function.
</p>
</dd>
<dt>‘<samp>fpmath=<var>FPMATH</var></samp>’</dt>
<dd><a name="index-target_0028_0022fpmath_003dFPMATH_0022_0029-function-attribute_002c-x86"></a>
<p>Specify which floating-point unit to use. You must specify the
<code>target("fpmath=sse,387")</code> option as
<code>target("fpmath=sse+387")</code> because the comma would separate
different options.
</p>
</dd>
<dt>‘<samp>indirect_branch("<var>choice</var>")</samp>’</dt>
<dd><a name="index-indirect_005fbranch-function-attribute_002c-x86"></a>
<p>On x86 targets, the <code>indirect_branch</code> attribute causes the compiler
to convert indirect call and jump with <var>choice</var>. ‘<samp>keep</samp>’
keeps indirect call and jump unmodified. ‘<samp>thunk</samp>’ converts indirect
call and jump to call and return thunk. ‘<samp>thunk-inline</samp>’ converts
indirect call and jump to inlined call and return thunk.
‘<samp>thunk-extern</samp>’ converts indirect call and jump to external call
and return thunk provided in a separate object file.
</p>
</dd>
<dt>‘<samp>function_return("<var>choice</var>")</samp>’</dt>
<dd><a name="index-function_005freturn-function-attribute_002c-x86"></a>
<p>On x86 targets, the <code>function_return</code> attribute causes the compiler
to convert function return with <var>choice</var>. ‘<samp>keep</samp>’ keeps function
return unmodified. ‘<samp>thunk</samp>’ converts function return to call and
return thunk. ‘<samp>thunk-inline</samp>’ converts function return to inlined
call and return thunk. ‘<samp>thunk-extern</samp>’ converts function return to
external call and return thunk provided in a separate object file.
</p>
</dd>
<dt>‘<samp>nocf_check</samp>’</dt>
<dd><a name="index-nocf_005fcheck-function-attribute"></a>
<p>The <code>nocf_check</code> attribute on a function is used to inform the
compiler that the function’s prologue should not be instrumented when
compiled with the <samp>-fcf-protection=branch</samp> option. The
compiler assumes that the function’s address is a valid target for a
control-flow transfer.
</p>
<p>The <code>nocf_check</code> attribute on a type of pointer to function is
used to inform the compiler that a call through the pointer should
not be instrumented when compiled with the
<samp>-fcf-protection=branch</samp> option. The compiler assumes
that the function’s address from the pointer is a valid target for
a control-flow transfer. A direct function call through a function
name is assumed to be a safe call thus direct calls are not
instrumented by the compiler.
</p>
<p>The <code>nocf_check</code> attribute is applied to an object’s type.
In case of assignment of a function address or a function pointer to
another pointer, the attribute is not carried over from the right-hand
object’s type; the type of left-hand object stays unchanged. The
compiler checks for <code>nocf_check</code> attribute mismatch and reports
a warning in case of mismatch.
</p>
<div class="smallexample">
<pre class="smallexample">{
int foo (void) __attribute__(nocf_check);
void (*foo1)(void) __attribute__(nocf_check);
void (*foo2)(void);
/* foo's address is assumed to be valid. */
int
foo (void)
/* This call site is not checked for control-flow
validity. */
(*foo1)();
/* A warning is issued about attribute mismatch. */
foo1 = foo2;
/* This call site is still not checked. */
(*foo1)();
/* This call site is checked. */
(*foo2)();
/* A warning is issued about attribute mismatch. */
foo2 = foo1;
/* This call site is still checked. */
(*foo2)();
return 0;
}
</pre></div>
</dd>
</dl>
<p>On the x86, the inliner does not inline a
function that has different target options than the caller, unless the
callee has a subset of the target options of the caller. For example
a function declared with <code>target("sse3")</code> can inline a function
with <code>target("sse2")</code>, since <code>-msse3</code> implies <code>-msse2</code>.
</p></dd>
</dl>
<hr>
<a name="Xstormy16-Function-Attributes"></a>
<div class="header">
<p>
Previous: <a href="#x86-Function-Attributes" accesskey="p" rel="prev">x86 Function Attributes</a>, Up: <a href="#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Xstormy16-Function-Attributes-1"></a>
<h4 class="subsection">6.31.34 Xstormy16 Function Attributes</h4>
<p>These function attributes are supported by the Xstormy16 back end:
</p>
<dl compact="compact">
<dt><code>interrupt</code></dt>
<dd><a name="index-interrupt-function-attribute_002c-Xstormy16"></a>
<p>Use this attribute to indicate
that the specified function is an interrupt handler. The compiler generates
function entry and exit sequences suitable for use in an interrupt handler
when this attribute is present.
</p></dd>
</dl>
<hr>
<a name="Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Type-Attributes" accesskey="n" rel="next">Type Attributes</a>, Previous: <a href="#Function-Attributes" accesskey="p" rel="prev">Function Attributes</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Specifying-Attributes-of-Variables"></a>
<h3 class="section">6.32 Specifying Attributes of Variables</h3>
<a name="index-attribute-of-variables"></a>
<a name="index-variable-attributes"></a>
<p>The keyword <code>__attribute__</code> allows you to specify special
attributes of variables or structure fields. This keyword is followed
by an attribute specification inside double parentheses. Some
attributes are currently defined generically for variables.
Other attributes are defined for variables on particular target
systems. Other attributes are available for functions
(see <a href="#Function-Attributes">Function Attributes</a>), labels (see <a href="#Label-Attributes">Label Attributes</a>),
enumerators (see <a href="#Enumerator-Attributes">Enumerator Attributes</a>), statements
(see <a href="#Statement-Attributes">Statement Attributes</a>), and for types (see <a href="#Type-Attributes">Type Attributes</a>).
Other front ends might define more attributes
(see <a href="#C_002b_002b-Extensions">Extensions to the C++ Language</a>).
</p>
<p>See <a href="#Attribute-Syntax">Attribute Syntax</a>, for details of the exact syntax for using
attributes.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Common-Variable-Attributes" accesskey="1">Common Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARC-Variable-Attributes" accesskey="2">ARC Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#AVR-Variable-Attributes" accesskey="3">AVR Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Blackfin-Variable-Attributes" accesskey="4">Blackfin Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#H8_002f300-Variable-Attributes" accesskey="5">H8/300 Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#IA_002d64-Variable-Attributes" accesskey="6">IA-64 Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#M32R_002fD-Variable-Attributes" accesskey="7">M32R/D Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MeP-Variable-Attributes" accesskey="8">MeP Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Microsoft-Windows-Variable-Attributes" accesskey="9">Microsoft Windows Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MSP430-Variable-Attributes">MSP430 Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Nvidia-PTX-Variable-Attributes">Nvidia PTX Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-Variable-Attributes">PowerPC Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RL78-Variable-Attributes">RL78 Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SPU-Variable-Attributes">SPU Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#V850-Variable-Attributes">V850 Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-Variable-Attributes">x86 Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Xstormy16-Variable-Attributes">Xstormy16 Variable Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Common-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#ARC-Variable-Attributes" accesskey="n" rel="next">ARC Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Common-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.1 Common Variable Attributes</h4>
<p>The following attributes are supported on most targets.
</p>
<dl compact="compact">
<dd><a name="index-aligned-variable-attribute"></a>
</dd>
<dt><code>aligned (<var>alignment</var>)</code></dt>
<dd><p>This attribute specifies a minimum alignment for the variable or
structure field, measured in bytes. For example, the declaration:
</p>
<div class="smallexample">
<pre class="smallexample">int x __attribute__ ((aligned (16))) = 0;
</pre></div>
<p>causes the compiler to allocate the global variable <code>x</code> on a
16-byte boundary. On a 68040, this could be used in conjunction with
an <code>asm</code> expression to access the <code>move16</code> instruction which
requires 16-byte aligned operands.
</p>
<p>You can also specify the alignment of structure fields. For example, to
create a double-word aligned <code>int</code> pair, you could write:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo { int x[2] __attribute__ ((aligned (8))); };
</pre></div>
<p>This is an alternative to creating a union with a <code>double</code> member,
which forces the union to be double-word aligned.
</p>
<p>As in the preceding examples, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given variable or
structure field. Alternatively, you can leave out the alignment factor
and just ask the compiler to align a variable or field to the
default alignment for the target architecture you are compiling for.
The default alignment is sufficient for all scalar types, but may not be
enough for all vector types on a target that supports vector operations.
The default alignment is fixed for a particular target ABI.
</p>
<p>GCC also provides a target specific macro <code>__BIGGEST_ALIGNMENT__</code>,
which is the largest alignment ever used for any data type on the
target machine you are compiling for. For example, you could write:
</p>
<div class="smallexample">
<pre class="smallexample">short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
</pre></div>
<p>The compiler automatically sets the alignment for the declared
variable or field to <code>__BIGGEST_ALIGNMENT__</code>. Doing this can
often make copy operations more efficient, because the compiler can
use whatever instructions copy the biggest chunks of memory when
performing copies to or from the variables or fields that you have
aligned this way. Note that the value of <code>__BIGGEST_ALIGNMENT__</code>
may change depending on command-line options.
</p>
<p>When used on a struct, or struct member, the <code>aligned</code> attribute can
only increase the alignment; in order to decrease it, the <code>packed</code>
attribute must be specified as well. When used as part of a typedef, the
<code>aligned</code> attribute can both increase and decrease alignment, and
specifying the <code>packed</code> attribute generates a warning.
</p>
<p>Note that the effectiveness of <code>aligned</code> attributes may be limited
by inherent limitations in your linker. On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment. (For some linkers, the maximum supported alignment may
be very very small.) If your linker is only able to align variables
up to a maximum of 8-byte alignment, then specifying <code>aligned(16)</code>
in an <code>__attribute__</code> still only provides you with 8-byte
alignment. See your linker documentation for further information.
</p>
<p>The <code>aligned</code> attribute can also be used for functions
(see <a href="#Common-Function-Attributes">Common Function Attributes</a>.)
</p>
<a name="index-warn_005fif_005fnot_005faligned-variable-attribute"></a>
</dd>
<dt><code>warn_if_not_aligned (<var>alignment</var>)</code></dt>
<dd><p>This attribute specifies a threshold for the structure field, measured
in bytes. If the structure field is aligned below the threshold, a
warning will be issued. For example, the declaration:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo
{
int i1;
int i2;
unsigned long long x __attribute__((warn_if_not_aligned(16)));
};
</pre></div>
<p>causes the compiler to issue an warning on <code>struct foo</code>, like
‘<samp>warning: alignment 8 of 'struct foo' is less than 16</samp>’.
The compiler also issues a warning, like ‘<samp>warning: 'x' offset
8 in 'struct foo' isn't aligned to 16</samp>’, when the structure field has
the misaligned offset:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo
{
int i1;
int i2;
unsigned long long x __attribute__((warn_if_not_aligned(16)));
} __attribute__((aligned(16)));
</pre></div>
<p>This warning can be disabled by <samp>-Wno-if-not-aligned</samp>.
The <code>warn_if_not_aligned</code> attribute can also be used for types
(see <a href="#Common-Type-Attributes">Common Type Attributes</a>.)
</p>
</dd>
<dt><code>cleanup (<var>cleanup_function</var>)</code></dt>
<dd><a name="index-cleanup-variable-attribute"></a>
<p>The <code>cleanup</code> attribute runs a function when the variable goes
out of scope. This attribute can only be applied to auto function
scope variables; it may not be applied to parameters or variables
with static storage duration. The function must take one parameter,
a pointer to a type compatible with the variable. The return value
of the function (if any) is ignored.
</p>
<p>If <samp>-fexceptions</samp> is enabled, then <var>cleanup_function</var>
is run during the stack unwinding that happens during the
processing of the exception. Note that the <code>cleanup</code> attribute
does not allow the exception to be caught, only to perform an action.
It is undefined what happens if <var>cleanup_function</var> does not
return normally.
</p>
</dd>
<dt><code>common</code></dt>
<dt><code>nocommon</code></dt>
<dd><a name="index-common-variable-attribute"></a>
<a name="index-nocommon-variable-attribute"></a>
<a name="index-fcommon"></a>
<a name="index-fno_002dcommon-1"></a>
<p>The <code>common</code> attribute requests GCC to place a variable in
“common” storage. The <code>nocommon</code> attribute requests the
opposite—to allocate space for it directly.
</p>
<p>These attributes override the default chosen by the
<samp>-fno-common</samp> and <samp>-fcommon</samp> flags respectively.
</p>
</dd>
<dt><code>deprecated</code></dt>
<dt><code>deprecated (<var>msg</var>)</code></dt>
<dd><a name="index-deprecated-variable-attribute"></a>
<p>The <code>deprecated</code> attribute results in a warning if the variable
is used anywhere in the source file. This is useful when identifying
variables that are expected to be removed in a future version of a
program. The warning also includes the location of the declaration
of the deprecated variable, to enable users to easily find further
information about why the variable is deprecated, or what they should
do instead. Note that the warning only occurs for uses:
</p>
<div class="smallexample">
<pre class="smallexample">extern int old_var __attribute__ ((deprecated));
extern int old_var;
int new_fn () { return old_var; }
</pre></div>
<p>results in a warning on line 3 but not line 2. The optional <var>msg</var>
argument, which must be a string, is printed in the warning if
present.
</p>
<p>The <code>deprecated</code> attribute can also be used for functions and
types (see <a href="#Common-Function-Attributes">Common Function Attributes</a>,
see <a href="#Common-Type-Attributes">Common Type Attributes</a>).
</p>
</dd>
<dt><code>nonstring</code></dt>
<dd><a name="index-nonstring-variable-attribute"></a>
<p>The <code>nonstring</code> variable attribute specifies that an object or member
declaration with type array of <code>char</code>, <code>signed char</code>, or
<code>unsigned char</code>, or pointer to such a type is intended to store
character arrays that do not necessarily contain a terminating <code>NUL</code>.
This is useful in detecting uses of such arrays or pointers with functions
that expect <code>NUL</code>-terminated strings, and to avoid warnings when such
an array or pointer is used as an argument to a bounded string manipulation
function such as <code>strncpy</code>. For example, without the attribute, GCC
will issue a warning for the <code>strncpy</code> call below because it may
truncate the copy without appending the terminating <code>NUL</code> character.
Using the attribute makes it possible to suppress the warning. However,
when the array is declared with the attribute the call to <code>strlen</code> is
diagnosed because when the array doesn’t contain a <code>NUL</code>-terminated
string the call is undefined. To copy, compare, of search non-string
character arrays use the <code>memcpy</code>, <code>memcmp</code>, <code>memchr</code>,
and other functions that operate on arrays of bytes. In addition,
calling <code>strnlen</code> and <code>strndup</code> with such arrays is safe
provided a suitable bound is specified, and not diagnosed.
</p>
<div class="smallexample">
<pre class="smallexample">struct Data
{
char name [32] __attribute__ ((nonstring));
};
int f (struct Data *pd, const char *s)
{
strncpy (pd->name, s, sizeof pd->name);
…
return strlen (pd->name); // unsafe, gets a warning
}
</pre></div>
</dd>
<dt><code>mode (<var>mode</var>)</code></dt>
<dd><a name="index-mode-variable-attribute"></a>
<p>This attribute specifies the data type for the declaration—whichever
type corresponds to the mode <var>mode</var>. This in effect lets you
request an integer or floating-point type according to its width.
</p>
<p>See <a href="http://gcc.gnu.org/onlinedocs/gccint/Machine-Modes.html#Machine-Modes">Machine Modes</a> in <cite>GNU Compiler Collection (GCC) Internals</cite>,
for a list of the possible keywords for <var>mode</var>.
You may also specify a mode of <code>byte</code> or <code>__byte__</code> to
indicate the mode corresponding to a one-byte integer, <code>word</code> or
<code>__word__</code> for the mode of a one-word integer, and <code>pointer</code>
or <code>__pointer__</code> for the mode used to represent pointers.
</p>
</dd>
<dt><code>packed</code></dt>
<dd><a name="index-packed-variable-attribute"></a>
<p>The <code>packed</code> attribute specifies that a variable or structure field
should have the smallest possible alignment—one byte for a variable,
and one bit for a field, unless you specify a larger value with the
<code>aligned</code> attribute.
</p>
<p>Here is a structure in which the field <code>x</code> is packed, so that it
immediately follows <code>a</code>:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo
{
char a;
int x[2] __attribute__ ((packed));
};
</pre></div>
<p><em>Note:</em> The 4.1, 4.2 and 4.3 series of GCC ignore the
<code>packed</code> attribute on bit-fields of type <code>char</code>. This has
been fixed in GCC 4.4 but the change can lead to differences in the
structure layout. See the documentation of
<samp>-Wpacked-bitfield-compat</samp> for more information.
</p>
</dd>
<dt><code>section ("<var>section-name</var>")</code></dt>
<dd><a name="index-section-variable-attribute"></a>
<p>Normally, the compiler places the objects it generates in sections like
<code>data</code> and <code>bss</code>. Sometimes, however, you need additional sections,
or you need certain particular variables to appear in special sections,
for example to map to special hardware. The <code>section</code>
attribute specifies that a variable (or function) lives in a particular
section. For example, this small program uses several specific section names:
</p>
<div class="smallexample">
<pre class="smallexample">struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
int init_data __attribute__ ((section ("INITDATA")));
main()
{
/* <span class="roman">Initialize stack pointer</span> */
init_sp (stack + sizeof (stack));
/* <span class="roman">Initialize initialized data</span> */
memcpy (&init_data, &data, &edata - &data);
/* <span class="roman">Turn on the serial ports</span> */
init_duart (&a);
init_duart (&b);
}
</pre></div>
<p>Use the <code>section</code> attribute with
<em>global</em> variables and not <em>local</em> variables,
as shown in the example.
</p>
<p>You may use the <code>section</code> attribute with initialized or
uninitialized global variables but the linker requires
each object be defined once, with the exception that uninitialized
variables tentatively go in the <code>common</code> (or <code>bss</code>) section
and can be multiply “defined”. Using the <code>section</code> attribute
changes what section the variable goes into and may cause the
linker to issue an error if an uninitialized variable has multiple
definitions. You can force a variable to be initialized with the
<samp>-fno-common</samp> flag or the <code>nocommon</code> attribute.
</p>
<p>Some file formats do not support arbitrary sections so the <code>section</code>
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.
</p>
</dd>
<dt><code>tls_model ("<var>tls_model</var>")</code></dt>
<dd><a name="index-tls_005fmodel-variable-attribute"></a>
<p>The <code>tls_model</code> attribute sets thread-local storage model
(see <a href="#Thread_002dLocal">Thread-Local</a>) of a particular <code>__thread</code> variable,
overriding <samp>-ftls-model=</samp> command-line switch on a per-variable
basis.
The <var>tls_model</var> argument should be one of <code>global-dynamic</code>,
<code>local-dynamic</code>, <code>initial-exec</code> or <code>local-exec</code>.
</p>
<p>Not all targets support this attribute.
</p>
</dd>
<dt><code>unused</code></dt>
<dd><a name="index-unused-variable-attribute"></a>
<p>This attribute, attached to a variable, means that the variable is meant
to be possibly unused. GCC does not produce a warning for this
variable.
</p>
</dd>
<dt><code>used</code></dt>
<dd><a name="index-used-variable-attribute"></a>
<p>This attribute, attached to a variable with static storage, means that
the variable must be emitted even if it appears that the variable is not
referenced.
</p>
<p>When applied to a static data member of a C++ class template, the
attribute also means that the member is instantiated if the
class itself is instantiated.
</p>
</dd>
<dt><code>vector_size (<var>bytes</var>)</code></dt>
<dd><a name="index-vector_005fsize-variable-attribute"></a>
<p>This attribute specifies the vector size for the variable, measured in
bytes. For example, the declaration:
</p>
<div class="smallexample">
<pre class="smallexample">int foo __attribute__ ((vector_size (16)));
</pre></div>
<p>causes the compiler to set the mode for <code>foo</code>, to be 16 bytes,
divided into <code>int</code> sized units. Assuming a 32-bit int (a vector of
4 units of 4 bytes), the corresponding mode of <code>foo</code> is V4SI.
</p>
<p>This attribute is only applicable to integral and float scalars,
although arrays, pointers, and function return values are allowed in
conjunction with this construct.
</p>
<p>Aggregates with this attribute are invalid, even if they are of the same
size as a corresponding scalar. For example, the declaration:
</p>
<div class="smallexample">
<pre class="smallexample">struct S { int a; };
struct S __attribute__ ((vector_size (16))) foo;
</pre></div>
<p>is invalid even if the size of the structure is the same as the size of
the <code>int</code>.
</p>
</dd>
<dt><code>visibility ("<var>visibility_type</var>")</code></dt>
<dd><a name="index-visibility-variable-attribute"></a>
<p>This attribute affects the linkage of the declaration to which it is attached.
The <code>visibility</code> attribute is described in
<a href="#Common-Function-Attributes">Common Function Attributes</a>.
</p>
</dd>
<dt><code>weak</code></dt>
<dd><a name="index-weak-variable-attribute"></a>
<p>The <code>weak</code> attribute is described in
<a href="#Common-Function-Attributes">Common Function Attributes</a>.
</p>
</dd>
</dl>
<hr>
<a name="ARC-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#AVR-Variable-Attributes" accesskey="n" rel="next">AVR Variable Attributes</a>, Previous: <a href="#Common-Variable-Attributes" accesskey="p" rel="prev">Common Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARC-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.2 ARC Variable Attributes</h4>
<dl compact="compact">
<dt><code>aux</code></dt>
<dd><a name="index-aux-variable-attribute_002c-ARC"></a>
<p>The <code>aux</code> attribute is used to directly access the ARC’s
auxiliary register space from C. The auxilirary register number is
given via attribute argument.
</p>
</dd>
</dl>
<hr>
<a name="AVR-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Blackfin-Variable-Attributes" accesskey="n" rel="next">Blackfin Variable Attributes</a>, Previous: <a href="#ARC-Variable-Attributes" accesskey="p" rel="prev">ARC Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="AVR-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.3 AVR Variable Attributes</h4>
<dl compact="compact">
<dt><code>progmem</code></dt>
<dd><a name="index-progmem-variable-attribute_002c-AVR"></a>
<p>The <code>progmem</code> attribute is used on the AVR to place read-only
data in the non-volatile program memory (flash). The <code>progmem</code>
attribute accomplishes this by putting respective variables into a
section whose name starts with <code>.progmem</code>.
</p>
<p>This attribute works similar to the <code>section</code> attribute
but adds additional checking.
</p>
<dl compact="compact">
<dt>• Ordinary AVR cores with 32 general purpose registers:</dt>
<dd><p><code>progmem</code> affects the location
of the data but not how this data is accessed.
In order to read data located with the <code>progmem</code> attribute
(inline) assembler must be used.
</p><div class="smallexample">
<pre class="smallexample">/* Use custom macros from <a href="http://nongnu.org/avr-libc/user-manual/">AVR-LibC</a><!-- /@w --> */
#include <avr/pgmspace.h>
/* Locate var in flash memory */
const int var[2] PROGMEM = { 1, 2 };
int read_var (int i)
{
/* Access var[] by accessor macro from avr/pgmspace.h */
return (int) pgm_read_word (& var[i]);
}
</pre></div>
<p>AVR is a Harvard architecture processor and data and read-only data
normally resides in the data memory (RAM).
</p>
<p>See also the <a href="#AVR-Named-Address-Spaces">AVR Named Address Spaces</a> section for
an alternate way to locate and access data in flash memory.
</p>
</dd>
<dt>• AVR cores with flash memory visible in the RAM address range:</dt>
<dd><p>On such devices, there is no need for attribute <code>progmem</code> or
<a href="#AVR-Named-Address-Spaces"><code>__flash</code></a> qualifier at all.
Just use standard C / C++. The compiler will generate <code>LD*</code>
instructions. As flash memory is visible in the RAM address range,
and the default linker script does <em>not</em> locate <code>.rodata</code> in
RAM, no special features are needed in order not to waste RAM for
read-only data or to read from flash. You might even get slightly better
performance by
avoiding <code>progmem</code> and <code>__flash</code>. This applies to devices from
families <code>avrtiny</code> and <code>avrxmega3</code>, see <a href="#AVR-Options">AVR Options</a> for
an overview.
</p>
</dd>
<dt>• Reduced AVR Tiny cores like ATtiny40:</dt>
<dd><p>The compiler adds <code>0x4000</code>
to the addresses of objects and declarations in <code>progmem</code> and locates
the objects in flash memory, namely in section <code>.progmem.data</code>.
The offset is needed because the flash memory is visible in the RAM
address space starting at address <code>0x4000</code>.
</p>
<p>Data in <code>progmem</code> can be accessed by means of ordinary C code,
no special functions or macros are needed.
</p>
<div class="smallexample">
<pre class="smallexample">/* var is located in flash memory */
extern const int var[2] __attribute__((progmem));
int read_var (int i)
{
return var[i];
}
</pre></div>
<p>Please notice that on these devices, there is no need for <code>progmem</code>
at all.
</p>
</dd>
</dl>
</dd>
<dt><code>io</code></dt>
<dt><code>io (<var>addr</var>)</code></dt>
<dd><a name="index-io-variable-attribute_002c-AVR"></a>
<p>Variables with the <code>io</code> attribute are used to address
memory-mapped peripherals in the io address range.
If an address is specified, the variable
is assigned that address, and the value is interpreted as an
address in the data address space.
Example:
</p>
<div class="smallexample">
<pre class="smallexample">volatile int porta __attribute__((io (0x22)));
</pre></div>
<p>The address specified in the address in the data address range.
</p>
<p>Otherwise, the variable it is not assigned an address, but the
compiler will still use in/out instructions where applicable,
assuming some other module assigns an address in the io address range.
Example:
</p>
<div class="smallexample">
<pre class="smallexample">extern volatile int porta __attribute__((io));
</pre></div>
</dd>
<dt><code>io_low</code></dt>
<dt><code>io_low (<var>addr</var>)</code></dt>
<dd><a name="index-io_005flow-variable-attribute_002c-AVR"></a>
<p>This is like the <code>io</code> attribute, but additionally it informs the
compiler that the object lies in the lower half of the I/O area,
allowing the use of <code>cbi</code>, <code>sbi</code>, <code>sbic</code> and <code>sbis</code>
instructions.
</p>
</dd>
<dt><code>address</code></dt>
<dt><code>address (<var>addr</var>)</code></dt>
<dd><a name="index-address-variable-attribute_002c-AVR"></a>
<p>Variables with the <code>address</code> attribute are used to address
memory-mapped peripherals that may lie outside the io address range.
</p>
<div class="smallexample">
<pre class="smallexample">volatile int porta __attribute__((address (0x600)));
</pre></div>
</dd>
<dt><code>absdata</code></dt>
<dd><a name="index-absdata-variable-attribute_002c-AVR"></a>
<p>Variables in static storage and with the <code>absdata</code> attribute can
be accessed by the <code>LDS</code> and <code>STS</code> instructions which take
absolute addresses.
</p>
<ul>
<li> This attribute is only supported for the reduced AVR Tiny core
like ATtiny40.
</li><li> You must make sure that respective data is located in the
address range <code>0x40</code>…<code>0xbf</code> accessible by
<code>LDS</code> and <code>STS</code>. One way to achieve this as an
appropriate linker description file.
</li><li> If the location does not fit the address range of <code>LDS</code>
and <code>STS</code>, there is currently (Binutils 2.26) just an unspecific
warning like
<blockquote>
<p><code>module.c:(.text+0x1c): warning: internal error: out of range error</code>
</p></blockquote>
</li></ul>
<p>See also the <samp>-mabsdata</samp> <a href="#AVR-Options">command-line option</a>.
</p>
</dd>
</dl>
<hr>
<a name="Blackfin-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#H8_002f300-Variable-Attributes" accesskey="n" rel="next">H8/300 Variable Attributes</a>, Previous: <a href="#AVR-Variable-Attributes" accesskey="p" rel="prev">AVR Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Blackfin-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.4 Blackfin Variable Attributes</h4>
<p>Three attributes are currently defined for the Blackfin.
</p>
<dl compact="compact">
<dt><code>l1_data</code></dt>
<dt><code>l1_data_A</code></dt>
<dt><code>l1_data_B</code></dt>
<dd><a name="index-l1_005fdata-variable-attribute_002c-Blackfin"></a>
<a name="index-l1_005fdata_005fA-variable-attribute_002c-Blackfin"></a>
<a name="index-l1_005fdata_005fB-variable-attribute_002c-Blackfin"></a>
<p>Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
Variables with <code>l1_data</code> attribute are put into the specific section
named <code>.l1.data</code>. Those with <code>l1_data_A</code> attribute are put into
the specific section named <code>.l1.data.A</code>. Those with <code>l1_data_B</code>
attribute are put into the specific section named <code>.l1.data.B</code>.
</p>
</dd>
<dt><code>l2</code></dt>
<dd><a name="index-l2-variable-attribute_002c-Blackfin"></a>
<p>Use this attribute on the Blackfin to place the variable into L2 SRAM.
Variables with <code>l2</code> attribute are put into the specific section
named <code>.l2.data</code>.
</p></dd>
</dl>
<hr>
<a name="H8_002f300-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#IA_002d64-Variable-Attributes" accesskey="n" rel="next">IA-64 Variable Attributes</a>, Previous: <a href="#Blackfin-Variable-Attributes" accesskey="p" rel="prev">Blackfin Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="H8_002f300-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.5 H8/300 Variable Attributes</h4>
<p>These variable attributes are available for H8/300 targets:
</p>
<dl compact="compact">
<dt><code>eightbit_data</code></dt>
<dd><a name="index-eightbit_005fdata-variable-attribute_002c-H8_002f300"></a>
<a name="index-eight_002dbit-data-on-the-H8_002f300_002c-H8_002f300H_002c-and-H8S"></a>
<p>Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
variable should be placed into the eight-bit data section.
The compiler generates more efficient code for certain operations
on data in the eight-bit data area. Note the eight-bit data area is limited to
256 bytes of data.
</p>
<p>You must use GAS and GLD from GNU binutils version 2.7 or later for
this attribute to work correctly.
</p>
</dd>
<dt><code>tiny_data</code></dt>
<dd><a name="index-tiny_005fdata-variable-attribute_002c-H8_002f300"></a>
<a name="index-tiny-data-section-on-the-H8_002f300H-and-H8S"></a>
<p>Use this attribute on the H8/300H and H8S to indicate that the specified
variable should be placed into the tiny data section.
The compiler generates more efficient code for loads and stores
on data in the tiny data section. Note the tiny data area is limited to
slightly under 32KB of data.
</p>
</dd>
</dl>
<hr>
<a name="IA_002d64-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#M32R_002fD-Variable-Attributes" accesskey="n" rel="next">M32R/D Variable Attributes</a>, Previous: <a href="#H8_002f300-Variable-Attributes" accesskey="p" rel="prev">H8/300 Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="IA_002d64-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.6 IA-64 Variable Attributes</h4>
<p>The IA-64 back end supports the following variable attribute:
</p>
<dl compact="compact">
<dt><code>model (<var>model-name</var>)</code></dt>
<dd><a name="index-model-variable-attribute_002c-IA_002d64"></a>
<p>On IA-64, use this attribute to set the addressability of an object.
At present, the only supported identifier for <var>model-name</var> is
<code>small</code>, indicating addressability via “small” (22-bit)
addresses (so that their addresses can be loaded with the <code>addl</code>
instruction). Caveat: such addressing is by definition not position
independent and hence this attribute must not be used for objects
defined by shared libraries.
</p>
</dd>
</dl>
<hr>
<a name="M32R_002fD-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#MeP-Variable-Attributes" accesskey="n" rel="next">MeP Variable Attributes</a>, Previous: <a href="#IA_002d64-Variable-Attributes" accesskey="p" rel="prev">IA-64 Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="M32R_002fD-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.7 M32R/D Variable Attributes</h4>
<p>One attribute is currently defined for the M32R/D.
</p>
<dl compact="compact">
<dt><code>model (<var>model-name</var>)</code></dt>
<dd><a name="index-model_002dname-variable-attribute_002c-M32R_002fD"></a>
<a name="index-variable-addressability-on-the-M32R_002fD"></a>
<p>Use this attribute on the M32R/D to set the addressability of an object.
The identifier <var>model-name</var> is one of <code>small</code>, <code>medium</code>,
or <code>large</code>, representing each of the code models.
</p>
<p>Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the <code>ld24</code> instruction).
</p>
<p>Medium and large model objects may live anywhere in the 32-bit address space
(the compiler generates <code>seth/add3</code> instructions to load their
addresses).
</p></dd>
</dl>
<hr>
<a name="MeP-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Microsoft-Windows-Variable-Attributes" accesskey="n" rel="next">Microsoft Windows Variable Attributes</a>, Previous: <a href="#M32R_002fD-Variable-Attributes" accesskey="p" rel="prev">M32R/D Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MeP-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.8 MeP Variable Attributes</h4>
<p>The MeP target has a number of addressing modes and busses. The
<code>near</code> space spans the standard memory space’s first 16 megabytes
(24 bits). The <code>far</code> space spans the entire 32-bit memory space.
The <code>based</code> space is a 128-byte region in the memory space that
is addressed relative to the <code>$tp</code> register. The <code>tiny</code>
space is a 65536-byte region relative to the <code>$gp</code> register. In
addition to these memory regions, the MeP target has a separate 16-bit
control bus which is specified with <code>cb</code> attributes.
</p>
<dl compact="compact">
<dt><code>based</code></dt>
<dd><a name="index-based-variable-attribute_002c-MeP"></a>
<p>Any variable with the <code>based</code> attribute is assigned to the
<code>.based</code> section, and is accessed with relative to the
<code>$tp</code> register.
</p>
</dd>
<dt><code>tiny</code></dt>
<dd><a name="index-tiny-variable-attribute_002c-MeP"></a>
<p>Likewise, the <code>tiny</code> attribute assigned variables to the
<code>.tiny</code> section, relative to the <code>$gp</code> register.
</p>
</dd>
<dt><code>near</code></dt>
<dd><a name="index-near-variable-attribute_002c-MeP"></a>
<p>Variables with the <code>near</code> attribute are assumed to have addresses
that fit in a 24-bit addressing mode. This is the default for large
variables (<code>-mtiny=4</code> is the default) but this attribute can
override <code>-mtiny=</code> for small variables, or override <code>-ml</code>.
</p>
</dd>
<dt><code>far</code></dt>
<dd><a name="index-far-variable-attribute_002c-MeP"></a>
<p>Variables with the <code>far</code> attribute are addressed using a full
32-bit address. Since this covers the entire memory space, this
allows modules to make no assumptions about where variables might be
stored.
</p>
</dd>
<dt><code>io</code></dt>
<dd><a name="index-io-variable-attribute_002c-MeP"></a>
</dd>
<dt><code>io (<var>addr</var>)</code></dt>
<dd><p>Variables with the <code>io</code> attribute are used to address
memory-mapped peripherals. If an address is specified, the variable
is assigned that address, else it is not assigned an address (it is
assumed some other module assigns an address). Example:
</p>
<div class="smallexample">
<pre class="smallexample">int timer_count __attribute__((io(0x123)));
</pre></div>
</dd>
<dt><code>cb</code></dt>
<dt><code>cb (<var>addr</var>)</code></dt>
<dd><a name="index-cb-variable-attribute_002c-MeP"></a>
<p>Variables with the <code>cb</code> attribute are used to access the control
bus, using special instructions. <code>addr</code> indicates the control bus
address. Example:
</p>
<div class="smallexample">
<pre class="smallexample">int cpu_clock __attribute__((cb(0x123)));
</pre></div>
</dd>
</dl>
<hr>
<a name="Microsoft-Windows-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#MSP430-Variable-Attributes" accesskey="n" rel="next">MSP430 Variable Attributes</a>, Previous: <a href="#MeP-Variable-Attributes" accesskey="p" rel="prev">MeP Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Microsoft-Windows-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.9 Microsoft Windows Variable Attributes</h4>
<p>You can use these attributes on Microsoft Windows targets.
<a href="#x86-Variable-Attributes">x86 Variable Attributes</a> for additional Windows compatibility
attributes available on all x86 targets.
</p>
<dl compact="compact">
<dt><code>dllimport</code></dt>
<dt><code>dllexport</code></dt>
<dd><a name="index-dllimport-variable-attribute"></a>
<a name="index-dllexport-variable-attribute"></a>
<p>The <code>dllimport</code> and <code>dllexport</code> attributes are described in
<a href="#Microsoft-Windows-Function-Attributes">Microsoft Windows Function Attributes</a>.
</p>
</dd>
<dt><code>selectany</code></dt>
<dd><a name="index-selectany-variable-attribute"></a>
<p>The <code>selectany</code> attribute causes an initialized global variable to
have link-once semantics. When multiple definitions of the variable are
encountered by the linker, the first is selected and the remainder are
discarded. Following usage by the Microsoft compiler, the linker is told
<em>not</em> to warn about size or content differences of the multiple
definitions.
</p>
<p>Although the primary usage of this attribute is for POD types, the
attribute can also be applied to global C++ objects that are initialized
by a constructor. In this case, the static initialization and destruction
code for the object is emitted in each translation defining the object,
but the calls to the constructor and destructor are protected by a
link-once guard variable.
</p>
<p>The <code>selectany</code> attribute is only available on Microsoft Windows
targets. You can use <code>__declspec (selectany)</code> as a synonym for
<code>__attribute__ ((selectany))</code> for compatibility with other
compilers.
</p>
</dd>
<dt><code>shared</code></dt>
<dd><a name="index-shared-variable-attribute"></a>
<p>On Microsoft Windows, in addition to putting variable definitions in a named
section, the section can also be shared among all running copies of an
executable or DLL. For example, this small program defines shared data
by putting it in a named section <code>shared</code> and marking the section
shareable:
</p>
<div class="smallexample">
<pre class="smallexample">int foo __attribute__((section ("shared"), shared)) = 0;
int
main()
{
/* <span class="roman">Read and write foo. All running
copies see the same value.</span> */
return 0;
}
</pre></div>
<p>You may only use the <code>shared</code> attribute along with <code>section</code>
attribute with a fully-initialized global definition because of the way
linkers work. See <code>section</code> attribute for more information.
</p>
<p>The <code>shared</code> attribute is only available on Microsoft Windows.
</p>
</dd>
</dl>
<hr>
<a name="MSP430-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Nvidia-PTX-Variable-Attributes" accesskey="n" rel="next">Nvidia PTX Variable Attributes</a>, Previous: <a href="#Microsoft-Windows-Variable-Attributes" accesskey="p" rel="prev">Microsoft Windows Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MSP430-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.10 MSP430 Variable Attributes</h4>
<dl compact="compact">
<dt><code>noinit</code></dt>
<dd><a name="index-noinit-variable-attribute_002c-MSP430"></a>
<p>Any data with the <code>noinit</code> attribute will not be initialised by
the C runtime startup code, or the program loader. Not initialising
data in this way can reduce program startup times.
</p>
</dd>
<dt><code>persistent</code></dt>
<dd><a name="index-persistent-variable-attribute_002c-MSP430"></a>
<p>Any variable with the <code>persistent</code> attribute will not be
initialised by the C runtime startup code. Instead its value will be
set once, when the application is loaded, and then never initialised
again, even if the processor is reset or the program restarts.
Persistent data is intended to be placed into FLASH RAM, where its
value will be retained across resets. The linker script being used to
create the application should ensure that persistent data is correctly
placed.
</p>
</dd>
<dt><code>lower</code></dt>
<dt><code>upper</code></dt>
<dt><code>either</code></dt>
<dd><a name="index-lower-variable-attribute_002c-MSP430"></a>
<a name="index-upper-variable-attribute_002c-MSP430"></a>
<a name="index-either-variable-attribute_002c-MSP430"></a>
<p>These attributes are the same as the MSP430 function attributes of the
same name (see <a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a>).
These attributes can be applied to both functions and variables.
</p></dd>
</dl>
<hr>
<a name="Nvidia-PTX-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-Variable-Attributes" accesskey="n" rel="next">PowerPC Variable Attributes</a>, Previous: <a href="#MSP430-Variable-Attributes" accesskey="p" rel="prev">MSP430 Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Nvidia-PTX-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.11 Nvidia PTX Variable Attributes</h4>
<p>These variable attributes are supported by the Nvidia PTX back end:
</p>
<dl compact="compact">
<dt><code>shared</code></dt>
<dd><a name="index-shared-attribute_002c-Nvidia-PTX"></a>
<p>Use this attribute to place a variable in the <code>.shared</code> memory space.
This memory space is private to each cooperative thread array; only threads
within one thread block refer to the same instance of the variable.
The runtime does not initialize variables in this memory space.
</p></dd>
</dl>
<hr>
<a name="PowerPC-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#RL78-Variable-Attributes" accesskey="n" rel="next">RL78 Variable Attributes</a>, Previous: <a href="#Nvidia-PTX-Variable-Attributes" accesskey="p" rel="prev">Nvidia PTX Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.12 PowerPC Variable Attributes</h4>
<p>Three attributes currently are defined for PowerPC configurations:
<code>altivec</code>, <code>ms_struct</code> and <code>gcc_struct</code>.
</p>
<a name="index-ms_005fstruct-variable-attribute_002c-PowerPC"></a>
<a name="index-gcc_005fstruct-variable-attribute_002c-PowerPC"></a>
<p>For full documentation of the struct attributes please see the
documentation in <a href="#x86-Variable-Attributes">x86 Variable Attributes</a>.
</p>
<a name="index-altivec-variable-attribute_002c-PowerPC"></a>
<p>For documentation of <code>altivec</code> attribute please see the
documentation in <a href="#PowerPC-Type-Attributes">PowerPC Type Attributes</a>.
</p>
<hr>
<a name="RL78-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#SPU-Variable-Attributes" accesskey="n" rel="next">SPU Variable Attributes</a>, Previous: <a href="#PowerPC-Variable-Attributes" accesskey="p" rel="prev">PowerPC Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RL78-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.13 RL78 Variable Attributes</h4>
<a name="index-saddr-variable-attribute_002c-RL78"></a>
<p>The RL78 back end supports the <code>saddr</code> variable attribute. This
specifies placement of the corresponding variable in the SADDR area,
which can be accessed more efficiently than the default memory region.
</p>
<hr>
<a name="SPU-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#V850-Variable-Attributes" accesskey="n" rel="next">V850 Variable Attributes</a>, Previous: <a href="#RL78-Variable-Attributes" accesskey="p" rel="prev">RL78 Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SPU-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.14 SPU Variable Attributes</h4>
<a name="index-spu_005fvector-variable-attribute_002c-SPU"></a>
<p>The SPU supports the <code>spu_vector</code> attribute for variables. For
documentation of this attribute please see the documentation in
<a href="#SPU-Type-Attributes">SPU Type Attributes</a>.
</p>
<hr>
<a name="V850-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#x86-Variable-Attributes" accesskey="n" rel="next">x86 Variable Attributes</a>, Previous: <a href="#SPU-Variable-Attributes" accesskey="p" rel="prev">SPU Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="V850-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.15 V850 Variable Attributes</h4>
<p>These variable attributes are supported by the V850 back end:
</p>
<dl compact="compact">
<dt><code>sda</code></dt>
<dd><a name="index-sda-variable-attribute_002c-V850"></a>
<p>Use this attribute to explicitly place a variable in the small data area,
which can hold up to 64 kilobytes.
</p>
</dd>
<dt><code>tda</code></dt>
<dd><a name="index-tda-variable-attribute_002c-V850"></a>
<p>Use this attribute to explicitly place a variable in the tiny data area,
which can hold up to 256 bytes in total.
</p>
</dd>
<dt><code>zda</code></dt>
<dd><a name="index-zda-variable-attribute_002c-V850"></a>
<p>Use this attribute to explicitly place a variable in the first 32 kilobytes
of memory.
</p></dd>
</dl>
<hr>
<a name="x86-Variable-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Xstormy16-Variable-Attributes" accesskey="n" rel="next">Xstormy16 Variable Attributes</a>, Previous: <a href="#V850-Variable-Attributes" accesskey="p" rel="prev">V850 Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.16 x86 Variable Attributes</h4>
<p>Two attributes are currently defined for x86 configurations:
<code>ms_struct</code> and <code>gcc_struct</code>.
</p>
<dl compact="compact">
<dt><code>ms_struct</code></dt>
<dt><code>gcc_struct</code></dt>
<dd><a name="index-ms_005fstruct-variable-attribute_002c-x86"></a>
<a name="index-gcc_005fstruct-variable-attribute_002c-x86"></a>
<p>If <code>packed</code> is used on a structure, or if bit-fields are used,
it may be that the Microsoft ABI lays out the structure differently
than the way GCC normally does. Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.
</p>
<p>The <code>ms_struct</code> and <code>gcc_struct</code> attributes correspond
to the <samp>-mms-bitfields</samp> and <samp>-mno-ms-bitfields</samp>
command-line options, respectively;
see <a href="#x86-Options">x86 Options</a>, for details of how structure layout is affected.
See <a href="#x86-Type-Attributes">x86 Type Attributes</a>, for information about the corresponding
attributes on types.
</p>
</dd>
</dl>
<hr>
<a name="Xstormy16-Variable-Attributes"></a>
<div class="header">
<p>
Previous: <a href="#x86-Variable-Attributes" accesskey="p" rel="prev">x86 Variable Attributes</a>, Up: <a href="#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Xstormy16-Variable-Attributes-1"></a>
<h4 class="subsection">6.32.17 Xstormy16 Variable Attributes</h4>
<p>One attribute is currently defined for xstormy16 configurations:
<code>below100</code>.
</p>
<dl compact="compact">
<dt><code>below100</code></dt>
<dd><a name="index-below100-variable-attribute_002c-Xstormy16"></a>
<p>If a variable has the <code>below100</code> attribute (<code>BELOW100</code> is
allowed also), GCC places the variable in the first 0x100 bytes of
memory and use special opcodes to access it. Such variables are
placed in either the <code>.bss_below100</code> section or the
<code>.data_below100</code> section.
</p>
</dd>
</dl>
<hr>
<a name="Type-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Label-Attributes" accesskey="n" rel="next">Label Attributes</a>, Previous: <a href="#Variable-Attributes" accesskey="p" rel="prev">Variable Attributes</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Specifying-Attributes-of-Types"></a>
<h3 class="section">6.33 Specifying Attributes of Types</h3>
<a name="index-attribute-of-types"></a>
<a name="index-type-attributes"></a>
<p>The keyword <code>__attribute__</code> allows you to specify special
attributes of types. Some type attributes apply only to <code>struct</code>
and <code>union</code> types, while others can apply to any type defined
via a <code>typedef</code> declaration. Other attributes are defined for
functions (see <a href="#Function-Attributes">Function Attributes</a>), labels (see <a href="#Label-Attributes">Label Attributes</a>), enumerators (see <a href="#Enumerator-Attributes">Enumerator Attributes</a>),
statements (see <a href="#Statement-Attributes">Statement Attributes</a>), and for
variables (see <a href="#Variable-Attributes">Variable Attributes</a>).
</p>
<p>The <code>__attribute__</code> keyword is followed by an attribute specification
inside double parentheses.
</p>
<p>You may specify type attributes in an enum, struct or union type
declaration or definition by placing them immediately after the
<code>struct</code>, <code>union</code> or <code>enum</code> keyword. A less preferred
syntax is to place them just past the closing curly brace of the
definition.
</p>
<p>You can also include type attributes in a <code>typedef</code> declaration.
See <a href="#Attribute-Syntax">Attribute Syntax</a>, for details of the exact syntax for using
attributes.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Common-Type-Attributes" accesskey="1">Common Type Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARC-Type-Attributes" accesskey="2">ARC Type Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARM-Type-Attributes" accesskey="3">ARM Type Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MeP-Type-Attributes" accesskey="4">MeP Type Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-Type-Attributes" accesskey="5">PowerPC Type Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SPU-Type-Attributes" accesskey="6">SPU Type Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-Type-Attributes" accesskey="7">x86 Type Attributes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Common-Type-Attributes"></a>
<div class="header">
<p>
Next: <a href="#ARC-Type-Attributes" accesskey="n" rel="next">ARC Type Attributes</a>, Up: <a href="#Type-Attributes" accesskey="u" rel="up">Type Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Common-Type-Attributes-1"></a>
<h4 class="subsection">6.33.1 Common Type Attributes</h4>
<p>The following type attributes are supported on most targets.
</p>
<dl compact="compact">
<dd><a name="index-aligned-type-attribute"></a>
</dd>
<dt><code>aligned (<var>alignment</var>)</code></dt>
<dd><p>This attribute specifies a minimum alignment (in bytes) for variables
of the specified type. For example, the declarations:
</p>
<div class="smallexample">
<pre class="smallexample">struct S { short f[3]; } __attribute__ ((aligned (8)));
typedef int more_aligned_int __attribute__ ((aligned (8)));
</pre></div>
<p>force the compiler to ensure (as far as it can) that each variable whose
type is <code>struct S</code> or <code>more_aligned_int</code> is allocated and
aligned <em>at least</em> on a 8-byte boundary. On a SPARC, having all
variables of type <code>struct S</code> aligned to 8-byte boundaries allows
the compiler to use the <code>ldd</code> and <code>std</code> (doubleword load and
store) instructions when copying one variable of type <code>struct S</code> to
another, thus improving run-time efficiency.
</p>
<p>Note that the alignment of any given <code>struct</code> or <code>union</code> type
is required by the ISO C standard to be at least a perfect multiple of
the lowest common multiple of the alignments of all of the members of
the <code>struct</code> or <code>union</code> in question. This means that you <em>can</em>
effectively adjust the alignment of a <code>struct</code> or <code>union</code>
type by attaching an <code>aligned</code> attribute to any one of the members
of such a type, but the notation illustrated in the example above is a
more obvious, intuitive, and readable way to request the compiler to
adjust the alignment of an entire <code>struct</code> or <code>union</code> type.
</p>
<p>As in the preceding example, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given <code>struct</code>
or <code>union</code> type. Alternatively, you can leave out the alignment factor
and just ask the compiler to align a type to the maximum
useful alignment for the target machine you are compiling for. For
example, you could write:
</p>
<div class="smallexample">
<pre class="smallexample">struct S { short f[3]; } __attribute__ ((aligned));
</pre></div>
<p>Whenever you leave out the alignment factor in an <code>aligned</code>
attribute specification, the compiler automatically sets the alignment
for the type to the largest alignment that is ever used for any data
type on the target machine you are compiling for. Doing this can often
make copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory when performing
copies to or from the variables that have types that you have aligned
this way.
</p>
<p>In the example above, if the size of each <code>short</code> is 2 bytes, then
the size of the entire <code>struct S</code> type is 6 bytes. The smallest
power of two that is greater than or equal to that is 8, so the
compiler sets the alignment for the entire <code>struct S</code> type to 8
bytes.
</p>
<p>Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone
objects of that type, the compiler’s ability to select a time-efficient
alignment is primarily useful only when you plan to create arrays of
variables having the relevant (efficiently aligned) type. If you
declare or use arrays of variables of an efficiently-aligned type, then
it is likely that your program also does pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the
relevant type, and the code that the compiler generates for these
pointer arithmetic operations is often more efficient for
efficiently-aligned types than for other types.
</p>
<p>Note that the effectiveness of <code>aligned</code> attributes may be limited
by inherent limitations in your linker. On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment. (For some linkers, the maximum supported alignment may
be very very small.) If your linker is only able to align variables
up to a maximum of 8-byte alignment, then specifying <code>aligned(16)</code>
in an <code>__attribute__</code> still only provides you with 8-byte
alignment. See your linker documentation for further information.
</p>
<p>The <code>aligned</code> attribute can only increase alignment. Alignment
can be decreased by specifying the <code>packed</code> attribute. See below.
</p>
<a name="index-warn_005fif_005fnot_005faligned-type-attribute"></a>
</dd>
<dt><code>warn_if_not_aligned (<var>alignment</var>)</code></dt>
<dd><p>This attribute specifies a threshold for the structure field, measured
in bytes. If the structure field is aligned below the threshold, a
warning will be issued. For example, the declaration:
</p>
<div class="smallexample">
<pre class="smallexample">typedef unsigned long long __u64
__attribute__((aligned(4),warn_if_not_aligned(8)));
struct foo
{
int i1;
int i2;
__u64 x;
};
</pre></div>
<p>causes the compiler to issue an warning on <code>struct foo</code>, like
‘<samp>warning: alignment 4 of 'struct foo' is less than 8</samp>’.
It is used to define <code>struct foo</code> in such a way that
<code>struct foo</code> has the same layout and the structure field <code>x</code>
has the same alignment when <code>__u64</code> is aligned at either 4 or
8 bytes. Align <code>struct foo</code> to 8 bytes:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo
{
int i1;
int i2;
__u64 x;
} __attribute__((aligned(8)));
</pre></div>
<p>silences the warning. The compiler also issues a warning, like
‘<samp>warning: 'x' offset 12 in 'struct foo' isn't aligned to 8</samp>’,
when the structure field has the misaligned offset:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo
{
int i1;
int i2;
int i3;
__u64 x;
} __attribute__((aligned(8)));
</pre></div>
<p>This warning can be disabled by <samp>-Wno-if-not-aligned</samp>.
</p>
</dd>
<dt><code>bnd_variable_size</code></dt>
<dd><a name="index-bnd_005fvariable_005fsize-type-attribute"></a>
<a name="index-Pointer-Bounds-Checker-attributes-1"></a>
<p>When applied to a structure field, this attribute tells Pointer
Bounds Checker that the size of this field should not be computed
using static type information. It may be used to mark variably-sized
static array fields placed at the end of a structure.
</p>
<div class="smallexample">
<pre class="smallexample">struct S
{
int size;
char data[1];
}
S *p = (S *)malloc (sizeof(S) + 100);
p->data[10] = 0; //Bounds violation
</pre></div>
<p>By using an attribute for the field we may avoid unwanted bound
violation checks:
</p>
<div class="smallexample">
<pre class="smallexample">struct S
{
int size;
char data[1] __attribute__((bnd_variable_size));
}
S *p = (S *)malloc (sizeof(S) + 100);
p->data[10] = 0; //OK
</pre></div>
</dd>
<dt><code>deprecated</code></dt>
<dt><code>deprecated (<var>msg</var>)</code></dt>
<dd><a name="index-deprecated-type-attribute"></a>
<p>The <code>deprecated</code> attribute results in a warning if the type
is used anywhere in the source file. This is useful when identifying
types that are expected to be removed in a future version of a program.
If possible, the warning also includes the location of the declaration
of the deprecated type, to enable users to easily find further
information about why the type is deprecated, or what they should do
instead. Note that the warnings only occur for uses and then only
if the type is being applied to an identifier that itself is not being
declared as deprecated.
</p>
<div class="smallexample">
<pre class="smallexample">typedef int T1 __attribute__ ((deprecated));
T1 x;
typedef T1 T2;
T2 y;
typedef T1 T3 __attribute__ ((deprecated));
T3 z __attribute__ ((deprecated));
</pre></div>
<p>results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
warning is issued for line 4 because T2 is not explicitly
deprecated. Line 5 has no warning because T3 is explicitly
deprecated. Similarly for line 6. The optional <var>msg</var>
argument, which must be a string, is printed in the warning if
present.
</p>
<p>The <code>deprecated</code> attribute can also be used for functions and
variables (see <a href="#Function-Attributes">Function Attributes</a>, see <a href="#Variable-Attributes">Variable Attributes</a>.)
</p>
</dd>
<dt><code>designated_init</code></dt>
<dd><a name="index-designated_005finit-type-attribute"></a>
<p>This attribute may only be applied to structure types. It indicates
that any initialization of an object of this type must use designated
initializers rather than positional initializers. The intent of this
attribute is to allow the programmer to indicate that a structure’s
layout may change, and that therefore relying on positional
initialization will result in future breakage.
</p>
<p>GCC emits warnings based on this attribute by default; use
<samp>-Wno-designated-init</samp> to suppress them.
</p>
</dd>
<dt><code>may_alias</code></dt>
<dd><a name="index-may_005falias-type-attribute"></a>
<p>Accesses through pointers to types with this attribute are not subject
to type-based alias analysis, but are instead assumed to be able to alias
any other type of objects.
In the context of section 6.5 paragraph 7 of the C99 standard,
an lvalue expression
dereferencing such a pointer is treated like having a character type.
See <samp>-fstrict-aliasing</samp> for more information on aliasing issues.
This extension exists to support some vector APIs, in which pointers to
one vector type are permitted to alias pointers to a different vector type.
</p>
<p>Note that an object of a type with this attribute does not have any
special semantics.
</p>
<p>Example of use:
</p>
<div class="smallexample">
<pre class="smallexample">typedef short __attribute__((__may_alias__)) short_a;
int
main (void)
{
int a = 0x12345678;
short_a *b = (short_a *) &a;
b[1] = 0;
if (a == 0x12345678)
abort();
exit(0);
}
</pre></div>
<p>If you replaced <code>short_a</code> with <code>short</code> in the variable
declaration, the above program would abort when compiled with
<samp>-fstrict-aliasing</samp>, which is on by default at <samp>-O2</samp> or
above.
</p>
</dd>
<dt><code>packed</code></dt>
<dd><a name="index-packed-type-attribute"></a>
<p>This attribute, attached to <code>struct</code> or <code>union</code> type
definition, specifies that each member (other than zero-width bit-fields)
of the structure or union is placed to minimize the memory required. When
attached to an <code>enum</code> definition, it indicates that the smallest
integral type should be used.
</p>
<a name="index-fshort_002denums-2"></a>
<p>Specifying the <code>packed</code> attribute for <code>struct</code> and <code>union</code>
types is equivalent to specifying the <code>packed</code> attribute on each
of the structure or union members. Specifying the <samp>-fshort-enums</samp>
flag on the command line is equivalent to specifying the <code>packed</code>
attribute on all <code>enum</code> definitions.
</p>
<p>In the following example <code>struct my_packed_struct</code>’s members are
packed closely together, but the internal layout of its <code>s</code> member
is not packed—to do that, <code>struct my_unpacked_struct</code> needs to
be packed too.
</p>
<div class="smallexample">
<pre class="smallexample">struct my_unpacked_struct
{
char c;
int i;
};
struct __attribute__ ((__packed__)) my_packed_struct
{
char c;
int i;
struct my_unpacked_struct s;
};
</pre></div>
<p>You may only specify the <code>packed</code> attribute attribute on the definition
of an <code>enum</code>, <code>struct</code> or <code>union</code>, not on a <code>typedef</code>
that does not also define the enumerated type, structure or union.
</p>
</dd>
<dt><code>scalar_storage_order ("<var>endianness</var>")</code></dt>
<dd><a name="index-scalar_005fstorage_005forder-type-attribute"></a>
<p>When attached to a <code>union</code> or a <code>struct</code>, this attribute sets
the storage order, aka endianness, of the scalar fields of the type, as
well as the array fields whose component is scalar. The supported
endiannesses are <code>big-endian</code> and <code>little-endian</code>. The attribute
has no effects on fields which are themselves a <code>union</code>, a <code>struct</code>
or an array whose component is a <code>union</code> or a <code>struct</code>, and it is
possible for these fields to have a different scalar storage order than the
enclosing type.
</p>
<p>This attribute is supported only for targets that use a uniform default
scalar storage order (fortunately, most of them), i.e. targets that store
the scalars either all in big-endian or all in little-endian.
</p>
<p>Additional restrictions are enforced for types with the reverse scalar
storage order with regard to the scalar storage order of the target:
</p>
<ul>
<li> Taking the address of a scalar field of a <code>union</code> or a
<code>struct</code> with reverse scalar storage order is not permitted and yields
an error.
</li><li> Taking the address of an array field, whose component is scalar, of
a <code>union</code> or a <code>struct</code> with reverse scalar storage order is
permitted but yields a warning, unless <samp>-Wno-scalar-storage-order</samp>
is specified.
</li><li> Taking the address of a <code>union</code> or a <code>struct</code> with reverse
scalar storage order is permitted.
</li></ul>
<p>These restrictions exist because the storage order attribute is lost when
the address of a scalar or the address of an array with scalar component is
taken, so storing indirectly through this address generally does not work.
The second case is nevertheless allowed to be able to perform a block copy
from or to the array.
</p>
<p>Moreover, the use of type punning or aliasing to toggle the storage order
is not supported; that is to say, a given scalar object cannot be accessed
through distinct types that assign a different storage order to it.
</p>
</dd>
<dt><code>transparent_union</code></dt>
<dd><a name="index-transparent_005funion-type-attribute"></a>
<p>This attribute, attached to a <code>union</code> type definition, indicates
that any function parameter having that union type causes calls to that
function to be treated in a special way.
</p>
<p>First, the argument corresponding to a transparent union type can be of
any type in the union; no cast is required. Also, if the union contains
a pointer type, the corresponding argument can be a null pointer
constant or a void pointer expression; and if the union contains a void
pointer type, the corresponding argument can be any pointer expression.
If the union member type is a pointer, qualifiers like <code>const</code> on
the referenced type must be respected, just as with normal pointer
conversions.
</p>
<p>Second, the argument is passed to the function using the calling
conventions of the first member of the transparent union, not the calling
conventions of the union itself. All members of the union must have the
same machine representation; this is necessary for this argument passing
to work properly.
</p>
<p>Transparent unions are designed for library functions that have multiple
interfaces for compatibility reasons. For example, suppose the
<code>wait</code> function must accept either a value of type <code>int *</code> to
comply with POSIX, or a value of type <code>union wait *</code> to comply with
the 4.1BSD interface. If <code>wait</code>’s parameter were <code>void *</code>,
<code>wait</code> would accept both kinds of arguments, but it would also
accept any other pointer type and this would make argument type checking
less useful. Instead, <code><sys/wait.h></code> might define the interface
as follows:
</p>
<div class="smallexample">
<pre class="smallexample">typedef union __attribute__ ((__transparent_union__))
{
int *__ip;
union wait *__up;
} wait_status_ptr_t;
pid_t wait (wait_status_ptr_t);
</pre></div>
<p>This interface allows either <code>int *</code> or <code>union wait *</code>
arguments to be passed, using the <code>int *</code> calling convention.
The program can call <code>wait</code> with arguments of either type:
</p>
<div class="smallexample">
<pre class="smallexample">int w1 () { int w; return wait (&w); }
int w2 () { union wait w; return wait (&w); }
</pre></div>
<p>With this interface, <code>wait</code>’s implementation might look like this:
</p>
<div class="smallexample">
<pre class="smallexample">pid_t wait (wait_status_ptr_t p)
{
return waitpid (-1, p.__ip, 0);
}
</pre></div>
</dd>
<dt><code>unused</code></dt>
<dd><a name="index-unused-type-attribute"></a>
<p>When attached to a type (including a <code>union</code> or a <code>struct</code>),
this attribute means that variables of that type are meant to appear
possibly unused. GCC does not produce a warning for any variables of
that type, even if the variable appears to do nothing. This is often
the case with lock or thread classes, which are usually defined and then
not referenced, but contain constructors and destructors that have
nontrivial bookkeeping functions.
</p>
</dd>
<dt><code>visibility</code></dt>
<dd><a name="index-visibility-type-attribute"></a>
<p>In C++, attribute visibility (see <a href="#Function-Attributes">Function Attributes</a>) can also be
applied to class, struct, union and enum types. Unlike other type
attributes, the attribute must appear between the initial keyword and
the name of the type; it cannot appear after the body of the type.
</p>
<p>Note that the type visibility is applied to vague linkage entities
associated with the class (vtable, typeinfo node, etc.). In
particular, if a class is thrown as an exception in one shared object
and caught in another, the class must have default visibility.
Otherwise the two shared objects are unable to use the same
typeinfo node and exception handling will break.
</p>
</dd>
</dl>
<p>To specify multiple attributes, separate them by commas within the
double parentheses: for example, ‘<samp>__attribute__ ((aligned (16),
packed))</samp>’.
</p>
<hr>
<a name="ARC-Type-Attributes"></a>
<div class="header">
<p>
Next: <a href="#ARM-Type-Attributes" accesskey="n" rel="next">ARM Type Attributes</a>, Previous: <a href="#Common-Type-Attributes" accesskey="p" rel="prev">Common Type Attributes</a>, Up: <a href="#Type-Attributes" accesskey="u" rel="up">Type Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARC-Type-Attributes-1"></a>
<h4 class="subsection">6.33.2 ARC Type Attributes</h4>
<a name="index-uncached-type-attribute_002c-ARC"></a>
<p>Declaring objects with <code>uncached</code> allows you to exclude
data-cache participation in load and store operations on those objects
without involving the additional semantic implications of
<code>volatile</code>. The <code>.di</code> instruction suffix is used for all
loads and stores of data declared <code>uncached</code>.
</p>
<hr>
<a name="ARM-Type-Attributes"></a>
<div class="header">
<p>
Next: <a href="#MeP-Type-Attributes" accesskey="n" rel="next">MeP Type Attributes</a>, Previous: <a href="#ARC-Type-Attributes" accesskey="p" rel="prev">ARC Type Attributes</a>, Up: <a href="#Type-Attributes" accesskey="u" rel="up">Type Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARM-Type-Attributes-1"></a>
<h4 class="subsection">6.33.3 ARM Type Attributes</h4>
<a name="index-notshared-type-attribute_002c-ARM"></a>
<p>On those ARM targets that support <code>dllimport</code> (such as Symbian
OS), you can use the <code>notshared</code> attribute to indicate that the
virtual table and other similar data for a class should not be
exported from a DLL. For example:
</p>
<div class="smallexample">
<pre class="smallexample">class __declspec(notshared) C {
public:
__declspec(dllimport) C();
virtual void f();
}
__declspec(dllexport)
C::C() {}
</pre></div>
<p>In this code, <code>C::C</code> is exported from the current DLL, but the
virtual table for <code>C</code> is not exported. (You can use
<code>__attribute__</code> instead of <code>__declspec</code> if you prefer, but
most Symbian OS code uses <code>__declspec</code>.)
</p>
<hr>
<a name="MeP-Type-Attributes"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-Type-Attributes" accesskey="n" rel="next">PowerPC Type Attributes</a>, Previous: <a href="#ARM-Type-Attributes" accesskey="p" rel="prev">ARM Type Attributes</a>, Up: <a href="#Type-Attributes" accesskey="u" rel="up">Type Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MeP-Type-Attributes-1"></a>
<h4 class="subsection">6.33.4 MeP Type Attributes</h4>
<a name="index-based-type-attribute_002c-MeP"></a>
<a name="index-tiny-type-attribute_002c-MeP"></a>
<a name="index-near-type-attribute_002c-MeP"></a>
<a name="index-far-type-attribute_002c-MeP"></a>
<p>Many of the MeP variable attributes may be applied to types as well.
Specifically, the <code>based</code>, <code>tiny</code>, <code>near</code>, and
<code>far</code> attributes may be applied to either. The <code>io</code> and
<code>cb</code> attributes may not be applied to types.
</p>
<hr>
<a name="PowerPC-Type-Attributes"></a>
<div class="header">
<p>
Next: <a href="#SPU-Type-Attributes" accesskey="n" rel="next">SPU Type Attributes</a>, Previous: <a href="#MeP-Type-Attributes" accesskey="p" rel="prev">MeP Type Attributes</a>, Up: <a href="#Type-Attributes" accesskey="u" rel="up">Type Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-Type-Attributes-1"></a>
<h4 class="subsection">6.33.5 PowerPC Type Attributes</h4>
<p>Three attributes currently are defined for PowerPC configurations:
<code>altivec</code>, <code>ms_struct</code> and <code>gcc_struct</code>.
</p>
<a name="index-ms_005fstruct-type-attribute_002c-PowerPC"></a>
<a name="index-gcc_005fstruct-type-attribute_002c-PowerPC"></a>
<p>For full documentation of the <code>ms_struct</code> and <code>gcc_struct</code>
attributes please see the documentation in <a href="#x86-Type-Attributes">x86 Type Attributes</a>.
</p>
<a name="index-altivec-type-attribute_002c-PowerPC"></a>
<p>The <code>altivec</code> attribute allows one to declare AltiVec vector data
types supported by the AltiVec Programming Interface Manual. The
attribute requires an argument to specify one of three vector types:
<code>vector__</code>, <code>pixel__</code> (always followed by unsigned short),
and <code>bool__</code> (always followed by unsigned).
</p>
<div class="smallexample">
<pre class="smallexample">__attribute__((altivec(vector__)))
__attribute__((altivec(pixel__))) unsigned short
__attribute__((altivec(bool__))) unsigned
</pre></div>
<p>These attributes mainly are intended to support the <code>__vector</code>,
<code>__pixel</code>, and <code>__bool</code> AltiVec keywords.
</p>
<hr>
<a name="SPU-Type-Attributes"></a>
<div class="header">
<p>
Next: <a href="#x86-Type-Attributes" accesskey="n" rel="next">x86 Type Attributes</a>, Previous: <a href="#PowerPC-Type-Attributes" accesskey="p" rel="prev">PowerPC Type Attributes</a>, Up: <a href="#Type-Attributes" accesskey="u" rel="up">Type Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SPU-Type-Attributes-1"></a>
<h4 class="subsection">6.33.6 SPU Type Attributes</h4>
<a name="index-spu_005fvector-type-attribute_002c-SPU"></a>
<p>The SPU supports the <code>spu_vector</code> attribute for types. This attribute
allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
Language Extensions Specification. It is intended to support the
<code>__vector</code> keyword.
</p>
<hr>
<a name="x86-Type-Attributes"></a>
<div class="header">
<p>
Previous: <a href="#SPU-Type-Attributes" accesskey="p" rel="prev">SPU Type Attributes</a>, Up: <a href="#Type-Attributes" accesskey="u" rel="up">Type Attributes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86-Type-Attributes-1"></a>
<h4 class="subsection">6.33.7 x86 Type Attributes</h4>
<p>Two attributes are currently defined for x86 configurations:
<code>ms_struct</code> and <code>gcc_struct</code>.
</p>
<dl compact="compact">
<dt><code>ms_struct</code></dt>
<dt><code>gcc_struct</code></dt>
<dd><a name="index-ms_005fstruct-type-attribute_002c-x86"></a>
<a name="index-gcc_005fstruct-type-attribute_002c-x86"></a>
<p>If <code>packed</code> is used on a structure, or if bit-fields are used
it may be that the Microsoft ABI packs them differently
than GCC normally packs them. Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.
</p>
<p>The <code>ms_struct</code> and <code>gcc_struct</code> attributes correspond
to the <samp>-mms-bitfields</samp> and <samp>-mno-ms-bitfields</samp>
command-line options, respectively;
see <a href="#x86-Options">x86 Options</a>, for details of how structure layout is affected.
See <a href="#x86-Variable-Attributes">x86 Variable Attributes</a>, for information about the corresponding
attributes on variables.
</p>
</dd>
</dl>
<hr>
<a name="Label-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Enumerator-Attributes" accesskey="n" rel="next">Enumerator Attributes</a>, Previous: <a href="#Type-Attributes" accesskey="p" rel="prev">Type Attributes</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Label-Attributes-1"></a>
<h3 class="section">6.34 Label Attributes</h3>
<a name="index-Label-Attributes"></a>
<p>GCC allows attributes to be set on C labels. See <a href="#Attribute-Syntax">Attribute Syntax</a>, for
details of the exact syntax for using attributes. Other attributes are
available for functions (see <a href="#Function-Attributes">Function Attributes</a>), variables
(see <a href="#Variable-Attributes">Variable Attributes</a>), enumerators (see <a href="#Enumerator-Attributes">Enumerator Attributes</a>),
statements (see <a href="#Statement-Attributes">Statement Attributes</a>), and for types
(see <a href="#Type-Attributes">Type Attributes</a>).
</p>
<p>This example uses the <code>cold</code> label attribute to indicate the
<code>ErrorHandling</code> branch is unlikely to be taken and that the
<code>ErrorHandling</code> label is unused:
</p>
<div class="smallexample">
<pre class="smallexample">
asm goto ("some asm" : : : : NoError);
/* This branch (the fall-through from the asm) is less commonly used */
ErrorHandling:
__attribute__((cold, unused)); /* Semi-colon is required here */
printf("error\n");
return 0;
NoError:
printf("no error\n");
return 1;
</pre></div>
<dl compact="compact">
<dt><code>unused</code></dt>
<dd><a name="index-unused-label-attribute"></a>
<p>This feature is intended for program-generated code that may contain
unused labels, but which is compiled with <samp>-Wall</samp>. It is
not normally appropriate to use in it human-written code, though it
could be useful in cases where the code that jumps to the label is
contained within an <code>#ifdef</code> conditional.
</p>
</dd>
<dt><code>hot</code></dt>
<dd><a name="index-hot-label-attribute"></a>
<p>The <code>hot</code> attribute on a label is used to inform the compiler that
the path following the label is more likely than paths that are not so
annotated. This attribute is used in cases where <code>__builtin_expect</code>
cannot be used, for instance with computed goto or <code>asm goto</code>.
</p>
</dd>
<dt><code>cold</code></dt>
<dd><a name="index-cold-label-attribute"></a>
<p>The <code>cold</code> attribute on labels is used to inform the compiler that
the path following the label is unlikely to be executed. This attribute
is used in cases where <code>__builtin_expect</code> cannot be used, for instance
with computed goto or <code>asm goto</code>.
</p>
</dd>
</dl>
<hr>
<a name="Enumerator-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Statement-Attributes" accesskey="n" rel="next">Statement Attributes</a>, Previous: <a href="#Label-Attributes" accesskey="p" rel="prev">Label Attributes</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Enumerator-Attributes-1"></a>
<h3 class="section">6.35 Enumerator Attributes</h3>
<a name="index-Enumerator-Attributes"></a>
<p>GCC allows attributes to be set on enumerators. See <a href="#Attribute-Syntax">Attribute Syntax</a>, for
details of the exact syntax for using attributes. Other attributes are
available for functions (see <a href="#Function-Attributes">Function Attributes</a>), variables
(see <a href="#Variable-Attributes">Variable Attributes</a>), labels (see <a href="#Label-Attributes">Label Attributes</a>), statements
(see <a href="#Statement-Attributes">Statement Attributes</a>), and for types (see <a href="#Type-Attributes">Type Attributes</a>).
</p>
<p>This example uses the <code>deprecated</code> enumerator attribute to indicate the
<code>oldval</code> enumerator is deprecated:
</p>
<div class="smallexample">
<pre class="smallexample">enum E {
oldval __attribute__((deprecated)),
newval
};
int
fn (void)
{
return oldval;
}
</pre></div>
<dl compact="compact">
<dt><code>deprecated</code></dt>
<dd><a name="index-deprecated-enumerator-attribute"></a>
<p>The <code>deprecated</code> attribute results in a warning if the enumerator
is used anywhere in the source file. This is useful when identifying
enumerators that are expected to be removed in a future version of a
program. The warning also includes the location of the declaration
of the deprecated enumerator, to enable users to easily find further
information about why the enumerator is deprecated, or what they should
do instead. Note that the warnings only occurs for uses.
</p>
</dd>
</dl>
<hr>
<a name="Statement-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Attribute-Syntax" accesskey="n" rel="next">Attribute Syntax</a>, Previous: <a href="#Enumerator-Attributes" accesskey="p" rel="prev">Enumerator Attributes</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Statement-Attributes-1"></a>
<h3 class="section">6.36 Statement Attributes</h3>
<a name="index-Statement-Attributes"></a>
<p>GCC allows attributes to be set on null statements. See <a href="#Attribute-Syntax">Attribute Syntax</a>,
for details of the exact syntax for using attributes. Other attributes are
available for functions (see <a href="#Function-Attributes">Function Attributes</a>), variables
(see <a href="#Variable-Attributes">Variable Attributes</a>), labels (see <a href="#Label-Attributes">Label Attributes</a>), enumerators
(see <a href="#Enumerator-Attributes">Enumerator Attributes</a>), and for types (see <a href="#Type-Attributes">Type Attributes</a>).
</p>
<p>This example uses the <code>fallthrough</code> statement attribute to indicate that
the <samp>-Wimplicit-fallthrough</samp> warning should not be emitted:
</p>
<div class="smallexample">
<pre class="smallexample">switch (cond)
{
case 1:
bar (1);
__attribute__((fallthrough));
case 2:
…
}
</pre></div>
<dl compact="compact">
<dt><code>fallthrough</code></dt>
<dd><a name="index-fallthrough-statement-attribute"></a>
<p>The <code>fallthrough</code> attribute with a null statement serves as a
fallthrough statement. It hints to the compiler that a statement
that falls through to another case label, or user-defined label
in a switch statement is intentional and thus the
<samp>-Wimplicit-fallthrough</samp> warning must not trigger. The
fallthrough attribute may appear at most once in each attribute
list, and may not be mixed with other attributes. It can only
be used in a switch statement (the compiler will issue an error
otherwise), after a preceding statement and before a logically
succeeding case label, or user-defined label.
</p>
</dd>
</dl>
<hr>
<a name="Attribute-Syntax"></a>
<div class="header">
<p>
Next: <a href="#Function-Prototypes" accesskey="n" rel="next">Function Prototypes</a>, Previous: <a href="#Statement-Attributes" accesskey="p" rel="prev">Statement Attributes</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Attribute-Syntax-1"></a>
<h3 class="section">6.37 Attribute Syntax</h3>
<a name="index-attribute-syntax"></a>
<p>This section describes the syntax with which <code>__attribute__</code> may be
used, and the constructs to which attribute specifiers bind, for the C
language. Some details may vary for C++ and Objective-C. Because of
infelicities in the grammar for attributes, some forms described here
may not be successfully parsed in all cases.
</p>
<p>There are some problems with the semantics of attributes in C++. For
example, there are no manglings for attributes, although they may affect
code generation, so problems may arise when attributed types are used in
conjunction with templates or overloading. Similarly, <code>typeid</code>
does not distinguish between types with different attributes. Support
for attributes in C++ may be restricted in future to attributes on
declarations only, but not on nested declarators.
</p>
<p>See <a href="#Function-Attributes">Function Attributes</a>, for details of the semantics of attributes
applying to functions. See <a href="#Variable-Attributes">Variable Attributes</a>, for details of the
semantics of attributes applying to variables. See <a href="#Type-Attributes">Type Attributes</a>,
for details of the semantics of attributes applying to structure, union
and enumerated types.
See <a href="#Label-Attributes">Label Attributes</a>, for details of the semantics of attributes
applying to labels.
See <a href="#Enumerator-Attributes">Enumerator Attributes</a>, for details of the semantics of attributes
applying to enumerators.
See <a href="#Statement-Attributes">Statement Attributes</a>, for details of the semantics of attributes
applying to statements.
</p>
<p>An <em>attribute specifier</em> is of the form
<code>__attribute__ ((<var>attribute-list</var>))</code>. An <em>attribute list</em>
is a possibly empty comma-separated sequence of <em>attributes</em>, where
each attribute is one of the following:
</p>
<ul>
<li> Empty. Empty attributes are ignored.
</li><li> An attribute name
(which may be an identifier such as <code>unused</code>, or a reserved
word such as <code>const</code>).
</li><li> An attribute name followed by a parenthesized list of
parameters for the attribute.
These parameters take one of the following forms:
<ul>
<li> An identifier. For example, <code>mode</code> attributes use this form.
</li><li> An identifier followed by a comma and a non-empty comma-separated list
of expressions. For example, <code>format</code> attributes use this form.
</li><li> A possibly empty comma-separated list of expressions. For example,
<code>format_arg</code> attributes use this form with the list being a single
integer constant expression, and <code>alias</code> attributes use this form
with the list being a single string constant.
</li></ul>
</li></ul>
<p>An <em>attribute specifier list</em> is a sequence of one or more attribute
specifiers, not separated by any other tokens.
</p>
<p>You may optionally specify attribute names with ‘<samp>__</samp>’
preceding and following the name.
This allows you to use them in header files without
being concerned about a possible macro of the same name. For example,
you may use the attribute name <code>__noreturn__</code> instead of <code>noreturn</code>.
</p>
<a name="Label-Attributes-2"></a>
<h4 class="subsubheading">Label Attributes</h4>
<p>In GNU C, an attribute specifier list may appear after the colon following a
label, other than a <code>case</code> or <code>default</code> label. GNU C++ only permits
attributes on labels if the attribute specifier is immediately
followed by a semicolon (i.e., the label applies to an empty
statement). If the semicolon is missing, C++ label attributes are
ambiguous, as it is permissible for a declaration, which could begin
with an attribute list, to be labelled in C++. Declarations cannot be
labelled in C90 or C99, so the ambiguity does not arise there.
</p>
<a name="Enumerator-Attributes-2"></a>
<h4 class="subsubheading">Enumerator Attributes</h4>
<p>In GNU C, an attribute specifier list may appear as part of an enumerator.
The attribute goes after the enumeration constant, before <code>=</code>, if
present. The optional attribute in the enumerator appertains to the
enumeration constant. It is not possible to place the attribute after
the constant expression, if present.
</p>
<a name="Statement-Attributes-2"></a>
<h4 class="subsubheading">Statement Attributes</h4>
<p>In GNU C, an attribute specifier list may appear as part of a null
statement. The attribute goes before the semicolon.
</p>
<a name="Type-Attributes-1"></a>
<h4 class="subsubheading">Type Attributes</h4>
<p>An attribute specifier list may appear as part of a <code>struct</code>,
<code>union</code> or <code>enum</code> specifier. It may go either immediately
after the <code>struct</code>, <code>union</code> or <code>enum</code> keyword, or after
the closing brace. The former syntax is preferred.
Where attribute specifiers follow the closing brace, they are considered
to relate to the structure, union or enumerated type defined, not to any
enclosing declaration the type specifier appears in, and the type
defined is not complete until after the attribute specifiers.
</p>
<a name="All-other-attributes"></a>
<h4 class="subsubheading">All other attributes</h4>
<p>Otherwise, an attribute specifier appears as part of a declaration,
counting declarations of unnamed parameters and type names, and relates
to that declaration (which may be nested in another declaration, for
example in the case of a parameter declaration), or to a particular declarator
within a declaration. Where an
attribute specifier is applied to a parameter declared as a function or
an array, it should apply to the function or array rather than the
pointer to which the parameter is implicitly converted, but this is not
yet correctly implemented.
</p>
<p>Any list of specifiers and qualifiers at the start of a declaration may
contain attribute specifiers, whether or not such a list may in that
context contain storage class specifiers. (Some attributes, however,
are essentially in the nature of storage class specifiers, and only make
sense where storage class specifiers may be used; for example,
<code>section</code>.) There is one necessary limitation to this syntax: the
first old-style parameter declaration in a function definition cannot
begin with an attribute specifier, because such an attribute applies to
the function instead by syntax described below (which, however, is not
yet implemented in this case). In some other cases, attribute
specifiers are permitted by this grammar but not yet supported by the
compiler. All attribute specifiers in this place relate to the
declaration as a whole. In the obsolescent usage where a type of
<code>int</code> is implied by the absence of type specifiers, such a list of
specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.
</p>
<p>At present, the first parameter in a function prototype must have some
type specifier that is not an attribute specifier; this resolves an
ambiguity in the interpretation of <code>void f(int
(__attribute__((foo)) x))</code>, but is subject to change. At present, if
the parentheses of a function declarator contain only attributes then
those attributes are ignored, rather than yielding an error or warning
or implying a single parameter of type int, but this is subject to
change.
</p>
<p>An attribute specifier list may appear immediately before a declarator
(other than the first) in a comma-separated list of declarators in a
declaration of more than one identifier using a single list of
specifiers and qualifiers. Such attribute specifiers apply
only to the identifier before whose declarator they appear. For
example, in
</p>
<div class="smallexample">
<pre class="smallexample">__attribute__((noreturn)) void d0 (void),
__attribute__((format(printf, 1, 2))) d1 (const char *, ...),
d2 (void);
</pre></div>
<p>the <code>noreturn</code> attribute applies to all the functions
declared; the <code>format</code> attribute only applies to <code>d1</code>.
</p>
<p>An attribute specifier list may appear immediately before the comma,
<code>=</code> or semicolon terminating the declaration of an identifier other
than a function definition. Such attribute specifiers apply
to the declared object or function. Where an
assembler name for an object or function is specified (see <a href="#Asm-Labels">Asm Labels</a>), the attribute must follow the <code>asm</code>
specification.
</p>
<p>An attribute specifier list may, in future, be permitted to appear after
the declarator in a function definition (before any old-style parameter
declarations or the function body).
</p>
<p>Attribute specifiers may be mixed with type qualifiers appearing inside
the <code>[]</code> of a parameter array declarator, in the C99 construct by
which such qualifiers are applied to the pointer to which the array is
implicitly converted. Such attribute specifiers apply to the pointer,
not to the array, but at present this is not implemented and they are
ignored.
</p>
<p>An attribute specifier list may appear at the start of a nested
declarator. At present, there are some limitations in this usage: the
attributes correctly apply to the declarator, but for most individual
attributes the semantics this implies are not implemented.
When attribute specifiers follow the <code>*</code> of a pointer
declarator, they may be mixed with any type qualifiers present.
The following describes the formal semantics of this syntax. It makes the
most sense if you are familiar with the formal specification of
declarators in the ISO C standard.
</p>
<p>Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration <code>T
D1</code>, where <code>T</code> contains declaration specifiers that specify a type
<var>Type</var> (such as <code>int</code>) and <code>D1</code> is a declarator that
contains an identifier <var>ident</var>. The type specified for <var>ident</var>
for derived declarators whose type does not include an attribute
specifier is as in the ISO C standard.
</p>
<p>If <code>D1</code> has the form <code>( <var>attribute-specifier-list</var> D )</code>,
and the declaration <code>T D</code> specifies the type
“<var>derived-declarator-type-list</var> <var>Type</var>” for <var>ident</var>, then
<code>T D1</code> specifies the type “<var>derived-declarator-type-list</var>
<var>attribute-specifier-list</var> <var>Type</var>” for <var>ident</var>.
</p>
<p>If <code>D1</code> has the form <code>*
<var>type-qualifier-and-attribute-specifier-list</var> D</code>, and the
declaration <code>T D</code> specifies the type
“<var>derived-declarator-type-list</var> <var>Type</var>” for <var>ident</var>, then
<code>T D1</code> specifies the type “<var>derived-declarator-type-list</var>
<var>type-qualifier-and-attribute-specifier-list</var> pointer to <var>Type</var>” for
<var>ident</var>.
</p>
<p>For example,
</p>
<div class="smallexample">
<pre class="smallexample">void (__attribute__((noreturn)) ****f) (void);
</pre></div>
<p>specifies the type “pointer to pointer to pointer to pointer to
non-returning function returning <code>void</code>”. As another example,
</p>
<div class="smallexample">
<pre class="smallexample">char *__attribute__((aligned(8))) *f;
</pre></div>
<p>specifies the type “pointer to 8-byte-aligned pointer to <code>char</code>”.
Note again that this does not work with most attributes; for example,
the usage of ‘<samp>aligned</samp>’ and ‘<samp>noreturn</samp>’ attributes given above
is not yet supported.
</p>
<p>For compatibility with existing code written for compiler versions that
did not implement attributes on nested declarators, some laxity is
allowed in the placing of attributes. If an attribute that only applies
to types is applied to a declaration, it is treated as applying to
the type of that declaration. If an attribute that only applies to
declarations is applied to the type of a declaration, it is treated
as applying to that declaration; and, for compatibility with code
placing the attributes immediately before the identifier declared, such
an attribute applied to a function return type is treated as
applying to the function type, and such an attribute applied to an array
element type is treated as applying to the array type. If an
attribute that only applies to function types is applied to a
pointer-to-function type, it is treated as applying to the pointer
target type; if such an attribute is applied to a function return type
that is not a pointer-to-function type, it is treated as applying
to the function type.
</p>
<hr>
<a name="Function-Prototypes"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b-Comments" accesskey="n" rel="next">C++ Comments</a>, Previous: <a href="#Attribute-Syntax" accesskey="p" rel="prev">Attribute Syntax</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Prototypes-and-Old_002dStyle-Function-Definitions"></a>
<h3 class="section">6.38 Prototypes and Old-Style Function Definitions</h3>
<a name="index-function-prototype-declarations"></a>
<a name="index-old_002dstyle-function-definitions"></a>
<a name="index-promotion-of-formal-parameters"></a>
<p>GNU C extends ISO C to allow a function prototype to override a later
old-style non-prototype definition. Consider the following example:
</p>
<div class="smallexample">
<pre class="smallexample">/* <span class="roman">Use prototypes unless the compiler is old-fashioned.</span> */
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif
/* <span class="roman">Prototype function declaration.</span> */
int isroot P((uid_t));
/* <span class="roman">Old-style function definition.</span> */
int
isroot (x) /* <span class="roman">??? lossage here ???</span> */
uid_t x;
{
return x == 0;
}
</pre></div>
<p>Suppose the type <code>uid_t</code> happens to be <code>short</code>. ISO C does
not allow this example, because subword arguments in old-style
non-prototype definitions are promoted. Therefore in this example the
function definition’s argument is really an <code>int</code>, which does not
match the prototype argument type of <code>short</code>.
</p>
<p>This restriction of ISO C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the <code>uid_t</code> type is <code>short</code>, <code>int</code>, or
<code>long</code>. Therefore, in cases like these GNU C allows a prototype
to override a later old-style definition. More precisely, in GNU C, a
function prototype argument type overrides the argument type specified
by a later old-style definition if the former type is the same as the
latter type before promotion. Thus in GNU C the above example is
equivalent to the following:
</p>
<div class="smallexample">
<pre class="smallexample">int isroot (uid_t);
int
isroot (uid_t x)
{
return x == 0;
}
</pre></div>
<p>GNU C++ does not support old-style function definitions, so this
extension is irrelevant.
</p>
<hr>
<a name="C_002b_002b-Comments"></a>
<div class="header">
<p>
Next: <a href="#Dollar-Signs" accesskey="n" rel="next">Dollar Signs</a>, Previous: <a href="#Function-Prototypes" accesskey="p" rel="prev">Function Prototypes</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C_002b_002b-Style-Comments"></a>
<h3 class="section">6.39 C++ Style Comments</h3>
<a name="index-_002f_002f"></a>
<a name="index-C_002b_002b-comments"></a>
<a name="index-comments_002c-C_002b_002b-style"></a>
<p>In GNU C, you may use C++ style comments, which start with ‘<samp>//</samp>’ and
continue until the end of the line. Many other C implementations allow
such comments, and they are included in the 1999 C standard. However,
C++ style comments are not recognized if you specify an <samp>-std</samp>
option specifying a version of ISO C before C99, or <samp>-ansi</samp>
(equivalent to <samp>-std=c90</samp>).
</p>
<hr>
<a name="Dollar-Signs"></a>
<div class="header">
<p>
Next: <a href="#Character-Escapes" accesskey="n" rel="next">Character Escapes</a>, Previous: <a href="#C_002b_002b-Comments" accesskey="p" rel="prev">C++ Comments</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Dollar-Signs-in-Identifier-Names"></a>
<h3 class="section">6.40 Dollar Signs in Identifier Names</h3>
<a name="index-_0024"></a>
<a name="index-dollar-signs-in-identifier-names"></a>
<a name="index-identifier-names_002c-dollar-signs-in"></a>
<p>In GNU C, you may normally use dollar signs in identifier names.
This is because many traditional C implementations allow such identifiers.
However, dollar signs in identifiers are not supported on a few target
machines, typically because the target assembler does not allow them.
</p>
<hr>
<a name="Character-Escapes"></a>
<div class="header">
<p>
Next: <a href="#Alignment" accesskey="n" rel="next">Alignment</a>, Previous: <a href="#Dollar-Signs" accesskey="p" rel="prev">Dollar Signs</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-Character-ESC-in-Constants"></a>
<h3 class="section">6.41 The Character <tt class="key">ESC</tt> in Constants</h3>
<p>You can use the sequence ‘<samp>\e</samp>’ in a string or character constant to
stand for the ASCII character <tt class="key">ESC</tt>.
</p>
<hr>
<a name="Alignment"></a>
<div class="header">
<p>
Next: <a href="#Inline" accesskey="n" rel="next">Inline</a>, Previous: <a href="#Character-Escapes" accesskey="p" rel="prev">Character Escapes</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Inquiring-on-Alignment-of-Types-or-Variables"></a>
<h3 class="section">6.42 Inquiring on Alignment of Types or Variables</h3>
<a name="index-alignment"></a>
<a name="index-type-alignment"></a>
<a name="index-variable-alignment"></a>
<p>The keyword <code>__alignof__</code> allows you to inquire about how an object
is aligned, or the minimum alignment usually required by a type. Its
syntax is just like <code>sizeof</code>.
</p>
<p>For example, if the target machine requires a <code>double</code> value to be
aligned on an 8-byte boundary, then <code>__alignof__ (double)</code> is 8.
This is true on many RISC machines. On more traditional machine
designs, <code>__alignof__ (double)</code> is 4 or even 2.
</p>
<p>Some machines never actually require alignment; they allow reference to any
data type even at an odd address. For these machines, <code>__alignof__</code>
reports the smallest alignment that GCC gives the data type, usually as
mandated by the target ABI.
</p>
<p>If the operand of <code>__alignof__</code> is an lvalue rather than a type,
its value is the required alignment for its type, taking into account
any minimum alignment specified with GCC’s <code>__attribute__</code>
extension (see <a href="#Variable-Attributes">Variable Attributes</a>). For example, after this
declaration:
</p>
<div class="smallexample">
<pre class="smallexample">struct foo { int x; char y; } foo1;
</pre></div>
<p>the value of <code>__alignof__ (foo1.y)</code> is 1, even though its actual
alignment is probably 2 or 4, the same as <code>__alignof__ (int)</code>.
</p>
<p>It is an error to ask for the alignment of an incomplete type.
</p>
<hr>
<a name="Inline"></a>
<div class="header">
<p>
Next: <a href="#Volatiles" accesskey="n" rel="next">Volatiles</a>, Previous: <a href="#Alignment" accesskey="p" rel="prev">Alignment</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="An-Inline-Function-is-As-Fast-As-a-Macro"></a>
<h3 class="section">6.43 An Inline Function is As Fast As a Macro</h3>
<a name="index-inline-functions"></a>
<a name="index-integrating-function-code"></a>
<a name="index-open-coding"></a>
<a name="index-macros_002c-inline-alternative"></a>
<p>By declaring a function inline, you can direct GCC to make
calls to that function faster. One way GCC can achieve this is to
integrate that function’s code into the code for its callers. This
makes execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their
known values may permit simplifications at compile time so that not
all of the inline function’s code needs to be included. The effect on
code size is less predictable; object code may be larger or smaller
with function inlining, depending on the particular case. You can
also direct GCC to try to integrate all “simple enough” functions
into their callers with the option <samp>-finline-functions</samp>.
</p>
<p>GCC implements three different semantics of declaring a function
inline. One is available with <samp>-std=gnu89</samp> or
<samp>-fgnu89-inline</samp> or when <code>gnu_inline</code> attribute is present
on all inline declarations, another when
<samp>-std=c99</samp>,
<samp>-std=gnu99</samp> or an option for a later C version is used
(without <samp>-fgnu89-inline</samp>), and the third
is used when compiling C++.
</p>
<p>To declare a function inline, use the <code>inline</code> keyword in its
declaration, like this:
</p>
<div class="smallexample">
<pre class="smallexample">static inline int
inc (int *a)
{
return (*a)++;
}
</pre></div>
<p>If you are writing a header file to be included in ISO C90 programs, write
<code>__inline__</code> instead of <code>inline</code>. See <a href="#Alternate-Keywords">Alternate Keywords</a>.
</p>
<p>The three types of inlining behave similarly in two important cases:
when the <code>inline</code> keyword is used on a <code>static</code> function,
like the example above, and when a function is first declared without
using the <code>inline</code> keyword and then is defined with
<code>inline</code>, like this:
</p>
<div class="smallexample">
<pre class="smallexample">extern int inc (int *a);
inline int
inc (int *a)
{
return (*a)++;
}
</pre></div>
<p>In both of these common cases, the program behaves the same as if you
had not used the <code>inline</code> keyword, except for its speed.
</p>
<a name="index-inline-functions_002c-omission-of"></a>
<a name="index-fkeep_002dinline_002dfunctions-1"></a>
<p>When a function is both inline and <code>static</code>, if all calls to the
function are integrated into the caller, and the function’s address is
never used, then the function’s own assembler code is never referenced.
In this case, GCC does not actually output assembler code for the
function, unless you specify the option <samp>-fkeep-inline-functions</samp>.
If there is a nonintegrated call, then the function is compiled to
assembler code as usual. The function must also be compiled as usual if
the program refers to its address, because that cannot be inlined.
</p>
<a name="index-Winline-1"></a>
<p>Note that certain usages in a function definition can make it unsuitable
for inline substitution. Among these usages are: variadic functions,
use of <code>alloca</code>, use of computed goto (see <a href="#Labels-as-Values">Labels as Values</a>),
use of nonlocal goto, use of nested functions, use of <code>setjmp</code>, use
of <code>__builtin_longjmp</code> and use of <code>__builtin_return</code> or
<code>__builtin_apply_args</code>. Using <samp>-Winline</samp> warns when a
function marked <code>inline</code> could not be substituted, and gives the
reason for the failure.
</p>
<a name="index-automatic-inline-for-C_002b_002b-member-fns"></a>
<a name="index-inline-automatic-for-C_002b_002b-member-fns"></a>
<a name="index-member-fns_002c-automatically-inline"></a>
<a name="index-C_002b_002b-member-fns_002c-automatically-inline"></a>
<a name="index-fno_002ddefault_002dinline"></a>
<p>As required by ISO C++, GCC considers member functions defined within
the body of a class to be marked inline even if they are
not explicitly declared with the <code>inline</code> keyword. You can
override this with <samp>-fno-default-inline</samp>; see <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>.
</p>
<p>GCC does not inline any functions when not optimizing unless you specify
the ‘<samp>always_inline</samp>’ attribute for the function, like this:
</p>
<div class="smallexample">
<pre class="smallexample">/* <span class="roman">Prototype.</span> */
inline void foo (const char) __attribute__((always_inline));
</pre></div>
<p>The remainder of this section is specific to GNU C90 inlining.
</p>
<a name="index-non_002dstatic-inline-function"></a>
<p>When an inline function is not <code>static</code>, then the compiler must assume
that there may be calls from other source files; since a global symbol can
be defined only once in any program, the function must not be defined in
the other source files, so the calls therein cannot be integrated.
Therefore, a non-<code>static</code> inline function is always compiled on its
own in the usual fashion.
</p>
<p>If you specify both <code>inline</code> and <code>extern</code> in the function
definition, then the definition is used only for inlining. In no case
is the function compiled on its own, not even if you refer to its
address explicitly. Such an address becomes an external reference, as
if you had only declared the function, and had not defined it.
</p>
<p>This combination of <code>inline</code> and <code>extern</code> has almost the
effect of a macro. The way to use it is to put a function definition in
a header file with these keywords, and put another copy of the
definition (lacking <code>inline</code> and <code>extern</code>) in a library file.
The definition in the header file causes most calls to the function
to be inlined. If any uses of the function remain, they refer to
the single copy in the library.
</p>
<hr>
<a name="Volatiles"></a>
<div class="header">
<p>
Next: <a href="#Using-Assembly-Language-with-C" accesskey="n" rel="next">Using Assembly Language with C</a>, Previous: <a href="#Inline" accesskey="p" rel="prev">Inline</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="When-is-a-Volatile-Object-Accessed_003f"></a>
<h3 class="section">6.44 When is a Volatile Object Accessed?</h3>
<a name="index-accessing-volatiles"></a>
<a name="index-volatile-read"></a>
<a name="index-volatile-write"></a>
<a name="index-volatile-access"></a>
<p>C has the concept of volatile objects. These are normally accessed by
pointers and used for accessing hardware or inter-thread
communication. The standard encourages compilers to refrain from
optimizations concerning accesses to volatile objects, but leaves it
implementation defined as to what constitutes a volatile access. The
minimum requirement is that at a sequence point all previous accesses
to volatile objects have stabilized and no subsequent accesses have
occurred. Thus an implementation is free to reorder and combine
volatile accesses that occur between sequence points, but cannot do
so for accesses across a sequence point. The use of volatile does
not allow you to violate the restriction on updating objects multiple
times between two sequence points.
</p>
<p>Accesses to non-volatile objects are not ordered with respect to
volatile accesses. You cannot use a volatile object as a memory
barrier to order a sequence of writes to non-volatile memory. For
instance:
</p>
<div class="smallexample">
<pre class="smallexample">int *ptr = <var>something</var>;
volatile int vobj;
*ptr = <var>something</var>;
vobj = 1;
</pre></div>
<p>Unless <var>*ptr</var> and <var>vobj</var> can be aliased, it is not guaranteed
that the write to <var>*ptr</var> occurs by the time the update
of <var>vobj</var> happens. If you need this guarantee, you must use
a stronger memory barrier such as:
</p>
<div class="smallexample">
<pre class="smallexample">int *ptr = <var>something</var>;
volatile int vobj;
*ptr = <var>something</var>;
asm volatile ("" : : : "memory");
vobj = 1;
</pre></div>
<p>A scalar volatile object is read when it is accessed in a void context:
</p>
<div class="smallexample">
<pre class="smallexample">volatile int *src = <var>somevalue</var>;
*src;
</pre></div>
<p>Such expressions are rvalues, and GCC implements this as a
read of the volatile object being pointed to.
</p>
<p>Assignments are also expressions and have an rvalue. However when
assigning to a scalar volatile, the volatile object is not reread,
regardless of whether the assignment expression’s rvalue is used or
not. If the assignment’s rvalue is used, the value is that assigned
to the volatile object. For instance, there is no read of <var>vobj</var>
in all the following cases:
</p>
<div class="smallexample">
<pre class="smallexample">int obj;
volatile int vobj;
vobj = <var>something</var>;
obj = vobj = <var>something</var>;
obj ? vobj = <var>onething</var> : vobj = <var>anotherthing</var>;
obj = (<var>something</var>, vobj = <var>anotherthing</var>);
</pre></div>
<p>If you need to read the volatile object after an assignment has
occurred, you must use a separate expression with an intervening
sequence point.
</p>
<p>As bit-fields are not individually addressable, volatile bit-fields may
be implicitly read when written to, or when adjacent bit-fields are
accessed. Bit-field operations may be optimized such that adjacent
bit-fields are only partially accessed, if they straddle a storage unit
boundary. For these reasons it is unwise to use volatile bit-fields to
access hardware.
</p>
<hr>
<a name="Using-Assembly-Language-with-C"></a>
<div class="header">
<p>
Next: <a href="#Alternate-Keywords" accesskey="n" rel="next">Alternate Keywords</a>, Previous: <a href="#Volatiles" accesskey="p" rel="prev">Volatiles</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="How-to-Use-Inline-Assembly-Language-in-C-Code"></a>
<h3 class="section">6.45 How to Use Inline Assembly Language in C Code</h3>
<a name="index-asm-keyword"></a>
<a name="index-assembly-language-in-C"></a>
<a name="index-inline-assembly-language"></a>
<a name="index-mixing-assembly-language-and-C"></a>
<p>The <code>asm</code> keyword allows you to embed assembler instructions
within C code. GCC provides two forms of inline <code>asm</code>
statements. A <em>basic <code>asm</code></em> statement is one with no
operands (see <a href="#Basic-Asm">Basic Asm</a>), while an <em>extended <code>asm</code></em>
statement (see <a href="#Extended-Asm">Extended Asm</a>) includes one or more operands.
The extended form is preferred for mixing C and assembly language
within a function, but to include assembly language at
top level you must use basic <code>asm</code>.
</p>
<p>You can also use the <code>asm</code> keyword to override the assembler name
for a C symbol, or to place a C variable in a specific register.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Basic-Asm" accesskey="1">Basic Asm</a>:</td><td> </td><td align="left" valign="top">Inline assembler without operands.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Extended-Asm" accesskey="2">Extended Asm</a>:</td><td> </td><td align="left" valign="top">Inline assembler with operands.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Constraints" accesskey="3">Constraints</a>:</td><td> </td><td align="left" valign="top">Constraints for <code>asm</code> operands
</td></tr>
<tr><td align="left" valign="top">• <a href="#Asm-Labels" accesskey="4">Asm Labels</a>:</td><td> </td><td align="left" valign="top">Specifying the assembler name to use for a C symbol.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Explicit-Register-Variables" accesskey="5">Explicit Register Variables</a>:</td><td> </td><td align="left" valign="top">Defining variables residing in specified
registers.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Size-of-an-asm" accesskey="6">Size of an asm</a>:</td><td> </td><td align="left" valign="top">How GCC calculates the size of an <code>asm</code> block.
</td></tr>
</table>
<hr>
<a name="Basic-Asm"></a>
<div class="header">
<p>
Next: <a href="#Extended-Asm" accesskey="n" rel="next">Extended Asm</a>, Up: <a href="#Using-Assembly-Language-with-C" accesskey="u" rel="up">Using Assembly Language with C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Basic-Asm-_002d_002d_002d-Assembler-Instructions-Without-Operands"></a>
<h4 class="subsection">6.45.1 Basic Asm — Assembler Instructions Without Operands</h4>
<a name="index-basic-asm"></a>
<a name="index-assembly-language-in-C_002c-basic"></a>
<p>A basic <code>asm</code> statement has the following syntax:
</p>
<div class="example">
<pre class="example">asm <span class="roman">[</span> volatile <span class="roman">]</span> ( <var>AssemblerInstructions</var> )
</pre></div>
<p>The <code>asm</code> keyword is a GNU extension.
When writing code that can be compiled with <samp>-ansi</samp> and the
various <samp>-std</samp> options, use <code>__asm__</code> instead of
<code>asm</code> (see <a href="#Alternate-Keywords">Alternate Keywords</a>).
</p>
<a name="Qualifiers-1"></a>
<h4 class="subsubheading">Qualifiers</h4>
<dl compact="compact">
<dt><code>volatile</code></dt>
<dd><p>The optional <code>volatile</code> qualifier has no effect.
All basic <code>asm</code> blocks are implicitly volatile.
</p></dd>
</dl>
<a name="Parameters"></a>
<h4 class="subsubheading">Parameters</h4>
<dl compact="compact">
<dt><var>AssemblerInstructions</var></dt>
<dd><p>This is a literal string that specifies the assembler code. The string can
contain any instructions recognized by the assembler, including directives.
GCC does not parse the assembler instructions themselves and
does not know what they mean or even whether they are valid assembler input.
</p>
<p>You may place multiple assembler instructions together in a single <code>asm</code>
string, separated by the characters normally used in assembly code for the
system. A combination that works in most places is a newline to break the
line, plus a tab character (written as ‘<samp>\n\t</samp>’).
Some assemblers allow semicolons as a line separator. However,
note that some assembler dialects use semicolons to start a comment.
</p></dd>
</dl>
<a name="Remarks"></a>
<h4 class="subsubheading">Remarks</h4>
<p>Using extended <code>asm</code> (see <a href="#Extended-Asm">Extended Asm</a>) typically produces
smaller, safer, and more efficient code, and in most cases it is a
better solution than basic <code>asm</code>. However, there are two
situations where only basic <code>asm</code> can be used:
</p>
<ul>
<li> Extended <code>asm</code> statements have to be inside a C
function, so to write inline assembly language at file scope (“top-level”),
outside of C functions, you must use basic <code>asm</code>.
You can use this technique to emit assembler directives,
define assembly language macros that can be invoked elsewhere in the file,
or write entire functions in assembly language.
</li><li> Functions declared
with the <code>naked</code> attribute also require basic <code>asm</code>
(see <a href="#Function-Attributes">Function Attributes</a>).
</li></ul>
<p>Safely accessing C data and calling functions from basic <code>asm</code> is more
complex than it may appear. To access C data, it is better to use extended
<code>asm</code>.
</p>
<p>Do not expect a sequence of <code>asm</code> statements to remain perfectly
consecutive after compilation. If certain instructions need to remain
consecutive in the output, put them in a single multi-instruction <code>asm</code>
statement. Note that GCC’s optimizers can move <code>asm</code> statements
relative to other code, including across jumps.
</p>
<p><code>asm</code> statements may not perform jumps into other <code>asm</code> statements.
GCC does not know about these jumps, and therefore cannot take
account of them when deciding how to optimize. Jumps from <code>asm</code> to C
labels are only supported in extended <code>asm</code>.
</p>
<p>Under certain circumstances, GCC may duplicate (or remove duplicates of) your
assembly code when optimizing. This can lead to unexpected duplicate
symbol errors during compilation if your assembly code defines symbols or
labels.
</p>
<p><strong>Warning:</strong> The C standards do not specify semantics for <code>asm</code>,
making it a potential source of incompatibilities between compilers. These
incompatibilities may not produce compiler warnings/errors.
</p>
<p>GCC does not parse basic <code>asm</code>’s <var>AssemblerInstructions</var>, which
means there is no way to communicate to the compiler what is happening
inside them. GCC has no visibility of symbols in the <code>asm</code> and may
discard them as unreferenced. It also does not know about side effects of
the assembler code, such as modifications to memory or registers. Unlike
some compilers, GCC assumes that no changes to general purpose registers
occur. This assumption may change in a future release.
</p>
<p>To avoid complications from future changes to the semantics and the
compatibility issues between compilers, consider replacing basic <code>asm</code>
with extended <code>asm</code>. See
<a href="https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended">How to convert
from basic asm to extended asm</a> for information about how to perform this
conversion.
</p>
<p>The compiler copies the assembler instructions in a basic <code>asm</code>
verbatim to the assembly language output file, without
processing dialects or any of the ‘<samp>%</samp>’ operators that are available with
extended <code>asm</code>. This results in minor differences between basic
<code>asm</code> strings and extended <code>asm</code> templates. For example, to refer to
registers you might use ‘<samp>%eax</samp>’ in basic <code>asm</code> and
‘<samp>%%eax</samp>’ in extended <code>asm</code>.
</p>
<p>On targets such as x86 that support multiple assembler dialects,
all basic <code>asm</code> blocks use the assembler dialect specified by the
<samp>-masm</samp> command-line option (see <a href="#x86-Options">x86 Options</a>).
Basic <code>asm</code> provides no
mechanism to provide different assembler strings for different dialects.
</p>
<p>For basic <code>asm</code> with non-empty assembler string GCC assumes
the assembler block does not change any general purpose registers,
but it may read or write any globally accessible variable.
</p>
<p>Here is an example of basic <code>asm</code> for i386:
</p>
<div class="example">
<pre class="example">/* Note that this code will not compile with -masm=intel */
#define DebugBreak() asm("int $3")
</pre></div>
<hr>
<a name="Extended-Asm"></a>
<div class="header">
<p>
Next: <a href="#Constraints" accesskey="n" rel="next">Constraints</a>, Previous: <a href="#Basic-Asm" accesskey="p" rel="prev">Basic Asm</a>, Up: <a href="#Using-Assembly-Language-with-C" accesskey="u" rel="up">Using Assembly Language with C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Extended-Asm-_002d-Assembler-Instructions-with-C-Expression-Operands"></a>
<h4 class="subsection">6.45.2 Extended Asm - Assembler Instructions with C Expression Operands</h4>
<a name="index-extended-asm"></a>
<a name="index-assembly-language-in-C_002c-extended"></a>
<p>With extended <code>asm</code> you can read and write C variables from
assembler and perform jumps from assembler code to C labels.
Extended <code>asm</code> syntax uses colons (‘<samp>:</samp>’) to delimit
the operand parameters after the assembler template:
</p>
<div class="example">
<pre class="example">asm <span class="roman">[</span>volatile<span class="roman">]</span> ( <var>AssemblerTemplate</var>
: <var>OutputOperands</var>
<span class="roman">[</span> : <var>InputOperands</var>
<span class="roman">[</span> : <var>Clobbers</var> <span class="roman">]</span> <span class="roman">]</span>)
asm <span class="roman">[</span>volatile<span class="roman">]</span> goto ( <var>AssemblerTemplate</var>
:
: <var>InputOperands</var>
: <var>Clobbers</var>
: <var>GotoLabels</var>)
</pre></div>
<p>The <code>asm</code> keyword is a GNU extension.
When writing code that can be compiled with <samp>-ansi</samp> and the
various <samp>-std</samp> options, use <code>__asm__</code> instead of
<code>asm</code> (see <a href="#Alternate-Keywords">Alternate Keywords</a>).
</p>
<a name="Qualifiers-2"></a>
<h4 class="subsubheading">Qualifiers</h4>
<dl compact="compact">
<dt><code>volatile</code></dt>
<dd><p>The typical use of extended <code>asm</code> statements is to manipulate input
values to produce output values. However, your <code>asm</code> statements may
also produce side effects. If so, you may need to use the <code>volatile</code>
qualifier to disable certain optimizations. See <a href="#Volatile">Volatile</a>.
</p>
</dd>
<dt><code>goto</code></dt>
<dd><p>This qualifier informs the compiler that the <code>asm</code> statement may
perform a jump to one of the labels listed in the <var>GotoLabels</var>.
See <a href="#GotoLabels">GotoLabels</a>.
</p></dd>
</dl>
<a name="Parameters-1"></a>
<h4 class="subsubheading">Parameters</h4>
<dl compact="compact">
<dt><var>AssemblerTemplate</var></dt>
<dd><p>This is a literal string that is the template for the assembler code. It is a
combination of fixed text and tokens that refer to the input, output,
and goto parameters. See <a href="#AssemblerTemplate">AssemblerTemplate</a>.
</p>
</dd>
<dt><var>OutputOperands</var></dt>
<dd><p>A comma-separated list of the C variables modified by the instructions in the
<var>AssemblerTemplate</var>. An empty list is permitted. See <a href="#OutputOperands">OutputOperands</a>.
</p>
</dd>
<dt><var>InputOperands</var></dt>
<dd><p>A comma-separated list of C expressions read by the instructions in the
<var>AssemblerTemplate</var>. An empty list is permitted. See <a href="#InputOperands">InputOperands</a>.
</p>
</dd>
<dt><var>Clobbers</var></dt>
<dd><p>A comma-separated list of registers or other values changed by the
<var>AssemblerTemplate</var>, beyond those listed as outputs.
An empty list is permitted. See <a href="#Clobbers-and-Scratch-Registers">Clobbers and Scratch Registers</a>.
</p>
</dd>
<dt><var>GotoLabels</var></dt>
<dd><p>When you are using the <code>goto</code> form of <code>asm</code>, this section contains
the list of all C labels to which the code in the
<var>AssemblerTemplate</var> may jump.
See <a href="#GotoLabels">GotoLabels</a>.
</p>
<p><code>asm</code> statements may not perform jumps into other <code>asm</code> statements,
only to the listed <var>GotoLabels</var>.
GCC’s optimizers do not know about other jumps; therefore they cannot take
account of them when deciding how to optimize.
</p></dd>
</dl>
<p>The total number of input + output + goto operands is limited to 30.
</p>
<a name="Remarks-1"></a>
<h4 class="subsubheading">Remarks</h4>
<p>The <code>asm</code> statement allows you to include assembly instructions directly
within C code. This may help you to maximize performance in time-sensitive
code or to access assembly instructions that are not readily available to C
programs.
</p>
<p>Note that extended <code>asm</code> statements must be inside a function. Only
basic <code>asm</code> may be outside functions (see <a href="#Basic-Asm">Basic Asm</a>).
Functions declared with the <code>naked</code> attribute also require basic
<code>asm</code> (see <a href="#Function-Attributes">Function Attributes</a>).
</p>
<p>While the uses of <code>asm</code> are many and varied, it may help to think of an
<code>asm</code> statement as a series of low-level instructions that convert input
parameters to output parameters. So a simple (if not particularly useful)
example for i386 using <code>asm</code> might look like this:
</p>
<div class="example">
<pre class="example">int src = 1;
int dst;
asm ("mov %1, %0\n\t"
"add $1, %0"
: "=r" (dst)
: "r" (src));
printf("%d\n", dst);
</pre></div>
<p>This code copies <code>src</code> to <code>dst</code> and add 1 to <code>dst</code>.
</p>
<a name="Volatile"></a><a name="Volatile-1"></a>
<h4 class="subsubsection">6.45.2.1 Volatile</h4>
<a name="index-volatile-asm"></a>
<a name="index-asm-volatile"></a>
<p>GCC’s optimizers sometimes discard <code>asm</code> statements if they determine
there is no need for the output variables. Also, the optimizers may move
code out of loops if they believe that the code will always return the same
result (i.e. none of its input values change between calls). Using the
<code>volatile</code> qualifier disables these optimizations. <code>asm</code> statements
that have no output operands, including <code>asm goto</code> statements,
are implicitly volatile.
</p>
<p>This i386 code demonstrates a case that does not use (or require) the
<code>volatile</code> qualifier. If it is performing assertion checking, this code
uses <code>asm</code> to perform the validation. Otherwise, <code>dwRes</code> is
unreferenced by any code. As a result, the optimizers can discard the
<code>asm</code> statement, which in turn removes the need for the entire
<code>DoCheck</code> routine. By omitting the <code>volatile</code> qualifier when it
isn’t needed you allow the optimizers to produce the most efficient code
possible.
</p>
<div class="example">
<pre class="example">void DoCheck(uint32_t dwSomeValue)
{
uint32_t dwRes;
// Assumes dwSomeValue is not zero.
asm ("bsfl %1,%0"
: "=r" (dwRes)
: "r" (dwSomeValue)
: "cc");
assert(dwRes > 3);
}
</pre></div>
<p>The next example shows a case where the optimizers can recognize that the input
(<code>dwSomeValue</code>) never changes during the execution of the function and can
therefore move the <code>asm</code> outside the loop to produce more efficient code.
Again, using <code>volatile</code> disables this type of optimization.
</p>
<div class="example">
<pre class="example">void do_print(uint32_t dwSomeValue)
{
uint32_t dwRes;
for (uint32_t x=0; x < 5; x++)
{
// Assumes dwSomeValue is not zero.
asm ("bsfl %1,%0"
: "=r" (dwRes)
: "r" (dwSomeValue)
: "cc");
printf("%u: %u %u\n", x, dwSomeValue, dwRes);
}
}
</pre></div>
<p>The following example demonstrates a case where you need to use the
<code>volatile</code> qualifier.
It uses the x86 <code>rdtsc</code> instruction, which reads
the computer’s time-stamp counter. Without the <code>volatile</code> qualifier,
the optimizers might assume that the <code>asm</code> block will always return the
same value and therefore optimize away the second call.
</p>
<div class="example">
<pre class="example">uint64_t msr;
asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
"shl $32, %%rdx\n\t" // Shift the upper bits left.
"or %%rdx, %0" // 'Or' in the lower bits.
: "=a" (msr)
:
: "rdx");
printf("msr: %llx\n", msr);
// Do other work...
// Reprint the timestamp
asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
"shl $32, %%rdx\n\t" // Shift the upper bits left.
"or %%rdx, %0" // 'Or' in the lower bits.
: "=a" (msr)
:
: "rdx");
printf("msr: %llx\n", msr);
</pre></div>
<p>GCC’s optimizers do not treat this code like the non-volatile code in the
earlier examples. They do not move it out of loops or omit it on the
assumption that the result from a previous call is still valid.
</p>
<p>Note that the compiler can move even volatile <code>asm</code> instructions relative
to other code, including across jump instructions. For example, on many
targets there is a system register that controls the rounding mode of
floating-point operations. Setting it with a volatile <code>asm</code>, as in the
following PowerPC example, does not work reliably.
</p>
<div class="example">
<pre class="example">asm volatile("mtfsf 255, %0" : : "f" (fpenv));
sum = x + y;
</pre></div>
<p>The compiler may move the addition back before the volatile <code>asm</code>. To
make it work as expected, add an artificial dependency to the <code>asm</code> by
referencing a variable in the subsequent code, for example:
</p>
<div class="example">
<pre class="example">asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
sum = x + y;
</pre></div>
<p>Under certain circumstances, GCC may duplicate (or remove duplicates of) your
assembly code when optimizing. This can lead to unexpected duplicate symbol
errors during compilation if your asm code defines symbols or labels.
Using ‘<samp>%=</samp>’
(see <a href="#AssemblerTemplate">AssemblerTemplate</a>) may help resolve this problem.
</p>
<a name="AssemblerTemplate"></a><a name="Assembler-Template"></a>
<h4 class="subsubsection">6.45.2.2 Assembler Template</h4>
<a name="index-asm-assembler-template"></a>
<p>An assembler template is a literal string containing assembler instructions.
The compiler replaces tokens in the template that refer
to inputs, outputs, and goto labels,
and then outputs the resulting string to the assembler. The
string can contain any instructions recognized by the assembler, including
directives. GCC does not parse the assembler instructions
themselves and does not know what they mean or even whether they are valid
assembler input. However, it does count the statements
(see <a href="#Size-of-an-asm">Size of an asm</a>).
</p>
<p>You may place multiple assembler instructions together in a single <code>asm</code>
string, separated by the characters normally used in assembly code for the
system. A combination that works in most places is a newline to break the
line, plus a tab character to move to the instruction field (written as
‘<samp>\n\t</samp>’).
Some assemblers allow semicolons as a line separator. However, note
that some assembler dialects use semicolons to start a comment.
</p>
<p>Do not expect a sequence of <code>asm</code> statements to remain perfectly
consecutive after compilation, even when you are using the <code>volatile</code>
qualifier. If certain instructions need to remain consecutive in the output,
put them in a single multi-instruction asm statement.
</p>
<p>Accessing data from C programs without using input/output operands (such as
by using global symbols directly from the assembler template) may not work as
expected. Similarly, calling functions directly from an assembler template
requires a detailed understanding of the target assembler and ABI.
</p>
<p>Since GCC does not parse the assembler template,
it has no visibility of any
symbols it references. This may result in GCC discarding those symbols as
unreferenced unless they are also listed as input, output, or goto operands.
</p>
<a name="Special-format-strings"></a>
<h4 class="subsubheading">Special format strings</h4>
<p>In addition to the tokens described by the input, output, and goto operands,
these tokens have special meanings in the assembler template:
</p>
<dl compact="compact">
<dt>‘<samp>%%</samp>’</dt>
<dd><p>Outputs a single ‘<samp>%</samp>’ into the assembler code.
</p>
</dd>
<dt>‘<samp>%=</samp>’</dt>
<dd><p>Outputs a number that is unique to each instance of the <code>asm</code>
statement in the entire compilation. This option is useful when creating local
labels and referring to them multiple times in a single template that
generates multiple assembler instructions.
</p>
</dd>
<dt>‘<samp>%{</samp>’</dt>
<dt>‘<samp>%|</samp>’</dt>
<dt>‘<samp>%}</samp>’</dt>
<dd><p>Outputs ‘<samp>{</samp>’, ‘<samp>|</samp>’, and ‘<samp>}</samp>’ characters (respectively)
into the assembler code. When unescaped, these characters have special
meaning to indicate multiple assembler dialects, as described below.
</p></dd>
</dl>
<a name="Multiple-assembler-dialects-in-asm-templates"></a>
<h4 class="subsubheading">Multiple assembler dialects in <code>asm</code> templates</h4>
<p>On targets such as x86, GCC supports multiple assembler dialects.
The <samp>-masm</samp> option controls which dialect GCC uses as its
default for inline assembler. The target-specific documentation for the
<samp>-masm</samp> option contains the list of supported dialects, as well as the
default dialect if the option is not specified. This information may be
important to understand, since assembler code that works correctly when
compiled using one dialect will likely fail if compiled using another.
See <a href="#x86-Options">x86 Options</a>.
</p>
<p>If your code needs to support multiple assembler dialects (for example, if
you are writing public headers that need to support a variety of compilation
options), use constructs of this form:
</p>
<div class="example">
<pre class="example">{ dialect0 | dialect1 | dialect2... }
</pre></div>
<p>This construct outputs <code>dialect0</code>
when using dialect #0 to compile the code,
<code>dialect1</code> for dialect #1, etc. If there are fewer alternatives within the
braces than the number of dialects the compiler supports, the construct
outputs nothing.
</p>
<p>For example, if an x86 compiler supports two dialects
(‘<samp>att</samp>’, ‘<samp>intel</samp>’), an
assembler template such as this:
</p>
<div class="example">
<pre class="example">"bt{l %[Offset],%[Base] | %[Base],%[Offset]}; jc %l2"
</pre></div>
<p>is equivalent to one of
</p>
<div class="example">
<pre class="example">"btl %[Offset],%[Base] ; jc %l2" <span class="roman">/* att dialect */</span>
"bt %[Base],%[Offset]; jc %l2" <span class="roman">/* intel dialect */</span>
</pre></div>
<p>Using that same compiler, this code:
</p>
<div class="example">
<pre class="example">"xchg{l}\t{%%}ebx, %1"
</pre></div>
<p>corresponds to either
</p>
<div class="example">
<pre class="example">"xchgl\t%%ebx, %1" <span class="roman">/* att dialect */</span>
"xchg\tebx, %1" <span class="roman">/* intel dialect */</span>
</pre></div>
<p>There is no support for nesting dialect alternatives.
</p>
<a name="OutputOperands"></a><a name="Output-Operands"></a>
<h4 class="subsubsection">6.45.2.3 Output Operands</h4>
<a name="index-asm-output-operands"></a>
<p>An <code>asm</code> statement has zero or more output operands indicating the names
of C variables modified by the assembler code.
</p>
<p>In this i386 example, <code>old</code> (referred to in the template string as
<code>%0</code>) and <code>*Base</code> (as <code>%1</code>) are outputs and <code>Offset</code>
(<code>%2</code>) is an input:
</p>
<div class="example">
<pre class="example">bool old;
__asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
"sbb %0,%0" // Use the CF to calculate old.
: "=r" (old), "+rm" (*Base)
: "Ir" (Offset)
: "cc");
return old;
</pre></div>
<p>Operands are separated by commas. Each operand has this format:
</p>
<div class="example">
<pre class="example"><span class="roman">[</span> [<var>asmSymbolicName</var>] <span class="roman">]</span> <var>constraint</var> (<var>cvariablename</var>)
</pre></div>
<dl compact="compact">
<dt><var>asmSymbolicName</var></dt>
<dd><p>Specifies a symbolic name for the operand.
Reference the name in the assembler template
by enclosing it in square brackets
(i.e. ‘<samp>%[Value]</samp>’). The scope of the name is the <code>asm</code> statement
that contains the definition. Any valid C variable name is acceptable,
including names already defined in the surrounding code. No two operands
within the same <code>asm</code> statement can use the same symbolic name.
</p>
<p>When not using an <var>asmSymbolicName</var>, use the (zero-based) position
of the operand
in the list of operands in the assembler template. For example if there are
three output operands, use ‘<samp>%0</samp>’ in the template to refer to the first,
‘<samp>%1</samp>’ for the second, and ‘<samp>%2</samp>’ for the third.
</p>
</dd>
<dt><var>constraint</var></dt>
<dd><p>A string constant specifying constraints on the placement of the operand;
See <a href="#Constraints">Constraints</a>, for details.
</p>
<p>Output constraints must begin with either ‘<samp>=</samp>’ (a variable overwriting an
existing value) or ‘<samp>+</samp>’ (when reading and writing). When using
‘<samp>=</samp>’, do not assume the location contains the existing value
on entry to the <code>asm</code>, except
when the operand is tied to an input; see <a href="#InputOperands">Input Operands</a>.
</p>
<p>After the prefix, there must be one or more additional constraints
(see <a href="#Constraints">Constraints</a>) that describe where the value resides. Common
constraints include ‘<samp>r</samp>’ for register and ‘<samp>m</samp>’ for memory.
When you list more than one possible location (for example, <code>"=rm"</code>),
the compiler chooses the most efficient one based on the current context.
If you list as many alternates as the <code>asm</code> statement allows, you permit
the optimizers to produce the best possible code.
If you must use a specific register, but your Machine Constraints do not
provide sufficient control to select the specific register you want,
local register variables may provide a solution (see <a href="#Local-Register-Variables">Local Register Variables</a>).
</p>
</dd>
<dt><var>cvariablename</var></dt>
<dd><p>Specifies a C lvalue expression to hold the output, typically a variable name.
The enclosing parentheses are a required part of the syntax.
</p>
</dd>
</dl>
<p>When the compiler selects the registers to use to
represent the output operands, it does not use any of the clobbered registers
(see <a href="#Clobbers-and-Scratch-Registers">Clobbers and Scratch Registers</a>).
</p>
<p>Output operand expressions must be lvalues. The compiler cannot check whether
the operands have data types that are reasonable for the instruction being
executed. For output expressions that are not directly addressable (for
example a bit-field), the constraint must allow a register. In that case, GCC
uses the register as the output of the <code>asm</code>, and then stores that
register into the output.
</p>
<p>Operands using the ‘<samp>+</samp>’ constraint modifier count as two operands
(that is, both as input and output) towards the total maximum of 30 operands
per <code>asm</code> statement.
</p>
<p>Use the ‘<samp>&</samp>’ constraint modifier (see <a href="#Modifiers">Modifiers</a>) on all output
operands that must not overlap an input. Otherwise,
GCC may allocate the output operand in the same register as an unrelated
input operand, on the assumption that the assembler code consumes its
inputs before producing outputs. This assumption may be false if the assembler
code actually consists of more than one instruction.
</p>
<p>The same problem can occur if one output parameter (<var>a</var>) allows a register
constraint and another output parameter (<var>b</var>) allows a memory constraint.
The code generated by GCC to access the memory address in <var>b</var> can contain
registers which <em>might</em> be shared by <var>a</var>, and GCC considers those
registers to be inputs to the asm. As above, GCC assumes that such input
registers are consumed before any outputs are written. This assumption may
result in incorrect behavior if the asm writes to <var>a</var> before using
<var>b</var>. Combining the ‘<samp>&</samp>’ modifier with the register constraint on <var>a</var>
ensures that modifying <var>a</var> does not affect the address referenced by
<var>b</var>. Otherwise, the location of <var>b</var>
is undefined if <var>a</var> is modified before using <var>b</var>.
</p>
<p><code>asm</code> supports operand modifiers on operands (for example ‘<samp>%k2</samp>’
instead of simply ‘<samp>%2</samp>’). Typically these qualifiers are hardware
dependent. The list of supported modifiers for x86 is found at
<a href="#x86Operandmodifiers">x86 Operand modifiers</a>.
</p>
<p>If the C code that follows the <code>asm</code> makes no use of any of the output
operands, use <code>volatile</code> for the <code>asm</code> statement to prevent the
optimizers from discarding the <code>asm</code> statement as unneeded
(see <a href="#Volatile">Volatile</a>).
</p>
<p>This code makes no use of the optional <var>asmSymbolicName</var>. Therefore it
references the first output operand as <code>%0</code> (were there a second, it
would be <code>%1</code>, etc). The number of the first input operand is one greater
than that of the last output operand. In this i386 example, that makes
<code>Mask</code> referenced as <code>%1</code>:
</p>
<div class="example">
<pre class="example">uint32_t Mask = 1234;
uint32_t Index;
asm ("bsfl %1, %0"
: "=r" (Index)
: "r" (Mask)
: "cc");
</pre></div>
<p>That code overwrites the variable <code>Index</code> (‘<samp>=</samp>’),
placing the value in a register (‘<samp>r</samp>’).
Using the generic ‘<samp>r</samp>’ constraint instead of a constraint for a specific
register allows the compiler to pick the register to use, which can result
in more efficient code. This may not be possible if an assembler instruction
requires a specific register.
</p>
<p>The following i386 example uses the <var>asmSymbolicName</var> syntax.
It produces the
same result as the code above, but some may consider it more readable or more
maintainable since reordering index numbers is not necessary when adding or
removing operands. The names <code>aIndex</code> and <code>aMask</code>
are only used in this example to emphasize which
names get used where.
It is acceptable to reuse the names <code>Index</code> and <code>Mask</code>.
</p>
<div class="example">
<pre class="example">uint32_t Mask = 1234;
uint32_t Index;
asm ("bsfl %[aMask], %[aIndex]"
: [aIndex] "=r" (Index)
: [aMask] "r" (Mask)
: "cc");
</pre></div>
<p>Here are some more examples of output operands.
</p>
<div class="example">
<pre class="example">uint32_t c = 1;
uint32_t d;
uint32_t *e = &c;
asm ("mov %[e], %[d]"
: [d] "=rm" (d)
: [e] "rm" (*e));
</pre></div>
<p>Here, <code>d</code> may either be in a register or in memory. Since the compiler
might already have the current value of the <code>uint32_t</code> location
pointed to by <code>e</code>
in a register, you can enable it to choose the best location
for <code>d</code> by specifying both constraints.
</p>
<a name="FlagOutputOperands"></a><a name="Flag-Output-Operands"></a>
<h4 class="subsubsection">6.45.2.4 Flag Output Operands</h4>
<a name="index-asm-flag-output-operands"></a>
<p>Some targets have a special register that holds the “flags” for the
result of an operation or comparison. Normally, the contents of that
register are either unmodifed by the asm, or the asm is considered to
clobber the contents.
</p>
<p>On some targets, a special form of output operand exists by which
conditions in the flags register may be outputs of the asm. The set of
conditions supported are target specific, but the general rule is that
the output variable must be a scalar integer, and the value is boolean.
When supported, the target defines the preprocessor symbol
<code>__GCC_ASM_FLAG_OUTPUTS__</code>.
</p>
<p>Because of the special nature of the flag output operands, the constraint
may not include alternatives.
</p>
<p>Most often, the target has only one flags register, and thus is an implied
operand of many instructions. In this case, the operand should not be
referenced within the assembler template via <code>%0</code> etc, as there’s
no corresponding text in the assembly language.
</p>
<dl compact="compact">
<dt>x86 family</dt>
<dd><p>The flag output constraints for the x86 family are of the form
‘<samp>=@cc<var>cond</var></samp>’ where <var>cond</var> is one of the standard
conditions defined in the ISA manual for <code>j<var>cc</var></code> or
<code>set<var>cc</var></code>.
</p>
<dl compact="compact">
<dt><code>a</code></dt>
<dd><p>“above” or unsigned greater than
</p></dd>
<dt><code>ae</code></dt>
<dd><p>“above or equal” or unsigned greater than or equal
</p></dd>
<dt><code>b</code></dt>
<dd><p>“below” or unsigned less than
</p></dd>
<dt><code>be</code></dt>
<dd><p>“below or equal” or unsigned less than or equal
</p></dd>
<dt><code>c</code></dt>
<dd><p>carry flag set
</p></dd>
<dt><code>e</code></dt>
<dt><code>z</code></dt>
<dd><p>“equal” or zero flag set
</p></dd>
<dt><code>g</code></dt>
<dd><p>signed greater than
</p></dd>
<dt><code>ge</code></dt>
<dd><p>signed greater than or equal
</p></dd>
<dt><code>l</code></dt>
<dd><p>signed less than
</p></dd>
<dt><code>le</code></dt>
<dd><p>signed less than or equal
</p></dd>
<dt><code>o</code></dt>
<dd><p>overflow flag set
</p></dd>
<dt><code>p</code></dt>
<dd><p>parity flag set
</p></dd>
<dt><code>s</code></dt>
<dd><p>sign flag set
</p></dd>
<dt><code>na</code></dt>
<dt><code>nae</code></dt>
<dt><code>nb</code></dt>
<dt><code>nbe</code></dt>
<dt><code>nc</code></dt>
<dt><code>ne</code></dt>
<dt><code>ng</code></dt>
<dt><code>nge</code></dt>
<dt><code>nl</code></dt>
<dt><code>nle</code></dt>
<dt><code>no</code></dt>
<dt><code>np</code></dt>
<dt><code>ns</code></dt>
<dt><code>nz</code></dt>
<dd><p>“not” <var>flag</var>, or inverted versions of those above
</p></dd>
</dl>
</dd>
</dl>
<a name="InputOperands"></a><a name="Input-Operands"></a>
<h4 class="subsubsection">6.45.2.5 Input Operands</h4>
<a name="index-asm-input-operands"></a>
<a name="index-asm-expressions"></a>
<p>Input operands make values from C variables and expressions available to the
assembly code.
</p>
<p>Operands are separated by commas. Each operand has this format:
</p>
<div class="example">
<pre class="example"><span class="roman">[</span> [<var>asmSymbolicName</var>] <span class="roman">]</span> <var>constraint</var> (<var>cexpression</var>)
</pre></div>
<dl compact="compact">
<dt><var>asmSymbolicName</var></dt>
<dd><p>Specifies a symbolic name for the operand.
Reference the name in the assembler template
by enclosing it in square brackets
(i.e. ‘<samp>%[Value]</samp>’). The scope of the name is the <code>asm</code> statement
that contains the definition. Any valid C variable name is acceptable,
including names already defined in the surrounding code. No two operands
within the same <code>asm</code> statement can use the same symbolic name.
</p>
<p>When not using an <var>asmSymbolicName</var>, use the (zero-based) position
of the operand
in the list of operands in the assembler template. For example if there are
two output operands and three inputs,
use ‘<samp>%2</samp>’ in the template to refer to the first input operand,
‘<samp>%3</samp>’ for the second, and ‘<samp>%4</samp>’ for the third.
</p>
</dd>
<dt><var>constraint</var></dt>
<dd><p>A string constant specifying constraints on the placement of the operand;
See <a href="#Constraints">Constraints</a>, for details.
</p>
<p>Input constraint strings may not begin with either ‘<samp>=</samp>’ or ‘<samp>+</samp>’.
When you list more than one possible location (for example, ‘<samp>"irm"</samp>’),
the compiler chooses the most efficient one based on the current context.
If you must use a specific register, but your Machine Constraints do not
provide sufficient control to select the specific register you want,
local register variables may provide a solution (see <a href="#Local-Register-Variables">Local Register Variables</a>).
</p>
<p>Input constraints can also be digits (for example, <code>"0"</code>). This indicates
that the specified input must be in the same place as the output constraint
at the (zero-based) index in the output constraint list.
When using <var>asmSymbolicName</var> syntax for the output operands,
you may use these names (enclosed in brackets ‘<samp>[]</samp>’) instead of digits.
</p>
</dd>
<dt><var>cexpression</var></dt>
<dd><p>This is the C variable or expression being passed to the <code>asm</code> statement
as input. The enclosing parentheses are a required part of the syntax.
</p>
</dd>
</dl>
<p>When the compiler selects the registers to use to represent the input
operands, it does not use any of the clobbered registers
(see <a href="#Clobbers-and-Scratch-Registers">Clobbers and Scratch Registers</a>).
</p>
<p>If there are no output operands but there are input operands, place two
consecutive colons where the output operands would go:
</p>
<div class="example">
<pre class="example">__asm__ ("some instructions"
: /* No outputs. */
: "r" (Offset / 8));
</pre></div>
<p><strong>Warning:</strong> Do <em>not</em> modify the contents of input-only operands
(except for inputs tied to outputs). The compiler assumes that on exit from
the <code>asm</code> statement these operands contain the same values as they
had before executing the statement.
It is <em>not</em> possible to use clobbers
to inform the compiler that the values in these inputs are changing. One
common work-around is to tie the changing input variable to an output variable
that never gets used. Note, however, that if the code that follows the
<code>asm</code> statement makes no use of any of the output operands, the GCC
optimizers may discard the <code>asm</code> statement as unneeded
(see <a href="#Volatile">Volatile</a>).
</p>
<p><code>asm</code> supports operand modifiers on operands (for example ‘<samp>%k2</samp>’
instead of simply ‘<samp>%2</samp>’). Typically these qualifiers are hardware
dependent. The list of supported modifiers for x86 is found at
<a href="#x86Operandmodifiers">x86 Operand modifiers</a>.
</p>
<p>In this example using the fictitious <code>combine</code> instruction, the
constraint <code>"0"</code> for input operand 1 says that it must occupy the same
location as output operand 0. Only input operands may use numbers in
constraints, and they must each refer to an output operand. Only a number (or
the symbolic assembler name) in the constraint can guarantee that one operand
is in the same place as another. The mere fact that <code>foo</code> is the value of
both operands is not enough to guarantee that they are in the same place in
the generated assembler code.
</p>
<div class="example">
<pre class="example">asm ("combine %2, %0"
: "=r" (foo)
: "0" (foo), "g" (bar));
</pre></div>
<p>Here is an example using symbolic names.
</p>
<div class="example">
<pre class="example">asm ("cmoveq %1, %2, %[result]"
: [result] "=r"(result)
: "r" (test), "r" (new), "[result]" (old));
</pre></div>
<a name="Clobbers-and-Scratch-Registers"></a><a name="Clobbers-and-Scratch-Registers-1"></a>
<h4 class="subsubsection">6.45.2.6 Clobbers and Scratch Registers</h4>
<a name="index-asm-clobbers"></a>
<a name="index-asm-scratch-registers"></a>
<p>While the compiler is aware of changes to entries listed in the output
operands, the inline <code>asm</code> code may modify more than just the outputs. For
example, calculations may require additional registers, or the processor may
overwrite a register as a side effect of a particular assembler instruction.
In order to inform the compiler of these changes, list them in the clobber
list. Clobber list items are either register names or the special clobbers
(listed below). Each clobber list item is a string constant
enclosed in double quotes and separated by commas.
</p>
<p>Clobber descriptions may not in any way overlap with an input or output
operand. For example, you may not have an operand describing a register class
with one member when listing that register in the clobber list. Variables
declared to live in specific registers (see <a href="#Explicit-Register-Variables">Explicit Register Variables</a>) and used
as <code>asm</code> input or output operands must have no part mentioned in the
clobber description. In particular, there is no way to specify that input
operands get modified without also specifying them as output operands.
</p>
<p>When the compiler selects which registers to use to represent input and output
operands, it does not use any of the clobbered registers. As a result,
clobbered registers are available for any use in the assembler code.
</p>
<p>Here is a realistic example for the VAX showing the use of clobbered
registers:
</p>
<div class="example">
<pre class="example">asm volatile ("movc3 %0, %1, %2"
: /* No outputs. */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5", "memory");
</pre></div>
<p>Also, there are two special clobber arguments:
</p>
<dl compact="compact">
<dt><code>"cc"</code></dt>
<dd><p>The <code>"cc"</code> clobber indicates that the assembler code modifies the flags
register. On some machines, GCC represents the condition codes as a specific
hardware register; <code>"cc"</code> serves to name this register.
On other machines, condition code handling is different,
and specifying <code>"cc"</code> has no effect. But
it is valid no matter what the target.
</p>
</dd>
<dt><code>"memory"</code></dt>
<dd><p>The <code>"memory"</code> clobber tells the compiler that the assembly code
performs memory
reads or writes to items other than those listed in the input and output
operands (for example, accessing the memory pointed to by one of the input
parameters). To ensure memory contains correct values, GCC may need to flush
specific register values to memory before executing the <code>asm</code>. Further,
the compiler does not assume that any values read from memory before an
<code>asm</code> remain unchanged after that <code>asm</code>; it reloads them as
needed.
Using the <code>"memory"</code> clobber effectively forms a read/write
memory barrier for the compiler.
</p>
<p>Note that this clobber does not prevent the <em>processor</em> from doing
speculative reads past the <code>asm</code> statement. To prevent that, you need
processor-specific fence instructions.
</p>
</dd>
</dl>
<p>Flushing registers to memory has performance implications and may be
an issue for time-sensitive code. You can provide better information
to GCC to avoid this, as shown in the following examples. At a
minimum, aliasing rules allow GCC to know what memory <em>doesn’t</em>
need to be flushed.
</p>
<p>Here is a fictitious sum of squares instruction, that takes two
pointers to floating point values in memory and produces a floating
point register output.
Notice that <code>x</code>, and <code>y</code> both appear twice in the <code>asm</code>
parameters, once to specify memory accessed, and once to specify a
base register used by the <code>asm</code>. You won’t normally be wasting a
register by doing this as GCC can use the same register for both
purposes. However, it would be foolish to use both <code>%1</code> and
<code>%3</code> for <code>x</code> in this <code>asm</code> and expect them to be the
same. In fact, <code>%3</code> may well not be a register. It might be a
symbolic memory reference to the object pointed to by <code>x</code>.
</p>
<div class="smallexample">
<pre class="smallexample">asm ("sumsq %0, %1, %2"
: "+f" (result)
: "r" (x), "r" (y), "m" (*x), "m" (*y));
</pre></div>
<p>Here is a fictitious <code>*z++ = *x++ * *y++</code> instruction.
Notice that the <code>x</code>, <code>y</code> and <code>z</code> pointer registers
must be specified as input/output because the <code>asm</code> modifies
them.
</p>
<div class="smallexample">
<pre class="smallexample">asm ("vecmul %0, %1, %2"
: "+r" (z), "+r" (x), "+r" (y), "=m" (*z)
: "m" (*x), "m" (*y));
</pre></div>
<p>An x86 example where the string memory argument is of unknown length.
</p>
<div class="smallexample">
<pre class="smallexample">asm("repne scasb"
: "=c" (count), "+D" (p)
: "m" (*(const char (*)[]) p), "0" (-1), "a" (0));
</pre></div>
<p>If you know the above will only be reading a ten byte array then you
could instead use a memory input like:
<code>"m" (*(const char (*)[10]) p)</code>.
</p>
<p>Here is an example of a PowerPC vector scale implemented in assembly,
complete with vector and condition code clobbers, and some initialized
offset registers that are unchanged by the <code>asm</code>.
</p>
<div class="smallexample">
<pre class="smallexample">void
dscal (size_t n, double *x, double alpha)
{
asm ("/* lots of asm here */"
: "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x)
: "d" (alpha), "b" (32), "b" (48), "b" (64),
"b" (80), "b" (96), "b" (112)
: "cr0",
"vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39",
"vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47");
}
</pre></div>
<p>Rather than allocating fixed registers via clobbers to provide scratch
registers for an <code>asm</code> statement, an alternative is to define a
variable and make it an early-clobber output as with <code>a2</code> and
<code>a3</code> in the example below. This gives the compiler register
allocator more freedom. You can also define a variable and make it an
output tied to an input as with <code>a0</code> and <code>a1</code>, tied
respectively to <code>ap</code> and <code>lda</code>. Of course, with tied
outputs your <code>asm</code> can’t use the input value after modifying the
output register since they are one and the same register. What’s
more, if you omit the early-clobber on the output, it is possible that
GCC might allocate the same register to another of the inputs if GCC
could prove they had the same value on entry to the <code>asm</code>. This
is why <code>a1</code> has an early-clobber. Its tied input, <code>lda</code>
might conceivably be known to have the value 16 and without an
early-clobber share the same register as <code>%11</code>. On the other
hand, <code>ap</code> can’t be the same as any of the other inputs, so an
early-clobber on <code>a0</code> is not needed. It is also not desirable in
this case. An early-clobber on <code>a0</code> would cause GCC to allocate
a separate register for the <code>"m" (*(const double (*)[]) ap)</code>
input. Note that tying an input to an output is the way to set up an
initialized temporary register modified by an <code>asm</code> statement.
An input not tied to an output is assumed by GCC to be unchanged, for
example <code>"b" (16)</code> below sets up <code>%11</code> to 16, and GCC might
use that register in following code if the value 16 happened to be
needed. You can even use a normal <code>asm</code> output for a scratch if
all inputs that might share the same register are consumed before the
scratch is used. The VSX registers clobbered by the <code>asm</code>
statement could have used this technique except for GCC’s limit on the
number of <code>asm</code> parameters.
</p>
<div class="smallexample">
<pre class="smallexample">static void
dgemv_kernel_4x4 (long n, const double *ap, long lda,
const double *x, double *y, double alpha)
{
double *a0;
double *a1;
double *a2;
double *a3;
__asm__
(
/* lots of asm here */
"#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n"
"#a0=%3 a1=%4 a2=%5 a3=%6"
:
"+m" (*(double (*)[n]) y),
"+&r" (n), // 1
"+b" (y), // 2
"=b" (a0), // 3
"=&b" (a1), // 4
"=&b" (a2), // 5
"=&b" (a3) // 6
:
"m" (*(const double (*)[n]) x),
"m" (*(const double (*)[]) ap),
"d" (alpha), // 9
"r" (x), // 10
"b" (16), // 11
"3" (ap), // 12
"4" (lda) // 13
:
"cr0",
"vs32","vs33","vs34","vs35","vs36","vs37",
"vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"
);
}
</pre></div>
<a name="GotoLabels"></a><a name="Goto-Labels"></a>
<h4 class="subsubsection">6.45.2.7 Goto Labels</h4>
<a name="index-asm-goto-labels"></a>
<p><code>asm goto</code> allows assembly code to jump to one or more C labels. The
<var>GotoLabels</var> section in an <code>asm goto</code> statement contains
a comma-separated
list of all C labels to which the assembler code may jump. GCC assumes that
<code>asm</code> execution falls through to the next statement (if this is not the
case, consider using the <code>__builtin_unreachable</code> intrinsic after the
<code>asm</code> statement). Optimization of <code>asm goto</code> may be improved by
using the <code>hot</code> and <code>cold</code> label attributes (see <a href="#Label-Attributes">Label Attributes</a>).
</p>
<p>An <code>asm goto</code> statement cannot have outputs.
This is due to an internal restriction of
the compiler: control transfer instructions cannot have outputs.
If the assembler code does modify anything, use the <code>"memory"</code> clobber
to force the
optimizers to flush all register values to memory and reload them if
necessary after the <code>asm</code> statement.
</p>
<p>Also note that an <code>asm goto</code> statement is always implicitly
considered volatile.
</p>
<p>To reference a label in the assembler template,
prefix it with ‘<samp>%l</samp>’ (lowercase ‘<samp>L</samp>’) followed
by its (zero-based) position in <var>GotoLabels</var> plus the number of input
operands. For example, if the <code>asm</code> has three inputs and references two
labels, refer to the first label as ‘<samp>%l3</samp>’ and the second as ‘<samp>%l4</samp>’).
</p>
<p>Alternately, you can reference labels using the actual C label name enclosed
in brackets. For example, to reference a label named <code>carry</code>, you can
use ‘<samp>%l[carry]</samp>’. The label must still be listed in the <var>GotoLabels</var>
section when using this approach.
</p>
<p>Here is an example of <code>asm goto</code> for i386:
</p>
<div class="example">
<pre class="example">asm goto (
"btl %1, %0\n\t"
"jc %l2"
: /* No outputs. */
: "r" (p1), "r" (p2)
: "cc"
: carry);
return 0;
carry:
return 1;
</pre></div>
<p>The following example shows an <code>asm goto</code> that uses a memory clobber.
</p>
<div class="example">
<pre class="example">int frob(int x)
{
int y;
asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
: /* No outputs. */
: "r"(x), "r"(&y)
: "r5", "memory"
: error);
return y;
error:
return -1;
}
</pre></div>
<a name="x86Operandmodifiers"></a><a name="x86-Operand-Modifiers"></a>
<h4 class="subsubsection">6.45.2.8 x86 Operand Modifiers</h4>
<p>References to input, output, and goto operands in the assembler template
of extended <code>asm</code> statements can use
modifiers to affect the way the operands are formatted in
the code output to the assembler. For example, the
following code uses the ‘<samp>h</samp>’ and ‘<samp>b</samp>’ modifiers for x86:
</p>
<div class="example">
<pre class="example">uint16_t num;
asm volatile ("xchg %h0, %b0" : "+a" (num) );
</pre></div>
<p>These modifiers generate this assembler code:
</p>
<div class="example">
<pre class="example">xchg %ah, %al
</pre></div>
<p>The rest of this discussion uses the following code for illustrative purposes.
</p>
<div class="example">
<pre class="example">int main()
{
int iInt = 1;
top:
asm volatile goto ("some assembler instructions here"
: /* No outputs. */
: "q" (iInt), "X" (sizeof(unsigned char) + 1)
: /* No clobbers. */
: top);
}
</pre></div>
<p>With no modifiers, this is what the output from the operands would be for the
‘<samp>att</samp>’ and ‘<samp>intel</samp>’ dialects of assembler:
</p>
<table>
<thead><tr><th>Operand</th><th>‘<samp>att</samp>’</th><th>‘<samp>intel</samp>’</th></tr></thead>
<tr><td><code>%0</code></td><td><code>%eax</code></td><td><code>eax</code></td></tr>
<tr><td><code>%1</code></td><td><code>$2</code></td><td><code>2</code></td></tr>
<tr><td><code>%2</code></td><td><code>$.L2</code></td><td><code>OFFSET FLAT:.L2</code></td></tr>
</table>
<p>The table below shows the list of supported modifiers and their effects.
</p>
<table>
<thead><tr><th>Modifier</th><th>Description</th><th>Operand</th><th>‘<samp>att</samp>’</th><th>‘<samp>intel</samp>’</th></tr></thead>
<tr><td><code>z</code></td><td>Print the opcode suffix for the size of the current integer operand (one of <code>b</code>/<code>w</code>/<code>l</code>/<code>q</code>).</td><td><code>%z0</code></td><td><code>l</code></td><td></td></tr>
<tr><td><code>b</code></td><td>Print the QImode name of the register.</td><td><code>%b0</code></td><td><code>%al</code></td><td><code>al</code></td></tr>
<tr><td><code>h</code></td><td>Print the QImode name for a “high” register.</td><td><code>%h0</code></td><td><code>%ah</code></td><td><code>ah</code></td></tr>
<tr><td><code>w</code></td><td>Print the HImode name of the register.</td><td><code>%w0</code></td><td><code>%ax</code></td><td><code>ax</code></td></tr>
<tr><td><code>k</code></td><td>Print the SImode name of the register.</td><td><code>%k0</code></td><td><code>%eax</code></td><td><code>eax</code></td></tr>
<tr><td><code>q</code></td><td>Print the DImode name of the register.</td><td><code>%q0</code></td><td><code>%rax</code></td><td><code>rax</code></td></tr>
<tr><td><code>l</code></td><td>Print the label name with no punctuation.</td><td><code>%l2</code></td><td><code>.L2</code></td><td><code>.L2</code></td></tr>
<tr><td><code>c</code></td><td>Require a constant operand and print the constant expression with no punctuation.</td><td><code>%c1</code></td><td><code>2</code></td><td><code>2</code></td></tr>
</table>
<p><code>V</code> is a special modifier which prints the name of the full integer
register without <code>%</code>.
</p>
<a name="x86floatingpointasmoperands"></a><a name="x86-Floating_002dPoint-asm-Operands"></a>
<h4 class="subsubsection">6.45.2.9 x86 Floating-Point <code>asm</code> Operands</h4>
<p>On x86 targets, there are several rules on the usage of stack-like registers
in the operands of an <code>asm</code>. These rules apply only to the operands
that are stack-like registers:
</p>
<ol>
<li> Given a set of input registers that die in an <code>asm</code>, it is
necessary to know which are implicitly popped by the <code>asm</code>, and
which must be explicitly popped by GCC.
<p>An input register that is implicitly popped by the <code>asm</code> must be
explicitly clobbered, unless it is constrained to match an
output operand.
</p>
</li><li> For any input register that is implicitly popped by an <code>asm</code>, it is
necessary to know how to adjust the stack to compensate for the pop.
If any non-popped input is closer to the top of the reg-stack than
the implicitly popped register, it would not be possible to know what the
stack looked like—it’s not clear how the rest of the stack “slides
up”.
<p>All implicitly popped input registers must be closer to the top of
the reg-stack than any input that is not implicitly popped.
</p>
<p>It is possible that if an input dies in an <code>asm</code>, the compiler might
use the input register for an output reload. Consider this example:
</p>
<div class="smallexample">
<pre class="smallexample">asm ("foo" : "=t" (a) : "f" (b));
</pre></div>
<p>This code says that input <code>b</code> is not popped by the <code>asm</code>, and that
the <code>asm</code> pushes a result onto the reg-stack, i.e., the stack is one
deeper after the <code>asm</code> than it was before. But, it is possible that
reload may think that it can use the same register for both the input and
the output.
</p>
<p>To prevent this from happening,
if any input operand uses the ‘<samp>f</samp>’ constraint, all output register
constraints must use the ‘<samp>&</samp>’ early-clobber modifier.
</p>
<p>The example above is correctly written as:
</p>
<div class="smallexample">
<pre class="smallexample">asm ("foo" : "=&t" (a) : "f" (b));
</pre></div>
</li><li> Some operands need to be in particular places on the stack. All
output operands fall in this category—GCC has no other way to
know which registers the outputs appear in unless you indicate
this in the constraints.
<p>Output operands must specifically indicate which register an output
appears in after an <code>asm</code>. ‘<samp>=f</samp>’ is not allowed: the operand
constraints must select a class with a single register.
</p>
</li><li> Output operands may not be “inserted” between existing stack registers.
Since no 387 opcode uses a read/write operand, all output operands
are dead before the <code>asm</code>, and are pushed by the <code>asm</code>.
It makes no sense to push anywhere but the top of the reg-stack.
<p>Output operands must start at the top of the reg-stack: output
operands may not “skip” a register.
</p>
</li><li> Some <code>asm</code> statements may need extra stack space for internal
calculations. This can be guaranteed by clobbering stack registers
unrelated to the inputs and outputs.
</li></ol>
<p>This <code>asm</code>
takes one input, which is internally popped, and produces two outputs.
</p>
<div class="smallexample">
<pre class="smallexample">asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
</pre></div>
<p>This <code>asm</code> takes two inputs, which are popped by the <code>fyl2xp1</code> opcode,
and replaces them with one output. The <code>st(1)</code> clobber is necessary
for the compiler to know that <code>fyl2xp1</code> pops both inputs.
</p>
<div class="smallexample">
<pre class="smallexample">asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
</pre></div>
<hr>
<a name="Constraints"></a>
<div class="header">
<p>
Next: <a href="#Asm-Labels" accesskey="n" rel="next">Asm Labels</a>, Previous: <a href="#Extended-Asm" accesskey="p" rel="prev">Extended Asm</a>, Up: <a href="#Using-Assembly-Language-with-C" accesskey="u" rel="up">Using Assembly Language with C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constraints-for-asm-Operands"></a>
<h4 class="subsection">6.45.3 Constraints for <code>asm</code> Operands</h4>
<a name="index-operand-constraints_002c-asm"></a>
<a name="index-constraints_002c-asm"></a>
<a name="index-asm-constraints"></a>
<p>Here are specific details on what constraint letters you can use with
<code>asm</code> operands.
Constraints can say whether
an operand may be in a register, and which kinds of register; whether the
operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may
have. Constraints can also require two operands to match.
Side-effects aren’t allowed in operands of inline <code>asm</code>, unless
‘<samp><</samp>’ or ‘<samp>></samp>’ constraints are used, because there is no guarantee
that the side effects will happen exactly once in an instruction that can update
the addressing register.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Simple-Constraints" accesskey="1">Simple Constraints</a>:</td><td> </td><td align="left" valign="top">Basic use of constraints.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Multi_002dAlternative" accesskey="2">Multi-Alternative</a>:</td><td> </td><td align="left" valign="top">When an insn has two alternative constraint-patterns.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Modifiers" accesskey="3">Modifiers</a>:</td><td> </td><td align="left" valign="top">More precise control over effects of constraints.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Machine-Constraints" accesskey="4">Machine Constraints</a>:</td><td> </td><td align="left" valign="top">Special constraints for some particular machines.
</td></tr>
</table>
<hr>
<a name="Simple-Constraints"></a>
<div class="header">
<p>
Next: <a href="#Multi_002dAlternative" accesskey="n" rel="next">Multi-Alternative</a>, Up: <a href="#Constraints" accesskey="u" rel="up">Constraints</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Simple-Constraints-1"></a>
<h4 class="subsubsection">6.45.3.1 Simple Constraints</h4>
<a name="index-simple-constraints"></a>
<p>The simplest kind of constraint is a string full of letters, each of
which describes one kind of operand that is permitted. Here are
the letters that are allowed:
</p>
<dl compact="compact">
<dt>whitespace</dt>
<dd><p>Whitespace characters are ignored and can be inserted at any position
except the first. This enables each alternative for different operands to
be visually aligned in the machine description even if they have different
number of constraints and modifiers.
</p>
<a name="index-m-in-constraint"></a>
<a name="index-memory-references-in-constraints"></a>
</dd>
<dt>‘<samp>m</samp>’</dt>
<dd><p>A memory operand is allowed, with any kind of address that the machine
supports in general.
Note that the letter used for the general memory constraint can be
re-defined by a back end using the <code>TARGET_MEM_CONSTRAINT</code> macro.
</p>
<a name="index-offsettable-address"></a>
<a name="index-o-in-constraint"></a>
</dd>
<dt>‘<samp>o</samp>’</dt>
<dd><p>A memory operand is allowed, but only if the address is
<em>offsettable</em>. This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its machine mode)
may be added to the address and the result is also a valid memory
address.
</p>
<a name="index-autoincrement_002fdecrement-addressing"></a>
<p>For example, an address which is constant is offsettable; so is an
address that is the sum of a register and a constant (as long as a
slightly larger constant is also within the range of address-offsets
supported by the machine); but an autoincrement or autodecrement
address is not offsettable. More complicated indirect/indexed
addresses may or may not be offsettable depending on the other
addressing modes that the machine supports.
</p>
<p>Note that in an output operand which can be matched by another
operand, the constraint letter ‘<samp>o</samp>’ is valid only when accompanied
by both ‘<samp><</samp>’ (if the target machine has predecrement addressing)
and ‘<samp>></samp>’ (if the target machine has preincrement addressing).
</p>
<a name="index-V-in-constraint"></a>
</dd>
<dt>‘<samp>V</samp>’</dt>
<dd><p>A memory operand that is not offsettable. In other words, anything that
would fit the ‘<samp>m</samp>’ constraint but not the ‘<samp>o</samp>’ constraint.
</p>
<a name="index-_003c-in-constraint"></a>
</dd>
<dt>‘<samp><</samp>’</dt>
<dd><p>A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed. In inline <code>asm</code> this constraint is only
allowed if the operand is used exactly once in an instruction that can
handle the side effects. Not using an operand with ‘<samp><</samp>’ in constraint
string in the inline <code>asm</code> pattern at all or using it in multiple
instructions isn’t valid, because the side effects wouldn’t be performed
or would be performed more than once. Furthermore, on some targets
the operand with ‘<samp><</samp>’ in constraint string must be accompanied by
special instruction suffixes like <code>%U0</code> instruction suffix on PowerPC
or <code>%P0</code> on IA-64.
</p>
<a name="index-_003e-in-constraint"></a>
</dd>
<dt>‘<samp>></samp>’</dt>
<dd><p>A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed. In inline <code>asm</code> the same restrictions
as for ‘<samp><</samp>’ apply.
</p>
<a name="index-r-in-constraint"></a>
<a name="index-registers-in-constraints"></a>
</dd>
<dt>‘<samp>r</samp>’</dt>
<dd><p>A register operand is allowed provided that it is in a general
register.
</p>
<a name="index-constants-in-constraints"></a>
<a name="index-i-in-constraint"></a>
</dd>
<dt>‘<samp>i</samp>’</dt>
<dd><p>An immediate integer operand (one with constant value) is allowed.
This includes symbolic constants whose values will be known only at
assembly time or later.
</p>
<a name="index-n-in-constraint"></a>
</dd>
<dt>‘<samp>n</samp>’</dt>
<dd><p>An immediate integer operand with a known numeric value is allowed.
Many systems cannot support assembly-time constants for operands less
than a word wide. Constraints for these operands should use ‘<samp>n</samp>’
rather than ‘<samp>i</samp>’.
</p>
<a name="index-I-in-constraint"></a>
</dd>
<dt>‘<samp>I</samp>’, ‘<samp>J</samp>’, ‘<samp>K</samp>’, … ‘<samp>P</samp>’</dt>
<dd><p>Other letters in the range ‘<samp>I</samp>’ through ‘<samp>P</samp>’ may be defined in
a machine-dependent fashion to permit immediate integer operands with
explicit integer values in specified ranges. For example, on the
68000, ‘<samp>I</samp>’ is defined to stand for the range of values 1 to 8.
This is the range permitted as a shift count in the shift
instructions.
</p>
<a name="index-E-in-constraint"></a>
</dd>
<dt>‘<samp>E</samp>’</dt>
<dd><p>An immediate floating operand (expression code <code>const_double</code>) is
allowed, but only if the target floating point format is the same as
that of the host machine (on which the compiler is running).
</p>
<a name="index-F-in-constraint"></a>
</dd>
<dt>‘<samp>F</samp>’</dt>
<dd><p>An immediate floating operand (expression code <code>const_double</code> or
<code>const_vector</code>) is allowed.
</p>
<a name="index-G-in-constraint"></a>
<a name="index-H-in-constraint"></a>
</dd>
<dt>‘<samp>G</samp>’, ‘<samp>H</samp>’</dt>
<dd><p>‘<samp>G</samp>’ and ‘<samp>H</samp>’ may be defined in a machine-dependent fashion to
permit immediate floating operands in particular ranges of values.
</p>
<a name="index-s-in-constraint"></a>
</dd>
<dt>‘<samp>s</samp>’</dt>
<dd><p>An immediate integer operand whose value is not an explicit integer is
allowed.
</p>
<p>This might appear strange; if an insn allows a constant operand with a
value not known at compile time, it certainly must allow any known
value. So why use ‘<samp>s</samp>’ instead of ‘<samp>i</samp>’? Sometimes it allows
better code to be generated.
</p>
<p>For example, on the 68000 in a fullword instruction it is possible to
use an immediate operand; but if the immediate value is between -128
and 127, better code results from loading the value into a register and
using the register. This is because the load into the register can be
done with a ‘<samp>moveq</samp>’ instruction. We arrange for this to happen
by defining the letter ‘<samp>K</samp>’ to mean “any integer outside the
range -128 to 127”, and then specifying ‘<samp>Ks</samp>’ in the operand
constraints.
</p>
<a name="index-g-in-constraint"></a>
</dd>
<dt>‘<samp>g</samp>’</dt>
<dd><p>Any register, memory or immediate integer operand is allowed, except for
registers that are not general registers.
</p>
<a name="index-X-in-constraint"></a>
</dd>
<dt>‘<samp>X</samp>’</dt>
<dd><p>Any operand whatsoever is allowed.
</p>
<a name="index-0-in-constraint"></a>
<a name="index-digits-in-constraint"></a>
</dd>
<dt>‘<samp>0</samp>’, ‘<samp>1</samp>’, ‘<samp>2</samp>’, … ‘<samp>9</samp>’</dt>
<dd><p>An operand that matches the specified operand number is allowed. If a
digit is used together with letters within the same alternative, the
digit should come last.
</p>
<p>This number is allowed to be more than a single digit. If multiple
digits are encountered consecutively, they are interpreted as a single
decimal integer. There is scant chance for ambiguity, since to-date
it has never been desirable that ‘<samp>10</samp>’ be interpreted as matching
either operand 1 <em>or</em> operand 0. Should this be desired, one
can use multiple alternatives instead.
</p>
<a name="index-matching-constraint"></a>
<a name="index-constraint_002c-matching"></a>
<p>This is called a <em>matching constraint</em> and what it really means is
that the assembler has only a single operand that fills two roles
which <code>asm</code> distinguishes. For example, an add instruction uses
two input operands and an output operand, but on most CISC
machines an add instruction really has only two operands, one of them an
input-output operand:
</p>
<div class="smallexample">
<pre class="smallexample">addl #35,r12
</pre></div>
<p>Matching constraints are used in these circumstances.
More precisely, the two operands that match must include one input-only
operand and one output-only operand. Moreover, the digit must be a
smaller number than the number of the operand that uses it in the
constraint.
</p>
<a name="index-load-address-instruction"></a>
<a name="index-push-address-instruction"></a>
<a name="index-address-constraints"></a>
<a name="index-p-in-constraint"></a>
</dd>
<dt>‘<samp>p</samp>’</dt>
<dd><p>An operand that is a valid memory address is allowed. This is
for “load address” and “push address” instructions.
</p>
<a name="index-address_005foperand"></a>
<p>‘<samp>p</samp>’ in the constraint must be accompanied by <code>address_operand</code>
as the predicate in the <code>match_operand</code>. This predicate interprets
the mode specified in the <code>match_operand</code> as the mode of the memory
reference for which the address would be valid.
</p>
<a name="index-other-register-constraints"></a>
<a name="index-extensible-constraints"></a>
</dd>
<dt><var>other-letters</var></dt>
<dd><p>Other letters can be defined in machine-dependent fashion to stand for
particular classes of registers or other arbitrary operand types.
‘<samp>d</samp>’, ‘<samp>a</samp>’ and ‘<samp>f</samp>’ are defined on the 68000/68020 to stand
for data, address and floating point registers.
</p></dd>
</dl>
<hr>
<a name="Multi_002dAlternative"></a>
<div class="header">
<p>
Next: <a href="#Modifiers" accesskey="n" rel="next">Modifiers</a>, Previous: <a href="#Simple-Constraints" accesskey="p" rel="prev">Simple Constraints</a>, Up: <a href="#Constraints" accesskey="u" rel="up">Constraints</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Multiple-Alternative-Constraints"></a>
<h4 class="subsubsection">6.45.3.2 Multiple Alternative Constraints</h4>
<a name="index-multiple-alternative-constraints"></a>
<p>Sometimes a single instruction has multiple alternative sets of possible
operands. For example, on the 68000, a logical-or instruction can combine
register or an immediate value into memory, or it can combine any kind of
operand into a register; but it cannot combine one memory location into
another.
</p>
<p>These constraints are represented as multiple alternatives. An alternative
can be described by a series of letters for each operand. The overall
constraint for an operand is made from the letters for this operand
from the first alternative, a comma, the letters for this operand from
the second alternative, a comma, and so on until the last alternative.
All operands for a single instruction must have the same number of
alternatives.
</p>
<p>So the first alternative for the 68000’s logical-or could be written as
<code>"+m" (output) : "ir" (input)</code>. The second could be <code>"+r"
(output): "irm" (input)</code>. However, the fact that two memory locations
cannot be used in a single instruction prevents simply using <code>"+rm"
(output) : "irm" (input)</code>. Using multi-alternatives, this might be
written as <code>"+m,r" (output) : "ir,irm" (input)</code>. This describes
all the available alternatives to the compiler, allowing it to choose
the most efficient one for the current conditions.
</p>
<p>There is no way within the template to determine which alternative was
chosen. However you may be able to wrap your <code>asm</code> statements with
builtins such as <code>__builtin_constant_p</code> to achieve the desired results.
</p>
<hr>
<a name="Modifiers"></a>
<div class="header">
<p>
Next: <a href="#Machine-Constraints" accesskey="n" rel="next">Machine Constraints</a>, Previous: <a href="#Multi_002dAlternative" accesskey="p" rel="prev">Multi-Alternative</a>, Up: <a href="#Constraints" accesskey="u" rel="up">Constraints</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constraint-Modifier-Characters"></a>
<h4 class="subsubsection">6.45.3.3 Constraint Modifier Characters</h4>
<a name="index-modifiers-in-constraints"></a>
<a name="index-constraint-modifier-characters"></a>
<p>Here are constraint modifier characters.
</p>
<dl compact="compact">
<dd><a name="index-_003d-in-constraint"></a>
</dd>
<dt>‘<samp>=</samp>’</dt>
<dd><p>Means that this operand is written to by this instruction:
the previous value is discarded and replaced by new data.
</p>
<a name="index-_002b-in-constraint"></a>
</dd>
<dt>‘<samp>+</samp>’</dt>
<dd><p>Means that this operand is both read and written by the instruction.
</p>
<p>When the compiler fixes up the operands to satisfy the constraints,
it needs to know which operands are read by the instruction and
which are written by it. ‘<samp>=</samp>’ identifies an operand which is only
written; ‘<samp>+</samp>’ identifies an operand that is both read and written; all
other operands are assumed to only be read.
</p>
<p>If you specify ‘<samp>=</samp>’ or ‘<samp>+</samp>’ in a constraint, you put it in the
first character of the constraint string.
</p>
<a name="index-_0026-in-constraint"></a>
<a name="index-earlyclobber-operand"></a>
</dd>
<dt>‘<samp>&</samp>’</dt>
<dd><p>Means (in a particular alternative) that this operand is an
<em>earlyclobber</em> operand, which is written before the instruction is
finished using the input operands. Therefore, this operand may not lie
in a register that is read by the instruction or as part of any memory
address.
</p>
<p>‘<samp>&</samp>’ applies only to the alternative in which it is written. In
constraints with multiple alternatives, sometimes one alternative
requires ‘<samp>&</samp>’ while others do not. See, for example, the
‘<samp>movdf</samp>’ insn of the 68000.
</p>
<p>A operand which is read by the instruction can be tied to an earlyclobber
operand if its only use as an input occurs before the early result is
written. Adding alternatives of this form often allows GCC to produce
better code when only some of the read operands can be affected by the
earlyclobber. See, for example, the ‘<samp>mulsi3</samp>’ insn of the ARM.
</p>
<p>Furthermore, if the <em>earlyclobber</em> operand is also a read/write
operand, then that operand is written only after it’s used.
</p>
<p>‘<samp>&</samp>’ does not obviate the need to write ‘<samp>=</samp>’ or ‘<samp>+</samp>’. As
<em>earlyclobber</em> operands are always written, a read-only
<em>earlyclobber</em> operand is ill-formed and will be rejected by the
compiler.
</p>
<a name="index-_0025-in-constraint"></a>
</dd>
<dt>‘<samp>%</samp>’</dt>
<dd><p>Declares the instruction to be commutative for this operand and the
following operand. This means that the compiler may interchange the
two operands if that is the cheapest way to make all operands fit the
constraints. ‘<samp>%</samp>’ applies to all alternatives and must appear as
the first character in the constraint. Only read-only operands can use
‘<samp>%</samp>’.
</p>
<p>GCC can only handle one commutative pair in an asm; if you use more,
the compiler may fail. Note that you need not use the modifier if
the two alternatives are strictly identical; this would only waste
time in the reload pass.
</p></dd>
</dl>
<hr>
<a name="Machine-Constraints"></a>
<div class="header">
<p>
Previous: <a href="#Modifiers" accesskey="p" rel="prev">Modifiers</a>, Up: <a href="#Constraints" accesskey="u" rel="up">Constraints</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constraints-for-Particular-Machines"></a>
<h4 class="subsubsection">6.45.3.4 Constraints for Particular Machines</h4>
<a name="index-machine-specific-constraints"></a>
<a name="index-constraints_002c-machine-specific"></a>
<p>Whenever possible, you should use the general-purpose constraint letters
in <code>asm</code> arguments, since they will convey meaning more readily to
people reading your code. Failing that, use the constraint letters
that usually have very similar meanings across architectures. The most
commonly used constraints are ‘<samp>m</samp>’ and ‘<samp>r</samp>’ (for memory and
general-purpose registers respectively; see <a href="#Simple-Constraints">Simple Constraints</a>), and
‘<samp>I</samp>’, usually the letter indicating the most common
immediate-constant format.
</p>
<p>Each architecture defines additional constraints. These constraints
are used by the compiler itself for instruction generation, as well as
for <code>asm</code> statements; therefore, some of the constraints are not
particularly useful for <code>asm</code>. Here is a summary of some of the
machine-dependent constraints available on some particular machines;
it includes both constraints that are useful for <code>asm</code> and
constraints that aren’t. The compiler source file mentioned in the
table heading for each architecture is the definitive reference for
the meanings of that architecture’s constraints.
</p>
<dl compact="compact">
<dt><em>AArch64 family—<samp>config/aarch64/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>k</code></dt>
<dd><p>The stack pointer register (<code>SP</code>)
</p>
</dd>
<dt><code>w</code></dt>
<dd><p>Floating point register, Advanced SIMD vector register or SVE vector register
</p>
</dd>
<dt><code>Upl</code></dt>
<dd><p>One of the low eight SVE predicate registers (<code>P0</code> to <code>P7</code>)
</p>
</dd>
<dt><code>Upa</code></dt>
<dd><p>Any of the SVE predicate registers (<code>P0</code> to <code>P15</code>)
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Integer constant that is valid as an immediate operand in an <code>ADD</code>
instruction
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Integer constant that is valid as an immediate operand in a <code>SUB</code>
instruction (once negated)
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Integer constant that can be used with a 32-bit logical instruction
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Integer constant that can be used with a 64-bit logical instruction
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Integer constant that is valid as an immediate operand in a 32-bit <code>MOV</code>
pseudo instruction. The <code>MOV</code> may be assembled to one of several different
machine instructions depending on the value
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Integer constant that is valid as an immediate operand in a 64-bit <code>MOV</code>
pseudo instruction
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>An absolute symbolic address or a label reference
</p>
</dd>
<dt><code>Y</code></dt>
<dd><p>Floating point constant zero
</p>
</dd>
<dt><code>Z</code></dt>
<dd><p>Integer constant zero
</p>
</dd>
<dt><code>Ush</code></dt>
<dd><p>The high part (bits 12 and upwards) of the pc-relative address of a symbol
within 4GB of the instruction
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>A memory address which uses a single base register with no offset
</p>
</dd>
<dt><code>Ump</code></dt>
<dd><p>A memory address suitable for a load/store pair instruction in SI, DI, SF and
DF modes
</p>
</dd>
</dl>
</dd>
<dt><em>ARC —<samp>config/arc/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>q</code></dt>
<dd><p>Registers usable in ARCompact 16-bit instructions: <code>r0</code>-<code>r3</code>,
<code>r12</code>-<code>r15</code>. This constraint can only match when the <samp>-mq</samp>
option is in effect.
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>Registers usable as base-regs of memory addresses in ARCompact 16-bit memory
instructions: <code>r0</code>-<code>r3</code>, <code>r12</code>-<code>r15</code>, <code>sp</code>.
This constraint can only match when the <samp>-mq</samp>
option is in effect.
</p></dd>
<dt><code>D</code></dt>
<dd><p>ARC FPX (dpfp) 64-bit registers. <code>D0</code>, <code>D1</code>.
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>A signed 12-bit integer constant.
</p>
</dd>
<dt><code>Cal</code></dt>
<dd><p>constant for arithmetic/logical operations. This might be any constant
that can be put into a long immediate by the assmbler or linker without
involving a PIC relocation.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>A 3-bit unsigned integer constant.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>A 6-bit unsigned integer constant.
</p>
</dd>
<dt><code>CnL</code></dt>
<dd><p>One’s complement of a 6-bit unsigned integer constant.
</p>
</dd>
<dt><code>CmL</code></dt>
<dd><p>Two’s complement of a 6-bit unsigned integer constant.
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>A 5-bit unsigned integer constant.
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>A 7-bit unsigned integer constant.
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>A 8-bit unsigned integer constant.
</p>
</dd>
<dt><code>H</code></dt>
<dd><p>Any const_double value.
</p></dd>
</dl>
</dd>
<dt><em>ARM family—<samp>config/arm/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>h</code></dt>
<dd><p>In Thumb state, the core registers <code>r8</code>-<code>r15</code>.
</p>
</dd>
<dt><code>k</code></dt>
<dd><p>The stack pointer register.
</p>
</dd>
<dt><code>l</code></dt>
<dd><p>In Thumb State the core registers <code>r0</code>-<code>r7</code>. In ARM state this
is an alias for the <code>r</code> constraint.
</p>
</dd>
<dt><code>t</code></dt>
<dd><p>VFP floating-point registers <code>s0</code>-<code>s31</code>. Used for 32 bit values.
</p>
</dd>
<dt><code>w</code></dt>
<dd><p>VFP floating-point registers <code>d0</code>-<code>d31</code> and the appropriate
subset <code>d0</code>-<code>d15</code> based on command line options.
Used for 64 bit values only. Not valid for Thumb1.
</p>
</dd>
<dt><code>y</code></dt>
<dd><p>The iWMMX co-processor registers.
</p>
</dd>
<dt><code>z</code></dt>
<dd><p>The iWMMX GR registers.
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>The floating-point constant 0.0
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Integer in the range -4095 to 4095
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Integer that satisfies constraint ‘<samp>I</samp>’ when inverted (ones complement)
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Integer that satisfies constraint ‘<samp>I</samp>’ when negated (twos complement)
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Integer in the range 0 to 32
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>A memory reference where the exact address is in a single register
(‘‘<samp>m</samp>’’ is preferable for <code>asm</code> statements)
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>An item in the constant pool
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>A symbol in the text segment of the current file
</p>
</dd>
<dt><code>Uv</code></dt>
<dd><p>A memory reference suitable for VFP load/store insns (reg+constant offset)
</p>
</dd>
<dt><code>Uy</code></dt>
<dd><p>A memory reference suitable for iWMMXt load/store instructions.
</p>
</dd>
<dt><code>Uq</code></dt>
<dd><p>A memory reference suitable for the ARMv4 ldrsb instruction.
</p></dd>
</dl>
</dd>
<dt><em>AVR family—<samp>config/avr/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>l</code></dt>
<dd><p>Registers from r0 to r15
</p>
</dd>
<dt><code>a</code></dt>
<dd><p>Registers from r16 to r23
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Registers from r16 to r31
</p>
</dd>
<dt><code>w</code></dt>
<dd><p>Registers from r24 to r31. These registers can be used in ‘<samp>adiw</samp>’ command
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>Pointer register (r26–r31)
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>Base pointer register (r28–r31)
</p>
</dd>
<dt><code>q</code></dt>
<dd><p>Stack pointer register (SPH:SPL)
</p>
</dd>
<dt><code>t</code></dt>
<dd><p>Temporary register r0
</p>
</dd>
<dt><code>x</code></dt>
<dd><p>Register pair X (r27:r26)
</p>
</dd>
<dt><code>y</code></dt>
<dd><p>Register pair Y (r29:r28)
</p>
</dd>
<dt><code>z</code></dt>
<dd><p>Register pair Z (r31:r30)
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Constant greater than -1, less than 64
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Constant greater than -64, less than 1
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Constant integer 2
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Constant integer 0
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Constant that fits in 8 bits
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Constant integer -1
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>Constant integer 8, 16, or 24
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>Constant integer 1
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>A floating point constant 0.0
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>A memory address based on Y or Z pointer with displacement.
</p></dd>
</dl>
</dd>
<dt><em>Blackfin family—<samp>config/bfin/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>P register
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>D register
</p>
</dd>
<dt><code>z</code></dt>
<dd><p>A call clobbered P register.
</p>
</dd>
<dt><code>q<var>n</var></code></dt>
<dd><p>A single register. If <var>n</var> is in the range 0 to 7, the corresponding D
register. If it is <code>A</code>, then the register P0.
</p>
</dd>
<dt><code>D</code></dt>
<dd><p>Even-numbered D register
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>Odd-numbered D register
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>Accumulator register.
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>Even-numbered accumulator register.
</p>
</dd>
<dt><code>B</code></dt>
<dd><p>Odd-numbered accumulator register.
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>I register
</p>
</dd>
<dt><code>v</code></dt>
<dd><p>B register
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>M register
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>Registers used for circular buffering, i.e. I, B, or L registers.
</p>
</dd>
<dt><code>C</code></dt>
<dd><p>The CC register.
</p>
</dd>
<dt><code>t</code></dt>
<dd><p>LT0 or LT1.
</p>
</dd>
<dt><code>k</code></dt>
<dd><p>LC0 or LC1.
</p>
</dd>
<dt><code>u</code></dt>
<dd><p>LB0 or LB1.
</p>
</dd>
<dt><code>x</code></dt>
<dd><p>Any D, P, B, M, I or L register.
</p>
</dd>
<dt><code>y</code></dt>
<dd><p>Additional registers typically used only in prologues and epilogues: RETS,
RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
</p>
</dd>
<dt><code>w</code></dt>
<dd><p>Any register except accumulators or CC.
</p>
</dd>
<dt><code>Ksh</code></dt>
<dd><p>Signed 16 bit integer (in the range -32768 to 32767)
</p>
</dd>
<dt><code>Kuh</code></dt>
<dd><p>Unsigned 16 bit integer (in the range 0 to 65535)
</p>
</dd>
<dt><code>Ks7</code></dt>
<dd><p>Signed 7 bit integer (in the range -64 to 63)
</p>
</dd>
<dt><code>Ku7</code></dt>
<dd><p>Unsigned 7 bit integer (in the range 0 to 127)
</p>
</dd>
<dt><code>Ku5</code></dt>
<dd><p>Unsigned 5 bit integer (in the range 0 to 31)
</p>
</dd>
<dt><code>Ks4</code></dt>
<dd><p>Signed 4 bit integer (in the range -8 to 7)
</p>
</dd>
<dt><code>Ks3</code></dt>
<dd><p>Signed 3 bit integer (in the range -3 to 4)
</p>
</dd>
<dt><code>Ku3</code></dt>
<dd><p>Unsigned 3 bit integer (in the range 0 to 7)
</p>
</dd>
<dt><code>P<var>n</var></code></dt>
<dd><p>Constant <var>n</var>, where <var>n</var> is a single-digit constant in the range 0 to 4.
</p>
</dd>
<dt><code>PA</code></dt>
<dd><p>An integer equal to one of the MACFLAG_XXX constants that is suitable for
use with either accumulator.
</p>
</dd>
<dt><code>PB</code></dt>
<dd><p>An integer equal to one of the MACFLAG_XXX constants that is suitable for
use only with accumulator A1.
</p>
</dd>
<dt><code>M1</code></dt>
<dd><p>Constant 255.
</p>
</dd>
<dt><code>M2</code></dt>
<dd><p>Constant 65535.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>An integer constant with exactly a single bit set.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>An integer constant with all bits set except exactly one.
</p>
</dd>
<dt><code>H</code></dt>
<dt><code>Q</code></dt>
<dd><p>Any SYMBOL_REF.
</p></dd>
</dl>
</dd>
<dt><em>CR16 Architecture—<samp>config/cr16/cr16.h</samp></em></dt>
<dd><dl compact="compact">
<dt><code>b</code></dt>
<dd><p>Registers from r0 to r14 (registers without stack pointer)
</p>
</dd>
<dt><code>t</code></dt>
<dd><p>Register from r0 to r11 (all 16-bit registers)
</p>
</dd>
<dt><code>p</code></dt>
<dd><p>Register from r12 to r15 (all 32-bit registers)
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Signed constant that fits in 4 bits
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Signed constant that fits in 5 bits
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Signed constant that fits in 6 bits
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Unsigned constant that fits in 4 bits
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Signed constant that fits in 32 bits
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Check for 64 bits wide constants for add/sub instructions
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating point constant that is legal for store immediate
</p></dd>
</dl>
</dd>
<dt><em>Epiphany—<samp>config/epiphany/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>U16</code></dt>
<dd><p>An unsigned 16-bit constant.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>An unsigned 5-bit constant.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>A signed 11-bit constant.
</p>
</dd>
<dt><code>Cm1</code></dt>
<dd><p>A signed 11-bit constant added to -1.
Can only match when the <samp>-m1reg-<var>reg</var></samp> option is active.
</p>
</dd>
<dt><code>Cl1</code></dt>
<dd><p>Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest
being a block of trailing zeroes.
Can only match when the <samp>-m1reg-<var>reg</var></samp> option is active.
</p>
</dd>
<dt><code>Cr1</code></dt>
<dd><p>Right-shift of -1, i.e., a bit mask with a trailing block of ones, the
rest being zeroes. Or to put it another way, one less than a power of two.
Can only match when the <samp>-m1reg-<var>reg</var></samp> option is active.
</p>
</dd>
<dt><code>Cal</code></dt>
<dd><p>Constant for arithmetic/logical operations.
This is like <code>i</code>, except that for position independent code,
no symbols / expressions needing relocations are allowed.
</p>
</dd>
<dt><code>Csy</code></dt>
<dd><p>Symbolic constant for call/jump instruction.
</p>
</dd>
<dt><code>Rcs</code></dt>
<dd><p>The register class usable in short insns. This is a register class
constraint, and can thus drive register allocation.
This constraint won’t match unless <samp>-mprefer-short-insn-regs</samp> is
in effect.
</p>
</dd>
<dt><code>Rsc</code></dt>
<dd><p>The the register class of registers that can be used to hold a
sibcall call address. I.e., a caller-saved register.
</p>
</dd>
<dt><code>Rct</code></dt>
<dd><p>Core control register class.
</p>
</dd>
<dt><code>Rgs</code></dt>
<dd><p>The register group usable in short insns.
This constraint does not use a register class, so that it only
passively matches suitable registers, and doesn’t drive register allocation.
</p>
</dd>
<dt><code>Rra</code></dt>
<dd><p>Matches the return address if it can be replaced with the link register.
</p>
</dd>
<dt><code>Rcc</code></dt>
<dd><p>Matches the integer condition code register.
</p>
</dd>
<dt><code>Sra</code></dt>
<dd><p>Matches the return address if it is in a stack slot.
</p>
</dd>
<dt><code>Cfm</code></dt>
<dd><p>Matches control register values to switch fp mode, which are encapsulated in
<code>UNSPEC_FP_MODE</code>.
</p></dd>
</dl>
</dd>
<dt><em>FRV—<samp>config/frv/frv.h</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>Register in the class <code>ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>Register in the class <code>EVEN_ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>Register in the class <code>CC_REGS</code> (<code>fcc0</code> to <code>fcc3</code> and
<code>icc0</code> to <code>icc3</code>).
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Register in the class <code>GPR_REGS</code> (<code>gr0</code> to <code>gr63</code>).
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>Register in the class <code>EVEN_REGS</code> (<code>gr0</code> to <code>gr63</code>).
Odd registers are excluded not in the class but through the use of a machine
mode larger than 4 bytes.
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>Register in the class <code>FPR_REGS</code> (<code>fr0</code> to <code>fr63</code>).
</p>
</dd>
<dt><code>h</code></dt>
<dd><p>Register in the class <code>FEVEN_REGS</code> (<code>fr0</code> to <code>fr63</code>).
Odd registers are excluded not in the class but through the use of a machine
mode larger than 4 bytes.
</p>
</dd>
<dt><code>l</code></dt>
<dd><p>Register in the class <code>LR_REG</code> (the <code>lr</code> register).
</p>
</dd>
<dt><code>q</code></dt>
<dd><p>Register in the class <code>QUAD_REGS</code> (<code>gr2</code> to <code>gr63</code>).
Register numbers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.
</p>
</dd>
<dt><code>t</code></dt>
<dd><p>Register in the class <code>ICC_REGS</code> (<code>icc0</code> to <code>icc3</code>).
</p>
</dd>
<dt><code>u</code></dt>
<dd><p>Register in the class <code>FCC_REGS</code> (<code>fcc0</code> to <code>fcc3</code>).
</p>
</dd>
<dt><code>v</code></dt>
<dd><p>Register in the class <code>ICR_REGS</code> (<code>cc4</code> to <code>cc7</code>).
</p>
</dd>
<dt><code>w</code></dt>
<dd><p>Register in the class <code>FCR_REGS</code> (<code>cc0</code> to <code>cc3</code>).
</p>
</dd>
<dt><code>x</code></dt>
<dd><p>Register in the class <code>QUAD_FPR_REGS</code> (<code>fr0</code> to <code>fr63</code>).
Register numbers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.
</p>
</dd>
<dt><code>z</code></dt>
<dd><p>Register in the class <code>SPR_REGS</code> (<code>lcr</code> and <code>lr</code>).
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>Register in the class <code>QUAD_ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
</p>
</dd>
<dt><code>B</code></dt>
<dd><p>Register in the class <code>ACCG_REGS</code> (<code>accg0</code> to <code>accg7</code>).
</p>
</dd>
<dt><code>C</code></dt>
<dd><p>Register in the class <code>CR_REGS</code> (<code>cc0</code> to <code>cc7</code>).
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating point constant zero
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>6-bit signed integer constant
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>10-bit signed integer constant
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>16-bit signed integer constant
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>16-bit unsigned integer constant
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>12-bit signed integer constant that is negative—i.e. in the
range of -2048 to -1
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>Constant zero
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.
</p>
</dd>
</dl>
</dd>
<dt><em>FT32—<samp>config/ft32/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>A</code></dt>
<dd><p>An absolute address
</p>
</dd>
<dt><code>B</code></dt>
<dd><p>An offset address
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>A register indirect memory operand
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>An offset address.
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>An offset address.
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>The constant zero or one
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>A 16-bit signed constant (-32768 … 32767)
</p>
</dd>
<dt><code>w</code></dt>
<dd><p>A bitfield mask suitable for bext or bins
</p>
</dd>
<dt><code>x</code></dt>
<dd><p>An inverted bitfield mask suitable for bext or bins
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>A 16-bit unsigned constant, multiple of 4 (0 … 65532)
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>A 20-bit signed constant (-524288 … 524287)
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>A constant for a bitfield width (1 … 16)
</p>
</dd>
<dt><code>KA</code></dt>
<dd><p>A 10-bit signed constant (-512 … 511)
</p>
</dd>
</dl>
</dd>
<dt><em>Hewlett-Packard PA-RISC—<samp>config/pa/pa.h</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>General register 1
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>Floating point register
</p>
</dd>
<dt><code>q</code></dt>
<dd><p>Shift amount register
</p>
</dd>
<dt><code>x</code></dt>
<dd><p>Floating point register (deprecated)
</p>
</dd>
<dt><code>y</code></dt>
<dd><p>Upper floating point register (32-bit), floating point register (64-bit)
</p>
</dd>
<dt><code>Z</code></dt>
<dd><p>Any register
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Signed 11-bit integer constant
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Signed 14-bit integer constant
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Integer constant that can be deposited with a <code>zdepi</code> instruction
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Signed 5-bit integer constant
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Integer constant 0
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Integer constant that can be loaded with a <code>ldil</code> instruction
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>Integer constant whose value plus one is a power of 2
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>Integer constant that can be used for <code>and</code> operations in <code>depi</code>
and <code>extru</code> instructions
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>Integer constant 31
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>Integer constant 63
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating-point constant 0.0
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>A <code>lo_sum</code> data-linkage-table memory operand
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>A memory operand that can be used as the destination operand of an
integer store instruction
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>A scaled or unscaled indexed memory operand
</p>
</dd>
<dt><code>T</code></dt>
<dd><p>A memory operand for floating-point loads and stores
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>A register indirect memory operand
</p></dd>
</dl>
</dd>
<dt><em>Intel IA-64—<samp>config/ia64/ia64.h</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>General register <code>r0</code> to <code>r3</code> for <code>addl</code> instruction
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>Branch register
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>Predicate register (‘<samp>c</samp>’ as in “conditional”)
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Application register residing in M-unit
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>Application register residing in I-unit
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>Floating-point register
</p>
</dd>
<dt><code>m</code></dt>
<dd><p>Memory operand. If used together with ‘<samp><</samp>’ or ‘<samp>></samp>’,
the operand can have postincrement and postdecrement which
require printing with ‘<samp>%Pn</samp>’ on IA-64.
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating-point constant 0.0 or 1.0
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>14-bit signed integer constant
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>22-bit signed integer constant
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>8-bit signed integer constant for logical instructions
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>8-bit adjusted signed integer constant for compare pseudo-ops
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>6-bit unsigned integer constant for shift counts
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>9-bit signed integer constant for load and store postincrements
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>The constant zero
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>0 or -1 for <code>dep</code> instruction
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Non-volatile memory for floating-point loads and stores
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>Integer constant in the range 1 to 4 for <code>shladd</code> instruction
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>Memory operand except postincrement and postdecrement. This is
now roughly the same as ‘<samp>m</samp>’ when not used together with ‘<samp><</samp>’
or ‘<samp>></samp>’.
</p></dd>
</dl>
</dd>
<dt><em>M32C—<samp>config/m32c/m32c.c</samp></em></dt>
<dd><dl compact="compact">
<dt><code>Rsp</code></dt>
<dt><code>Rfb</code></dt>
<dt><code>Rsb</code></dt>
<dd><p>‘<samp>$sp</samp>’, ‘<samp>$fb</samp>’, ‘<samp>$sb</samp>’.
</p>
</dd>
<dt><code>Rcr</code></dt>
<dd><p>Any control register, when they’re 16 bits wide (nothing if control
registers are 24 bits wide)
</p>
</dd>
<dt><code>Rcl</code></dt>
<dd><p>Any control register, when they’re 24 bits wide.
</p>
</dd>
<dt><code>R0w</code></dt>
<dt><code>R1w</code></dt>
<dt><code>R2w</code></dt>
<dt><code>R3w</code></dt>
<dd><p>$r0, $r1, $r2, $r3.
</p>
</dd>
<dt><code>R02</code></dt>
<dd><p>$r0 or $r2, or $r2r0 for 32 bit values.
</p>
</dd>
<dt><code>R13</code></dt>
<dd><p>$r1 or $r3, or $r3r1 for 32 bit values.
</p>
</dd>
<dt><code>Rdi</code></dt>
<dd><p>A register that can hold a 64 bit value.
</p>
</dd>
<dt><code>Rhl</code></dt>
<dd><p>$r0 or $r1 (registers with addressable high/low bytes)
</p>
</dd>
<dt><code>R23</code></dt>
<dd><p>$r2 or $r3
</p>
</dd>
<dt><code>Raa</code></dt>
<dd><p>Address registers
</p>
</dd>
<dt><code>Raw</code></dt>
<dd><p>Address registers when they’re 16 bits wide.
</p>
</dd>
<dt><code>Ral</code></dt>
<dd><p>Address registers when they’re 24 bits wide.
</p>
</dd>
<dt><code>Rqi</code></dt>
<dd><p>Registers that can hold QI values.
</p>
</dd>
<dt><code>Rad</code></dt>
<dd><p>Registers that can be used with displacements ($a0, $a1, $sb).
</p>
</dd>
<dt><code>Rsi</code></dt>
<dd><p>Registers that can hold 32 bit values.
</p>
</dd>
<dt><code>Rhi</code></dt>
<dd><p>Registers that can hold 16 bit values.
</p>
</dd>
<dt><code>Rhc</code></dt>
<dd><p>Registers chat can hold 16 bit values, including all control
registers.
</p>
</dd>
<dt><code>Rra</code></dt>
<dd><p>$r0 through R1, plus $a0 and $a1.
</p>
</dd>
<dt><code>Rfl</code></dt>
<dd><p>The flags register.
</p>
</dd>
<dt><code>Rmm</code></dt>
<dd><p>The memory-based pseudo-registers $mem0 through $mem15.
</p>
</dd>
<dt><code>Rpi</code></dt>
<dd><p>Registers that can hold pointers (16 bit registers for r8c, m16c; 24
bit registers for m32cm, m32c).
</p>
</dd>
<dt><code>Rpa</code></dt>
<dd><p>Matches multiple registers in a PARALLEL to form a larger register.
Used to match function return values.
</p>
</dd>
<dt><code>Is3</code></dt>
<dd><p>-8 … 7
</p>
</dd>
<dt><code>IS1</code></dt>
<dd><p>-128 … 127
</p>
</dd>
<dt><code>IS2</code></dt>
<dd><p>-32768 … 32767
</p>
</dd>
<dt><code>IU2</code></dt>
<dd><p>0 … 65535
</p>
</dd>
<dt><code>In4</code></dt>
<dd><p>-8 … -1 or 1 … 8
</p>
</dd>
<dt><code>In5</code></dt>
<dd><p>-16 … -1 or 1 … 16
</p>
</dd>
<dt><code>In6</code></dt>
<dd><p>-32 … -1 or 1 … 32
</p>
</dd>
<dt><code>IM2</code></dt>
<dd><p>-65536 … -1
</p>
</dd>
<dt><code>Ilb</code></dt>
<dd><p>An 8 bit value with exactly one bit set.
</p>
</dd>
<dt><code>Ilw</code></dt>
<dd><p>A 16 bit value with exactly one bit set.
</p>
</dd>
<dt><code>Sd</code></dt>
<dd><p>The common src/dest memory addressing modes.
</p>
</dd>
<dt><code>Sa</code></dt>
<dd><p>Memory addressed using $a0 or $a1.
</p>
</dd>
<dt><code>Si</code></dt>
<dd><p>Memory addressed with immediate addresses.
</p>
</dd>
<dt><code>Ss</code></dt>
<dd><p>Memory addressed using the stack pointer ($sp).
</p>
</dd>
<dt><code>Sf</code></dt>
<dd><p>Memory addressed using the frame base register ($fb).
</p>
</dd>
<dt><code>Ss</code></dt>
<dd><p>Memory addressed using the small base register ($sb).
</p>
</dd>
<dt><code>S1</code></dt>
<dd><p>$r1h
</p></dd>
</dl>
</dd>
<dt><em>MicroBlaze—<samp>config/microblaze/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>d</code></dt>
<dd><p>A general register (<code>r0</code> to <code>r31</code>).
</p>
</dd>
<dt><code>z</code></dt>
<dd><p>A status register (<code>rmsr</code>, <code>$fcc1</code> to <code>$fcc7</code>).
</p>
</dd>
</dl>
</dd>
<dt><em>MIPS—<samp>config/mips/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>d</code></dt>
<dd><p>A general-purpose register. This is equivalent to <code>r</code> unless
generating MIPS16 code, in which case the MIPS16 register set is used.
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>A floating-point register (if available).
</p>
</dd>
<dt><code>h</code></dt>
<dd><p>Formerly the <code>hi</code> register. This constraint is no longer supported.
</p>
</dd>
<dt><code>l</code></dt>
<dd><p>The <code>lo</code> register. Use this register to store values that are
no bigger than a word.
</p>
</dd>
<dt><code>x</code></dt>
<dd><p>The concatenated <code>hi</code> and <code>lo</code> registers. Use this register
to store doubleword values.
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>A register suitable for use in an indirect jump. This will always be
<code>$25</code> for <samp>-mabicalls</samp>.
</p>
</dd>
<dt><code>v</code></dt>
<dd><p>Register <code>$3</code>. Do not use this constraint in new code;
it is retained only for compatibility with glibc.
</p>
</dd>
<dt><code>y</code></dt>
<dd><p>Equivalent to <code>r</code>; retained for backwards compatibility.
</p>
</dd>
<dt><code>z</code></dt>
<dd><p>A floating-point condition code register.
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>A signed 16-bit constant (for arithmetic instructions).
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Integer zero.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>An unsigned 16-bit constant (for logic instructions).
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>A signed 32-bit constant in which the lower 16 bits are zero.
Such constants can be loaded using <code>lui</code>.
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>A constant that cannot be loaded using <code>lui</code>, <code>addiu</code>
or <code>ori</code>.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>A constant in the range -65535 to -1 (inclusive).
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>A signed 15-bit constant.
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>A constant in the range 1 to 65535 (inclusive).
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating-point zero.
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>An address that can be used in a non-macro load or store.
</p>
</dd>
<dt><code>ZC</code></dt>
<dd><p>A memory operand whose address is formed by a base register and offset
that is suitable for use in instructions with the same addressing mode
as <code>ll</code> and <code>sc</code>.
</p>
</dd>
<dt><code>ZD</code></dt>
<dd><p>An address suitable for a <code>prefetch</code> instruction, or for any other
instruction with the same addressing mode as <code>prefetch</code>.
</p></dd>
</dl>
</dd>
<dt><em>Motorola 680x0—<samp>config/m68k/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>Address register
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Data register
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>68881 floating-point register, if available
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Integer in the range 1 to 8
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>16-bit signed number
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Signed number whose magnitude is greater than 0x80
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Integer in the range -8 to -1
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Signed number whose magnitude is greater than 0x100
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>16 (for rotate using swap)
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>Numbers that mov3q can handle
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating point constant that is not a 68881 constant
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>Operands that satisfy ’m’ when -mpcrel is in effect
</p>
</dd>
<dt><code>T</code></dt>
<dd><p>Operands that satisfy ’s’ when -mpcrel is not in effect
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Address register indirect addressing mode
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>Register offset addressing
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>const_call_operand
</p>
</dd>
<dt><code>Cs</code></dt>
<dd><p>symbol_ref or const
</p>
</dd>
<dt><code>Ci</code></dt>
<dd><p>const_int
</p>
</dd>
<dt><code>C0</code></dt>
<dd><p>const_int 0
</p>
</dd>
<dt><code>Cj</code></dt>
<dd><p>Range of signed numbers that don’t fit in 16 bits
</p>
</dd>
<dt><code>Cmvq</code></dt>
<dd><p>Integers valid for mvq
</p>
</dd>
<dt><code>Capsw</code></dt>
<dd><p>Integers valid for a moveq followed by a swap
</p>
</dd>
<dt><code>Cmvz</code></dt>
<dd><p>Integers valid for mvz
</p>
</dd>
<dt><code>Cmvs</code></dt>
<dd><p>Integers valid for mvs
</p>
</dd>
<dt><code>Ap</code></dt>
<dd><p>push_operand
</p>
</dd>
<dt><code>Ac</code></dt>
<dd><p>Non-register operands allowed in clr
</p>
</dd>
</dl>
</dd>
<dt><em>Moxie—<samp>config/moxie/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>A</code></dt>
<dd><p>An absolute address
</p>
</dd>
<dt><code>B</code></dt>
<dd><p>An offset address
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>A register indirect memory operand
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>A constant in the range of 0 to 255.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>A constant in the range of 0 to -255.
</p>
</dd>
</dl>
</dd>
<dt><em>MSP430–<samp>config/msp430/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>R12</code></dt>
<dd><p>Register R12.
</p>
</dd>
<dt><code>R13</code></dt>
<dd><p>Register R13.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Integer constant 1.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Integer constant -1^20..1^19.
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Integer constant 1-4.
</p>
</dd>
<dt><code>Ya</code></dt>
<dd><p>Memory references which do not require an extended MOVX instruction.
</p>
</dd>
<dt><code>Yl</code></dt>
<dd><p>Memory reference, labels only.
</p>
</dd>
<dt><code>Ys</code></dt>
<dd><p>Memory reference, stack only.
</p>
</dd>
</dl>
</dd>
<dt><em>NDS32—<samp>config/nds32/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>w</code></dt>
<dd><p>LOW register class $r0 to $r7 constraint for V3/V3M ISA.
</p></dd>
<dt><code>l</code></dt>
<dd><p>LOW register class $r0 to $r7.
</p></dd>
<dt><code>d</code></dt>
<dd><p>MIDDLE register class $r0 to $r11, $r16 to $r19.
</p></dd>
<dt><code>h</code></dt>
<dd><p>HIGH register class $r12 to $r14, $r20 to $r31.
</p></dd>
<dt><code>t</code></dt>
<dd><p>Temporary assist register $ta (i.e. $r15).
</p></dd>
<dt><code>k</code></dt>
<dd><p>Stack register $sp.
</p></dd>
<dt><code>Iu03</code></dt>
<dd><p>Unsigned immediate 3-bit value.
</p></dd>
<dt><code>In03</code></dt>
<dd><p>Negative immediate 3-bit value in the range of -7–0.
</p></dd>
<dt><code>Iu04</code></dt>
<dd><p>Unsigned immediate 4-bit value.
</p></dd>
<dt><code>Is05</code></dt>
<dd><p>Signed immediate 5-bit value.
</p></dd>
<dt><code>Iu05</code></dt>
<dd><p>Unsigned immediate 5-bit value.
</p></dd>
<dt><code>In05</code></dt>
<dd><p>Negative immediate 5-bit value in the range of -31–0.
</p></dd>
<dt><code>Ip05</code></dt>
<dd><p>Unsigned immediate 5-bit value for movpi45 instruction with range 16–47.
</p></dd>
<dt><code>Iu06</code></dt>
<dd><p>Unsigned immediate 6-bit value constraint for addri36.sp instruction.
</p></dd>
<dt><code>Iu08</code></dt>
<dd><p>Unsigned immediate 8-bit value.
</p></dd>
<dt><code>Iu09</code></dt>
<dd><p>Unsigned immediate 9-bit value.
</p></dd>
<dt><code>Is10</code></dt>
<dd><p>Signed immediate 10-bit value.
</p></dd>
<dt><code>Is11</code></dt>
<dd><p>Signed immediate 11-bit value.
</p></dd>
<dt><code>Is15</code></dt>
<dd><p>Signed immediate 15-bit value.
</p></dd>
<dt><code>Iu15</code></dt>
<dd><p>Unsigned immediate 15-bit value.
</p></dd>
<dt><code>Ic15</code></dt>
<dd><p>A constant which is not in the range of imm15u but ok for bclr instruction.
</p></dd>
<dt><code>Ie15</code></dt>
<dd><p>A constant which is not in the range of imm15u but ok for bset instruction.
</p></dd>
<dt><code>It15</code></dt>
<dd><p>A constant which is not in the range of imm15u but ok for btgl instruction.
</p></dd>
<dt><code>Ii15</code></dt>
<dd><p>A constant whose compliment value is in the range of imm15u
and ok for bitci instruction.
</p></dd>
<dt><code>Is16</code></dt>
<dd><p>Signed immediate 16-bit value.
</p></dd>
<dt><code>Is17</code></dt>
<dd><p>Signed immediate 17-bit value.
</p></dd>
<dt><code>Is19</code></dt>
<dd><p>Signed immediate 19-bit value.
</p></dd>
<dt><code>Is20</code></dt>
<dd><p>Signed immediate 20-bit value.
</p></dd>
<dt><code>Ihig</code></dt>
<dd><p>The immediate value that can be simply set high 20-bit.
</p></dd>
<dt><code>Izeb</code></dt>
<dd><p>The immediate value 0xff.
</p></dd>
<dt><code>Izeh</code></dt>
<dd><p>The immediate value 0xffff.
</p></dd>
<dt><code>Ixls</code></dt>
<dd><p>The immediate value 0x01.
</p></dd>
<dt><code>Ix11</code></dt>
<dd><p>The immediate value 0x7ff.
</p></dd>
<dt><code>Ibms</code></dt>
<dd><p>The immediate value with power of 2.
</p></dd>
<dt><code>Ifex</code></dt>
<dd><p>The immediate value with power of 2 minus 1.
</p></dd>
<dt><code>U33</code></dt>
<dd><p>Memory constraint for 333 format.
</p></dd>
<dt><code>U45</code></dt>
<dd><p>Memory constraint for 45 format.
</p></dd>
<dt><code>U37</code></dt>
<dd><p>Memory constraint for 37 format.
</p></dd>
</dl>
</dd>
<dt><em>Nios II family—<samp>config/nios2/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>I</code></dt>
<dd><p>Integer that is valid as an immediate operand in an
instruction taking a signed 16-bit number. Range
-32768 to 32767.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Integer that is valid as an immediate operand in an
instruction taking an unsigned 16-bit number. Range
0 to 65535.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Integer that is valid as an immediate operand in an
instruction taking only the upper 16-bits of a
32-bit number. Range 32-bit numbers with the lower
16-bits being 0.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Integer that is valid as an immediate operand for a
shift instruction. Range 0 to 31.
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Integer that is valid as an immediate operand for
only the value 0. Can be used in conjunction with
the format modifier <code>z</code> to use <code>r0</code>
instead of <code>0</code> in the assembly output.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Integer that is valid as an immediate operand for
a custom instruction opcode. Range 0 to 255.
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>An immediate operand for R2 andchi/andci instructions.
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>Matches immediates which are addresses in the small
data section and therefore can be added to <code>gp</code>
as a 16-bit immediate to re-create their 32-bit value.
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>Matches constants suitable as an operand for the rdprs and
cache instructions.
</p>
</dd>
<dt><code>v</code></dt>
<dd><p>A memory operand suitable for Nios II R2 load/store
exclusive instructions.
</p>
</dd>
<dt><code>w</code></dt>
<dd><p>A memory operand suitable for load/store IO and cache
instructions.
</p>
</dd>
</dl>
</dd>
<dt><em>PDP-11—<samp>config/pdp11/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>Floating point registers AC0 through AC3. These can be loaded from/to
memory with a single instruction.
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Odd numbered general registers (R1, R3, R5). These are used for
16-bit multiply operations.
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>Any of the floating point registers (AC0 through AC5).
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating point constant 0.
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>An integer constant that fits in 16 bits.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>An integer constant whose low order 16 bits are zero.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>An integer constant that does not meet the constraints for codes
‘<samp>I</samp>’ or ‘<samp>J</samp>’.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>The integer constant 1.
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>The integer constant -1.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>The integer constant 0.
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>Integer constants -4 through -1 and 1 through 4; shifts by these
amounts are handled as multiple single-bit shifts rather than a single
variable-length shift.
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>A memory reference which requires an additional word (address or
offset) after the opcode.
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>A memory reference that is encoded within the opcode.
</p>
</dd>
</dl>
</dd>
<dt><em>PowerPC and IBM RS6000—<samp>config/rs6000/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>b</code></dt>
<dd><p>Address base register
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Floating point register (containing 64-bit value)
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>Floating point register (containing 32-bit value)
</p>
</dd>
<dt><code>v</code></dt>
<dd><p>Altivec vector register
</p>
</dd>
<dt><code>wa</code></dt>
<dd><p>Any VSX register if the <samp>-mvsx</samp> option was used or NO_REGS.
</p>
<p>When using any of the register constraints (<code>wa</code>, <code>wd</code>,
<code>wf</code>, <code>wg</code>, <code>wh</code>, <code>wi</code>, <code>wj</code>, <code>wk</code>,
<code>wl</code>, <code>wm</code>, <code>wo</code>, <code>wp</code>, <code>wq</code>, <code>ws</code>,
<code>wt</code>, <code>wu</code>, <code>wv</code>, <code>ww</code>, or <code>wy</code>)
that take VSX registers, you must use <code>%x<n></code> in the template so
that the correct register is used. Otherwise the register number
output in the assembly file will be incorrect if an Altivec register
is an operand of a VSX instruction that expects VSX register
numbering.
</p>
<div class="smallexample">
<pre class="smallexample">asm ("xvadddp %x0,%x1,%x2"
: "=wa" (v1)
: "wa" (v2), "wa" (v3));
</pre></div>
<p>is correct, but:
</p>
<div class="smallexample">
<pre class="smallexample">asm ("xvadddp %0,%1,%2"
: "=wa" (v1)
: "wa" (v2), "wa" (v3));
</pre></div>
<p>is not correct.
</p>
<p>If an instruction only takes Altivec registers, you do not want to use
<code>%x<n></code>.
</p>
<div class="smallexample">
<pre class="smallexample">asm ("xsaddqp %0,%1,%2"
: "=v" (v1)
: "v" (v2), "v" (v3));
</pre></div>
<p>is correct because the <code>xsaddqp</code> instruction only takes Altivec
registers, while:
</p>
<div class="smallexample">
<pre class="smallexample">asm ("xsaddqp %x0,%x1,%x2"
: "=v" (v1)
: "v" (v2), "v" (v3));
</pre></div>
<p>is incorrect.
</p>
</dd>
<dt><code>wb</code></dt>
<dd><p>Altivec register if <samp>-mcpu=power9</samp> is used or NO_REGS.
</p>
</dd>
<dt><code>wd</code></dt>
<dd><p>VSX vector register to hold vector double data or NO_REGS.
</p>
</dd>
<dt><code>we</code></dt>
<dd><p>VSX register if the <samp>-mcpu=power9</samp> and <samp>-m64</samp> options
were used or NO_REGS.
</p>
</dd>
<dt><code>wf</code></dt>
<dd><p>VSX vector register to hold vector float data or NO_REGS.
</p>
</dd>
<dt><code>wg</code></dt>
<dd><p>If <samp>-mmfpgpr</samp> was used, a floating point register or NO_REGS.
</p>
</dd>
<dt><code>wh</code></dt>
<dd><p>Floating point register if direct moves are available, or NO_REGS.
</p>
</dd>
<dt><code>wi</code></dt>
<dd><p>FP or VSX register to hold 64-bit integers for VSX insns or NO_REGS.
</p>
</dd>
<dt><code>wj</code></dt>
<dd><p>FP or VSX register to hold 64-bit integers for direct moves or NO_REGS.
</p>
</dd>
<dt><code>wk</code></dt>
<dd><p>FP or VSX register to hold 64-bit doubles for direct moves or NO_REGS.
</p>
</dd>
<dt><code>wl</code></dt>
<dd><p>Floating point register if the LFIWAX instruction is enabled or NO_REGS.
</p>
</dd>
<dt><code>wm</code></dt>
<dd><p>VSX register if direct move instructions are enabled, or NO_REGS.
</p>
</dd>
<dt><code>wn</code></dt>
<dd><p>No register (NO_REGS).
</p>
</dd>
<dt><code>wo</code></dt>
<dd><p>VSX register to use for ISA 3.0 vector instructions, or NO_REGS.
</p>
</dd>
<dt><code>wp</code></dt>
<dd><p>VSX register to use for IEEE 128-bit floating point TFmode, or NO_REGS.
</p>
</dd>
<dt><code>wq</code></dt>
<dd><p>VSX register to use for IEEE 128-bit floating point, or NO_REGS.
</p>
</dd>
<dt><code>wr</code></dt>
<dd><p>General purpose register if 64-bit instructions are enabled or NO_REGS.
</p>
</dd>
<dt><code>ws</code></dt>
<dd><p>VSX vector register to hold scalar double values or NO_REGS.
</p>
</dd>
<dt><code>wt</code></dt>
<dd><p>VSX vector register to hold 128 bit integer or NO_REGS.
</p>
</dd>
<dt><code>wu</code></dt>
<dd><p>Altivec register to use for float/32-bit int loads/stores or NO_REGS.
</p>
</dd>
<dt><code>wv</code></dt>
<dd><p>Altivec register to use for double loads/stores or NO_REGS.
</p>
</dd>
<dt><code>ww</code></dt>
<dd><p>FP or VSX register to perform float operations under <samp>-mvsx</samp> or NO_REGS.
</p>
</dd>
<dt><code>wx</code></dt>
<dd><p>Floating point register if the STFIWX instruction is enabled or NO_REGS.
</p>
</dd>
<dt><code>wy</code></dt>
<dd><p>FP or VSX register to perform ISA 2.07 float ops or NO_REGS.
</p>
</dd>
<dt><code>wz</code></dt>
<dd><p>Floating point register if the LFIWZX instruction is enabled or NO_REGS.
</p>
</dd>
<dt><code>wA</code></dt>
<dd><p>Address base register if 64-bit instructions are enabled or NO_REGS.
</p>
</dd>
<dt><code>wB</code></dt>
<dd><p>Signed 5-bit constant integer that can be loaded into an altivec register.
</p>
</dd>
<dt><code>wD</code></dt>
<dd><p>Int constant that is the element number of the 64-bit scalar in a vector.
</p>
</dd>
<dt><code>wE</code></dt>
<dd><p>Vector constant that can be loaded with the XXSPLTIB instruction.
</p>
</dd>
<dt><code>wF</code></dt>
<dd><p>Memory operand suitable for power9 fusion load/stores.
</p>
</dd>
<dt><code>wG</code></dt>
<dd><p>Memory operand suitable for TOC fusion memory references.
</p>
</dd>
<dt><code>wH</code></dt>
<dd><p>Altivec register if <samp>-mvsx-small-integer</samp>.
</p>
</dd>
<dt><code>wI</code></dt>
<dd><p>Floating point register if <samp>-mvsx-small-integer</samp>.
</p>
</dd>
<dt><code>wJ</code></dt>
<dd><p>FP register if <samp>-mvsx-small-integer</samp> and <samp>-mpower9-vector</samp>.
</p>
</dd>
<dt><code>wK</code></dt>
<dd><p>Altivec register if <samp>-mvsx-small-integer</samp> and <samp>-mpower9-vector</samp>.
</p>
</dd>
<dt><code>wL</code></dt>
<dd><p>Int constant that is the element number that the MFVSRLD instruction.
targets.
</p>
</dd>
<dt><code>wM</code></dt>
<dd><p>Match vector constant with all 1’s if the XXLORC instruction is available.
</p>
</dd>
<dt><code>wO</code></dt>
<dd><p>A memory operand suitable for the ISA 3.0 vector d-form instructions.
</p>
</dd>
<dt><code>wQ</code></dt>
<dd><p>A memory address that will work with the <code>lq</code> and <code>stq</code>
instructions.
</p>
</dd>
<dt><code>wS</code></dt>
<dd><p>Vector constant that can be loaded with XXSPLTIB & sign extension.
</p>
</dd>
<dt><code>h</code></dt>
<dd><p>‘<samp>MQ</samp>’, ‘<samp>CTR</samp>’, or ‘<samp>LINK</samp>’ register
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>‘<samp>CTR</samp>’ register
</p>
</dd>
<dt><code>l</code></dt>
<dd><p>‘<samp>LINK</samp>’ register
</p>
</dd>
<dt><code>x</code></dt>
<dd><p>‘<samp>CR</samp>’ register (condition register) number 0
</p>
</dd>
<dt><code>y</code></dt>
<dd><p>‘<samp>CR</samp>’ register (condition register)
</p>
</dd>
<dt><code>z</code></dt>
<dd><p>‘<samp>XER[CA]</samp>’ carry bit (part of the XER register)
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Signed 16-bit constant
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Unsigned 16-bit constant shifted left 16 bits (use ‘<samp>L</samp>’ instead for
<code>SImode</code> constants)
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Unsigned 16-bit constant
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Signed 16-bit constant shifted left 16 bits
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Constant larger than 31
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Exact power of 2
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>Zero
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>Constant whose negation is a signed 16-bit constant
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating point constant that can be loaded into a register with one
instruction per word
</p>
</dd>
<dt><code>H</code></dt>
<dd><p>Integer/Floating point constant that can be loaded into a register using
three instructions
</p>
</dd>
<dt><code>m</code></dt>
<dd><p>Memory operand.
Normally, <code>m</code> does not allow addresses that update the base register.
If ‘<samp><</samp>’ or ‘<samp>></samp>’ constraint is also used, they are allowed and
therefore on PowerPC targets in that case it is only safe
to use ‘<samp>m<></samp>’ in an <code>asm</code> statement if that <code>asm</code> statement
accesses the operand exactly once. The <code>asm</code> statement must also
use ‘<samp>%U<var><opno></var></samp>’ as a placeholder for the “update” flag in the
corresponding load or store instruction. For example:
</p>
<div class="smallexample">
<pre class="smallexample">asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));
</pre></div>
<p>is correct but:
</p>
<div class="smallexample">
<pre class="smallexample">asm ("st %1,%0" : "=m<>" (mem) : "r" (val));
</pre></div>
<p>is not.
</p>
</dd>
<dt><code>es</code></dt>
<dd><p>A “stable” memory operand; that is, one which does not include any
automodification of the base register. This used to be useful when
‘<samp>m</samp>’ allowed automodification of the base register, but as those are now only
allowed when ‘<samp><</samp>’ or ‘<samp>></samp>’ is used, ‘<samp>es</samp>’ is basically the same
as ‘<samp>m</samp>’ without ‘<samp><</samp>’ and ‘<samp>></samp>’.
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Memory operand that is an offset from a register (it is usually better
to use ‘<samp>m</samp>’ or ‘<samp>es</samp>’ in <code>asm</code> statements)
</p>
</dd>
<dt><code>Z</code></dt>
<dd><p>Memory operand that is an indexed or indirect from a register (it is
usually better to use ‘<samp>m</samp>’ or ‘<samp>es</samp>’ in <code>asm</code> statements)
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>AIX TOC entry
</p>
</dd>
<dt><code>a</code></dt>
<dd><p>Address operand that is an indexed or indirect from a register (‘<samp>p</samp>’ is
preferable for <code>asm</code> statements)
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>System V Release 4 small data area reference
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>Vector constant that does not require memory
</p>
</dd>
<dt><code>j</code></dt>
<dd><p>Vector constant that is all zeros.
</p>
</dd>
</dl>
</dd>
<dt><em>RL78—<samp>config/rl78/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>Int3</code></dt>
<dd><p>An integer constant in the range 1 … 7.
</p></dd>
<dt><code>Int8</code></dt>
<dd><p>An integer constant in the range 0 … 255.
</p></dd>
<dt><code>J</code></dt>
<dd><p>An integer constant in the range -255 … 0
</p></dd>
<dt><code>K</code></dt>
<dd><p>The integer constant 1.
</p></dd>
<dt><code>L</code></dt>
<dd><p>The integer constant -1.
</p></dd>
<dt><code>M</code></dt>
<dd><p>The integer constant 0.
</p></dd>
<dt><code>N</code></dt>
<dd><p>The integer constant 2.
</p></dd>
<dt><code>O</code></dt>
<dd><p>The integer constant -2.
</p></dd>
<dt><code>P</code></dt>
<dd><p>An integer constant in the range 1 … 15.
</p></dd>
<dt><code>Qbi</code></dt>
<dd><p>The built-in compare types–eq, ne, gtu, ltu, geu, and leu.
</p></dd>
<dt><code>Qsc</code></dt>
<dd><p>The synthetic compare types–gt, lt, ge, and le.
</p></dd>
<dt><code>Wab</code></dt>
<dd><p>A memory reference with an absolute address.
</p></dd>
<dt><code>Wbc</code></dt>
<dd><p>A memory reference using <code>BC</code> as a base register, with an optional offset.
</p></dd>
<dt><code>Wca</code></dt>
<dd><p>A memory reference using <code>AX</code>, <code>BC</code>, <code>DE</code>, or <code>HL</code> for the address, for calls.
</p></dd>
<dt><code>Wcv</code></dt>
<dd><p>A memory reference using any 16-bit register pair for the address, for calls.
</p></dd>
<dt><code>Wd2</code></dt>
<dd><p>A memory reference using <code>DE</code> as a base register, with an optional offset.
</p></dd>
<dt><code>Wde</code></dt>
<dd><p>A memory reference using <code>DE</code> as a base register, without any offset.
</p></dd>
<dt><code>Wfr</code></dt>
<dd><p>Any memory reference to an address in the far address space.
</p></dd>
<dt><code>Wh1</code></dt>
<dd><p>A memory reference using <code>HL</code> as a base register, with an optional one-byte offset.
</p></dd>
<dt><code>Whb</code></dt>
<dd><p>A memory reference using <code>HL</code> as a base register, with <code>B</code> or <code>C</code> as the index register.
</p></dd>
<dt><code>Whl</code></dt>
<dd><p>A memory reference using <code>HL</code> as a base register, without any offset.
</p></dd>
<dt><code>Ws1</code></dt>
<dd><p>A memory reference using <code>SP</code> as a base register, with an optional one-byte offset.
</p></dd>
<dt><code>Y</code></dt>
<dd><p>Any memory reference to an address in the near address space.
</p></dd>
<dt><code>A</code></dt>
<dd><p>The <code>AX</code> register.
</p></dd>
<dt><code>B</code></dt>
<dd><p>The <code>BC</code> register.
</p></dd>
<dt><code>D</code></dt>
<dd><p>The <code>DE</code> register.
</p></dd>
<dt><code>R</code></dt>
<dd><p><code>A</code> through <code>L</code> registers.
</p></dd>
<dt><code>S</code></dt>
<dd><p>The <code>SP</code> register.
</p></dd>
<dt><code>T</code></dt>
<dd><p>The <code>HL</code> register.
</p></dd>
<dt><code>Z08W</code></dt>
<dd><p>The 16-bit <code>R8</code> register.
</p></dd>
<dt><code>Z10W</code></dt>
<dd><p>The 16-bit <code>R10</code> register.
</p></dd>
<dt><code>Zint</code></dt>
<dd><p>The registers reserved for interrupts (<code>R24</code> to <code>R31</code>).
</p></dd>
<dt><code>a</code></dt>
<dd><p>The <code>A</code> register.
</p></dd>
<dt><code>b</code></dt>
<dd><p>The <code>B</code> register.
</p></dd>
<dt><code>c</code></dt>
<dd><p>The <code>C</code> register.
</p></dd>
<dt><code>d</code></dt>
<dd><p>The <code>D</code> register.
</p></dd>
<dt><code>e</code></dt>
<dd><p>The <code>E</code> register.
</p></dd>
<dt><code>h</code></dt>
<dd><p>The <code>H</code> register.
</p></dd>
<dt><code>l</code></dt>
<dd><p>The <code>L</code> register.
</p></dd>
<dt><code>v</code></dt>
<dd><p>The virtual registers.
</p></dd>
<dt><code>w</code></dt>
<dd><p>The <code>PSW</code> register.
</p></dd>
<dt><code>x</code></dt>
<dd><p>The <code>X</code> register.
</p>
</dd>
</dl>
</dd>
<dt><em>RISC-V—<samp>config/riscv/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>f</code></dt>
<dd><p>A floating-point register (if availiable).
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>An I-type 12-bit signed immediate.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Integer zero.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>A 5-bit unsigned immediate for CSR access instructions.
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>An address that is held in a general-purpose register.
</p>
</dd>
</dl>
</dd>
<dt><em>RX—<samp>config/rx/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>Q</code></dt>
<dd><p>An address which does not involve register indirect addressing or
pre/post increment/decrement addressing.
</p>
</dd>
<dt><code>Symbol</code></dt>
<dd><p>A symbol reference.
</p>
</dd>
<dt><code>Int08</code></dt>
<dd><p>A constant in the range -256 to 255, inclusive.
</p>
</dd>
<dt><code>Sint08</code></dt>
<dd><p>A constant in the range -128 to 127, inclusive.
</p>
</dd>
<dt><code>Sint16</code></dt>
<dd><p>A constant in the range -32768 to 32767, inclusive.
</p>
</dd>
<dt><code>Sint24</code></dt>
<dd><p>A constant in the range -8388608 to 8388607, inclusive.
</p>
</dd>
<dt><code>Uint04</code></dt>
<dd><p>A constant in the range 0 to 15, inclusive.
</p>
</dd>
</dl>
</dd>
<dt><em>S/390 and zSeries—<samp>config/s390/s390.h</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>Address register (general purpose register except r0)
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>Condition code register
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Data register (arbitrary general purpose register)
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>Floating-point register
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Unsigned 8-bit constant (0–255)
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Unsigned 12-bit constant (0–4095)
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Signed 16-bit constant (-32768–32767)
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Value appropriate as displacement.
</p><dl compact="compact">
<dt><code>(0..4095)</code></dt>
<dd><p>for short displacement
</p></dd>
<dt><code>(-524288..524287)</code></dt>
<dd><p>for long displacement
</p></dd>
</dl>
</dd>
<dt><code>M</code></dt>
<dd><p>Constant integer with a value of 0x7fffffff.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Multiple letter constraint followed by 4 parameter letters.
</p><dl compact="compact">
<dt><code>0..9:</code></dt>
<dd><p>number of the part counting from most to least significant
</p></dd>
<dt><code>H,Q:</code></dt>
<dd><p>mode of the part
</p></dd>
<dt><code>D,S,H:</code></dt>
<dd><p>mode of the containing operand
</p></dd>
<dt><code>0,F:</code></dt>
<dd><p>value of the other parts (F—all bits set)
</p></dd>
</dl>
<p>The constraint matches if the specified part of a constant
has a value different from its other parts.
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Memory reference without index register and with short displacement.
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>Memory reference with index register and short displacement.
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>Memory reference without index register but with long displacement.
</p>
</dd>
<dt><code>T</code></dt>
<dd><p>Memory reference with index register and long displacement.
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>Pointer with short displacement.
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>Pointer with long displacement.
</p>
</dd>
<dt><code>Y</code></dt>
<dd><p>Shift count operand.
</p>
</dd>
</dl>
</dd>
<dt><em>SPARC—<samp>config/sparc/sparc.h</samp></em></dt>
<dd><dl compact="compact">
<dt><code>f</code></dt>
<dd><p>Floating-point register on the SPARC-V8 architecture and
lower floating-point register on the SPARC-V9 architecture.
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>Floating-point register. It is equivalent to ‘<samp>f</samp>’ on the
SPARC-V8 architecture and contains both lower and upper
floating-point registers on the SPARC-V9 architecture.
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>Floating-point condition code register.
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>Floating-point register. It is only valid on the SPARC-V9 architecture
when the Visual Instruction Set is available.
</p>
</dd>
<dt><code>h</code></dt>
<dd><p>64-bit global or out register for the SPARC-V8+ architecture.
</p>
</dd>
<dt><code>C</code></dt>
<dd><p>The constant all-ones, for floating-point.
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>Signed 5-bit constant
</p>
</dd>
<dt><code>D</code></dt>
<dd><p>A vector constant
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Signed 13-bit constant
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Zero
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>32-bit constant with the low 12 bits clear (a constant that can be
loaded with the <code>sethi</code> instruction)
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>A constant in the range supported by <code>movcc</code> instructions (11-bit
signed immediate)
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>A constant in the range supported by <code>movrcc</code> instructions (10-bit
signed immediate)
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Same as ‘<samp>K</samp>’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘<samp>K</samp>’ for
modes wider than <code>SImode</code>
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>The constant 4096
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating-point zero
</p>
</dd>
<dt><code>H</code></dt>
<dd><p>Signed 13-bit constant, sign-extended to 32 or 64 bits
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>The constant -1
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Floating-point constant whose integral representation can
be moved into an integer register using a single sethi
instruction
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>Floating-point constant whose integral representation can
be moved into an integer register using a single mov
instruction
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>Floating-point constant whose integral representation can
be moved into an integer register using a high/lo_sum
instruction sequence
</p>
</dd>
<dt><code>T</code></dt>
<dd><p>Memory address aligned to an 8-byte boundary
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>Even register
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>Memory address for ‘<samp>e</samp>’ constraint registers
</p>
</dd>
<dt><code>w</code></dt>
<dd><p>Memory address with only a base register
</p>
</dd>
<dt><code>Y</code></dt>
<dd><p>Vector zero
</p>
</dd>
</dl>
</dd>
<dt><em>SPU—<samp>config/spu/spu.h</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value.
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>An immediate for and/xor/or instructions. const_int is treated as a 64 bit value.
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>An immediate for the <code>iohl</code> instruction. const_int is treated as a 64 bit value.
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>An immediate which can be loaded with <code>fsmbi</code>.
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value.
</p>
</dd>
<dt><code>B</code></dt>
<dd><p>An immediate for most arithmetic instructions. const_int is treated as a 32 bit value.
</p>
</dd>
<dt><code>C</code></dt>
<dd><p>An immediate for and/xor/or instructions. const_int is treated as a 32 bit value.
</p>
</dd>
<dt><code>D</code></dt>
<dd><p>An immediate for the <code>iohl</code> instruction. const_int is treated as a 32 bit value.
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>A constant in the range [-64, 63] for shift/rotate instructions.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>An unsigned 7-bit constant for conversion/nop/channel instructions.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>A signed 10-bit constant for most arithmetic instructions.
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>A signed 16 bit immediate for <code>stop</code>.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>An unsigned 16-bit constant for <code>iohl</code> and <code>fsmbi</code>.
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>An unsigned 7-bit constant whose 3 least significant bits are 0.
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>An unsigned 3-bit constant for 16-byte rotates and shifts
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>Call operand, reg, for indirect calls
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>Call operand, symbol, for relative calls.
</p>
</dd>
<dt><code>T</code></dt>
<dd><p>Call operand, const_int, for absolute calls.
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit.
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>An immediate for shift and rotate instructions. const_int is treated as a 32 bit value.
</p>
</dd>
<dt><code>Y</code></dt>
<dd><p>An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit.
</p>
</dd>
<dt><code>Z</code></dt>
<dd><p>An immediate for the <code>iohl</code> instruction. const_int is sign extended to 128 bit.
</p>
</dd>
</dl>
</dd>
<dt><em>TI C6X family—<samp>config/c6x/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>Register file A (A0–A31).
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>Register file B (B0–B31).
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>Predicate registers in register file A (A0–A2 on C64X and
higher, A1 and A2 otherwise).
</p>
</dd>
<dt><code>B</code></dt>
<dd><p>Predicate registers in register file B (B0–B2).
</p>
</dd>
<dt><code>C</code></dt>
<dd><p>A call-used register in register file B (B0–B9, B16–B31).
</p>
</dd>
<dt><code>Da</code></dt>
<dd><p>Register file A, excluding predicate registers (A3–A31,
plus A0 if not C64X or higher).
</p>
</dd>
<dt><code>Db</code></dt>
<dd><p>Register file B, excluding predicate registers (B3–B31).
</p>
</dd>
<dt><code>Iu4</code></dt>
<dd><p>Integer constant in the range 0 … 15.
</p>
</dd>
<dt><code>Iu5</code></dt>
<dd><p>Integer constant in the range 0 … 31.
</p>
</dd>
<dt><code>In5</code></dt>
<dd><p>Integer constant in the range -31 … 0.
</p>
</dd>
<dt><code>Is5</code></dt>
<dd><p>Integer constant in the range -16 … 15.
</p>
</dd>
<dt><code>I5x</code></dt>
<dd><p>Integer constant that can be the operand of an ADDA or a SUBA insn.
</p>
</dd>
<dt><code>IuB</code></dt>
<dd><p>Integer constant in the range 0 … 65535.
</p>
</dd>
<dt><code>IsB</code></dt>
<dd><p>Integer constant in the range -32768 … 32767.
</p>
</dd>
<dt><code>IsC</code></dt>
<dd><p>Integer constant in the range <em>-2^{20}</em> … <em>2^{20} - 1</em>.
</p>
</dd>
<dt><code>Jc</code></dt>
<dd><p>Integer constant that is a valid mask for the clr instruction.
</p>
</dd>
<dt><code>Js</code></dt>
<dd><p>Integer constant that is a valid mask for the set instruction.
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Memory location with A base register.
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>Memory location with B base register.
</p>
</dd>
<dt><code>Z</code></dt>
<dd><p>Register B14 (aka DP).
</p>
</dd>
</dl>
</dd>
<dt><em>TILE-Gx—<samp>config/tilegx/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>R00</code></dt>
<dt><code>R01</code></dt>
<dt><code>R02</code></dt>
<dt><code>R03</code></dt>
<dt><code>R04</code></dt>
<dt><code>R05</code></dt>
<dt><code>R06</code></dt>
<dt><code>R07</code></dt>
<dt><code>R08</code></dt>
<dt><code>R09</code></dt>
<dt><code>R10</code></dt>
<dd><p>Each of these represents a register constraint for an individual
register, from r0 to r10.
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Signed 8-bit integer constant.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Signed 16-bit integer constant.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Unsigned 16-bit integer constant.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Integer constant that fits in one signed byte when incremented by one
(-129 … 126).
</p>
</dd>
<dt><code>m</code></dt>
<dd><p>Memory operand. If used together with ‘<samp><</samp>’ or ‘<samp>></samp>’, the
operand can have postincrement which requires printing with ‘<samp>%In</samp>’
and ‘<samp>%in</samp>’ on TILE-Gx. For example:
</p>
<div class="smallexample">
<pre class="smallexample">asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val));
</pre></div>
</dd>
<dt><code>M</code></dt>
<dd><p>A bit mask suitable for the BFINS instruction.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Integer constant that is a byte tiled out eight times.
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>The integer zero constant.
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>Integer constant that is a sign-extended byte tiled out as four shorts.
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Integer constant that fits in one signed byte when incremented
(-129 … 126), but excluding -1.
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>Integer constant that has all 1 bits consecutive and starting at bit 0.
</p>
</dd>
<dt><code>T</code></dt>
<dd><p>A 16-bit fragment of a got, tls, or pc-relative reference.
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>Memory operand except postincrement. This is roughly the same as
‘<samp>m</samp>’ when not used together with ‘<samp><</samp>’ or ‘<samp>></samp>’.
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>An 8-element vector constant with identical elements.
</p>
</dd>
<dt><code>Y</code></dt>
<dd><p>A 4-element vector constant with identical elements.
</p>
</dd>
<dt><code>Z0</code></dt>
<dd><p>The integer constant 0xffffffff.
</p>
</dd>
<dt><code>Z1</code></dt>
<dd><p>The integer constant 0xffffffff00000000.
</p>
</dd>
</dl>
</dd>
<dt><em>TILEPro—<samp>config/tilepro/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>R00</code></dt>
<dt><code>R01</code></dt>
<dt><code>R02</code></dt>
<dt><code>R03</code></dt>
<dt><code>R04</code></dt>
<dt><code>R05</code></dt>
<dt><code>R06</code></dt>
<dt><code>R07</code></dt>
<dt><code>R08</code></dt>
<dt><code>R09</code></dt>
<dt><code>R10</code></dt>
<dd><p>Each of these represents a register constraint for an individual
register, from r0 to r10.
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Signed 8-bit integer constant.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Signed 16-bit integer constant.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Nonzero integer constant with low 16 bits zero.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Integer constant that fits in one signed byte when incremented by one
(-129 … 126).
</p>
</dd>
<dt><code>m</code></dt>
<dd><p>Memory operand. If used together with ‘<samp><</samp>’ or ‘<samp>></samp>’, the
operand can have postincrement which requires printing with ‘<samp>%In</samp>’
and ‘<samp>%in</samp>’ on TILEPro. For example:
</p>
<div class="smallexample">
<pre class="smallexample">asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val));
</pre></div>
</dd>
<dt><code>M</code></dt>
<dd><p>A bit mask suitable for the MM instruction.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Integer constant that is a byte tiled out four times.
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>The integer zero constant.
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>Integer constant that is a sign-extended byte tiled out as two shorts.
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Integer constant that fits in one signed byte when incremented
(-129 … 126), but excluding -1.
</p>
</dd>
<dt><code>T</code></dt>
<dd><p>A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative
reference.
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>Memory operand except postincrement. This is roughly the same as
‘<samp>m</samp>’ when not used together with ‘<samp><</samp>’ or ‘<samp>></samp>’.
</p>
</dd>
<dt><code>W</code></dt>
<dd><p>A 4-element vector constant with identical elements.
</p>
</dd>
<dt><code>Y</code></dt>
<dd><p>A 2-element vector constant with identical elements.
</p>
</dd>
</dl>
</dd>
<dt><em>Visium—<samp>config/visium/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>b</code></dt>
<dd><p>EAM register <code>mdb</code>
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>EAM register <code>mdc</code>
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>Floating point register
</p>
</dd>
<dt><code>l</code></dt>
<dd><p>General register, but not <code>r29</code>, <code>r30</code> and <code>r31</code>
</p>
</dd>
<dt><code>t</code></dt>
<dd><p>Register <code>r1</code>
</p>
</dd>
<dt><code>u</code></dt>
<dd><p>Register <code>r2</code>
</p>
</dd>
<dt><code>v</code></dt>
<dd><p>Register <code>r3</code>
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Floating-point constant 0.0
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Integer constant in the range 0 .. 65535 (16-bit immediate)
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Integer constant in the range 1 .. 31 (5-bit immediate)
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Integer constant in the range -65535 .. -1 (16-bit negative immediate)
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>Integer constant -1
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>Integer constant 0
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>Integer constant 32
</p></dd>
</dl>
</dd>
<dt><em>x86 family—<samp>config/i386/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>R</code></dt>
<dd><p>Legacy register—the eight integer registers available on all
i386 processors (<code>a</code>, <code>b</code>, <code>c</code>, <code>d</code>,
<code>si</code>, <code>di</code>, <code>bp</code>, <code>sp</code>).
</p>
</dd>
<dt><code>q</code></dt>
<dd><p>Any register accessible as <code><var>r</var>l</code>. In 32-bit mode, <code>a</code>,
<code>b</code>, <code>c</code>, and <code>d</code>; in 64-bit mode, any integer register.
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>Any register accessible as <code><var>r</var>h</code>: <code>a</code>, <code>b</code>,
<code>c</code>, and <code>d</code>.
</p>
</dd>
<dt><code>a</code></dt>
<dd><p>The <code>a</code> register.
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>The <code>b</code> register.
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>The <code>c</code> register.
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>The <code>d</code> register.
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>The <code>si</code> register.
</p>
</dd>
<dt><code>D</code></dt>
<dd><p>The <code>di</code> register.
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>The <code>a</code> and <code>d</code> registers. This class is used for instructions
that return double word results in the <code>ax:dx</code> register pair. Single
word values will be allocated either in <code>ax</code> or <code>dx</code>.
For example on i386 the following implements <code>rdtsc</code>:
</p>
<div class="smallexample">
<pre class="smallexample">unsigned long long rdtsc (void)
{
unsigned long long tick;
__asm__ __volatile__("rdtsc":"=A"(tick));
return tick;
}
</pre></div>
<p>This is not correct on x86-64 as it would allocate tick in either <code>ax</code>
or <code>dx</code>. You have to use the following variant instead:
</p>
<div class="smallexample">
<pre class="smallexample">unsigned long long rdtsc (void)
{
unsigned int tickl, tickh;
__asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
return ((unsigned long long)tickh << 32)|tickl;
}
</pre></div>
</dd>
<dt><code>U</code></dt>
<dd><p>The call-clobbered integer registers.
</p>
</dd>
<dt><code>f</code></dt>
<dd><p>Any 80387 floating-point (stack) register.
</p>
</dd>
<dt><code>t</code></dt>
<dd><p>Top of 80387 floating-point stack (<code>%st(0)</code>).
</p>
</dd>
<dt><code>u</code></dt>
<dd><p>Second from top of 80387 floating-point stack (<code>%st(1)</code>).
</p>
</dd>
<dt><code>y</code></dt>
<dd><p>Any MMX register.
</p>
</dd>
<dt><code>x</code></dt>
<dd><p>Any SSE register.
</p>
</dd>
<dt><code>v</code></dt>
<dd><p>Any EVEX encodable SSE register (<code>%xmm0-%xmm31</code>).
</p>
</dd>
<dt><code>Yz</code></dt>
<dd><p>First SSE register (<code>%xmm0</code>).
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Integer constant in the range 0 … 31, for 32-bit shifts.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Integer constant in the range 0 … 63, for 64-bit shifts.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Signed 8-bit integer constant.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p><code>0xFF</code> or <code>0xFFFF</code>, for andsi as a zero-extending move.
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>0, 1, 2, or 3 (shifts for the <code>lea</code> instruction).
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>Unsigned 8-bit integer constant (for <code>in</code> and <code>out</code>
instructions).
</p>
</dd>
<dt><code>G</code></dt>
<dd><p>Standard 80387 floating point constant.
</p>
</dd>
<dt><code>C</code></dt>
<dd><p>SSE constant zero operand.
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>32-bit signed integer constant, or a symbolic reference known
to fit that range (for immediate operands in sign-extending x86-64
instructions).
</p>
</dd>
<dt><code>We</code></dt>
<dd><p>32-bit signed integer constant, or a symbolic reference known
to fit that range (for sign-extending conversion operations that
require non-<code>VOIDmode</code> immediate operands).
</p>
</dd>
<dt><code>Wz</code></dt>
<dd><p>32-bit unsigned integer constant, or a symbolic reference known
to fit that range (for zero-extending conversion operations that
require non-<code>VOIDmode</code> immediate operands).
</p>
</dd>
<dt><code>Wd</code></dt>
<dd><p>128-bit integer constant where both the high and low 64-bit word
satisfy the <code>e</code> constraint.
</p>
</dd>
<dt><code>Z</code></dt>
<dd><p>32-bit unsigned integer constant, or a symbolic reference known
to fit that range (for immediate operands in zero-extending x86-64
instructions).
</p>
</dd>
<dt><code>Tv</code></dt>
<dd><p>VSIB address operand.
</p>
</dd>
<dt><code>Ts</code></dt>
<dd><p>Address operand without segment register.
</p>
</dd>
<dt><code>Ti</code></dt>
<dd><p>MPX address operand without index.
</p>
</dd>
<dt><code>Tb</code></dt>
<dd><p>MPX address operand without base.
</p>
</dd>
</dl>
</dd>
<dt><em>Xstormy16—<samp>config/stormy16/stormy16.h</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>Register r0.
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>Register r1.
</p>
</dd>
<dt><code>c</code></dt>
<dd><p>Register r2.
</p>
</dd>
<dt><code>d</code></dt>
<dd><p>Register r8.
</p>
</dd>
<dt><code>e</code></dt>
<dd><p>Registers r0 through r7.
</p>
</dd>
<dt><code>t</code></dt>
<dd><p>Registers r0 and r1.
</p>
</dd>
<dt><code>y</code></dt>
<dd><p>The carry register.
</p>
</dd>
<dt><code>z</code></dt>
<dd><p>Registers r8 and r9.
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>A constant between 0 and 3 inclusive.
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>A constant that has exactly one bit set.
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>A constant that has exactly one bit clear.
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>A constant between 0 and 255 inclusive.
</p>
</dd>
<dt><code>M</code></dt>
<dd><p>A constant between -255 and 0 inclusive.
</p>
</dd>
<dt><code>N</code></dt>
<dd><p>A constant between -3 and 0 inclusive.
</p>
</dd>
<dt><code>O</code></dt>
<dd><p>A constant between 1 and 4 inclusive.
</p>
</dd>
<dt><code>P</code></dt>
<dd><p>A constant between -4 and -1 inclusive.
</p>
</dd>
<dt><code>Q</code></dt>
<dd><p>A memory reference that is a stack push.
</p>
</dd>
<dt><code>R</code></dt>
<dd><p>A memory reference that is a stack pop.
</p>
</dd>
<dt><code>S</code></dt>
<dd><p>A memory reference that refers to a constant address of known value.
</p>
</dd>
<dt><code>T</code></dt>
<dd><p>The register indicated by Rx (not implemented yet).
</p>
</dd>
<dt><code>U</code></dt>
<dd><p>A constant that is not between 2 and 15 inclusive.
</p>
</dd>
<dt><code>Z</code></dt>
<dd><p>The constant 0.
</p>
</dd>
</dl>
</dd>
<dt><em>Xtensa—<samp>config/xtensa/constraints.md</samp></em></dt>
<dd><dl compact="compact">
<dt><code>a</code></dt>
<dd><p>General-purpose 32-bit register
</p>
</dd>
<dt><code>b</code></dt>
<dd><p>One-bit boolean register
</p>
</dd>
<dt><code>A</code></dt>
<dd><p>MAC16 40-bit accumulator register
</p>
</dd>
<dt><code>I</code></dt>
<dd><p>Signed 12-bit integer constant, for use in MOVI instructions
</p>
</dd>
<dt><code>J</code></dt>
<dd><p>Signed 8-bit integer constant, for use in ADDI instructions
</p>
</dd>
<dt><code>K</code></dt>
<dd><p>Integer constant valid for BccI instructions
</p>
</dd>
<dt><code>L</code></dt>
<dd><p>Unsigned constant valid for BccUI instructions
</p>
</dd>
</dl>
</dd>
</dl>
<hr>
<a name="Asm-Labels"></a>
<div class="header">
<p>
Next: <a href="#Explicit-Register-Variables" accesskey="n" rel="next">Explicit Register Variables</a>, Previous: <a href="#Constraints" accesskey="p" rel="prev">Constraints</a>, Up: <a href="#Using-Assembly-Language-with-C" accesskey="u" rel="up">Using Assembly Language with C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Controlling-Names-Used-in-Assembler-Code"></a>
<h4 class="subsection">6.45.4 Controlling Names Used in Assembler Code</h4>
<a name="index-assembler-names-for-identifiers"></a>
<a name="index-names-used-in-assembler-code"></a>
<a name="index-identifiers_002c-names-in-assembler-code"></a>
<p>You can specify the name to be used in the assembler code for a C
function or variable by writing the <code>asm</code> (or <code>__asm__</code>)
keyword after the declarator.
It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols, or reference registers.
</p>
<a name="Assembler-names-for-data_003a"></a>
<h4 class="subsubheading">Assembler names for data:</h4>
<p>This sample shows how to specify the assembler name for data:
</p>
<div class="smallexample">
<pre class="smallexample">int foo asm ("myfoo") = 2;
</pre></div>
<p>This specifies that the name to be used for the variable <code>foo</code> in
the assembler code should be ‘<samp>myfoo</samp>’ rather than the usual
‘<samp>_foo</samp>’.
</p>
<p>On systems where an underscore is normally prepended to the name of a C
variable, this feature allows you to define names for the
linker that do not start with an underscore.
</p>
<p>GCC does not support using this feature with a non-static local variable
since such variables do not have assembler names. If you are
trying to put the variable in a particular register, see
<a href="#Explicit-Register-Variables">Explicit Register Variables</a>.
</p>
<a name="Assembler-names-for-functions_003a"></a>
<h4 class="subsubheading">Assembler names for functions:</h4>
<p>To specify the assembler name for functions, write a declaration for the
function before its definition and put <code>asm</code> there, like this:
</p>
<div class="smallexample">
<pre class="smallexample">int func (int x, int y) asm ("MYFUNC");
int func (int x, int y)
{
/* <span class="roman">…</span> */
</pre></div>
<p>This specifies that the name to be used for the function <code>func</code> in
the assembler code should be <code>MYFUNC</code>.
</p>
<hr>
<a name="Explicit-Register-Variables"></a>
<div class="header">
<p>
Next: <a href="#Size-of-an-asm" accesskey="n" rel="next">Size of an asm</a>, Previous: <a href="#Asm-Labels" accesskey="p" rel="prev">Asm Labels</a>, Up: <a href="#Using-Assembly-Language-with-C" accesskey="u" rel="up">Using Assembly Language with C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Variables-in-Specified-Registers"></a>
<h4 class="subsection">6.45.5 Variables in Specified Registers</h4>
<a name="Explicit-Reg-Vars"></a><a name="index-explicit-register-variables"></a>
<a name="index-variables-in-specified-registers"></a>
<a name="index-specified-registers"></a>
<p>GNU C allows you to associate specific hardware registers with C
variables. In almost all cases, allowing the compiler to assign
registers produces the best code. However under certain unusual
circumstances, more precise control over the variable storage is
required.
</p>
<p>Both global and local variables can be associated with a register. The
consequences of performing this association are very different between
the two, as explained in the sections below.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Global-Register-Variables" accesskey="1">Global Register Variables</a>:</td><td> </td><td align="left" valign="top">Variables declared at global scope.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Local-Register-Variables" accesskey="2">Local Register Variables</a>:</td><td> </td><td align="left" valign="top">Variables declared within a function.
</td></tr>
</table>
<hr>
<a name="Global-Register-Variables"></a>
<div class="header">
<p>
Next: <a href="#Local-Register-Variables" accesskey="n" rel="next">Local Register Variables</a>, Up: <a href="#Explicit-Register-Variables" accesskey="u" rel="up">Explicit Register Variables</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Defining-Global-Register-Variables"></a>
<h4 class="subsubsection">6.45.5.1 Defining Global Register Variables</h4>
<a name="Global-Reg-Vars"></a><a name="index-global-register-variables"></a>
<a name="index-registers_002c-global-variables-in"></a>
<a name="index-registers_002c-global-allocation"></a>
<p>You can define a global register variable and associate it with a specified
register like this:
</p>
<div class="smallexample">
<pre class="smallexample">register int *foo asm ("r12");
</pre></div>
<p>Here <code>r12</code> is the name of the register that should be used. Note that
this is the same syntax used for defining local register variables, but for
a global variable the declaration appears outside a function. The
<code>register</code> keyword is required, and cannot be combined with
<code>static</code>. The register name must be a valid register name for the
target platform.
</p>
<p>Registers are a scarce resource on most systems and allowing the
compiler to manage their usage usually results in the best code. However,
under special circumstances it can make sense to reserve some globally.
For example this may be useful in programs such as programming language
interpreters that have a couple of global variables that are accessed
very often.
</p>
<p>After defining a global register variable, for the current compilation
unit:
</p>
<ul>
<li> The register is reserved entirely for this use, and will not be
allocated for any other purpose.
</li><li> The register is not saved and restored by any functions.
</li><li> Stores into this register are never deleted even if they appear to be
dead, but references may be deleted, moved or simplified.
</li></ul>
<p>Note that these points <em>only</em> apply to code that is compiled with the
definition. The behavior of code that is merely linked in (for example
code from libraries) is not affected.
</p>
<p>If you want to recompile source files that do not actually use your global
register variable so they do not use the specified register for any other
purpose, you need not actually add the global register declaration to
their source code. It suffices to specify the compiler option
<samp>-ffixed-<var>reg</var></samp> (see <a href="#Code-Gen-Options">Code Gen Options</a>) to reserve the
register.
</p>
<a name="Declaring-the-variable"></a>
<h4 class="subsubheading">Declaring the variable</h4>
<p>Global register variables can not have initial values, because an
executable file has no means to supply initial contents for a register.
</p>
<p>When selecting a register, choose one that is normally saved and
restored by function calls on your machine. This ensures that code
which is unaware of this reservation (such as library routines) will
restore it before returning.
</p>
<p>On machines with register windows, be sure to choose a global
register that is not affected magically by the function call mechanism.
</p>
<a name="Using-the-variable"></a>
<h4 class="subsubheading">Using the variable</h4>
<a name="index-qsort_002c-and-global-register-variables"></a>
<p>When calling routines that are not aware of the reservation, be
cautious if those routines call back into code which uses them. As an
example, if you call the system library version of <code>qsort</code>, it may
clobber your registers during execution, but (if you have selected
appropriate registers) it will restore them before returning. However
it will <em>not</em> restore them before calling <code>qsort</code>’s comparison
function. As a result, global values will not reliably be available to
the comparison function unless the <code>qsort</code> function itself is rebuilt.
</p>
<p>Similarly, it is not safe to access the global register variables from signal
handlers or from more than one thread of control. Unless you recompile
them specially for the task at hand, the system library routines may
temporarily use the register for other things.
</p>
<a name="index-register-variable-after-longjmp"></a>
<a name="index-global-register-after-longjmp"></a>
<a name="index-value-after-longjmp"></a>
<a name="index-longjmp"></a>
<a name="index-setjmp"></a>
<p>On most machines, <code>longjmp</code> restores to each global register
variable the value it had at the time of the <code>setjmp</code>. On some
machines, however, <code>longjmp</code> does not change the value of global
register variables. To be portable, the function that called <code>setjmp</code>
should make other arrangements to save the values of the global register
variables, and to restore them in a <code>longjmp</code>. This way, the same
thing happens regardless of what <code>longjmp</code> does.
</p>
<p>Eventually there may be a way of asking the compiler to choose a register
automatically, but first we need to figure out how it should choose and
how to enable you to guide the choice. No solution is evident.
</p>
<hr>
<a name="Local-Register-Variables"></a>
<div class="header">
<p>
Previous: <a href="#Global-Register-Variables" accesskey="p" rel="prev">Global Register Variables</a>, Up: <a href="#Explicit-Register-Variables" accesskey="u" rel="up">Explicit Register Variables</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Specifying-Registers-for-Local-Variables"></a>
<h4 class="subsubsection">6.45.5.2 Specifying Registers for Local Variables</h4>
<a name="Local-Reg-Vars"></a><a name="index-local-variables_002c-specifying-registers"></a>
<a name="index-specifying-registers-for-local-variables"></a>
<a name="index-registers-for-local-variables"></a>
<p>You can define a local register variable and associate it with a specified
register like this:
</p>
<div class="smallexample">
<pre class="smallexample">register int *foo asm ("r12");
</pre></div>
<p>Here <code>r12</code> is the name of the register that should be used. Note
that this is the same syntax used for defining global register variables,
but for a local variable the declaration appears within a function. The
<code>register</code> keyword is required, and cannot be combined with
<code>static</code>. The register name must be a valid register name for the
target platform.
</p>
<p>As with global register variables, it is recommended that you choose
a register that is normally saved and restored by function calls on your
machine, so that calls to library routines will not clobber it.
</p>
<p>The only supported use for this feature is to specify registers
for input and output operands when calling Extended <code>asm</code>
(see <a href="#Extended-Asm">Extended Asm</a>). This may be necessary if the constraints for a
particular machine don’t provide sufficient control to select the desired
register. To force an operand into a register, create a local variable
and specify the register name after the variable’s declaration. Then use
the local variable for the <code>asm</code> operand and specify any constraint
letter that matches the register:
</p>
<div class="smallexample">
<pre class="smallexample">register int *p1 asm ("r0") = …;
register int *p2 asm ("r1") = …;
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
</pre></div>
<p><em>Warning:</em> In the above example, be aware that a register (for example
<code>r0</code>) can be call-clobbered by subsequent code, including function
calls and library calls for arithmetic operators on other variables (for
example the initialization of <code>p2</code>). In this case, use temporary
variables for expressions between the register assignments:
</p>
<div class="smallexample">
<pre class="smallexample">int t1 = …;
register int *p1 asm ("r0") = …;
register int *p2 asm ("r1") = t1;
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
</pre></div>
<p>Defining a register variable does not reserve the register. Other than
when invoking the Extended <code>asm</code>, the contents of the specified
register are not guaranteed. For this reason, the following uses
are explicitly <em>not</em> supported. If they appear to work, it is only
happenstance, and may stop working as intended due to (seemingly)
unrelated changes in surrounding code, or even minor changes in the
optimization of a future version of gcc:
</p>
<ul>
<li> Passing parameters to or from Basic <code>asm</code>
</li><li> Passing parameters to or from Extended <code>asm</code> without using input
or output operands.
</li><li> Passing parameters to or from routines written in assembler (or
other languages) using non-standard calling conventions.
</li></ul>
<p>Some developers use Local Register Variables in an attempt to improve
gcc’s allocation of registers, especially in large functions. In this
case the register name is essentially a hint to the register allocator.
While in some instances this can generate better code, improvements are
subject to the whims of the allocator/optimizers. Since there are no
guarantees that your improvements won’t be lost, this usage of Local
Register Variables is discouraged.
</p>
<p>On the MIPS platform, there is related use for local register variables
with slightly different characteristics (see <a href="http://gcc.gnu.org/onlinedocs/gccint/MIPS-Coprocessors.html#MIPS-Coprocessors">Defining coprocessor specifics for MIPS targets</a> in <cite>GNU Compiler Collection (GCC) Internals</cite>).
</p>
<hr>
<a name="Size-of-an-asm"></a>
<div class="header">
<p>
Previous: <a href="#Explicit-Register-Variables" accesskey="p" rel="prev">Explicit Register Variables</a>, Up: <a href="#Using-Assembly-Language-with-C" accesskey="u" rel="up">Using Assembly Language with C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Size-of-an-asm-1"></a>
<h4 class="subsection">6.45.6 Size of an <code>asm</code></h4>
<p>Some targets require that GCC track the size of each instruction used
in order to generate correct code. Because the final length of the
code produced by an <code>asm</code> statement is only known by the
assembler, GCC must make an estimate as to how big it will be. It
does this by counting the number of instructions in the pattern of the
<code>asm</code> and multiplying that by the length of the longest
instruction supported by that processor. (When working out the number
of instructions, it assumes that any occurrence of a newline or of
whatever statement separator character is supported by the assembler –
typically ‘<samp>;</samp>’ — indicates the end of an instruction.)
</p>
<p>Normally, GCC’s estimate is adequate to ensure that correct
code is generated, but it is possible to confuse the compiler if you use
pseudo instructions or assembler macros that expand into multiple real
instructions, or if you use assembler directives that expand to more
space in the object file than is needed for a single instruction.
If this happens then the assembler may produce a diagnostic saying that
a label is unreachable.
</p>
<hr>
<a name="Alternate-Keywords"></a>
<div class="header">
<p>
Next: <a href="#Incomplete-Enums" accesskey="n" rel="next">Incomplete Enums</a>, Previous: <a href="#Using-Assembly-Language-with-C" accesskey="p" rel="prev">Using Assembly Language with C</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Alternate-Keywords-1"></a>
<h3 class="section">6.46 Alternate Keywords</h3>
<a name="index-alternate-keywords"></a>
<a name="index-keywords_002c-alternate"></a>
<p><samp>-ansi</samp> and the various <samp>-std</samp> options disable certain
keywords. This causes trouble when you want to use GNU C extensions, or
a general-purpose header file that should be usable by all programs,
including ISO C programs. The keywords <code>asm</code>, <code>typeof</code> and
<code>inline</code> are not available in programs compiled with
<samp>-ansi</samp> or <samp>-std</samp> (although <code>inline</code> can be used in a
program compiled with <samp>-std=c99</samp> or <samp>-std=c11</samp>). The
ISO C99 keyword
<code>restrict</code> is only available when <samp>-std=gnu99</samp> (which will
eventually be the default) or <samp>-std=c99</samp> (or the equivalent
<samp>-std=iso9899:1999</samp>), or an option for a later standard
version, is used.
</p>
<p>The way to solve these problems is to put ‘<samp>__</samp>’ at the beginning and
end of each problematical keyword. For example, use <code>__asm__</code>
instead of <code>asm</code>, and <code>__inline__</code> instead of <code>inline</code>.
</p>
<p>Other C compilers won’t accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:
</p>
<div class="smallexample">
<pre class="smallexample">#ifndef __GNUC__
#define __asm__ asm
#endif
</pre></div>
<a name="index-_005f_005fextension_005f_005f"></a>
<a name="index-pedantic-3"></a>
<p><samp>-pedantic</samp> and other options cause warnings for many GNU C extensions.
You can
prevent such warnings within one expression by writing
<code>__extension__</code> before the expression. <code>__extension__</code> has no
effect aside from this.
</p>
<hr>
<a name="Incomplete-Enums"></a>
<div class="header">
<p>
Next: <a href="#Function-Names" accesskey="n" rel="next">Function Names</a>, Previous: <a href="#Alternate-Keywords" accesskey="p" rel="prev">Alternate Keywords</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Incomplete-enum-Types"></a>
<h3 class="section">6.47 Incomplete <code>enum</code> Types</h3>
<p>You can define an <code>enum</code> tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write
<code>struct foo</code> without describing the elements. A later declaration
that does specify the possible values completes the type.
</p>
<p>You cannot allocate variables or storage using the type while it is
incomplete. However, you can work with pointers to that type.
</p>
<p>This extension may not be very useful, but it makes the handling of
<code>enum</code> more consistent with the way <code>struct</code> and <code>union</code>
are handled.
</p>
<p>This extension is not supported by GNU C++.
</p>
<hr>
<a name="Function-Names"></a>
<div class="header">
<p>
Next: <a href="#Return-Address" accesskey="n" rel="next">Return Address</a>, Previous: <a href="#Incomplete-Enums" accesskey="p" rel="prev">Incomplete Enums</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Function-Names-as-Strings"></a>
<h3 class="section">6.48 Function Names as Strings</h3>
<a name="index-_005f_005ffunc_005f_005f-identifier"></a>
<a name="index-_005f_005fFUNCTION_005f_005f-identifier"></a>
<a name="index-_005f_005fPRETTY_005fFUNCTION_005f_005f-identifier"></a>
<p>GCC provides three magic constants that hold the name of the current
function as a string. In C++11 and later modes, all three are treated
as constant expressions and can be used in <code>constexpr</code> constexts.
The first of these constants is <code>__func__</code>, which is part of
the C99 standard:
</p>
<p>The identifier <code>__func__</code> is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration
</p>
<div class="smallexample">
<pre class="smallexample">static const char __func__[] = "function-name";
</pre></div>
<p>appeared, where function-name is the name of the lexically-enclosing
function. This name is the unadorned name of the function. As an
extension, at file (or, in C++, namespace scope), <code>__func__</code>
evaluates to the empty string.
</p>
<p><code>__FUNCTION__</code> is another name for <code>__func__</code>, provided for
backward compatibility with old versions of GCC.
</p>
<p>In C, <code>__PRETTY_FUNCTION__</code> is yet another name for
<code>__func__</code>, except that at file (or, in C++, namespace scope),
it evaluates to the string <code>"top level"</code>. In addition, in C++,
<code>__PRETTY_FUNCTION__</code> contains the signature of the function as
well as its bare name. For example, this program:
</p>
<div class="smallexample">
<pre class="smallexample">extern "C" int printf (const char *, ...);
class a {
public:
void sub (int i)
{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
}
};
int
main (void)
{
a ax;
ax.sub (0);
return 0;
}
</pre></div>
<p>gives this output:
</p>
<div class="smallexample">
<pre class="smallexample">__FUNCTION__ = sub
__PRETTY_FUNCTION__ = void a::sub(int)
</pre></div>
<p>These identifiers are variables, not preprocessor macros, and may not
be used to initialize <code>char</code> arrays or be concatenated with string
literals.
</p>
<hr>
<a name="Return-Address"></a>
<div class="header">
<p>
Next: <a href="#Vector-Extensions" accesskey="n" rel="next">Vector Extensions</a>, Previous: <a href="#Function-Names" accesskey="p" rel="prev">Function Names</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Getting-the-Return-or-Frame-Address-of-a-Function"></a>
<h3 class="section">6.49 Getting the Return or Frame Address of a Function</h3>
<p>These functions may be used to get information about the callers of a
function.
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005freturn_005faddress"></a>Built-in Function: <em>void *</em> <strong>__builtin_return_address</strong> <em>(unsigned int <var>level</var>)</em></dt>
<dd><p>This function returns the return address of the current function, or of
one of its callers. The <var>level</var> argument is number of frames to
scan up the call stack. A value of <code>0</code> yields the return address
of the current function, a value of <code>1</code> yields the return address
of the caller of the current function, and so forth. When inlining
the expected behavior is that the function returns the address of
the function that is returned to. To work around this behavior use
the <code>noinline</code> function attribute.
</p>
<p>The <var>level</var> argument must be a constant integer.
</p>
<p>On some machines it may be impossible to determine the return address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function returns <code>0</code> or a
random value. In addition, <code>__builtin_frame_address</code> may be used
to determine if the top of the stack has been reached.
</p>
<p>Additional post-processing of the returned value may be needed, see
<code>__builtin_extract_return_addr</code>.
</p>
<p>Calling this function with a nonzero argument can have unpredictable
effects, including crashing the calling program. As a result, calls
that are considered unsafe are diagnosed when the <samp>-Wframe-address</samp>
option is in effect. Such calls should only be made in debugging
situations.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fextract_005freturn_005faddr"></a>Built-in Function: <em>void *</em> <strong>__builtin_extract_return_addr</strong> <em>(void *<var>addr</var>)</em></dt>
<dd><p>The address as returned by <code>__builtin_return_address</code> may have to be fed
through this function to get the actual encoded address. For example, on the
31-bit S/390 platform the highest bit has to be masked out, or on SPARC
platforms an offset has to be added for the true next instruction to be
executed.
</p>
<p>If no fixup is needed, this function simply passes through <var>addr</var>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ffrob_005freturn_005faddress"></a>Built-in Function: <em>void *</em> <strong>__builtin_frob_return_address</strong> <em>(void *<var>addr</var>)</em></dt>
<dd><p>This function does the reverse of <code>__builtin_extract_return_addr</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fframe_005faddress"></a>Built-in Function: <em>void *</em> <strong>__builtin_frame_address</strong> <em>(unsigned int <var>level</var>)</em></dt>
<dd><p>This function is similar to <code>__builtin_return_address</code>, but it
returns the address of the function frame rather than the return address
of the function. Calling <code>__builtin_frame_address</code> with a value of
<code>0</code> yields the frame address of the current function, a value of
<code>1</code> yields the frame address of the caller of the current function,
and so forth.
</p>
<p>The frame is the area on the stack that holds local variables and saved
registers. The frame address is normally the address of the first word
pushed on to the stack by the function. However, the exact definition
depends upon the processor and the calling convention. If the processor
has a dedicated frame pointer register, and the function has a frame,
then <code>__builtin_frame_address</code> returns the value of the frame
pointer register.
</p>
<p>On some machines it may be impossible to determine the frame address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function returns <code>0</code> if
the first frame pointer is properly initialized by the startup code.
</p>
<p>Calling this function with a nonzero argument can have unpredictable
effects, including crashing the calling program. As a result, calls
that are considered unsafe are diagnosed when the <samp>-Wframe-address</samp>
option is in effect. Such calls should only be made in debugging
situations.
</p></dd></dl>
<hr>
<a name="Vector-Extensions"></a>
<div class="header">
<p>
Next: <a href="#Offsetof" accesskey="n" rel="next">Offsetof</a>, Previous: <a href="#Return-Address" accesskey="p" rel="prev">Return Address</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-Vector-Instructions-through-Built_002din-Functions"></a>
<h3 class="section">6.50 Using Vector Instructions through Built-in Functions</h3>
<p>On some targets, the instruction set contains SIMD vector instructions which
operate on multiple values contained in one large register at the same time.
For example, on the x86 the MMX, 3DNow! and SSE extensions can be used
this way.
</p>
<p>The first step in using these extensions is to provide the necessary data
types. This should be done using an appropriate <code>typedef</code>:
</p>
<div class="smallexample">
<pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
</pre></div>
<p>The <code>int</code> type specifies the base type, while the attribute specifies
the vector size for the variable, measured in bytes. For example, the
declaration above causes the compiler to set the mode for the <code>v4si</code>
type to be 16 bytes wide and divided into <code>int</code> sized units. For
a 32-bit <code>int</code> this means a vector of 4 units of 4 bytes, and the
corresponding mode of <code>foo</code> is <acronym>V4SI</acronym>.
</p>
<p>The <code>vector_size</code> attribute is only applicable to integral and
float scalars, although arrays, pointers, and function return values
are allowed in conjunction with this construct. Only sizes that are
a power of two are currently allowed.
</p>
<p>All the basic integer types can be used as base types, both as signed
and as unsigned: <code>char</code>, <code>short</code>, <code>int</code>, <code>long</code>,
<code>long long</code>. In addition, <code>float</code> and <code>double</code> can be
used to build floating-point vector types.
</p>
<p>Specifying a combination that is not valid for the current architecture
causes GCC to synthesize the instructions using a narrower mode.
For example, if you specify a variable of type <code>V4SI</code> and your
architecture does not allow for this specific SIMD type, GCC
produces code that uses 4 <code>SIs</code>.
</p>
<p>The types defined in this manner can be used with a subset of normal C
operations. Currently, GCC allows using the following operators
on these types: <code>+, -, *, /, unary minus, ^, |, &, ~, %</code>.
</p>
<p>The operations behave like C++ <code>valarrays</code>. Addition is defined as
the addition of the corresponding elements of the operands. For
example, in the code below, each of the 4 elements in <var>a</var> is
added to the corresponding 4 elements in <var>b</var> and the resulting
vector is stored in <var>c</var>.
</p>
<div class="smallexample">
<pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
v4si a, b, c;
c = a + b;
</pre></div>
<p>Subtraction, multiplication, division, and the logical operations
operate in a similar manner. Likewise, the result of using the unary
minus or complement operators on a vector type is a vector whose
elements are the negative or complemented values of the corresponding
elements in the operand.
</p>
<p>It is possible to use shifting operators <code><<</code>, <code>>></code> on
integer-type vectors. The operation is defined as following: <code>{a0,
a1, …, an} >> {b0, b1, …, bn} == {a0 >> b0, a1 >> b1,
…, an >> bn}</code>. Vector operands must have the same number of
elements.
</p>
<p>For convenience, it is allowed to use a binary vector operation
where one operand is a scalar. In that case the compiler transforms
the scalar operand into a vector where each element is the scalar from
the operation. The transformation happens only if the scalar could be
safely converted to the vector-element type.
Consider the following code.
</p>
<div class="smallexample">
<pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
v4si a, b, c;
long l;
a = b + 1; /* a = b + {1,1,1,1}; */
a = 2 * b; /* a = {2,2,2,2} * b; */
a = l + a; /* Error, cannot convert long to int. */
</pre></div>
<p>Vectors can be subscripted as if the vector were an array with
the same number of elements and base type. Out of bound accesses
invoke undefined behavior at run time. Warnings for out of bound
accesses for vector subscription can be enabled with
<samp>-Warray-bounds</samp>.
</p>
<p>Vector comparison is supported with standard comparison
operators: <code>==, !=, <, <=, >, >=</code>. Comparison operands can be
vector expressions of integer-type or real-type. Comparison between
integer-type vectors and real-type vectors are not supported. The
result of the comparison is a vector of the same width and number of
elements as the comparison operands with a signed integral element
type.
</p>
<p>Vectors are compared element-wise producing 0 when comparison is false
and -1 (constant of the appropriate type where all bits are set)
otherwise. Consider the following example.
</p>
<div class="smallexample">
<pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
v4si a = {1,2,3,4};
v4si b = {3,2,1,4};
v4si c;
c = a > b; /* The result would be {0, 0,-1, 0} */
c = a == b; /* The result would be {0,-1, 0,-1} */
</pre></div>
<p>In C++, the ternary operator <code>?:</code> is available. <code>a?b:c</code>, where
<code>b</code> and <code>c</code> are vectors of the same type and <code>a</code> is an
integer vector with the same number of elements of the same size as <code>b</code>
and <code>c</code>, computes all three arguments and creates a vector
<code>{a[0]?b[0]:c[0], a[1]?b[1]:c[1], …}</code>. Note that unlike in
OpenCL, <code>a</code> is thus interpreted as <code>a != 0</code> and not <code>a < 0</code>.
As in the case of binary operations, this syntax is also accepted when
one of <code>b</code> or <code>c</code> is a scalar that is then transformed into a
vector. If both <code>b</code> and <code>c</code> are scalars and the type of
<code>true?b:c</code> has the same size as the element type of <code>a</code>, then
<code>b</code> and <code>c</code> are converted to a vector type whose elements have
this type and with the same number of elements as <code>a</code>.
</p>
<p>In C++, the logic operators <code>!, &&, ||</code> are available for vectors.
<code>!v</code> is equivalent to <code>v == 0</code>, <code>a && b</code> is equivalent to
<code>a!=0 & b!=0</code> and <code>a || b</code> is equivalent to <code>a!=0 | b!=0</code>.
For mixed operations between a scalar <code>s</code> and a vector <code>v</code>,
<code>s && v</code> is equivalent to <code>s?v!=0:0</code> (the evaluation is
short-circuit) and <code>v && s</code> is equivalent to <code>v!=0 & (s?-1:0)</code>.
</p>
<a name="index-_005f_005fbuiltin_005fshuffle"></a>
<p>Vector shuffling is available using functions
<code>__builtin_shuffle (vec, mask)</code> and
<code>__builtin_shuffle (vec0, vec1, mask)</code>.
Both functions construct a permutation of elements from one or two
vectors and return a vector of the same type as the input vector(s).
The <var>mask</var> is an integral vector with the same width (<var>W</var>)
and element count (<var>N</var>) as the output vector.
</p>
<p>The elements of the input vectors are numbered in memory ordering of
<var>vec0</var> beginning at 0 and <var>vec1</var> beginning at <var>N</var>. The
elements of <var>mask</var> are considered modulo <var>N</var> in the single-operand
case and modulo <em>2*<var>N</var></em> in the two-operand case.
</p>
<p>Consider the following example,
</p>
<div class="smallexample">
<pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
v4si a = {1,2,3,4};
v4si b = {5,6,7,8};
v4si mask1 = {0,1,1,3};
v4si mask2 = {0,4,2,5};
v4si res;
res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */
res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */
</pre></div>
<p>Note that <code>__builtin_shuffle</code> is intentionally semantically
compatible with the OpenCL <code>shuffle</code> and <code>shuffle2</code> functions.
</p>
<p>You can declare variables and use them in function calls and returns, as
well as in assignments and some casts. You can specify a vector type as
a return type for a function. Vector types can also be used as function
arguments. It is possible to cast from one vector type to another,
provided they are of the same size (in fact, you can also cast vectors
to and from other datatypes of the same size).
</p>
<p>You cannot operate between vectors of different lengths or different
signedness without a cast.
</p>
<hr>
<a name="Offsetof"></a>
<div class="header">
<p>
Next: <a href="#g_t_005f_005fsync-Builtins" accesskey="n" rel="next">__sync Builtins</a>, Previous: <a href="#Vector-Extensions" accesskey="p" rel="prev">Vector Extensions</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Support-for-offsetof"></a>
<h3 class="section">6.51 Support for <code>offsetof</code></h3>
<a name="index-_005f_005fbuiltin_005foffsetof"></a>
<p>GCC implements for both C and C++ a syntactic extension to implement
the <code>offsetof</code> macro.
</p>
<div class="smallexample">
<pre class="smallexample">primary:
"__builtin_offsetof" "(" <code>typename</code> "," offsetof_member_designator ")"
offsetof_member_designator:
<code>identifier</code>
| offsetof_member_designator "." <code>identifier</code>
| offsetof_member_designator "[" <code>expr</code> "]"
</pre></div>
<p>This extension is sufficient such that
</p>
<div class="smallexample">
<pre class="smallexample">#define offsetof(<var>type</var>, <var>member</var>) __builtin_offsetof (<var>type</var>, <var>member</var>)
</pre></div>
<p>is a suitable definition of the <code>offsetof</code> macro. In C++, <var>type</var>
may be dependent. In either case, <var>member</var> may consist of a single
identifier, or a sequence of member accesses and array references.
</p>
<hr>
<a name="g_t_005f_005fsync-Builtins"></a>
<div class="header">
<p>
Next: <a href="#g_t_005f_005fatomic-Builtins" accesskey="n" rel="next">__atomic Builtins</a>, Previous: <a href="#Offsetof" accesskey="p" rel="prev">Offsetof</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Legacy-_005f_005fsync-Built_002din-Functions-for-Atomic-Memory-Access"></a>
<h3 class="section">6.52 Legacy <code>__sync</code> Built-in Functions for Atomic Memory Access</h3>
<p>The following built-in functions
are intended to be compatible with those described
in the <cite>Intel Itanium Processor-specific Application Binary Interface</cite>,
section 7.4. As such, they depart from normal GCC practice by not using
the ‘<samp>__builtin_</samp>’ prefix and also by being overloaded so that they
work on multiple types.
</p>
<p>The definition given in the Intel documentation allows only for the use of
the types <code>int</code>, <code>long</code>, <code>long long</code> or their unsigned
counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
size other than the C type <code>_Bool</code> or the C++ type <code>bool</code>.
Operations on pointer arguments are performed as if the operands were
of the <code>uintptr_t</code> type. That is, they are not scaled by the size
of the type to which the pointer points.
</p>
<p>These functions are implemented in terms of the ‘<samp>__atomic</samp>’
builtins (see <a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a>). They should not be used for new
code which should use the ‘<samp>__atomic</samp>’ builtins instead.
</p>
<p>Not all operations are supported by all target processors. If a particular
operation cannot be implemented on the target processor, a warning is
generated and a call to an external function is generated. The external
function carries the same name as the built-in version,
with an additional suffix
‘<samp>_<var>n</var></samp>’ where <var>n</var> is the size of the data type.
</p>
<p>In most cases, these built-in functions are considered a <em>full barrier</em>.
That is,
no memory operand is moved across the operation, either forward or
backward. Further, instructions are issued as necessary to prevent the
processor from speculating loads across the operation and from queuing stores
after the operation.
</p>
<p>All of the routines are described in the Intel documentation to take
“an optional list of variables protected by the memory barrier”. It’s
not clear what is meant by that; it could mean that <em>only</em> the
listed variables are protected, or it could mean a list of additional
variables to be protected. The list is ignored by GCC which treats it as
empty. GCC interprets an empty list as meaning that all globally
accessible variables should be protected.
</p>
<dl compact="compact">
<dt><code><var>type</var> __sync_fetch_and_add (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_fetch_and_sub (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_fetch_and_or (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_fetch_and_and (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_fetch_and_xor (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_fetch_and_nand (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dd><a name="index-_005f_005fsync_005ffetch_005fand_005fadd"></a>
<a name="index-_005f_005fsync_005ffetch_005fand_005fsub"></a>
<a name="index-_005f_005fsync_005ffetch_005fand_005for"></a>
<a name="index-_005f_005fsync_005ffetch_005fand_005fand"></a>
<a name="index-_005f_005fsync_005ffetch_005fand_005fxor"></a>
<a name="index-_005f_005fsync_005ffetch_005fand_005fnand"></a>
<p>These built-in functions perform the operation suggested by the name, and
returns the value that had previously been in memory. That is, operations
on integer operands have the following semantics. Operations on pointer
arguments are performed as if the operands were of the <code>uintptr_t</code>
type. That is, they are not scaled by the size of the type to which
the pointer points.
</p>
<div class="smallexample">
<pre class="smallexample">{ tmp = *ptr; *ptr <var>op</var>= value; return tmp; }
{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand
</pre></div>
<p>The object pointed to by the first argument must be of integer or pointer
type. It must not be a boolean type.
</p>
<p><em>Note:</em> GCC 4.4 and later implement <code>__sync_fetch_and_nand</code>
as <code>*ptr = ~(tmp & value)</code> instead of <code>*ptr = ~tmp & value</code>.
</p>
</dd>
<dt><code><var>type</var> __sync_add_and_fetch (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_sub_and_fetch (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_or_and_fetch (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_and_and_fetch (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_xor_and_fetch (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dt><code><var>type</var> __sync_nand_and_fetch (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dd><a name="index-_005f_005fsync_005fadd_005fand_005ffetch"></a>
<a name="index-_005f_005fsync_005fsub_005fand_005ffetch"></a>
<a name="index-_005f_005fsync_005for_005fand_005ffetch"></a>
<a name="index-_005f_005fsync_005fand_005fand_005ffetch"></a>
<a name="index-_005f_005fsync_005fxor_005fand_005ffetch"></a>
<a name="index-_005f_005fsync_005fnand_005fand_005ffetch"></a>
<p>These built-in functions perform the operation suggested by the name, and
return the new value. That is, operations on integer operands have
the following semantics. Operations on pointer operands are performed as
if the operand’s type were <code>uintptr_t</code>.
</p>
<div class="smallexample">
<pre class="smallexample">{ *ptr <var>op</var>= value; return *ptr; }
{ *ptr = ~(*ptr & value); return *ptr; } // nand
</pre></div>
<p>The same constraints on arguments apply as for the corresponding
<code>__sync_op_and_fetch</code> built-in functions.
</p>
<p><em>Note:</em> GCC 4.4 and later implement <code>__sync_nand_and_fetch</code>
as <code>*ptr = ~(*ptr & value)</code> instead of
<code>*ptr = ~*ptr & value</code>.
</p>
</dd>
<dt><code>bool __sync_bool_compare_and_swap (<var>type</var> *ptr, <var>type</var> oldval, <var>type</var> newval, ...)</code></dt>
<dt><code><var>type</var> __sync_val_compare_and_swap (<var>type</var> *ptr, <var>type</var> oldval, <var>type</var> newval, ...)</code></dt>
<dd><a name="index-_005f_005fsync_005fbool_005fcompare_005fand_005fswap"></a>
<a name="index-_005f_005fsync_005fval_005fcompare_005fand_005fswap"></a>
<p>These built-in functions perform an atomic compare and swap.
That is, if the current
value of <code>*<var>ptr</var></code> is <var>oldval</var>, then write <var>newval</var> into
<code>*<var>ptr</var></code>.
</p>
<p>The “bool” version returns true if the comparison is successful and
<var>newval</var> is written. The “val” version returns the contents
of <code>*<var>ptr</var></code> before the operation.
</p>
</dd>
<dt><code>__sync_synchronize (...)</code></dt>
<dd><a name="index-_005f_005fsync_005fsynchronize"></a>
<p>This built-in function issues a full memory barrier.
</p>
</dd>
<dt><code><var>type</var> __sync_lock_test_and_set (<var>type</var> *ptr, <var>type</var> value, ...)</code></dt>
<dd><a name="index-_005f_005fsync_005flock_005ftest_005fand_005fset"></a>
<p>This built-in function, as described by Intel, is not a traditional test-and-set
operation, but rather an atomic exchange operation. It writes <var>value</var>
into <code>*<var>ptr</var></code>, and returns the previous contents of
<code>*<var>ptr</var></code>.
</p>
<p>Many targets have only minimal support for such locks, and do not support
a full exchange operation. In this case, a target may support reduced
functionality here by which the <em>only</em> valid value to store is the
immediate constant 1. The exact value actually stored in <code>*<var>ptr</var></code>
is implementation defined.
</p>
<p>This built-in function is not a full barrier,
but rather an <em>acquire barrier</em>.
This means that references after the operation cannot move to (or be
speculated to) before the operation, but previous memory stores may not
be globally visible yet, and previous memory loads may not yet be
satisfied.
</p>
</dd>
<dt><code>void __sync_lock_release (<var>type</var> *ptr, ...)</code></dt>
<dd><a name="index-_005f_005fsync_005flock_005frelease"></a>
<p>This built-in function releases the lock acquired by
<code>__sync_lock_test_and_set</code>.
Normally this means writing the constant 0 to <code>*<var>ptr</var></code>.
</p>
<p>This built-in function is not a full barrier,
but rather a <em>release barrier</em>.
This means that all previous memory stores are globally visible, and all
previous memory loads have been satisfied, but following memory reads
are not prevented from being speculated to before the barrier.
</p></dd>
</dl>
<hr>
<a name="g_t_005f_005fatomic-Builtins"></a>
<div class="header">
<p>
Next: <a href="#Integer-Overflow-Builtins" accesskey="n" rel="next">Integer Overflow Builtins</a>, Previous: <a href="#g_t_005f_005fsync-Builtins" accesskey="p" rel="prev">__sync Builtins</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Built_002din-Functions-for-Memory-Model-Aware-Atomic-Operations"></a>
<h3 class="section">6.53 Built-in Functions for Memory Model Aware Atomic Operations</h3>
<p>The following built-in functions approximately match the requirements
for the C++11 memory model. They are all
identified by being prefixed with ‘<samp>__atomic</samp>’ and most are
overloaded so that they work with multiple types.
</p>
<p>These functions are intended to replace the legacy ‘<samp>__sync</samp>’
builtins. The main difference is that the memory order that is requested
is a parameter to the functions. New code should always use the
‘<samp>__atomic</samp>’ builtins rather than the ‘<samp>__sync</samp>’ builtins.
</p>
<p>Note that the ‘<samp>__atomic</samp>’ builtins assume that programs will
conform to the C++11 memory model. In particular, they assume
that programs are free of data races. See the C++11 standard for
detailed requirements.
</p>
<p>The ‘<samp>__atomic</samp>’ builtins can be used with any integral scalar or
pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
types are also allowed if ‘<samp>__int128</samp>’ (see <a href="#g_t_005f_005fint128">__int128</a>) is
supported by the architecture.
</p>
<p>The four non-arithmetic functions (load, store, exchange, and
compare_exchange) all have a generic version as well. This generic
version works on any data type. It uses the lock-free built-in function
if the specific data type size makes that possible; otherwise, an
external call is left to be resolved at run time. This external call is
the same format with the addition of a ‘<samp>size_t</samp>’ parameter inserted
as the first parameter indicating the size of the object being pointed to.
All objects must be the same size.
</p>
<p>There are 6 different memory orders that can be specified. These map
to the C++11 memory orders with the same names, see the C++11 standard
or the <a href="http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync">GCC wiki
on atomic synchronization</a> for detailed definitions. Individual
targets may also support additional memory orders for use on specific
architectures. Refer to the target documentation for details of
these.
</p>
<p>An atomic operation can both constrain code motion and
be mapped to hardware instructions for synchronization between threads
(e.g., a fence). To which extent this happens is controlled by the
memory orders, which are listed here in approximately ascending order of
strength. The description of each memory order is only meant to roughly
illustrate the effects and is not a specification; see the C++11
memory model for precise semantics.
</p>
<dl compact="compact">
<dt><code>__ATOMIC_RELAXED</code></dt>
<dd><p>Implies no inter-thread ordering constraints.
</p></dd>
<dt><code>__ATOMIC_CONSUME</code></dt>
<dd><p>This is currently implemented using the stronger <code>__ATOMIC_ACQUIRE</code>
memory order because of a deficiency in C++11’s semantics for
<code>memory_order_consume</code>.
</p></dd>
<dt><code>__ATOMIC_ACQUIRE</code></dt>
<dd><p>Creates an inter-thread happens-before constraint from the release (or
stronger) semantic store to this acquire load. Can prevent hoisting
of code to before the operation.
</p></dd>
<dt><code>__ATOMIC_RELEASE</code></dt>
<dd><p>Creates an inter-thread happens-before constraint to acquire (or stronger)
semantic loads that read from this release store. Can prevent sinking
of code to after the operation.
</p></dd>
<dt><code>__ATOMIC_ACQ_REL</code></dt>
<dd><p>Combines the effects of both <code>__ATOMIC_ACQUIRE</code> and
<code>__ATOMIC_RELEASE</code>.
</p></dd>
<dt><code>__ATOMIC_SEQ_CST</code></dt>
<dd><p>Enforces total ordering with all other <code>__ATOMIC_SEQ_CST</code> operations.
</p></dd>
</dl>
<p>Note that in the C++11 memory model, <em>fences</em> (e.g.,
‘<samp>__atomic_thread_fence</samp>’) take effect in combination with other
atomic operations on specific memory locations (e.g., atomic loads);
operations on specific memory locations do not necessarily affect other
operations in the same way.
</p>
<p>Target architectures are encouraged to provide their own patterns for
each of the atomic built-in functions. If no target is provided, the original
non-memory model set of ‘<samp>__sync</samp>’ atomic built-in functions are
used, along with any required synchronization fences surrounding it in
order to achieve the proper behavior. Execution in this case is subject
to the same restrictions as those built-in functions.
</p>
<p>If there is no pattern or mechanism to provide a lock-free instruction
sequence, a call is made to an external routine with the same parameters
to be resolved at run time.
</p>
<p>When implementing patterns for these built-in functions, the memory order
parameter can be ignored as long as the pattern implements the most
restrictive <code>__ATOMIC_SEQ_CST</code> memory order. Any of the other memory
orders execute correctly with this memory order but they may not execute as
efficiently as they could with a more appropriate implementation of the
relaxed requirements.
</p>
<p>Note that the C++11 standard allows for the memory order parameter to be
determined at run time rather than at compile time. These built-in
functions map any run-time value to <code>__ATOMIC_SEQ_CST</code> rather
than invoke a runtime library call or inline a switch statement. This is
standard compliant, safe, and the simplest approach for now.
</p>
<p>The memory order parameter is a signed int, but only the lower 16 bits are
reserved for the memory order. The remainder of the signed int is reserved
for target use and should be 0. Use of the predefined atomic values
ensures proper usage.
</p>
<dl>
<dt><a name="index-_005f_005fatomic_005fload_005fn"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_load_n</strong> <em>(<var>type</var> *ptr, int memorder)</em></dt>
<dd><p>This built-in function implements an atomic load operation. It returns the
contents of <code>*<var>ptr</var></code>.
</p>
<p>The valid memory order variants are
<code>__ATOMIC_RELAXED</code>, <code>__ATOMIC_SEQ_CST</code>, <code>__ATOMIC_ACQUIRE</code>,
and <code>__ATOMIC_CONSUME</code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fload"></a>Built-in Function: <em>void</em> <strong>__atomic_load</strong> <em>(<var>type</var> *ptr, <var>type</var> *ret, int memorder)</em></dt>
<dd><p>This is the generic version of an atomic load. It returns the
contents of <code>*<var>ptr</var></code> in <code>*<var>ret</var></code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fstore_005fn"></a>Built-in Function: <em>void</em> <strong>__atomic_store_n</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dd><p>This built-in function implements an atomic store operation. It writes
<code><var>val</var></code> into <code>*<var>ptr</var></code>.
</p>
<p>The valid memory order variants are
<code>__ATOMIC_RELAXED</code>, <code>__ATOMIC_SEQ_CST</code>, and <code>__ATOMIC_RELEASE</code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fstore"></a>Built-in Function: <em>void</em> <strong>__atomic_store</strong> <em>(<var>type</var> *ptr, <var>type</var> *val, int memorder)</em></dt>
<dd><p>This is the generic version of an atomic store. It stores the value
of <code>*<var>val</var></code> into <code>*<var>ptr</var></code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fexchange_005fn"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_exchange_n</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dd><p>This built-in function implements an atomic exchange operation. It writes
<var>val</var> into <code>*<var>ptr</var></code>, and returns the previous contents of
<code>*<var>ptr</var></code>.
</p>
<p>The valid memory order variants are
<code>__ATOMIC_RELAXED</code>, <code>__ATOMIC_SEQ_CST</code>, <code>__ATOMIC_ACQUIRE</code>,
<code>__ATOMIC_RELEASE</code>, and <code>__ATOMIC_ACQ_REL</code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fexchange"></a>Built-in Function: <em>void</em> <strong>__atomic_exchange</strong> <em>(<var>type</var> *ptr, <var>type</var> *val, <var>type</var> *ret, int memorder)</em></dt>
<dd><p>This is the generic version of an atomic exchange. It stores the
contents of <code>*<var>val</var></code> into <code>*<var>ptr</var></code>. The original value
of <code>*<var>ptr</var></code> is copied into <code>*<var>ret</var></code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fcompare_005fexchange_005fn"></a>Built-in Function: <em>bool</em> <strong>__atomic_compare_exchange_n</strong> <em>(<var>type</var> *ptr, <var>type</var> *expected, <var>type</var> desired, bool weak, int success_memorder, int failure_memorder)</em></dt>
<dd><p>This built-in function implements an atomic compare and exchange operation.
This compares the contents of <code>*<var>ptr</var></code> with the contents of
<code>*<var>expected</var></code>. If equal, the operation is a <em>read-modify-write</em>
operation that writes <var>desired</var> into <code>*<var>ptr</var></code>. If they are not
equal, the operation is a <em>read</em> and the current contents of
<code>*<var>ptr</var></code> are written into <code>*<var>expected</var></code>. <var>weak</var> is true
for weak compare_exchange, which may fail spuriously, and false for
the strong variation, which never fails spuriously. Many targets
only offer the strong variation and ignore the parameter. When in doubt, use
the strong variation.
</p>
<p>If <var>desired</var> is written into <code>*<var>ptr</var></code> then true is returned
and memory is affected according to the
memory order specified by <var>success_memorder</var>. There are no
restrictions on what memory order can be used here.
</p>
<p>Otherwise, false is returned and memory is affected according
to <var>failure_memorder</var>. This memory order cannot be
<code>__ATOMIC_RELEASE</code> nor <code>__ATOMIC_ACQ_REL</code>. It also cannot be a
stronger order than that specified by <var>success_memorder</var>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fcompare_005fexchange"></a>Built-in Function: <em>bool</em> <strong>__atomic_compare_exchange</strong> <em>(<var>type</var> *ptr, <var>type</var> *expected, <var>type</var> *desired, bool weak, int success_memorder, int failure_memorder)</em></dt>
<dd><p>This built-in function implements the generic version of
<code>__atomic_compare_exchange</code>. The function is virtually identical to
<code>__atomic_compare_exchange_n</code>, except the desired value is also a
pointer.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fadd_005ffetch"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_add_fetch</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005fsub_005ffetch"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_sub_fetch</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005fand_005ffetch"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_and_fetch</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005fxor_005ffetch"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_xor_fetch</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005for_005ffetch"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_or_fetch</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005fnand_005ffetch"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_nand_fetch</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dd><p>These built-in functions perform the operation suggested by the name, and
return the result of the operation. Operations on pointer arguments are
performed as if the operands were of the <code>uintptr_t</code> type. That is,
they are not scaled by the size of the type to which the pointer points.
</p>
<div class="smallexample">
<pre class="smallexample">{ *ptr <var>op</var>= val; return *ptr; }
</pre></div>
<p>The object pointed to by the first argument must be of integer or pointer
type. It must not be a boolean type. All memory orders are valid.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005ffetch_005fadd"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_fetch_add</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005ffetch_005fsub"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_fetch_sub</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005ffetch_005fand"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_fetch_and</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005ffetch_005fxor"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_fetch_xor</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005ffetch_005for"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_fetch_or</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dt><a name="index-_005f_005fatomic_005ffetch_005fnand"></a>Built-in Function: <em><var>type</var></em> <strong>__atomic_fetch_nand</strong> <em>(<var>type</var> *ptr, <var>type</var> val, int memorder)</em></dt>
<dd><p>These built-in functions perform the operation suggested by the name, and
return the value that had previously been in <code>*<var>ptr</var></code>. Operations
on pointer arguments are performed as if the operands were of
the <code>uintptr_t</code> type. That is, they are not scaled by the size of
the type to which the pointer points.
</p>
<div class="smallexample">
<pre class="smallexample">{ tmp = *ptr; *ptr <var>op</var>= val; return tmp; }
</pre></div>
<p>The same constraints on arguments apply as for the corresponding
<code>__atomic_op_fetch</code> built-in functions. All memory orders are valid.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005ftest_005fand_005fset"></a>Built-in Function: <em>bool</em> <strong>__atomic_test_and_set</strong> <em>(void *ptr, int memorder)</em></dt>
<dd>
<p>This built-in function performs an atomic test-and-set operation on
the byte at <code>*<var>ptr</var></code>. The byte is set to some implementation
defined nonzero “set” value and the return value is <code>true</code> if and only
if the previous contents were “set”.
It should be only used for operands of type <code>bool</code> or <code>char</code>. For
other types only part of the value may be set.
</p>
<p>All memory orders are valid.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fclear"></a>Built-in Function: <em>void</em> <strong>__atomic_clear</strong> <em>(bool *ptr, int memorder)</em></dt>
<dd>
<p>This built-in function performs an atomic clear operation on
<code>*<var>ptr</var></code>. After the operation, <code>*<var>ptr</var></code> contains 0.
It should be only used for operands of type <code>bool</code> or <code>char</code> and
in conjunction with <code>__atomic_test_and_set</code>.
For other types it may only clear partially. If the type is not <code>bool</code>
prefer using <code>__atomic_store</code>.
</p>
<p>The valid memory order variants are
<code>__ATOMIC_RELAXED</code>, <code>__ATOMIC_SEQ_CST</code>, and
<code>__ATOMIC_RELEASE</code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fthread_005ffence"></a>Built-in Function: <em>void</em> <strong>__atomic_thread_fence</strong> <em>(int memorder)</em></dt>
<dd>
<p>This built-in function acts as a synchronization fence between threads
based on the specified memory order.
</p>
<p>All memory orders are valid.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fsignal_005ffence"></a>Built-in Function: <em>void</em> <strong>__atomic_signal_fence</strong> <em>(int memorder)</em></dt>
<dd>
<p>This built-in function acts as a synchronization fence between a thread
and signal handlers based in the same thread.
</p>
<p>All memory orders are valid.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005falways_005flock_005ffree"></a>Built-in Function: <em>bool</em> <strong>__atomic_always_lock_free</strong> <em>(size_t size, void *ptr)</em></dt>
<dd>
<p>This built-in function returns true if objects of <var>size</var> bytes always
generate lock-free atomic instructions for the target architecture.
<var>size</var> must resolve to a compile-time constant and the result also
resolves to a compile-time constant.
</p>
<p><var>ptr</var> is an optional pointer to the object that may be used to determine
alignment. A value of 0 indicates typical alignment should be used. The
compiler may also ignore this parameter.
</p>
<div class="smallexample">
<pre class="smallexample">if (__atomic_always_lock_free (sizeof (long long), 0))
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fatomic_005fis_005flock_005ffree"></a>Built-in Function: <em>bool</em> <strong>__atomic_is_lock_free</strong> <em>(size_t size, void *ptr)</em></dt>
<dd>
<p>This built-in function returns true if objects of <var>size</var> bytes always
generate lock-free atomic instructions for the target architecture. If
the built-in function is not known to be lock-free, a call is made to a
runtime routine named <code>__atomic_is_lock_free</code>.
</p>
<p><var>ptr</var> is an optional pointer to the object that may be used to determine
alignment. A value of 0 indicates typical alignment should be used. The
compiler may also ignore this parameter.
</p></dd></dl>
<hr>
<a name="Integer-Overflow-Builtins"></a>
<div class="header">
<p>
Next: <a href="#x86-specific-memory-model-extensions-for-transactional-memory" accesskey="n" rel="next">x86 specific memory model extensions for transactional memory</a>, Previous: <a href="#g_t_005f_005fatomic-Builtins" accesskey="p" rel="prev">__atomic Builtins</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Built_002din-Functions-to-Perform-Arithmetic-with-Overflow-Checking"></a>
<h3 class="section">6.54 Built-in Functions to Perform Arithmetic with Overflow Checking</h3>
<p>The following built-in functions allow performing simple arithmetic operations
together with checking whether the operations overflowed.
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fadd_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_add_overflow</strong> <em>(<var>type1</var> a, <var>type2</var> b, <var>type3</var> *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fsadd_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_sadd_overflow</strong> <em>(int a, int b, int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fsaddl_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_saddl_overflow</strong> <em>(long int a, long int b, long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fsaddll_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_saddll_overflow</strong> <em>(long long int a, long long int b, long long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fuadd_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_uadd_overflow</strong> <em>(unsigned int a, unsigned int b, unsigned int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fuaddl_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_uaddl_overflow</strong> <em>(unsigned long int a, unsigned long int b, unsigned long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fuaddll_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_uaddll_overflow</strong> <em>(unsigned long long int a, unsigned long long int b, unsigned long long int *res)</em></dt>
<dd>
<p>These built-in functions promote the first two operands into infinite precision signed
type and perform addition on those promoted operands. The result is then
cast to the type the third pointer argument points to and stored there.
If the stored result is equal to the infinite precision result, the built-in
functions return false, otherwise they return true. As the addition is
performed in infinite signed precision, these built-in functions have fully defined
behavior for all argument values.
</p>
<p>The first built-in function allows arbitrary integral types for operands and
the result type must be pointer to some integral type other than enumerated or
boolean type, the rest of the built-in functions have explicit integer types.
</p>
<p>The compiler will attempt to use hardware instructions to implement
these built-in functions where possible, like conditional jump on overflow
after addition, conditional jump on carry etc.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fsub_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_sub_overflow</strong> <em>(<var>type1</var> a, <var>type2</var> b, <var>type3</var> *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fssub_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_ssub_overflow</strong> <em>(int a, int b, int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fssubl_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_ssubl_overflow</strong> <em>(long int a, long int b, long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fssubll_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_ssubll_overflow</strong> <em>(long long int a, long long int b, long long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fusub_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_usub_overflow</strong> <em>(unsigned int a, unsigned int b, unsigned int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fusubl_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_usubl_overflow</strong> <em>(unsigned long int a, unsigned long int b, unsigned long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fusubll_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_usubll_overflow</strong> <em>(unsigned long long int a, unsigned long long int b, unsigned long long int *res)</em></dt>
<dd>
<p>These built-in functions are similar to the add overflow checking built-in
functions above, except they perform subtraction, subtract the second argument
from the first one, instead of addition.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fmul_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_mul_overflow</strong> <em>(<var>type1</var> a, <var>type2</var> b, <var>type3</var> *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fsmul_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_smul_overflow</strong> <em>(int a, int b, int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fsmull_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_smull_overflow</strong> <em>(long int a, long int b, long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fsmulll_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_smulll_overflow</strong> <em>(long long int a, long long int b, long long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fumul_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_umul_overflow</strong> <em>(unsigned int a, unsigned int b, unsigned int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fumull_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_umull_overflow</strong> <em>(unsigned long int a, unsigned long int b, unsigned long int *res)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fumulll_005foverflow"></a>Built-in Function: <em>bool</em> <strong>__builtin_umulll_overflow</strong> <em>(unsigned long long int a, unsigned long long int b, unsigned long long int *res)</em></dt>
<dd>
<p>These built-in functions are similar to the add overflow checking built-in
functions above, except they perform multiplication, instead of addition.
</p>
</dd></dl>
<p>The following built-in functions allow checking if simple arithmetic operation
would overflow.
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fadd_005foverflow_005fp"></a>Built-in Function: <em>bool</em> <strong>__builtin_add_overflow_p</strong> <em>(<var>type1</var> a, <var>type2</var> b, <var>type3</var> c)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fsub_005foverflow_005fp"></a>Built-in Function: <em>bool</em> <strong>__builtin_sub_overflow_p</strong> <em>(<var>type1</var> a, <var>type2</var> b, <var>type3</var> c)</em></dt>
<dt><a name="index-_005f_005fbuiltin_005fmul_005foverflow_005fp"></a>Built-in Function: <em>bool</em> <strong>__builtin_mul_overflow_p</strong> <em>(<var>type1</var> a, <var>type2</var> b, <var>type3</var> c)</em></dt>
<dd>
<p>These built-in functions are similar to <code>__builtin_add_overflow</code>,
<code>__builtin_sub_overflow</code>, or <code>__builtin_mul_overflow</code>, except that
they don’t store the result of the arithmetic operation anywhere and the
last argument is not a pointer, but some expression with integral type other
than enumerated or boolean type.
</p>
<p>The built-in functions promote the first two operands into infinite precision signed type
and perform addition on those promoted operands. The result is then
cast to the type of the third argument. If the cast result is equal to the infinite
precision result, the built-in functions return false, otherwise they return true.
The value of the third argument is ignored, just the side effects in the third argument
are evaluated, and no integral argument promotions are performed on the last argument.
If the third argument is a bit-field, the type used for the result cast has the
precision and signedness of the given bit-field, rather than precision and signedness
of the underlying type.
</p>
<p>For example, the following macro can be used to portably check, at
compile-time, whether or not adding two constant integers will overflow,
and perform the addition only when it is known to be safe and not to trigger
a <samp>-Woverflow</samp> warning.
</p>
<div class="smallexample">
<pre class="smallexample">#define INT_ADD_OVERFLOW_P(a, b) \
__builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
enum {
A = INT_MAX, B = 3,
C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
};
</pre></div>
<p>The compiler will attempt to use hardware instructions to implement
these built-in functions where possible, like conditional jump on overflow
after addition, conditional jump on carry etc.
</p>
</dd></dl>
<hr>
<a name="x86-specific-memory-model-extensions-for-transactional-memory"></a>
<div class="header">
<p>
Next: <a href="#Object-Size-Checking" accesskey="n" rel="next">Object Size Checking</a>, Previous: <a href="#Integer-Overflow-Builtins" accesskey="p" rel="prev">Integer Overflow Builtins</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86_002dSpecific-Memory-Model-Extensions-for-Transactional-Memory"></a>
<h3 class="section">6.55 x86-Specific Memory Model Extensions for Transactional Memory</h3>
<p>The x86 architecture supports additional memory ordering flags
to mark critical sections for hardware lock elision.
These must be specified in addition to an existing memory order to
atomic intrinsics.
</p>
<dl compact="compact">
<dt><code>__ATOMIC_HLE_ACQUIRE</code></dt>
<dd><p>Start lock elision on a lock variable.
Memory order must be <code>__ATOMIC_ACQUIRE</code> or stronger.
</p></dd>
<dt><code>__ATOMIC_HLE_RELEASE</code></dt>
<dd><p>End lock elision on a lock variable.
Memory order must be <code>__ATOMIC_RELEASE</code> or stronger.
</p></dd>
</dl>
<p>When a lock acquire fails, it is required for good performance to abort
the transaction quickly. This can be done with a <code>_mm_pause</code>.
</p>
<div class="smallexample">
<pre class="smallexample">#include <immintrin.h> // For _mm_pause
int lockvar;
/* Acquire lock with lock elision */
while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
_mm_pause(); /* Abort failed transaction */
...
/* Free lock with lock elision */
__atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
</pre></div>
<hr>
<a name="Object-Size-Checking"></a>
<div class="header">
<p>
Next: <a href="#Pointer-Bounds-Checker-builtins" accesskey="n" rel="next">Pointer Bounds Checker builtins</a>, Previous: <a href="#x86-specific-memory-model-extensions-for-transactional-memory" accesskey="p" rel="prev">x86 specific memory model extensions for transactional memory</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Object-Size-Checking-Built_002din-Functions"></a>
<h3 class="section">6.56 Object Size Checking Built-in Functions</h3>
<a name="index-_005f_005fbuiltin_005fobject_005fsize"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fmemcpy_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fmempcpy_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fmemmove_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fmemset_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fstrcpy_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fstpcpy_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fstrncpy_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fstrcat_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fstrncat_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fsprintf_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fsnprintf_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fvsprintf_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fvsnprintf_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fprintf_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fvprintf_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005ffprintf_005fchk"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fvfprintf_005fchk"></a>
<p>GCC implements a limited buffer overflow protection mechanism that can
prevent some buffer overflow attacks by determining the sizes of objects
into which data is about to be written and preventing the writes when
the size isn’t sufficient. The built-in functions described below yield
the best results when used together and when optimization is enabled.
For example, to detect object sizes across function boundaries or to
follow pointer assignments through non-trivial control flow they rely
on various optimization passes enabled with <samp>-O2</samp>. However, to
a limited extent, they can be used without optimization as well.
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fobject_005fsize-1"></a>Built-in Function: <em>size_t</em> <strong>__builtin_object_size</strong> <em>(const void * <var>ptr</var>, int <var>type</var>)</em></dt>
<dd><p>is a built-in construct that returns a constant number of bytes from
<var>ptr</var> to the end of the object <var>ptr</var> pointer points to
(if known at compile time). <code>__builtin_object_size</code> never evaluates
its arguments for side effects. If there are any side effects in them, it
returns <code>(size_t) -1</code> for <var>type</var> 0 or 1 and <code>(size_t) 0</code>
for <var>type</var> 2 or 3. If there are multiple objects <var>ptr</var> can
point to and all of them are known at compile time, the returned number
is the maximum of remaining byte counts in those objects if <var>type</var> & 2 is
0 and minimum if nonzero. If it is not possible to determine which objects
<var>ptr</var> points to at compile time, <code>__builtin_object_size</code> should
return <code>(size_t) -1</code> for <var>type</var> 0 or 1 and <code>(size_t) 0</code>
for <var>type</var> 2 or 3.
</p>
<p><var>type</var> is an integer constant from 0 to 3. If the least significant
bit is clear, objects are whole variables, if it is set, a closest
surrounding subobject is considered the object a pointer points to.
The second bit determines if maximum or minimum of remaining bytes
is computed.
</p>
<div class="smallexample">
<pre class="smallexample">struct V { char buf1[10]; int b; char buf2[10]; } var;
char *p = &var.buf1[1], *q = &var.b;
/* Here the object p points to is var. */
assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
/* The subobject p points to is var.buf1. */
assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
/* The object q points to is var. */
assert (__builtin_object_size (q, 0)
== (char *) (&var + 1) - (char *) &var.b);
/* The subobject q points to is var.b. */
assert (__builtin_object_size (q, 1) == sizeof (var.b));
</pre></div>
</dd></dl>
<p>There are built-in functions added for many common string operation
functions, e.g., for <code>memcpy</code> <code>__builtin___memcpy_chk</code>
built-in is provided. This built-in has an additional last argument,
which is the number of bytes remaining in the object the <var>dest</var>
argument points to or <code>(size_t) -1</code> if the size is not known.
</p>
<p>The built-in functions are optimized into the normal string functions
like <code>memcpy</code> if the last argument is <code>(size_t) -1</code> or if
it is known at compile time that the destination object will not
be overflowed. If the compiler can determine at compile time that the
object will always be overflowed, it issues a warning.
</p>
<p>The intended use can be e.g.
</p>
<div class="smallexample">
<pre class="smallexample">#undef memcpy
#define bos0(dest) __builtin_object_size (dest, 0)
#define memcpy(dest, src, n) \
__builtin___memcpy_chk (dest, src, n, bos0 (dest))
char *volatile p;
char buf[10];
/* It is unknown what object p points to, so this is optimized
into plain memcpy - no checking is possible. */
memcpy (p, "abcde", n);
/* Destination is known and length too. It is known at compile
time there will be no overflow. */
memcpy (&buf[5], "abcde", 5);
/* Destination is known, but the length is not known at compile time.
This will result in __memcpy_chk call that can check for overflow
at run time. */
memcpy (&buf[5], "abcde", n);
/* Destination is known and it is known at compile time there will
be overflow. There will be a warning and __memcpy_chk call that
will abort the program at run time. */
memcpy (&buf[6], "abcde", 5);
</pre></div>
<p>Such built-in functions are provided for <code>memcpy</code>, <code>mempcpy</code>,
<code>memmove</code>, <code>memset</code>, <code>strcpy</code>, <code>stpcpy</code>, <code>strncpy</code>,
<code>strcat</code> and <code>strncat</code>.
</p>
<p>There are also checking built-in functions for formatted output functions.
</p><div class="smallexample">
<pre class="smallexample">int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
const char *fmt, ...);
int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
va_list ap);
int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
const char *fmt, va_list ap);
</pre></div>
<p>The added <var>flag</var> argument is passed unchanged to <code>__sprintf_chk</code>
etc. functions and can contain implementation specific flags on what
additional security measures the checking function might take, such as
handling <code>%n</code> differently.
</p>
<p>The <var>os</var> argument is the object size <var>s</var> points to, like in the
other built-in functions. There is a small difference in the behavior
though, if <var>os</var> is <code>(size_t) -1</code>, the built-in functions are
optimized into the non-checking functions only if <var>flag</var> is 0, otherwise
the checking function is called with <var>os</var> argument set to
<code>(size_t) -1</code>.
</p>
<p>In addition to this, there are checking built-in functions
<code>__builtin___printf_chk</code>, <code>__builtin___vprintf_chk</code>,
<code>__builtin___fprintf_chk</code> and <code>__builtin___vfprintf_chk</code>.
These have just one additional argument, <var>flag</var>, right before
format string <var>fmt</var>. If the compiler is able to optimize them to
<code>fputc</code> etc. functions, it does, otherwise the checking function
is called and the <var>flag</var> argument passed to it.
</p>
<hr>
<a name="Pointer-Bounds-Checker-builtins"></a>
<div class="header">
<p>
Next: <a href="#Other-Builtins" accesskey="n" rel="next">Other Builtins</a>, Previous: <a href="#Object-Size-Checking" accesskey="p" rel="prev">Object Size Checking</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Pointer-Bounds-Checker-Built_002din-Functions"></a>
<h3 class="section">6.57 Pointer Bounds Checker Built-in Functions</h3>
<a name="index-Pointer-Bounds-Checker-builtins"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fset_005fptr_005fbounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fnarrow_005fptr_005fbounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fcopy_005fptr_005fbounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005finit_005fptr_005fbounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fnull_005fptr_005fbounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fstore_005fptr_005fbounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005flbounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005fubounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005fbounds"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fget_005fptr_005flbound"></a>
<a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fget_005fptr_005fubound"></a>
<p>GCC provides a set of built-in functions to control Pointer Bounds Checker
instrumentation. Note that all Pointer Bounds Checker builtins can be used
even if you compile with Pointer Bounds Checker off
(<samp>-fno-check-pointer-bounds</samp>).
The behavior may differ in such case as documented below.
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fset_005fptr_005fbounds-1"></a>Built-in Function: <em>void *</em> <strong>__builtin___bnd_set_ptr_bounds</strong> <em>(const void *<var>q</var>, size_t <var>size</var>)</em></dt>
<dd>
<p>This built-in function returns a new pointer with the value of <var>q</var>, and
associate it with the bounds [<var>q</var>, <var>q</var>+<var>size</var>-1]. With Pointer
Bounds Checker off, the built-in function just returns the first argument.
</p>
<div class="smallexample">
<pre class="smallexample">extern void *__wrap_malloc (size_t n)
{
void *p = (void *)__real_malloc (n);
if (!p) return __builtin___bnd_null_ptr_bounds (p);
return __builtin___bnd_set_ptr_bounds (p, n);
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fnarrow_005fptr_005fbounds-1"></a>Built-in Function: <em>void *</em> <strong>__builtin___bnd_narrow_ptr_bounds</strong> <em>(const void *<var>p</var>, const void *<var>q</var>, size_t <var>size</var>)</em></dt>
<dd>
<p>This built-in function returns a new pointer with the value of <var>p</var>
and associates it with the narrowed bounds formed by the intersection
of bounds associated with <var>q</var> and the bounds
[<var>p</var>, <var>p</var> + <var>size</var> - 1].
With Pointer Bounds Checker off, the built-in function just returns the first
argument.
</p>
<div class="smallexample">
<pre class="smallexample">void init_objects (object *objs, size_t size)
{
size_t i;
/* Initialize objects one-by-one passing pointers with bounds of
an object, not the full array of objects. */
for (i = 0; i < size; i++)
init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
sizeof(object)));
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fcopy_005fptr_005fbounds-1"></a>Built-in Function: <em>void *</em> <strong>__builtin___bnd_copy_ptr_bounds</strong> <em>(const void *<var>q</var>, const void *<var>r</var>)</em></dt>
<dd>
<p>This built-in function returns a new pointer with the value of <var>q</var>,
and associates it with the bounds already associated with pointer <var>r</var>.
With Pointer Bounds Checker off, the built-in function just returns the first
argument.
</p>
<div class="smallexample">
<pre class="smallexample">/* Here is a way to get pointer to object's field but
still with the full object's bounds. */
int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
objptr);
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005finit_005fptr_005fbounds-1"></a>Built-in Function: <em>void *</em> <strong>__builtin___bnd_init_ptr_bounds</strong> <em>(const void *<var>q</var>)</em></dt>
<dd>
<p>This built-in function returns a new pointer with the value of <var>q</var>, and
associates it with INIT (allowing full memory access) bounds. With Pointer
Bounds Checker off, the built-in function just returns the first argument.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fnull_005fptr_005fbounds-1"></a>Built-in Function: <em>void *</em> <strong>__builtin___bnd_null_ptr_bounds</strong> <em>(const void *<var>q</var>)</em></dt>
<dd>
<p>This built-in function returns a new pointer with the value of <var>q</var>, and
associates it with NULL (allowing no memory access) bounds. With Pointer
Bounds Checker off, the built-in function just returns the first argument.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fstore_005fptr_005fbounds-1"></a>Built-in Function: <em>void</em> <strong>__builtin___bnd_store_ptr_bounds</strong> <em>(const void **<var>ptr_addr</var>, const void *<var>ptr_val</var>)</em></dt>
<dd>
<p>This built-in function stores the bounds associated with pointer <var>ptr_val</var>
and location <var>ptr_addr</var> into Bounds Table. This can be useful to propagate
bounds from legacy code without touching the associated pointer’s memory when
pointers are copied as integers. With Pointer Bounds Checker off, the built-in
function call is ignored.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005flbounds-1"></a>Built-in Function: <em>void</em> <strong>__builtin___bnd_chk_ptr_lbounds</strong> <em>(const void *<var>q</var>)</em></dt>
<dd>
<p>This built-in function checks if the pointer <var>q</var> is within the lower
bound of its associated bounds. With Pointer Bounds Checker off, the built-in
function call is ignored.
</p>
<div class="smallexample">
<pre class="smallexample">extern void *__wrap_memset (void *dst, int c, size_t len)
{
if (len > 0)
{
__builtin___bnd_chk_ptr_lbounds (dst);
__builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
__real_memset (dst, c, len);
}
return dst;
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005fubounds-1"></a>Built-in Function: <em>void</em> <strong>__builtin___bnd_chk_ptr_ubounds</strong> <em>(const void *<var>q</var>)</em></dt>
<dd>
<p>This built-in function checks if the pointer <var>q</var> is within the upper
bound of its associated bounds. With Pointer Bounds Checker off, the built-in
function call is ignored.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005fbounds-1"></a>Built-in Function: <em>void</em> <strong>__builtin___bnd_chk_ptr_bounds</strong> <em>(const void *<var>q</var>, size_t <var>size</var>)</em></dt>
<dd>
<p>This built-in function checks if [<var>q</var>, <var>q</var> + <var>size</var> - 1] is within
the lower and upper bounds associated with <var>q</var>. With Pointer Bounds Checker
off, the built-in function call is ignored.
</p>
<div class="smallexample">
<pre class="smallexample">extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
{
if (n > 0)
{
__bnd_chk_ptr_bounds (dst, n);
__bnd_chk_ptr_bounds (src, n);
__real_memcpy (dst, src, n);
}
return dst;
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fget_005fptr_005flbound-1"></a>Built-in Function: <em>const void *</em> <strong>__builtin___bnd_get_ptr_lbound</strong> <em>(const void *<var>q</var>)</em></dt>
<dd>
<p>This built-in function returns the lower bound associated
with the pointer <var>q</var>, as a pointer value.
This is useful for debugging using <code>printf</code>.
With Pointer Bounds Checker off, the built-in function returns 0.
</p>
<div class="smallexample">
<pre class="smallexample">void *lb = __builtin___bnd_get_ptr_lbound (q);
void *ub = __builtin___bnd_get_ptr_ubound (q);
printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fbnd_005fget_005fptr_005fubound-1"></a>Built-in Function: <em>const void *</em> <strong>__builtin___bnd_get_ptr_ubound</strong> <em>(const void *<var>q</var>)</em></dt>
<dd>
<p>This built-in function returns the upper bound (which is a pointer) associated
with the pointer <var>q</var>. With Pointer Bounds Checker off,
the built-in function returns -1.
</p>
</dd></dl>
<hr>
<a name="Other-Builtins"></a>
<div class="header">
<p>
Next: <a href="#Target-Builtins" accesskey="n" rel="next">Target Builtins</a>, Previous: <a href="#Pointer-Bounds-Checker-builtins" accesskey="p" rel="prev">Pointer Bounds Checker builtins</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Other-Built_002din-Functions-Provided-by-GCC"></a>
<h3 class="section">6.58 Other Built-in Functions Provided by GCC</h3>
<a name="index-built_002din-functions-1"></a>
<a name="index-_005f_005fbuiltin_005falloca"></a>
<a name="index-_005f_005fbuiltin_005falloca_005fwith_005falign"></a>
<a name="index-_005f_005fbuiltin_005falloca_005fwith_005falign_005fand_005fmax"></a>
<a name="index-_005f_005fbuiltin_005fcall_005fwith_005fstatic_005fchain"></a>
<a name="index-_005f_005fbuiltin_005fextend_005fpointer"></a>
<a name="index-_005f_005fbuiltin_005ffpclassify"></a>
<a name="index-_005f_005fbuiltin_005fisfinite"></a>
<a name="index-_005f_005fbuiltin_005fisnormal"></a>
<a name="index-_005f_005fbuiltin_005fisgreater"></a>
<a name="index-_005f_005fbuiltin_005fisgreaterequal"></a>
<a name="index-_005f_005fbuiltin_005fisinf_005fsign"></a>
<a name="index-_005f_005fbuiltin_005fisless"></a>
<a name="index-_005f_005fbuiltin_005fislessequal"></a>
<a name="index-_005f_005fbuiltin_005fislessgreater"></a>
<a name="index-_005f_005fbuiltin_005fisunordered"></a>
<a name="index-_005f_005fbuiltin_005fpowi"></a>
<a name="index-_005f_005fbuiltin_005fpowif"></a>
<a name="index-_005f_005fbuiltin_005fpowil"></a>
<a name="index-_005fExit"></a>
<a name="index-_005fexit"></a>
<a name="index-abort"></a>
<a name="index-abs"></a>
<a name="index-acos"></a>
<a name="index-acosf"></a>
<a name="index-acosh"></a>
<a name="index-acoshf"></a>
<a name="index-acoshl"></a>
<a name="index-acosl"></a>
<a name="index-alloca"></a>
<a name="index-asin"></a>
<a name="index-asinf"></a>
<a name="index-asinh"></a>
<a name="index-asinhf"></a>
<a name="index-asinhl"></a>
<a name="index-asinl"></a>
<a name="index-atan"></a>
<a name="index-atan2"></a>
<a name="index-atan2f"></a>
<a name="index-atan2l"></a>
<a name="index-atanf"></a>
<a name="index-atanh"></a>
<a name="index-atanhf"></a>
<a name="index-atanhl"></a>
<a name="index-atanl"></a>
<a name="index-bcmp"></a>
<a name="index-bzero"></a>
<a name="index-cabs"></a>
<a name="index-cabsf"></a>
<a name="index-cabsl"></a>
<a name="index-cacos"></a>
<a name="index-cacosf"></a>
<a name="index-cacosh"></a>
<a name="index-cacoshf"></a>
<a name="index-cacoshl"></a>
<a name="index-cacosl"></a>
<a name="index-calloc"></a>
<a name="index-carg"></a>
<a name="index-cargf"></a>
<a name="index-cargl"></a>
<a name="index-casin"></a>
<a name="index-casinf"></a>
<a name="index-casinh"></a>
<a name="index-casinhf"></a>
<a name="index-casinhl"></a>
<a name="index-casinl"></a>
<a name="index-catan"></a>
<a name="index-catanf"></a>
<a name="index-catanh"></a>
<a name="index-catanhf"></a>
<a name="index-catanhl"></a>
<a name="index-catanl"></a>
<a name="index-cbrt"></a>
<a name="index-cbrtf"></a>
<a name="index-cbrtl"></a>
<a name="index-ccos"></a>
<a name="index-ccosf"></a>
<a name="index-ccosh"></a>
<a name="index-ccoshf"></a>
<a name="index-ccoshl"></a>
<a name="index-ccosl"></a>
<a name="index-ceil"></a>
<a name="index-ceilf"></a>
<a name="index-ceill"></a>
<a name="index-cexp"></a>
<a name="index-cexpf"></a>
<a name="index-cexpl"></a>
<a name="index-cimag"></a>
<a name="index-cimagf"></a>
<a name="index-cimagl"></a>
<a name="index-clog"></a>
<a name="index-clogf"></a>
<a name="index-clogl"></a>
<a name="index-clog10"></a>
<a name="index-clog10f"></a>
<a name="index-clog10l"></a>
<a name="index-conj"></a>
<a name="index-conjf"></a>
<a name="index-conjl"></a>
<a name="index-copysign"></a>
<a name="index-copysignf"></a>
<a name="index-copysignl"></a>
<a name="index-cos"></a>
<a name="index-cosf"></a>
<a name="index-cosh"></a>
<a name="index-coshf"></a>
<a name="index-coshl"></a>
<a name="index-cosl"></a>
<a name="index-cpow"></a>
<a name="index-cpowf"></a>
<a name="index-cpowl"></a>
<a name="index-cproj"></a>
<a name="index-cprojf"></a>
<a name="index-cprojl"></a>
<a name="index-creal"></a>
<a name="index-crealf"></a>
<a name="index-creall"></a>
<a name="index-csin"></a>
<a name="index-csinf"></a>
<a name="index-csinh"></a>
<a name="index-csinhf"></a>
<a name="index-csinhl"></a>
<a name="index-csinl"></a>
<a name="index-csqrt"></a>
<a name="index-csqrtf"></a>
<a name="index-csqrtl"></a>
<a name="index-ctan"></a>
<a name="index-ctanf"></a>
<a name="index-ctanh"></a>
<a name="index-ctanhf"></a>
<a name="index-ctanhl"></a>
<a name="index-ctanl"></a>
<a name="index-dcgettext"></a>
<a name="index-dgettext"></a>
<a name="index-drem"></a>
<a name="index-dremf"></a>
<a name="index-dreml"></a>
<a name="index-erf"></a>
<a name="index-erfc"></a>
<a name="index-erfcf"></a>
<a name="index-erfcl"></a>
<a name="index-erff"></a>
<a name="index-erfl"></a>
<a name="index-exit"></a>
<a name="index-exp"></a>
<a name="index-exp10"></a>
<a name="index-exp10f"></a>
<a name="index-exp10l"></a>
<a name="index-exp2"></a>
<a name="index-exp2f"></a>
<a name="index-exp2l"></a>
<a name="index-expf"></a>
<a name="index-expl"></a>
<a name="index-expm1"></a>
<a name="index-expm1f"></a>
<a name="index-expm1l"></a>
<a name="index-fabs"></a>
<a name="index-fabsf"></a>
<a name="index-fabsl"></a>
<a name="index-fdim"></a>
<a name="index-fdimf"></a>
<a name="index-fdiml"></a>
<a name="index-ffs"></a>
<a name="index-floor"></a>
<a name="index-floorf"></a>
<a name="index-floorl"></a>
<a name="index-fma"></a>
<a name="index-fmaf"></a>
<a name="index-fmal"></a>
<a name="index-fmax"></a>
<a name="index-fmaxf"></a>
<a name="index-fmaxl"></a>
<a name="index-fmin"></a>
<a name="index-fminf"></a>
<a name="index-fminl"></a>
<a name="index-fmod"></a>
<a name="index-fmodf"></a>
<a name="index-fmodl"></a>
<a name="index-fprintf"></a>
<a name="index-fprintf_005funlocked"></a>
<a name="index-fputs"></a>
<a name="index-fputs_005funlocked"></a>
<a name="index-frexp"></a>
<a name="index-frexpf"></a>
<a name="index-frexpl"></a>
<a name="index-fscanf"></a>
<a name="index-gamma"></a>
<a name="index-gammaf"></a>
<a name="index-gammal"></a>
<a name="index-gamma_005fr"></a>
<a name="index-gammaf_005fr"></a>
<a name="index-gammal_005fr"></a>
<a name="index-gettext"></a>
<a name="index-hypot"></a>
<a name="index-hypotf"></a>
<a name="index-hypotl"></a>
<a name="index-ilogb"></a>
<a name="index-ilogbf"></a>
<a name="index-ilogbl"></a>
<a name="index-imaxabs"></a>
<a name="index-index"></a>
<a name="index-isalnum"></a>
<a name="index-isalpha"></a>
<a name="index-isascii"></a>
<a name="index-isblank"></a>
<a name="index-iscntrl"></a>
<a name="index-isdigit"></a>
<a name="index-isgraph"></a>
<a name="index-islower"></a>
<a name="index-isprint"></a>
<a name="index-ispunct"></a>
<a name="index-isspace"></a>
<a name="index-isupper"></a>
<a name="index-iswalnum"></a>
<a name="index-iswalpha"></a>
<a name="index-iswblank"></a>
<a name="index-iswcntrl"></a>
<a name="index-iswdigit"></a>
<a name="index-iswgraph"></a>
<a name="index-iswlower"></a>
<a name="index-iswprint"></a>
<a name="index-iswpunct"></a>
<a name="index-iswspace"></a>
<a name="index-iswupper"></a>
<a name="index-iswxdigit"></a>
<a name="index-isxdigit"></a>
<a name="index-j0"></a>
<a name="index-j0f"></a>
<a name="index-j0l"></a>
<a name="index-j1"></a>
<a name="index-j1f"></a>
<a name="index-j1l"></a>
<a name="index-jn"></a>
<a name="index-jnf"></a>
<a name="index-jnl"></a>
<a name="index-labs"></a>
<a name="index-ldexp"></a>
<a name="index-ldexpf"></a>
<a name="index-ldexpl"></a>
<a name="index-lgamma"></a>
<a name="index-lgammaf"></a>
<a name="index-lgammal"></a>
<a name="index-lgamma_005fr"></a>
<a name="index-lgammaf_005fr"></a>
<a name="index-lgammal_005fr"></a>
<a name="index-llabs"></a>
<a name="index-llrint"></a>
<a name="index-llrintf"></a>
<a name="index-llrintl"></a>
<a name="index-llround"></a>
<a name="index-llroundf"></a>
<a name="index-llroundl"></a>
<a name="index-log"></a>
<a name="index-log10"></a>
<a name="index-log10f"></a>
<a name="index-log10l"></a>
<a name="index-log1p"></a>
<a name="index-log1pf"></a>
<a name="index-log1pl"></a>
<a name="index-log2"></a>
<a name="index-log2f"></a>
<a name="index-log2l"></a>
<a name="index-logb"></a>
<a name="index-logbf"></a>
<a name="index-logbl"></a>
<a name="index-logf"></a>
<a name="index-logl"></a>
<a name="index-lrint"></a>
<a name="index-lrintf"></a>
<a name="index-lrintl"></a>
<a name="index-lround"></a>
<a name="index-lroundf"></a>
<a name="index-lroundl"></a>
<a name="index-malloc"></a>
<a name="index-memchr"></a>
<a name="index-memcmp"></a>
<a name="index-memcpy"></a>
<a name="index-mempcpy"></a>
<a name="index-memset"></a>
<a name="index-modf"></a>
<a name="index-modff"></a>
<a name="index-modfl"></a>
<a name="index-nearbyint"></a>
<a name="index-nearbyintf"></a>
<a name="index-nearbyintl"></a>
<a name="index-nextafter"></a>
<a name="index-nextafterf"></a>
<a name="index-nextafterl"></a>
<a name="index-nexttoward"></a>
<a name="index-nexttowardf"></a>
<a name="index-nexttowardl"></a>
<a name="index-pow"></a>
<a name="index-pow10"></a>
<a name="index-pow10f"></a>
<a name="index-pow10l"></a>
<a name="index-powf"></a>
<a name="index-powl"></a>
<a name="index-printf"></a>
<a name="index-printf_005funlocked"></a>
<a name="index-putchar"></a>
<a name="index-puts"></a>
<a name="index-remainder"></a>
<a name="index-remainderf"></a>
<a name="index-remainderl"></a>
<a name="index-remquo"></a>
<a name="index-remquof"></a>
<a name="index-remquol"></a>
<a name="index-rindex"></a>
<a name="index-rint"></a>
<a name="index-rintf"></a>
<a name="index-rintl"></a>
<a name="index-round"></a>
<a name="index-roundf"></a>
<a name="index-roundl"></a>
<a name="index-scalb"></a>
<a name="index-scalbf"></a>
<a name="index-scalbl"></a>
<a name="index-scalbln"></a>
<a name="index-scalblnf"></a>
<a name="index-scalblnf-1"></a>
<a name="index-scalbn"></a>
<a name="index-scalbnf"></a>
<a name="index-scanfnl"></a>
<a name="index-signbit"></a>
<a name="index-signbitf"></a>
<a name="index-signbitl"></a>
<a name="index-signbitd32"></a>
<a name="index-signbitd64"></a>
<a name="index-signbitd128"></a>
<a name="index-significand"></a>
<a name="index-significandf"></a>
<a name="index-significandl"></a>
<a name="index-sin"></a>
<a name="index-sincos"></a>
<a name="index-sincosf"></a>
<a name="index-sincosl"></a>
<a name="index-sinf"></a>
<a name="index-sinh"></a>
<a name="index-sinhf"></a>
<a name="index-sinhl"></a>
<a name="index-sinl"></a>
<a name="index-snprintf"></a>
<a name="index-sprintf"></a>
<a name="index-sqrt"></a>
<a name="index-sqrtf"></a>
<a name="index-sqrtl"></a>
<a name="index-sscanf"></a>
<a name="index-stpcpy"></a>
<a name="index-stpncpy"></a>
<a name="index-strcasecmp"></a>
<a name="index-strcat"></a>
<a name="index-strchr"></a>
<a name="index-strcmp"></a>
<a name="index-strcpy"></a>
<a name="index-strcspn"></a>
<a name="index-strdup"></a>
<a name="index-strfmon"></a>
<a name="index-strftime"></a>
<a name="index-strlen"></a>
<a name="index-strncasecmp"></a>
<a name="index-strncat"></a>
<a name="index-strncmp"></a>
<a name="index-strncpy"></a>
<a name="index-strndup"></a>
<a name="index-strpbrk"></a>
<a name="index-strrchr"></a>
<a name="index-strspn"></a>
<a name="index-strstr"></a>
<a name="index-tan"></a>
<a name="index-tanf"></a>
<a name="index-tanh"></a>
<a name="index-tanhf"></a>
<a name="index-tanhl"></a>
<a name="index-tanl"></a>
<a name="index-tgamma"></a>
<a name="index-tgammaf"></a>
<a name="index-tgammal"></a>
<a name="index-toascii"></a>
<a name="index-tolower"></a>
<a name="index-toupper"></a>
<a name="index-towlower"></a>
<a name="index-towupper"></a>
<a name="index-trunc"></a>
<a name="index-truncf"></a>
<a name="index-truncl"></a>
<a name="index-vfprintf"></a>
<a name="index-vfscanf"></a>
<a name="index-vprintf"></a>
<a name="index-vscanf"></a>
<a name="index-vsnprintf"></a>
<a name="index-vsprintf"></a>
<a name="index-vsscanf"></a>
<a name="index-y0"></a>
<a name="index-y0f"></a>
<a name="index-y0l"></a>
<a name="index-y1"></a>
<a name="index-y1f"></a>
<a name="index-y1l"></a>
<a name="index-yn"></a>
<a name="index-ynf"></a>
<a name="index-ynl"></a>
<p>GCC provides a large number of built-in functions other than the ones
mentioned above. Some of these are for internal use in the processing
of exceptions or variable-length argument lists and are not
documented here because they may change from time to time; we do not
recommend general use of these functions.
</p>
<p>The remaining functions are provided for optimization purposes.
</p>
<p>With the exception of built-ins that have library equivalents such as
the standard C library functions discussed below, or that expand to
library calls, GCC built-in functions are always expanded inline and
thus do not have corresponding entry points and their address cannot
be obtained. Attempting to use them in an expression other than
a function call results in a compile-time error.
</p>
<a name="index-fno_002dbuiltin-3"></a>
<p>GCC includes built-in versions of many of the functions in the standard
C library. These functions come in two forms: one whose names start with
the <code>__builtin_</code> prefix, and the other without. Both forms have the
same type (including prototype), the same address (when their address is
taken), and the same meaning as the C library functions even if you specify
the <samp>-fno-builtin</samp> option see <a href="#C-Dialect-Options">C Dialect Options</a>). Many of these
functions are only optimized in certain cases; if they are not optimized in
a particular case, a call to the library function is emitted.
</p>
<a name="index-ansi-2"></a>
<a name="index-std-2"></a>
<p>Outside strict ISO C mode (<samp>-ansi</samp>, <samp>-std=c90</samp>,
<samp>-std=c99</samp> or <samp>-std=c11</samp>), the functions
<code>_exit</code>, <code>alloca</code>, <code>bcmp</code>, <code>bzero</code>,
<code>dcgettext</code>, <code>dgettext</code>, <code>dremf</code>, <code>dreml</code>,
<code>drem</code>, <code>exp10f</code>, <code>exp10l</code>, <code>exp10</code>, <code>ffsll</code>,
<code>ffsl</code>, <code>ffs</code>, <code>fprintf_unlocked</code>,
<code>fputs_unlocked</code>, <code>gammaf</code>, <code>gammal</code>, <code>gamma</code>,
<code>gammaf_r</code>, <code>gammal_r</code>, <code>gamma_r</code>, <code>gettext</code>,
<code>index</code>, <code>isascii</code>, <code>j0f</code>, <code>j0l</code>, <code>j0</code>,
<code>j1f</code>, <code>j1l</code>, <code>j1</code>, <code>jnf</code>, <code>jnl</code>, <code>jn</code>,
<code>lgammaf_r</code>, <code>lgammal_r</code>, <code>lgamma_r</code>, <code>mempcpy</code>,
<code>pow10f</code>, <code>pow10l</code>, <code>pow10</code>, <code>printf_unlocked</code>,
<code>rindex</code>, <code>scalbf</code>, <code>scalbl</code>, <code>scalb</code>,
<code>signbit</code>, <code>signbitf</code>, <code>signbitl</code>, <code>signbitd32</code>,
<code>signbitd64</code>, <code>signbitd128</code>, <code>significandf</code>,
<code>significandl</code>, <code>significand</code>, <code>sincosf</code>,
<code>sincosl</code>, <code>sincos</code>, <code>stpcpy</code>, <code>stpncpy</code>,
<code>strcasecmp</code>, <code>strdup</code>, <code>strfmon</code>, <code>strncasecmp</code>,
<code>strndup</code>, <code>toascii</code>, <code>y0f</code>, <code>y0l</code>, <code>y0</code>,
<code>y1f</code>, <code>y1l</code>, <code>y1</code>, <code>ynf</code>, <code>ynl</code> and
<code>yn</code>
may be handled as built-in functions.
All these functions have corresponding versions
prefixed with <code>__builtin_</code>, which may be used even in strict C90
mode.
</p>
<p>The ISO C99 functions
<code>_Exit</code>, <code>acoshf</code>, <code>acoshl</code>, <code>acosh</code>, <code>asinhf</code>,
<code>asinhl</code>, <code>asinh</code>, <code>atanhf</code>, <code>atanhl</code>, <code>atanh</code>,
<code>cabsf</code>, <code>cabsl</code>, <code>cabs</code>, <code>cacosf</code>, <code>cacoshf</code>,
<code>cacoshl</code>, <code>cacosh</code>, <code>cacosl</code>, <code>cacos</code>,
<code>cargf</code>, <code>cargl</code>, <code>carg</code>, <code>casinf</code>, <code>casinhf</code>,
<code>casinhl</code>, <code>casinh</code>, <code>casinl</code>, <code>casin</code>,
<code>catanf</code>, <code>catanhf</code>, <code>catanhl</code>, <code>catanh</code>,
<code>catanl</code>, <code>catan</code>, <code>cbrtf</code>, <code>cbrtl</code>, <code>cbrt</code>,
<code>ccosf</code>, <code>ccoshf</code>, <code>ccoshl</code>, <code>ccosh</code>, <code>ccosl</code>,
<code>ccos</code>, <code>cexpf</code>, <code>cexpl</code>, <code>cexp</code>, <code>cimagf</code>,
<code>cimagl</code>, <code>cimag</code>, <code>clogf</code>, <code>clogl</code>, <code>clog</code>,
<code>conjf</code>, <code>conjl</code>, <code>conj</code>, <code>copysignf</code>, <code>copysignl</code>,
<code>copysign</code>, <code>cpowf</code>, <code>cpowl</code>, <code>cpow</code>, <code>cprojf</code>,
<code>cprojl</code>, <code>cproj</code>, <code>crealf</code>, <code>creall</code>, <code>creal</code>,
<code>csinf</code>, <code>csinhf</code>, <code>csinhl</code>, <code>csinh</code>, <code>csinl</code>,
<code>csin</code>, <code>csqrtf</code>, <code>csqrtl</code>, <code>csqrt</code>, <code>ctanf</code>,
<code>ctanhf</code>, <code>ctanhl</code>, <code>ctanh</code>, <code>ctanl</code>, <code>ctan</code>,
<code>erfcf</code>, <code>erfcl</code>, <code>erfc</code>, <code>erff</code>, <code>erfl</code>,
<code>erf</code>, <code>exp2f</code>, <code>exp2l</code>, <code>exp2</code>, <code>expm1f</code>,
<code>expm1l</code>, <code>expm1</code>, <code>fdimf</code>, <code>fdiml</code>, <code>fdim</code>,
<code>fmaf</code>, <code>fmal</code>, <code>fmaxf</code>, <code>fmaxl</code>, <code>fmax</code>,
<code>fma</code>, <code>fminf</code>, <code>fminl</code>, <code>fmin</code>, <code>hypotf</code>,
<code>hypotl</code>, <code>hypot</code>, <code>ilogbf</code>, <code>ilogbl</code>, <code>ilogb</code>,
<code>imaxabs</code>, <code>isblank</code>, <code>iswblank</code>, <code>lgammaf</code>,
<code>lgammal</code>, <code>lgamma</code>, <code>llabs</code>, <code>llrintf</code>, <code>llrintl</code>,
<code>llrint</code>, <code>llroundf</code>, <code>llroundl</code>, <code>llround</code>,
<code>log1pf</code>, <code>log1pl</code>, <code>log1p</code>, <code>log2f</code>, <code>log2l</code>,
<code>log2</code>, <code>logbf</code>, <code>logbl</code>, <code>logb</code>, <code>lrintf</code>,
<code>lrintl</code>, <code>lrint</code>, <code>lroundf</code>, <code>lroundl</code>,
<code>lround</code>, <code>nearbyintf</code>, <code>nearbyintl</code>, <code>nearbyint</code>,
<code>nextafterf</code>, <code>nextafterl</code>, <code>nextafter</code>,
<code>nexttowardf</code>, <code>nexttowardl</code>, <code>nexttoward</code>,
<code>remainderf</code>, <code>remainderl</code>, <code>remainder</code>, <code>remquof</code>,
<code>remquol</code>, <code>remquo</code>, <code>rintf</code>, <code>rintl</code>, <code>rint</code>,
<code>roundf</code>, <code>roundl</code>, <code>round</code>, <code>scalblnf</code>,
<code>scalblnl</code>, <code>scalbln</code>, <code>scalbnf</code>, <code>scalbnl</code>,
<code>scalbn</code>, <code>snprintf</code>, <code>tgammaf</code>, <code>tgammal</code>,
<code>tgamma</code>, <code>truncf</code>, <code>truncl</code>, <code>trunc</code>,
<code>vfscanf</code>, <code>vscanf</code>, <code>vsnprintf</code> and <code>vsscanf</code>
are handled as built-in functions
except in strict ISO C90 mode (<samp>-ansi</samp> or <samp>-std=c90</samp>).
</p>
<p>There are also built-in versions of the ISO C99 functions
<code>acosf</code>, <code>acosl</code>, <code>asinf</code>, <code>asinl</code>, <code>atan2f</code>,
<code>atan2l</code>, <code>atanf</code>, <code>atanl</code>, <code>ceilf</code>, <code>ceill</code>,
<code>cosf</code>, <code>coshf</code>, <code>coshl</code>, <code>cosl</code>, <code>expf</code>,
<code>expl</code>, <code>fabsf</code>, <code>fabsl</code>, <code>floorf</code>, <code>floorl</code>,
<code>fmodf</code>, <code>fmodl</code>, <code>frexpf</code>, <code>frexpl</code>, <code>ldexpf</code>,
<code>ldexpl</code>, <code>log10f</code>, <code>log10l</code>, <code>logf</code>, <code>logl</code>,
<code>modfl</code>, <code>modf</code>, <code>powf</code>, <code>powl</code>, <code>sinf</code>,
<code>sinhf</code>, <code>sinhl</code>, <code>sinl</code>, <code>sqrtf</code>, <code>sqrtl</code>,
<code>tanf</code>, <code>tanhf</code>, <code>tanhl</code> and <code>tanl</code>
that are recognized in any mode since ISO C90 reserves these names for
the purpose to which ISO C99 puts them. All these functions have
corresponding versions prefixed with <code>__builtin_</code>.
</p>
<p>There are also built-in functions <code>__builtin_fabsf<var>n</var></code>,
<code>__builtin_fabsf<var>n</var>x</code>, <code>__builtin_copysignf<var>n</var></code> and
<code>__builtin_copysignf<var>n</var>x</code>, corresponding to the TS 18661-3
functions <code>fabsf<var>n</var></code>, <code>fabsf<var>n</var>x</code>,
<code>copysignf<var>n</var></code> and <code>copysignf<var>n</var>x</code>, for supported
types <code>_Float<var>n</var></code> and <code>_Float<var>n</var>x</code>.
</p>
<p>There are also GNU extension functions <code>clog10</code>, <code>clog10f</code> and
<code>clog10l</code> which names are reserved by ISO C99 for future use.
All these functions have versions prefixed with <code>__builtin_</code>.
</p>
<p>The ISO C94 functions
<code>iswalnum</code>, <code>iswalpha</code>, <code>iswcntrl</code>, <code>iswdigit</code>,
<code>iswgraph</code>, <code>iswlower</code>, <code>iswprint</code>, <code>iswpunct</code>,
<code>iswspace</code>, <code>iswupper</code>, <code>iswxdigit</code>, <code>towlower</code> and
<code>towupper</code>
are handled as built-in functions
except in strict ISO C90 mode (<samp>-ansi</samp> or <samp>-std=c90</samp>).
</p>
<p>The ISO C90 functions
<code>abort</code>, <code>abs</code>, <code>acos</code>, <code>asin</code>, <code>atan2</code>,
<code>atan</code>, <code>calloc</code>, <code>ceil</code>, <code>cosh</code>, <code>cos</code>,
<code>exit</code>, <code>exp</code>, <code>fabs</code>, <code>floor</code>, <code>fmod</code>,
<code>fprintf</code>, <code>fputs</code>, <code>frexp</code>, <code>fscanf</code>,
<code>isalnum</code>, <code>isalpha</code>, <code>iscntrl</code>, <code>isdigit</code>,
<code>isgraph</code>, <code>islower</code>, <code>isprint</code>, <code>ispunct</code>,
<code>isspace</code>, <code>isupper</code>, <code>isxdigit</code>, <code>tolower</code>,
<code>toupper</code>, <code>labs</code>, <code>ldexp</code>, <code>log10</code>, <code>log</code>,
<code>malloc</code>, <code>memchr</code>, <code>memcmp</code>, <code>memcpy</code>,
<code>memset</code>, <code>modf</code>, <code>pow</code>, <code>printf</code>, <code>putchar</code>,
<code>puts</code>, <code>scanf</code>, <code>sinh</code>, <code>sin</code>, <code>snprintf</code>,
<code>sprintf</code>, <code>sqrt</code>, <code>sscanf</code>, <code>strcat</code>,
<code>strchr</code>, <code>strcmp</code>, <code>strcpy</code>, <code>strcspn</code>,
<code>strlen</code>, <code>strncat</code>, <code>strncmp</code>, <code>strncpy</code>,
<code>strpbrk</code>, <code>strrchr</code>, <code>strspn</code>, <code>strstr</code>,
<code>tanh</code>, <code>tan</code>, <code>vfprintf</code>, <code>vprintf</code> and <code>vsprintf</code>
are all recognized as built-in functions unless
<samp>-fno-builtin</samp> is specified (or <samp>-fno-builtin-<var>function</var></samp>
is specified for an individual function). All of these functions have
corresponding versions prefixed with <code>__builtin_</code>.
</p>
<p>GCC provides built-in versions of the ISO C99 floating-point comparison
macros that avoid raising exceptions for unordered operands. They have
the same names as the standard macros ( <code>isgreater</code>,
<code>isgreaterequal</code>, <code>isless</code>, <code>islessequal</code>,
<code>islessgreater</code>, and <code>isunordered</code>) , with <code>__builtin_</code>
prefixed. We intend for a library implementor to be able to simply
<code>#define</code> each standard macro to its built-in equivalent.
In the same fashion, GCC provides <code>fpclassify</code>, <code>isfinite</code>,
<code>isinf_sign</code>, <code>isnormal</code> and <code>signbit</code> built-ins used with
<code>__builtin_</code> prefixed. The <code>isinf</code> and <code>isnan</code>
built-in functions appear both with and without the <code>__builtin_</code> prefix.
</p>
<dl>
<dt><a name="index-_002a_005f_005fbuiltin_005falloca"></a>Built-in Function: <em>void</em> <strong>*__builtin_alloca</strong> <em>(size_t size)</em></dt>
<dd><p>The <code>__builtin_alloca</code> function must be called at block scope.
The function allocates an object <var>size</var> bytes large on the stack
of the calling function. The object is aligned on the default stack
alignment boundary for the target determined by the
<code>__BIGGEST_ALIGNMENT__</code> macro. The <code>__builtin_alloca</code>
function returns a pointer to the first byte of the allocated object.
The lifetime of the allocated object ends just before the calling
function returns to its caller. This is so even when
<code>__builtin_alloca</code> is called within a nested block.
</p>
<p>For example, the following function allocates eight objects of <code>n</code>
bytes each on the stack, storing a pointer to each in consecutive elements
of the array <code>a</code>. It then passes the array to function <code>g</code>
which can safely use the storage pointed to by each of the array elements.
</p>
<div class="smallexample">
<pre class="smallexample">void f (unsigned n)
{
void *a [8];
for (int i = 0; i != 8; ++i)
a [i] = __builtin_alloca (n);
g (a, n); // <span class="roman">safe</span>
}
</pre></div>
<p>Since the <code>__builtin_alloca</code> function doesn’t validate its argument
it is the responsibility of its caller to make sure the argument doesn’t
cause it to exceed the stack size limit.
The <code>__builtin_alloca</code> function is provided to make it possible to
allocate on the stack arrays of bytes with an upper bound that may be
computed at run time. Since C99 Variable Length Arrays offer
similar functionality under a portable, more convenient, and safer
interface they are recommended instead, in both C99 and C++ programs
where GCC provides them as an extension.
See <a href="#Variable-Length">Variable Length</a>, for details.
</p>
</dd></dl>
<dl>
<dt><a name="index-_002a_005f_005fbuiltin_005falloca_005fwith_005falign"></a>Built-in Function: <em>void</em> <strong>*__builtin_alloca_with_align</strong> <em>(size_t size, size_t alignment)</em></dt>
<dd><p>The <code>__builtin_alloca_with_align</code> function must be called at block
scope. The function allocates an object <var>size</var> bytes large on
the stack of the calling function. The allocated object is aligned on
the boundary specified by the argument <var>alignment</var> whose unit is given
in bits (not bytes). The <var>size</var> argument must be positive and not
exceed the stack size limit. The <var>alignment</var> argument must be a constant
integer expression that evaluates to a power of 2 greater than or equal to
<code>CHAR_BIT</code> and less than some unspecified maximum. Invocations
with other values are rejected with an error indicating the valid bounds.
The function returns a pointer to the first byte of the allocated object.
The lifetime of the allocated object ends at the end of the block in which
the function was called. The allocated storage is released no later than
just before the calling function returns to its caller, but may be released
at the end of the block in which the function was called.
</p>
<p>For example, in the following function the call to <code>g</code> is unsafe
because when <code>overalign</code> is non-zero, the space allocated by
<code>__builtin_alloca_with_align</code> may have been released at the end
of the <code>if</code> statement in which it was called.
</p>
<div class="smallexample">
<pre class="smallexample">void f (unsigned n, bool overalign)
{
void *p;
if (overalign)
p = __builtin_alloca_with_align (n, 64 /* bits */);
else
p = __builtin_alloc (n);
g (p, n); // <span class="roman">unsafe</span>
}
</pre></div>
<p>Since the <code>__builtin_alloca_with_align</code> function doesn’t validate its
<var>size</var> argument it is the responsibility of its caller to make sure
the argument doesn’t cause it to exceed the stack size limit.
The <code>__builtin_alloca_with_align</code> function is provided to make
it possible to allocate on the stack overaligned arrays of bytes with
an upper bound that may be computed at run time. Since C99
Variable Length Arrays offer the same functionality under
a portable, more convenient, and safer interface they are recommended
instead, in both C99 and C++ programs where GCC provides them as
an extension. See <a href="#Variable-Length">Variable Length</a>, for details.
</p>
</dd></dl>
<dl>
<dt><a name="index-_002a_005f_005fbuiltin_005falloca_005fwith_005falign_005fand_005fmax"></a>Built-in Function: <em>void</em> <strong>*__builtin_alloca_with_align_and_max</strong> <em>(size_t size, size_t alignment, size_t max_size)</em></dt>
<dd><p>Similar to <code>__builtin_alloca_with_align</code> but takes an extra argument
specifying an upper bound for <var>size</var> in case its value cannot be computed
at compile time, for use by <samp>-fstack-usage</samp>, <samp>-Wstack-usage</samp>
and <samp>-Walloca-larger-than</samp>. <var>max_size</var> must be a constant integer
expression, it has no effect on code generation and no attempt is made to
check its compatibility with <var>size</var>.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftypes_005fcompatible_005fp"></a>Built-in Function: <em>int</em> <strong>__builtin_types_compatible_p</strong> <em>(<var>type1</var>, <var>type2</var>)</em></dt>
<dd>
<p>You can use the built-in function <code>__builtin_types_compatible_p</code> to
determine whether two types are the same.
</p>
<p>This built-in function returns 1 if the unqualified versions of the
types <var>type1</var> and <var>type2</var> (which are types, not expressions) are
compatible, 0 otherwise. The result of this built-in function can be
used in integer constant expressions.
</p>
<p>This built-in function ignores top level qualifiers (e.g., <code>const</code>,
<code>volatile</code>). For example, <code>int</code> is equivalent to <code>const
int</code>.
</p>
<p>The type <code>int[]</code> and <code>int[5]</code> are compatible. On the other
hand, <code>int</code> and <code>char *</code> are not compatible, even if the size
of their types, on the particular architecture are the same. Also, the
amount of pointer indirection is taken into account when determining
similarity. Consequently, <code>short *</code> is not similar to
<code>short **</code>. Furthermore, two types that are typedefed are
considered compatible if their underlying types are compatible.
</p>
<p>An <code>enum</code> type is not considered to be compatible with another
<code>enum</code> type even if both are compatible with the same integer
type; this is what the C standard specifies.
For example, <code>enum {foo, bar}</code> is not similar to
<code>enum {hot, dog}</code>.
</p>
<p>You typically use this function in code whose execution varies
depending on the arguments’ types. For example:
</p>
<div class="smallexample">
<pre class="smallexample">#define foo(x) \
({ \
typeof (x) tmp = (x); \
if (__builtin_types_compatible_p (typeof (x), long double)) \
tmp = foo_long_double (tmp); \
else if (__builtin_types_compatible_p (typeof (x), double)) \
tmp = foo_double (tmp); \
else if (__builtin_types_compatible_p (typeof (x), float)) \
tmp = foo_float (tmp); \
else \
abort (); \
tmp; \
})
</pre></div>
<p><em>Note:</em> This construct is only available for C.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fcall_005fwith_005fstatic_005fchain-1"></a>Built-in Function: <em><var>type</var></em> <strong>__builtin_call_with_static_chain</strong> <em>(<var>call_exp</var>, <var>pointer_exp</var>)</em></dt>
<dd>
<p>The <var>call_exp</var> expression must be a function call, and the
<var>pointer_exp</var> expression must be a pointer. The <var>pointer_exp</var>
is passed to the function call in the target’s static chain location.
The result of builtin is the result of the function call.
</p>
<p><em>Note:</em> This builtin is only available for C.
This builtin can be used to call Go closures from C.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fchoose_005fexpr"></a>Built-in Function: <em><var>type</var></em> <strong>__builtin_choose_expr</strong> <em>(<var>const_exp</var>, <var>exp1</var>, <var>exp2</var>)</em></dt>
<dd>
<p>You can use the built-in function <code>__builtin_choose_expr</code> to
evaluate code depending on the value of a constant expression. This
built-in function returns <var>exp1</var> if <var>const_exp</var>, which is an
integer constant expression, is nonzero. Otherwise it returns <var>exp2</var>.
</p>
<p>This built-in function is analogous to the ‘<samp>? :</samp>’ operator in C,
except that the expression returned has its type unaltered by promotion
rules. Also, the built-in function does not evaluate the expression
that is not chosen. For example, if <var>const_exp</var> evaluates to true,
<var>exp2</var> is not evaluated even if it has side effects.
</p>
<p>This built-in function can return an lvalue if the chosen argument is an
lvalue.
</p>
<p>If <var>exp1</var> is returned, the return type is the same as <var>exp1</var>’s
type. Similarly, if <var>exp2</var> is returned, its return type is the same
as <var>exp2</var>.
</p>
<p>Example:
</p>
<div class="smallexample">
<pre class="smallexample">#define foo(x) \
__builtin_choose_expr ( \
__builtin_types_compatible_p (typeof (x), double), \
foo_double (x), \
__builtin_choose_expr ( \
__builtin_types_compatible_p (typeof (x), float), \
foo_float (x), \
/* <span class="roman">The void expression results in a compile-time error</span> \
<span class="roman">when assigning the result to something.</span> */ \
(void)0))
</pre></div>
<p><em>Note:</em> This construct is only available for C. Furthermore, the
unused expression (<var>exp1</var> or <var>exp2</var> depending on the value of
<var>const_exp</var>) may still generate syntax errors. This may change in
future revisions.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftgmath"></a>Built-in Function: <em><var>type</var></em> <strong>__builtin_tgmath</strong> <em>(<var>functions</var>, <var>arguments</var>)</em></dt>
<dd>
<p>The built-in function <code>__builtin_tgmath</code>, available only for C
and Objective-C, calls a function determined according to the rules of
<code><tgmath.h></code> macros. It is intended to be used in
implementations of that header, so that expansions of macros from that
header only expand each of their arguments once, to avoid problems
when calls to such macros are nested inside the arguments of other
calls to such macros; in addition, it results in better diagnostics
for invalid calls to <code><tgmath.h></code> macros than implementations
using other GNU C language features. For example, the <code>pow</code>
type-generic macro might be defined as:
</p>
<div class="smallexample">
<pre class="smallexample">#define pow(a, b) __builtin_tgmath (powf, pow, powl, \
cpowf, cpow, cpowl, a, b)
</pre></div>
<p>The arguments to <code>__builtin_tgmath</code> are at least two pointers to
functions, followed by the arguments to the type-generic macro (which
will be passed as arguments to the selected function). All the
pointers to functions must be pointers to prototyped functions, none
of which may have variable arguments, and all of which must have the
same number of parameters; the number of parameters of the first
function determines how many arguments to <code>__builtin_tgmath</code> are
interpreted as function pointers, and how many as the arguments to the
called function.
</p>
<p>The types of the specified functions must all be different, but
related to each other in the same way as a set of functions that may
be selected between by a macro in <code><tgmath.h></code>. This means that
the functions are parameterized by a floating-point type <var>t</var>,
different for each such function. The function return types may all
be the same type, or they may be <var>t</var> for each function, or they
may be the real type corresponding to <var>t</var> for each function (if
some of the types <var>t</var> are complex). Likewise, for each parameter
position, the type of the parameter in that position may always be the
same type, or may be <var>t</var> for each function (this case must apply
for at least one parameter position), or may be the real type
corresponding to <var>t</var> for each function.
</p>
<p>The standard rules for <code><tgmath.h></code> macros are used to find a
common type <var>u</var> from the types of the arguments for parameters
whose types vary between the functions; complex integer types (a GNU
extension) are treated like <code>_Complex double</code> for this purpose
(or <code>_Complex _Float64</code> if all the function return types are the
same <code>_Float<var>n</var></code> or <code>_Float<var>n</var>x</code> type).
If the function return types vary, or are all the same integer type,
the function called is the one for which <var>t</var> is <var>u</var>, and it is
an error if there is no such function. If the function return types
are all the same floating-point type, the type-generic macro is taken
to be one of those from TS 18661 that rounds the result to a narrower
type; if there is a function for which <var>t</var> is <var>u</var>, it is
called, and otherwise the first function, if any, for which <var>t</var>
has at least the range and precision of <var>u</var> is called, and it is
an error if there is no such function.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fcomplex"></a>Built-in Function: <em><var>type</var></em> <strong>__builtin_complex</strong> <em>(<var>real</var>, <var>imag</var>)</em></dt>
<dd>
<p>The built-in function <code>__builtin_complex</code> is provided for use in
implementing the ISO C11 macros <code>CMPLXF</code>, <code>CMPLX</code> and
<code>CMPLXL</code>. <var>real</var> and <var>imag</var> must have the same type, a
real binary floating-point type, and the result has the corresponding
complex type with real and imaginary parts <var>real</var> and <var>imag</var>.
Unlike ‘<samp><var>real</var> + I * <var>imag</var></samp>’, this works even when
infinities, NaNs and negative zeros are involved.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fconstant_005fp"></a>Built-in Function: <em>int</em> <strong>__builtin_constant_p</strong> <em>(<var>exp</var>)</em></dt>
<dd><p>You can use the built-in function <code>__builtin_constant_p</code> to
determine if a value is known to be constant at compile time and hence
that GCC can perform constant-folding on expressions involving that
value. The argument of the function is the value to test. The function
returns the integer 1 if the argument is known to be a compile-time
constant and 0 if it is not known to be a compile-time constant. A
return of 0 does not indicate that the value is <em>not</em> a constant,
but merely that GCC cannot prove it is a constant with the specified
value of the <samp>-O</samp> option.
</p>
<p>You typically use this function in an embedded application where
memory is a critical resource. If you have some complex calculation,
you may want it to be folded if it involves constants, but need to call
a function if it does not. For example:
</p>
<div class="smallexample">
<pre class="smallexample">#define Scale_Value(X) \
(__builtin_constant_p (X) \
? ((X) * SCALE + OFFSET) : Scale (X))
</pre></div>
<p>You may use this built-in function in either a macro or an inline
function. However, if you use it in an inlined function and pass an
argument of the function as the argument to the built-in, GCC
never returns 1 when you call the inline function with a string constant
or compound literal (see <a href="#Compound-Literals">Compound Literals</a>) and does not return 1
when you pass a constant numeric value to the inline function unless you
specify the <samp>-O</samp> option.
</p>
<p>You may also use <code>__builtin_constant_p</code> in initializers for static
data. For instance, you can write
</p>
<div class="smallexample">
<pre class="smallexample">static const int table[] = {
__builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
/* <span class="roman">…</span> */
};
</pre></div>
<p>This is an acceptable initializer even if <var>EXPRESSION</var> is not a
constant expression, including the case where
<code>__builtin_constant_p</code> returns 1 because <var>EXPRESSION</var> can be
folded to a constant but <var>EXPRESSION</var> contains operands that are
not otherwise permitted in a static initializer (for example,
<code>0 && foo ()</code>). GCC must be more conservative about evaluating the
built-in in this case, because it has no opportunity to perform
optimization.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fexpect"></a>Built-in Function: <em>long</em> <strong>__builtin_expect</strong> <em>(long <var>exp</var>, long <var>c</var>)</em></dt>
<dd><a name="index-fprofile_002darcs-1"></a>
<p>You may use <code>__builtin_expect</code> to provide the compiler with
branch prediction information. In general, you should prefer to
use actual profile feedback for this (<samp>-fprofile-arcs</samp>), as
programmers are notoriously bad at predicting how their programs
actually perform. However, there are applications in which this
data is hard to collect.
</p>
<p>The return value is the value of <var>exp</var>, which should be an integral
expression. The semantics of the built-in are that it is expected that
<var>exp</var> == <var>c</var>. For example:
</p>
<div class="smallexample">
<pre class="smallexample">if (__builtin_expect (x, 0))
foo ();
</pre></div>
<p>indicates that we do not expect to call <code>foo</code>, since
we expect <code>x</code> to be zero. Since you are limited to integral
expressions for <var>exp</var>, you should use constructions such as
</p>
<div class="smallexample">
<pre class="smallexample">if (__builtin_expect (ptr != NULL, 1))
foo (*ptr);
</pre></div>
<p>when testing pointer or floating-point values.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftrap"></a>Built-in Function: <em>void</em> <strong>__builtin_trap</strong> <em>(void)</em></dt>
<dd><p>This function causes the program to exit abnormally. GCC implements
this function by using a target-dependent mechanism (such as
intentionally executing an illegal instruction) or by calling
<code>abort</code>. The mechanism used may vary from release to release so
you should not rely on any particular implementation.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005funreachable"></a>Built-in Function: <em>void</em> <strong>__builtin_unreachable</strong> <em>(void)</em></dt>
<dd><p>If control flow reaches the point of the <code>__builtin_unreachable</code>,
the program is undefined. It is useful in situations where the
compiler cannot deduce the unreachability of the code.
</p>
<p>One such case is immediately following an <code>asm</code> statement that
either never terminates, or one that transfers control elsewhere
and never returns. In this example, without the
<code>__builtin_unreachable</code>, GCC issues a warning that control
reaches the end of a non-void function. It also generates code
to return after the <code>asm</code>.
</p>
<div class="smallexample">
<pre class="smallexample">int f (int c, int v)
{
if (c)
{
return v;
}
else
{
asm("jmp error_handler");
__builtin_unreachable ();
}
}
</pre></div>
<p>Because the <code>asm</code> statement unconditionally transfers control out
of the function, control never reaches the end of the function
body. The <code>__builtin_unreachable</code> is in fact unreachable and
communicates this fact to the compiler.
</p>
<p>Another use for <code>__builtin_unreachable</code> is following a call a
function that never returns but that is not declared
<code>__attribute__((noreturn))</code>, as in this example:
</p>
<div class="smallexample">
<pre class="smallexample">void function_that_never_returns (void);
int g (int c)
{
if (c)
{
return 1;
}
else
{
function_that_never_returns ();
__builtin_unreachable ();
}
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fassume_005faligned"></a>Built-in Function: <em>void *</em> <strong>__builtin_assume_aligned</strong> <em>(const void *<var>exp</var>, size_t <var>align</var>, ...)</em></dt>
<dd><p>This function returns its first argument, and allows the compiler
to assume that the returned pointer is at least <var>align</var> bytes
aligned. This built-in can have either two or three arguments,
if it has three, the third argument should have integer type, and
if it is nonzero means misalignment offset. For example:
</p>
<div class="smallexample">
<pre class="smallexample">void *x = __builtin_assume_aligned (arg, 16);
</pre></div>
<p>means that the compiler can assume <code>x</code>, set to <code>arg</code>, is at least
16-byte aligned, while:
</p>
<div class="smallexample">
<pre class="smallexample">void *x = __builtin_assume_aligned (arg, 32, 8);
</pre></div>
<p>means that the compiler can assume for <code>x</code>, set to <code>arg</code>, that
<code>(char *) x - 8</code> is 32-byte aligned.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fLINE"></a>Built-in Function: <em>int</em> <strong>__builtin_LINE</strong> <em>()</em></dt>
<dd><p>This function is the equivalent of the preprocessor <code>__LINE__</code>
macro and returns a constant integer expression that evaluates to
the line number of the invocation of the built-in. When used as a C++
default argument for a function <var>F</var>, it returns the line number
of the call to <var>F</var>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fFUNCTION"></a>Built-in Function: <em>const char *</em> <strong>__builtin_FUNCTION</strong> <em>()</em></dt>
<dd><p>This function is the equivalent of the <code>__FUNCTION__</code> symbol
and returns an address constant pointing to the name of the function
from which the built-in was invoked, or the empty string if
the invocation is not at function scope. When used as a C++ default
argument for a function <var>F</var>, it returns the name of <var>F</var>’s
caller or the empty string if the call was not made at function
scope.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fFILE"></a>Built-in Function: <em>const char *</em> <strong>__builtin_FILE</strong> <em>()</em></dt>
<dd><p>This function is the equivalent of the preprocessor <code>__FILE__</code>
macro and returns an address constant pointing to the file name
containing the invocation of the built-in, or the empty string if
the invocation is not at function scope. When used as a C++ default
argument for a function <var>F</var>, it returns the file name of the call
to <var>F</var> or the empty string if the call was not made at function
scope.
</p>
<p>For example, in the following, each call to function <code>foo</code> will
print a line similar to <code>"file.c:123: foo: message"</code> with the name
of the file and the line number of the <code>printf</code> call, the name of
the function <code>foo</code>, followed by the word <code>message</code>.
</p>
<div class="smallexample">
<pre class="smallexample">const char*
function (const char *func = __builtin_FUNCTION ())
{
return func;
}
void foo (void)
{
printf ("%s:%i: %s: message\n", file (), line (), function ());
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005f_005f_005fclear_005fcache"></a>Built-in Function: <em>void</em> <strong>__builtin___clear_cache</strong> <em>(char *<var>begin</var>, char *<var>end</var>)</em></dt>
<dd><p>This function is used to flush the processor’s instruction cache for
the region of memory between <var>begin</var> inclusive and <var>end</var>
exclusive. Some targets require that the instruction cache be
flushed, after modifying memory containing code, in order to obtain
deterministic behavior.
</p>
<p>If the target does not require instruction cache flushes,
<code>__builtin___clear_cache</code> has no effect. Otherwise either
instructions are emitted in-line to clear the instruction cache or a
call to the <code>__clear_cache</code> function in libgcc is made.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fprefetch"></a>Built-in Function: <em>void</em> <strong>__builtin_prefetch</strong> <em>(const void *<var>addr</var>, ...)</em></dt>
<dd><p>This function is used to minimize cache-miss latency by moving data into
a cache before it is accessed.
You can insert calls to <code>__builtin_prefetch</code> into code for which
you know addresses of data in memory that is likely to be accessed soon.
If the target supports them, data prefetch instructions are generated.
If the prefetch is done early enough before the access then the data will
be in the cache by the time it is accessed.
</p>
<p>The value of <var>addr</var> is the address of the memory to prefetch.
There are two optional arguments, <var>rw</var> and <var>locality</var>.
The value of <var>rw</var> is a compile-time constant one or zero; one
means that the prefetch is preparing for a write to the memory address
and zero, the default, means that the prefetch is preparing for a read.
The value <var>locality</var> must be a compile-time constant integer between
zero and three. A value of zero means that the data has no temporal
locality, so it need not be left in the cache after the access. A value
of three means that the data has a high degree of temporal locality and
should be left in all levels of cache possible. Values of one and two
mean, respectively, a low or moderate degree of temporal locality. The
default is three.
</p>
<div class="smallexample">
<pre class="smallexample">for (i = 0; i < n; i++)
{
a[i] = a[i] + b[i];
__builtin_prefetch (&a[i+j], 1, 1);
__builtin_prefetch (&b[i+j], 0, 1);
/* <span class="roman">…</span> */
}
</pre></div>
<p>Data prefetch does not generate faults if <var>addr</var> is invalid, but
the address expression itself must be valid. For example, a prefetch
of <code>p->next</code> does not fault if <code>p->next</code> is not a valid
address, but evaluation faults if <code>p</code> is not a valid address.
</p>
<p>If the target does not support data prefetch, the address expression
is evaluated if it includes side effects but no other code is generated
and GCC does not issue a warning.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fhuge_005fval"></a>Built-in Function: <em>double</em> <strong>__builtin_huge_val</strong> <em>(void)</em></dt>
<dd><p>Returns a positive infinity, if supported by the floating-point format,
else <code>DBL_MAX</code>. This function is suitable for implementing the
ISO C macro <code>HUGE_VAL</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fhuge_005fvalf"></a>Built-in Function: <em>float</em> <strong>__builtin_huge_valf</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_huge_val</code>, except the return type is <code>float</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fhuge_005fvall"></a>Built-in Function: <em>long double</em> <strong>__builtin_huge_vall</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_huge_val</code>, except the return
type is <code>long double</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fhuge_005fvalfn"></a>Built-in Function: <em>_Float<var>n</var></em> <strong>__builtin_huge_valf<var>n</var></strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_huge_val</code>, except the return type is
<code>_Float<var>n</var></code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fhuge_005fvalfnx"></a>Built-in Function: <em>_Float<var>n</var>x</em> <strong>__builtin_huge_valf<var>n</var>x</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_huge_val</code>, except the return type is
<code>_Float<var>n</var>x</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ffpclassify-1"></a>Built-in Function: <em>int</em> <strong>__builtin_fpclassify</strong> <em>(int, int, int, int, int, ...)</em></dt>
<dd><p>This built-in implements the C99 fpclassify functionality. The first
five int arguments should be the target library’s notion of the
possible FP classes and are used for return values. They must be
constant values and they must appear in this order: <code>FP_NAN</code>,
<code>FP_INFINITE</code>, <code>FP_NORMAL</code>, <code>FP_SUBNORMAL</code> and
<code>FP_ZERO</code>. The ellipsis is for exactly one floating-point value
to classify. GCC treats the last argument as type-generic, which
means it does not do default promotion from float to double.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005finf"></a>Built-in Function: <em>double</em> <strong>__builtin_inf</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_huge_val</code>, except a warning is generated
if the target floating-point format does not support infinities.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005finfd32"></a>Built-in Function: <em>_Decimal32</em> <strong>__builtin_infd32</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal32</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005finfd64"></a>Built-in Function: <em>_Decimal64</em> <strong>__builtin_infd64</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal64</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005finfd128"></a>Built-in Function: <em>_Decimal128</em> <strong>__builtin_infd128</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal128</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005finff"></a>Built-in Function: <em>float</em> <strong>__builtin_inff</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_inf</code>, except the return type is <code>float</code>.
This function is suitable for implementing the ISO C99 macro <code>INFINITY</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005finfl"></a>Built-in Function: <em>long double</em> <strong>__builtin_infl</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_inf</code>, except the return
type is <code>long double</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005finffn"></a>Built-in Function: <em>_Float<var>n</var></em> <strong>__builtin_inff<var>n</var></strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_inf</code>, except the return
type is <code>_Float<var>n</var></code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005finffnx"></a>Built-in Function: <em>_Float<var>n</var></em> <strong>__builtin_inff<var>n</var>x</strong> <em>(void)</em></dt>
<dd><p>Similar to <code>__builtin_inf</code>, except the return
type is <code>_Float<var>n</var>x</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fisinf_005fsign-1"></a>Built-in Function: <em>int</em> <strong>__builtin_isinf_sign</strong> <em>(...)</em></dt>
<dd><p>Similar to <code>isinf</code>, except the return value is -1 for
an argument of <code>-Inf</code> and 1 for an argument of <code>+Inf</code>.
Note while the parameter list is an
ellipsis, this function only accepts exactly one floating-point
argument. GCC treats this parameter as type-generic, which means it
does not do default promotion from float to double.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnan"></a>Built-in Function: <em>double</em> <strong>__builtin_nan</strong> <em>(const char *str)</em></dt>
<dd><p>This is an implementation of the ISO C99 function <code>nan</code>.
</p>
<p>Since ISO C99 defines this function in terms of <code>strtod</code>, which we
do not implement, a description of the parsing is in order. The string
is parsed as by <code>strtol</code>; that is, the base is recognized by
leading ‘<samp>0</samp>’ or ‘<samp>0x</samp>’ prefixes. The number parsed is placed
in the significand such that the least significant bit of the number
is at the least significant bit of the significand. The number is
truncated to fit the significand field provided. The significand is
forced to be a quiet NaN.
</p>
<p>This function, if given a string literal all of which would have been
consumed by <code>strtol</code>, is evaluated early enough that it is considered a
compile-time constant.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnand32"></a>Built-in Function: <em>_Decimal32</em> <strong>__builtin_nand32</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal32</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnand64"></a>Built-in Function: <em>_Decimal64</em> <strong>__builtin_nand64</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal64</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnand128"></a>Built-in Function: <em>_Decimal128</em> <strong>__builtin_nand128</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal128</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnanf"></a>Built-in Function: <em>float</em> <strong>__builtin_nanf</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the return type is <code>float</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnanl"></a>Built-in Function: <em>long double</em> <strong>__builtin_nanl</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the return type is <code>long double</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnanfn"></a>Built-in Function: <em>_Float<var>n</var></em> <strong>__builtin_nanf<var>n</var></strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the return type is
<code>_Float<var>n</var></code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnanfnx"></a>Built-in Function: <em>_Float<var>n</var>x</em> <strong>__builtin_nanf<var>n</var>x</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the return type is
<code>_Float<var>n</var>x</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnans"></a>Built-in Function: <em>double</em> <strong>__builtin_nans</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the significand is forced
to be a signaling NaN. The <code>nans</code> function is proposed by
<a href="http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm">WG14 N965</a>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnansf"></a>Built-in Function: <em>float</em> <strong>__builtin_nansf</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nans</code>, except the return type is <code>float</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnansl"></a>Built-in Function: <em>long double</em> <strong>__builtin_nansl</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nans</code>, except the return type is <code>long double</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnansfn"></a>Built-in Function: <em>_Float<var>n</var></em> <strong>__builtin_nansf<var>n</var></strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nans</code>, except the return type is
<code>_Float<var>n</var></code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnansfnx"></a>Built-in Function: <em>_Float<var>n</var>x</em> <strong>__builtin_nansf<var>n</var>x</strong> <em>(const char *str)</em></dt>
<dd><p>Similar to <code>__builtin_nans</code>, except the return type is
<code>_Float<var>n</var>x</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fffs"></a>Built-in Function: <em>int</em> <strong>__builtin_ffs</strong> <em>(int x)</em></dt>
<dd><p>Returns one plus the index of the least significant 1-bit of <var>x</var>, or
if <var>x</var> is zero, returns zero.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fclz"></a>Built-in Function: <em>int</em> <strong>__builtin_clz</strong> <em>(unsigned int x)</em></dt>
<dd><p>Returns the number of leading 0-bits in <var>x</var>, starting at the most
significant bit position. If <var>x</var> is 0, the result is undefined.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fctz"></a>Built-in Function: <em>int</em> <strong>__builtin_ctz</strong> <em>(unsigned int x)</em></dt>
<dd><p>Returns the number of trailing 0-bits in <var>x</var>, starting at the least
significant bit position. If <var>x</var> is 0, the result is undefined.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fclrsb"></a>Built-in Function: <em>int</em> <strong>__builtin_clrsb</strong> <em>(int x)</em></dt>
<dd><p>Returns the number of leading redundant sign bits in <var>x</var>, i.e. the
number of bits following the most significant bit that are identical
to it. There are no special cases for 0 or other values.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fpopcount"></a>Built-in Function: <em>int</em> <strong>__builtin_popcount</strong> <em>(unsigned int x)</em></dt>
<dd><p>Returns the number of 1-bits in <var>x</var>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fparity"></a>Built-in Function: <em>int</em> <strong>__builtin_parity</strong> <em>(unsigned int x)</em></dt>
<dd><p>Returns the parity of <var>x</var>, i.e. the number of 1-bits in <var>x</var>
modulo 2.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fffsl"></a>Built-in Function: <em>int</em> <strong>__builtin_ffsl</strong> <em>(long)</em></dt>
<dd><p>Similar to <code>__builtin_ffs</code>, except the argument type is
<code>long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fclzl"></a>Built-in Function: <em>int</em> <strong>__builtin_clzl</strong> <em>(unsigned long)</em></dt>
<dd><p>Similar to <code>__builtin_clz</code>, except the argument type is
<code>unsigned long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fctzl"></a>Built-in Function: <em>int</em> <strong>__builtin_ctzl</strong> <em>(unsigned long)</em></dt>
<dd><p>Similar to <code>__builtin_ctz</code>, except the argument type is
<code>unsigned long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fclrsbl"></a>Built-in Function: <em>int</em> <strong>__builtin_clrsbl</strong> <em>(long)</em></dt>
<dd><p>Similar to <code>__builtin_clrsb</code>, except the argument type is
<code>long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fpopcountl"></a>Built-in Function: <em>int</em> <strong>__builtin_popcountl</strong> <em>(unsigned long)</em></dt>
<dd><p>Similar to <code>__builtin_popcount</code>, except the argument type is
<code>unsigned long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fparityl"></a>Built-in Function: <em>int</em> <strong>__builtin_parityl</strong> <em>(unsigned long)</em></dt>
<dd><p>Similar to <code>__builtin_parity</code>, except the argument type is
<code>unsigned long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fffsll"></a>Built-in Function: <em>int</em> <strong>__builtin_ffsll</strong> <em>(long long)</em></dt>
<dd><p>Similar to <code>__builtin_ffs</code>, except the argument type is
<code>long long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fclzll"></a>Built-in Function: <em>int</em> <strong>__builtin_clzll</strong> <em>(unsigned long long)</em></dt>
<dd><p>Similar to <code>__builtin_clz</code>, except the argument type is
<code>unsigned long long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fctzll"></a>Built-in Function: <em>int</em> <strong>__builtin_ctzll</strong> <em>(unsigned long long)</em></dt>
<dd><p>Similar to <code>__builtin_ctz</code>, except the argument type is
<code>unsigned long long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fclrsbll"></a>Built-in Function: <em>int</em> <strong>__builtin_clrsbll</strong> <em>(long long)</em></dt>
<dd><p>Similar to <code>__builtin_clrsb</code>, except the argument type is
<code>long long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fpopcountll"></a>Built-in Function: <em>int</em> <strong>__builtin_popcountll</strong> <em>(unsigned long long)</em></dt>
<dd><p>Similar to <code>__builtin_popcount</code>, except the argument type is
<code>unsigned long long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fparityll"></a>Built-in Function: <em>int</em> <strong>__builtin_parityll</strong> <em>(unsigned long long)</em></dt>
<dd><p>Similar to <code>__builtin_parity</code>, except the argument type is
<code>unsigned long long</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fpowi-1"></a>Built-in Function: <em>double</em> <strong>__builtin_powi</strong> <em>(double, int)</em></dt>
<dd><p>Returns the first argument raised to the power of the second. Unlike the
<code>pow</code> function no guarantees about precision and rounding are made.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fpowif-1"></a>Built-in Function: <em>float</em> <strong>__builtin_powif</strong> <em>(float, int)</em></dt>
<dd><p>Similar to <code>__builtin_powi</code>, except the argument and return types
are <code>float</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fpowil-1"></a>Built-in Function: <em>long double</em> <strong>__builtin_powil</strong> <em>(long double, int)</em></dt>
<dd><p>Similar to <code>__builtin_powi</code>, except the argument and return types
are <code>long double</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fbswap16"></a>Built-in Function: <em>uint16_t</em> <strong>__builtin_bswap16</strong> <em>(uint16_t x)</em></dt>
<dd><p>Returns <var>x</var> with the order of the bytes reversed; for example,
<code>0xaabb</code> becomes <code>0xbbaa</code>. Byte here always means
exactly 8 bits.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fbswap32"></a>Built-in Function: <em>uint32_t</em> <strong>__builtin_bswap32</strong> <em>(uint32_t x)</em></dt>
<dd><p>Similar to <code>__builtin_bswap16</code>, except the argument and return types
are 32 bit.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fbswap64"></a>Built-in Function: <em>uint64_t</em> <strong>__builtin_bswap64</strong> <em>(uint64_t x)</em></dt>
<dd><p>Similar to <code>__builtin_bswap32</code>, except the argument and return types
are 64 bit.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fextend_005fpointer-1"></a>Built-in Function: <em>Pmode</em> <strong>__builtin_extend_pointer</strong> <em>(void * x)</em></dt>
<dd><p>On targets where the user visible pointer size is smaller than the size
of an actual hardware address this function returns the extended user
pointer. Targets where this is true included ILP32 mode on x86_64 or
Aarch64. This function is mainly useful when writing inline assembly
code.
</p></dd></dl>
<hr>
<a name="Target-Builtins"></a>
<div class="header">
<p>
Next: <a href="#Target-Format-Checks" accesskey="n" rel="next">Target Format Checks</a>, Previous: <a href="#Other-Builtins" accesskey="p" rel="prev">Other Builtins</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Built_002din-Functions-Specific-to-Particular-Target-Machines"></a>
<h3 class="section">6.59 Built-in Functions Specific to Particular Target Machines</h3>
<p>On some target machines, GCC supports many built-in functions specific
to those machines. Generally these generate calls to specific machine
instructions, but allow the compiler to schedule those calls.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#AArch64-Built_002din-Functions" accesskey="1">AArch64 Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Alpha-Built_002din-Functions" accesskey="2">Alpha Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Altera-Nios-II-Built_002din-Functions" accesskey="3">Altera Nios II Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARC-Built_002din-Functions" accesskey="4">ARC Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARC-SIMD-Built_002din-Functions" accesskey="5">ARC SIMD Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARM-iWMMXt-Built_002din-Functions" accesskey="6">ARM iWMMXt Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARM-C-Language-Extensions-_0028ACLE_0029" accesskey="7">ARM C Language Extensions (ACLE)</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARM-Floating-Point-Status-and-Control-Intrinsics" accesskey="8">ARM Floating Point Status and Control Intrinsics</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARM-ARMv8_002dM-Security-Extensions" accesskey="9">ARM ARMv8-M Security Extensions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#AVR-Built_002din-Functions">AVR Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Blackfin-Built_002din-Functions">Blackfin Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MIPS-SIMD-Architecture-_0028MSA_0029-Support">MIPS SIMD Architecture (MSA) Support</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Other-MIPS-Built_002din-Functions">Other MIPS Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MSP430-Built_002din-Functions">MSP430 Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#picoChip-Built_002din-Functions">picoChip Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-AltiVec_002fVSX-Built_002din-Functions">PowerPC AltiVec/VSX Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-Hardware-Transactional-Memory-Built_002din-Functions">PowerPC Hardware Transactional Memory Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#PowerPC-Atomic-Memory-Operation-Functions">PowerPC Atomic Memory Operation Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RX-Built_002din-Functions">RX Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SH-Built_002din-Functions">SH Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SPARC-VIS-Built_002din-Functions">SPARC VIS Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#SPU-Built_002din-Functions">SPU Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#TI-C6X-Built_002din-Functions">TI C6X Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#TILE_002dGx-Built_002din-Functions">TILE-Gx Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#TILEPro-Built_002din-Functions">TILEPro Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-Built_002din-Functions">x86 Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-transactional-memory-intrinsics">x86 transactional memory intrinsics</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#x86-control_002dflow-protection-intrinsics">x86 control-flow protection intrinsics</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="AArch64-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#Alpha-Built_002din-Functions" accesskey="n" rel="next">Alpha Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="AArch64-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.1 AArch64 Built-in Functions</h4>
<p>These built-in functions are available for the AArch64 family of
processors.
</p><div class="smallexample">
<pre class="smallexample">unsigned int __builtin_aarch64_get_fpcr ()
void __builtin_aarch64_set_fpcr (unsigned int)
unsigned int __builtin_aarch64_get_fpsr ()
void __builtin_aarch64_set_fpsr (unsigned int)
</pre></div>
<hr>
<a name="Alpha-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#Altera-Nios-II-Built_002din-Functions" accesskey="n" rel="next">Altera Nios II Built-in Functions</a>, Previous: <a href="#AArch64-Built_002din-Functions" accesskey="p" rel="prev">AArch64 Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Alpha-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.2 Alpha Built-in Functions</h4>
<p>These built-in functions are available for the Alpha family of
processors, depending on the command-line switches used.
</p>
<p>The following built-in functions are always available. They
all generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">long __builtin_alpha_implver (void)
long __builtin_alpha_rpcc (void)
long __builtin_alpha_amask (long)
long __builtin_alpha_cmpbge (long, long)
long __builtin_alpha_extbl (long, long)
long __builtin_alpha_extwl (long, long)
long __builtin_alpha_extll (long, long)
long __builtin_alpha_extql (long, long)
long __builtin_alpha_extwh (long, long)
long __builtin_alpha_extlh (long, long)
long __builtin_alpha_extqh (long, long)
long __builtin_alpha_insbl (long, long)
long __builtin_alpha_inswl (long, long)
long __builtin_alpha_insll (long, long)
long __builtin_alpha_insql (long, long)
long __builtin_alpha_inswh (long, long)
long __builtin_alpha_inslh (long, long)
long __builtin_alpha_insqh (long, long)
long __builtin_alpha_mskbl (long, long)
long __builtin_alpha_mskwl (long, long)
long __builtin_alpha_mskll (long, long)
long __builtin_alpha_mskql (long, long)
long __builtin_alpha_mskwh (long, long)
long __builtin_alpha_msklh (long, long)
long __builtin_alpha_mskqh (long, long)
long __builtin_alpha_umulh (long, long)
long __builtin_alpha_zap (long, long)
long __builtin_alpha_zapnot (long, long)
</pre></div>
<p>The following built-in functions are always with <samp>-mmax</samp>
or <samp>-mcpu=<var>cpu</var></samp> where <var>cpu</var> is <code>pca56</code> or
later. They all generate the machine instruction that is part
of the name.
</p>
<div class="smallexample">
<pre class="smallexample">long __builtin_alpha_pklb (long)
long __builtin_alpha_pkwb (long)
long __builtin_alpha_unpkbl (long)
long __builtin_alpha_unpkbw (long)
long __builtin_alpha_minub8 (long, long)
long __builtin_alpha_minsb8 (long, long)
long __builtin_alpha_minuw4 (long, long)
long __builtin_alpha_minsw4 (long, long)
long __builtin_alpha_maxub8 (long, long)
long __builtin_alpha_maxsb8 (long, long)
long __builtin_alpha_maxuw4 (long, long)
long __builtin_alpha_maxsw4 (long, long)
long __builtin_alpha_perr (long, long)
</pre></div>
<p>The following built-in functions are always with <samp>-mcix</samp>
or <samp>-mcpu=<var>cpu</var></samp> where <var>cpu</var> is <code>ev67</code> or
later. They all generate the machine instruction that is part
of the name.
</p>
<div class="smallexample">
<pre class="smallexample">long __builtin_alpha_cttz (long)
long __builtin_alpha_ctlz (long)
long __builtin_alpha_ctpop (long)
</pre></div>
<p>The following built-in functions are available on systems that use the OSF/1
PALcode. Normally they invoke the <code>rduniq</code> and <code>wruniq</code>
PAL calls, but when invoked with <samp>-mtls-kernel</samp>, they invoke
<code>rdval</code> and <code>wrval</code>.
</p>
<div class="smallexample">
<pre class="smallexample">void *__builtin_thread_pointer (void)
void __builtin_set_thread_pointer (void *)
</pre></div>
<hr>
<a name="Altera-Nios-II-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#ARC-Built_002din-Functions" accesskey="n" rel="next">ARC Built-in Functions</a>, Previous: <a href="#Alpha-Built_002din-Functions" accesskey="p" rel="prev">Alpha Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Altera-Nios-II-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.3 Altera Nios II Built-in Functions</h4>
<p>These built-in functions are available for the Altera Nios II
family of processors.
</p>
<p>The following built-in functions are always available. They
all generate the machine instruction that is part of the name.
</p>
<div class="example">
<pre class="example">int __builtin_ldbio (volatile const void *)
int __builtin_ldbuio (volatile const void *)
int __builtin_ldhio (volatile const void *)
int __builtin_ldhuio (volatile const void *)
int __builtin_ldwio (volatile const void *)
void __builtin_stbio (volatile void *, int)
void __builtin_sthio (volatile void *, int)
void __builtin_stwio (volatile void *, int)
void __builtin_sync (void)
int __builtin_rdctl (int)
int __builtin_rdprs (int, int)
void __builtin_wrctl (int, int)
void __builtin_flushd (volatile void *)
void __builtin_flushda (volatile void *)
int __builtin_wrpie (int);
void __builtin_eni (int);
int __builtin_ldex (volatile const void *)
int __builtin_stex (volatile void *, int)
int __builtin_ldsex (volatile const void *)
int __builtin_stsex (volatile void *, int)
</pre></div>
<p>The following built-in functions are always available. They
all generate a Nios II Custom Instruction. The name of the
function represents the types that the function takes and
returns. The letter before the <code>n</code> is the return type
or void if absent. The <code>n</code> represents the first parameter
to all the custom instructions, the custom instruction number.
The two letters after the <code>n</code> represent the up to two
parameters to the function.
</p>
<p>The letters represent the following data types:
</p><dl compact="compact">
<dt><code><no letter></code></dt>
<dd><p><code>void</code> for return type and no parameter for parameter types.
</p>
</dd>
<dt><code>i</code></dt>
<dd><p><code>int</code> for return type and parameter type
</p>
</dd>
<dt><code>f</code></dt>
<dd><p><code>float</code> for return type and parameter type
</p>
</dd>
<dt><code>p</code></dt>
<dd><p><code>void *</code> for return type and parameter type
</p>
</dd>
</dl>
<p>And the function names are:
</p><div class="example">
<pre class="example">void __builtin_custom_n (void)
void __builtin_custom_ni (int)
void __builtin_custom_nf (float)
void __builtin_custom_np (void *)
void __builtin_custom_nii (int, int)
void __builtin_custom_nif (int, float)
void __builtin_custom_nip (int, void *)
void __builtin_custom_nfi (float, int)
void __builtin_custom_nff (float, float)
void __builtin_custom_nfp (float, void *)
void __builtin_custom_npi (void *, int)
void __builtin_custom_npf (void *, float)
void __builtin_custom_npp (void *, void *)
int __builtin_custom_in (void)
int __builtin_custom_ini (int)
int __builtin_custom_inf (float)
int __builtin_custom_inp (void *)
int __builtin_custom_inii (int, int)
int __builtin_custom_inif (int, float)
int __builtin_custom_inip (int, void *)
int __builtin_custom_infi (float, int)
int __builtin_custom_inff (float, float)
int __builtin_custom_infp (float, void *)
int __builtin_custom_inpi (void *, int)
int __builtin_custom_inpf (void *, float)
int __builtin_custom_inpp (void *, void *)
float __builtin_custom_fn (void)
float __builtin_custom_fni (int)
float __builtin_custom_fnf (float)
float __builtin_custom_fnp (void *)
float __builtin_custom_fnii (int, int)
float __builtin_custom_fnif (int, float)
float __builtin_custom_fnip (int, void *)
float __builtin_custom_fnfi (float, int)
float __builtin_custom_fnff (float, float)
float __builtin_custom_fnfp (float, void *)
float __builtin_custom_fnpi (void *, int)
float __builtin_custom_fnpf (void *, float)
float __builtin_custom_fnpp (void *, void *)
void * __builtin_custom_pn (void)
void * __builtin_custom_pni (int)
void * __builtin_custom_pnf (float)
void * __builtin_custom_pnp (void *)
void * __builtin_custom_pnii (int, int)
void * __builtin_custom_pnif (int, float)
void * __builtin_custom_pnip (int, void *)
void * __builtin_custom_pnfi (float, int)
void * __builtin_custom_pnff (float, float)
void * __builtin_custom_pnfp (float, void *)
void * __builtin_custom_pnpi (void *, int)
void * __builtin_custom_pnpf (void *, float)
void * __builtin_custom_pnpp (void *, void *)
</pre></div>
<hr>
<a name="ARC-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#ARC-SIMD-Built_002din-Functions" accesskey="n" rel="next">ARC SIMD Built-in Functions</a>, Previous: <a href="#Altera-Nios-II-Built_002din-Functions" accesskey="p" rel="prev">Altera Nios II Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARC-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.4 ARC Built-in Functions</h4>
<p>The following built-in functions are provided for ARC targets. The
built-ins generate the corresponding assembly instructions. In the
examples given below, the generated code often requires an operand or
result to be in a register. Where necessary further code will be
generated to ensure this is true, but for brevity this is not
described in each case.
</p>
<p><em>Note:</em> Using a built-in to generate an instruction not supported
by a target may cause problems. At present the compiler is not
guaranteed to detect such misuse, and as a result an internal compiler
error may be generated.
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005faligned"></a>Built-in Function: <em>int</em> <strong>__builtin_arc_aligned</strong> <em>(void *<var>val</var>, int <var>alignval</var>)</em></dt>
<dd><p>Return 1 if <var>val</var> is known to have the byte alignment given
by <var>alignval</var>, otherwise return 0.
Note that this is different from
</p><div class="smallexample">
<pre class="smallexample">__alignof__(*(char *)<var>val</var>) >= alignval
</pre></div>
<p>because __alignof__ sees only the type of the dereference, whereas
__builtin_arc_align uses alignment information from the pointer
as well as from the pointed-to type.
The information available will depend on optimization level.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fbrk"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_brk</strong> <em>(void)</em></dt>
<dd><p>Generates
</p><div class="example">
<pre class="example">brk
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fcore_005fread"></a>Built-in Function: <em>unsigned int</em> <strong>__builtin_arc_core_read</strong> <em>(unsigned int <var>regno</var>)</em></dt>
<dd><p>The operand is the number of a register to be read. Generates:
</p><div class="example">
<pre class="example">mov <var>dest</var>, r<var>regno</var>
</pre></div>
<p>where the value in <var>dest</var> will be the result returned from the
built-in.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fcore_005fwrite"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_core_write</strong> <em>(unsigned int <var>regno</var>, unsigned int <var>val</var>)</em></dt>
<dd><p>The first operand is the number of a register to be written, the
second operand is a compile time constant to write into that
register. Generates:
</p><div class="example">
<pre class="example">mov r<var>regno</var>, <var>val</var>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fdivaw"></a>Built-in Function: <em>int</em> <strong>__builtin_arc_divaw</strong> <em>(int <var>a</var>, int <var>b</var>)</em></dt>
<dd><p>Only available if either <samp>-mcpu=ARC700</samp> or <samp>-meA</samp> is set.
Generates:
</p><div class="example">
<pre class="example">divaw <var>dest</var>, <var>a</var>, <var>b</var>
</pre></div>
<p>where the value in <var>dest</var> will be the result returned from the
built-in.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fflag"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_flag</strong> <em>(unsigned int <var>a</var>)</em></dt>
<dd><p>Generates
</p><div class="example">
<pre class="example">flag <var>a</var>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005flr"></a>Built-in Function: <em>unsigned int</em> <strong>__builtin_arc_lr</strong> <em>(unsigned int <var>auxr</var>)</em></dt>
<dd><p>The operand, <var>auxv</var>, is the address of an auxiliary register and
must be a compile time constant. Generates:
</p><div class="example">
<pre class="example">lr <var>dest</var>, [<var>auxr</var>]
</pre></div>
<p>Where the value in <var>dest</var> will be the result returned from the
built-in.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fmul64"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_mul64</strong> <em>(int <var>a</var>, int <var>b</var>)</em></dt>
<dd><p>Only available with <samp>-mmul64</samp>. Generates:
</p><div class="example">
<pre class="example">mul64 <var>a</var>, <var>b</var>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fmulu64"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_mulu64</strong> <em>(unsigned int <var>a</var>, unsigned int <var>b</var>)</em></dt>
<dd><p>Only available with <samp>-mmul64</samp>. Generates:
</p><div class="example">
<pre class="example">mulu64 <var>a</var>, <var>b</var>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fnop"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_nop</strong> <em>(void)</em></dt>
<dd><p>Generates:
</p><div class="example">
<pre class="example">nop
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fnorm"></a>Built-in Function: <em>int</em> <strong>__builtin_arc_norm</strong> <em>(int <var>src</var>)</em></dt>
<dd><p>Only valid if the ‘<samp>norm</samp>’ instruction is available through the
<samp>-mnorm</samp> option or by default with <samp>-mcpu=ARC700</samp>.
Generates:
</p><div class="example">
<pre class="example">norm <var>dest</var>, <var>src</var>
</pre></div>
<p>Where the value in <var>dest</var> will be the result returned from the
built-in.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fnormw"></a>Built-in Function: <em>short int</em> <strong>__builtin_arc_normw</strong> <em>(short int <var>src</var>)</em></dt>
<dd><p>Only valid if the ‘<samp>normw</samp>’ instruction is available through the
<samp>-mnorm</samp> option or by default with <samp>-mcpu=ARC700</samp>.
Generates:
</p><div class="example">
<pre class="example">normw <var>dest</var>, <var>src</var>
</pre></div>
<p>Where the value in <var>dest</var> will be the result returned from the
built-in.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005frtie"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_rtie</strong> <em>(void)</em></dt>
<dd><p>Generates:
</p><div class="example">
<pre class="example">rtie
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fsleep"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_sleep</strong> <em>(int <var>a</var></em></dt>
<dd><p>Generates:
</p><div class="example">
<pre class="example">sleep <var>a</var>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fsr"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_sr</strong> <em>(unsigned int <var>auxr</var>, unsigned int <var>val</var>)</em></dt>
<dd><p>The first argument, <var>auxv</var>, is the address of an auxiliary
register, the second argument, <var>val</var>, is a compile time constant
to be written to the register. Generates:
</p><div class="example">
<pre class="example">sr <var>auxr</var>, [<var>val</var>]
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fswap"></a>Built-in Function: <em>int</em> <strong>__builtin_arc_swap</strong> <em>(int <var>src</var>)</em></dt>
<dd><p>Only valid with <samp>-mswap</samp>. Generates:
</p><div class="example">
<pre class="example">swap <var>dest</var>, <var>src</var>
</pre></div>
<p>Where the value in <var>dest</var> will be the result returned from the
built-in.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fswi"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_swi</strong> <em>(void)</em></dt>
<dd><p>Generates:
</p><div class="example">
<pre class="example">swi
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005fsync"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_sync</strong> <em>(void)</em></dt>
<dd><p>Only available with <samp>-mcpu=ARC700</samp>. Generates:
</p><div class="example">
<pre class="example">sync
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005ftrap_005fs"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_trap_s</strong> <em>(unsigned int <var>c</var>)</em></dt>
<dd><p>Only available with <samp>-mcpu=ARC700</samp>. Generates:
</p><div class="example">
<pre class="example">trap_s <var>c</var>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005farc_005funimp_005fs"></a>Built-in Function: <em>void</em> <strong>__builtin_arc_unimp_s</strong> <em>(void)</em></dt>
<dd><p>Only available with <samp>-mcpu=ARC700</samp>. Generates:
</p><div class="example">
<pre class="example">unimp_s
</pre></div>
</dd></dl>
<p>The instructions generated by the following builtins are not
considered as candidates for scheduling. They are not moved around by
the compiler during scheduling, and thus can be expected to appear
where they are put in the C code:
</p><div class="example">
<pre class="example">__builtin_arc_brk()
__builtin_arc_core_read()
__builtin_arc_core_write()
__builtin_arc_flag()
__builtin_arc_lr()
__builtin_arc_sleep()
__builtin_arc_sr()
__builtin_arc_swi()
</pre></div>
<hr>
<a name="ARC-SIMD-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#ARM-iWMMXt-Built_002din-Functions" accesskey="n" rel="next">ARM iWMMXt Built-in Functions</a>, Previous: <a href="#ARC-Built_002din-Functions" accesskey="p" rel="prev">ARC Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARC-SIMD-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.5 ARC SIMD Built-in Functions</h4>
<p>SIMD builtins provided by the compiler can be used to generate the
vector instructions. This section describes the available builtins
and their usage in programs. With the <samp>-msimd</samp> option, the
compiler provides 128-bit vector types, which can be specified using
the <code>vector_size</code> attribute. The header file <samp>arc-simd.h</samp>
can be included to use the following predefined types:
</p><div class="example">
<pre class="example">typedef int __v4si __attribute__((vector_size(16)));
typedef short __v8hi __attribute__((vector_size(16)));
</pre></div>
<p>These types can be used to define 128-bit variables. The built-in
functions listed in the following section can be used on these
variables to generate the vector operations.
</p>
<p>For all builtins, <code>__builtin_arc_<var>someinsn</var></code>, the header file
<samp>arc-simd.h</samp> also provides equivalent macros called
<code>_<var>someinsn</var></code> that can be used for programming ease and
improved readability. The following macros for DMA control are also
provided:
</p><div class="example">
<pre class="example">#define _setup_dma_in_channel_reg _vdiwr
#define _setup_dma_out_channel_reg _vdowr
</pre></div>
<p>The following is a complete list of all the SIMD built-ins provided
for ARC, grouped by calling signature.
</p>
<p>The following take two <code>__v8hi</code> arguments and return a
<code>__v8hi</code> result:
</p><div class="example">
<pre class="example">__v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
__v8hi __builtin_arc_vand (__v8hi, __v8hi)
__v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vavb (__v8hi, __v8hi)
__v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
__v8hi __builtin_arc_vbic (__v8hi, __v8hi)
__v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
__v8hi __builtin_arc_veqw (__v8hi, __v8hi)
__v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
__v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
__v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
__v8hi __builtin_arc_vlew (__v8hi, __v8hi)
__v8hi __builtin_arc_vltw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
__v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vminw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
__v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
__v8hi __builtin_arc_vnew (__v8hi, __v8hi)
__v8hi __builtin_arc_vor (__v8hi, __v8hi)
__v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
__v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
__v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
__v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
__v8hi __builtin_arc_vxor (__v8hi, __v8hi)
__v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
</pre></div>
<p>The following take one <code>__v8hi</code> and one <code>int</code> argument and return a
<code>__v8hi</code> result:
</p>
<div class="example">
<pre class="example">__v8hi __builtin_arc_vbaddw (__v8hi, int)
__v8hi __builtin_arc_vbmaxw (__v8hi, int)
__v8hi __builtin_arc_vbminw (__v8hi, int)
__v8hi __builtin_arc_vbmulaw (__v8hi, int)
__v8hi __builtin_arc_vbmulfw (__v8hi, int)
__v8hi __builtin_arc_vbmulw (__v8hi, int)
__v8hi __builtin_arc_vbrsubw (__v8hi, int)
__v8hi __builtin_arc_vbsubw (__v8hi, int)
</pre></div>
<p>The following take one <code>__v8hi</code> argument and one <code>int</code> argument which
must be a 3-bit compile time constant indicating a register number
I0-I7. They return a <code>__v8hi</code> result.
</p><div class="example">
<pre class="example">__v8hi __builtin_arc_vasrw (__v8hi, const int)
__v8hi __builtin_arc_vsr8 (__v8hi, const int)
__v8hi __builtin_arc_vsr8aw (__v8hi, const int)
</pre></div>
<p>The following take one <code>__v8hi</code> argument and one <code>int</code>
argument which must be a 6-bit compile time constant. They return a
<code>__v8hi</code> result.
</p><div class="example">
<pre class="example">__v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
__v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
__v8hi __builtin_arc_vasrrwi (__v8hi, const int)
__v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
__v8hi __builtin_arc_vasrwi (__v8hi, const int)
__v8hi __builtin_arc_vsr8awi (__v8hi, const int)
__v8hi __builtin_arc_vsr8i (__v8hi, const int)
</pre></div>
<p>The following take one <code>__v8hi</code> argument and one <code>int</code> argument which
must be a 8-bit compile time constant. They return a <code>__v8hi</code>
result.
</p><div class="example">
<pre class="example">__v8hi __builtin_arc_vd6tapf (__v8hi, const int)
__v8hi __builtin_arc_vmvaw (__v8hi, const int)
__v8hi __builtin_arc_vmvw (__v8hi, const int)
__v8hi __builtin_arc_vmvzw (__v8hi, const int)
</pre></div>
<p>The following take two <code>int</code> arguments, the second of which which
must be a 8-bit compile time constant. They return a <code>__v8hi</code>
result:
</p><div class="example">
<pre class="example">__v8hi __builtin_arc_vmovaw (int, const int)
__v8hi __builtin_arc_vmovw (int, const int)
__v8hi __builtin_arc_vmovzw (int, const int)
</pre></div>
<p>The following take a single <code>__v8hi</code> argument and return a
<code>__v8hi</code> result:
</p><div class="example">
<pre class="example">__v8hi __builtin_arc_vabsaw (__v8hi)
__v8hi __builtin_arc_vabsw (__v8hi)
__v8hi __builtin_arc_vaddsuw (__v8hi)
__v8hi __builtin_arc_vexch1 (__v8hi)
__v8hi __builtin_arc_vexch2 (__v8hi)
__v8hi __builtin_arc_vexch4 (__v8hi)
__v8hi __builtin_arc_vsignw (__v8hi)
__v8hi __builtin_arc_vupbaw (__v8hi)
__v8hi __builtin_arc_vupbw (__v8hi)
__v8hi __builtin_arc_vupsbaw (__v8hi)
__v8hi __builtin_arc_vupsbw (__v8hi)
</pre></div>
<p>The following take two <code>int</code> arguments and return no result:
</p><div class="example">
<pre class="example">void __builtin_arc_vdirun (int, int)
void __builtin_arc_vdorun (int, int)
</pre></div>
<p>The following take two <code>int</code> arguments and return no result. The
first argument must a 3-bit compile time constant indicating one of
the DR0-DR7 DMA setup channels:
</p><div class="example">
<pre class="example">void __builtin_arc_vdiwr (const int, int)
void __builtin_arc_vdowr (const int, int)
</pre></div>
<p>The following take an <code>int</code> argument and return no result:
</p><div class="example">
<pre class="example">void __builtin_arc_vendrec (int)
void __builtin_arc_vrec (int)
void __builtin_arc_vrecrun (int)
void __builtin_arc_vrun (int)
</pre></div>
<p>The following take a <code>__v8hi</code> argument and two <code>int</code>
arguments and return a <code>__v8hi</code> result. The second argument must
be a 3-bit compile time constants, indicating one the registers I0-I7,
and the third argument must be an 8-bit compile time constant.
</p>
<p><em>Note:</em> Although the equivalent hardware instructions do not take
an SIMD register as an operand, these builtins overwrite the relevant
bits of the <code>__v8hi</code> register provided as the first argument with
the value loaded from the <code>[Ib, u8]</code> location in the SDM.
</p>
<div class="example">
<pre class="example">__v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
__v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
__v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
__v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
</pre></div>
<p>The following take two <code>int</code> arguments and return a <code>__v8hi</code>
result. The first argument must be a 3-bit compile time constants,
indicating one the registers I0-I7, and the second argument must be an
8-bit compile time constant.
</p>
<div class="example">
<pre class="example">__v8hi __builtin_arc_vld128 (const int, const int)
__v8hi __builtin_arc_vld64w (const int, const int)
</pre></div>
<p>The following take a <code>__v8hi</code> argument and two <code>int</code>
arguments and return no result. The second argument must be a 3-bit
compile time constants, indicating one the registers I0-I7, and the
third argument must be an 8-bit compile time constant.
</p>
<div class="example">
<pre class="example">void __builtin_arc_vst128 (__v8hi, const int, const int)
void __builtin_arc_vst64 (__v8hi, const int, const int)
</pre></div>
<p>The following take a <code>__v8hi</code> argument and three <code>int</code>
arguments and return no result. The second argument must be a 3-bit
compile-time constant, identifying the 16-bit sub-register to be
stored, the third argument must be a 3-bit compile time constants,
indicating one the registers I0-I7, and the fourth argument must be an
8-bit compile time constant.
</p>
<div class="example">
<pre class="example">void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
</pre></div>
<hr>
<a name="ARM-iWMMXt-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#ARM-C-Language-Extensions-_0028ACLE_0029" accesskey="n" rel="next">ARM C Language Extensions (ACLE)</a>, Previous: <a href="#ARC-SIMD-Built_002din-Functions" accesskey="p" rel="prev">ARC SIMD Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARM-iWMMXt-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.6 ARM iWMMXt Built-in Functions</h4>
<p>These built-in functions are available for the ARM family of
processors when the <samp>-mcpu=iwmmxt</samp> switch is used:
</p>
<div class="smallexample">
<pre class="smallexample">typedef int v2si __attribute__ ((vector_size (8)));
typedef short v4hi __attribute__ ((vector_size (8)));
typedef char v8qi __attribute__ ((vector_size (8)));
int __builtin_arm_getwcgr0 (void)
void __builtin_arm_setwcgr0 (int)
int __builtin_arm_getwcgr1 (void)
void __builtin_arm_setwcgr1 (int)
int __builtin_arm_getwcgr2 (void)
void __builtin_arm_setwcgr2 (int)
int __builtin_arm_getwcgr3 (void)
void __builtin_arm_setwcgr3 (int)
int __builtin_arm_textrmsb (v8qi, int)
int __builtin_arm_textrmsh (v4hi, int)
int __builtin_arm_textrmsw (v2si, int)
int __builtin_arm_textrmub (v8qi, int)
int __builtin_arm_textrmuh (v4hi, int)
int __builtin_arm_textrmuw (v2si, int)
v8qi __builtin_arm_tinsrb (v8qi, int, int)
v4hi __builtin_arm_tinsrh (v4hi, int, int)
v2si __builtin_arm_tinsrw (v2si, int, int)
long long __builtin_arm_tmia (long long, int, int)
long long __builtin_arm_tmiabb (long long, int, int)
long long __builtin_arm_tmiabt (long long, int, int)
long long __builtin_arm_tmiaph (long long, int, int)
long long __builtin_arm_tmiatb (long long, int, int)
long long __builtin_arm_tmiatt (long long, int, int)
int __builtin_arm_tmovmskb (v8qi)
int __builtin_arm_tmovmskh (v4hi)
int __builtin_arm_tmovmskw (v2si)
long long __builtin_arm_waccb (v8qi)
long long __builtin_arm_wacch (v4hi)
long long __builtin_arm_waccw (v2si)
v8qi __builtin_arm_waddb (v8qi, v8qi)
v8qi __builtin_arm_waddbss (v8qi, v8qi)
v8qi __builtin_arm_waddbus (v8qi, v8qi)
v4hi __builtin_arm_waddh (v4hi, v4hi)
v4hi __builtin_arm_waddhss (v4hi, v4hi)
v4hi __builtin_arm_waddhus (v4hi, v4hi)
v2si __builtin_arm_waddw (v2si, v2si)
v2si __builtin_arm_waddwss (v2si, v2si)
v2si __builtin_arm_waddwus (v2si, v2si)
v8qi __builtin_arm_walign (v8qi, v8qi, int)
long long __builtin_arm_wand(long long, long long)
long long __builtin_arm_wandn (long long, long long)
v8qi __builtin_arm_wavg2b (v8qi, v8qi)
v8qi __builtin_arm_wavg2br (v8qi, v8qi)
v4hi __builtin_arm_wavg2h (v4hi, v4hi)
v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
v2si __builtin_arm_wcmpeqw (v2si, v2si)
v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
v2si __builtin_arm_wcmpgtsw (v2si, v2si)
v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
v2si __builtin_arm_wcmpgtuw (v2si, v2si)
long long __builtin_arm_wmacs (long long, v4hi, v4hi)
long long __builtin_arm_wmacsz (v4hi, v4hi)
long long __builtin_arm_wmacu (long long, v4hi, v4hi)
long long __builtin_arm_wmacuz (v4hi, v4hi)
v4hi __builtin_arm_wmadds (v4hi, v4hi)
v4hi __builtin_arm_wmaddu (v4hi, v4hi)
v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
v2si __builtin_arm_wmaxsw (v2si, v2si)
v8qi __builtin_arm_wmaxub (v8qi, v8qi)
v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
v2si __builtin_arm_wmaxuw (v2si, v2si)
v8qi __builtin_arm_wminsb (v8qi, v8qi)
v4hi __builtin_arm_wminsh (v4hi, v4hi)
v2si __builtin_arm_wminsw (v2si, v2si)
v8qi __builtin_arm_wminub (v8qi, v8qi)
v4hi __builtin_arm_wminuh (v4hi, v4hi)
v2si __builtin_arm_wminuw (v2si, v2si)
v4hi __builtin_arm_wmulsm (v4hi, v4hi)
v4hi __builtin_arm_wmulul (v4hi, v4hi)
v4hi __builtin_arm_wmulum (v4hi, v4hi)
long long __builtin_arm_wor (long long, long long)
v2si __builtin_arm_wpackdss (long long, long long)
v2si __builtin_arm_wpackdus (long long, long long)
v8qi __builtin_arm_wpackhss (v4hi, v4hi)
v8qi __builtin_arm_wpackhus (v4hi, v4hi)
v4hi __builtin_arm_wpackwss (v2si, v2si)
v4hi __builtin_arm_wpackwus (v2si, v2si)
long long __builtin_arm_wrord (long long, long long)
long long __builtin_arm_wrordi (long long, int)
v4hi __builtin_arm_wrorh (v4hi, long long)
v4hi __builtin_arm_wrorhi (v4hi, int)
v2si __builtin_arm_wrorw (v2si, long long)
v2si __builtin_arm_wrorwi (v2si, int)
v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
v2si __builtin_arm_wsadbz (v8qi, v8qi)
v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
v2si __builtin_arm_wsadhz (v4hi, v4hi)
v4hi __builtin_arm_wshufh (v4hi, int)
long long __builtin_arm_wslld (long long, long long)
long long __builtin_arm_wslldi (long long, int)
v4hi __builtin_arm_wsllh (v4hi, long long)
v4hi __builtin_arm_wsllhi (v4hi, int)
v2si __builtin_arm_wsllw (v2si, long long)
v2si __builtin_arm_wsllwi (v2si, int)
long long __builtin_arm_wsrad (long long, long long)
long long __builtin_arm_wsradi (long long, int)
v4hi __builtin_arm_wsrah (v4hi, long long)
v4hi __builtin_arm_wsrahi (v4hi, int)
v2si __builtin_arm_wsraw (v2si, long long)
v2si __builtin_arm_wsrawi (v2si, int)
long long __builtin_arm_wsrld (long long, long long)
long long __builtin_arm_wsrldi (long long, int)
v4hi __builtin_arm_wsrlh (v4hi, long long)
v4hi __builtin_arm_wsrlhi (v4hi, int)
v2si __builtin_arm_wsrlw (v2si, long long)
v2si __builtin_arm_wsrlwi (v2si, int)
v8qi __builtin_arm_wsubb (v8qi, v8qi)
v8qi __builtin_arm_wsubbss (v8qi, v8qi)
v8qi __builtin_arm_wsubbus (v8qi, v8qi)
v4hi __builtin_arm_wsubh (v4hi, v4hi)
v4hi __builtin_arm_wsubhss (v4hi, v4hi)
v4hi __builtin_arm_wsubhus (v4hi, v4hi)
v2si __builtin_arm_wsubw (v2si, v2si)
v2si __builtin_arm_wsubwss (v2si, v2si)
v2si __builtin_arm_wsubwus (v2si, v2si)
v4hi __builtin_arm_wunpckehsb (v8qi)
v2si __builtin_arm_wunpckehsh (v4hi)
long long __builtin_arm_wunpckehsw (v2si)
v4hi __builtin_arm_wunpckehub (v8qi)
v2si __builtin_arm_wunpckehuh (v4hi)
long long __builtin_arm_wunpckehuw (v2si)
v4hi __builtin_arm_wunpckelsb (v8qi)
v2si __builtin_arm_wunpckelsh (v4hi)
long long __builtin_arm_wunpckelsw (v2si)
v4hi __builtin_arm_wunpckelub (v8qi)
v2si __builtin_arm_wunpckeluh (v4hi)
long long __builtin_arm_wunpckeluw (v2si)
v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
v2si __builtin_arm_wunpckihw (v2si, v2si)
v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
v2si __builtin_arm_wunpckilw (v2si, v2si)
long long __builtin_arm_wxor (long long, long long)
long long __builtin_arm_wzero ()
</pre></div>
<hr>
<a name="ARM-C-Language-Extensions-_0028ACLE_0029"></a>
<div class="header">
<p>
Next: <a href="#ARM-Floating-Point-Status-and-Control-Intrinsics" accesskey="n" rel="next">ARM Floating Point Status and Control Intrinsics</a>, Previous: <a href="#ARM-iWMMXt-Built_002din-Functions" accesskey="p" rel="prev">ARM iWMMXt Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARM-C-Language-Extensions-_0028ACLE_0029-1"></a>
<h4 class="subsection">6.59.7 ARM C Language Extensions (ACLE)</h4>
<p>GCC implements extensions for C as described in the ARM C Language
Extensions (ACLE) specification, which can be found at
<a href="http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf">http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf</a>.
</p>
<p>As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
the ARM C Language Extensions Specification. The complete list of Advanced SIMD
intrinsics can be found at
<a href="http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf">http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf</a>.
The built-in intrinsics for the Advanced SIMD extension are available when
NEON is enabled.
</p>
<p>Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
back ends support CRC32 intrinsics and the ARM back end supports the
Coprocessor intrinsics, all from <samp>arm_acle.h</samp>. The ARM back end’s 16-bit
floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
AArch64’s back end does not have support for 16-bit floating point Advanced SIMD
intrinsics yet.
</p>
<p>See <a href="#ARM-Options">ARM Options</a> and <a href="#AArch64-Options">AArch64 Options</a> for more information on the
availability of extensions.
</p>
<hr>
<a name="ARM-Floating-Point-Status-and-Control-Intrinsics"></a>
<div class="header">
<p>
Next: <a href="#ARM-ARMv8_002dM-Security-Extensions" accesskey="n" rel="next">ARM ARMv8-M Security Extensions</a>, Previous: <a href="#ARM-C-Language-Extensions-_0028ACLE_0029" accesskey="p" rel="prev">ARM C Language Extensions (ACLE)</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARM-Floating-Point-Status-and-Control-Intrinsics-1"></a>
<h4 class="subsection">6.59.8 ARM Floating Point Status and Control Intrinsics</h4>
<p>These built-in functions are available for the ARM family of
processors with floating-point unit.
</p>
<div class="smallexample">
<pre class="smallexample">unsigned int __builtin_arm_get_fpscr ()
void __builtin_arm_set_fpscr (unsigned int)
</pre></div>
<hr>
<a name="ARM-ARMv8_002dM-Security-Extensions"></a>
<div class="header">
<p>
Next: <a href="#AVR-Built_002din-Functions" accesskey="n" rel="next">AVR Built-in Functions</a>, Previous: <a href="#ARM-Floating-Point-Status-and-Control-Intrinsics" accesskey="p" rel="prev">ARM Floating Point Status and Control Intrinsics</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARM-ARMv8_002dM-Security-Extensions-1"></a>
<h4 class="subsection">6.59.9 ARM ARMv8-M Security Extensions</h4>
<p>GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
Security Extensions: Requirements on Development Tools Engineering
Specification, which can be found at
<a href="http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf">http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf</a>.
</p>
<p>As part of the Security Extensions GCC implements two new function attributes:
<code>cmse_nonsecure_entry</code> and <code>cmse_nonsecure_call</code>.
</p>
<p>As part of the Security Extensions GCC implements the intrinsics below. FPTR
is used here to mean any function pointer type.
</p>
<div class="smallexample">
<pre class="smallexample">cmse_address_info_t cmse_TT (void *)
cmse_address_info_t cmse_TT_fptr (FPTR)
cmse_address_info_t cmse_TTT (void *)
cmse_address_info_t cmse_TTT_fptr (FPTR)
cmse_address_info_t cmse_TTA (void *)
cmse_address_info_t cmse_TTA_fptr (FPTR)
cmse_address_info_t cmse_TTAT (void *)
cmse_address_info_t cmse_TTAT_fptr (FPTR)
void * cmse_check_address_range (void *, size_t, int)
typeof(p) cmse_nsfptr_create (FPTR p)
intptr_t cmse_is_nsfptr (FPTR)
int cmse_nonsecure_caller (void)
</pre></div>
<hr>
<a name="AVR-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#Blackfin-Built_002din-Functions" accesskey="n" rel="next">Blackfin Built-in Functions</a>, Previous: <a href="#ARM-ARMv8_002dM-Security-Extensions" accesskey="p" rel="prev">ARM ARMv8-M Security Extensions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="AVR-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.10 AVR Built-in Functions</h4>
<p>For each built-in function for AVR, there is an equally named,
uppercase built-in macro defined. That way users can easily query if
or if not a specific built-in is implemented or not. For example, if
<code>__builtin_avr_nop</code> is available the macro
<code>__BUILTIN_AVR_NOP</code> is defined to <code>1</code> and undefined otherwise.
</p>
<dl compact="compact">
<dt><code>void __builtin_avr_nop (void)</code></dt>
<dt><code>void __builtin_avr_sei (void)</code></dt>
<dt><code>void __builtin_avr_cli (void)</code></dt>
<dt><code>void __builtin_avr_sleep (void)</code></dt>
<dt><code>void __builtin_avr_wdr (void)</code></dt>
<dt><code>unsigned char __builtin_avr_swap (unsigned char)</code></dt>
<dt><code>unsigned int __builtin_avr_fmul (unsigned char, unsigned char)</code></dt>
<dt><code>int __builtin_avr_fmuls (char, char)</code></dt>
<dt><code>int __builtin_avr_fmulsu (char, unsigned char)</code></dt>
<dd><p>These built-in functions map to the respective machine
instruction, i.e. <code>nop</code>, <code>sei</code>, <code>cli</code>, <code>sleep</code>,
<code>wdr</code>, <code>swap</code>, <code>fmul</code>, <code>fmuls</code>
resp. <code>fmulsu</code>. The three <code>fmul*</code> built-ins are implemented
as library call if no hardware multiplier is available.
</p>
</dd>
<dt><code>void __builtin_avr_delay_cycles (unsigned long ticks)</code></dt>
<dd><p>Delay execution for <var>ticks</var> cycles. Note that this
built-in does not take into account the effect of interrupts that
might increase delay time. <var>ticks</var> must be a compile-time
integer constant; delays with a variable number of cycles are not supported.
</p>
</dd>
<dt><code>char __builtin_avr_flash_segment (const __memx void*)</code></dt>
<dd><p>This built-in takes a byte address to the 24-bit
<a href="#AVR-Named-Address-Spaces">address space</a> <code>__memx</code> and returns
the number of the flash segment (the 64 KiB chunk) where the address
points to. Counting starts at <code>0</code>.
If the address does not point to flash memory, return <code>-1</code>.
</p>
</dd>
<dt><code>uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)</code></dt>
<dd><p>Insert bits from <var>bits</var> into <var>val</var> and return the resulting
value. The nibbles of <var>map</var> determine how the insertion is
performed: Let <var>X</var> be the <var>n</var>-th nibble of <var>map</var>
</p><ol>
<li> If <var>X</var> is <code>0xf</code>,
then the <var>n</var>-th bit of <var>val</var> is returned unaltered.
</li><li> If X is in the range 0…7,
then the <var>n</var>-th result bit is set to the <var>X</var>-th bit of <var>bits</var>
</li><li> If X is in the range 8…<code>0xe</code>,
then the <var>n</var>-th result bit is undefined.
</li></ol>
<p>One typical use case for this built-in is adjusting input and
output values to non-contiguous port layouts. Some examples:
</p>
<div class="smallexample">
<pre class="smallexample">// same as val, bits is unused
__builtin_avr_insert_bits (0xffffffff, bits, val)
</pre></div>
<div class="smallexample">
<pre class="smallexample">// same as bits, val is unused
__builtin_avr_insert_bits (0x76543210, bits, val)
</pre></div>
<div class="smallexample">
<pre class="smallexample">// same as rotating bits by 4
__builtin_avr_insert_bits (0x32107654, bits, 0)
</pre></div>
<div class="smallexample">
<pre class="smallexample">// high nibble of result is the high nibble of val
// low nibble of result is the low nibble of bits
__builtin_avr_insert_bits (0xffff3210, bits, val)
</pre></div>
<div class="smallexample">
<pre class="smallexample">// reverse the bit order of bits
__builtin_avr_insert_bits (0x01234567, bits, 0)
</pre></div>
</dd>
<dt><code>void __builtin_avr_nops (unsigned count)</code></dt>
<dd><p>Insert <var>count</var> <code>NOP</code> instructions.
The number of instructions must be a compile-time integer constant.
</p>
</dd>
</dl>
<p>There are many more AVR-specific built-in functions that are used to
implement the ISO/IEC TR 18037 “Embedded C” fixed-point functions of
section 7.18a.6. You don’t need to use these built-ins directly.
Instead, use the declarations as supplied by the <code>stdfix.h</code> header
with GNU-C99:
</p>
<div class="smallexample">
<pre class="smallexample">#include <stdfix.h>
// Re-interpret the bit representation of unsigned 16-bit
// integer <var>uval</var> as Q-format 0.16 value.
unsigned fract get_bits (uint_ur_t uval)
{
return urbits (uval);
}
</pre></div>
<hr>
<a name="Blackfin-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#FR_002dV-Built_002din-Functions" accesskey="n" rel="next">FR-V Built-in Functions</a>, Previous: <a href="#AVR-Built_002din-Functions" accesskey="p" rel="prev">AVR Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Blackfin-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.11 Blackfin Built-in Functions</h4>
<p>Currently, there are two Blackfin-specific built-in functions. These are
used for generating <code>CSYNC</code> and <code>SSYNC</code> machine insns without
using inline assembly; by using these built-in functions the compiler can
automatically add workarounds for hardware errata involving these
instructions. These functions are named as follows:
</p>
<div class="smallexample">
<pre class="smallexample">void __builtin_bfin_csync (void)
void __builtin_bfin_ssync (void)
</pre></div>
<hr>
<a name="FR_002dV-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#MIPS-DSP-Built_002din-Functions" accesskey="n" rel="next">MIPS DSP Built-in Functions</a>, Previous: <a href="#Blackfin-Built_002din-Functions" accesskey="p" rel="prev">Blackfin Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="FR_002dV-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.12 FR-V Built-in Functions</h4>
<p>GCC provides many FR-V-specific built-in functions. In general,
these functions are intended to be compatible with those described
by <cite>FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
Semiconductor</cite>. The two exceptions are <code>__MDUNPACKH</code> and
<code>__MBTOHE</code>, the GCC forms of which pass 128-bit values by
pointer rather than by value.
</p>
<p>Most of the functions are named after specific FR-V instructions.
Such functions are said to be “directly mapped” and are summarized
here in tabular form.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Argument-Types" accesskey="1">Argument Types</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Directly_002dmapped-Integer-Functions" accesskey="2">Directly-mapped Integer Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Directly_002dmapped-Media-Functions" accesskey="3">Directly-mapped Media Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Raw-read_002fwrite-Functions" accesskey="4">Raw read/write Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Other-Built_002din-Functions" accesskey="5">Other Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Argument-Types"></a>
<div class="header">
<p>
Next: <a href="#Directly_002dmapped-Integer-Functions" accesskey="n" rel="next">Directly-mapped Integer Functions</a>, Up: <a href="#FR_002dV-Built_002din-Functions" accesskey="u" rel="up">FR-V Built-in Functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Argument-Types-1"></a>
<h4 class="subsubsection">6.59.12.1 Argument Types</h4>
<p>The arguments to the built-in functions can be divided into three groups:
register numbers, compile-time constants and run-time values. In order
to make this classification clear at a glance, the arguments and return
values are given the following pseudo types:
</p>
<table>
<tr><td width="20%">Pseudo type</td><td width="30%">Real C type</td><td width="15%">Constant?</td><td width="35%">Description</td></tr>
<tr><td width="20%"><code>uh</code></td><td width="30%"><code>unsigned short</code></td><td width="15%">No</td><td width="35%">an unsigned halfword</td></tr>
<tr><td width="20%"><code>uw1</code></td><td width="30%"><code>unsigned int</code></td><td width="15%">No</td><td width="35%">an unsigned word</td></tr>
<tr><td width="20%"><code>sw1</code></td><td width="30%"><code>int</code></td><td width="15%">No</td><td width="35%">a signed word</td></tr>
<tr><td width="20%"><code>uw2</code></td><td width="30%"><code>unsigned long long</code></td><td width="15%">No</td><td width="35%">an unsigned doubleword</td></tr>
<tr><td width="20%"><code>sw2</code></td><td width="30%"><code>long long</code></td><td width="15%">No</td><td width="35%">a signed doubleword</td></tr>
<tr><td width="20%"><code>const</code></td><td width="30%"><code>int</code></td><td width="15%">Yes</td><td width="35%">an integer constant</td></tr>
<tr><td width="20%"><code>acc</code></td><td width="30%"><code>int</code></td><td width="15%">Yes</td><td width="35%">an ACC register number</td></tr>
<tr><td width="20%"><code>iacc</code></td><td width="30%"><code>int</code></td><td width="15%">Yes</td><td width="35%">an IACC register number</td></tr>
</table>
<p>These pseudo types are not defined by GCC, they are simply a notational
convenience used in this manual.
</p>
<p>Arguments of type <code>uh</code>, <code>uw1</code>, <code>sw1</code>, <code>uw2</code>
and <code>sw2</code> are evaluated at run time. They correspond to
register operands in the underlying FR-V instructions.
</p>
<p><code>const</code> arguments represent immediate operands in the underlying
FR-V instructions. They must be compile-time constants.
</p>
<p><code>acc</code> arguments are evaluated at compile time and specify the number
of an accumulator register. For example, an <code>acc</code> argument of 2
selects the ACC2 register.
</p>
<p><code>iacc</code> arguments are similar to <code>acc</code> arguments but specify the
number of an IACC register. See see <a href="#Other-Built_002din-Functions">Other Built-in Functions</a>
for more details.
</p>
<hr>
<a name="Directly_002dmapped-Integer-Functions"></a>
<div class="header">
<p>
Next: <a href="#Directly_002dmapped-Media-Functions" accesskey="n" rel="next">Directly-mapped Media Functions</a>, Previous: <a href="#Argument-Types" accesskey="p" rel="prev">Argument Types</a>, Up: <a href="#FR_002dV-Built_002din-Functions" accesskey="u" rel="up">FR-V Built-in Functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Directly_002dMapped-Integer-Functions"></a>
<h4 class="subsubsection">6.59.12.2 Directly-Mapped Integer Functions</h4>
<p>The functions listed below map directly to FR-V I-type instructions.
</p>
<table>
<tr><td width="45%">Function prototype</td><td width="32%">Example usage</td><td width="23%">Assembly output</td></tr>
<tr><td width="45%"><code>sw1 __ADDSS (sw1, sw1)</code></td><td width="32%"><code><var>c</var> = __ADDSS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>ADDSS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw1 __SCAN (sw1, sw1)</code></td><td width="32%"><code><var>c</var> = __SCAN (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>SCAN <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw1 __SCUTSS (sw1)</code></td><td width="32%"><code><var>b</var> = __SCUTSS (<var>a</var>)</code></td><td width="23%"><code>SCUTSS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>sw1 __SLASS (sw1, sw1)</code></td><td width="32%"><code><var>c</var> = __SLASS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>SLASS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __SMASS (sw1, sw1)</code></td><td width="32%"><code>__SMASS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>SMASS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __SMSSS (sw1, sw1)</code></td><td width="32%"><code>__SMSSS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>SMSSS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __SMU (sw1, sw1)</code></td><td width="32%"><code>__SMU (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>SMU <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>sw2 __SMUL (sw1, sw1)</code></td><td width="32%"><code><var>c</var> = __SMUL (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>SMUL <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw1 __SUBSS (sw1, sw1)</code></td><td width="32%"><code><var>c</var> = __SUBSS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>SUBSS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw2 __UMUL (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __UMUL (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>UMUL <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
</table>
<hr>
<a name="Directly_002dmapped-Media-Functions"></a>
<div class="header">
<p>
Next: <a href="#Raw-read_002fwrite-Functions" accesskey="n" rel="next">Raw read/write Functions</a>, Previous: <a href="#Directly_002dmapped-Integer-Functions" accesskey="p" rel="prev">Directly-mapped Integer Functions</a>, Up: <a href="#FR_002dV-Built_002din-Functions" accesskey="u" rel="up">FR-V Built-in Functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Directly_002dMapped-Media-Functions"></a>
<h4 class="subsubsection">6.59.12.3 Directly-Mapped Media Functions</h4>
<p>The functions listed below map directly to FR-V M-type instructions.
</p>
<table>
<tr><td width="45%">Function prototype</td><td width="32%">Example usage</td><td width="23%">Assembly output</td></tr>
<tr><td width="45%"><code>uw1 __MABSHS (sw1)</code></td><td width="32%"><code><var>b</var> = __MABSHS (<var>a</var>)</code></td><td width="23%"><code>MABSHS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __MADDACCS (acc, acc)</code></td><td width="32%"><code>__MADDACCS (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MADDACCS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>sw1 __MADDHSS (sw1, sw1)</code></td><td width="32%"><code><var>c</var> = __MADDHSS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MADDHSS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MADDHUS (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __MADDHUS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MADDHUS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MAND (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __MAND (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MAND <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MASACCS (acc, acc)</code></td><td width="32%"><code>__MASACCS (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MASACCS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MAVEH (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __MAVEH (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MAVEH <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw2 __MBTOH (uw1)</code></td><td width="32%"><code><var>b</var> = __MBTOH (<var>a</var>)</code></td><td width="23%"><code>MBTOH <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __MBTOHE (uw1 *, uw1)</code></td><td width="32%"><code>__MBTOHE (&<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MBTOHE <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __MCLRACC (acc)</code></td><td width="32%"><code>__MCLRACC (<var>a</var>)</code></td><td width="23%"><code>MCLRACC <var>a</var></code></td></tr>
<tr><td width="45%"><code>void __MCLRACCA (void)</code></td><td width="32%"><code>__MCLRACCA ()</code></td><td width="23%"><code>MCLRACCA</code></td></tr>
<tr><td width="45%"><code>uw1 __Mcop1 (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __Mcop1 (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>Mcop1 <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __Mcop2 (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __Mcop2 (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>Mcop2 <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MCPLHI (uw2, const)</code></td><td width="32%"><code><var>c</var> = __MCPLHI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MCPLHI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MCPLI (uw2, const)</code></td><td width="32%"><code><var>c</var> = __MCPLI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MCPLI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MCPXIS (acc, sw1, sw1)</code></td><td width="32%"><code>__MCPXIS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MCPXIS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MCPXIU (acc, uw1, uw1)</code></td><td width="32%"><code>__MCPXIU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MCPXIU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MCPXRS (acc, sw1, sw1)</code></td><td width="32%"><code>__MCPXRS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MCPXRS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MCPXRU (acc, uw1, uw1)</code></td><td width="32%"><code>__MCPXRU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MCPXRU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MCUT (acc, uw1)</code></td><td width="32%"><code><var>c</var> = __MCUT (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MCUT <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MCUTSS (acc, sw1)</code></td><td width="32%"><code><var>c</var> = __MCUTSS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MCUTSS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MDADDACCS (acc, acc)</code></td><td width="32%"><code>__MDADDACCS (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MDADDACCS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __MDASACCS (acc, acc)</code></td><td width="32%"><code>__MDASACCS (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MDASACCS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw2 __MDCUTSSI (acc, const)</code></td><td width="32%"><code><var>c</var> = __MDCUTSSI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MDCUTSSI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw2 __MDPACKH (uw2, uw2)</code></td><td width="32%"><code><var>c</var> = __MDPACKH (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MDPACKH <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw2 __MDROTLI (uw2, const)</code></td><td width="32%"><code><var>c</var> = __MDROTLI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MDROTLI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MDSUBACCS (acc, acc)</code></td><td width="32%"><code>__MDSUBACCS (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MDSUBACCS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __MDUNPACKH (uw1 *, uw2)</code></td><td width="32%"><code>__MDUNPACKH (&<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MDUNPACKH <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw2 __MEXPDHD (uw1, const)</code></td><td width="32%"><code><var>c</var> = __MEXPDHD (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MEXPDHD <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MEXPDHW (uw1, const)</code></td><td width="32%"><code><var>c</var> = __MEXPDHW (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MEXPDHW <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MHDSETH (uw1, const)</code></td><td width="32%"><code><var>c</var> = __MHDSETH (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MHDSETH <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw1 __MHDSETS (const)</code></td><td width="32%"><code><var>b</var> = __MHDSETS (<var>a</var>)</code></td><td width="23%"><code>MHDSETS #<var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MHSETHIH (uw1, const)</code></td><td width="32%"><code><var>b</var> = __MHSETHIH (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MHSETHIH #<var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>sw1 __MHSETHIS (sw1, const)</code></td><td width="32%"><code><var>b</var> = __MHSETHIS (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MHSETHIS #<var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MHSETLOH (uw1, const)</code></td><td width="32%"><code><var>b</var> = __MHSETLOH (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MHSETLOH #<var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>sw1 __MHSETLOS (sw1, const)</code></td><td width="32%"><code><var>b</var> = __MHSETLOS (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MHSETLOS #<var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MHTOB (uw2)</code></td><td width="32%"><code><var>b</var> = __MHTOB (<var>a</var>)</code></td><td width="23%"><code>MHTOB <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __MMACHS (acc, sw1, sw1)</code></td><td width="32%"><code>__MMACHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MMACHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MMACHU (acc, uw1, uw1)</code></td><td width="32%"><code>__MMACHU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MMACHU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MMRDHS (acc, sw1, sw1)</code></td><td width="32%"><code>__MMRDHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MMRDHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MMRDHU (acc, uw1, uw1)</code></td><td width="32%"><code>__MMRDHU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MMRDHU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MMULHS (acc, sw1, sw1)</code></td><td width="32%"><code>__MMULHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MMULHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MMULHU (acc, uw1, uw1)</code></td><td width="32%"><code>__MMULHU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MMULHU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MMULXHS (acc, sw1, sw1)</code></td><td width="32%"><code>__MMULXHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MMULXHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MMULXHU (acc, uw1, uw1)</code></td><td width="32%"><code>__MMULXHU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MMULXHU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MNOT (uw1)</code></td><td width="32%"><code><var>b</var> = __MNOT (<var>a</var>)</code></td><td width="23%"><code>MNOT <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MOR (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __MOR (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MOR <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MPACKH (uh, uh)</code></td><td width="32%"><code><var>c</var> = __MPACKH (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MPACKH <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw2 __MQADDHSS (sw2, sw2)</code></td><td width="32%"><code><var>c</var> = __MQADDHSS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQADDHSS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw2 __MQADDHUS (uw2, uw2)</code></td><td width="32%"><code><var>c</var> = __MQADDHUS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQADDHUS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQCPXIS (acc, sw2, sw2)</code></td><td width="32%"><code>__MQCPXIS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQCPXIS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQCPXIU (acc, uw2, uw2)</code></td><td width="32%"><code>__MQCPXIU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQCPXIU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQCPXRS (acc, sw2, sw2)</code></td><td width="32%"><code>__MQCPXRS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQCPXRS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQCPXRU (acc, uw2, uw2)</code></td><td width="32%"><code>__MQCPXRU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQCPXRU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw2 __MQLCLRHS (sw2, sw2)</code></td><td width="32%"><code><var>c</var> = __MQLCLRHS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQLCLRHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw2 __MQLMTHS (sw2, sw2)</code></td><td width="32%"><code><var>c</var> = __MQLMTHS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQLMTHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQMACHS (acc, sw2, sw2)</code></td><td width="32%"><code>__MQMACHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQMACHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQMACHU (acc, uw2, uw2)</code></td><td width="32%"><code>__MQMACHU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQMACHU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQMACXHS (acc, sw2, sw2)</code></td><td width="32%"><code>__MQMACXHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQMACXHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQMULHS (acc, sw2, sw2)</code></td><td width="32%"><code>__MQMULHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQMULHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQMULHU (acc, uw2, uw2)</code></td><td width="32%"><code>__MQMULHU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQMULHU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQMULXHS (acc, sw2, sw2)</code></td><td width="32%"><code>__MQMULXHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQMULXHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQMULXHU (acc, uw2, uw2)</code></td><td width="32%"><code>__MQMULXHU (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQMULXHU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw2 __MQSATHS (sw2, sw2)</code></td><td width="32%"><code><var>c</var> = __MQSATHS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQSATHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw2 __MQSLLHI (uw2, int)</code></td><td width="32%"><code><var>c</var> = __MQSLLHI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQSLLHI <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw2 __MQSRAHI (sw2, int)</code></td><td width="32%"><code><var>c</var> = __MQSRAHI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQSRAHI <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw2 __MQSUBHSS (sw2, sw2)</code></td><td width="32%"><code><var>c</var> = __MQSUBHSS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQSUBHSS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw2 __MQSUBHUS (uw2, uw2)</code></td><td width="32%"><code><var>c</var> = __MQSUBHUS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQSUBHUS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQXMACHS (acc, sw2, sw2)</code></td><td width="32%"><code>__MQXMACHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQXMACHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MQXMACXHS (acc, sw2, sw2)</code></td><td width="32%"><code>__MQXMACXHS (<var>c</var>, <var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MQXMACXHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MRDACC (acc)</code></td><td width="32%"><code><var>b</var> = __MRDACC (<var>a</var>)</code></td><td width="23%"><code>MRDACC <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MRDACCG (acc)</code></td><td width="32%"><code><var>b</var> = __MRDACCG (<var>a</var>)</code></td><td width="23%"><code>MRDACCG <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MROTLI (uw1, const)</code></td><td width="32%"><code><var>c</var> = __MROTLI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MROTLI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MROTRI (uw1, const)</code></td><td width="32%"><code><var>c</var> = __MROTRI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MROTRI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw1 __MSATHS (sw1, sw1)</code></td><td width="32%"><code><var>c</var> = __MSATHS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MSATHS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MSATHU (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __MSATHU (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MSATHU <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MSLLHI (uw1, const)</code></td><td width="32%"><code><var>c</var> = __MSLLHI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MSLLHI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>sw1 __MSRAHI (sw1, const)</code></td><td width="32%"><code><var>c</var> = __MSRAHI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MSRAHI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MSRLHI (uw1, const)</code></td><td width="32%"><code><var>c</var> = __MSRLHI (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MSRLHI <var>a</var>,#<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MSUBACCS (acc, acc)</code></td><td width="32%"><code>__MSUBACCS (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MSUBACCS <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>sw1 __MSUBHSS (sw1, sw1)</code></td><td width="32%"><code><var>c</var> = __MSUBHSS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MSUBHSS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MSUBHUS (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __MSUBHUS (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MSUBHUS <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MTRAP (void)</code></td><td width="32%"><code>__MTRAP ()</code></td><td width="23%"><code>MTRAP</code></td></tr>
<tr><td width="45%"><code>uw2 __MUNPACKH (uw1)</code></td><td width="32%"><code><var>b</var> = __MUNPACKH (<var>a</var>)</code></td><td width="23%"><code>MUNPACKH <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MWCUT (uw2, uw1)</code></td><td width="32%"><code><var>c</var> = __MWCUT (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MWCUT <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
<tr><td width="45%"><code>void __MWTACC (acc, uw1)</code></td><td width="32%"><code>__MWTACC (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MWTACC <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>void __MWTACCG (acc, uw1)</code></td><td width="32%"><code>__MWTACCG (<var>b</var>, <var>a</var>)</code></td><td width="23%"><code>MWTACCG <var>a</var>,<var>b</var></code></td></tr>
<tr><td width="45%"><code>uw1 __MXOR (uw1, uw1)</code></td><td width="32%"><code><var>c</var> = __MXOR (<var>a</var>, <var>b</var>)</code></td><td width="23%"><code>MXOR <var>a</var>,<var>b</var>,<var>c</var></code></td></tr>
</table>
<hr>
<a name="Raw-read_002fwrite-Functions"></a>
<div class="header">
<p>
Next: <a href="#Other-Built_002din-Functions" accesskey="n" rel="next">Other Built-in Functions</a>, Previous: <a href="#Directly_002dmapped-Media-Functions" accesskey="p" rel="prev">Directly-mapped Media Functions</a>, Up: <a href="#FR_002dV-Built_002din-Functions" accesskey="u" rel="up">FR-V Built-in Functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Raw-Read_002fWrite-Functions"></a>
<h4 class="subsubsection">6.59.12.4 Raw Read/Write Functions</h4>
<p>This sections describes built-in functions related to read and write
instructions to access memory. These functions generate
<code>membar</code> instructions to flush the I/O load and stores where
appropriate, as described in Fujitsu’s manual described above.
</p>
<dl compact="compact">
<dt><code>unsigned char __builtin_read8 (void *<var>data</var>)</code></dt>
<dt><code>unsigned short __builtin_read16 (void *<var>data</var>)</code></dt>
<dt><code>unsigned long __builtin_read32 (void *<var>data</var>)</code></dt>
<dt><code>unsigned long long __builtin_read64 (void *<var>data</var>)</code></dt>
<dt><code>void __builtin_write8 (void *<var>data</var>, unsigned char <var>datum</var>)</code></dt>
<dt><code>void __builtin_write16 (void *<var>data</var>, unsigned short <var>datum</var>)</code></dt>
<dt><code>void __builtin_write32 (void *<var>data</var>, unsigned long <var>datum</var>)</code></dt>
<dt><code>void __builtin_write64 (void *<var>data</var>, unsigned long long <var>datum</var>)</code></dt>
</dl>
<hr>
<a name="Other-Built_002din-Functions"></a>
<div class="header">
<p>
Previous: <a href="#Raw-read_002fwrite-Functions" accesskey="p" rel="prev">Raw read/write Functions</a>, Up: <a href="#FR_002dV-Built_002din-Functions" accesskey="u" rel="up">FR-V Built-in Functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Other-Built_002din-Functions-1"></a>
<h4 class="subsubsection">6.59.12.5 Other Built-in Functions</h4>
<p>This section describes built-in functions that are not named after
a specific FR-V instruction.
</p>
<dl compact="compact">
<dt><code>sw2 __IACCreadll (iacc <var>reg</var>)</code></dt>
<dd><p>Return the full 64-bit value of IACC0. The <var>reg</var> argument is reserved
for future expansion and must be 0.
</p>
</dd>
<dt><code>sw1 __IACCreadl (iacc <var>reg</var>)</code></dt>
<dd><p>Return the value of IACC0H if <var>reg</var> is 0 and IACC0L if <var>reg</var> is 1.
Other values of <var>reg</var> are rejected as invalid.
</p>
</dd>
<dt><code>void __IACCsetll (iacc <var>reg</var>, sw2 <var>x</var>)</code></dt>
<dd><p>Set the full 64-bit value of IACC0 to <var>x</var>. The <var>reg</var> argument
is reserved for future expansion and must be 0.
</p>
</dd>
<dt><code>void __IACCsetl (iacc <var>reg</var>, sw1 <var>x</var>)</code></dt>
<dd><p>Set IACC0H to <var>x</var> if <var>reg</var> is 0 and IACC0L to <var>x</var> if <var>reg</var>
is 1. Other values of <var>reg</var> are rejected as invalid.
</p>
</dd>
<dt><code>void __data_prefetch0 (const void *<var>x</var>)</code></dt>
<dd><p>Use the <code>dcpl</code> instruction to load the contents of address <var>x</var>
into the data cache.
</p>
</dd>
<dt><code>void __data_prefetch (const void *<var>x</var>)</code></dt>
<dd><p>Use the <code>nldub</code> instruction to load the contents of address <var>x</var>
into the data cache. The instruction is issued in slot I1.
</p></dd>
</dl>
<hr>
<a name="MIPS-DSP-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#MIPS-Paired_002dSingle-Support" accesskey="n" rel="next">MIPS Paired-Single Support</a>, Previous: <a href="#FR_002dV-Built_002din-Functions" accesskey="p" rel="prev">FR-V Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MIPS-DSP-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.13 MIPS DSP Built-in Functions</h4>
<p>The MIPS DSP Application-Specific Extension (ASE) includes new
instructions that are designed to improve the performance of DSP and
media applications. It provides instructions that operate on packed
8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
</p>
<p>GCC supports MIPS DSP operations using both the generic
vector extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) and a collection of
MIPS-specific built-in functions. Both kinds of support are
enabled by the <samp>-mdsp</samp> command-line option.
</p>
<p>Revision 2 of the ASE was introduced in the second half of 2006.
This revision adds extra instructions to the original ASE, but is
otherwise backwards-compatible with it. You can select revision 2
using the command-line option <samp>-mdspr2</samp>; this option implies
<samp>-mdsp</samp>.
</p>
<p>The SCOUNT and POS bits of the DSP control register are global. The
WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
POS bits. During optimization, the compiler does not delete these
instructions and it does not delete calls to functions containing
these instructions.
</p>
<p>At present, GCC only provides support for operations on 32-bit
vectors. The vector type associated with 8-bit integer data is
usually called <code>v4i8</code>, the vector type associated with Q7
is usually called <code>v4q7</code>, the vector type associated with 16-bit
integer data is usually called <code>v2i16</code>, and the vector type
associated with Q15 is usually called <code>v2q15</code>. They can be
defined in C as follows:
</p>
<div class="smallexample">
<pre class="smallexample">typedef signed char v4i8 __attribute__ ((vector_size(4)));
typedef signed char v4q7 __attribute__ ((vector_size(4)));
typedef short v2i16 __attribute__ ((vector_size(4)));
typedef short v2q15 __attribute__ ((vector_size(4)));
</pre></div>
<p><code>v4i8</code>, <code>v4q7</code>, <code>v2i16</code> and <code>v2q15</code> values are
initialized in the same way as aggregates. For example:
</p>
<div class="smallexample">
<pre class="smallexample">v4i8 a = {1, 2, 3, 4};
v4i8 b;
b = (v4i8) {5, 6, 7, 8};
v2q15 c = {0x0fcb, 0x3a75};
v2q15 d;
d = (v2q15) {0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15};
</pre></div>
<p><em>Note:</em> The CPU’s endianness determines the order in which values
are packed. On little-endian targets, the first value is the least
significant and the last value is the most significant. The opposite
order applies to big-endian targets. For example, the code above
sets the lowest byte of <code>a</code> to <code>1</code> on little-endian targets
and <code>4</code> on big-endian targets.
</p>
<p><em>Note:</em> Q7, Q15 and Q31 values must be initialized with their integer
representation. As shown in this example, the integer representation
of a Q7 value can be obtained by multiplying the fractional value by
<code>0x1.0p7</code>. The equivalent for Q15 values is to multiply by
<code>0x1.0p15</code>. The equivalent for Q31 values is to multiply by
<code>0x1.0p31</code>.
</p>
<p>The table below lists the <code>v4i8</code> and <code>v2q15</code> operations for which
hardware support exists. <code>a</code> and <code>b</code> are <code>v4i8</code> values,
and <code>c</code> and <code>d</code> are <code>v2q15</code> values.
</p>
<table>
<tr><td width="50%">C code</td><td width="50%">MIPS instruction</td></tr>
<tr><td width="50%"><code>a + b</code></td><td width="50%"><code>addu.qb</code></td></tr>
<tr><td width="50%"><code>c + d</code></td><td width="50%"><code>addq.ph</code></td></tr>
<tr><td width="50%"><code>a - b</code></td><td width="50%"><code>subu.qb</code></td></tr>
<tr><td width="50%"><code>c - d</code></td><td width="50%"><code>subq.ph</code></td></tr>
</table>
<p>The table below lists the <code>v2i16</code> operation for which
hardware support exists for the DSP ASE REV 2. <code>e</code> and <code>f</code> are
<code>v2i16</code> values.
</p>
<table>
<tr><td width="50%">C code</td><td width="50%">MIPS instruction</td></tr>
<tr><td width="50%"><code>e * f</code></td><td width="50%"><code>mul.ph</code></td></tr>
</table>
<p>It is easier to describe the DSP built-in functions if we first define
the following types:
</p>
<div class="smallexample">
<pre class="smallexample">typedef int q31;
typedef int i32;
typedef unsigned int ui32;
typedef long long a64;
</pre></div>
<p><code>q31</code> and <code>i32</code> are actually the same as <code>int</code>, but we
use <code>q31</code> to indicate a Q31 fractional value and <code>i32</code> to
indicate a 32-bit integer value. Similarly, <code>a64</code> is the same as
<code>long long</code>, but we use <code>a64</code> to indicate values that are
placed in one of the four DSP accumulators (<code>$ac0</code>,
<code>$ac1</code>, <code>$ac2</code> or <code>$ac3</code>).
</p>
<p>Also, some built-in functions prefer or require immediate numbers as
parameters, because the corresponding DSP instructions accept both immediate
numbers and register operands, or accept immediate numbers only. The
immediate parameters are listed as follows.
</p>
<div class="smallexample">
<pre class="smallexample">imm0_3: 0 to 3.
imm0_7: 0 to 7.
imm0_15: 0 to 15.
imm0_31: 0 to 31.
imm0_63: 0 to 63.
imm0_255: 0 to 255.
imm_n32_31: -32 to 31.
imm_n512_511: -512 to 511.
</pre></div>
<p>The following built-in functions map directly to a particular MIPS DSP
instruction. Please refer to the architecture specification
for details on what each instruction does.
</p>
<div class="smallexample">
<pre class="smallexample">v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
q31 __builtin_mips_addq_s_w (q31, q31)
v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
q31 __builtin_mips_subq_s_w (q31, q31)
v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
i32 __builtin_mips_addsc (i32, i32)
i32 __builtin_mips_addwc (i32, i32)
i32 __builtin_mips_modsub (i32, i32)
i32 __builtin_mips_raddu_w_qb (v4i8)
v2q15 __builtin_mips_absq_s_ph (v2q15)
q31 __builtin_mips_absq_s_w (q31)
v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
v2q15 __builtin_mips_precrq_ph_w (q31, q31)
v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
q31 __builtin_mips_preceq_w_phl (v2q15)
q31 __builtin_mips_preceq_w_phr (v2q15)
v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
v4i8 __builtin_mips_shll_qb (v4i8, i32)
v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
v2q15 __builtin_mips_shll_ph (v2q15, i32)
v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
q31 __builtin_mips_shll_s_w (q31, imm0_31)
q31 __builtin_mips_shll_s_w (q31, i32)
v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
v4i8 __builtin_mips_shrl_qb (v4i8, i32)
v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
v2q15 __builtin_mips_shra_ph (v2q15, i32)
v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
q31 __builtin_mips_shra_r_w (q31, imm0_31)
q31 __builtin_mips_shra_r_w (q31, i32)
v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
i32 __builtin_mips_bitrev (i32)
i32 __builtin_mips_insv (i32, i32)
v4i8 __builtin_mips_repl_qb (imm0_255)
v4i8 __builtin_mips_repl_qb (i32)
v2q15 __builtin_mips_repl_ph (imm_n512_511)
v2q15 __builtin_mips_repl_ph (i32)
void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
void __builtin_mips_cmp_le_ph (v2q15, v2q15)
v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
i32 __builtin_mips_extr_w (a64, imm0_31)
i32 __builtin_mips_extr_w (a64, i32)
i32 __builtin_mips_extr_r_w (a64, imm0_31)
i32 __builtin_mips_extr_s_h (a64, i32)
i32 __builtin_mips_extr_rs_w (a64, imm0_31)
i32 __builtin_mips_extr_rs_w (a64, i32)
i32 __builtin_mips_extr_s_h (a64, imm0_31)
i32 __builtin_mips_extr_r_w (a64, i32)
i32 __builtin_mips_extp (a64, imm0_31)
i32 __builtin_mips_extp (a64, i32)
i32 __builtin_mips_extpdp (a64, imm0_31)
i32 __builtin_mips_extpdp (a64, i32)
a64 __builtin_mips_shilo (a64, imm_n32_31)
a64 __builtin_mips_shilo (a64, i32)
a64 __builtin_mips_mthlip (a64, i32)
void __builtin_mips_wrdsp (i32, imm0_63)
i32 __builtin_mips_rddsp (imm0_63)
i32 __builtin_mips_lbux (void *, i32)
i32 __builtin_mips_lhx (void *, i32)
i32 __builtin_mips_lwx (void *, i32)
a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
i32 __builtin_mips_bposge32 (void)
a64 __builtin_mips_madd (a64, i32, i32);
a64 __builtin_mips_maddu (a64, ui32, ui32);
a64 __builtin_mips_msub (a64, i32, i32);
a64 __builtin_mips_msubu (a64, ui32, ui32);
a64 __builtin_mips_mult (i32, i32);
a64 __builtin_mips_multu (ui32, ui32);
</pre></div>
<p>The following built-in functions map directly to a particular MIPS DSP REV 2
instruction. Please refer to the architecture specification
for details on what each instruction does.
</p>
<div class="smallexample">
<pre class="smallexample">v4q7 __builtin_mips_absq_s_qb (v4q7);
v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
i32 __builtin_mips_append (i32, i32, imm0_31);
i32 __builtin_mips_balign (i32, i32, imm0_3);
i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
q31 __builtin_mips_mulq_rs_w (q31, q31);
v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
q31 __builtin_mips_mulq_s_w (q31, q31);
a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
i32 __builtin_mips_prepend (i32, i32, imm0_31);
v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shra_qb (v4i8, i32);
v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
v2i16 __builtin_mips_shrl_ph (v2i16, i32);
v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_addqh_w (q31, q31);
q31 __builtin_mips_addqh_r_w (q31, q31);
v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_subqh_w (q31, q31);
q31 __builtin_mips_subqh_r_w (q31, q31);
a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
</pre></div>
<hr>
<a name="MIPS-Paired_002dSingle-Support"></a>
<div class="header">
<p>
Next: <a href="#MIPS-Loongson-Built_002din-Functions" accesskey="n" rel="next">MIPS Loongson Built-in Functions</a>, Previous: <a href="#MIPS-DSP-Built_002din-Functions" accesskey="p" rel="prev">MIPS DSP Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MIPS-Paired_002dSingle-Support-1"></a>
<h4 class="subsection">6.59.14 MIPS Paired-Single Support</h4>
<p>The MIPS64 architecture includes a number of instructions that
operate on pairs of single-precision floating-point values.
Each pair is packed into a 64-bit floating-point register,
with one element being designated the “upper half” and
the other being designated the “lower half”.
</p>
<p>GCC supports paired-single operations using both the generic
vector extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) and a collection of
MIPS-specific built-in functions. Both kinds of support are
enabled by the <samp>-mpaired-single</samp> command-line option.
</p>
<p>The vector type associated with paired-single values is usually
called <code>v2sf</code>. It can be defined in C as follows:
</p>
<div class="smallexample">
<pre class="smallexample">typedef float v2sf __attribute__ ((vector_size (8)));
</pre></div>
<p><code>v2sf</code> values are initialized in the same way as aggregates.
For example:
</p>
<div class="smallexample">
<pre class="smallexample">v2sf a = {1.5, 9.1};
v2sf b;
float e, f;
b = (v2sf) {e, f};
</pre></div>
<p><em>Note:</em> The CPU’s endianness determines which value is stored in
the upper half of a register and which value is stored in the lower half.
On little-endian targets, the first value is the lower one and the second
value is the upper one. The opposite order applies to big-endian targets.
For example, the code above sets the lower half of <code>a</code> to
<code>1.5</code> on little-endian targets and <code>9.1</code> on big-endian targets.
</p>
<hr>
<a name="MIPS-Loongson-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#MIPS-SIMD-Architecture-_0028MSA_0029-Support" accesskey="n" rel="next">MIPS SIMD Architecture (MSA) Support</a>, Previous: <a href="#MIPS-Paired_002dSingle-Support" accesskey="p" rel="prev">MIPS Paired-Single Support</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MIPS-Loongson-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.15 MIPS Loongson Built-in Functions</h4>
<p>GCC provides intrinsics to access the SIMD instructions provided by the
ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
available after inclusion of the <code>loongson.h</code> header file,
operate on the following 64-bit vector types:
</p>
<ul>
<li> <code>uint8x8_t</code>, a vector of eight unsigned 8-bit integers;
</li><li> <code>uint16x4_t</code>, a vector of four unsigned 16-bit integers;
</li><li> <code>uint32x2_t</code>, a vector of two unsigned 32-bit integers;
</li><li> <code>int8x8_t</code>, a vector of eight signed 8-bit integers;
</li><li> <code>int16x4_t</code>, a vector of four signed 16-bit integers;
</li><li> <code>int32x2_t</code>, a vector of two signed 32-bit integers.
</li></ul>
<p>The intrinsics provided are listed below; each is named after the
machine instruction to which it corresponds, with suffixes added as
appropriate to distinguish intrinsics that expand to the same machine
instruction yet have different argument types. Refer to the architecture
documentation for a description of the functionality of each
instruction.
</p>
<div class="smallexample">
<pre class="smallexample">int16x4_t packsswh (int32x2_t s, int32x2_t t);
int8x8_t packsshb (int16x4_t s, int16x4_t t);
uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
int32x2_t paddw_s (int32x2_t s, int32x2_t t);
int16x4_t paddh_s (int16x4_t s, int16x4_t t);
int8x8_t paddb_s (int8x8_t s, int8x8_t t);
uint64_t paddd_u (uint64_t s, uint64_t t);
int64_t paddd_s (int64_t s, int64_t t);
int16x4_t paddsh (int16x4_t s, int16x4_t t);
int8x8_t paddsb (int8x8_t s, int8x8_t t);
uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
uint64_t pandn_ud (uint64_t s, uint64_t t);
uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
int64_t pandn_sd (int64_t s, int64_t t);
int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
uint16x4_t pextrh_u (uint16x4_t s, int field);
int16x4_t pextrh_s (int16x4_t s, int field);
uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
int16x4_t pminsh (int16x4_t s, int16x4_t t);
uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
uint8x8_t pmovmskb_u (uint8x8_t s);
int8x8_t pmovmskb_s (int8x8_t s);
uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
int16x4_t pmulhh (int16x4_t s, int16x4_t t);
int16x4_t pmullh (int16x4_t s, int16x4_t t);
int64_t pmuluw (uint32x2_t s, uint32x2_t t);
uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
uint16x4_t biadd (uint8x8_t s);
uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
int16x4_t psllh_s (int16x4_t s, uint8_t amount);
uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
int32x2_t psllw_s (int32x2_t s, uint8_t amount);
uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
int16x4_t psrah_s (int16x4_t s, uint8_t amount);
uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
int32x2_t psraw_s (int32x2_t s, uint8_t amount);
uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
int32x2_t psubw_s (int32x2_t s, int32x2_t t);
int16x4_t psubh_s (int16x4_t s, int16x4_t t);
int8x8_t psubb_s (int8x8_t s, int8x8_t t);
uint64_t psubd_u (uint64_t s, uint64_t t);
int64_t psubd_s (int64_t s, int64_t t);
int16x4_t psubsh (int16x4_t s, int16x4_t t);
int8x8_t psubsb (int8x8_t s, int8x8_t t);
uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
</pre></div>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Paired_002dSingle-Arithmetic" accesskey="1">Paired-Single Arithmetic</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Paired_002dSingle-Built_002din-Functions" accesskey="2">Paired-Single Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MIPS_002d3D-Built_002din-Functions" accesskey="3">MIPS-3D Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Paired_002dSingle-Arithmetic"></a>
<div class="header">
<p>
Next: <a href="#Paired_002dSingle-Built_002din-Functions" accesskey="n" rel="next">Paired-Single Built-in Functions</a>, Up: <a href="#MIPS-Loongson-Built_002din-Functions" accesskey="u" rel="up">MIPS Loongson Built-in Functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Paired_002dSingle-Arithmetic-1"></a>
<h4 class="subsubsection">6.59.15.1 Paired-Single Arithmetic</h4>
<p>The table below lists the <code>v2sf</code> operations for which hardware
support exists. <code>a</code>, <code>b</code> and <code>c</code> are <code>v2sf</code>
values and <code>x</code> is an integral value.
</p>
<table>
<tr><td width="50%">C code</td><td width="50%">MIPS instruction</td></tr>
<tr><td width="50%"><code>a + b</code></td><td width="50%"><code>add.ps</code></td></tr>
<tr><td width="50%"><code>a - b</code></td><td width="50%"><code>sub.ps</code></td></tr>
<tr><td width="50%"><code>-a</code></td><td width="50%"><code>neg.ps</code></td></tr>
<tr><td width="50%"><code>a * b</code></td><td width="50%"><code>mul.ps</code></td></tr>
<tr><td width="50%"><code>a * b + c</code></td><td width="50%"><code>madd.ps</code></td></tr>
<tr><td width="50%"><code>a * b - c</code></td><td width="50%"><code>msub.ps</code></td></tr>
<tr><td width="50%"><code>-(a * b + c)</code></td><td width="50%"><code>nmadd.ps</code></td></tr>
<tr><td width="50%"><code>-(a * b - c)</code></td><td width="50%"><code>nmsub.ps</code></td></tr>
<tr><td width="50%"><code>x ? a : b</code></td><td width="50%"><code>movn.ps</code>/<code>movz.ps</code></td></tr>
</table>
<p>Note that the multiply-accumulate instructions can be disabled
using the command-line option <code>-mno-fused-madd</code>.
</p>
<hr>
<a name="Paired_002dSingle-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#MIPS_002d3D-Built_002din-Functions" accesskey="n" rel="next">MIPS-3D Built-in Functions</a>, Previous: <a href="#Paired_002dSingle-Arithmetic" accesskey="p" rel="prev">Paired-Single Arithmetic</a>, Up: <a href="#MIPS-Loongson-Built_002din-Functions" accesskey="u" rel="up">MIPS Loongson Built-in Functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Paired_002dSingle-Built_002din-Functions-1"></a>
<h4 class="subsubsection">6.59.15.2 Paired-Single Built-in Functions</h4>
<p>The following paired-single functions map directly to a particular
MIPS instruction. Please refer to the architecture specification
for details on what each instruction does.
</p>
<dl compact="compact">
<dt><code>v2sf __builtin_mips_pll_ps (v2sf, v2sf)</code></dt>
<dd><p>Pair lower lower (<code>pll.ps</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_pul_ps (v2sf, v2sf)</code></dt>
<dd><p>Pair upper lower (<code>pul.ps</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_plu_ps (v2sf, v2sf)</code></dt>
<dd><p>Pair lower upper (<code>plu.ps</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_puu_ps (v2sf, v2sf)</code></dt>
<dd><p>Pair upper upper (<code>puu.ps</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_cvt_ps_s (float, float)</code></dt>
<dd><p>Convert pair to paired single (<code>cvt.ps.s</code>).
</p>
</dd>
<dt><code>float __builtin_mips_cvt_s_pl (v2sf)</code></dt>
<dd><p>Convert pair lower to single (<code>cvt.s.pl</code>).
</p>
</dd>
<dt><code>float __builtin_mips_cvt_s_pu (v2sf)</code></dt>
<dd><p>Convert pair upper to single (<code>cvt.s.pu</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_abs_ps (v2sf)</code></dt>
<dd><p>Absolute value (<code>abs.ps</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)</code></dt>
<dd><p>Align variable (<code>alnv.ps</code>).
</p>
<p><em>Note:</em> The value of the third parameter must be 0 or 4
modulo 8, otherwise the result is unpredictable. Please read the
instruction description for details.
</p></dd>
</dl>
<p>The following multi-instruction functions are also available.
In each case, <var>cond</var> can be any of the 16 floating-point conditions:
<code>f</code>, <code>un</code>, <code>eq</code>, <code>ueq</code>, <code>olt</code>, <code>ult</code>,
<code>ole</code>, <code>ule</code>, <code>sf</code>, <code>ngle</code>, <code>seq</code>, <code>ngl</code>,
<code>lt</code>, <code>nge</code>, <code>le</code> or <code>ngt</code>.
</p>
<dl compact="compact">
<dt><code>v2sf __builtin_mips_movt_c_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>, v2sf <var>c</var>, v2sf <var>d</var>)</code></dt>
<dt><code>v2sf __builtin_mips_movf_c_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>, v2sf <var>c</var>, v2sf <var>d</var>)</code></dt>
<dd><p>Conditional move based on floating-point comparison (<code>c.<var>cond</var>.ps</code>,
<code>movt.ps</code>/<code>movf.ps</code>).
</p>
<p>The <code>movt</code> functions return the value <var>x</var> computed by:
</p>
<div class="smallexample">
<pre class="smallexample">c.<var>cond</var>.ps <var>cc</var>,<var>a</var>,<var>b</var>
mov.ps <var>x</var>,<var>c</var>
movt.ps <var>x</var>,<var>d</var>,<var>cc</var>
</pre></div>
<p>The <code>movf</code> functions are similar but use <code>movf.ps</code> instead
of <code>movt.ps</code>.
</p>
</dd>
<dt><code>int __builtin_mips_upper_c_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>)</code></dt>
<dt><code>int __builtin_mips_lower_c_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>)</code></dt>
<dd><p>Comparison of two paired-single values (<code>c.<var>cond</var>.ps</code>,
<code>bc1t</code>/<code>bc1f</code>).
</p>
<p>These functions compare <var>a</var> and <var>b</var> using <code>c.<var>cond</var>.ps</code>
and return either the upper or lower half of the result. For example:
</p>
<div class="smallexample">
<pre class="smallexample">v2sf a, b;
if (__builtin_mips_upper_c_eq_ps (a, b))
upper_halves_are_equal ();
else
upper_halves_are_unequal ();
if (__builtin_mips_lower_c_eq_ps (a, b))
lower_halves_are_equal ();
else
lower_halves_are_unequal ();
</pre></div>
</dd>
</dl>
<hr>
<a name="MIPS_002d3D-Built_002din-Functions"></a>
<div class="header">
<p>
Previous: <a href="#Paired_002dSingle-Built_002din-Functions" accesskey="p" rel="prev">Paired-Single Built-in Functions</a>, Up: <a href="#MIPS-Loongson-Built_002din-Functions" accesskey="u" rel="up">MIPS Loongson Built-in Functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MIPS_002d3D-Built_002din-Functions-1"></a>
<h4 class="subsubsection">6.59.15.3 MIPS-3D Built-in Functions</h4>
<p>The MIPS-3D Application-Specific Extension (ASE) includes additional
paired-single instructions that are designed to improve the performance
of 3D graphics operations. Support for these instructions is controlled
by the <samp>-mips3d</samp> command-line option.
</p>
<p>The functions listed below map directly to a particular MIPS-3D
instruction. Please refer to the architecture specification for
more details on what each instruction does.
</p>
<dl compact="compact">
<dt><code>v2sf __builtin_mips_addr_ps (v2sf, v2sf)</code></dt>
<dd><p>Reduction add (<code>addr.ps</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_mulr_ps (v2sf, v2sf)</code></dt>
<dd><p>Reduction multiply (<code>mulr.ps</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_cvt_pw_ps (v2sf)</code></dt>
<dd><p>Convert paired single to paired word (<code>cvt.pw.ps</code>).
</p>
</dd>
<dt><code>v2sf __builtin_mips_cvt_ps_pw (v2sf)</code></dt>
<dd><p>Convert paired word to paired single (<code>cvt.ps.pw</code>).
</p>
</dd>
<dt><code>float __builtin_mips_recip1_s (float)</code></dt>
<dt><code>double __builtin_mips_recip1_d (double)</code></dt>
<dt><code>v2sf __builtin_mips_recip1_ps (v2sf)</code></dt>
<dd><p>Reduced-precision reciprocal (sequence step 1) (<code>recip1.<var>fmt</var></code>).
</p>
</dd>
<dt><code>float __builtin_mips_recip2_s (float, float)</code></dt>
<dt><code>double __builtin_mips_recip2_d (double, double)</code></dt>
<dt><code>v2sf __builtin_mips_recip2_ps (v2sf, v2sf)</code></dt>
<dd><p>Reduced-precision reciprocal (sequence step 2) (<code>recip2.<var>fmt</var></code>).
</p>
</dd>
<dt><code>float __builtin_mips_rsqrt1_s (float)</code></dt>
<dt><code>double __builtin_mips_rsqrt1_d (double)</code></dt>
<dt><code>v2sf __builtin_mips_rsqrt1_ps (v2sf)</code></dt>
<dd><p>Reduced-precision reciprocal square root (sequence step 1)
(<code>rsqrt1.<var>fmt</var></code>).
</p>
</dd>
<dt><code>float __builtin_mips_rsqrt2_s (float, float)</code></dt>
<dt><code>double __builtin_mips_rsqrt2_d (double, double)</code></dt>
<dt><code>v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)</code></dt>
<dd><p>Reduced-precision reciprocal square root (sequence step 2)
(<code>rsqrt2.<var>fmt</var></code>).
</p></dd>
</dl>
<p>The following multi-instruction functions are also available.
In each case, <var>cond</var> can be any of the 16 floating-point conditions:
<code>f</code>, <code>un</code>, <code>eq</code>, <code>ueq</code>, <code>olt</code>, <code>ult</code>,
<code>ole</code>, <code>ule</code>, <code>sf</code>, <code>ngle</code>, <code>seq</code>,
<code>ngl</code>, <code>lt</code>, <code>nge</code>, <code>le</code> or <code>ngt</code>.
</p>
<dl compact="compact">
<dt><code>int __builtin_mips_cabs_<var>cond</var>_s (float <var>a</var>, float <var>b</var>)</code></dt>
<dt><code>int __builtin_mips_cabs_<var>cond</var>_d (double <var>a</var>, double <var>b</var>)</code></dt>
<dd><p>Absolute comparison of two scalar values (<code>cabs.<var>cond</var>.<var>fmt</var></code>,
<code>bc1t</code>/<code>bc1f</code>).
</p>
<p>These functions compare <var>a</var> and <var>b</var> using <code>cabs.<var>cond</var>.s</code>
or <code>cabs.<var>cond</var>.d</code> and return the result as a boolean value.
For example:
</p>
<div class="smallexample">
<pre class="smallexample">float a, b;
if (__builtin_mips_cabs_eq_s (a, b))
true ();
else
false ();
</pre></div>
</dd>
<dt><code>int __builtin_mips_upper_cabs_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>)</code></dt>
<dt><code>int __builtin_mips_lower_cabs_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>)</code></dt>
<dd><p>Absolute comparison of two paired-single values (<code>cabs.<var>cond</var>.ps</code>,
<code>bc1t</code>/<code>bc1f</code>).
</p>
<p>These functions compare <var>a</var> and <var>b</var> using <code>cabs.<var>cond</var>.ps</code>
and return either the upper or lower half of the result. For example:
</p>
<div class="smallexample">
<pre class="smallexample">v2sf a, b;
if (__builtin_mips_upper_cabs_eq_ps (a, b))
upper_halves_are_equal ();
else
upper_halves_are_unequal ();
if (__builtin_mips_lower_cabs_eq_ps (a, b))
lower_halves_are_equal ();
else
lower_halves_are_unequal ();
</pre></div>
</dd>
<dt><code>v2sf __builtin_mips_movt_cabs_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>, v2sf <var>c</var>, v2sf <var>d</var>)</code></dt>
<dt><code>v2sf __builtin_mips_movf_cabs_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>, v2sf <var>c</var>, v2sf <var>d</var>)</code></dt>
<dd><p>Conditional move based on absolute comparison (<code>cabs.<var>cond</var>.ps</code>,
<code>movt.ps</code>/<code>movf.ps</code>).
</p>
<p>The <code>movt</code> functions return the value <var>x</var> computed by:
</p>
<div class="smallexample">
<pre class="smallexample">cabs.<var>cond</var>.ps <var>cc</var>,<var>a</var>,<var>b</var>
mov.ps <var>x</var>,<var>c</var>
movt.ps <var>x</var>,<var>d</var>,<var>cc</var>
</pre></div>
<p>The <code>movf</code> functions are similar but use <code>movf.ps</code> instead
of <code>movt.ps</code>.
</p>
</dd>
<dt><code>int __builtin_mips_any_c_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>)</code></dt>
<dt><code>int __builtin_mips_all_c_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>)</code></dt>
<dt><code>int __builtin_mips_any_cabs_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>)</code></dt>
<dt><code>int __builtin_mips_all_cabs_<var>cond</var>_ps (v2sf <var>a</var>, v2sf <var>b</var>)</code></dt>
<dd><p>Comparison of two paired-single values
(<code>c.<var>cond</var>.ps</code>/<code>cabs.<var>cond</var>.ps</code>,
<code>bc1any2t</code>/<code>bc1any2f</code>).
</p>
<p>These functions compare <var>a</var> and <var>b</var> using <code>c.<var>cond</var>.ps</code>
or <code>cabs.<var>cond</var>.ps</code>. The <code>any</code> forms return true if either
result is true and the <code>all</code> forms return true if both results are true.
For example:
</p>
<div class="smallexample">
<pre class="smallexample">v2sf a, b;
if (__builtin_mips_any_c_eq_ps (a, b))
one_is_true ();
else
both_are_false ();
if (__builtin_mips_all_c_eq_ps (a, b))
both_are_true ();
else
one_is_false ();
</pre></div>
</dd>
<dt><code>int __builtin_mips_any_c_<var>cond</var>_4s (v2sf <var>a</var>, v2sf <var>b</var>, v2sf <var>c</var>, v2sf <var>d</var>)</code></dt>
<dt><code>int __builtin_mips_all_c_<var>cond</var>_4s (v2sf <var>a</var>, v2sf <var>b</var>, v2sf <var>c</var>, v2sf <var>d</var>)</code></dt>
<dt><code>int __builtin_mips_any_cabs_<var>cond</var>_4s (v2sf <var>a</var>, v2sf <var>b</var>, v2sf <var>c</var>, v2sf <var>d</var>)</code></dt>
<dt><code>int __builtin_mips_all_cabs_<var>cond</var>_4s (v2sf <var>a</var>, v2sf <var>b</var>, v2sf <var>c</var>, v2sf <var>d</var>)</code></dt>
<dd><p>Comparison of four paired-single values
(<code>c.<var>cond</var>.ps</code>/<code>cabs.<var>cond</var>.ps</code>,
<code>bc1any4t</code>/<code>bc1any4f</code>).
</p>
<p>These functions use <code>c.<var>cond</var>.ps</code> or <code>cabs.<var>cond</var>.ps</code>
to compare <var>a</var> with <var>b</var> and to compare <var>c</var> with <var>d</var>.
The <code>any</code> forms return true if any of the four results are true
and the <code>all</code> forms return true if all four results are true.
For example:
</p>
<div class="smallexample">
<pre class="smallexample">v2sf a, b, c, d;
if (__builtin_mips_any_c_eq_4s (a, b, c, d))
some_are_true ();
else
all_are_false ();
if (__builtin_mips_all_c_eq_4s (a, b, c, d))
all_are_true ();
else
some_are_false ();
</pre></div>
</dd>
</dl>
<hr>
<a name="MIPS-SIMD-Architecture-_0028MSA_0029-Support"></a>
<div class="header">
<p>
Next: <a href="#Other-MIPS-Built_002din-Functions" accesskey="n" rel="next">Other MIPS Built-in Functions</a>, Previous: <a href="#MIPS-Loongson-Built_002din-Functions" accesskey="p" rel="prev">MIPS Loongson Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MIPS-SIMD-Architecture-_0028MSA_0029-Support-1"></a>
<h4 class="subsection">6.59.16 MIPS SIMD Architecture (MSA) Support</h4>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#MIPS-SIMD-Architecture-Built_002din-Functions" accesskey="1">MIPS SIMD Architecture Built-in Functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<p>GCC provides intrinsics to access the SIMD instructions provided by the
MSA MIPS SIMD Architecture. The interface is made available by including
<code><msa.h></code> and using <samp>-mmsa -mhard-float -mfp64 -mnan=2008</samp>.
For each <code>__builtin_msa_*</code>, there is a shortened name of the intrinsic,
<code>__msa_*</code>.
</p>
<p>MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
data elements. The following vectors typedefs are included in <code>msa.h</code>:
</p><ul>
<li> <code>v16i8</code>, a vector of sixteen signed 8-bit integers;
</li><li> <code>v16u8</code>, a vector of sixteen unsigned 8-bit integers;
</li><li> <code>v8i16</code>, a vector of eight signed 16-bit integers;
</li><li> <code>v8u16</code>, a vector of eight unsigned 16-bit integers;
</li><li> <code>v4i32</code>, a vector of four signed 32-bit integers;
</li><li> <code>v4u32</code>, a vector of four unsigned 32-bit integers;
</li><li> <code>v2i64</code>, a vector of two signed 64-bit integers;
</li><li> <code>v2u64</code>, a vector of two unsigned 64-bit integers;
</li><li> <code>v4f32</code>, a vector of four 32-bit floats;
</li><li> <code>v2f64</code>, a vector of two 64-bit doubles.
</li></ul>
<p>Instructions and corresponding built-ins may have additional restrictions and/or
input/output values manipulated:
</p><ul>
<li> <code>imm0_1</code>, an integer literal in range 0 to 1;
</li><li> <code>imm0_3</code>, an integer literal in range 0 to 3;
</li><li> <code>imm0_7</code>, an integer literal in range 0 to 7;
</li><li> <code>imm0_15</code>, an integer literal in range 0 to 15;
</li><li> <code>imm0_31</code>, an integer literal in range 0 to 31;
</li><li> <code>imm0_63</code>, an integer literal in range 0 to 63;
</li><li> <code>imm0_255</code>, an integer literal in range 0 to 255;
</li><li> <code>imm_n16_15</code>, an integer literal in range -16 to 15;
</li><li> <code>imm_n512_511</code>, an integer literal in range -512 to 511;
</li><li> <code>imm_n1024_1022</code>, an integer literal in range -512 to 511 left
shifted by 1 bit, i.e., -1024, -1022, …, 1020, 1022;
</li><li> <code>imm_n2048_2044</code>, an integer literal in range -512 to 511 left
shifted by 2 bits, i.e., -2048, -2044, …, 2040, 2044;
</li><li> <code>imm_n4096_4088</code>, an integer literal in range -512 to 511 left
shifted by 3 bits, i.e., -4096, -4088, …, 4080, 4088;
</li><li> <code>imm1_4</code>, an integer literal in range 1 to 4;
</li><li> <code>i32, i64, u32, u64, f32, f64</code>, defined as follows:
</li></ul>
<div class="smallexample">
<pre class="smallexample">{
typedef int i32;
#if __LONG_MAX__ == __LONG_LONG_MAX__
typedef long i64;
#else
typedef long long i64;
#endif
typedef unsigned int u32;
#if __LONG_MAX__ == __LONG_LONG_MAX__
typedef unsigned long u64;
#else
typedef unsigned long long u64;
#endif
typedef double f64;
typedef float f32;
}
</pre></div>
<hr>
<a name="MIPS-SIMD-Architecture-Built_002din-Functions"></a>
<div class="header">
<p>
Up: <a href="#MIPS-SIMD-Architecture-_0028MSA_0029-Support" accesskey="u" rel="up">MIPS SIMD Architecture (MSA) Support</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MIPS-SIMD-Architecture-Built_002din-Functions-1"></a>
<h4 class="subsubsection">6.59.16.1 MIPS SIMD Architecture Built-in Functions</h4>
<p>The intrinsics provided are listed below; each is named after the
machine instruction.
</p>
<div class="smallexample">
<pre class="smallexample">v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
v16i8 __builtin_msa_addv_b (v16i8, v16i8);
v8i16 __builtin_msa_addv_h (v8i16, v8i16);
v4i32 __builtin_msa_addv_w (v4i32, v4i32);
v2i64 __builtin_msa_addv_d (v2i64, v2i64);
v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
v16u8 __builtin_msa_and_v (v16u8, v16u8);
v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
i32 __builtin_msa_bnz_b (v16u8);
i32 __builtin_msa_bnz_h (v8u16);
i32 __builtin_msa_bnz_w (v4u32);
i32 __builtin_msa_bnz_d (v2u64);
i32 __builtin_msa_bnz_v (v16u8);
v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
v16u8 __builtin_msa_bset_b (v16u8, v16u8);
v8u16 __builtin_msa_bset_h (v8u16, v8u16);
v4u32 __builtin_msa_bset_w (v4u32, v4u32);
v2u64 __builtin_msa_bset_d (v2u64, v2u64);
v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
i32 __builtin_msa_bz_b (v16u8);
i32 __builtin_msa_bz_h (v8u16);
i32 __builtin_msa_bz_w (v4u32);
i32 __builtin_msa_bz_d (v2u64);
i32 __builtin_msa_bz_v (v16u8);
v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
i32 __builtin_msa_cfcmsa (imm0_31);
v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
void __builtin_msa_ctcmsa (imm0_31, i32);
v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
v4i32 __builtin_msa_fclass_w (v4f32);
v2i64 __builtin_msa_fclass_d (v2f64);
v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
v4f32 __builtin_msa_fexupl_w (v8i16);
v2f64 __builtin_msa_fexupl_d (v4f32);
v4f32 __builtin_msa_fexupr_w (v8i16);
v2f64 __builtin_msa_fexupr_d (v4f32);
v4f32 __builtin_msa_ffint_s_w (v4i32);
v2f64 __builtin_msa_ffint_s_d (v2i64);
v4f32 __builtin_msa_ffint_u_w (v4u32);
v2f64 __builtin_msa_ffint_u_d (v2u64);
v4f32 __builtin_msa_ffql_w (v8i16);
v2f64 __builtin_msa_ffql_d (v4i32);
v4f32 __builtin_msa_ffqr_w (v8i16);
v2f64 __builtin_msa_ffqr_d (v4i32);
v16i8 __builtin_msa_fill_b (i32);
v8i16 __builtin_msa_fill_h (i32);
v4i32 __builtin_msa_fill_w (i32);
v2i64 __builtin_msa_fill_d (i64);
v4f32 __builtin_msa_flog2_w (v4f32);
v2f64 __builtin_msa_flog2_d (v2f64);
v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
v4f32 __builtin_msa_frint_w (v4f32);
v2f64 __builtin_msa_frint_d (v2f64);
v4f32 __builtin_msa_frcp_w (v4f32);
v2f64 __builtin_msa_frcp_d (v2f64);
v4f32 __builtin_msa_frsqrt_w (v4f32);
v2f64 __builtin_msa_frsqrt_d (v2f64);
v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
v4f32 __builtin_msa_fsqrt_w (v4f32);
v2f64 __builtin_msa_fsqrt_d (v2f64);
v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
v4i32 __builtin_msa_ftint_s_w (v4f32);
v2i64 __builtin_msa_ftint_s_d (v2f64);
v4u32 __builtin_msa_ftint_u_w (v4f32);
v2u64 __builtin_msa_ftint_u_d (v2f64);
v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
v4i32 __builtin_msa_ftrunc_s_w (v4f32);
v2i64 __builtin_msa_ftrunc_s_d (v2f64);
v4u32 __builtin_msa_ftrunc_u_w (v4f32);
v2u64 __builtin_msa_ftrunc_u_d (v2f64);
v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
v16i8 __builtin_msa_ldi_b (imm_n512_511);
v8i16 __builtin_msa_ldi_h (imm_n512_511);
v4i32 __builtin_msa_ldi_w (imm_n512_511);
v2i64 __builtin_msa_ldi_d (imm_n512_511);
v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
v16i8 __builtin_msa_move_v (v16i8);
v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
v16i8 __builtin_msa_nloc_b (v16i8);
v8i16 __builtin_msa_nloc_h (v8i16);
v4i32 __builtin_msa_nloc_w (v4i32);
v2i64 __builtin_msa_nloc_d (v2i64);
v16i8 __builtin_msa_nlzc_b (v16i8);
v8i16 __builtin_msa_nlzc_h (v8i16);
v4i32 __builtin_msa_nlzc_w (v4i32);
v2i64 __builtin_msa_nlzc_d (v2i64);
v16u8 __builtin_msa_nor_v (v16u8, v16u8);
v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
v16u8 __builtin_msa_or_v (v16u8, v16u8);
v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
v16i8 __builtin_msa_pcnt_b (v16i8);
v8i16 __builtin_msa_pcnt_h (v8i16);
v4i32 __builtin_msa_pcnt_w (v4i32);
v2i64 __builtin_msa_pcnt_d (v2i64);
v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
v16i8 __builtin_msa_sll_b (v16i8, v16i8);
v8i16 __builtin_msa_sll_h (v8i16, v8i16);
v4i32 __builtin_msa_sll_w (v4i32, v4i32);
v2i64 __builtin_msa_sll_d (v2i64, v2i64);
v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
v16i8 __builtin_msa_splat_b (v16i8, i32);
v8i16 __builtin_msa_splat_h (v8i16, i32);
v4i32 __builtin_msa_splat_w (v4i32, i32);
v2i64 __builtin_msa_splat_d (v2i64, i32);
v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
v16i8 __builtin_msa_sra_b (v16i8, v16i8);
v8i16 __builtin_msa_sra_h (v8i16, v8i16);
v4i32 __builtin_msa_sra_w (v4i32, v4i32);
v2i64 __builtin_msa_sra_d (v2i64, v2i64);
v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
v16i8 __builtin_msa_srar_b (v16i8, v16i8);
v8i16 __builtin_msa_srar_h (v8i16, v8i16);
v4i32 __builtin_msa_srar_w (v4i32, v4i32);
v2i64 __builtin_msa_srar_d (v2i64, v2i64);
v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
v16i8 __builtin_msa_srl_b (v16i8, v16i8);
v8i16 __builtin_msa_srl_h (v8i16, v8i16);
v4i32 __builtin_msa_srl_w (v4i32, v4i32);
v2i64 __builtin_msa_srl_d (v2i64, v2i64);
v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
v16i8 __builtin_msa_subv_b (v16i8, v16i8);
v8i16 __builtin_msa_subv_h (v8i16, v8i16);
v4i32 __builtin_msa_subv_w (v4i32, v4i32);
v2i64 __builtin_msa_subv_d (v2i64, v2i64);
v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
v16u8 __builtin_msa_xor_v (v16u8, v16u8);
v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
</pre></div>
<hr>
<a name="Other-MIPS-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#MSP430-Built_002din-Functions" accesskey="n" rel="next">MSP430 Built-in Functions</a>, Previous: <a href="#MIPS-SIMD-Architecture-_0028MSA_0029-Support" accesskey="p" rel="prev">MIPS SIMD Architecture (MSA) Support</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Other-MIPS-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.17 Other MIPS Built-in Functions</h4>
<p>GCC provides other MIPS-specific built-in functions:
</p>
<dl compact="compact">
<dt><code>void __builtin_mips_cache (int <var>op</var>, const volatile void *<var>addr</var>)</code></dt>
<dd><p>Insert a ‘<samp>cache</samp>’ instruction with operands <var>op</var> and <var>addr</var>.
GCC defines the preprocessor macro <code>___GCC_HAVE_BUILTIN_MIPS_CACHE</code>
when this function is available.
</p>
</dd>
<dt><code>unsigned int __builtin_mips_get_fcsr (void)</code></dt>
<dt><code>void __builtin_mips_set_fcsr (unsigned int <var>value</var>)</code></dt>
<dd><p>Get and set the contents of the floating-point control and status register
(FPU control register 31). These functions are only available in hard-float
code but can be called in both MIPS16 and non-MIPS16 contexts.
</p>
<p><code>__builtin_mips_set_fcsr</code> can be used to change any bit of the
register except the condition codes, which GCC assumes are preserved.
</p></dd>
</dl>
<hr>
<a name="MSP430-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#NDS32-Built_002din-Functions" accesskey="n" rel="next">NDS32 Built-in Functions</a>, Previous: <a href="#Other-MIPS-Built_002din-Functions" accesskey="p" rel="prev">Other MIPS Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MSP430-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.18 MSP430 Built-in Functions</h4>
<p>GCC provides a couple of special builtin functions to aid in the
writing of interrupt handlers in C.
</p>
<dl compact="compact">
<dt><code>__bic_SR_register_on_exit (int <var>mask</var>)</code></dt>
<dd><p>This clears the indicated bits in the saved copy of the status register
currently residing on the stack. This only works inside interrupt
handlers and the changes to the status register will only take affect
once the handler returns.
</p>
</dd>
<dt><code>__bis_SR_register_on_exit (int <var>mask</var>)</code></dt>
<dd><p>This sets the indicated bits in the saved copy of the status register
currently residing on the stack. This only works inside interrupt
handlers and the changes to the status register will only take affect
once the handler returns.
</p>
</dd>
<dt><code>__delay_cycles (long long <var>cycles</var>)</code></dt>
<dd><p>This inserts an instruction sequence that takes exactly <var>cycles</var>
cycles (between 0 and about 17E9) to complete. The inserted sequence
may use jumps, loops, or no-ops, and does not interfere with any other
instructions. Note that <var>cycles</var> must be a compile-time constant
integer - that is, you must pass a number, not a variable that may be
optimized to a constant later. The number of cycles delayed by this
builtin is exact.
</p></dd>
</dl>
<hr>
<a name="NDS32-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#picoChip-Built_002din-Functions" accesskey="n" rel="next">picoChip Built-in Functions</a>, Previous: <a href="#MSP430-Built_002din-Functions" accesskey="p" rel="prev">MSP430 Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="NDS32-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.19 NDS32 Built-in Functions</h4>
<p>These built-in functions are available for the NDS32 target:
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnds32_005fisync"></a>Built-in Function: <em>void</em> <strong>__builtin_nds32_isync</strong> <em>(int *<var>addr</var>)</em></dt>
<dd><p>Insert an ISYNC instruction into the instruction stream where
<var>addr</var> is an instruction address for serialization.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnds32_005fisb"></a>Built-in Function: <em>void</em> <strong>__builtin_nds32_isb</strong> <em>(void)</em></dt>
<dd><p>Insert an ISB instruction into the instruction stream.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnds32_005fmfsr"></a>Built-in Function: <em>int</em> <strong>__builtin_nds32_mfsr</strong> <em>(int <var>sr</var>)</em></dt>
<dd><p>Return the content of a system register which is mapped by <var>sr</var>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnds32_005fmfusr"></a>Built-in Function: <em>int</em> <strong>__builtin_nds32_mfusr</strong> <em>(int <var>usr</var>)</em></dt>
<dd><p>Return the content of a user space register which is mapped by <var>usr</var>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnds32_005fmtsr"></a>Built-in Function: <em>void</em> <strong>__builtin_nds32_mtsr</strong> <em>(int <var>value</var>, int <var>sr</var>)</em></dt>
<dd><p>Move the <var>value</var> to a system register which is mapped by <var>sr</var>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnds32_005fmtusr"></a>Built-in Function: <em>void</em> <strong>__builtin_nds32_mtusr</strong> <em>(int <var>value</var>, int <var>usr</var>)</em></dt>
<dd><p>Move the <var>value</var> to a user space register which is mapped by <var>usr</var>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnds32_005fsetgie_005fen"></a>Built-in Function: <em>void</em> <strong>__builtin_nds32_setgie_en</strong> <em>(void)</em></dt>
<dd><p>Enable global interrupt.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnds32_005fsetgie_005fdis"></a>Built-in Function: <em>void</em> <strong>__builtin_nds32_setgie_dis</strong> <em>(void)</em></dt>
<dd><p>Disable global interrupt.
</p></dd></dl>
<hr>
<a name="picoChip-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-Built_002din-Functions" accesskey="n" rel="next">PowerPC Built-in Functions</a>, Previous: <a href="#NDS32-Built_002din-Functions" accesskey="p" rel="prev">NDS32 Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="picoChip-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.20 picoChip Built-in Functions</h4>
<p>GCC provides an interface to selected machine instructions from the
picoChip instruction set.
</p>
<dl compact="compact">
<dt><code>int __builtin_sbc (int <var>value</var>)</code></dt>
<dd><p>Sign bit count. Return the number of consecutive bits in <var>value</var>
that have the same value as the sign bit. The result is the number of
leading sign bits minus one, giving the number of redundant sign bits in
<var>value</var>.
</p>
</dd>
<dt><code>int __builtin_byteswap (int <var>value</var>)</code></dt>
<dd><p>Byte swap. Return the result of swapping the upper and lower bytes of
<var>value</var>.
</p>
</dd>
<dt><code>int __builtin_brev (int <var>value</var>)</code></dt>
<dd><p>Bit reversal. Return the result of reversing the bits in
<var>value</var>. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
and so on.
</p>
</dd>
<dt><code>int __builtin_adds (int <var>x</var>, int <var>y</var>)</code></dt>
<dd><p>Saturating addition. Return the result of adding <var>x</var> and <var>y</var>,
storing the value 32767 if the result overflows.
</p>
</dd>
<dt><code>int __builtin_subs (int <var>x</var>, int <var>y</var>)</code></dt>
<dd><p>Saturating subtraction. Return the result of subtracting <var>y</var> from
<var>x</var>, storing the value -32768 if the result overflows.
</p>
</dd>
<dt><code>void __builtin_halt (void)</code></dt>
<dd><p>Halt. The processor stops execution. This built-in is useful for
implementing assertions.
</p>
</dd>
</dl>
<hr>
<a name="PowerPC-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-AltiVec_002fVSX-Built_002din-Functions" accesskey="n" rel="next">PowerPC AltiVec/VSX Built-in Functions</a>, Previous: <a href="#picoChip-Built_002din-Functions" accesskey="p" rel="prev">picoChip Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.21 PowerPC Built-in Functions</h4>
<p>The following built-in functions are always available and can be used to
check the PowerPC target platform type:
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fcpu_005finit"></a>Built-in Function: <em>void</em> <strong>__builtin_cpu_init</strong> <em>(void)</em></dt>
<dd><p>This function is a <code>nop</code> on the PowerPC platform and is included solely
to maintain API compatibility with the x86 builtins.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fcpu_005fis"></a>Built-in Function: <em>int</em> <strong>__builtin_cpu_is</strong> <em>(const char *<var>cpuname</var>)</em></dt>
<dd><p>This function returns a value of <code>1</code> if the run-time CPU is of type
<var>cpuname</var> and returns <code>0</code> otherwise
</p>
<p>The <code>__builtin_cpu_is</code> function requires GLIBC 2.23 or newer
which exports the hardware capability bits. GCC defines the macro
<code>__BUILTIN_CPU_SUPPORTS__</code> if the <code>__builtin_cpu_supports</code>
built-in function is fully supported.
</p>
<p>If GCC was configured to use a GLIBC before 2.23, the built-in
function <code>__builtin_cpu_is</code> always returns a 0 and the compiler
issues a warning.
</p>
<p>The following CPU names can be detected:
</p>
<dl compact="compact">
<dt>‘<samp>power9</samp>’</dt>
<dd><p>IBM POWER9 Server CPU.
</p></dd>
<dt>‘<samp>power8</samp>’</dt>
<dd><p>IBM POWER8 Server CPU.
</p></dd>
<dt>‘<samp>power7</samp>’</dt>
<dd><p>IBM POWER7 Server CPU.
</p></dd>
<dt>‘<samp>power6x</samp>’</dt>
<dd><p>IBM POWER6 Server CPU (RAW mode).
</p></dd>
<dt>‘<samp>power6</samp>’</dt>
<dd><p>IBM POWER6 Server CPU (Architected mode).
</p></dd>
<dt>‘<samp>power5+</samp>’</dt>
<dd><p>IBM POWER5+ Server CPU.
</p></dd>
<dt>‘<samp>power5</samp>’</dt>
<dd><p>IBM POWER5 Server CPU.
</p></dd>
<dt>‘<samp>ppc970</samp>’</dt>
<dd><p>IBM 970 Server CPU (ie, Apple G5).
</p></dd>
<dt>‘<samp>power4</samp>’</dt>
<dd><p>IBM POWER4 Server CPU.
</p></dd>
<dt>‘<samp>ppca2</samp>’</dt>
<dd><p>IBM A2 64-bit Embedded CPU
</p></dd>
<dt>‘<samp>ppc476</samp>’</dt>
<dd><p>IBM PowerPC 476FP 32-bit Embedded CPU.
</p></dd>
<dt>‘<samp>ppc464</samp>’</dt>
<dd><p>IBM PowerPC 464 32-bit Embedded CPU.
</p></dd>
<dt>‘<samp>ppc440</samp>’</dt>
<dd><p>PowerPC 440 32-bit Embedded CPU.
</p></dd>
<dt>‘<samp>ppc405</samp>’</dt>
<dd><p>PowerPC 405 32-bit Embedded CPU.
</p></dd>
<dt>‘<samp>ppc-cell-be</samp>’</dt>
<dd><p>IBM PowerPC Cell Broadband Engine Architecture CPU.
</p></dd>
</dl>
<p>Here is an example:
</p><div class="smallexample">
<pre class="smallexample">#ifdef __BUILTIN_CPU_SUPPORTS__
if (__builtin_cpu_is ("power8"))
{
do_power8 (); // POWER8 specific implementation.
}
else
#endif
{
do_generic (); // Generic implementation.
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fcpu_005fsupports"></a>Built-in Function: <em>int</em> <strong>__builtin_cpu_supports</strong> <em>(const char *<var>feature</var>)</em></dt>
<dd><p>This function returns a value of <code>1</code> if the run-time CPU supports the HWCAP
feature <var>feature</var> and returns <code>0</code> otherwise.
</p>
<p>The <code>__builtin_cpu_supports</code> function requires GLIBC 2.23 or
newer which exports the hardware capability bits. GCC defines the
macro <code>__BUILTIN_CPU_SUPPORTS__</code> if the
<code>__builtin_cpu_supports</code> built-in function is fully supported.
</p>
<p>If GCC was configured to use a GLIBC before 2.23, the built-in
function <code>__builtin_cpu_suports</code> always returns a 0 and the
compiler issues a warning.
</p>
<p>The following features can be
detected:
</p>
<dl compact="compact">
<dt>‘<samp>4xxmac</samp>’</dt>
<dd><p>4xx CPU has a Multiply Accumulator.
</p></dd>
<dt>‘<samp>altivec</samp>’</dt>
<dd><p>CPU has a SIMD/Vector Unit.
</p></dd>
<dt>‘<samp>arch_2_05</samp>’</dt>
<dd><p>CPU supports ISA 2.05 (eg, POWER6)
</p></dd>
<dt>‘<samp>arch_2_06</samp>’</dt>
<dd><p>CPU supports ISA 2.06 (eg, POWER7)
</p></dd>
<dt>‘<samp>arch_2_07</samp>’</dt>
<dd><p>CPU supports ISA 2.07 (eg, POWER8)
</p></dd>
<dt>‘<samp>arch_3_00</samp>’</dt>
<dd><p>CPU supports ISA 3.0 (eg, POWER9)
</p></dd>
<dt>‘<samp>archpmu</samp>’</dt>
<dd><p>CPU supports the set of compatible performance monitoring events.
</p></dd>
<dt>‘<samp>booke</samp>’</dt>
<dd><p>CPU supports the Embedded ISA category.
</p></dd>
<dt>‘<samp>cellbe</samp>’</dt>
<dd><p>CPU has a CELL broadband engine.
</p></dd>
<dt>‘<samp>dfp</samp>’</dt>
<dd><p>CPU has a decimal floating point unit.
</p></dd>
<dt>‘<samp>dscr</samp>’</dt>
<dd><p>CPU supports the data stream control register.
</p></dd>
<dt>‘<samp>ebb</samp>’</dt>
<dd><p>CPU supports event base branching.
</p></dd>
<dt>‘<samp>efpdouble</samp>’</dt>
<dd><p>CPU has a SPE double precision floating point unit.
</p></dd>
<dt>‘<samp>efpsingle</samp>’</dt>
<dd><p>CPU has a SPE single precision floating point unit.
</p></dd>
<dt>‘<samp>fpu</samp>’</dt>
<dd><p>CPU has a floating point unit.
</p></dd>
<dt>‘<samp>htm</samp>’</dt>
<dd><p>CPU has hardware transaction memory instructions.
</p></dd>
<dt>‘<samp>htm-nosc</samp>’</dt>
<dd><p>Kernel aborts hardware transactions when a syscall is made.
</p></dd>
<dt>‘<samp>ic_snoop</samp>’</dt>
<dd><p>CPU supports icache snooping capabilities.
</p></dd>
<dt>‘<samp>ieee128</samp>’</dt>
<dd><p>CPU supports 128-bit IEEE binary floating point instructions.
</p></dd>
<dt>‘<samp>isel</samp>’</dt>
<dd><p>CPU supports the integer select instruction.
</p></dd>
<dt>‘<samp>mmu</samp>’</dt>
<dd><p>CPU has a memory management unit.
</p></dd>
<dt>‘<samp>notb</samp>’</dt>
<dd><p>CPU does not have a timebase (eg, 601 and 403gx).
</p></dd>
<dt>‘<samp>pa6t</samp>’</dt>
<dd><p>CPU supports the PA Semi 6T CORE ISA.
</p></dd>
<dt>‘<samp>power4</samp>’</dt>
<dd><p>CPU supports ISA 2.00 (eg, POWER4)
</p></dd>
<dt>‘<samp>power5</samp>’</dt>
<dd><p>CPU supports ISA 2.02 (eg, POWER5)
</p></dd>
<dt>‘<samp>power5+</samp>’</dt>
<dd><p>CPU supports ISA 2.03 (eg, POWER5+)
</p></dd>
<dt>‘<samp>power6x</samp>’</dt>
<dd><p>CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
</p></dd>
<dt>‘<samp>ppc32</samp>’</dt>
<dd><p>CPU supports 32-bit mode execution.
</p></dd>
<dt>‘<samp>ppc601</samp>’</dt>
<dd><p>CPU supports the old POWER ISA (eg, 601)
</p></dd>
<dt>‘<samp>ppc64</samp>’</dt>
<dd><p>CPU supports 64-bit mode execution.
</p></dd>
<dt>‘<samp>ppcle</samp>’</dt>
<dd><p>CPU supports a little-endian mode that uses address swizzling.
</p></dd>
<dt>‘<samp>smt</samp>’</dt>
<dd><p>CPU support simultaneous multi-threading.
</p></dd>
<dt>‘<samp>spe</samp>’</dt>
<dd><p>CPU has a signal processing extension unit.
</p></dd>
<dt>‘<samp>tar</samp>’</dt>
<dd><p>CPU supports the target address register.
</p></dd>
<dt>‘<samp>true_le</samp>’</dt>
<dd><p>CPU supports true little-endian mode.
</p></dd>
<dt>‘<samp>ucache</samp>’</dt>
<dd><p>CPU has unified I/D cache.
</p></dd>
<dt>‘<samp>vcrypto</samp>’</dt>
<dd><p>CPU supports the vector cryptography instructions.
</p></dd>
<dt>‘<samp>vsx</samp>’</dt>
<dd><p>CPU supports the vector-scalar extension.
</p></dd>
</dl>
<p>Here is an example:
</p><div class="smallexample">
<pre class="smallexample">#ifdef __BUILTIN_CPU_SUPPORTS__
if (__builtin_cpu_supports ("fpu"))
{
asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
}
else
#endif
{
dst = __fadd (src1, src2); // Software FP addition function.
}
</pre></div>
</dd></dl>
<p>These built-in functions are available for the PowerPC family of
processors:
</p><div class="smallexample">
<pre class="smallexample">float __builtin_recipdivf (float, float);
float __builtin_rsqrtf (float);
double __builtin_recipdiv (double, double);
double __builtin_rsqrt (double);
uint64_t __builtin_ppc_get_timebase ();
unsigned long __builtin_ppc_mftb ();
double __builtin_unpack_longdouble (long double, int);
long double __builtin_pack_longdouble (double, double);
</pre></div>
<p>The <code>vec_rsqrt</code>, <code>__builtin_rsqrt</code>, and
<code>__builtin_rsqrtf</code> functions generate multiple instructions to
implement the reciprocal sqrt functionality using reciprocal sqrt
estimate instructions.
</p>
<p>The <code>__builtin_recipdiv</code>, and <code>__builtin_recipdivf</code>
functions generate multiple instructions to implement division using
the reciprocal estimate instructions.
</p>
<p>The <code>__builtin_ppc_get_timebase</code> and <code>__builtin_ppc_mftb</code>
functions generate instructions to read the Time Base Register. The
<code>__builtin_ppc_get_timebase</code> function may generate multiple
instructions and always returns the 64 bits of the Time Base Register.
The <code>__builtin_ppc_mftb</code> function always generates one instruction and
returns the Time Base Register value as an unsigned long, throwing away
the most significant word on 32-bit environments.
</p>
<p>Additional built-in functions are available for the 64-bit PowerPC
family of processors, for efficient use of 128-bit floating point
(<code>__float128</code>) values.
</p>
<p>Previous versions of GCC supported some ’q’ builtins for IEEE 128-bit
floating point. These functions are now mapped into the equivalent
’f128’ builtin functions.
</p>
<div class="smallexample">
<pre class="smallexample">__builtin_fabsq is mapped into __builtin_fabsf128
__builtin_copysignq is mapped into __builtin_copysignf128
__builtin_infq is mapped into __builtin_inff128
__builtin_huge_valq is mapped into __builtin_huge_valf128
__builtin_nanq is mapped into __builtin_nanf128
__builtin_nansq is mapped into __builtin_nansf128
</pre></div>
<p>The following built-in functions are available on Linux 64-bit systems
that use the ISA 3.0 instruction set.
</p>
<dl compact="compact">
<dt><code>__float128 __builtin_sqrtf128 (__float128)</code></dt>
<dd><p>Perform a 128-bit IEEE floating point square root operation.
<a name="index-_005f_005fbuiltin_005fsqrtf128"></a>
</p>
</dd>
<dt><code>__float128 __builtin_fmaf128 (__float128, __float128, __float128)</code></dt>
<dd><p>Perform a 128-bit IEEE floating point fused multiply and add operation.
<a name="index-_005f_005fbuiltin_005ffmaf128"></a>
</p>
</dd>
<dt><code>__float128 __builtin_addf128_round_to_odd (__float128, __float128)</code></dt>
<dd><p>Perform a 128-bit IEEE floating point add using round to odd as the
rounding mode.
<a name="index-_005f_005fbuiltin_005faddf128_005fround_005fto_005fodd"></a>
</p>
</dd>
<dt><code>__float128 __builtin_subf128_round_to_odd (__float128, __float128)</code></dt>
<dd><p>Perform a 128-bit IEEE floating point subtract using round to odd as
the rounding mode.
<a name="index-_005f_005fbuiltin_005fsubf128_005fround_005fto_005fodd"></a>
</p>
</dd>
<dt><code>__float128 __builtin_mulf128_round_to_odd (__float128, __float128)</code></dt>
<dd><p>Perform a 128-bit IEEE floating point multiply using round to odd as
the rounding mode.
<a name="index-_005f_005fbuiltin_005fmulf128_005fround_005fto_005fodd"></a>
</p>
</dd>
<dt><code>__float128 __builtin_divf128_round_to_odd (__float128, __float128)</code></dt>
<dd><p>Perform a 128-bit IEEE floating point divide using round to odd as
the rounding mode.
<a name="index-_005f_005fbuiltin_005fdivf128_005fround_005fto_005fodd"></a>
</p>
</dd>
<dt><code>__float128 __builtin_sqrtf128_round_to_odd (__float128)</code></dt>
<dd><p>Perform a 128-bit IEEE floating point square root using round to odd
as the rounding mode.
<a name="index-_005f_005fbuiltin_005fsqrtf128_005fround_005fto_005fodd"></a>
</p>
</dd>
<dt><code>__float128 __builtin_fmaf128 (__float128, __float128, __float128)</code></dt>
<dd><p>Perform a 128-bit IEEE floating point fused multiply and add operation
using round to odd as the rounding mode.
<a name="index-_005f_005fbuiltin_005ffmaf128_005fround_005fto_005fodd"></a>
</p>
</dd>
<dt><code>double __builtin_truncf128_round_to_odd (__float128)</code></dt>
<dd><p>Convert a 128-bit IEEE floating point value to <code>double</code> using
round to odd as the rounding mode.
<a name="index-_005f_005fbuiltin_005ftruncf128_005fround_005fto_005fodd"></a>
</p></dd>
</dl>
<p>The following built-in functions are available for the PowerPC family
of processors, starting with ISA 2.05 or later (<samp>-mcpu=power6</samp>
or <samp>-mcmpb</samp>):
</p><div class="smallexample">
<pre class="smallexample">unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
unsigned int __builtin_cmpb (unsigned int, unsigned int);
</pre></div>
<p>The <code>__builtin_cmpb</code> function
performs a byte-wise compare on the contents of its two arguments,
returning the result of the byte-wise comparison as the returned
value. For each byte comparison, the corresponding byte of the return
value holds 0xff if the input bytes are equal and 0 if the input bytes
are not equal. If either of the arguments to this built-in function
is wider than 32 bits, the function call expands into the form that
expects <code>unsigned long long int</code> arguments
which is only available on 64-bit targets.
</p>
<p>The following built-in functions are available for the PowerPC family
of processors, starting with ISA 2.06 or later (<samp>-mcpu=power7</samp>
or <samp>-mpopcntd</samp>):
</p><div class="smallexample">
<pre class="smallexample">long __builtin_bpermd (long, long);
int __builtin_divwe (int, int);
unsigned int __builtin_divweu (unsigned int, unsigned int);
long __builtin_divde (long, long);
unsigned long __builtin_divdeu (unsigned long, unsigned long);
unsigned int cdtbcd (unsigned int);
unsigned int cbcdtd (unsigned int);
unsigned int addg6s (unsigned int, unsigned int);
void __builtin_rs6000_speculation_barrier (void);
</pre></div>
<p>The <code>__builtin_divde</code> and <code>__builtin_divdeu</code> functions
require a 64-bit environment supporting ISA 2.06 or later.
</p>
<p>The following built-in functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (<samp>-mcpu=power9</samp>):
</p><div class="smallexample">
<pre class="smallexample">long long __builtin_darn (void);
long long __builtin_darn_raw (void);
int __builtin_darn_32 (void);
unsigned int scalar_extract_exp (double source);
unsigned long long int scalar_extract_exp (__ieee128 source);
unsigned long long int scalar_extract_sig (double source);
unsigned __int128 scalar_extract_sig (__ieee128 source);
double
scalar_insert_exp (unsigned long long int significand, unsigned long long int exponent);
double
scalar_insert_exp (double significand, unsigned long long int exponent);
ieee_128
scalar_insert_exp (unsigned __int128 significand, unsigned long long int exponent);
ieee_128
scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);
int scalar_cmp_exp_gt (double arg1, double arg2);
int scalar_cmp_exp_lt (double arg1, double arg2);
int scalar_cmp_exp_eq (double arg1, double arg2);
int scalar_cmp_exp_unordered (double arg1, double arg2);
bool scalar_test_data_class (float source, const int condition);
bool scalar_test_data_class (double source, const int condition);
bool scalar_test_data_class (__ieee128 source, const int condition);
bool scalar_test_neg (float source);
bool scalar_test_neg (double source);
bool scalar_test_neg (__ieee128 source);
int __builtin_byte_in_set (unsigned char u, unsigned long long set);
int __builtin_byte_in_range (unsigned char u, unsigned int range);
int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
</pre></div>
<p>The <code>__builtin_darn</code> and <code>__builtin_darn_raw</code>
functions require a
64-bit environment supporting ISA 3.0 or later.
The <code>__builtin_darn</code> function provides a 64-bit conditioned
random number. The <code>__builtin_darn_raw</code> function provides a
64-bit raw random number. The <code>__builtin_darn_32</code> function
provides a 32-bit random number.
</p>
<p>The <code>scalar_extract_exp</code> and <code>scalar_extract_sig</code>
functions require a 64-bit environment supporting ISA 3.0 or later.
The <code>scalar_extract_exp</code> and <code>scalar_extract_sig</code> built-in
functions return the significand and the biased exponent value
respectively of their <code>source</code> arguments.
When supplied with a 64-bit <code>source</code> argument, the
result returned by <code>scalar_extract_sig</code> has
the <code>0x0010000000000000</code> bit set if the
function’s <code>source</code> argument is in normalized form.
Otherwise, this bit is set to 0.
When supplied with a 128-bit <code>source</code> argument, the
<code>0x00010000000000000000000000000000</code> bit of the result is
treated similarly.
Note that the sign of the significand is not represented in the result
returned from the <code>scalar_extract_sig</code> function. Use the
<code>scalar_test_neg</code> function to test the sign of its <code>double</code>
argument.
</p>
<p>The <code>scalar_insert_exp</code>
functions require a 64-bit environment supporting ISA 3.0 or later.
When supplied with a 64-bit first argument, the
<code>scalar_insert_exp</code> built-in function returns a double-precision
floating point value that is constructed by assembling the values of its
<code>significand</code> and <code>exponent</code> arguments. The sign of the
result is copied from the most significant bit of the
<code>significand</code> argument. The significand and exponent components
of the result are composed of the least significant 11 bits of the
<code>exponent</code> argument and the least significant 52 bits of the
<code>significand</code> argument respectively.
</p>
<p>When supplied with a 128-bit first argument, the
<code>scalar_insert_exp</code> built-in function returns a quad-precision
ieee floating point value. The sign bit of the result is copied from
the most significant bit of the <code>significand</code> argument.
The significand and exponent components of the result are composed of
the least significant 15 bits of the <code>exponent</code> argument and the
least significant 112 bits of the <code>significand</code> argument respectively.
</p>
<p>The <code>scalar_cmp_exp_gt</code>, <code>scalar_cmp_exp_lt</code>,
<code>scalar_cmp_exp_eq</code>, and <code>scalar_cmp_exp_unordered</code> built-in
functions return a non-zero value if <code>arg1</code> is greater than, less
than, equal to, or not comparable to <code>arg2</code> respectively. The
arguments are not comparable if one or the other equals NaN (not a
number).
</p>
<p>The <code>scalar_test_data_class</code> built-in function returns 1
if any of the condition tests enabled by the value of the
<code>condition</code> variable are true, and 0 otherwise. The
<code>condition</code> argument must be a compile-time constant integer with
value not exceeding 127. The
<code>condition</code> argument is encoded as a bitmask with each bit
enabling the testing of a different condition, as characterized by the
following:
</p><div class="smallexample">
<pre class="smallexample">0x40 Test for NaN
0x20 Test for +Infinity
0x10 Test for -Infinity
0x08 Test for +Zero
0x04 Test for -Zero
0x02 Test for +Denormal
0x01 Test for -Denormal
</pre></div>
<p>The <code>scalar_test_neg</code> built-in function returns 1 if its
<code>source</code> argument holds a negative value, 0 otherwise.
</p>
<p>The <code>__builtin_byte_in_set</code> function requires a
64-bit environment supporting ISA 3.0 or later. This function returns
a non-zero value if and only if its <code>u</code> argument exactly equals one of
the eight bytes contained within its 64-bit <code>set</code> argument.
</p>
<p>The <code>__builtin_byte_in_range</code> and
<code>__builtin_byte_in_either_range</code> require an environment
supporting ISA 3.0 or later. For these two functions, the
<code>range</code> argument is encoded as 4 bytes, organized as
<code>hi_1:lo_1:hi_2:lo_2</code>.
The <code>__builtin_byte_in_range</code> function returns a
non-zero value if and only if its <code>u</code> argument is within the
range bounded between <code>lo_2</code> and <code>hi_2</code> inclusive.
The <code>__builtin_byte_in_either_range</code> function returns non-zero if
and only if its <code>u</code> argument is within either the range bounded
between <code>lo_1</code> and <code>hi_1</code> inclusive or the range bounded
between <code>lo_2</code> and <code>hi_2</code> inclusive.
</p>
<p>The <code>__builtin_dfp_dtstsfi_lt</code> function returns a non-zero value
if and only if the number of signficant digits of its <code>value</code> argument
is less than its <code>comparison</code> argument. The
<code>__builtin_dfp_dtstsfi_lt_dd</code> and
<code>__builtin_dfp_dtstsfi_lt_td</code> functions behave similarly, but
require that the type of the <code>value</code> argument be
<code>__Decimal64</code> and <code>__Decimal128</code> respectively.
</p>
<p>The <code>__builtin_dfp_dtstsfi_gt</code> function returns a non-zero value
if and only if the number of signficant digits of its <code>value</code> argument
is greater than its <code>comparison</code> argument. The
<code>__builtin_dfp_dtstsfi_gt_dd</code> and
<code>__builtin_dfp_dtstsfi_gt_td</code> functions behave similarly, but
require that the type of the <code>value</code> argument be
<code>__Decimal64</code> and <code>__Decimal128</code> respectively.
</p>
<p>The <code>__builtin_dfp_dtstsfi_eq</code> function returns a non-zero value
if and only if the number of signficant digits of its <code>value</code> argument
equals its <code>comparison</code> argument. The
<code>__builtin_dfp_dtstsfi_eq_dd</code> and
<code>__builtin_dfp_dtstsfi_eq_td</code> functions behave similarly, but
require that the type of the <code>value</code> argument be
<code>__Decimal64</code> and <code>__Decimal128</code> respectively.
</p>
<p>The <code>__builtin_dfp_dtstsfi_ov</code> function returns a non-zero value
if and only if its <code>value</code> argument has an undefined number of
significant digits, such as when <code>value</code> is an encoding of <code>NaN</code>.
The <code>__builtin_dfp_dtstsfi_ov_dd</code> and
<code>__builtin_dfp_dtstsfi_ov_td</code> functions behave similarly, but
require that the type of the <code>value</code> argument be
<code>__Decimal64</code> and <code>__Decimal128</code> respectively.
</p>
<p>The following built-in functions are also available for the PowerPC family
of processors, starting with ISA 3.0 or later
(<samp>-mcpu=power9</samp>). These string functions are described
separately in order to group the descriptions closer to the function
prototypes:
</p><div class="smallexample">
<pre class="smallexample">int vec_all_nez (vector signed char, vector signed char);
int vec_all_nez (vector unsigned char, vector unsigned char);
int vec_all_nez (vector signed short, vector signed short);
int vec_all_nez (vector unsigned short, vector unsigned short);
int vec_all_nez (vector signed int, vector signed int);
int vec_all_nez (vector unsigned int, vector unsigned int);
int vec_any_eqz (vector signed char, vector signed char);
int vec_any_eqz (vector unsigned char, vector unsigned char);
int vec_any_eqz (vector signed short, vector signed short);
int vec_any_eqz (vector unsigned short, vector unsigned short);
int vec_any_eqz (vector signed int, vector signed int);
int vec_any_eqz (vector unsigned int, vector unsigned int);
vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
vector signed char vec_cnttz (vector signed char);
vector unsigned char vec_cnttz (vector unsigned char);
vector signed short vec_cnttz (vector signed short);
vector unsigned short vec_cnttz (vector unsigned short);
vector signed int vec_cnttz (vector signed int);
vector unsigned int vec_cnttz (vector unsigned int);
vector signed long long vec_cnttz (vector signed long long);
vector unsigned long long vec_cnttz (vector unsigned long long);
signed int vec_cntlz_lsbb (vector signed char);
signed int vec_cntlz_lsbb (vector unsigned char);
signed int vec_cnttz_lsbb (vector signed char);
signed int vec_cnttz_lsbb (vector unsigned char);
unsigned int vec_first_match_index (vector signed char, vector signed char);
unsigned int vec_first_match_index (vector unsigned char,
vector unsigned char);
unsigned int vec_first_match_index (vector signed int, vector signed int);
unsigned int vec_first_match_index (vector unsigned int, vector unsigned int);
unsigned int vec_first_match_index (vector signed short, vector signed short);
unsigned int vec_first_match_index (vector unsigned short,
vector unsigned short);
unsigned int vec_first_match_or_eos_index (vector signed char,
vector signed char);
unsigned int vec_first_match_or_eos_index (vector unsigned char,
vector unsigned char);
unsigned int vec_first_match_or_eos_index (vector signed int,
vector signed int);
unsigned int vec_first_match_or_eos_index (vector unsigned int,
vector unsigned int);
unsigned int vec_first_match_or_eos_index (vector signed short,
vector signed short);
unsigned int vec_first_match_or_eos_index (vector unsigned short,
vector unsigned short);
unsigned int vec_first_mismatch_index (vector signed char,
vector signed char);
unsigned int vec_first_mismatch_index (vector unsigned char,
vector unsigned char);
unsigned int vec_first_mismatch_index (vector signed int,
vector signed int);
unsigned int vec_first_mismatch_index (vector unsigned int,
vector unsigned int);
unsigned int vec_first_mismatch_index (vector signed short,
vector signed short);
unsigned int vec_first_mismatch_index (vector unsigned short,
vector unsigned short);
unsigned int vec_first_mismatch_or_eos_index (vector signed char,
vector signed char);
unsigned int vec_first_mismatch_or_eos_index (vector unsigned char,
vector unsigned char);
unsigned int vec_first_mismatch_or_eos_index (vector signed int,
vector signed int);
unsigned int vec_first_mismatch_or_eos_index (vector unsigned int,
vector unsigned int);
unsigned int vec_first_mismatch_or_eos_index (vector signed short,
vector signed short);
unsigned int vec_first_mismatch_or_eos_index (vector unsigned short,
vector unsigned short);
vector unsigned short vec_pack_to_short_fp32 (vector float, vector float);
vector signed char vec_xl_be (signed long long, signed char *);
vector unsigned char vec_xl_be (signed long long, unsigned char *);
vector signed int vec_xl_be (signed long long, signed int *);
vector unsigned int vec_xl_be (signed long long, unsigned int *);
vector signed __int128 vec_xl_be (signed long long, signed __int128 *);
vector unsigned __int128 vec_xl_be (signed long long, unsigned __int128 *);
vector signed long long vec_xl_be (signed long long, signed long long *);
vector unsigned long long vec_xl_be (signed long long, unsigned long long *);
vector signed short vec_xl_be (signed long long, signed short *);
vector unsigned short vec_xl_be (signed long long, unsigned short *);
vector double vec_xl_be (signed long long, double *);
vector float vec_xl_be (signed long long, float *);
vector signed char vec_xl_len (signed char *addr, size_t len);
vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
vector signed int vec_xl_len (signed int *addr, size_t len);
vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
vector signed long long vec_xl_len (signed long long *addr, size_t len);
vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
vector signed short vec_xl_len (signed short *addr, size_t len);
vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
vector double vec_xl_len (double *addr, size_t len);
vector float vec_xl_len (float *addr, size_t len);
vector unsigned char vec_xl_len_r (unsigned char *addr, size_t len);
void vec_xst_len (vector signed char data, signed char *addr, size_t len);
void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
void vec_xst_len (vector signed int data, signed int *addr, size_t len);
void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
void vec_xst_len (vector signed short data, signed short *addr, size_t len);
void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
void vec_xst_len (vector double data, double *addr, size_t len);
void vec_xst_len (vector float data, float *addr, size_t len);
void vec_xst_len_r (vector unsigned char data, unsigned char *addr, size_t len);
signed char vec_xlx (unsigned int index, vector signed char data);
unsigned char vec_xlx (unsigned int index, vector unsigned char data);
signed short vec_xlx (unsigned int index, vector signed short data);
unsigned short vec_xlx (unsigned int index, vector unsigned short data);
signed int vec_xlx (unsigned int index, vector signed int data);
unsigned int vec_xlx (unsigned int index, vector unsigned int data);
float vec_xlx (unsigned int index, vector float data);
signed char vec_xrx (unsigned int index, vector signed char data);
unsigned char vec_xrx (unsigned int index, vector unsigned char data);
signed short vec_xrx (unsigned int index, vector signed short data);
unsigned short vec_xrx (unsigned int index, vector unsigned short data);
signed int vec_xrx (unsigned int index, vector signed int data);
unsigned int vec_xrx (unsigned int index, vector unsigned int data);
float vec_xrx (unsigned int index, vector float data);
</pre></div>
<p>The <code>vec_all_nez</code>, <code>vec_any_eqz</code>, and <code>vec_cmpnez</code>
perform pairwise comparisons between the elements at the same
positions within their two vector arguments.
The <code>vec_all_nez</code> function returns a
non-zero value if and only if all pairwise comparisons are not
equal and no element of either vector argument contains a zero.
The <code>vec_any_eqz</code> function returns a
non-zero value if and only if at least one pairwise comparison is equal
or if at least one element of either vector argument contains a zero.
The <code>vec_cmpnez</code> function returns a vector of the same type as
its two arguments, within which each element consists of all ones to
denote that either the corresponding elements of the incoming arguments are
not equal or that at least one of the corresponding elements contains
zero. Otherwise, the element of the returned vector contains all zeros.
</p>
<p>The <code>vec_cntlz_lsbb</code> function returns the count of the number of
consecutive leading byte elements (starting from position 0 within the
supplied vector argument) for which the least-significant bit
equals zero. The <code>vec_cnttz_lsbb</code> function returns the count of
the number of consecutive trailing byte elements (starting from
position 15 and counting backwards within the supplied vector
argument) for which the least-significant bit equals zero.
</p>
<p>The <code>vec_xl_len</code> and <code>vec_xst_len</code> functions require a
64-bit environment supporting ISA 3.0 or later. The <code>vec_xl_len</code>
function loads a variable length vector from memory. The
<code>vec_xst_len</code> function stores a variable length vector to memory.
With both the <code>vec_xl_len</code> and <code>vec_xst_len</code> functions, the
<code>addr</code> argument represents the memory address to or from which
data will be transferred, and the
<code>len</code> argument represents the number of bytes to be
transferred, as computed by the C expression <code>min((len & 0xff), 16)</code>.
If this expression’s value is not a multiple of the vector element’s
size, the behavior of this function is undefined.
In the case that the underlying computer is configured to run in
big-endian mode, the data transfer moves bytes 0 to <code>(len - 1)</code> of
the corresponding vector. In little-endian mode, the data transfer
moves bytes <code>(16 - len)</code> to <code>15</code> of the corresponding
vector. For the load function, any bytes of the result vector that
are not loaded from memory are set to zero.
The value of the <code>addr</code> argument need not be aligned on a
multiple of the vector’s element size.
</p>
<p>The <code>vec_xlx</code> and <code>vec_xrx</code> functions extract the single
element selected by the <code>index</code> argument from the vector
represented by the <code>data</code> argument. The <code>index</code> argument
always specifies a byte offset, regardless of the size of the vector
element. With <code>vec_xlx</code>, <code>index</code> is the offset of the first
byte of the element to be extracted. With <code>vec_xrx</code>, <code>index</code>
represents the last byte of the element to be extracted, measured
from the right end of the vector. In other words, the last byte of
the element to be extracted is found at position <code>(15 - index)</code>.
There is no requirement that <code>index</code> be a multiple of the vector
element size. However, if the size of the vector element added to
<code>index</code> is greater than 15, the content of the returned value is
undefined.
</p>
<p>The following built-in functions are available for the PowerPC family
of processors when hardware decimal floating point
(<samp>-mhard-dfp</samp>) is available:
</p><div class="smallexample">
<pre class="smallexample">long long __builtin_dxex (_Decimal64);
long long __builtin_dxexq (_Decimal128);
_Decimal64 __builtin_ddedpd (int, _Decimal64);
_Decimal128 __builtin_ddedpdq (int, _Decimal128);
_Decimal64 __builtin_denbcd (int, _Decimal64);
_Decimal128 __builtin_denbcdq (int, _Decimal128);
_Decimal64 __builtin_diex (long long, _Decimal64);
_Decimal128 _builtin_diexq (long long, _Decimal128);
_Decimal64 __builtin_dscli (_Decimal64, int);
_Decimal128 __builtin_dscliq (_Decimal128, int);
_Decimal64 __builtin_dscri (_Decimal64, int);
_Decimal128 __builtin_dscriq (_Decimal128, int);
unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
_Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
</pre></div>
<p>The following built-in functions are available for the PowerPC family
of processors when the Vector Scalar (vsx) instruction set is
available:
</p><div class="smallexample">
<pre class="smallexample">unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
unsigned long long);
</pre></div>
<hr>
<a name="PowerPC-AltiVec_002fVSX-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-Hardware-Transactional-Memory-Built_002din-Functions" accesskey="n" rel="next">PowerPC Hardware Transactional Memory Built-in Functions</a>, Previous: <a href="#PowerPC-Built_002din-Functions" accesskey="p" rel="prev">PowerPC Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-AltiVec-Built_002din-Functions"></a>
<h4 class="subsection">6.59.22 PowerPC AltiVec Built-in Functions</h4>
<p>GCC provides an interface for the PowerPC family of processors to access
the AltiVec operations described in Motorola’s AltiVec Programming
Interface Manual. The interface is made available by including
<code><altivec.h></code> and using <samp>-maltivec</samp> and
<samp>-mabi=altivec</samp>. The interface supports the following vector
types.
</p>
<div class="smallexample">
<pre class="smallexample">vector unsigned char
vector signed char
vector bool char
vector unsigned short
vector signed short
vector bool short
vector pixel
vector unsigned int
vector signed int
vector bool int
vector float
</pre></div>
<p>If <samp>-mvsx</samp> is used the following additional vector types are
implemented.
</p>
<div class="smallexample">
<pre class="smallexample">vector unsigned long
vector signed long
vector double
</pre></div>
<p>The long types are only implemented for 64-bit code generation, and
the long type is only used in the floating point/integer conversion
instructions.
</p>
<p>GCC’s implementation of the high-level language interface available from
C and C++ code differs from Motorola’s documentation in several ways.
</p>
<ul>
<li> A vector constant is a list of constant expressions within curly braces.
</li><li> A vector initializer requires no cast if the vector constant is of the
same type as the variable it is initializing.
</li><li> If <code>signed</code> or <code>unsigned</code> is omitted, the signedness of the
vector type is the default signedness of the base type. The default
varies depending on the operating system, so a portable program should
always specify the signedness.
</li><li> Compiling with <samp>-maltivec</samp> adds keywords <code>__vector</code>,
<code>vector</code>, <code>__pixel</code>, <code>pixel</code>, <code>__bool</code> and
<code>bool</code>. When compiling ISO C, the context-sensitive substitution
of the keywords <code>vector</code>, <code>pixel</code> and <code>bool</code> is
disabled. To use them, you must include <code><altivec.h></code> instead.
</li><li> GCC allows using a <code>typedef</code> name as the type specifier for a
vector type.
</li><li> For C, overloaded functions are implemented with macros so the following
does not work:
<div class="smallexample">
<pre class="smallexample"> vec_add ((vector signed int){1, 2, 3, 4}, foo);
</pre></div>
<p>Since <code>vec_add</code> is a macro, the vector constant in the example
is treated as four separate arguments. Wrap the entire argument in
parentheses for this to work.
</p></li></ul>
<p><em>Note:</em> Only the <code><altivec.h></code> interface is supported.
Internally, GCC uses built-in functions to achieve the functionality in
the aforementioned header file, but they are not supported and are
subject to change without notice.
</p>
<p>GCC complies with the OpenPOWER 64-Bit ELF V2 ABI Specification,
which may be found at
<a href="http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html">http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html</a>.
Appendix A of this document lists the vector API interfaces that must be
provided by compliant compilers. Programmers should preferentially use
the interfaces described therein. However, historically GCC has provided
additional interfaces for access to vector instructions. These are
briefly described below.
</p>
<p>The following interfaces are supported for the generic and specific
AltiVec operations and the AltiVec predicates. In cases where there
is a direct mapping between generic and specific operations, only the
generic names are shown here, although the specific operations can also
be used.
</p>
<p>Arguments that are documented as <code>const int</code> require literal
integral values within the range required for that operation.
</p>
<div class="smallexample">
<pre class="smallexample">vector signed char vec_abs (vector signed char);
vector signed short vec_abs (vector signed short);
vector signed int vec_abs (vector signed int);
vector float vec_abs (vector float);
vector signed char vec_abss (vector signed char);
vector signed short vec_abss (vector signed short);
vector signed int vec_abss (vector signed int);
vector signed char vec_add (vector bool char, vector signed char);
vector signed char vec_add (vector signed char, vector bool char);
vector signed char vec_add (vector signed char, vector signed char);
vector unsigned char vec_add (vector bool char, vector unsigned char);
vector unsigned char vec_add (vector unsigned char, vector bool char);
vector unsigned char vec_add (vector unsigned char,
vector unsigned char);
vector signed short vec_add (vector bool short, vector signed short);
vector signed short vec_add (vector signed short, vector bool short);
vector signed short vec_add (vector signed short, vector signed short);
vector unsigned short vec_add (vector bool short,
vector unsigned short);
vector unsigned short vec_add (vector unsigned short,
vector bool short);
vector unsigned short vec_add (vector unsigned short,
vector unsigned short);
vector signed int vec_add (vector bool int, vector signed int);
vector signed int vec_add (vector signed int, vector bool int);
vector signed int vec_add (vector signed int, vector signed int);
vector unsigned int vec_add (vector bool int, vector unsigned int);
vector unsigned int vec_add (vector unsigned int, vector bool int);
vector unsigned int vec_add (vector unsigned int, vector unsigned int);
vector float vec_add (vector float, vector float);
vector float vec_vaddfp (vector float, vector float);
vector signed int vec_vadduwm (vector bool int, vector signed int);
vector signed int vec_vadduwm (vector signed int, vector bool int);
vector signed int vec_vadduwm (vector signed int, vector signed int);
vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
vector unsigned int vec_vadduwm (vector unsigned int,
vector unsigned int);
vector signed short vec_vadduhm (vector bool short,
vector signed short);
vector signed short vec_vadduhm (vector signed short,
vector bool short);
vector signed short vec_vadduhm (vector signed short,
vector signed short);
vector unsigned short vec_vadduhm (vector bool short,
vector unsigned short);
vector unsigned short vec_vadduhm (vector unsigned short,
vector bool short);
vector unsigned short vec_vadduhm (vector unsigned short,
vector unsigned short);
vector signed char vec_vaddubm (vector bool char, vector signed char);
vector signed char vec_vaddubm (vector signed char, vector bool char);
vector signed char vec_vaddubm (vector signed char, vector signed char);
vector unsigned char vec_vaddubm (vector bool char,
vector unsigned char);
vector unsigned char vec_vaddubm (vector unsigned char,
vector bool char);
vector unsigned char vec_vaddubm (vector unsigned char,
vector unsigned char);
vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
vector unsigned char vec_adds (vector bool char, vector unsigned char);
vector unsigned char vec_adds (vector unsigned char, vector bool char);
vector unsigned char vec_adds (vector unsigned char,
vector unsigned char);
vector signed char vec_adds (vector bool char, vector signed char);
vector signed char vec_adds (vector signed char, vector bool char);
vector signed char vec_adds (vector signed char, vector signed char);
vector unsigned short vec_adds (vector bool short,
vector unsigned short);
vector unsigned short vec_adds (vector unsigned short,
vector bool short);
vector unsigned short vec_adds (vector unsigned short,
vector unsigned short);
vector signed short vec_adds (vector bool short, vector signed short);
vector signed short vec_adds (vector signed short, vector bool short);
vector signed short vec_adds (vector signed short, vector signed short);
vector unsigned int vec_adds (vector bool int, vector unsigned int);
vector unsigned int vec_adds (vector unsigned int, vector bool int);
vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
vector signed int vec_adds (vector bool int, vector signed int);
vector signed int vec_adds (vector signed int, vector bool int);
vector signed int vec_adds (vector signed int, vector signed int);
vector signed int vec_vaddsws (vector bool int, vector signed int);
vector signed int vec_vaddsws (vector signed int, vector bool int);
vector signed int vec_vaddsws (vector signed int, vector signed int);
vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
vector unsigned int vec_vadduws (vector unsigned int,
vector unsigned int);
vector signed short vec_vaddshs (vector bool short,
vector signed short);
vector signed short vec_vaddshs (vector signed short,
vector bool short);
vector signed short vec_vaddshs (vector signed short,
vector signed short);
vector unsigned short vec_vadduhs (vector bool short,
vector unsigned short);
vector unsigned short vec_vadduhs (vector unsigned short,
vector bool short);
vector unsigned short vec_vadduhs (vector unsigned short,
vector unsigned short);
vector signed char vec_vaddsbs (vector bool char, vector signed char);
vector signed char vec_vaddsbs (vector signed char, vector bool char);
vector signed char vec_vaddsbs (vector signed char, vector signed char);
vector unsigned char vec_vaddubs (vector bool char,
vector unsigned char);
vector unsigned char vec_vaddubs (vector unsigned char,
vector bool char);
vector unsigned char vec_vaddubs (vector unsigned char,
vector unsigned char);
vector float vec_and (vector float, vector float);
vector float vec_and (vector float, vector bool int);
vector float vec_and (vector bool int, vector float);
vector bool long long vec_and (vector bool long long int,
vector bool long long);
vector bool int vec_and (vector bool int, vector bool int);
vector signed int vec_and (vector bool int, vector signed int);
vector signed int vec_and (vector signed int, vector bool int);
vector signed int vec_and (vector signed int, vector signed int);
vector unsigned int vec_and (vector bool int, vector unsigned int);
vector unsigned int vec_and (vector unsigned int, vector bool int);
vector unsigned int vec_and (vector unsigned int, vector unsigned int);
vector bool short vec_and (vector bool short, vector bool short);
vector signed short vec_and (vector bool short, vector signed short);
vector signed short vec_and (vector signed short, vector bool short);
vector signed short vec_and (vector signed short, vector signed short);
vector unsigned short vec_and (vector bool short,
vector unsigned short);
vector unsigned short vec_and (vector unsigned short,
vector bool short);
vector unsigned short vec_and (vector unsigned short,
vector unsigned short);
vector signed char vec_and (vector bool char, vector signed char);
vector bool char vec_and (vector bool char, vector bool char);
vector signed char vec_and (vector signed char, vector bool char);
vector signed char vec_and (vector signed char, vector signed char);
vector unsigned char vec_and (vector bool char, vector unsigned char);
vector unsigned char vec_and (vector unsigned char, vector bool char);
vector unsigned char vec_and (vector unsigned char,
vector unsigned char);
vector float vec_andc (vector float, vector float);
vector float vec_andc (vector float, vector bool int);
vector float vec_andc (vector bool int, vector float);
vector bool int vec_andc (vector bool int, vector bool int);
vector signed int vec_andc (vector bool int, vector signed int);
vector signed int vec_andc (vector signed int, vector bool int);
vector signed int vec_andc (vector signed int, vector signed int);
vector unsigned int vec_andc (vector bool int, vector unsigned int);
vector unsigned int vec_andc (vector unsigned int, vector bool int);
vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
vector bool short vec_andc (vector bool short, vector bool short);
vector signed short vec_andc (vector bool short, vector signed short);
vector signed short vec_andc (vector signed short, vector bool short);
vector signed short vec_andc (vector signed short, vector signed short);
vector unsigned short vec_andc (vector bool short,
vector unsigned short);
vector unsigned short vec_andc (vector unsigned short,
vector bool short);
vector unsigned short vec_andc (vector unsigned short,
vector unsigned short);
vector signed char vec_andc (vector bool char, vector signed char);
vector bool char vec_andc (vector bool char, vector bool char);
vector signed char vec_andc (vector signed char, vector bool char);
vector signed char vec_andc (vector signed char, vector signed char);
vector unsigned char vec_andc (vector bool char, vector unsigned char);
vector unsigned char vec_andc (vector unsigned char, vector bool char);
vector unsigned char vec_andc (vector unsigned char,
vector unsigned char);
vector unsigned char vec_avg (vector unsigned char,
vector unsigned char);
vector signed char vec_avg (vector signed char, vector signed char);
vector unsigned short vec_avg (vector unsigned short,
vector unsigned short);
vector signed short vec_avg (vector signed short, vector signed short);
vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
vector signed int vec_avg (vector signed int, vector signed int);
vector signed int vec_vavgsw (vector signed int, vector signed int);
vector unsigned int vec_vavguw (vector unsigned int,
vector unsigned int);
vector signed short vec_vavgsh (vector signed short,
vector signed short);
vector unsigned short vec_vavguh (vector unsigned short,
vector unsigned short);
vector signed char vec_vavgsb (vector signed char, vector signed char);
vector unsigned char vec_vavgub (vector unsigned char,
vector unsigned char);
vector float vec_copysign (vector float);
vector float vec_ceil (vector float);
vector signed int vec_cmpb (vector float, vector float);
vector bool char vec_cmpeq (vector bool char, vector bool char);
vector bool short vec_cmpeq (vector bool short, vector bool short);
vector bool int vec_cmpeq (vector bool int, vector bool int);
vector bool char vec_cmpeq (vector signed char, vector signed char);
vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
vector bool short vec_cmpeq (vector signed short, vector signed short);
vector bool short vec_cmpeq (vector unsigned short,
vector unsigned short);
vector bool int vec_cmpeq (vector signed int, vector signed int);
vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
vector bool int vec_cmpeq (vector float, vector float);
vector bool int vec_vcmpeqfp (vector float, vector float);
vector bool int vec_vcmpequw (vector signed int, vector signed int);
vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
vector bool short vec_vcmpequh (vector signed short,
vector signed short);
vector bool short vec_vcmpequh (vector unsigned short,
vector unsigned short);
vector bool char vec_vcmpequb (vector signed char, vector signed char);
vector bool char vec_vcmpequb (vector unsigned char,
vector unsigned char);
vector bool int vec_cmpge (vector float, vector float);
vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
vector bool char vec_cmpgt (vector signed char, vector signed char);
vector bool short vec_cmpgt (vector unsigned short,
vector unsigned short);
vector bool short vec_cmpgt (vector signed short, vector signed short);
vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
vector bool int vec_cmpgt (vector signed int, vector signed int);
vector bool int vec_cmpgt (vector float, vector float);
vector bool int vec_vcmpgtfp (vector float, vector float);
vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
vector bool short vec_vcmpgtsh (vector signed short,
vector signed short);
vector bool short vec_vcmpgtuh (vector unsigned short,
vector unsigned short);
vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
vector bool char vec_vcmpgtub (vector unsigned char,
vector unsigned char);
vector bool int vec_cmple (vector float, vector float);
vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
vector bool char vec_cmplt (vector signed char, vector signed char);
vector bool short vec_cmplt (vector unsigned short,
vector unsigned short);
vector bool short vec_cmplt (vector signed short, vector signed short);
vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
vector bool int vec_cmplt (vector signed int, vector signed int);
vector bool int vec_cmplt (vector float, vector float);
vector float vec_cpsgn (vector float, vector float);
vector float vec_ctf (vector unsigned int, const int);
vector float vec_ctf (vector signed int, const int);
vector double vec_ctf (vector unsigned long, const int);
vector double vec_ctf (vector signed long, const int);
vector float vec_vcfsx (vector signed int, const int);
vector float vec_vcfux (vector unsigned int, const int);
vector signed int vec_cts (vector float, const int);
vector signed long vec_cts (vector double, const int);
vector unsigned int vec_ctu (vector float, const int);
vector unsigned long vec_ctu (vector double, const int);
vector double vec_doublee (vector float);
vector double vec_doublee (vector signed int);
vector double vec_doublee (vector unsigned int);
vector double vec_doubleo (vector float);
vector double vec_doubleo (vector signed int);
vector double vec_doubleo (vector unsigned int);
vector double vec_doubleh (vector float);
vector double vec_doubleh (vector signed int);
vector double vec_doubleh (vector unsigned int);
vector double vec_doublel (vector float);
vector double vec_doublel (vector signed int);
vector double vec_doublel (vector unsigned int);
void vec_dss (const int);
void vec_dssall (void);
void vec_dst (const vector unsigned char *, int, const int);
void vec_dst (const vector signed char *, int, const int);
void vec_dst (const vector bool char *, int, const int);
void vec_dst (const vector unsigned short *, int, const int);
void vec_dst (const vector signed short *, int, const int);
void vec_dst (const vector bool short *, int, const int);
void vec_dst (const vector pixel *, int, const int);
void vec_dst (const vector unsigned int *, int, const int);
void vec_dst (const vector signed int *, int, const int);
void vec_dst (const vector bool int *, int, const int);
void vec_dst (const vector float *, int, const int);
void vec_dst (const unsigned char *, int, const int);
void vec_dst (const signed char *, int, const int);
void vec_dst (const unsigned short *, int, const int);
void vec_dst (const short *, int, const int);
void vec_dst (const unsigned int *, int, const int);
void vec_dst (const int *, int, const int);
void vec_dst (const unsigned long *, int, const int);
void vec_dst (const long *, int, const int);
void vec_dst (const float *, int, const int);
void vec_dstst (const vector unsigned char *, int, const int);
void vec_dstst (const vector signed char *, int, const int);
void vec_dstst (const vector bool char *, int, const int);
void vec_dstst (const vector unsigned short *, int, const int);
void vec_dstst (const vector signed short *, int, const int);
void vec_dstst (const vector bool short *, int, const int);
void vec_dstst (const vector pixel *, int, const int);
void vec_dstst (const vector unsigned int *, int, const int);
void vec_dstst (const vector signed int *, int, const int);
void vec_dstst (const vector bool int *, int, const int);
void vec_dstst (const vector float *, int, const int);
void vec_dstst (const unsigned char *, int, const int);
void vec_dstst (const signed char *, int, const int);
void vec_dstst (const unsigned short *, int, const int);
void vec_dstst (const short *, int, const int);
void vec_dstst (const unsigned int *, int, const int);
void vec_dstst (const int *, int, const int);
void vec_dstst (const unsigned long *, int, const int);
void vec_dstst (const long *, int, const int);
void vec_dstst (const float *, int, const int);
void vec_dststt (const vector unsigned char *, int, const int);
void vec_dststt (const vector signed char *, int, const int);
void vec_dststt (const vector bool char *, int, const int);
void vec_dststt (const vector unsigned short *, int, const int);
void vec_dststt (const vector signed short *, int, const int);
void vec_dststt (const vector bool short *, int, const int);
void vec_dststt (const vector pixel *, int, const int);
void vec_dststt (const vector unsigned int *, int, const int);
void vec_dststt (const vector signed int *, int, const int);
void vec_dststt (const vector bool int *, int, const int);
void vec_dststt (const vector float *, int, const int);
void vec_dststt (const unsigned char *, int, const int);
void vec_dststt (const signed char *, int, const int);
void vec_dststt (const unsigned short *, int, const int);
void vec_dststt (const short *, int, const int);
void vec_dststt (const unsigned int *, int, const int);
void vec_dststt (const int *, int, const int);
void vec_dststt (const unsigned long *, int, const int);
void vec_dststt (const long *, int, const int);
void vec_dststt (const float *, int, const int);
void vec_dstt (const vector unsigned char *, int, const int);
void vec_dstt (const vector signed char *, int, const int);
void vec_dstt (const vector bool char *, int, const int);
void vec_dstt (const vector unsigned short *, int, const int);
void vec_dstt (const vector signed short *, int, const int);
void vec_dstt (const vector bool short *, int, const int);
void vec_dstt (const vector pixel *, int, const int);
void vec_dstt (const vector unsigned int *, int, const int);
void vec_dstt (const vector signed int *, int, const int);
void vec_dstt (const vector bool int *, int, const int);
void vec_dstt (const vector float *, int, const int);
void vec_dstt (const unsigned char *, int, const int);
void vec_dstt (const signed char *, int, const int);
void vec_dstt (const unsigned short *, int, const int);
void vec_dstt (const short *, int, const int);
void vec_dstt (const unsigned int *, int, const int);
void vec_dstt (const int *, int, const int);
void vec_dstt (const unsigned long *, int, const int);
void vec_dstt (const long *, int, const int);
void vec_dstt (const float *, int, const int);
vector float vec_expte (vector float);
vector float vec_floor (vector float);
vector float vec_float (vector signed int);
vector float vec_float (vector unsigned int);
vector float vec_float2 (vector signed long long, vector signed long long);
vector float vec_float2 (vector unsigned long long, vector signed long long);
vector float vec_floate (vector double);
vector float vec_floate (vector signed long long);
vector float vec_floate (vector unsigned long long);
vector float vec_floato (vector double);
vector float vec_floato (vector signed long long);
vector float vec_floato (vector unsigned long long);
vector float vec_ld (int, const vector float *);
vector float vec_ld (int, const float *);
vector bool int vec_ld (int, const vector bool int *);
vector signed int vec_ld (int, const vector signed int *);
vector signed int vec_ld (int, const int *);
vector signed int vec_ld (int, const long *);
vector unsigned int vec_ld (int, const vector unsigned int *);
vector unsigned int vec_ld (int, const unsigned int *);
vector unsigned int vec_ld (int, const unsigned long *);
vector bool short vec_ld (int, const vector bool short *);
vector pixel vec_ld (int, const vector pixel *);
vector signed short vec_ld (int, const vector signed short *);
vector signed short vec_ld (int, const short *);
vector unsigned short vec_ld (int, const vector unsigned short *);
vector unsigned short vec_ld (int, const unsigned short *);
vector bool char vec_ld (int, const vector bool char *);
vector signed char vec_ld (int, const vector signed char *);
vector signed char vec_ld (int, const signed char *);
vector unsigned char vec_ld (int, const vector unsigned char *);
vector unsigned char vec_ld (int, const unsigned char *);
vector signed char vec_lde (int, const signed char *);
vector unsigned char vec_lde (int, const unsigned char *);
vector signed short vec_lde (int, const short *);
vector unsigned short vec_lde (int, const unsigned short *);
vector float vec_lde (int, const float *);
vector signed int vec_lde (int, const int *);
vector unsigned int vec_lde (int, const unsigned int *);
vector signed int vec_lde (int, const long *);
vector unsigned int vec_lde (int, const unsigned long *);
vector float vec_lvewx (int, float *);
vector signed int vec_lvewx (int, int *);
vector unsigned int vec_lvewx (int, unsigned int *);
vector signed int vec_lvewx (int, long *);
vector unsigned int vec_lvewx (int, unsigned long *);
vector signed short vec_lvehx (int, short *);
vector unsigned short vec_lvehx (int, unsigned short *);
vector signed char vec_lvebx (int, char *);
vector unsigned char vec_lvebx (int, unsigned char *);
vector float vec_ldl (int, const vector float *);
vector float vec_ldl (int, const float *);
vector bool int vec_ldl (int, const vector bool int *);
vector signed int vec_ldl (int, const vector signed int *);
vector signed int vec_ldl (int, const int *);
vector signed int vec_ldl (int, const long *);
vector unsigned int vec_ldl (int, const vector unsigned int *);
vector unsigned int vec_ldl (int, const unsigned int *);
vector unsigned int vec_ldl (int, const unsigned long *);
vector bool short vec_ldl (int, const vector bool short *);
vector pixel vec_ldl (int, const vector pixel *);
vector signed short vec_ldl (int, const vector signed short *);
vector signed short vec_ldl (int, const short *);
vector unsigned short vec_ldl (int, const vector unsigned short *);
vector unsigned short vec_ldl (int, const unsigned short *);
vector bool char vec_ldl (int, const vector bool char *);
vector signed char vec_ldl (int, const vector signed char *);
vector signed char vec_ldl (int, const signed char *);
vector unsigned char vec_ldl (int, const vector unsigned char *);
vector unsigned char vec_ldl (int, const unsigned char *);
vector float vec_loge (vector float);
vector unsigned char vec_lvsl (int, const volatile unsigned char *);
vector unsigned char vec_lvsl (int, const volatile signed char *);
vector unsigned char vec_lvsl (int, const volatile unsigned short *);
vector unsigned char vec_lvsl (int, const volatile short *);
vector unsigned char vec_lvsl (int, const volatile unsigned int *);
vector unsigned char vec_lvsl (int, const volatile int *);
vector unsigned char vec_lvsl (int, const volatile unsigned long *);
vector unsigned char vec_lvsl (int, const volatile long *);
vector unsigned char vec_lvsl (int, const volatile float *);
vector unsigned char vec_lvsr (int, const volatile unsigned char *);
vector unsigned char vec_lvsr (int, const volatile signed char *);
vector unsigned char vec_lvsr (int, const volatile unsigned short *);
vector unsigned char vec_lvsr (int, const volatile short *);
vector unsigned char vec_lvsr (int, const volatile unsigned int *);
vector unsigned char vec_lvsr (int, const volatile int *);
vector unsigned char vec_lvsr (int, const volatile unsigned long *);
vector unsigned char vec_lvsr (int, const volatile long *);
vector unsigned char vec_lvsr (int, const volatile float *);
vector float vec_madd (vector float, vector float, vector float);
vector signed short vec_madds (vector signed short,
vector signed short,
vector signed short);
vector unsigned char vec_max (vector bool char, vector unsigned char);
vector unsigned char vec_max (vector unsigned char, vector bool char);
vector unsigned char vec_max (vector unsigned char,
vector unsigned char);
vector signed char vec_max (vector bool char, vector signed char);
vector signed char vec_max (vector signed char, vector bool char);
vector signed char vec_max (vector signed char, vector signed char);
vector unsigned short vec_max (vector bool short,
vector unsigned short);
vector unsigned short vec_max (vector unsigned short,
vector bool short);
vector unsigned short vec_max (vector unsigned short,
vector unsigned short);
vector signed short vec_max (vector bool short, vector signed short);
vector signed short vec_max (vector signed short, vector bool short);
vector signed short vec_max (vector signed short, vector signed short);
vector unsigned int vec_max (vector bool int, vector unsigned int);
vector unsigned int vec_max (vector unsigned int, vector bool int);
vector unsigned int vec_max (vector unsigned int, vector unsigned int);
vector signed int vec_max (vector bool int, vector signed int);
vector signed int vec_max (vector signed int, vector bool int);
vector signed int vec_max (vector signed int, vector signed int);
vector float vec_max (vector float, vector float);
vector float vec_vmaxfp (vector float, vector float);
vector signed int vec_vmaxsw (vector bool int, vector signed int);
vector signed int vec_vmaxsw (vector signed int, vector bool int);
vector signed int vec_vmaxsw (vector signed int, vector signed int);
vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
vector unsigned int vec_vmaxuw (vector unsigned int,
vector unsigned int);
vector signed short vec_vmaxsh (vector bool short, vector signed short);
vector signed short vec_vmaxsh (vector signed short, vector bool short);
vector signed short vec_vmaxsh (vector signed short,
vector signed short);
vector unsigned short vec_vmaxuh (vector bool short,
vector unsigned short);
vector unsigned short vec_vmaxuh (vector unsigned short,
vector bool short);
vector unsigned short vec_vmaxuh (vector unsigned short,
vector unsigned short);
vector signed char vec_vmaxsb (vector bool char, vector signed char);
vector signed char vec_vmaxsb (vector signed char, vector bool char);
vector signed char vec_vmaxsb (vector signed char, vector signed char);
vector unsigned char vec_vmaxub (vector bool char,
vector unsigned char);
vector unsigned char vec_vmaxub (vector unsigned char,
vector bool char);
vector unsigned char vec_vmaxub (vector unsigned char,
vector unsigned char);
vector bool char vec_mergeh (vector bool char, vector bool char);
vector signed char vec_mergeh (vector signed char, vector signed char);
vector unsigned char vec_mergeh (vector unsigned char,
vector unsigned char);
vector bool short vec_mergeh (vector bool short, vector bool short);
vector pixel vec_mergeh (vector pixel, vector pixel);
vector signed short vec_mergeh (vector signed short,
vector signed short);
vector unsigned short vec_mergeh (vector unsigned short,
vector unsigned short);
vector float vec_mergeh (vector float, vector float);
vector bool int vec_mergeh (vector bool int, vector bool int);
vector signed int vec_mergeh (vector signed int, vector signed int);
vector unsigned int vec_mergeh (vector unsigned int,
vector unsigned int);
vector float vec_vmrghw (vector float, vector float);
vector bool int vec_vmrghw (vector bool int, vector bool int);
vector signed int vec_vmrghw (vector signed int, vector signed int);
vector unsigned int vec_vmrghw (vector unsigned int,
vector unsigned int);
vector bool short vec_vmrghh (vector bool short, vector bool short);
vector signed short vec_vmrghh (vector signed short,
vector signed short);
vector unsigned short vec_vmrghh (vector unsigned short,
vector unsigned short);
vector pixel vec_vmrghh (vector pixel, vector pixel);
vector bool char vec_vmrghb (vector bool char, vector bool char);
vector signed char vec_vmrghb (vector signed char, vector signed char);
vector unsigned char vec_vmrghb (vector unsigned char,
vector unsigned char);
vector bool char vec_mergel (vector bool char, vector bool char);
vector signed char vec_mergel (vector signed char, vector signed char);
vector unsigned char vec_mergel (vector unsigned char,
vector unsigned char);
vector bool short vec_mergel (vector bool short, vector bool short);
vector pixel vec_mergel (vector pixel, vector pixel);
vector signed short vec_mergel (vector signed short,
vector signed short);
vector unsigned short vec_mergel (vector unsigned short,
vector unsigned short);
vector float vec_mergel (vector float, vector float);
vector bool int vec_mergel (vector bool int, vector bool int);
vector signed int vec_mergel (vector signed int, vector signed int);
vector unsigned int vec_mergel (vector unsigned int,
vector unsigned int);
vector float vec_vmrglw (vector float, vector float);
vector signed int vec_vmrglw (vector signed int, vector signed int);
vector unsigned int vec_vmrglw (vector unsigned int,
vector unsigned int);
vector bool int vec_vmrglw (vector bool int, vector bool int);
vector bool short vec_vmrglh (vector bool short, vector bool short);
vector signed short vec_vmrglh (vector signed short,
vector signed short);
vector unsigned short vec_vmrglh (vector unsigned short,
vector unsigned short);
vector pixel vec_vmrglh (vector pixel, vector pixel);
vector bool char vec_vmrglb (vector bool char, vector bool char);
vector signed char vec_vmrglb (vector signed char, vector signed char);
vector unsigned char vec_vmrglb (vector unsigned char,
vector unsigned char);
vector unsigned short vec_mfvscr (void);
vector unsigned char vec_min (vector bool char, vector unsigned char);
vector unsigned char vec_min (vector unsigned char, vector bool char);
vector unsigned char vec_min (vector unsigned char,
vector unsigned char);
vector signed char vec_min (vector bool char, vector signed char);
vector signed char vec_min (vector signed char, vector bool char);
vector signed char vec_min (vector signed char, vector signed char);
vector unsigned short vec_min (vector bool short,
vector unsigned short);
vector unsigned short vec_min (vector unsigned short,
vector bool short);
vector unsigned short vec_min (vector unsigned short,
vector unsigned short);
vector signed short vec_min (vector bool short, vector signed short);
vector signed short vec_min (vector signed short, vector bool short);
vector signed short vec_min (vector signed short, vector signed short);
vector unsigned int vec_min (vector bool int, vector unsigned int);
vector unsigned int vec_min (vector unsigned int, vector bool int);
vector unsigned int vec_min (vector unsigned int, vector unsigned int);
vector signed int vec_min (vector bool int, vector signed int);
vector signed int vec_min (vector signed int, vector bool int);
vector signed int vec_min (vector signed int, vector signed int);
vector float vec_min (vector float, vector float);
vector float vec_vminfp (vector float, vector float);
vector signed int vec_vminsw (vector bool int, vector signed int);
vector signed int vec_vminsw (vector signed int, vector bool int);
vector signed int vec_vminsw (vector signed int, vector signed int);
vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
vector unsigned int vec_vminuw (vector unsigned int,
vector unsigned int);
vector signed short vec_vminsh (vector bool short, vector signed short);
vector signed short vec_vminsh (vector signed short, vector bool short);
vector signed short vec_vminsh (vector signed short,
vector signed short);
vector unsigned short vec_vminuh (vector bool short,
vector unsigned short);
vector unsigned short vec_vminuh (vector unsigned short,
vector bool short);
vector unsigned short vec_vminuh (vector unsigned short,
vector unsigned short);
vector signed char vec_vminsb (vector bool char, vector signed char);
vector signed char vec_vminsb (vector signed char, vector bool char);
vector signed char vec_vminsb (vector signed char, vector signed char);
vector unsigned char vec_vminub (vector bool char,
vector unsigned char);
vector unsigned char vec_vminub (vector unsigned char,
vector bool char);
vector unsigned char vec_vminub (vector unsigned char,
vector unsigned char);
vector signed short vec_mladd (vector signed short,
vector signed short,
vector signed short);
vector signed short vec_mladd (vector signed short,
vector unsigned short,
vector unsigned short);
vector signed short vec_mladd (vector unsigned short,
vector signed short,
vector signed short);
vector unsigned short vec_mladd (vector unsigned short,
vector unsigned short,
vector unsigned short);
vector signed short vec_mradds (vector signed short,
vector signed short,
vector signed short);
vector unsigned int vec_msum (vector unsigned char,
vector unsigned char,
vector unsigned int);
vector signed int vec_msum (vector signed char,
vector unsigned char,
vector signed int);
vector unsigned int vec_msum (vector unsigned short,
vector unsigned short,
vector unsigned int);
vector signed int vec_msum (vector signed short,
vector signed short,
vector signed int);
vector signed int vec_vmsumshm (vector signed short,
vector signed short,
vector signed int);
vector unsigned int vec_vmsumuhm (vector unsigned short,
vector unsigned short,
vector unsigned int);
vector signed int vec_vmsummbm (vector signed char,
vector unsigned char,
vector signed int);
vector unsigned int vec_vmsumubm (vector unsigned char,
vector unsigned char,
vector unsigned int);
vector unsigned int vec_msums (vector unsigned short,
vector unsigned short,
vector unsigned int);
vector signed int vec_msums (vector signed short,
vector signed short,
vector signed int);
vector signed int vec_vmsumshs (vector signed short,
vector signed short,
vector signed int);
vector unsigned int vec_vmsumuhs (vector unsigned short,
vector unsigned short,
vector unsigned int);
void vec_mtvscr (vector signed int);
void vec_mtvscr (vector unsigned int);
void vec_mtvscr (vector bool int);
void vec_mtvscr (vector signed short);
void vec_mtvscr (vector unsigned short);
void vec_mtvscr (vector bool short);
void vec_mtvscr (vector pixel);
void vec_mtvscr (vector signed char);
void vec_mtvscr (vector unsigned char);
void vec_mtvscr (vector bool char);
vector unsigned short vec_mule (vector unsigned char,
vector unsigned char);
vector signed short vec_mule (vector signed char,
vector signed char);
vector unsigned int vec_mule (vector unsigned short,
vector unsigned short);
vector signed int vec_mule (vector signed short, vector signed short);
vector unsigned long long vec_mule (vector unsigned int,
vector unsigned int);
vector signed long long vec_mule (vector signed int,
vector signed int);
vector signed int vec_vmulesh (vector signed short,
vector signed short);
vector unsigned int vec_vmuleuh (vector unsigned short,
vector unsigned short);
vector signed short vec_vmulesb (vector signed char,
vector signed char);
vector unsigned short vec_vmuleub (vector unsigned char,
vector unsigned char);
vector unsigned short vec_mulo (vector unsigned char,
vector unsigned char);
vector signed short vec_mulo (vector signed char, vector signed char);
vector unsigned int vec_mulo (vector unsigned short,
vector unsigned short);
vector signed int vec_mulo (vector signed short, vector signed short);
vector unsigned long long vec_mulo (vector unsigned int,
vector unsigned int);
vector signed long long vec_mulo (vector signed int,
vector signed int);
vector signed int vec_vmulosh (vector signed short,
vector signed short);
vector unsigned int vec_vmulouh (vector unsigned short,
vector unsigned short);
vector signed short vec_vmulosb (vector signed char,
vector signed char);
vector unsigned short vec_vmuloub (vector unsigned char,
vector unsigned char);
vector float vec_nmsub (vector float, vector float, vector float);
vector signed char vec_nabs (vector signed char);
vector signed short vec_nabs (vector signed short);
vector signed int vec_nabs (vector signed int);
vector float vec_nabs (vector float);
vector double vec_nabs (vector double);
vector signed char vec_neg (vector signed char);
vector signed short vec_neg (vector signed short);
vector signed int vec_neg (vector signed int);
vector signed long long vec_neg (vector signed long long);
vector float char vec_neg (vector float);
vector double vec_neg (vector double);
vector float vec_nor (vector float, vector float);
vector signed int vec_nor (vector signed int, vector signed int);
vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
vector bool int vec_nor (vector bool int, vector bool int);
vector signed short vec_nor (vector signed short, vector signed short);
vector unsigned short vec_nor (vector unsigned short,
vector unsigned short);
vector bool short vec_nor (vector bool short, vector bool short);
vector signed char vec_nor (vector signed char, vector signed char);
vector unsigned char vec_nor (vector unsigned char,
vector unsigned char);
vector bool char vec_nor (vector bool char, vector bool char);
vector float vec_or (vector float, vector float);
vector float vec_or (vector float, vector bool int);
vector float vec_or (vector bool int, vector float);
vector bool int vec_or (vector bool int, vector bool int);
vector signed int vec_or (vector bool int, vector signed int);
vector signed int vec_or (vector signed int, vector bool int);
vector signed int vec_or (vector signed int, vector signed int);
vector unsigned int vec_or (vector bool int, vector unsigned int);
vector unsigned int vec_or (vector unsigned int, vector bool int);
vector unsigned int vec_or (vector unsigned int, vector unsigned int);
vector bool short vec_or (vector bool short, vector bool short);
vector signed short vec_or (vector bool short, vector signed short);
vector signed short vec_or (vector signed short, vector bool short);
vector signed short vec_or (vector signed short, vector signed short);
vector unsigned short vec_or (vector bool short, vector unsigned short);
vector unsigned short vec_or (vector unsigned short, vector bool short);
vector unsigned short vec_or (vector unsigned short,
vector unsigned short);
vector signed char vec_or (vector bool char, vector signed char);
vector bool char vec_or (vector bool char, vector bool char);
vector signed char vec_or (vector signed char, vector bool char);
vector signed char vec_or (vector signed char, vector signed char);
vector unsigned char vec_or (vector bool char, vector unsigned char);
vector unsigned char vec_or (vector unsigned char, vector bool char);
vector unsigned char vec_or (vector unsigned char,
vector unsigned char);
vector signed char vec_pack (vector signed short, vector signed short);
vector unsigned char vec_pack (vector unsigned short,
vector unsigned short);
vector bool char vec_pack (vector bool short, vector bool short);
vector signed short vec_pack (vector signed int, vector signed int);
vector unsigned short vec_pack (vector unsigned int,
vector unsigned int);
vector bool short vec_pack (vector bool int, vector bool int);
vector bool short vec_vpkuwum (vector bool int, vector bool int);
vector signed short vec_vpkuwum (vector signed int, vector signed int);
vector unsigned short vec_vpkuwum (vector unsigned int,
vector unsigned int);
vector bool char vec_vpkuhum (vector bool short, vector bool short);
vector signed char vec_vpkuhum (vector signed short,
vector signed short);
vector unsigned char vec_vpkuhum (vector unsigned short,
vector unsigned short);
vector pixel vec_packpx (vector unsigned int, vector unsigned int);
vector unsigned char vec_packs (vector unsigned short,
vector unsigned short);
vector signed char vec_packs (vector signed short, vector signed short);
vector unsigned short vec_packs (vector unsigned int,
vector unsigned int);
vector signed short vec_packs (vector signed int, vector signed int);
vector signed short vec_vpkswss (vector signed int, vector signed int);
vector unsigned short vec_vpkuwus (vector unsigned int,
vector unsigned int);
vector signed char vec_vpkshss (vector signed short,
vector signed short);
vector unsigned char vec_vpkuhus (vector unsigned short,
vector unsigned short);
vector unsigned char vec_packsu (vector unsigned short,
vector unsigned short);
vector unsigned char vec_packsu (vector signed short,
vector signed short);
vector unsigned short vec_packsu (vector unsigned int,
vector unsigned int);
vector unsigned short vec_packsu (vector signed int, vector signed int);
vector unsigned short vec_vpkswus (vector signed int,
vector signed int);
vector unsigned char vec_vpkshus (vector signed short,
vector signed short);
vector float vec_perm (vector float,
vector float,
vector unsigned char);
vector signed int vec_perm (vector signed int,
vector signed int,
vector unsigned char);
vector unsigned int vec_perm (vector unsigned int,
vector unsigned int,
vector unsigned char);
vector bool int vec_perm (vector bool int,
vector bool int,
vector unsigned char);
vector signed short vec_perm (vector signed short,
vector signed short,
vector unsigned char);
vector unsigned short vec_perm (vector unsigned short,
vector unsigned short,
vector unsigned char);
vector bool short vec_perm (vector bool short,
vector bool short,
vector unsigned char);
vector pixel vec_perm (vector pixel,
vector pixel,
vector unsigned char);
vector signed char vec_perm (vector signed char,
vector signed char,
vector unsigned char);
vector unsigned char vec_perm (vector unsigned char,
vector unsigned char,
vector unsigned char);
vector bool char vec_perm (vector bool char,
vector bool char,
vector unsigned char);
vector float vec_re (vector float);
vector bool char vec_reve (vector bool char);
vector signed char vec_reve (vector signed char);
vector unsigned char vec_reve (vector unsigned char);
vector bool int vec_reve (vector bool int);
vector signed int vec_reve (vector signed int);
vector unsigned int vec_reve (vector unsigned int);
vector bool long long vec_reve (vector bool long long);
vector signed long long vec_reve (vector signed long long);
vector unsigned long long vec_reve (vector unsigned long long);
vector bool short vec_reve (vector bool short);
vector signed short vec_reve (vector signed short);
vector unsigned short vec_reve (vector unsigned short);
vector signed char vec_rl (vector signed char,
vector unsigned char);
vector unsigned char vec_rl (vector unsigned char,
vector unsigned char);
vector signed short vec_rl (vector signed short, vector unsigned short);
vector unsigned short vec_rl (vector unsigned short,
vector unsigned short);
vector signed int vec_rl (vector signed int, vector unsigned int);
vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
vector signed int vec_vrlw (vector signed int, vector unsigned int);
vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
vector signed short vec_vrlh (vector signed short,
vector unsigned short);
vector unsigned short vec_vrlh (vector unsigned short,
vector unsigned short);
vector signed char vec_vrlb (vector signed char, vector unsigned char);
vector unsigned char vec_vrlb (vector unsigned char,
vector unsigned char);
vector float vec_round (vector float);
vector float vec_recip (vector float, vector float);
vector float vec_rsqrt (vector float);
vector float vec_rsqrte (vector float);
vector float vec_sel (vector float, vector float, vector bool int);
vector float vec_sel (vector float, vector float, vector unsigned int);
vector signed int vec_sel (vector signed int,
vector signed int,
vector bool int);
vector signed int vec_sel (vector signed int,
vector signed int,
vector unsigned int);
vector unsigned int vec_sel (vector unsigned int,
vector unsigned int,
vector bool int);
vector unsigned int vec_sel (vector unsigned int,
vector unsigned int,
vector unsigned int);
vector bool int vec_sel (vector bool int,
vector bool int,
vector bool int);
vector bool int vec_sel (vector bool int,
vector bool int,
vector unsigned int);
vector signed short vec_sel (vector signed short,
vector signed short,
vector bool short);
vector signed short vec_sel (vector signed short,
vector signed short,
vector unsigned short);
vector unsigned short vec_sel (vector unsigned short,
vector unsigned short,
vector bool short);
vector unsigned short vec_sel (vector unsigned short,
vector unsigned short,
vector unsigned short);
vector bool short vec_sel (vector bool short,
vector bool short,
vector bool short);
vector bool short vec_sel (vector bool short,
vector bool short,
vector unsigned short);
vector signed char vec_sel (vector signed char,
vector signed char,
vector bool char);
vector signed char vec_sel (vector signed char,
vector signed char,
vector unsigned char);
vector unsigned char vec_sel (vector unsigned char,
vector unsigned char,
vector bool char);
vector unsigned char vec_sel (vector unsigned char,
vector unsigned char,
vector unsigned char);
vector bool char vec_sel (vector bool char,
vector bool char,
vector bool char);
vector bool char vec_sel (vector bool char,
vector bool char,
vector unsigned char);
vector signed long long vec_signed (vector double);
vector signed int vec_signed (vector float);
vector signed int vec_signede (vector double);
vector signed int vec_signedo (vector double);
vector signed int vec_signed2 (vector double, vector double);
vector signed char vec_sl (vector signed char,
vector unsigned char);
vector unsigned char vec_sl (vector unsigned char,
vector unsigned char);
vector signed short vec_sl (vector signed short, vector unsigned short);
vector unsigned short vec_sl (vector unsigned short,
vector unsigned short);
vector signed int vec_sl (vector signed int, vector unsigned int);
vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
vector signed int vec_vslw (vector signed int, vector unsigned int);
vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
vector signed short vec_vslh (vector signed short,
vector unsigned short);
vector unsigned short vec_vslh (vector unsigned short,
vector unsigned short);
vector signed char vec_vslb (vector signed char, vector unsigned char);
vector unsigned char vec_vslb (vector unsigned char,
vector unsigned char);
vector float vec_sld (vector float, vector float, const int);
vector double vec_sld (vector double, vector double, const int);
vector signed int vec_sld (vector signed int,
vector signed int,
const int);
vector unsigned int vec_sld (vector unsigned int,
vector unsigned int,
const int);
vector bool int vec_sld (vector bool int,
vector bool int,
const int);
vector signed short vec_sld (vector signed short,
vector signed short,
const int);
vector unsigned short vec_sld (vector unsigned short,
vector unsigned short,
const int);
vector bool short vec_sld (vector bool short,
vector bool short,
const int);
vector pixel vec_sld (vector pixel,
vector pixel,
const int);
vector signed char vec_sld (vector signed char,
vector signed char,
const int);
vector unsigned char vec_sld (vector unsigned char,
vector unsigned char,
const int);
vector bool char vec_sld (vector bool char,
vector bool char,
const int);
vector bool long long int vec_sld (vector bool long long int,
vector bool long long int, const int);
vector long long int vec_sld (vector long long int,
vector long long int, const int);
vector unsigned long long int vec_sld (vector unsigned long long int,
vector unsigned long long int,
const int);
vector signed char vec_sldw (vector signed char,
vector signed char,
const int);
vector unsigned char vec_sldw (vector unsigned char,
vector unsigned char,
const int);
vector signed short vec_sldw (vector signed short,
vector signed short,
const int);
vector unsigned short vec_sldw (vector unsigned short,
vector unsigned short,
const int);
vector signed int vec_sldw (vector signed int,
vector signed int,
const int);
vector unsigned int vec_sldw (vector unsigned int,
vector unsigned int,
const int);
vector signed long long vec_sldw (vector signed long long,
vector signed long long,
const int);
vector unsigned long long vec_sldw (vector unsigned long long,
vector unsigned long long,
const int);
vector signed int vec_sll (vector signed int,
vector unsigned int);
vector signed int vec_sll (vector signed int,
vector unsigned short);
vector signed int vec_sll (vector signed int,
vector unsigned char);
vector unsigned int vec_sll (vector unsigned int,
vector unsigned int);
vector unsigned int vec_sll (vector unsigned int,
vector unsigned short);
vector unsigned int vec_sll (vector unsigned int,
vector unsigned char);
vector bool int vec_sll (vector bool int,
vector unsigned int);
vector bool int vec_sll (vector bool int,
vector unsigned short);
vector bool int vec_sll (vector bool int,
vector unsigned char);
vector signed short vec_sll (vector signed short,
vector unsigned int);
vector signed short vec_sll (vector signed short,
vector unsigned short);
vector signed short vec_sll (vector signed short,
vector unsigned char);
vector unsigned short vec_sll (vector unsigned short,
vector unsigned int);
vector unsigned short vec_sll (vector unsigned short,
vector unsigned short);
vector unsigned short vec_sll (vector unsigned short,
vector unsigned char);
vector long long int vec_sll (vector long long int,
vector unsigned char);
vector unsigned long long int vec_sll (vector unsigned long long int,
vector unsigned char);
vector bool short vec_sll (vector bool short, vector unsigned int);
vector bool short vec_sll (vector bool short, vector unsigned short);
vector bool short vec_sll (vector bool short, vector unsigned char);
vector pixel vec_sll (vector pixel, vector unsigned int);
vector pixel vec_sll (vector pixel, vector unsigned short);
vector pixel vec_sll (vector pixel, vector unsigned char);
vector signed char vec_sll (vector signed char, vector unsigned int);
vector signed char vec_sll (vector signed char, vector unsigned short);
vector signed char vec_sll (vector signed char, vector unsigned char);
vector unsigned char vec_sll (vector unsigned char,
vector unsigned int);
vector unsigned char vec_sll (vector unsigned char,
vector unsigned short);
vector unsigned char vec_sll (vector unsigned char,
vector unsigned char);
vector bool char vec_sll (vector bool char, vector unsigned int);
vector bool char vec_sll (vector bool char, vector unsigned short);
vector bool char vec_sll (vector bool char, vector unsigned char);
vector float vec_slo (vector float, vector signed char);
vector float vec_slo (vector float, vector unsigned char);
vector signed int vec_slo (vector signed int, vector signed char);
vector signed int vec_slo (vector signed int, vector unsigned char);
vector unsigned int vec_slo (vector unsigned int, vector signed char);
vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
vector signed short vec_slo (vector signed short, vector signed char);
vector signed short vec_slo (vector signed short, vector unsigned char);
vector unsigned short vec_slo (vector unsigned short,
vector signed char);
vector unsigned short vec_slo (vector unsigned short,
vector unsigned char);
vector pixel vec_slo (vector pixel, vector signed char);
vector pixel vec_slo (vector pixel, vector unsigned char);
vector signed char vec_slo (vector signed char, vector signed char);
vector signed char vec_slo (vector signed char, vector unsigned char);
vector unsigned char vec_slo (vector unsigned char, vector signed char);
vector unsigned char vec_slo (vector unsigned char,
vector unsigned char);
vector signed long long vec_slo (vector signed long long, vector signed char);
vector signed long long vec_slo (vector signed long long, vector unsigned char);
vector unsigned long long vec_slo (vector unsigned long long, vector signed char);
vector unsigned long long vec_slo (vector unsigned long long, vector unsigned char);
vector signed char vec_splat (vector signed char, const int);
vector unsigned char vec_splat (vector unsigned char, const int);
vector bool char vec_splat (vector bool char, const int);
vector signed short vec_splat (vector signed short, const int);
vector unsigned short vec_splat (vector unsigned short, const int);
vector bool short vec_splat (vector bool short, const int);
vector pixel vec_splat (vector pixel, const int);
vector float vec_splat (vector float, const int);
vector signed int vec_splat (vector signed int, const int);
vector unsigned int vec_splat (vector unsigned int, const int);
vector bool int vec_splat (vector bool int, const int);
vector signed long vec_splat (vector signed long, const int);
vector unsigned long vec_splat (vector unsigned long, const int);
vector signed char vec_splats (signed char);
vector unsigned char vec_splats (unsigned char);
vector signed short vec_splats (signed short);
vector unsigned short vec_splats (unsigned short);
vector signed int vec_splats (signed int);
vector unsigned int vec_splats (unsigned int);
vector float vec_splats (float);
vector float vec_vspltw (vector float, const int);
vector signed int vec_vspltw (vector signed int, const int);
vector unsigned int vec_vspltw (vector unsigned int, const int);
vector bool int vec_vspltw (vector bool int, const int);
vector bool short vec_vsplth (vector bool short, const int);
vector signed short vec_vsplth (vector signed short, const int);
vector unsigned short vec_vsplth (vector unsigned short, const int);
vector pixel vec_vsplth (vector pixel, const int);
vector signed char vec_vspltb (vector signed char, const int);
vector unsigned char vec_vspltb (vector unsigned char, const int);
vector bool char vec_vspltb (vector bool char, const int);
vector signed char vec_splat_s8 (const int);
vector signed short vec_splat_s16 (const int);
vector signed int vec_splat_s32 (const int);
vector unsigned char vec_splat_u8 (const int);
vector unsigned short vec_splat_u16 (const int);
vector unsigned int vec_splat_u32 (const int);
vector signed char vec_sr (vector signed char, vector unsigned char);
vector unsigned char vec_sr (vector unsigned char,
vector unsigned char);
vector signed short vec_sr (vector signed short,
vector unsigned short);
vector unsigned short vec_sr (vector unsigned short,
vector unsigned short);
vector signed int vec_sr (vector signed int, vector unsigned int);
vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
vector signed int vec_vsrw (vector signed int, vector unsigned int);
vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
vector signed short vec_vsrh (vector signed short,
vector unsigned short);
vector unsigned short vec_vsrh (vector unsigned short,
vector unsigned short);
vector signed char vec_vsrb (vector signed char, vector unsigned char);
vector unsigned char vec_vsrb (vector unsigned char,
vector unsigned char);
vector signed char vec_sra (vector signed char, vector unsigned char);
vector unsigned char vec_sra (vector unsigned char,
vector unsigned char);
vector signed short vec_sra (vector signed short,
vector unsigned short);
vector unsigned short vec_sra (vector unsigned short,
vector unsigned short);
vector signed int vec_sra (vector signed int, vector unsigned int);
vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
vector signed int vec_vsraw (vector signed int, vector unsigned int);
vector unsigned int vec_vsraw (vector unsigned int,
vector unsigned int);
vector signed short vec_vsrah (vector signed short,
vector unsigned short);
vector unsigned short vec_vsrah (vector unsigned short,
vector unsigned short);
vector signed char vec_vsrab (vector signed char, vector unsigned char);
vector unsigned char vec_vsrab (vector unsigned char,
vector unsigned char);
vector signed int vec_srl (vector signed int, vector unsigned int);
vector signed int vec_srl (vector signed int, vector unsigned short);
vector signed int vec_srl (vector signed int, vector unsigned char);
vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
vector unsigned int vec_srl (vector unsigned int,
vector unsigned short);
vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
vector bool int vec_srl (vector bool int, vector unsigned int);
vector bool int vec_srl (vector bool int, vector unsigned short);
vector bool int vec_srl (vector bool int, vector unsigned char);
vector signed short vec_srl (vector signed short, vector unsigned int);
vector signed short vec_srl (vector signed short,
vector unsigned short);
vector signed short vec_srl (vector signed short, vector unsigned char);
vector unsigned short vec_srl (vector unsigned short,
vector unsigned int);
vector unsigned short vec_srl (vector unsigned short,
vector unsigned short);
vector unsigned short vec_srl (vector unsigned short,
vector unsigned char);
vector long long int vec_srl (vector long long int,
vector unsigned char);
vector unsigned long long int vec_srl (vector unsigned long long int,
vector unsigned char);
vector bool short vec_srl (vector bool short, vector unsigned int);
vector bool short vec_srl (vector bool short, vector unsigned short);
vector bool short vec_srl (vector bool short, vector unsigned char);
vector pixel vec_srl (vector pixel, vector unsigned int);
vector pixel vec_srl (vector pixel, vector unsigned short);
vector pixel vec_srl (vector pixel, vector unsigned char);
vector signed char vec_srl (vector signed char, vector unsigned int);
vector signed char vec_srl (vector signed char, vector unsigned short);
vector signed char vec_srl (vector signed char, vector unsigned char);
vector unsigned char vec_srl (vector unsigned char,
vector unsigned int);
vector unsigned char vec_srl (vector unsigned char,
vector unsigned short);
vector unsigned char vec_srl (vector unsigned char,
vector unsigned char);
vector bool char vec_srl (vector bool char, vector unsigned int);
vector bool char vec_srl (vector bool char, vector unsigned short);
vector bool char vec_srl (vector bool char, vector unsigned char);
vector float vec_sro (vector float, vector signed char);
vector float vec_sro (vector float, vector unsigned char);
vector signed int vec_sro (vector signed int, vector signed char);
vector signed int vec_sro (vector signed int, vector unsigned char);
vector unsigned int vec_sro (vector unsigned int, vector signed char);
vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
vector signed short vec_sro (vector signed short, vector signed char);
vector signed short vec_sro (vector signed short, vector unsigned char);
vector unsigned short vec_sro (vector unsigned short,
vector signed char);
vector unsigned short vec_sro (vector unsigned short,
vector unsigned char);
vector long long int vec_sro (vector long long int,
vector char);
vector long long int vec_sro (vector long long int,
vector unsigned char);
vector unsigned long long int vec_sro (vector unsigned long long int,
vector char);
vector unsigned long long int vec_sro (vector unsigned long long int,
vector unsigned char);
vector pixel vec_sro (vector pixel, vector signed char);
vector pixel vec_sro (vector pixel, vector unsigned char);
vector signed char vec_sro (vector signed char, vector signed char);
vector signed char vec_sro (vector signed char, vector unsigned char);
vector unsigned char vec_sro (vector unsigned char, vector signed char);
vector unsigned char vec_sro (vector unsigned char,
vector unsigned char);
void vec_st (vector float, int, vector float *);
void vec_st (vector float, int, float *);
void vec_st (vector signed int, int, vector signed int *);
void vec_st (vector signed int, int, int *);
void vec_st (vector unsigned int, int, vector unsigned int *);
void vec_st (vector unsigned int, int, unsigned int *);
void vec_st (vector bool int, int, vector bool int *);
void vec_st (vector bool int, int, unsigned int *);
void vec_st (vector bool int, int, int *);
void vec_st (vector signed short, int, vector signed short *);
void vec_st (vector signed short, int, short *);
void vec_st (vector unsigned short, int, vector unsigned short *);
void vec_st (vector unsigned short, int, unsigned short *);
void vec_st (vector bool short, int, vector bool short *);
void vec_st (vector bool short, int, unsigned short *);
void vec_st (vector pixel, int, vector pixel *);
void vec_st (vector pixel, int, unsigned short *);
void vec_st (vector pixel, int, short *);
void vec_st (vector bool short, int, short *);
void vec_st (vector signed char, int, vector signed char *);
void vec_st (vector signed char, int, signed char *);
void vec_st (vector unsigned char, int, vector unsigned char *);
void vec_st (vector unsigned char, int, unsigned char *);
void vec_st (vector bool char, int, vector bool char *);
void vec_st (vector bool char, int, unsigned char *);
void vec_st (vector bool char, int, signed char *);
void vec_ste (vector signed char, int, signed char *);
void vec_ste (vector unsigned char, int, unsigned char *);
void vec_ste (vector bool char, int, signed char *);
void vec_ste (vector bool char, int, unsigned char *);
void vec_ste (vector signed short, int, short *);
void vec_ste (vector unsigned short, int, unsigned short *);
void vec_ste (vector bool short, int, short *);
void vec_ste (vector bool short, int, unsigned short *);
void vec_ste (vector pixel, int, short *);
void vec_ste (vector pixel, int, unsigned short *);
void vec_ste (vector float, int, float *);
void vec_ste (vector signed int, int, int *);
void vec_ste (vector unsigned int, int, unsigned int *);
void vec_ste (vector bool int, int, int *);
void vec_ste (vector bool int, int, unsigned int *);
void vec_stvewx (vector float, int, float *);
void vec_stvewx (vector signed int, int, int *);
void vec_stvewx (vector unsigned int, int, unsigned int *);
void vec_stvewx (vector bool int, int, int *);
void vec_stvewx (vector bool int, int, unsigned int *);
void vec_stvehx (vector signed short, int, short *);
void vec_stvehx (vector unsigned short, int, unsigned short *);
void vec_stvehx (vector bool short, int, short *);
void vec_stvehx (vector bool short, int, unsigned short *);
void vec_stvehx (vector pixel, int, short *);
void vec_stvehx (vector pixel, int, unsigned short *);
void vec_stvebx (vector signed char, int, signed char *);
void vec_stvebx (vector unsigned char, int, unsigned char *);
void vec_stvebx (vector bool char, int, signed char *);
void vec_stvebx (vector bool char, int, unsigned char *);
void vec_stl (vector float, int, vector float *);
void vec_stl (vector float, int, float *);
void vec_stl (vector signed int, int, vector signed int *);
void vec_stl (vector signed int, int, int *);
void vec_stl (vector unsigned int, int, vector unsigned int *);
void vec_stl (vector unsigned int, int, unsigned int *);
void vec_stl (vector bool int, int, vector bool int *);
void vec_stl (vector bool int, int, unsigned int *);
void vec_stl (vector bool int, int, int *);
void vec_stl (vector signed short, int, vector signed short *);
void vec_stl (vector signed short, int, short *);
void vec_stl (vector unsigned short, int, vector unsigned short *);
void vec_stl (vector unsigned short, int, unsigned short *);
void vec_stl (vector bool short, int, vector bool short *);
void vec_stl (vector bool short, int, unsigned short *);
void vec_stl (vector bool short, int, short *);
void vec_stl (vector pixel, int, vector pixel *);
void vec_stl (vector pixel, int, unsigned short *);
void vec_stl (vector pixel, int, short *);
void vec_stl (vector signed char, int, vector signed char *);
void vec_stl (vector signed char, int, signed char *);
void vec_stl (vector unsigned char, int, vector unsigned char *);
void vec_stl (vector unsigned char, int, unsigned char *);
void vec_stl (vector bool char, int, vector bool char *);
void vec_stl (vector bool char, int, unsigned char *);
void vec_stl (vector bool char, int, signed char *);
vector signed char vec_sub (vector bool char, vector signed char);
vector signed char vec_sub (vector signed char, vector bool char);
vector signed char vec_sub (vector signed char, vector signed char);
vector unsigned char vec_sub (vector bool char, vector unsigned char);
vector unsigned char vec_sub (vector unsigned char, vector bool char);
vector unsigned char vec_sub (vector unsigned char,
vector unsigned char);
vector signed short vec_sub (vector bool short, vector signed short);
vector signed short vec_sub (vector signed short, vector bool short);
vector signed short vec_sub (vector signed short, vector signed short);
vector unsigned short vec_sub (vector bool short,
vector unsigned short);
vector unsigned short vec_sub (vector unsigned short,
vector bool short);
vector unsigned short vec_sub (vector unsigned short,
vector unsigned short);
vector signed int vec_sub (vector bool int, vector signed int);
vector signed int vec_sub (vector signed int, vector bool int);
vector signed int vec_sub (vector signed int, vector signed int);
vector unsigned int vec_sub (vector bool int, vector unsigned int);
vector unsigned int vec_sub (vector unsigned int, vector bool int);
vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
vector float vec_sub (vector float, vector float);
vector float vec_vsubfp (vector float, vector float);
vector signed int vec_vsubuwm (vector bool int, vector signed int);
vector signed int vec_vsubuwm (vector signed int, vector bool int);
vector signed int vec_vsubuwm (vector signed int, vector signed int);
vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
vector unsigned int vec_vsubuwm (vector unsigned int,
vector unsigned int);
vector signed short vec_vsubuhm (vector bool short,
vector signed short);
vector signed short vec_vsubuhm (vector signed short,
vector bool short);
vector signed short vec_vsubuhm (vector signed short,
vector signed short);
vector unsigned short vec_vsubuhm (vector bool short,
vector unsigned short);
vector unsigned short vec_vsubuhm (vector unsigned short,
vector bool short);
vector unsigned short vec_vsubuhm (vector unsigned short,
vector unsigned short);
vector signed char vec_vsububm (vector bool char, vector signed char);
vector signed char vec_vsububm (vector signed char, vector bool char);
vector signed char vec_vsububm (vector signed char, vector signed char);
vector unsigned char vec_vsububm (vector bool char,
vector unsigned char);
vector unsigned char vec_vsububm (vector unsigned char,
vector bool char);
vector unsigned char vec_vsububm (vector unsigned char,
vector unsigned char);
vector signed int vec_subc (vector signed int, vector signed int);
vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
vector signed __int128 vec_subc (vector signed __int128,
vector signed __int128);
vector unsigned __int128 vec_subc (vector unsigned __int128,
vector unsigned __int128);
vector signed int vec_sube (vector signed int, vector signed int,
vector signed int);
vector unsigned int vec_sube (vector unsigned int, vector unsigned int,
vector unsigned int);
vector signed __int128 vec_sube (vector signed __int128,
vector signed __int128,
vector signed __int128);
vector unsigned __int128 vec_sube (vector unsigned __int128,
vector unsigned __int128,
vector unsigned __int128);
vector signed int vec_subec (vector signed int, vector signed int,
vector signed int);
vector unsigned int vec_subec (vector unsigned int, vector unsigned int,
vector unsigned int);
vector signed __int128 vec_subec (vector signed __int128,
vector signed __int128,
vector signed __int128);
vector unsigned __int128 vec_subec (vector unsigned __int128,
vector unsigned __int128,
vector unsigned __int128);
vector unsigned char vec_subs (vector bool char, vector unsigned char);
vector unsigned char vec_subs (vector unsigned char, vector bool char);
vector unsigned char vec_subs (vector unsigned char,
vector unsigned char);
vector signed char vec_subs (vector bool char, vector signed char);
vector signed char vec_subs (vector signed char, vector bool char);
vector signed char vec_subs (vector signed char, vector signed char);
vector unsigned short vec_subs (vector bool short,
vector unsigned short);
vector unsigned short vec_subs (vector unsigned short,
vector bool short);
vector unsigned short vec_subs (vector unsigned short,
vector unsigned short);
vector signed short vec_subs (vector bool short, vector signed short);
vector signed short vec_subs (vector signed short, vector bool short);
vector signed short vec_subs (vector signed short, vector signed short);
vector unsigned int vec_subs (vector bool int, vector unsigned int);
vector unsigned int vec_subs (vector unsigned int, vector bool int);
vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
vector signed int vec_subs (vector bool int, vector signed int);
vector signed int vec_subs (vector signed int, vector bool int);
vector signed int vec_subs (vector signed int, vector signed int);
vector signed int vec_vsubsws (vector bool int, vector signed int);
vector signed int vec_vsubsws (vector signed int, vector bool int);
vector signed int vec_vsubsws (vector signed int, vector signed int);
vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
vector unsigned int vec_vsubuws (vector unsigned int,
vector unsigned int);
vector signed short vec_vsubshs (vector bool short,
vector signed short);
vector signed short vec_vsubshs (vector signed short,
vector bool short);
vector signed short vec_vsubshs (vector signed short,
vector signed short);
vector unsigned short vec_vsubuhs (vector bool short,
vector unsigned short);
vector unsigned short vec_vsubuhs (vector unsigned short,
vector bool short);
vector unsigned short vec_vsubuhs (vector unsigned short,
vector unsigned short);
vector signed char vec_vsubsbs (vector bool char, vector signed char);
vector signed char vec_vsubsbs (vector signed char, vector bool char);
vector signed char vec_vsubsbs (vector signed char, vector signed char);
vector unsigned char vec_vsububs (vector bool char,
vector unsigned char);
vector unsigned char vec_vsububs (vector unsigned char,
vector bool char);
vector unsigned char vec_vsububs (vector unsigned char,
vector unsigned char);
vector unsigned int vec_sum4s (vector unsigned char,
vector unsigned int);
vector signed int vec_sum4s (vector signed char, vector signed int);
vector signed int vec_sum4s (vector signed short, vector signed int);
vector signed int vec_vsum4shs (vector signed short, vector signed int);
vector signed int vec_vsum4sbs (vector signed char, vector signed int);
vector unsigned int vec_vsum4ubs (vector unsigned char,
vector unsigned int);
vector signed int vec_sum2s (vector signed int, vector signed int);
vector signed int vec_sums (vector signed int, vector signed int);
vector float vec_trunc (vector float);
vector signed long long vec_unsigned (vector double);
vector signed int vec_unsigned (vector float);
vector signed int vec_unsignede (vector double);
vector signed int vec_unsignedo (vector double);
vector signed int vec_unsigned2 (vector double, vector double);
vector signed short vec_unpackh (vector signed char);
vector bool short vec_unpackh (vector bool char);
vector signed int vec_unpackh (vector signed short);
vector bool int vec_unpackh (vector bool short);
vector unsigned int vec_unpackh (vector pixel);
vector double vec_unpackh (vector float);
vector bool int vec_vupkhsh (vector bool short);
vector signed int vec_vupkhsh (vector signed short);
vector unsigned int vec_vupkhpx (vector pixel);
vector bool short vec_vupkhsb (vector bool char);
vector signed short vec_vupkhsb (vector signed char);
vector signed short vec_unpackl (vector signed char);
vector bool short vec_unpackl (vector bool char);
vector unsigned int vec_unpackl (vector pixel);
vector signed int vec_unpackl (vector signed short);
vector bool int vec_unpackl (vector bool short);
vector double vec_unpackl (vector float);
vector unsigned int vec_vupklpx (vector pixel);
vector bool int vec_vupklsh (vector bool short);
vector signed int vec_vupklsh (vector signed short);
vector bool short vec_vupklsb (vector bool char);
vector signed short vec_vupklsb (vector signed char);
vector float vec_xor (vector float, vector float);
vector float vec_xor (vector float, vector bool int);
vector float vec_xor (vector bool int, vector float);
vector bool int vec_xor (vector bool int, vector bool int);
vector signed int vec_xor (vector bool int, vector signed int);
vector signed int vec_xor (vector signed int, vector bool int);
vector signed int vec_xor (vector signed int, vector signed int);
vector unsigned int vec_xor (vector bool int, vector unsigned int);
vector unsigned int vec_xor (vector unsigned int, vector bool int);
vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
vector bool short vec_xor (vector bool short, vector bool short);
vector signed short vec_xor (vector bool short, vector signed short);
vector signed short vec_xor (vector signed short, vector bool short);
vector signed short vec_xor (vector signed short, vector signed short);
vector unsigned short vec_xor (vector bool short,
vector unsigned short);
vector unsigned short vec_xor (vector unsigned short,
vector bool short);
vector unsigned short vec_xor (vector unsigned short,
vector unsigned short);
vector signed char vec_xor (vector bool char, vector signed char);
vector bool char vec_xor (vector bool char, vector bool char);
vector signed char vec_xor (vector signed char, vector bool char);
vector signed char vec_xor (vector signed char, vector signed char);
vector unsigned char vec_xor (vector bool char, vector unsigned char);
vector unsigned char vec_xor (vector unsigned char, vector bool char);
vector unsigned char vec_xor (vector unsigned char,
vector unsigned char);
int vec_all_eq (vector signed char, vector bool char);
int vec_all_eq (vector signed char, vector signed char);
int vec_all_eq (vector unsigned char, vector bool char);
int vec_all_eq (vector unsigned char, vector unsigned char);
int vec_all_eq (vector bool char, vector bool char);
int vec_all_eq (vector bool char, vector unsigned char);
int vec_all_eq (vector bool char, vector signed char);
int vec_all_eq (vector signed short, vector bool short);
int vec_all_eq (vector signed short, vector signed short);
int vec_all_eq (vector unsigned short, vector bool short);
int vec_all_eq (vector unsigned short, vector unsigned short);
int vec_all_eq (vector bool short, vector bool short);
int vec_all_eq (vector bool short, vector unsigned short);
int vec_all_eq (vector bool short, vector signed short);
int vec_all_eq (vector pixel, vector pixel);
int vec_all_eq (vector signed int, vector bool int);
int vec_all_eq (vector signed int, vector signed int);
int vec_all_eq (vector unsigned int, vector bool int);
int vec_all_eq (vector unsigned int, vector unsigned int);
int vec_all_eq (vector bool int, vector bool int);
int vec_all_eq (vector bool int, vector unsigned int);
int vec_all_eq (vector bool int, vector signed int);
int vec_all_eq (vector float, vector float);
int vec_all_ge (vector bool char, vector unsigned char);
int vec_all_ge (vector unsigned char, vector bool char);
int vec_all_ge (vector unsigned char, vector unsigned char);
int vec_all_ge (vector bool char, vector signed char);
int vec_all_ge (vector signed char, vector bool char);
int vec_all_ge (vector signed char, vector signed char);
int vec_all_ge (vector bool short, vector unsigned short);
int vec_all_ge (vector unsigned short, vector bool short);
int vec_all_ge (vector unsigned short, vector unsigned short);
int vec_all_ge (vector signed short, vector signed short);
int vec_all_ge (vector bool short, vector signed short);
int vec_all_ge (vector signed short, vector bool short);
int vec_all_ge (vector bool int, vector unsigned int);
int vec_all_ge (vector unsigned int, vector bool int);
int vec_all_ge (vector unsigned int, vector unsigned int);
int vec_all_ge (vector bool int, vector signed int);
int vec_all_ge (vector signed int, vector bool int);
int vec_all_ge (vector signed int, vector signed int);
int vec_all_ge (vector float, vector float);
int vec_all_gt (vector bool char, vector unsigned char);
int vec_all_gt (vector unsigned char, vector bool char);
int vec_all_gt (vector unsigned char, vector unsigned char);
int vec_all_gt (vector bool char, vector signed char);
int vec_all_gt (vector signed char, vector bool char);
int vec_all_gt (vector signed char, vector signed char);
int vec_all_gt (vector bool short, vector unsigned short);
int vec_all_gt (vector unsigned short, vector bool short);
int vec_all_gt (vector unsigned short, vector unsigned short);
int vec_all_gt (vector bool short, vector signed short);
int vec_all_gt (vector signed short, vector bool short);
int vec_all_gt (vector signed short, vector signed short);
int vec_all_gt (vector bool int, vector unsigned int);
int vec_all_gt (vector unsigned int, vector bool int);
int vec_all_gt (vector unsigned int, vector unsigned int);
int vec_all_gt (vector bool int, vector signed int);
int vec_all_gt (vector signed int, vector bool int);
int vec_all_gt (vector signed int, vector signed int);
int vec_all_gt (vector float, vector float);
int vec_all_in (vector float, vector float);
int vec_all_le (vector bool char, vector unsigned char);
int vec_all_le (vector unsigned char, vector bool char);
int vec_all_le (vector unsigned char, vector unsigned char);
int vec_all_le (vector bool char, vector signed char);
int vec_all_le (vector signed char, vector bool char);
int vec_all_le (vector signed char, vector signed char);
int vec_all_le (vector bool short, vector unsigned short);
int vec_all_le (vector unsigned short, vector bool short);
int vec_all_le (vector unsigned short, vector unsigned short);
int vec_all_le (vector bool short, vector signed short);
int vec_all_le (vector signed short, vector bool short);
int vec_all_le (vector signed short, vector signed short);
int vec_all_le (vector bool int, vector unsigned int);
int vec_all_le (vector unsigned int, vector bool int);
int vec_all_le (vector unsigned int, vector unsigned int);
int vec_all_le (vector bool int, vector signed int);
int vec_all_le (vector signed int, vector bool int);
int vec_all_le (vector signed int, vector signed int);
int vec_all_le (vector float, vector float);
int vec_all_lt (vector bool char, vector unsigned char);
int vec_all_lt (vector unsigned char, vector bool char);
int vec_all_lt (vector unsigned char, vector unsigned char);
int vec_all_lt (vector bool char, vector signed char);
int vec_all_lt (vector signed char, vector bool char);
int vec_all_lt (vector signed char, vector signed char);
int vec_all_lt (vector bool short, vector unsigned short);
int vec_all_lt (vector unsigned short, vector bool short);
int vec_all_lt (vector unsigned short, vector unsigned short);
int vec_all_lt (vector bool short, vector signed short);
int vec_all_lt (vector signed short, vector bool short);
int vec_all_lt (vector signed short, vector signed short);
int vec_all_lt (vector bool int, vector unsigned int);
int vec_all_lt (vector unsigned int, vector bool int);
int vec_all_lt (vector unsigned int, vector unsigned int);
int vec_all_lt (vector bool int, vector signed int);
int vec_all_lt (vector signed int, vector bool int);
int vec_all_lt (vector signed int, vector signed int);
int vec_all_lt (vector float, vector float);
int vec_all_nan (vector float);
int vec_all_ne (vector signed char, vector bool char);
int vec_all_ne (vector signed char, vector signed char);
int vec_all_ne (vector unsigned char, vector bool char);
int vec_all_ne (vector unsigned char, vector unsigned char);
int vec_all_ne (vector bool char, vector bool char);
int vec_all_ne (vector bool char, vector unsigned char);
int vec_all_ne (vector bool char, vector signed char);
int vec_all_ne (vector signed short, vector bool short);
int vec_all_ne (vector signed short, vector signed short);
int vec_all_ne (vector unsigned short, vector bool short);
int vec_all_ne (vector unsigned short, vector unsigned short);
int vec_all_ne (vector bool short, vector bool short);
int vec_all_ne (vector bool short, vector unsigned short);
int vec_all_ne (vector bool short, vector signed short);
int vec_all_ne (vector pixel, vector pixel);
int vec_all_ne (vector signed int, vector bool int);
int vec_all_ne (vector signed int, vector signed int);
int vec_all_ne (vector unsigned int, vector bool int);
int vec_all_ne (vector unsigned int, vector unsigned int);
int vec_all_ne (vector bool int, vector bool int);
int vec_all_ne (vector bool int, vector unsigned int);
int vec_all_ne (vector bool int, vector signed int);
int vec_all_ne (vector float, vector float);
int vec_all_nge (vector float, vector float);
int vec_all_ngt (vector float, vector float);
int vec_all_nle (vector float, vector float);
int vec_all_nlt (vector float, vector float);
int vec_all_numeric (vector float);
int vec_any_eq (vector signed char, vector bool char);
int vec_any_eq (vector signed char, vector signed char);
int vec_any_eq (vector unsigned char, vector bool char);
int vec_any_eq (vector unsigned char, vector unsigned char);
int vec_any_eq (vector bool char, vector bool char);
int vec_any_eq (vector bool char, vector unsigned char);
int vec_any_eq (vector bool char, vector signed char);
int vec_any_eq (vector signed short, vector bool short);
int vec_any_eq (vector signed short, vector signed short);
int vec_any_eq (vector unsigned short, vector bool short);
int vec_any_eq (vector unsigned short, vector unsigned short);
int vec_any_eq (vector bool short, vector bool short);
int vec_any_eq (vector bool short, vector unsigned short);
int vec_any_eq (vector bool short, vector signed short);
int vec_any_eq (vector pixel, vector pixel);
int vec_any_eq (vector signed int, vector bool int);
int vec_any_eq (vector signed int, vector signed int);
int vec_any_eq (vector unsigned int, vector bool int);
int vec_any_eq (vector unsigned int, vector unsigned int);
int vec_any_eq (vector bool int, vector bool int);
int vec_any_eq (vector bool int, vector unsigned int);
int vec_any_eq (vector bool int, vector signed int);
int vec_any_eq (vector float, vector float);
int vec_any_ge (vector signed char, vector bool char);
int vec_any_ge (vector unsigned char, vector bool char);
int vec_any_ge (vector unsigned char, vector unsigned char);
int vec_any_ge (vector signed char, vector signed char);
int vec_any_ge (vector bool char, vector unsigned char);
int vec_any_ge (vector bool char, vector signed char);
int vec_any_ge (vector unsigned short, vector bool short);
int vec_any_ge (vector unsigned short, vector unsigned short);
int vec_any_ge (vector signed short, vector signed short);
int vec_any_ge (vector signed short, vector bool short);
int vec_any_ge (vector bool short, vector unsigned short);
int vec_any_ge (vector bool short, vector signed short);
int vec_any_ge (vector signed int, vector bool int);
int vec_any_ge (vector unsigned int, vector bool int);
int vec_any_ge (vector unsigned int, vector unsigned int);
int vec_any_ge (vector signed int, vector signed int);
int vec_any_ge (vector bool int, vector unsigned int);
int vec_any_ge (vector bool int, vector signed int);
int vec_any_ge (vector float, vector float);
int vec_any_gt (vector bool char, vector unsigned char);
int vec_any_gt (vector unsigned char, vector bool char);
int vec_any_gt (vector unsigned char, vector unsigned char);
int vec_any_gt (vector bool char, vector signed char);
int vec_any_gt (vector signed char, vector bool char);
int vec_any_gt (vector signed char, vector signed char);
int vec_any_gt (vector bool short, vector unsigned short);
int vec_any_gt (vector unsigned short, vector bool short);
int vec_any_gt (vector unsigned short, vector unsigned short);
int vec_any_gt (vector bool short, vector signed short);
int vec_any_gt (vector signed short, vector bool short);
int vec_any_gt (vector signed short, vector signed short);
int vec_any_gt (vector bool int, vector unsigned int);
int vec_any_gt (vector unsigned int, vector bool int);
int vec_any_gt (vector unsigned int, vector unsigned int);
int vec_any_gt (vector bool int, vector signed int);
int vec_any_gt (vector signed int, vector bool int);
int vec_any_gt (vector signed int, vector signed int);
int vec_any_gt (vector float, vector float);
int vec_any_le (vector bool char, vector unsigned char);
int vec_any_le (vector unsigned char, vector bool char);
int vec_any_le (vector unsigned char, vector unsigned char);
int vec_any_le (vector bool char, vector signed char);
int vec_any_le (vector signed char, vector bool char);
int vec_any_le (vector signed char, vector signed char);
int vec_any_le (vector bool short, vector unsigned short);
int vec_any_le (vector unsigned short, vector bool short);
int vec_any_le (vector unsigned short, vector unsigned short);
int vec_any_le (vector bool short, vector signed short);
int vec_any_le (vector signed short, vector bool short);
int vec_any_le (vector signed short, vector signed short);
int vec_any_le (vector bool int, vector unsigned int);
int vec_any_le (vector unsigned int, vector bool int);
int vec_any_le (vector unsigned int, vector unsigned int);
int vec_any_le (vector bool int, vector signed int);
int vec_any_le (vector signed int, vector bool int);
int vec_any_le (vector signed int, vector signed int);
int vec_any_le (vector float, vector float);
int vec_any_lt (vector bool char, vector unsigned char);
int vec_any_lt (vector unsigned char, vector bool char);
int vec_any_lt (vector unsigned char, vector unsigned char);
int vec_any_lt (vector bool char, vector signed char);
int vec_any_lt (vector signed char, vector bool char);
int vec_any_lt (vector signed char, vector signed char);
int vec_any_lt (vector bool short, vector unsigned short);
int vec_any_lt (vector unsigned short, vector bool short);
int vec_any_lt (vector unsigned short, vector unsigned short);
int vec_any_lt (vector bool short, vector signed short);
int vec_any_lt (vector signed short, vector bool short);
int vec_any_lt (vector signed short, vector signed short);
int vec_any_lt (vector bool int, vector unsigned int);
int vec_any_lt (vector unsigned int, vector bool int);
int vec_any_lt (vector unsigned int, vector unsigned int);
int vec_any_lt (vector bool int, vector signed int);
int vec_any_lt (vector signed int, vector bool int);
int vec_any_lt (vector signed int, vector signed int);
int vec_any_lt (vector float, vector float);
int vec_any_nan (vector float);
int vec_any_ne (vector signed char, vector bool char);
int vec_any_ne (vector signed char, vector signed char);
int vec_any_ne (vector unsigned char, vector bool char);
int vec_any_ne (vector unsigned char, vector unsigned char);
int vec_any_ne (vector bool char, vector bool char);
int vec_any_ne (vector bool char, vector unsigned char);
int vec_any_ne (vector bool char, vector signed char);
int vec_any_ne (vector signed short, vector bool short);
int vec_any_ne (vector signed short, vector signed short);
int vec_any_ne (vector unsigned short, vector bool short);
int vec_any_ne (vector unsigned short, vector unsigned short);
int vec_any_ne (vector bool short, vector bool short);
int vec_any_ne (vector bool short, vector unsigned short);
int vec_any_ne (vector bool short, vector signed short);
int vec_any_ne (vector pixel, vector pixel);
int vec_any_ne (vector signed int, vector bool int);
int vec_any_ne (vector signed int, vector signed int);
int vec_any_ne (vector unsigned int, vector bool int);
int vec_any_ne (vector unsigned int, vector unsigned int);
int vec_any_ne (vector bool int, vector bool int);
int vec_any_ne (vector bool int, vector unsigned int);
int vec_any_ne (vector bool int, vector signed int);
int vec_any_ne (vector float, vector float);
int vec_any_nge (vector float, vector float);
int vec_any_ngt (vector float, vector float);
int vec_any_nle (vector float, vector float);
int vec_any_nlt (vector float, vector float);
int vec_any_numeric (vector float);
int vec_any_out (vector float, vector float);
</pre></div>
<p>If the vector/scalar (VSX) instruction set is available, the following
additional functions are available:
</p>
<div class="smallexample">
<pre class="smallexample">vector double vec_abs (vector double);
vector double vec_add (vector double, vector double);
vector double vec_and (vector double, vector double);
vector double vec_and (vector double, vector bool long);
vector double vec_and (vector bool long, vector double);
vector long vec_and (vector long, vector long);
vector long vec_and (vector long, vector bool long);
vector long vec_and (vector bool long, vector long);
vector unsigned long vec_and (vector unsigned long, vector unsigned long);
vector unsigned long vec_and (vector unsigned long, vector bool long);
vector unsigned long vec_and (vector bool long, vector unsigned long);
vector double vec_andc (vector double, vector double);
vector double vec_andc (vector double, vector bool long);
vector double vec_andc (vector bool long, vector double);
vector long vec_andc (vector long, vector long);
vector long vec_andc (vector long, vector bool long);
vector long vec_andc (vector bool long, vector long);
vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
vector unsigned long vec_andc (vector unsigned long, vector bool long);
vector unsigned long vec_andc (vector bool long, vector unsigned long);
vector double vec_ceil (vector double);
vector bool long vec_cmpeq (vector double, vector double);
vector bool long vec_cmpge (vector double, vector double);
vector bool long vec_cmpgt (vector double, vector double);
vector bool long vec_cmple (vector double, vector double);
vector bool long vec_cmplt (vector double, vector double);
vector double vec_cpsgn (vector double, vector double);
vector float vec_div (vector float, vector float);
vector double vec_div (vector double, vector double);
vector long vec_div (vector long, vector long);
vector unsigned long vec_div (vector unsigned long, vector unsigned long);
vector double vec_floor (vector double);
vector __int128 vec_ld (int, const vector __int128 *);
vector unsigned __int128 vec_ld (int, const vector unsigned __int128 *);
vector __int128 vec_ld (int, const __int128 *);
vector unsigned __int128 vec_ld (int, const unsigned __int128 *);
vector double vec_ld (int, const vector double *);
vector double vec_ld (int, const double *);
vector double vec_ldl (int, const vector double *);
vector double vec_ldl (int, const double *);
vector unsigned char vec_lvsl (int, const volatile double *);
vector unsigned char vec_lvsr (int, const volatile double *);
vector double vec_madd (vector double, vector double, vector double);
vector double vec_max (vector double, vector double);
vector signed long vec_mergeh (vector signed long, vector signed long);
vector signed long vec_mergeh (vector signed long, vector bool long);
vector signed long vec_mergeh (vector bool long, vector signed long);
vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
vector signed long vec_mergel (vector signed long, vector signed long);
vector signed long vec_mergel (vector signed long, vector bool long);
vector signed long vec_mergel (vector bool long, vector signed long);
vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
vector unsigned long vec_mergel (vector unsigned long, vector bool long);
vector unsigned long vec_mergel (vector bool long, vector unsigned long);
vector double vec_min (vector double, vector double);
vector float vec_msub (vector float, vector float, vector float);
vector double vec_msub (vector double, vector double, vector double);
vector float vec_mul (vector float, vector float);
vector double vec_mul (vector double, vector double);
vector long vec_mul (vector long, vector long);
vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
vector float vec_nearbyint (vector float);
vector double vec_nearbyint (vector double);
vector float vec_nmadd (vector float, vector float, vector float);
vector double vec_nmadd (vector double, vector double, vector double);
vector double vec_nmsub (vector double, vector double, vector double);
vector double vec_nor (vector double, vector double);
vector long vec_nor (vector long, vector long);
vector long vec_nor (vector long, vector bool long);
vector long vec_nor (vector bool long, vector long);
vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
vector unsigned long vec_nor (vector unsigned long, vector bool long);
vector unsigned long vec_nor (vector bool long, vector unsigned long);
vector double vec_or (vector double, vector double);
vector double vec_or (vector double, vector bool long);
vector double vec_or (vector bool long, vector double);
vector long vec_or (vector long, vector long);
vector long vec_or (vector long, vector bool long);
vector long vec_or (vector bool long, vector long);
vector unsigned long vec_or (vector unsigned long, vector unsigned long);
vector unsigned long vec_or (vector unsigned long, vector bool long);
vector unsigned long vec_or (vector bool long, vector unsigned long);
vector double vec_perm (vector double, vector double, vector unsigned char);
vector long vec_perm (vector long, vector long, vector unsigned char);
vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
vector unsigned char);
vector bool char vec_permxor (vector bool char, vector bool char,
vector bool char);
vector unsigned char vec_permxor (vector signed char, vector signed char,
vector signed char);
vector unsigned char vec_permxor (vector unsigned char, vector unsigned char,
vector unsigned char);
vector double vec_rint (vector double);
vector double vec_recip (vector double, vector double);
vector double vec_rsqrt (vector double);
vector double vec_rsqrte (vector double);
vector double vec_sel (vector double, vector double, vector bool long);
vector double vec_sel (vector double, vector double, vector unsigned long);
vector long vec_sel (vector long, vector long, vector long);
vector long vec_sel (vector long, vector long, vector unsigned long);
vector long vec_sel (vector long, vector long, vector bool long);
vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
vector long);
vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
vector unsigned long);
vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
vector bool long);
vector double vec_splats (double);
vector signed long vec_splats (signed long);
vector unsigned long vec_splats (unsigned long);
vector float vec_sqrt (vector float);
vector double vec_sqrt (vector double);
void vec_st (vector double, int, vector double *);
void vec_st (vector double, int, double *);
vector double vec_sub (vector double, vector double);
vector double vec_trunc (vector double);
vector double vec_xl (int, vector double *);
vector double vec_xl (int, double *);
vector long long vec_xl (int, vector long long *);
vector long long vec_xl (int, long long *);
vector unsigned long long vec_xl (int, vector unsigned long long *);
vector unsigned long long vec_xl (int, unsigned long long *);
vector float vec_xl (int, vector float *);
vector float vec_xl (int, float *);
vector int vec_xl (int, vector int *);
vector int vec_xl (int, int *);
vector unsigned int vec_xl (int, vector unsigned int *);
vector unsigned int vec_xl (int, unsigned int *);
vector double vec_xor (vector double, vector double);
vector double vec_xor (vector double, vector bool long);
vector double vec_xor (vector bool long, vector double);
vector long vec_xor (vector long, vector long);
vector long vec_xor (vector long, vector bool long);
vector long vec_xor (vector bool long, vector long);
vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
vector unsigned long vec_xor (vector unsigned long, vector bool long);
vector unsigned long vec_xor (vector bool long, vector unsigned long);
void vec_xst (vector double, int, vector double *);
void vec_xst (vector double, int, double *);
void vec_xst (vector long long, int, vector long long *);
void vec_xst (vector long long, int, long long *);
void vec_xst (vector unsigned long long, int, vector unsigned long long *);
void vec_xst (vector unsigned long long, int, unsigned long long *);
void vec_xst (vector float, int, vector float *);
void vec_xst (vector float, int, float *);
void vec_xst (vector int, int, vector int *);
void vec_xst (vector int, int, int *);
void vec_xst (vector unsigned int, int, vector unsigned int *);
void vec_xst (vector unsigned int, int, unsigned int *);
int vec_all_eq (vector double, vector double);
int vec_all_ge (vector double, vector double);
int vec_all_gt (vector double, vector double);
int vec_all_le (vector double, vector double);
int vec_all_lt (vector double, vector double);
int vec_all_nan (vector double);
int vec_all_ne (vector double, vector double);
int vec_all_nge (vector double, vector double);
int vec_all_ngt (vector double, vector double);
int vec_all_nle (vector double, vector double);
int vec_all_nlt (vector double, vector double);
int vec_all_numeric (vector double);
int vec_any_eq (vector double, vector double);
int vec_any_ge (vector double, vector double);
int vec_any_gt (vector double, vector double);
int vec_any_le (vector double, vector double);
int vec_any_lt (vector double, vector double);
int vec_any_nan (vector double);
int vec_any_ne (vector double, vector double);
int vec_any_nge (vector double, vector double);
int vec_any_ngt (vector double, vector double);
int vec_any_nle (vector double, vector double);
int vec_any_nlt (vector double, vector double);
int vec_any_numeric (vector double);
vector double vec_vsx_ld (int, const vector double *);
vector double vec_vsx_ld (int, const double *);
vector float vec_vsx_ld (int, const vector float *);
vector float vec_vsx_ld (int, const float *);
vector bool int vec_vsx_ld (int, const vector bool int *);
vector signed int vec_vsx_ld (int, const vector signed int *);
vector signed int vec_vsx_ld (int, const int *);
vector signed int vec_vsx_ld (int, const long *);
vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
vector unsigned int vec_vsx_ld (int, const unsigned int *);
vector unsigned int vec_vsx_ld (int, const unsigned long *);
vector bool short vec_vsx_ld (int, const vector bool short *);
vector pixel vec_vsx_ld (int, const vector pixel *);
vector signed short vec_vsx_ld (int, const vector signed short *);
vector signed short vec_vsx_ld (int, const short *);
vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
vector unsigned short vec_vsx_ld (int, const unsigned short *);
vector bool char vec_vsx_ld (int, const vector bool char *);
vector signed char vec_vsx_ld (int, const vector signed char *);
vector signed char vec_vsx_ld (int, const signed char *);
vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
vector unsigned char vec_vsx_ld (int, const unsigned char *);
void vec_vsx_st (vector double, int, vector double *);
void vec_vsx_st (vector double, int, double *);
void vec_vsx_st (vector float, int, vector float *);
void vec_vsx_st (vector float, int, float *);
void vec_vsx_st (vector signed int, int, vector signed int *);
void vec_vsx_st (vector signed int, int, int *);
void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
void vec_vsx_st (vector unsigned int, int, unsigned int *);
void vec_vsx_st (vector bool int, int, vector bool int *);
void vec_vsx_st (vector bool int, int, unsigned int *);
void vec_vsx_st (vector bool int, int, int *);
void vec_vsx_st (vector signed short, int, vector signed short *);
void vec_vsx_st (vector signed short, int, short *);
void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
void vec_vsx_st (vector unsigned short, int, unsigned short *);
void vec_vsx_st (vector bool short, int, vector bool short *);
void vec_vsx_st (vector bool short, int, unsigned short *);
void vec_vsx_st (vector pixel, int, vector pixel *);
void vec_vsx_st (vector pixel, int, unsigned short *);
void vec_vsx_st (vector pixel, int, short *);
void vec_vsx_st (vector bool short, int, short *);
void vec_vsx_st (vector signed char, int, vector signed char *);
void vec_vsx_st (vector signed char, int, signed char *);
void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
void vec_vsx_st (vector unsigned char, int, unsigned char *);
void vec_vsx_st (vector bool char, int, vector bool char *);
void vec_vsx_st (vector bool char, int, unsigned char *);
void vec_vsx_st (vector bool char, int, signed char *);
vector double vec_xxpermdi (vector double, vector double, const int);
vector float vec_xxpermdi (vector float, vector float, const int);
vector long long vec_xxpermdi (vector long long, vector long long, const int);
vector unsigned long long vec_xxpermdi (vector unsigned long long,
vector unsigned long long, const int);
vector int vec_xxpermdi (vector int, vector int, const int);
vector unsigned int vec_xxpermdi (vector unsigned int,
vector unsigned int, const int);
vector short vec_xxpermdi (vector short, vector short, const int);
vector unsigned short vec_xxpermdi (vector unsigned short,
vector unsigned short, const int);
vector signed char vec_xxpermdi (vector signed char, vector signed char,
const int);
vector unsigned char vec_xxpermdi (vector unsigned char,
vector unsigned char, const int);
vector double vec_xxsldi (vector double, vector double, int);
vector float vec_xxsldi (vector float, vector float, int);
vector long long vec_xxsldi (vector long long, vector long long, int);
vector unsigned long long vec_xxsldi (vector unsigned long long,
vector unsigned long long, int);
vector int vec_xxsldi (vector int, vector int, int);
vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
vector short vec_xxsldi (vector short, vector short, int);
vector unsigned short vec_xxsldi (vector unsigned short,
vector unsigned short, int);
vector signed char vec_xxsldi (vector signed char, vector signed char, int);
vector unsigned char vec_xxsldi (vector unsigned char,
vector unsigned char, int);
</pre></div>
<p>Note that the ‘<samp>vec_ld</samp>’ and ‘<samp>vec_st</samp>’ built-in functions always
generate the AltiVec ‘<samp>LVX</samp>’ and ‘<samp>STVX</samp>’ instructions even
if the VSX instruction set is available. The ‘<samp>vec_vsx_ld</samp>’ and
‘<samp>vec_vsx_st</samp>’ built-in functions always generate the VSX ‘<samp>LXVD2X</samp>’,
‘<samp>LXVW4X</samp>’, ‘<samp>STXVD2X</samp>’, and ‘<samp>STXVW4X</samp>’ instructions.
</p>
<p>If the ISA 2.07 additions to the vector/scalar (power8-vector)
instruction set are available, the following additional functions are
available for both 32-bit and 64-bit targets. For 64-bit targets, you
can use <var>vector long</var> instead of <var>vector long long</var>,
<var>vector bool long</var> instead of <var>vector bool long long</var>, and
<var>vector unsigned long</var> instead of <var>vector unsigned long long</var>.
</p>
<div class="smallexample">
<pre class="smallexample">vector long long vec_abs (vector long long);
vector long long vec_add (vector long long, vector long long);
vector unsigned long long vec_add (vector unsigned long long,
vector unsigned long long);
int vec_all_eq (vector long long, vector long long);
int vec_all_eq (vector unsigned long long, vector unsigned long long);
int vec_all_ge (vector long long, vector long long);
int vec_all_ge (vector unsigned long long, vector unsigned long long);
int vec_all_gt (vector long long, vector long long);
int vec_all_gt (vector unsigned long long, vector unsigned long long);
int vec_all_le (vector long long, vector long long);
int vec_all_le (vector unsigned long long, vector unsigned long long);
int vec_all_lt (vector long long, vector long long);
int vec_all_lt (vector unsigned long long, vector unsigned long long);
int vec_all_ne (vector long long, vector long long);
int vec_all_ne (vector unsigned long long, vector unsigned long long);
int vec_any_eq (vector long long, vector long long);
int vec_any_eq (vector unsigned long long, vector unsigned long long);
int vec_any_ge (vector long long, vector long long);
int vec_any_ge (vector unsigned long long, vector unsigned long long);
int vec_any_gt (vector long long, vector long long);
int vec_any_gt (vector unsigned long long, vector unsigned long long);
int vec_any_le (vector long long, vector long long);
int vec_any_le (vector unsigned long long, vector unsigned long long);
int vec_any_lt (vector long long, vector long long);
int vec_any_lt (vector unsigned long long, vector unsigned long long);
int vec_any_ne (vector long long, vector long long);
int vec_any_ne (vector unsigned long long, vector unsigned long long);
vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
vector long long vec_eqv (vector long long, vector long long);
vector long long vec_eqv (vector bool long long, vector long long);
vector long long vec_eqv (vector long long, vector bool long long);
vector unsigned long long vec_eqv (vector unsigned long long,
vector unsigned long long);
vector unsigned long long vec_eqv (vector bool long long,
vector unsigned long long);
vector unsigned long long vec_eqv (vector unsigned long long,
vector bool long long);
vector int vec_eqv (vector int, vector int);
vector int vec_eqv (vector bool int, vector int);
vector int vec_eqv (vector int, vector bool int);
vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
vector unsigned int vec_eqv (vector bool unsigned int,
vector unsigned int);
vector unsigned int vec_eqv (vector unsigned int,
vector bool unsigned int);
vector short vec_eqv (vector short, vector short);
vector short vec_eqv (vector bool short, vector short);
vector short vec_eqv (vector short, vector bool short);
vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
vector unsigned short vec_eqv (vector bool unsigned short,
vector unsigned short);
vector unsigned short vec_eqv (vector unsigned short,
vector bool unsigned short);
vector signed char vec_eqv (vector signed char, vector signed char);
vector signed char vec_eqv (vector bool signed char, vector signed char);
vector signed char vec_eqv (vector signed char, vector bool signed char);
vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
vector long long vec_max (vector long long, vector long long);
vector unsigned long long vec_max (vector unsigned long long,
vector unsigned long long);
vector signed int vec_mergee (vector signed int, vector signed int);
vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
vector bool int vec_mergee (vector bool int, vector bool int);
vector signed int vec_mergeo (vector signed int, vector signed int);
vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
vector bool int vec_mergeo (vector bool int, vector bool int);
vector long long vec_min (vector long long, vector long long);
vector unsigned long long vec_min (vector unsigned long long,
vector unsigned long long);
vector signed long long vec_nabs (vector signed long long);
vector long long vec_nand (vector long long, vector long long);
vector long long vec_nand (vector bool long long, vector long long);
vector long long vec_nand (vector long long, vector bool long long);
vector unsigned long long vec_nand (vector unsigned long long,
vector unsigned long long);
vector unsigned long long vec_nand (vector bool long long,
vector unsigned long long);
vector unsigned long long vec_nand (vector unsigned long long,
vector bool long long);
vector int vec_nand (vector int, vector int);
vector int vec_nand (vector bool int, vector int);
vector int vec_nand (vector int, vector bool int);
vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
vector unsigned int vec_nand (vector bool unsigned int,
vector unsigned int);
vector unsigned int vec_nand (vector unsigned int,
vector bool unsigned int);
vector short vec_nand (vector short, vector short);
vector short vec_nand (vector bool short, vector short);
vector short vec_nand (vector short, vector bool short);
vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
vector unsigned short vec_nand (vector bool unsigned short,
vector unsigned short);
vector unsigned short vec_nand (vector unsigned short,
vector bool unsigned short);
vector signed char vec_nand (vector signed char, vector signed char);
vector signed char vec_nand (vector bool signed char, vector signed char);
vector signed char vec_nand (vector signed char, vector bool signed char);
vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
vector long long vec_orc (vector long long, vector long long);
vector long long vec_orc (vector bool long long, vector long long);
vector long long vec_orc (vector long long, vector bool long long);
vector unsigned long long vec_orc (vector unsigned long long,
vector unsigned long long);
vector unsigned long long vec_orc (vector bool long long,
vector unsigned long long);
vector unsigned long long vec_orc (vector unsigned long long,
vector bool long long);
vector int vec_orc (vector int, vector int);
vector int vec_orc (vector bool int, vector int);
vector int vec_orc (vector int, vector bool int);
vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
vector unsigned int vec_orc (vector bool unsigned int,
vector unsigned int);
vector unsigned int vec_orc (vector unsigned int,
vector bool unsigned int);
vector short vec_orc (vector short, vector short);
vector short vec_orc (vector bool short, vector short);
vector short vec_orc (vector short, vector bool short);
vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
vector unsigned short vec_orc (vector bool unsigned short,
vector unsigned short);
vector unsigned short vec_orc (vector unsigned short,
vector bool unsigned short);
vector signed char vec_orc (vector signed char, vector signed char);
vector signed char vec_orc (vector bool signed char, vector signed char);
vector signed char vec_orc (vector signed char, vector bool signed char);
vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
vector int vec_pack (vector long long, vector long long);
vector unsigned int vec_pack (vector unsigned long long,
vector unsigned long long);
vector bool int vec_pack (vector bool long long, vector bool long long);
vector float vec_pack (vector double, vector double);
vector int vec_packs (vector long long, vector long long);
vector unsigned int vec_packs (vector unsigned long long,
vector unsigned long long);
test_vsi_packsu_vssi_vssi (vector signed short x,
vector unsigned char vec_packsu (vector signed short, vector signed short )
vector unsigned char vec_packsu (vector unsigned short, vector unsigned short )
vector unsigned short int vec_packsu (vector signed int, vector signed int);
vector unsigned short int vec_packsu (vector unsigned int,
vector unsigned int);
vector unsigned int vec_packsu (vector long long, vector long long);
vector unsigned int vec_packsu (vector unsigned long long,
vector unsigned long long);
vector unsigned int vec_packsu (vector signed long long,
vector signed long long);
vector unsigned char vec_popcnt (vector signed char);
vector unsigned char vec_popcnt (vector unsigned char);
vector unsigned short vec_popcnt (vector signed short);
vector unsigned short vec_popcnt (vector unsigned short);
vector unsigned int vec_popcnt (vector signed int);
vector unsigned int vec_popcnt (vector unsigned int);
vector unsigned long long vec_popcnt (vector signed long long);
vector unsigned long long vec_popcnt (vector unsigned long long);
vector long long vec_rl (vector long long,
vector unsigned long long);
vector long long vec_rl (vector unsigned long long,
vector unsigned long long);
vector long long vec_sl (vector long long, vector unsigned long long);
vector long long vec_sl (vector unsigned long long,
vector unsigned long long);
vector long long vec_sr (vector long long, vector unsigned long long);
vector unsigned long long char vec_sr (vector unsigned long long,
vector unsigned long long);
vector long long vec_sra (vector long long, vector unsigned long long);
vector unsigned long long vec_sra (vector unsigned long long,
vector unsigned long long);
vector long long vec_sub (vector long long, vector long long);
vector unsigned long long vec_sub (vector unsigned long long,
vector unsigned long long);
vector long long vec_unpackh (vector int);
vector unsigned long long vec_unpackh (vector unsigned int);
vector long long vec_unpackl (vector int);
vector unsigned long long vec_unpackl (vector unsigned int);
vector long long vec_vaddudm (vector long long, vector long long);
vector long long vec_vaddudm (vector bool long long, vector long long);
vector long long vec_vaddudm (vector long long, vector bool long long);
vector unsigned long long vec_vaddudm (vector unsigned long long,
vector unsigned long long);
vector unsigned long long vec_vaddudm (vector bool unsigned long long,
vector unsigned long long);
vector unsigned long long vec_vaddudm (vector unsigned long long,
vector bool unsigned long long);
vector long long vec_vbpermq (vector signed char, vector signed char);
vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
vector unsigned char vec_bperm (vector unsigned char, vector unsigned char);
vector unsigned char vec_bperm (vector unsigned long long,
vector unsigned char);
vector unsigned long long vec_bperm (vector unsigned __int128,
vector unsigned char);
vector long long vec_cntlz (vector long long);
vector unsigned long long vec_cntlz (vector unsigned long long);
vector int vec_cntlz (vector int);
vector unsigned int vec_cntlz (vector int);
vector short vec_cntlz (vector short);
vector unsigned short vec_cntlz (vector unsigned short);
vector signed char vec_cntlz (vector signed char);
vector unsigned char vec_cntlz (vector unsigned char);
vector long long vec_vclz (vector long long);
vector unsigned long long vec_vclz (vector unsigned long long);
vector int vec_vclz (vector int);
vector unsigned int vec_vclz (vector int);
vector short vec_vclz (vector short);
vector unsigned short vec_vclz (vector unsigned short);
vector signed char vec_vclz (vector signed char);
vector unsigned char vec_vclz (vector unsigned char);
vector signed char vec_vclzb (vector signed char);
vector unsigned char vec_vclzb (vector unsigned char);
vector long long vec_vclzd (vector long long);
vector unsigned long long vec_vclzd (vector unsigned long long);
vector short vec_vclzh (vector short);
vector unsigned short vec_vclzh (vector unsigned short);
vector int vec_vclzw (vector int);
vector unsigned int vec_vclzw (vector int);
vector signed char vec_vgbbd (vector signed char);
vector unsigned char vec_vgbbd (vector unsigned char);
vector long long vec_vmaxsd (vector long long, vector long long);
vector unsigned long long vec_vmaxud (vector unsigned long long,
unsigned vector long long);
vector long long vec_vminsd (vector long long, vector long long);
vector unsigned long long vec_vminud (vector long long,
vector long long);
vector int vec_vpksdss (vector long long, vector long long);
vector unsigned int vec_vpksdss (vector long long, vector long long);
vector unsigned int vec_vpkudus (vector unsigned long long,
vector unsigned long long);
vector int vec_vpkudum (vector long long, vector long long);
vector unsigned int vec_vpkudum (vector unsigned long long,
vector unsigned long long);
vector bool int vec_vpkudum (vector bool long long, vector bool long long);
vector long long vec_vpopcnt (vector long long);
vector unsigned long long vec_vpopcnt (vector unsigned long long);
vector int vec_vpopcnt (vector int);
vector unsigned int vec_vpopcnt (vector int);
vector short vec_vpopcnt (vector short);
vector unsigned short vec_vpopcnt (vector unsigned short);
vector signed char vec_vpopcnt (vector signed char);
vector unsigned char vec_vpopcnt (vector unsigned char);
vector signed char vec_vpopcntb (vector signed char);
vector unsigned char vec_vpopcntb (vector unsigned char);
vector long long vec_vpopcntd (vector long long);
vector unsigned long long vec_vpopcntd (vector unsigned long long);
vector short vec_vpopcnth (vector short);
vector unsigned short vec_vpopcnth (vector unsigned short);
vector int vec_vpopcntw (vector int);
vector unsigned int vec_vpopcntw (vector int);
vector long long vec_vrld (vector long long, vector unsigned long long);
vector unsigned long long vec_vrld (vector unsigned long long,
vector unsigned long long);
vector long long vec_vsld (vector long long, vector unsigned long long);
vector long long vec_vsld (vector unsigned long long,
vector unsigned long long);
vector long long vec_vsrad (vector long long, vector unsigned long long);
vector unsigned long long vec_vsrad (vector unsigned long long,
vector unsigned long long);
vector long long vec_vsrd (vector long long, vector unsigned long long);
vector unsigned long long char vec_vsrd (vector unsigned long long,
vector unsigned long long);
vector long long vec_vsubudm (vector long long, vector long long);
vector long long vec_vsubudm (vector bool long long, vector long long);
vector long long vec_vsubudm (vector long long, vector bool long long);
vector unsigned long long vec_vsubudm (vector unsigned long long,
vector unsigned long long);
vector unsigned long long vec_vsubudm (vector bool long long,
vector unsigned long long);
vector unsigned long long vec_vsubudm (vector unsigned long long,
vector bool long long);
vector long long vec_vupkhsw (vector int);
vector unsigned long long vec_vupkhsw (vector unsigned int);
vector long long vec_vupklsw (vector int);
vector unsigned long long vec_vupklsw (vector int);
</pre></div>
<p>If the ISA 2.07 additions to the vector/scalar (power8-vector)
instruction set are available, the following additional functions are
available for 64-bit targets. New vector types
(<var>vector __int128_t</var> and <var>vector __uint128_t</var>) are available
to hold the <var>__int128_t</var> and <var>__uint128_t</var> types to use these
builtins.
</p>
<p>The normal vector extract, and set operations work on
<var>vector __int128_t</var> and <var>vector __uint128_t</var> types,
but the index value must be 0.
</p>
<div class="smallexample">
<pre class="smallexample">vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
vector __int128_t);
vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
vector __uint128_t);
vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
vector __int128_t);
vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
vector __uint128_t);
vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
vector __int128_t);
vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
vector __uint128_t);
vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
vector __int128_t);
vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
vector __uint128_t);
vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
__int128_t vec_vsubuqm (__int128_t, __int128_t);
__uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
vector __int128_t __builtin_bcdadd (vector __int128_t, vector __int128_t);
int __builtin_bcdadd_lt (vector __int128_t, vector __int128_t);
int __builtin_bcdadd_eq (vector __int128_t, vector __int128_t);
int __builtin_bcdadd_gt (vector __int128_t, vector __int128_t);
int __builtin_bcdadd_ov (vector __int128_t, vector __int128_t);
vector __int128_t bcdsub (vector __int128_t, vector __int128_t);
int __builtin_bcdsub_lt (vector __int128_t, vector __int128_t);
int __builtin_bcdsub_eq (vector __int128_t, vector __int128_t);
int __builtin_bcdsub_gt (vector __int128_t, vector __int128_t);
int __builtin_bcdsub_ov (vector __int128_t, vector __int128_t);
</pre></div>
<p>If the ISA 3.0 instruction set additions (<samp>-mcpu=power9</samp>)
are available:
</p>
<div class="smallexample">
<pre class="smallexample">vector unsigned long long vec_bperm (vector unsigned long long,
vector unsigned char);
vector bool char vec_cmpne (vector bool char, vector bool char);
vector bool char vec_cmpne (vector signed char, vector signed char);
vector bool char vec_cmpne (vector unsigned char, vector unsigned char);
vector bool int vec_cmpne (vector bool int, vector bool int);
vector bool int vec_cmpne (vector signed int, vector signed int);
vector bool int vec_cmpne (vector unsigned int, vector unsigned int);
vector bool long long vec_cmpne (vector bool long long, vector bool long long);
vector bool long long vec_cmpne (vector signed long long,
vector signed long long);
vector bool long long vec_cmpne (vector unsigned long long,
vector unsigned long long);
vector bool short vec_cmpne (vector bool short, vector bool short);
vector bool short vec_cmpne (vector signed short, vector signed short);
vector bool short vec_cmpne (vector unsigned short, vector unsigned short);
vector bool long long vec_cmpne (vector double, vector double);
vector bool int vec_cmpne (vector float, vector float);
vector float vec_extract_fp32_from_shorth (vector unsigned short);
vector float vec_extract_fp32_from_shortl (vector unsigned short);
vector long long vec_vctz (vector long long);
vector unsigned long long vec_vctz (vector unsigned long long);
vector int vec_vctz (vector int);
vector unsigned int vec_vctz (vector int);
vector short vec_vctz (vector short);
vector unsigned short vec_vctz (vector unsigned short);
vector signed char vec_vctz (vector signed char);
vector unsigned char vec_vctz (vector unsigned char);
vector signed char vec_vctzb (vector signed char);
vector unsigned char vec_vctzb (vector unsigned char);
vector long long vec_vctzd (vector long long);
vector unsigned long long vec_vctzd (vector unsigned long long);
vector short vec_vctzh (vector short);
vector unsigned short vec_vctzh (vector unsigned short);
vector int vec_vctzw (vector int);
vector unsigned int vec_vctzw (vector int);
vector unsigned long long vec_extract4b (vector unsigned char, const int);
vector unsigned char vec_insert4b (vector signed int, vector unsigned char,
const int);
vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
const int);
vector unsigned int vec_parity_lsbb (vector signed int);
vector unsigned int vec_parity_lsbb (vector unsigned int);
vector unsigned __int128 vec_parity_lsbb (vector signed __int128);
vector unsigned __int128 vec_parity_lsbb (vector unsigned __int128);
vector unsigned long long vec_parity_lsbb (vector signed long long);
vector unsigned long long vec_parity_lsbb (vector unsigned long long);
vector int vec_vprtyb (vector int);
vector unsigned int vec_vprtyb (vector unsigned int);
vector long long vec_vprtyb (vector long long);
vector unsigned long long vec_vprtyb (vector unsigned long long);
vector int vec_vprtybw (vector int);
vector unsigned int vec_vprtybw (vector unsigned int);
vector long long vec_vprtybd (vector long long);
vector unsigned long long vec_vprtybd (vector unsigned long long);
</pre></div>
<p>On 64-bit targets, if the ISA 3.0 additions (<samp>-mcpu=power9</samp>)
are available:
</p>
<div class="smallexample">
<pre class="smallexample">vector long vec_vprtyb (vector long);
vector unsigned long vec_vprtyb (vector unsigned long);
vector __int128_t vec_vprtyb (vector __int128_t);
vector __uint128_t vec_vprtyb (vector __uint128_t);
vector long vec_vprtybd (vector long);
vector unsigned long vec_vprtybd (vector unsigned long);
vector __int128_t vec_vprtybq (vector __int128_t);
vector __uint128_t vec_vprtybd (vector __uint128_t);
</pre></div>
<p>The following built-in vector functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (<samp>-mcpu=power9</samp>):
</p><div class="smallexample">
<pre class="smallexample">__vector unsigned char
vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
__vector unsigned char
vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
</pre></div>
<p>The <code>vec_slv</code> and <code>vec_srv</code> functions operate on
all of the bytes of their <code>src</code> and <code>shift_distance</code>
arguments in parallel. The behavior of the <code>vec_slv</code> is as if
there existed a temporary array of 17 unsigned characters
<code>slv_array</code> within which elements 0 through 15 are the same as
the entries in the <code>src</code> array and element 16 equals 0. The
result returned from the <code>vec_slv</code> function is a
<code>__vector</code> of 16 unsigned characters within which element
<code>i</code> is computed using the C expression
<code>0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
shift_distance[i]))</code>,
with this resulting value coerced to the <code>unsigned char</code> type.
The behavior of the <code>vec_srv</code> is as if
there existed a temporary array of 17 unsigned characters
<code>srv_array</code> within which element 0 equals zero and
elements 1 through 16 equal the elements 0 through 15 of
the <code>src</code> array. The
result returned from the <code>vec_srv</code> function is a
<code>__vector</code> of 16 unsigned characters within which element
<code>i</code> is computed using the C expression
<code>0xff & (*((unsigned short *)(srv_array + i)) >>
(0x07 & shift_distance[i]))</code>,
with this resulting value coerced to the <code>unsigned char</code> type.
</p>
<p>The following built-in functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (<samp>-mcpu=power9</samp>):
</p><div class="smallexample">
<pre class="smallexample">__vector unsigned char
vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
__vector unsigned short
vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
__vector unsigned int
vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
__vector unsigned char
vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
__vector unsigned short
vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
__vector unsigned int
vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
</pre></div>
<p>The <code>vec_absd</code>, <code>vec_absdb</code>, <code>vec_absdh</code>, and
<code>vec_absdw</code> built-in functions each computes the absolute
differences of the pairs of vector elements supplied in its two vector
arguments, placing the absolute differences into the corresponding
elements of the vector result.
</p>
<p>The following built-in functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (<samp>-mcpu=power9</samp>):
</p><div class="smallexample">
<pre class="smallexample">__vector unsigned int
vec_extract_exp (__vector float source);
__vector unsigned long long int
vec_extract_exp (__vector double source);
__vector unsigned int
vec_extract_sig (__vector float source);
__vector unsigned long long int
vec_extract_sig (__vector double source);
__vector float
vec_insert_exp (__vector unsigned int significands,
__vector unsigned int exponents);
__vector float
vec_insert_exp (__vector unsigned float significands,
__vector unsigned int exponents);
__vector double
vec_insert_exp (__vector unsigned long long int significands,
__vector unsigned long long int exponents);
__vector double
vec_insert_exp (__vector unsigned double significands,
__vector unsigned long long int exponents);
__vector bool int vec_test_data_class (__vector float source,
const int condition);
__vector bool long long int vec_test_data_class (__vector double source,
const int condition);
</pre></div>
<p>The <code>vec_extract_sig</code> and <code>vec_extract_exp</code> built-in
functions return vectors representing the significands and biased
exponent values of their <code>source</code> arguments respectively.
Within the result vector returned by <code>vec_extract_sig</code>, the
<code>0x800000</code> bit of each vector element returned when the
function’s <code>source</code> argument is of type <code>float</code> is set to 1
if the corresponding floating point value is in normalized form.
Otherwise, this bit is set to 0. When the <code>source</code> argument is
of type <code>double</code>, the <code>0x10000000000000</code> bit within each of
the result vector’s elements is set according to the same rules.
Note that the sign of the significand is not represented in the result
returned from the <code>vec_extract_sig</code> function. To extract the
sign bits, use the
<code>vec_cpsgn</code> function, which returns a new vector within which all
of the sign bits of its second argument vector are overwritten with the
sign bits copied from the coresponding elements of its first argument
vector, and all other (non-sign) bits of the second argument vector
are copied unchanged into the result vector.
</p>
<p>The <code>vec_insert_exp</code> built-in functions return a vector of
single- or double-precision floating
point values constructed by assembling the values of their
<code>significands</code> and <code>exponents</code> arguments into the
corresponding elements of the returned vector.
The sign of each
element of the result is copied from the most significant bit of the
corresponding entry within the <code>significands</code> argument.
Note that the relevant
bits of the <code>significands</code> argument are the same, for both integer
and floating point types.
The
significand and exponent components of each element of the result are
composed of the least significant bits of the corresponding
<code>significands</code> element and the least significant bits of the
corresponding <code>exponents</code> element.
</p>
<p>The <code>vec_test_data_class</code> built-in function returns a vector
representing the results of testing the <code>source</code> vector for the
condition selected by the <code>condition</code> argument. The
<code>condition</code> argument must be a compile-time constant integer with
value not exceeding 127. The
<code>condition</code> argument is encoded as a bitmask with each bit
enabling the testing of a different condition, as characterized by the
following:
</p><div class="smallexample">
<pre class="smallexample">0x40 Test for NaN
0x20 Test for +Infinity
0x10 Test for -Infinity
0x08 Test for +Zero
0x04 Test for -Zero
0x02 Test for +Denormal
0x01 Test for -Denormal
</pre></div>
<p>If any of the enabled test conditions is true, the corresponding entry
in the result vector is -1. Otherwise (all of the enabled test
conditions are false), the corresponding entry of the result vector is 0.
</p>
<p>The following built-in functions are available for the PowerPC family
of processors, starting with ISA 3.0 or later (<samp>-mcpu=power9</samp>):
</p><div class="smallexample">
<pre class="smallexample">vector unsigned int vec_rlmi (vector unsigned int, vector unsigned int,
vector unsigned int);
vector unsigned long long vec_rlmi (vector unsigned long long,
vector unsigned long long,
vector unsigned long long);
vector unsigned int vec_rlnm (vector unsigned int, vector unsigned int,
vector unsigned int);
vector unsigned long long vec_rlnm (vector unsigned long long,
vector unsigned long long,
vector unsigned long long);
vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
vector unsigned long long vec_vrlnm (vector unsigned long long,
vector unsigned long long);
</pre></div>
<p>The result of <code>vec_rlmi</code> is obtained by rotating each element of
the first argument vector left and inserting it under mask into the
second argument vector. The third argument vector contains the mask
beginning in bits 11:15, the mask end in bits 19:23, and the shift
count in bits 27:31, of each element.
</p>
<p>The result of <code>vec_rlnm</code> is obtained by rotating each element of
the first argument vector left and ANDing it with a mask specified by
the second and third argument vectors. The second argument vector
contains the shift count for each element in the low-order byte. The
third argument vector contains the mask end for each element in the
low-order byte, with the mask begin in the next higher byte.
</p>
<p>The result of <code>vec_vrlnm</code> is obtained by rotating each element
of the first argument vector left and ANDing it with a mask. The
second argument vector contains the mask beginning in bits 11:15,
the mask end in bits 19:23, and the shift count in bits 27:31,
of each element.
</p>
<p>If the ISA 3.0 instruction set additions (<samp>-mcpu=power9</samp>)
are available:
</p><div class="smallexample">
<pre class="smallexample">vector signed bool char vec_revb (vector signed char);
vector signed char vec_revb (vector signed char);
vector unsigned char vec_revb (vector unsigned char);
vector bool short vec_revb (vector bool short);
vector short vec_revb (vector short);
vector unsigned short vec_revb (vector unsigned short);
vector bool int vec_revb (vector bool int);
vector int vec_revb (vector int);
vector unsigned int vec_revb (vector unsigned int);
vector float vec_revb (vector float);
vector bool long long vec_revb (vector bool long long);
vector long long vec_revb (vector long long);
vector unsigned long long vec_revb (vector unsigned long long);
vector double vec_revb (vector double);
</pre></div>
<p>On 64-bit targets, if the ISA 3.0 additions (<samp>-mcpu=power9</samp>)
are available:
</p><div class="smallexample">
<pre class="smallexample">vector long vec_revb (vector long);
vector unsigned long vec_revb (vector unsigned long);
vector __int128_t vec_revb (vector __int128_t);
vector __uint128_t vec_revb (vector __uint128_t);
</pre></div>
<p>The <code>vec_revb</code> built-in function reverses the bytes on an element
by element basis. A vector of <code>vector unsigned char</code> or
<code>vector signed char</code> reverses the bytes in the whole word.
</p>
<p>If the cryptographic instructions are enabled (<samp>-mcrypto</samp> or
<samp>-mcpu=power8</samp>), the following builtins are enabled.
</p>
<div class="smallexample">
<pre class="smallexample">vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
vector unsigned long long);
vector unsigned long long __builtin_crypto_vcipherlast
(vector unsigned long long,
vector unsigned long long);
vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
vector unsigned long long);
vector unsigned long long __builtin_crypto_vncipherlast
(vector unsigned long long,
vector unsigned long long);
vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
vector unsigned char,
vector unsigned char);
vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
vector unsigned short,
vector unsigned short);
vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
vector unsigned int,
vector unsigned int);
vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
vector unsigned long long,
vector unsigned long long);
vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
vector unsigned char);
vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
vector unsigned short);
vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
vector unsigned int);
vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
vector unsigned long long);
vector unsigned long long __builtin_crypto_vshasigmad
(vector unsigned long long, int, int);
vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
int, int);
</pre></div>
<p>The second argument to <var>__builtin_crypto_vshasigmad</var> and
<var>__builtin_crypto_vshasigmaw</var> must be a constant
integer that is 0 or 1. The third argument to these built-in functions
must be a constant integer in the range of 0 to 15.
</p>
<p>If the ISA 3.0 instruction set additions
are enabled (<samp>-mcpu=power9</samp>), the following additional
functions are available for both 32-bit and 64-bit targets.
</p>
<p>vector short vec_xl (int, vector short *);
vector short vec_xl (int, short *);
vector unsigned short vec_xl (int, vector unsigned short *);
vector unsigned short vec_xl (int, unsigned short *);
vector char vec_xl (int, vector char *);
vector char vec_xl (int, char *);
vector unsigned char vec_xl (int, vector unsigned char *);
vector unsigned char vec_xl (int, unsigned char *);
</p>
<p>void vec_xst (vector short, int, vector short *);
void vec_xst (vector short, int, short *);
void vec_xst (vector unsigned short, int, vector unsigned short *);
void vec_xst (vector unsigned short, int, unsigned short *);
void vec_xst (vector char, int, vector char *);
void vec_xst (vector char, int, char *);
void vec_xst (vector unsigned char, int, vector unsigned char *);
void vec_xst (vector unsigned char, int, unsigned char *);
</p>
<hr>
<a name="PowerPC-Hardware-Transactional-Memory-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#PowerPC-Atomic-Memory-Operation-Functions" accesskey="n" rel="next">PowerPC Atomic Memory Operation Functions</a>, Previous: <a href="#PowerPC-AltiVec_002fVSX-Built_002din-Functions" accesskey="p" rel="prev">PowerPC AltiVec/VSX Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-Hardware-Transactional-Memory-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.23 PowerPC Hardware Transactional Memory Built-in Functions</h4>
<p>GCC provides two interfaces for accessing the Hardware Transactional
Memory (HTM) instructions available on some of the PowerPC family
of processors (eg, POWER8). The two interfaces come in a low level
interface, consisting of built-in functions specific to PowerPC and a
higher level interface consisting of inline functions that are common
between PowerPC and S/390.
</p>
<a name="PowerPC-HTM-Low-Level-Built_002din-Functions"></a>
<h4 class="subsubsection">6.59.23.1 PowerPC HTM Low Level Built-in Functions</h4>
<p>The following low level built-in functions are available with
<samp>-mhtm</samp> or <samp>-mcpu=CPU</samp> where CPU is ‘power8’ or later.
They all generate the machine instruction that is part of the name.
</p>
<p>The HTM builtins (with the exception of <code>__builtin_tbegin</code>) return
the full 4-bit condition register value set by their associated hardware
instruction. The header file <code>htmintrin.h</code> defines some macros that can
be used to decipher the return value. The <code>__builtin_tbegin</code> builtin
returns a simple true or false value depending on whether a transaction was
successfully started or not. The arguments of the builtins match exactly the
type and order of the associated hardware instruction’s operands, except for
the <code>__builtin_tcheck</code> builtin, which does not take any input arguments.
Refer to the ISA manual for a description of each instruction’s operands.
</p>
<div class="smallexample">
<pre class="smallexample">unsigned int __builtin_tbegin (unsigned int)
unsigned int __builtin_tend (unsigned int)
unsigned int __builtin_tabort (unsigned int)
unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
unsigned int __builtin_tcheck (void)
unsigned int __builtin_treclaim (unsigned int)
unsigned int __builtin_trechkpt (void)
unsigned int __builtin_tsr (unsigned int)
</pre></div>
<p>In addition to the above HTM built-ins, we have added built-ins for
some common extended mnemonics of the HTM instructions:
</p>
<div class="smallexample">
<pre class="smallexample">unsigned int __builtin_tendall (void)
unsigned int __builtin_tresume (void)
unsigned int __builtin_tsuspend (void)
</pre></div>
<p>Note that the semantics of the above HTM builtins are required to mimic
the locking semantics used for critical sections. Builtins that are used
to create a new transaction or restart a suspended transaction must have
lock acquisition like semantics while those builtins that end or suspend a
transaction must have lock release like semantics. Specifically, this must
mimic lock semantics as specified by C++11, for example: Lock acquisition is
as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
that returns 0, and lock release is as-if an execution of
__atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
implicit implementation-defined lock used for all transactions. The HTM
instructions associated with with the builtins inherently provide the
correct acquisition and release hardware barriers required. However,
the compiler must also be prohibited from moving loads and stores across
the builtins in a way that would violate their semantics. This has been
accomplished by adding memory barriers to the associated HTM instructions
(which is a conservative approach to provide acquire and release semantics).
Earlier versions of the compiler did not treat the HTM instructions as
memory barriers. A <code>__TM_FENCE__</code> macro has been added, which can
be used to determine whether the current compiler treats HTM instructions
as memory barriers or not. This allows the user to explicitly add memory
barriers to their code when using an older version of the compiler.
</p>
<p>The following set of built-in functions are available to gain access
to the HTM specific special purpose registers.
</p>
<div class="smallexample">
<pre class="smallexample">unsigned long __builtin_get_texasr (void)
unsigned long __builtin_get_texasru (void)
unsigned long __builtin_get_tfhar (void)
unsigned long __builtin_get_tfiar (void)
void __builtin_set_texasr (unsigned long);
void __builtin_set_texasru (unsigned long);
void __builtin_set_tfhar (unsigned long);
void __builtin_set_tfiar (unsigned long);
</pre></div>
<p>Example usage of these low level built-in functions may look like:
</p>
<div class="smallexample">
<pre class="smallexample">#include <htmintrin.h>
int num_retries = 10;
while (1)
{
if (__builtin_tbegin (0))
{
/* Transaction State Initiated. */
if (is_locked (lock))
__builtin_tabort (0);
... transaction code...
__builtin_tend (0);
break;
}
else
{
/* Transaction State Failed. Use locks if the transaction
failure is "persistent" or we've tried too many times. */
if (num_retries-- <= 0
|| _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
{
acquire_lock (lock);
... non transactional fallback path...
release_lock (lock);
break;
}
}
}
</pre></div>
<p>One final built-in function has been added that returns the value of
the 2-bit Transaction State field of the Machine Status Register (MSR)
as stored in <code>CR0</code>.
</p>
<div class="smallexample">
<pre class="smallexample">unsigned long __builtin_ttest (void)
</pre></div>
<p>This built-in can be used to determine the current transaction state
using the following code example:
</p>
<div class="smallexample">
<pre class="smallexample">#include <htmintrin.h>
unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
if (tx_state == _HTM_TRANSACTIONAL)
{
/* Code to use in transactional state. */
}
else if (tx_state == _HTM_NONTRANSACTIONAL)
{
/* Code to use in non-transactional state. */
}
else if (tx_state == _HTM_SUSPENDED)
{
/* Code to use in transaction suspended state. */
}
</pre></div>
<a name="PowerPC-HTM-High-Level-Inline-Functions"></a>
<h4 class="subsubsection">6.59.23.2 PowerPC HTM High Level Inline Functions</h4>
<p>The following high level HTM interface is made available by including
<code><htmxlintrin.h></code> and using <samp>-mhtm</samp> or <samp>-mcpu=CPU</samp>
where CPU is ‘power8’ or later. This interface is common between PowerPC
and S/390, allowing users to write one HTM source implementation that
can be compiled and executed on either system.
</p>
<div class="smallexample">
<pre class="smallexample">long __TM_simple_begin (void)
long __TM_begin (void* const TM_buff)
long __TM_end (void)
void __TM_abort (void)
void __TM_named_abort (unsigned char const code)
void __TM_resume (void)
void __TM_suspend (void)
long __TM_is_user_abort (void* const TM_buff)
long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
long __TM_is_illegal (void* const TM_buff)
long __TM_is_footprint_exceeded (void* const TM_buff)
long __TM_nesting_depth (void* const TM_buff)
long __TM_is_nested_too_deep(void* const TM_buff)
long __TM_is_conflict(void* const TM_buff)
long __TM_is_failure_persistent(void* const TM_buff)
long __TM_failure_address(void* const TM_buff)
long long __TM_failure_code(void* const TM_buff)
</pre></div>
<p>Using these common set of HTM inline functions, we can create
a more portable version of the HTM example in the previous
section that will work on either PowerPC or S/390:
</p>
<div class="smallexample">
<pre class="smallexample">#include <htmxlintrin.h>
int num_retries = 10;
TM_buff_type TM_buff;
while (1)
{
if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
{
/* Transaction State Initiated. */
if (is_locked (lock))
__TM_abort ();
... transaction code...
__TM_end ();
break;
}
else
{
/* Transaction State Failed. Use locks if the transaction
failure is "persistent" or we've tried too many times. */
if (num_retries-- <= 0
|| __TM_is_failure_persistent (TM_buff))
{
acquire_lock (lock);
... non transactional fallback path...
release_lock (lock);
break;
}
}
}
</pre></div>
<hr>
<a name="PowerPC-Atomic-Memory-Operation-Functions"></a>
<div class="header">
<p>
Next: <a href="#RX-Built_002din-Functions" accesskey="n" rel="next">RX Built-in Functions</a>, Previous: <a href="#PowerPC-Hardware-Transactional-Memory-Built_002din-Functions" accesskey="p" rel="prev">PowerPC Hardware Transactional Memory Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="PowerPC-Atomic-Memory-Operation-Functions-1"></a>
<h4 class="subsection">6.59.24 PowerPC Atomic Memory Operation Functions</h4>
<p>ISA 3.0 of the PowerPC added new atomic memory operation (amo)
instructions. GCC provides support for these instructions in 64-bit
environments. All of the functions are declared in the include file
<code>amo.h</code>.
</p>
<p>The functions supported are:
</p>
<div class="smallexample">
<pre class="smallexample">#include <amo.h>
uint32_t amo_lwat_add (uint32_t *, uint32_t);
uint32_t amo_lwat_xor (uint32_t *, uint32_t);
uint32_t amo_lwat_ior (uint32_t *, uint32_t);
uint32_t amo_lwat_and (uint32_t *, uint32_t);
uint32_t amo_lwat_umax (uint32_t *, uint32_t);
uint32_t amo_lwat_umin (uint32_t *, uint32_t);
uint32_t amo_lwat_swap (uint32_t *, uint32_t);
int32_t amo_lwat_sadd (int32_t *, int32_t);
int32_t amo_lwat_smax (int32_t *, int32_t);
int32_t amo_lwat_smin (int32_t *, int32_t);
int32_t amo_lwat_sswap (int32_t *, int32_t);
uint64_t amo_ldat_add (uint64_t *, uint64_t);
uint64_t amo_ldat_xor (uint64_t *, uint64_t);
uint64_t amo_ldat_ior (uint64_t *, uint64_t);
uint64_t amo_ldat_and (uint64_t *, uint64_t);
uint64_t amo_ldat_umax (uint64_t *, uint64_t);
uint64_t amo_ldat_umin (uint64_t *, uint64_t);
uint64_t amo_ldat_swap (uint64_t *, uint64_t);
int64_t amo_ldat_sadd (int64_t *, int64_t);
int64_t amo_ldat_smax (int64_t *, int64_t);
int64_t amo_ldat_smin (int64_t *, int64_t);
int64_t amo_ldat_sswap (int64_t *, int64_t);
void amo_stwat_add (uint32_t *, uint32_t);
void amo_stwat_xor (uint32_t *, uint32_t);
void amo_stwat_ior (uint32_t *, uint32_t);
void amo_stwat_and (uint32_t *, uint32_t);
void amo_stwat_umax (uint32_t *, uint32_t);
void amo_stwat_umin (uint32_t *, uint32_t);
void amo_stwat_sadd (int32_t *, int32_t);
void amo_stwat_smax (int32_t *, int32_t);
void amo_stwat_smin (int32_t *, int32_t);
void amo_stdat_add (uint64_t *, uint64_t);
void amo_stdat_xor (uint64_t *, uint64_t);
void amo_stdat_ior (uint64_t *, uint64_t);
void amo_stdat_and (uint64_t *, uint64_t);
void amo_stdat_umax (uint64_t *, uint64_t);
void amo_stdat_umin (uint64_t *, uint64_t);
void amo_stdat_sadd (int64_t *, int64_t);
void amo_stdat_smax (int64_t *, int64_t);
void amo_stdat_smin (int64_t *, int64_t);
</pre></div>
<hr>
<a name="RX-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#S_002f390-System-z-Built_002din-Functions" accesskey="n" rel="next">S/390 System z Built-in Functions</a>, Previous: <a href="#PowerPC-Atomic-Memory-Operation-Functions" accesskey="p" rel="prev">PowerPC Atomic Memory Operation Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RX-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.25 RX Built-in Functions</h4>
<p>GCC supports some of the RX instructions which cannot be expressed in
the C programming language via the use of built-in functions. The
following functions are supported:
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fbrk"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_brk</strong> <em>(void)</em></dt>
<dd><p>Generates the <code>brk</code> machine instruction.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fclrpsw"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_clrpsw</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>clrpsw</code> machine instruction to clear the specified
bit in the processor status word.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fint"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_int</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>int</code> machine instruction to generate an interrupt
with the specified value.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmachi"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_machi</strong> <em>(int, int)</em></dt>
<dd><p>Generates the <code>machi</code> machine instruction to add the result of
multiplying the top 16 bits of the two arguments into the
accumulator.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmaclo"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_maclo</strong> <em>(int, int)</em></dt>
<dd><p>Generates the <code>maclo</code> machine instruction to add the result of
multiplying the bottom 16 bits of the two arguments into the
accumulator.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmulhi"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_mulhi</strong> <em>(int, int)</em></dt>
<dd><p>Generates the <code>mulhi</code> machine instruction to place the result of
multiplying the top 16 bits of the two arguments into the
accumulator.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmullo"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_mullo</strong> <em>(int, int)</em></dt>
<dd><p>Generates the <code>mullo</code> machine instruction to place the result of
multiplying the bottom 16 bits of the two arguments into the
accumulator.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmvfachi"></a>Built-in Function: <em>int</em> <strong>__builtin_rx_mvfachi</strong> <em>(void)</em></dt>
<dd><p>Generates the <code>mvfachi</code> machine instruction to read the top
32 bits of the accumulator.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmvfacmi"></a>Built-in Function: <em>int</em> <strong>__builtin_rx_mvfacmi</strong> <em>(void)</em></dt>
<dd><p>Generates the <code>mvfacmi</code> machine instruction to read the middle
32 bits of the accumulator.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmvfc"></a>Built-in Function: <em>int</em> <strong>__builtin_rx_mvfc</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>mvfc</code> machine instruction which reads the control
register specified in its argument and returns its value.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmvtachi"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_mvtachi</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>mvtachi</code> machine instruction to set the top
32 bits of the accumulator.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmvtaclo"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_mvtaclo</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>mvtaclo</code> machine instruction to set the bottom
32 bits of the accumulator.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmvtc"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_mvtc</strong> <em>(int reg, int val)</em></dt>
<dd><p>Generates the <code>mvtc</code> machine instruction which sets control
register number <code>reg</code> to <code>val</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fmvtipl"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_mvtipl</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>mvtipl</code> machine instruction set the interrupt
priority level.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fracw"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_racw</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>racw</code> machine instruction to round the accumulator
according to the specified mode.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005frevw"></a>Built-in Function: <em>int</em> <strong>__builtin_rx_revw</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>revw</code> machine instruction which swaps the bytes in
the argument so that bits 0–7 now occupy bits 8–15 and vice versa,
and also bits 16–23 occupy bits 24–31 and vice versa.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005frmpa"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_rmpa</strong> <em>(void)</em></dt>
<dd><p>Generates the <code>rmpa</code> machine instruction which initiates a
repeated multiply and accumulate sequence.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fround"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_round</strong> <em>(float)</em></dt>
<dd><p>Generates the <code>round</code> machine instruction which returns the
floating-point argument rounded according to the current rounding mode
set in the floating-point status word register.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fsat"></a>Built-in Function: <em>int</em> <strong>__builtin_rx_sat</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>sat</code> machine instruction which returns the
saturated value of the argument.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fsetpsw"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_setpsw</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>setpsw</code> machine instruction to set the specified
bit in the processor status word.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005frx_005fwait"></a>Built-in Function: <em>void</em> <strong>__builtin_rx_wait</strong> <em>(void)</em></dt>
<dd><p>Generates the <code>wait</code> machine instruction.
</p></dd></dl>
<hr>
<a name="S_002f390-System-z-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#SH-Built_002din-Functions" accesskey="n" rel="next">SH Built-in Functions</a>, Previous: <a href="#RX-Built_002din-Functions" accesskey="p" rel="prev">RX Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="S_002f390-System-z-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.26 S/390 System z Built-in Functions</h4>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftbegin"></a>Built-in Function: <em>int</em> <strong>__builtin_tbegin</strong> <em>(void*)</em></dt>
<dd><p>Generates the <code>tbegin</code> machine instruction starting a
non-constrained hardware transaction. If the parameter is non-NULL the
memory area is used to store the transaction diagnostic buffer and
will be passed as first operand to <code>tbegin</code>. This buffer can be
defined using the <code>struct __htm_tdb</code> C struct defined in
<code>htmintrin.h</code> and must reside on a double-word boundary. The
second tbegin operand is set to <code>0xff0c</code>. This enables
save/restore of all GPRs and disables aborts for FPR and AR
manipulations inside the transaction body. The condition code set by
the tbegin instruction is returned as integer value. The tbegin
instruction by definition overwrites the content of all FPRs. The
compiler will generate code which saves and restores the FPRs. For
soft-float code it is recommended to used the <code>*_nofloat</code>
variant. In order to prevent a TDB from being written it is required
to pass a constant zero value as parameter. Passing a zero value
through a variable is not sufficient. Although modifications of
access registers inside the transaction will not trigger an
transaction abort it is not supported to actually modify them. Access
registers do not get saved when entering a transaction. They will have
undefined state when reaching the abort code.
</p></dd></dl>
<p>Macros for the possible return codes of tbegin are defined in the
<code>htmintrin.h</code> header file:
</p>
<dl compact="compact">
<dt><code>_HTM_TBEGIN_STARTED</code></dt>
<dd><p><code>tbegin</code> has been executed as part of normal processing. The
transaction body is supposed to be executed.
</p></dd>
<dt><code>_HTM_TBEGIN_INDETERMINATE</code></dt>
<dd><p>The transaction was aborted due to an indeterminate condition which
might be persistent.
</p></dd>
<dt><code>_HTM_TBEGIN_TRANSIENT</code></dt>
<dd><p>The transaction aborted due to a transient failure. The transaction
should be re-executed in that case.
</p></dd>
<dt><code>_HTM_TBEGIN_PERSISTENT</code></dt>
<dd><p>The transaction aborted due to a persistent failure. Re-execution
under same circumstances will not be productive.
</p></dd>
</dl>
<dl>
<dt><a name="index-_005fHTM_005fFIRST_005fUSER_005fABORT_005fCODE"></a>Macro: <strong>_HTM_FIRST_USER_ABORT_CODE</strong></dt>
<dd><p>The <code>_HTM_FIRST_USER_ABORT_CODE</code> defined in <code>htmintrin.h</code>
specifies the first abort code which can be used for
<code>__builtin_tabort</code>. Values below this threshold are reserved for
machine use.
</p></dd></dl>
<dl>
<dt><a name="index-struct-_005f_005fhtm_005ftdb"></a>Data type: <strong>struct __htm_tdb</strong></dt>
<dd><p>The <code>struct __htm_tdb</code> defined in <code>htmintrin.h</code> describes
the structure of the transaction diagnostic block as specified in the
Principles of Operation manual chapter 5-91.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftbegin_005fnofloat"></a>Built-in Function: <em>int</em> <strong>__builtin_tbegin_nofloat</strong> <em>(void*)</em></dt>
<dd><p>Same as <code>__builtin_tbegin</code> but without FPR saves and restores.
Using this variant in code making use of FPRs will leave the FPRs in
undefined state when entering the transaction abort handler code.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftbegin_005fretry"></a>Built-in Function: <em>int</em> <strong>__builtin_tbegin_retry</strong> <em>(void*, int)</em></dt>
<dd><p>In addition to <code>__builtin_tbegin</code> a loop for transient failures
is generated. If tbegin returns a condition code of 2 the transaction
will be retried as often as specified in the second argument. The
perform processor assist instruction is used to tell the CPU about the
number of fails so far.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftbegin_005fretry_005fnofloat"></a>Built-in Function: <em>int</em> <strong>__builtin_tbegin_retry_nofloat</strong> <em>(void*, int)</em></dt>
<dd><p>Same as <code>__builtin_tbegin_retry</code> but without FPR saves and
restores. Using this variant in code making use of FPRs will leave
the FPRs in undefined state when entering the transaction abort
handler code.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftbeginc"></a>Built-in Function: <em>void</em> <strong>__builtin_tbeginc</strong> <em>(void)</em></dt>
<dd><p>Generates the <code>tbeginc</code> machine instruction starting a constrained
hardware transaction. The second operand is set to <code>0xff08</code>.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftend"></a>Built-in Function: <em>int</em> <strong>__builtin_tend</strong> <em>(void)</em></dt>
<dd><p>Generates the <code>tend</code> machine instruction finishing a transaction
and making the changes visible to other threads. The condition code
generated by tend is returned as integer value.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftabort"></a>Built-in Function: <em>void</em> <strong>__builtin_tabort</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>tabort</code> machine instruction with the specified
abort code. Abort codes from 0 through 255 are reserved and will
result in an error message.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftx_005fassist"></a>Built-in Function: <em>void</em> <strong>__builtin_tx_assist</strong> <em>(int)</em></dt>
<dd><p>Generates the <code>ppa rX,rY,1</code> machine instruction. Where the
integer parameter is loaded into rX and a value of zero is loaded into
rY. The integer parameter specifies the number of times the
transaction repeatedly aborted.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005ftx_005fnesting_005fdepth"></a>Built-in Function: <em>int</em> <strong>__builtin_tx_nesting_depth</strong> <em>(void)</em></dt>
<dd><p>Generates the <code>etnd</code> machine instruction. The current nesting
depth is returned as integer value. For a nesting depth of 0 the code
is not executed as part of an transaction.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fnon_005ftx_005fstore"></a>Built-in Function: <em>void</em> <strong>__builtin_non_tx_store</strong> <em>(uint64_t *, uint64_t)</em></dt>
<dd>
<p>Generates the <code>ntstg</code> machine instruction. The second argument
is written to the first arguments location. The store operation will
not be rolled-back in case of an transaction abort.
</p></dd></dl>
<hr>
<a name="SH-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#SPARC-VIS-Built_002din-Functions" accesskey="n" rel="next">SPARC VIS Built-in Functions</a>, Previous: <a href="#S_002f390-System-z-Built_002din-Functions" accesskey="p" rel="prev">S/390 System z Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SH-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.27 SH Built-in Functions</h4>
<p>The following built-in functions are supported on the SH1, SH2, SH3 and SH4
families of processors:
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fset_005fthread_005fpointer"></a>Built-in Function: <em>void</em> <strong>__builtin_set_thread_pointer</strong> <em>(void *<var>ptr</var>)</em></dt>
<dd><p>Sets the ‘<samp>GBR</samp>’ register to the specified value <var>ptr</var>. This is usually
used by system code that manages threads and execution contexts. The compiler
normally does not generate code that modifies the contents of ‘<samp>GBR</samp>’ and
thus the value is preserved across function calls. Changing the ‘<samp>GBR</samp>’
value in user code must be done with caution, since the compiler might use
‘<samp>GBR</samp>’ in order to access thread local variables.
</p>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fthread_005fpointer"></a>Built-in Function: <em>void *</em> <strong>__builtin_thread_pointer</strong> <em>(void)</em></dt>
<dd><p>Returns the value that is currently set in the ‘<samp>GBR</samp>’ register.
Memory loads and stores that use the thread pointer as a base address are
turned into ‘<samp>GBR</samp>’ based displacement loads and stores, if possible.
For example:
</p><div class="smallexample">
<pre class="smallexample">struct my_tcb
{
int a, b, c, d, e;
};
int get_tcb_value (void)
{
// Generate ‘<samp>mov.l @(8,gbr),r0</samp>’ instruction
return ((my_tcb*)__builtin_thread_pointer ())->c;
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fsh_005fget_005ffpscr"></a>Built-in Function: <em>unsigned int</em> <strong>__builtin_sh_get_fpscr</strong> <em>(void)</em></dt>
<dd><p>Returns the value that is currently set in the ‘<samp>FPSCR</samp>’ register.
</p></dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fsh_005fset_005ffpscr"></a>Built-in Function: <em>void</em> <strong>__builtin_sh_set_fpscr</strong> <em>(unsigned int <var>val</var>)</em></dt>
<dd><p>Sets the ‘<samp>FPSCR</samp>’ register to the specified value <var>val</var>, while
preserving the current values of the FR, SZ and PR bits.
</p></dd></dl>
<hr>
<a name="SPARC-VIS-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#SPU-Built_002din-Functions" accesskey="n" rel="next">SPU Built-in Functions</a>, Previous: <a href="#SH-Built_002din-Functions" accesskey="p" rel="prev">SH Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SPARC-VIS-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.28 SPARC VIS Built-in Functions</h4>
<p>GCC supports SIMD operations on the SPARC using both the generic vector
extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) as well as built-in functions for
the SPARC Visual Instruction Set (VIS). When you use the <samp>-mvis</samp>
switch, the VIS extension is exposed as the following built-in functions:
</p>
<div class="smallexample">
<pre class="smallexample">typedef int v1si __attribute__ ((vector_size (4)));
typedef int v2si __attribute__ ((vector_size (8)));
typedef short v4hi __attribute__ ((vector_size (8)));
typedef short v2hi __attribute__ ((vector_size (4)));
typedef unsigned char v8qi __attribute__ ((vector_size (8)));
typedef unsigned char v4qi __attribute__ ((vector_size (4)));
void __builtin_vis_write_gsr (int64_t);
int64_t __builtin_vis_read_gsr (void);
void * __builtin_vis_alignaddr (void *, long);
void * __builtin_vis_alignaddrl (void *, long);
int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
v2si __builtin_vis_faligndatav2si (v2si, v2si);
v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
v4hi __builtin_vis_fexpand (v4qi);
v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
v4qi __builtin_vis_fpack16 (v4hi);
v8qi __builtin_vis_fpack32 (v2si, v8qi);
v2hi __builtin_vis_fpackfix (v2si);
v8qi __builtin_vis_fpmerge (v4qi, v4qi);
int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
long __builtin_vis_edge8 (void *, void *);
long __builtin_vis_edge8l (void *, void *);
long __builtin_vis_edge16 (void *, void *);
long __builtin_vis_edge16l (void *, void *);
long __builtin_vis_edge32 (void *, void *);
long __builtin_vis_edge32l (void *, void *);
long __builtin_vis_fcmple16 (v4hi, v4hi);
long __builtin_vis_fcmple32 (v2si, v2si);
long __builtin_vis_fcmpne16 (v4hi, v4hi);
long __builtin_vis_fcmpne32 (v2si, v2si);
long __builtin_vis_fcmpgt16 (v4hi, v4hi);
long __builtin_vis_fcmpgt32 (v2si, v2si);
long __builtin_vis_fcmpeq16 (v4hi, v4hi);
long __builtin_vis_fcmpeq32 (v2si, v2si);
v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
v2si __builtin_vis_fpadd32 (v2si, v2si);
v1si __builtin_vis_fpadd32s (v1si, v1si);
v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
v2si __builtin_vis_fpsub32 (v2si, v2si);
v1si __builtin_vis_fpsub32s (v1si, v1si);
long __builtin_vis_array8 (long, long);
long __builtin_vis_array16 (long, long);
long __builtin_vis_array32 (long, long);
</pre></div>
<p>When you use the <samp>-mvis2</samp> switch, the VIS version 2.0 built-in
functions also become available:
</p>
<div class="smallexample">
<pre class="smallexample">long __builtin_vis_bmask (long, long);
int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
v2si __builtin_vis_bshufflev2si (v2si, v2si);
v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
long __builtin_vis_edge8n (void *, void *);
long __builtin_vis_edge8ln (void *, void *);
long __builtin_vis_edge16n (void *, void *);
long __builtin_vis_edge16ln (void *, void *);
long __builtin_vis_edge32n (void *, void *);
long __builtin_vis_edge32ln (void *, void *);
</pre></div>
<p>When you use the <samp>-mvis3</samp> switch, the VIS version 3.0 built-in
functions also become available:
</p>
<div class="smallexample">
<pre class="smallexample">void __builtin_vis_cmask8 (long);
void __builtin_vis_cmask16 (long);
void __builtin_vis_cmask32 (long);
v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
v4hi __builtin_vis_fsll16 (v4hi, v4hi);
v4hi __builtin_vis_fslas16 (v4hi, v4hi);
v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
v4hi __builtin_vis_fsra16 (v4hi, v4hi);
v2si __builtin_vis_fsll16 (v2si, v2si);
v2si __builtin_vis_fslas16 (v2si, v2si);
v2si __builtin_vis_fsrl16 (v2si, v2si);
v2si __builtin_vis_fsra16 (v2si, v2si);
long __builtin_vis_pdistn (v8qi, v8qi);
v4hi __builtin_vis_fmean16 (v4hi, v4hi);
int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
v2si __builtin_vis_fpadds32 (v2si, v2si);
v1si __builtin_vis_fpadds32s (v1si, v1si);
v2si __builtin_vis_fpsubs32 (v2si, v2si);
v1si __builtin_vis_fpsubs32s (v1si, v1si);
long __builtin_vis_fucmple8 (v8qi, v8qi);
long __builtin_vis_fucmpne8 (v8qi, v8qi);
long __builtin_vis_fucmpgt8 (v8qi, v8qi);
long __builtin_vis_fucmpeq8 (v8qi, v8qi);
float __builtin_vis_fhadds (float, float);
double __builtin_vis_fhaddd (double, double);
float __builtin_vis_fhsubs (float, float);
double __builtin_vis_fhsubd (double, double);
float __builtin_vis_fnhadds (float, float);
double __builtin_vis_fnhaddd (double, double);
int64_t __builtin_vis_umulxhi (int64_t, int64_t);
int64_t __builtin_vis_xmulx (int64_t, int64_t);
int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
</pre></div>
<p>When you use the <samp>-mvis4</samp> switch, the VIS version 4.0 built-in
functions also become available:
</p>
<div class="smallexample">
<pre class="smallexample">v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
long __builtin_vis_fpcmple8 (v8qi, v8qi);
long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
long __builtin_vis_fpcmpule16 (v4hi, v4hi);
long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
long __builtin_vis_fpcmpule32 (v2si, v2si);
long __builtin_vis_fpcmpugt32 (v2si, v2si);
v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
v2si __builtin_vis_fpmax32 (v2si, v2si);
v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
v2si __builtin_vis_fpmaxu32 (v2si, v2si);
v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
v2si __builtin_vis_fpmin32 (v2si, v2si);
v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
v2si __builtin_vis_fpminu32 (v2si, v2si);
</pre></div>
<p>When you use the <samp>-mvis4b</samp> switch, the VIS version 4.0B
built-in functions also become available:
</p>
<div class="smallexample">
<pre class="smallexample">v8qi __builtin_vis_dictunpack8 (double, int);
v4hi __builtin_vis_dictunpack16 (double, int);
v2si __builtin_vis_dictunpack32 (double, int);
long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmple32shl (v2si, v2si, int);
long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
long __builtin_vis_fpcmpne32shl (v2si, v2si, int);
long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);
long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpde32shl (v2si, v2si, int);
long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
</pre></div>
<hr>
<a name="SPU-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#TI-C6X-Built_002din-Functions" accesskey="n" rel="next">TI C6X Built-in Functions</a>, Previous: <a href="#SPARC-VIS-Built_002din-Functions" accesskey="p" rel="prev">SPARC VIS Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="SPU-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.29 SPU Built-in Functions</h4>
<p>GCC provides extensions for the SPU processor as described in the
Sony/Toshiba/IBM SPU Language Extensions Specification. GCC’s
implementation differs in several ways.
</p>
<ul>
<li> The optional extension of specifying vector constants in parentheses is
not supported.
</li><li> A vector initializer requires no cast if the vector constant is of the
same type as the variable it is initializing.
</li><li> If <code>signed</code> or <code>unsigned</code> is omitted, the signedness of the
vector type is the default signedness of the base type. The default
varies depending on the operating system, so a portable program should
always specify the signedness.
</li><li> By default, the keyword <code>__vector</code> is added. The macro
<code>vector</code> is defined in <code><spu_intrinsics.h></code> and can be
undefined.
</li><li> GCC allows using a <code>typedef</code> name as the type specifier for a
vector type.
</li><li> For C, overloaded functions are implemented with macros so the following
does not work:
<div class="smallexample">
<pre class="smallexample"> spu_add ((vector signed int){1, 2, 3, 4}, foo);
</pre></div>
<p>Since <code>spu_add</code> is a macro, the vector constant in the example
is treated as four separate arguments. Wrap the entire argument in
parentheses for this to work.
</p>
</li><li> The extended version of <code>__builtin_expect</code> is not supported.
</li></ul>
<p><em>Note:</em> Only the interface described in the aforementioned
specification is supported. Internally, GCC uses built-in functions to
implement the required functionality, but these are not supported and
are subject to change without notice.
</p>
<hr>
<a name="TI-C6X-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#TILE_002dGx-Built_002din-Functions" accesskey="n" rel="next">TILE-Gx Built-in Functions</a>, Previous: <a href="#SPU-Built_002din-Functions" accesskey="p" rel="prev">SPU Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="TI-C6X-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.30 TI C6X Built-in Functions</h4>
<p>GCC provides intrinsics to access certain instructions of the TI C6X
processors. These intrinsics, listed below, are available after
inclusion of the <code>c6x_intrinsics.h</code> header file. They map directly
to C6X instructions.
</p>
<div class="smallexample">
<pre class="smallexample">
int _sadd (int, int)
int _ssub (int, int)
int _sadd2 (int, int)
int _ssub2 (int, int)
long long _mpy2 (int, int)
long long _smpy2 (int, int)
int _add4 (int, int)
int _sub4 (int, int)
int _saddu4 (int, int)
int _smpy (int, int)
int _smpyh (int, int)
int _smpyhl (int, int)
int _smpylh (int, int)
int _sshl (int, int)
int _subc (int, int)
int _avg2 (int, int)
int _avgu4 (int, int)
int _clrr (int, int)
int _extr (int, int)
int _extru (int, int)
int _abs (int)
int _abs2 (int)
</pre></div>
<hr>
<a name="TILE_002dGx-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#TILEPro-Built_002din-Functions" accesskey="n" rel="next">TILEPro Built-in Functions</a>, Previous: <a href="#TI-C6X-Built_002din-Functions" accesskey="p" rel="prev">TI C6X Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="TILE_002dGx-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.31 TILE-Gx Built-in Functions</h4>
<p>GCC provides intrinsics to access every instruction of the TILE-Gx
processor. The intrinsics are of the form:
</p>
<div class="smallexample">
<pre class="smallexample">
unsigned long long __insn_<var>op</var> (...)
</pre></div>
<p>Where <var>op</var> is the name of the instruction. Refer to the ISA manual
for the complete list of instructions.
</p>
<p>GCC also provides intrinsics to directly access the network registers.
The intrinsics are:
</p>
<div class="smallexample">
<pre class="smallexample">
unsigned long long __tile_idn0_receive (void)
unsigned long long __tile_idn1_receive (void)
unsigned long long __tile_udn0_receive (void)
unsigned long long __tile_udn1_receive (void)
unsigned long long __tile_udn2_receive (void)
unsigned long long __tile_udn3_receive (void)
void __tile_idn_send (unsigned long long)
void __tile_udn_send (unsigned long long)
</pre></div>
<p>The intrinsic <code>void __tile_network_barrier (void)</code> is used to
guarantee that no network operations before it are reordered with
those after it.
</p>
<hr>
<a name="TILEPro-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#x86-Built_002din-Functions" accesskey="n" rel="next">x86 Built-in Functions</a>, Previous: <a href="#TILE_002dGx-Built_002din-Functions" accesskey="p" rel="prev">TILE-Gx Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="TILEPro-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.32 TILEPro Built-in Functions</h4>
<p>GCC provides intrinsics to access every instruction of the TILEPro
processor. The intrinsics are of the form:
</p>
<div class="smallexample">
<pre class="smallexample">
unsigned __insn_<var>op</var> (...)
</pre></div>
<p>where <var>op</var> is the name of the instruction. Refer to the ISA manual
for the complete list of instructions.
</p>
<p>GCC also provides intrinsics to directly access the network registers.
The intrinsics are:
</p>
<div class="smallexample">
<pre class="smallexample">
unsigned __tile_idn0_receive (void)
unsigned __tile_idn1_receive (void)
unsigned __tile_sn_receive (void)
unsigned __tile_udn0_receive (void)
unsigned __tile_udn1_receive (void)
unsigned __tile_udn2_receive (void)
unsigned __tile_udn3_receive (void)
void __tile_idn_send (unsigned)
void __tile_sn_send (unsigned)
void __tile_udn_send (unsigned)
</pre></div>
<p>The intrinsic <code>void __tile_network_barrier (void)</code> is used to
guarantee that no network operations before it are reordered with
those after it.
</p>
<hr>
<a name="x86-Built_002din-Functions"></a>
<div class="header">
<p>
Next: <a href="#x86-transactional-memory-intrinsics" accesskey="n" rel="next">x86 transactional memory intrinsics</a>, Previous: <a href="#TILEPro-Built_002din-Functions" accesskey="p" rel="prev">TILEPro Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86-Built_002din-Functions-1"></a>
<h4 class="subsection">6.59.33 x86 Built-in Functions</h4>
<p>These built-in functions are available for the x86-32 and x86-64 family
of computers, depending on the command-line switches used.
</p>
<p>If you specify command-line switches such as <samp>-msse</samp>,
the compiler could use the extended instruction sets even if the built-ins
are not used explicitly in the program. For this reason, applications
that perform run-time CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular,
the file containing the CPU detection code should be compiled without
these options.
</p>
<p>The following machine modes are available for use with MMX built-in functions
(see <a href="#Vector-Extensions">Vector Extensions</a>): <code>V2SI</code> for a vector of two 32-bit integers,
<code>V4HI</code> for a vector of four 16-bit integers, and <code>V8QI</code> for a
vector of eight 8-bit integers. Some of the built-in functions operate on
MMX registers as a whole 64-bit entity, these use <code>V1DI</code> as their mode.
</p>
<p>If 3DNow! extensions are enabled, <code>V2SF</code> is used as a mode for a vector
of two 32-bit floating-point values.
</p>
<p>If SSE extensions are enabled, <code>V4SF</code> is used for a vector of four 32-bit
floating-point values. Some instructions use a vector of four 32-bit
integers, these use <code>V4SI</code>. Finally, some instructions operate on an
entire vector register, interpreting it as a 128-bit integer, these use mode
<code>TI</code>.
</p>
<p>The x86-32 and x86-64 family of processors use additional built-in
functions for efficient use of <code>TF</code> (<code>__float128</code>) 128-bit
floating point and <code>TC</code> 128-bit complex floating-point values.
</p>
<p>The following floating-point built-in functions are always available. All
of them implement the function that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">__float128 __builtin_fabsq (__float128)
__float128 __builtin_copysignq (__float128, __float128)
</pre></div>
<p>The following built-in functions are always available.
</p>
<dl compact="compact">
<dt><code>__float128 __builtin_infq (void)</code></dt>
<dd><p>Similar to <code>__builtin_inf</code>, except the return type is <code>__float128</code>.
<a name="index-_005f_005fbuiltin_005finfq"></a>
</p>
</dd>
<dt><code>__float128 __builtin_huge_valq (void)</code></dt>
<dd><p>Similar to <code>__builtin_huge_val</code>, except the return type is <code>__float128</code>.
<a name="index-_005f_005fbuiltin_005fhuge_005fvalq"></a>
</p>
</dd>
<dt><code>__float128 __builtin_nanq (void)</code></dt>
<dd><p>Similar to <code>__builtin_nan</code>, except the return type is <code>__float128</code>.
<a name="index-_005f_005fbuiltin_005fnanq"></a>
</p>
</dd>
<dt><code>__float128 __builtin_nansq (void)</code></dt>
<dd><p>Similar to <code>__builtin_nans</code>, except the return type is <code>__float128</code>.
<a name="index-_005f_005fbuiltin_005fnansq"></a>
</p></dd>
</dl>
<p>The following built-in function is always available.
</p>
<dl compact="compact">
<dt><code>void __builtin_ia32_pause (void)</code></dt>
<dd><p>Generates the <code>pause</code> machine instruction with a compiler memory
barrier.
</p></dd>
</dl>
<p>The following built-in functions are always available and can be used to
check the target platform type.
</p>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fcpu_005finit-1"></a>Built-in Function: <em>void</em> <strong>__builtin_cpu_init</strong> <em>(void)</em></dt>
<dd><p>This function runs the CPU detection code to check the type of CPU and the
features supported. This built-in function needs to be invoked along with the built-in functions
to check CPU type and features, <code>__builtin_cpu_is</code> and
<code>__builtin_cpu_supports</code>, only when used in a function that is
executed before any constructors are called. The CPU detection code is
automatically executed in a very high priority constructor.
</p>
<p>For example, this function has to be used in <code>ifunc</code> resolvers that
check for CPU type using the built-in functions <code>__builtin_cpu_is</code>
and <code>__builtin_cpu_supports</code>, or in constructors on targets that
don’t support constructor priority.
</p><div class="smallexample">
<pre class="smallexample">
static void (*resolve_memcpy (void)) (void)
{
// ifunc resolvers fire before constructors, explicitly call the init
// function.
__builtin_cpu_init ();
if (__builtin_cpu_supports ("ssse3"))
return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
else
return default_memcpy;
}
void *memcpy (void *, const void *, size_t)
__attribute__ ((ifunc ("resolve_memcpy")));
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fcpu_005fis-1"></a>Built-in Function: <em>int</em> <strong>__builtin_cpu_is</strong> <em>(const char *<var>cpuname</var>)</em></dt>
<dd><p>This function returns a positive integer if the run-time CPU
is of type <var>cpuname</var>
and returns <code>0</code> otherwise. The following CPU names can be detected:
</p>
<dl compact="compact">
<dt>‘<samp>intel</samp>’</dt>
<dd><p>Intel CPU.
</p>
</dd>
<dt>‘<samp>atom</samp>’</dt>
<dd><p>Intel Atom CPU.
</p>
</dd>
<dt>‘<samp>core2</samp>’</dt>
<dd><p>Intel Core 2 CPU.
</p>
</dd>
<dt>‘<samp>corei7</samp>’</dt>
<dd><p>Intel Core i7 CPU.
</p>
</dd>
<dt>‘<samp>nehalem</samp>’</dt>
<dd><p>Intel Core i7 Nehalem CPU.
</p>
</dd>
<dt>‘<samp>westmere</samp>’</dt>
<dd><p>Intel Core i7 Westmere CPU.
</p>
</dd>
<dt>‘<samp>sandybridge</samp>’</dt>
<dd><p>Intel Core i7 Sandy Bridge CPU.
</p>
</dd>
<dt>‘<samp>amd</samp>’</dt>
<dd><p>AMD CPU.
</p>
</dd>
<dt>‘<samp>amdfam10h</samp>’</dt>
<dd><p>AMD Family 10h CPU.
</p>
</dd>
<dt>‘<samp>barcelona</samp>’</dt>
<dd><p>AMD Family 10h Barcelona CPU.
</p>
</dd>
<dt>‘<samp>shanghai</samp>’</dt>
<dd><p>AMD Family 10h Shanghai CPU.
</p>
</dd>
<dt>‘<samp>istanbul</samp>’</dt>
<dd><p>AMD Family 10h Istanbul CPU.
</p>
</dd>
<dt>‘<samp>btver1</samp>’</dt>
<dd><p>AMD Family 14h CPU.
</p>
</dd>
<dt>‘<samp>amdfam15h</samp>’</dt>
<dd><p>AMD Family 15h CPU.
</p>
</dd>
<dt>‘<samp>bdver1</samp>’</dt>
<dd><p>AMD Family 15h Bulldozer version 1.
</p>
</dd>
<dt>‘<samp>bdver2</samp>’</dt>
<dd><p>AMD Family 15h Bulldozer version 2.
</p>
</dd>
<dt>‘<samp>bdver3</samp>’</dt>
<dd><p>AMD Family 15h Bulldozer version 3.
</p>
</dd>
<dt>‘<samp>bdver4</samp>’</dt>
<dd><p>AMD Family 15h Bulldozer version 4.
</p>
</dd>
<dt>‘<samp>btver2</samp>’</dt>
<dd><p>AMD Family 16h CPU.
</p>
</dd>
<dt>‘<samp>amdfam17h</samp>’</dt>
<dd><p>AMD Family 17h CPU.
</p>
</dd>
<dt>‘<samp>znver1</samp>’</dt>
<dd><p>AMD Family 17h Zen version 1.
</p></dd>
</dl>
<p>Here is an example:
</p><div class="smallexample">
<pre class="smallexample">if (__builtin_cpu_is ("corei7"))
{
do_corei7 (); // Core i7 specific implementation.
}
else
{
do_generic (); // Generic implementation.
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-_005f_005fbuiltin_005fcpu_005fsupports-1"></a>Built-in Function: <em>int</em> <strong>__builtin_cpu_supports</strong> <em>(const char *<var>feature</var>)</em></dt>
<dd><p>This function returns a positive integer if the run-time CPU
supports <var>feature</var>
and returns <code>0</code> otherwise. The following features can be detected:
</p>
<dl compact="compact">
<dt>‘<samp>cmov</samp>’</dt>
<dd><p>CMOV instruction.
</p></dd>
<dt>‘<samp>mmx</samp>’</dt>
<dd><p>MMX instructions.
</p></dd>
<dt>‘<samp>popcnt</samp>’</dt>
<dd><p>POPCNT instruction.
</p></dd>
<dt>‘<samp>sse</samp>’</dt>
<dd><p>SSE instructions.
</p></dd>
<dt>‘<samp>sse2</samp>’</dt>
<dd><p>SSE2 instructions.
</p></dd>
<dt>‘<samp>sse3</samp>’</dt>
<dd><p>SSE3 instructions.
</p></dd>
<dt>‘<samp>ssse3</samp>’</dt>
<dd><p>SSSE3 instructions.
</p></dd>
<dt>‘<samp>sse4.1</samp>’</dt>
<dd><p>SSE4.1 instructions.
</p></dd>
<dt>‘<samp>sse4.2</samp>’</dt>
<dd><p>SSE4.2 instructions.
</p></dd>
<dt>‘<samp>avx</samp>’</dt>
<dd><p>AVX instructions.
</p></dd>
<dt>‘<samp>avx2</samp>’</dt>
<dd><p>AVX2 instructions.
</p></dd>
<dt>‘<samp>avx512f</samp>’</dt>
<dd><p>AVX512F instructions.
</p></dd>
</dl>
<p>Here is an example:
</p><div class="smallexample">
<pre class="smallexample">if (__builtin_cpu_supports ("popcnt"))
{
asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
}
else
{
count = generic_countbits (n); //generic implementation.
}
</pre></div>
</dd></dl>
<p>The following built-in functions are made available by <samp>-mmmx</samp>.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">v8qi __builtin_ia32_paddb (v8qi, v8qi)
v4hi __builtin_ia32_paddw (v4hi, v4hi)
v2si __builtin_ia32_paddd (v2si, v2si)
v8qi __builtin_ia32_psubb (v8qi, v8qi)
v4hi __builtin_ia32_psubw (v4hi, v4hi)
v2si __builtin_ia32_psubd (v2si, v2si)
v8qi __builtin_ia32_paddsb (v8qi, v8qi)
v4hi __builtin_ia32_paddsw (v4hi, v4hi)
v8qi __builtin_ia32_psubsb (v8qi, v8qi)
v4hi __builtin_ia32_psubsw (v4hi, v4hi)
v8qi __builtin_ia32_paddusb (v8qi, v8qi)
v4hi __builtin_ia32_paddusw (v4hi, v4hi)
v8qi __builtin_ia32_psubusb (v8qi, v8qi)
v4hi __builtin_ia32_psubusw (v4hi, v4hi)
v4hi __builtin_ia32_pmullw (v4hi, v4hi)
v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
di __builtin_ia32_pand (di, di)
di __builtin_ia32_pandn (di,di)
di __builtin_ia32_por (di, di)
di __builtin_ia32_pxor (di, di)
v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
v2si __builtin_ia32_pcmpeqd (v2si, v2si)
v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
v2si __builtin_ia32_pcmpgtd (v2si, v2si)
v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
v2si __builtin_ia32_punpckhdq (v2si, v2si)
v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
v2si __builtin_ia32_punpckldq (v2si, v2si)
v8qi __builtin_ia32_packsswb (v4hi, v4hi)
v4hi __builtin_ia32_packssdw (v2si, v2si)
v8qi __builtin_ia32_packuswb (v4hi, v4hi)
v4hi __builtin_ia32_psllw (v4hi, v4hi)
v2si __builtin_ia32_pslld (v2si, v2si)
v1di __builtin_ia32_psllq (v1di, v1di)
v4hi __builtin_ia32_psrlw (v4hi, v4hi)
v2si __builtin_ia32_psrld (v2si, v2si)
v1di __builtin_ia32_psrlq (v1di, v1di)
v4hi __builtin_ia32_psraw (v4hi, v4hi)
v2si __builtin_ia32_psrad (v2si, v2si)
v4hi __builtin_ia32_psllwi (v4hi, int)
v2si __builtin_ia32_pslldi (v2si, int)
v1di __builtin_ia32_psllqi (v1di, int)
v4hi __builtin_ia32_psrlwi (v4hi, int)
v2si __builtin_ia32_psrldi (v2si, int)
v1di __builtin_ia32_psrlqi (v1di, int)
v4hi __builtin_ia32_psrawi (v4hi, int)
v2si __builtin_ia32_psradi (v2si, int)
</pre></div>
<p>The following built-in functions are made available either with
<samp>-msse</samp>, or with <samp>-m3dnowa</samp>. All of them generate
the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
v8qi __builtin_ia32_pavgb (v8qi, v8qi)
v4hi __builtin_ia32_pavgw (v4hi, v4hi)
v1di __builtin_ia32_psadbw (v8qi, v8qi)
v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
v8qi __builtin_ia32_pminub (v8qi, v8qi)
v4hi __builtin_ia32_pminsw (v4hi, v4hi)
int __builtin_ia32_pmovmskb (v8qi)
void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
void __builtin_ia32_movntq (di *, di)
void __builtin_ia32_sfence (void)
</pre></div>
<p>The following built-in functions are available when <samp>-msse</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">int __builtin_ia32_comieq (v4sf, v4sf)
int __builtin_ia32_comineq (v4sf, v4sf)
int __builtin_ia32_comilt (v4sf, v4sf)
int __builtin_ia32_comile (v4sf, v4sf)
int __builtin_ia32_comigt (v4sf, v4sf)
int __builtin_ia32_comige (v4sf, v4sf)
int __builtin_ia32_ucomieq (v4sf, v4sf)
int __builtin_ia32_ucomineq (v4sf, v4sf)
int __builtin_ia32_ucomilt (v4sf, v4sf)
int __builtin_ia32_ucomile (v4sf, v4sf)
int __builtin_ia32_ucomigt (v4sf, v4sf)
int __builtin_ia32_ucomige (v4sf, v4sf)
v4sf __builtin_ia32_addps (v4sf, v4sf)
v4sf __builtin_ia32_subps (v4sf, v4sf)
v4sf __builtin_ia32_mulps (v4sf, v4sf)
v4sf __builtin_ia32_divps (v4sf, v4sf)
v4sf __builtin_ia32_addss (v4sf, v4sf)
v4sf __builtin_ia32_subss (v4sf, v4sf)
v4sf __builtin_ia32_mulss (v4sf, v4sf)
v4sf __builtin_ia32_divss (v4sf, v4sf)
v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
v4sf __builtin_ia32_cmpless (v4sf, v4sf)
v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
v4sf __builtin_ia32_maxps (v4sf, v4sf)
v4sf __builtin_ia32_maxss (v4sf, v4sf)
v4sf __builtin_ia32_minps (v4sf, v4sf)
v4sf __builtin_ia32_minss (v4sf, v4sf)
v4sf __builtin_ia32_andps (v4sf, v4sf)
v4sf __builtin_ia32_andnps (v4sf, v4sf)
v4sf __builtin_ia32_orps (v4sf, v4sf)
v4sf __builtin_ia32_xorps (v4sf, v4sf)
v4sf __builtin_ia32_movss (v4sf, v4sf)
v4sf __builtin_ia32_movhlps (v4sf, v4sf)
v4sf __builtin_ia32_movlhps (v4sf, v4sf)
v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
v2si __builtin_ia32_cvtps2pi (v4sf)
int __builtin_ia32_cvtss2si (v4sf)
v2si __builtin_ia32_cvttps2pi (v4sf)
int __builtin_ia32_cvttss2si (v4sf)
v4sf __builtin_ia32_rcpps (v4sf)
v4sf __builtin_ia32_rsqrtps (v4sf)
v4sf __builtin_ia32_sqrtps (v4sf)
v4sf __builtin_ia32_rcpss (v4sf)
v4sf __builtin_ia32_rsqrtss (v4sf)
v4sf __builtin_ia32_sqrtss (v4sf)
v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
void __builtin_ia32_movntps (float *, v4sf)
int __builtin_ia32_movmskps (v4sf)
</pre></div>
<p>The following built-in functions are available when <samp>-msse</samp> is used.
</p>
<dl compact="compact">
<dt><code>v4sf __builtin_ia32_loadups (float *)</code></dt>
<dd><p>Generates the <code>movups</code> machine instruction as a load from memory.
</p></dd>
<dt><code>void __builtin_ia32_storeups (float *, v4sf)</code></dt>
<dd><p>Generates the <code>movups</code> machine instruction as a store to memory.
</p></dd>
<dt><code>v4sf __builtin_ia32_loadss (float *)</code></dt>
<dd><p>Generates the <code>movss</code> machine instruction as a load from memory.
</p></dd>
<dt><code>v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)</code></dt>
<dd><p>Generates the <code>movhps</code> machine instruction as a load from memory.
</p></dd>
<dt><code>v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)</code></dt>
<dd><p>Generates the <code>movlps</code> machine instruction as a load from memory
</p></dd>
<dt><code>void __builtin_ia32_storehps (v2sf *, v4sf)</code></dt>
<dd><p>Generates the <code>movhps</code> machine instruction as a store to memory.
</p></dd>
<dt><code>void __builtin_ia32_storelps (v2sf *, v4sf)</code></dt>
<dd><p>Generates the <code>movlps</code> machine instruction as a store to memory.
</p></dd>
</dl>
<p>The following built-in functions are available when <samp>-msse2</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">int __builtin_ia32_comisdeq (v2df, v2df)
int __builtin_ia32_comisdlt (v2df, v2df)
int __builtin_ia32_comisdle (v2df, v2df)
int __builtin_ia32_comisdgt (v2df, v2df)
int __builtin_ia32_comisdge (v2df, v2df)
int __builtin_ia32_comisdneq (v2df, v2df)
int __builtin_ia32_ucomisdeq (v2df, v2df)
int __builtin_ia32_ucomisdlt (v2df, v2df)
int __builtin_ia32_ucomisdle (v2df, v2df)
int __builtin_ia32_ucomisdgt (v2df, v2df)
int __builtin_ia32_ucomisdge (v2df, v2df)
int __builtin_ia32_ucomisdneq (v2df, v2df)
v2df __builtin_ia32_cmpeqpd (v2df, v2df)
v2df __builtin_ia32_cmpltpd (v2df, v2df)
v2df __builtin_ia32_cmplepd (v2df, v2df)
v2df __builtin_ia32_cmpgtpd (v2df, v2df)
v2df __builtin_ia32_cmpgepd (v2df, v2df)
v2df __builtin_ia32_cmpunordpd (v2df, v2df)
v2df __builtin_ia32_cmpneqpd (v2df, v2df)
v2df __builtin_ia32_cmpnltpd (v2df, v2df)
v2df __builtin_ia32_cmpnlepd (v2df, v2df)
v2df __builtin_ia32_cmpngtpd (v2df, v2df)
v2df __builtin_ia32_cmpngepd (v2df, v2df)
v2df __builtin_ia32_cmpordpd (v2df, v2df)
v2df __builtin_ia32_cmpeqsd (v2df, v2df)
v2df __builtin_ia32_cmpltsd (v2df, v2df)
v2df __builtin_ia32_cmplesd (v2df, v2df)
v2df __builtin_ia32_cmpunordsd (v2df, v2df)
v2df __builtin_ia32_cmpneqsd (v2df, v2df)
v2df __builtin_ia32_cmpnltsd (v2df, v2df)
v2df __builtin_ia32_cmpnlesd (v2df, v2df)
v2df __builtin_ia32_cmpordsd (v2df, v2df)
v2di __builtin_ia32_paddq (v2di, v2di)
v2di __builtin_ia32_psubq (v2di, v2di)
v2df __builtin_ia32_addpd (v2df, v2df)
v2df __builtin_ia32_subpd (v2df, v2df)
v2df __builtin_ia32_mulpd (v2df, v2df)
v2df __builtin_ia32_divpd (v2df, v2df)
v2df __builtin_ia32_addsd (v2df, v2df)
v2df __builtin_ia32_subsd (v2df, v2df)
v2df __builtin_ia32_mulsd (v2df, v2df)
v2df __builtin_ia32_divsd (v2df, v2df)
v2df __builtin_ia32_minpd (v2df, v2df)
v2df __builtin_ia32_maxpd (v2df, v2df)
v2df __builtin_ia32_minsd (v2df, v2df)
v2df __builtin_ia32_maxsd (v2df, v2df)
v2df __builtin_ia32_andpd (v2df, v2df)
v2df __builtin_ia32_andnpd (v2df, v2df)
v2df __builtin_ia32_orpd (v2df, v2df)
v2df __builtin_ia32_xorpd (v2df, v2df)
v2df __builtin_ia32_movsd (v2df, v2df)
v2df __builtin_ia32_unpckhpd (v2df, v2df)
v2df __builtin_ia32_unpcklpd (v2df, v2df)
v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
v4si __builtin_ia32_paddd128 (v4si, v4si)
v2di __builtin_ia32_paddq128 (v2di, v2di)
v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
v4si __builtin_ia32_psubd128 (v4si, v4si)
v2di __builtin_ia32_psubq128 (v2di, v2di)
v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
v2di __builtin_ia32_pand128 (v2di, v2di)
v2di __builtin_ia32_pandn128 (v2di, v2di)
v2di __builtin_ia32_por128 (v2di, v2di)
v2di __builtin_ia32_pxor128 (v2di, v2di)
v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
v4si __builtin_ia32_punpckldq128 (v4si, v4si)
v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
v8hi __builtin_ia32_packssdw128 (v4si, v4si)
v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
void __builtin_ia32_maskmovdqu (v16qi, v16qi)
v2df __builtin_ia32_loadupd (double *)
void __builtin_ia32_storeupd (double *, v2df)
v2df __builtin_ia32_loadhpd (v2df, double const *)
v2df __builtin_ia32_loadlpd (v2df, double const *)
int __builtin_ia32_movmskpd (v2df)
int __builtin_ia32_pmovmskb128 (v16qi)
void __builtin_ia32_movnti (int *, int)
void __builtin_ia32_movnti64 (long long int *, long long int)
void __builtin_ia32_movntpd (double *, v2df)
void __builtin_ia32_movntdq (v2df *, v2df)
v4si __builtin_ia32_pshufd (v4si, int)
v8hi __builtin_ia32_pshuflw (v8hi, int)
v8hi __builtin_ia32_pshufhw (v8hi, int)
v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
v2df __builtin_ia32_sqrtpd (v2df)
v2df __builtin_ia32_sqrtsd (v2df)
v2df __builtin_ia32_shufpd (v2df, v2df, int)
v2df __builtin_ia32_cvtdq2pd (v4si)
v4sf __builtin_ia32_cvtdq2ps (v4si)
v4si __builtin_ia32_cvtpd2dq (v2df)
v2si __builtin_ia32_cvtpd2pi (v2df)
v4sf __builtin_ia32_cvtpd2ps (v2df)
v4si __builtin_ia32_cvttpd2dq (v2df)
v2si __builtin_ia32_cvttpd2pi (v2df)
v2df __builtin_ia32_cvtpi2pd (v2si)
int __builtin_ia32_cvtsd2si (v2df)
int __builtin_ia32_cvttsd2si (v2df)
long long __builtin_ia32_cvtsd2si64 (v2df)
long long __builtin_ia32_cvttsd2si64 (v2df)
v4si __builtin_ia32_cvtps2dq (v4sf)
v2df __builtin_ia32_cvtps2pd (v4sf)
v4si __builtin_ia32_cvttps2dq (v4sf)
v2df __builtin_ia32_cvtsi2sd (v2df, int)
v2df __builtin_ia32_cvtsi642sd (v2df, long long)
v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
void __builtin_ia32_clflush (const void *)
void __builtin_ia32_lfence (void)
void __builtin_ia32_mfence (void)
v16qi __builtin_ia32_loaddqu (const char *)
void __builtin_ia32_storedqu (char *, v16qi)
v1di __builtin_ia32_pmuludq (v2si, v2si)
v2di __builtin_ia32_pmuludq128 (v4si, v4si)
v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
v4si __builtin_ia32_pslld128 (v4si, v4si)
v2di __builtin_ia32_psllq128 (v2di, v2di)
v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
v4si __builtin_ia32_psrld128 (v4si, v4si)
v2di __builtin_ia32_psrlq128 (v2di, v2di)
v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
v4si __builtin_ia32_psrad128 (v4si, v4si)
v2di __builtin_ia32_pslldqi128 (v2di, int)
v8hi __builtin_ia32_psllwi128 (v8hi, int)
v4si __builtin_ia32_pslldi128 (v4si, int)
v2di __builtin_ia32_psllqi128 (v2di, int)
v2di __builtin_ia32_psrldqi128 (v2di, int)
v8hi __builtin_ia32_psrlwi128 (v8hi, int)
v4si __builtin_ia32_psrldi128 (v4si, int)
v2di __builtin_ia32_psrlqi128 (v2di, int)
v8hi __builtin_ia32_psrawi128 (v8hi, int)
v4si __builtin_ia32_psradi128 (v4si, int)
v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
v2di __builtin_ia32_movq128 (v2di)
</pre></div>
<p>The following built-in functions are available when <samp>-msse3</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">v2df __builtin_ia32_addsubpd (v2df, v2df)
v4sf __builtin_ia32_addsubps (v4sf, v4sf)
v2df __builtin_ia32_haddpd (v2df, v2df)
v4sf __builtin_ia32_haddps (v4sf, v4sf)
v2df __builtin_ia32_hsubpd (v2df, v2df)
v4sf __builtin_ia32_hsubps (v4sf, v4sf)
v16qi __builtin_ia32_lddqu (char const *)
void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
v4sf __builtin_ia32_movshdup (v4sf)
v4sf __builtin_ia32_movsldup (v4sf)
void __builtin_ia32_mwait (unsigned int, unsigned int)
</pre></div>
<p>The following built-in functions are available when <samp>-mssse3</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">v2si __builtin_ia32_phaddd (v2si, v2si)
v4hi __builtin_ia32_phaddw (v4hi, v4hi)
v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
v2si __builtin_ia32_phsubd (v2si, v2si)
v4hi __builtin_ia32_phsubw (v4hi, v4hi)
v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
v8qi __builtin_ia32_pshufb (v8qi, v8qi)
v8qi __builtin_ia32_psignb (v8qi, v8qi)
v2si __builtin_ia32_psignd (v2si, v2si)
v4hi __builtin_ia32_psignw (v4hi, v4hi)
v1di __builtin_ia32_palignr (v1di, v1di, int)
v8qi __builtin_ia32_pabsb (v8qi)
v2si __builtin_ia32_pabsd (v2si)
v4hi __builtin_ia32_pabsw (v4hi)
</pre></div>
<p>The following built-in functions are available when <samp>-mssse3</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">v4si __builtin_ia32_phaddd128 (v4si, v4si)
v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
v4si __builtin_ia32_phsubd128 (v4si, v4si)
v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
v4si __builtin_ia32_psignd128 (v4si, v4si)
v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
v2di __builtin_ia32_palignr128 (v2di, v2di, int)
v16qi __builtin_ia32_pabsb128 (v16qi)
v4si __builtin_ia32_pabsd128 (v4si)
v8hi __builtin_ia32_pabsw128 (v8hi)
</pre></div>
<p>The following built-in functions are available when <samp>-msse4.1</samp> is
used. All of them generate the machine instruction that is part of the
name.
</p>
<div class="smallexample">
<pre class="smallexample">v2df __builtin_ia32_blendpd (v2df, v2df, const int)
v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_dppd (v2df, v2df, const int)
v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
v2di __builtin_ia32_movntdqa (v2di *);
v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
v8hi __builtin_ia32_packusdw128 (v4si, v4si)
v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
v2di __builtin_ia32_pcmpeqq (v2di, v2di)
v8hi __builtin_ia32_phminposuw128 (v8hi)
v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
v4si __builtin_ia32_pmaxud128 (v4si, v4si)
v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
v4si __builtin_ia32_pminsd128 (v4si, v4si)
v4si __builtin_ia32_pminud128 (v4si, v4si)
v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
v4si __builtin_ia32_pmovsxbd128 (v16qi)
v2di __builtin_ia32_pmovsxbq128 (v16qi)
v8hi __builtin_ia32_pmovsxbw128 (v16qi)
v2di __builtin_ia32_pmovsxdq128 (v4si)
v4si __builtin_ia32_pmovsxwd128 (v8hi)
v2di __builtin_ia32_pmovsxwq128 (v8hi)
v4si __builtin_ia32_pmovzxbd128 (v16qi)
v2di __builtin_ia32_pmovzxbq128 (v16qi)
v8hi __builtin_ia32_pmovzxbw128 (v16qi)
v2di __builtin_ia32_pmovzxdq128 (v4si)
v4si __builtin_ia32_pmovzxwd128 (v8hi)
v2di __builtin_ia32_pmovzxwq128 (v8hi)
v2di __builtin_ia32_pmuldq128 (v4si, v4si)
v4si __builtin_ia32_pmulld128 (v4si, v4si)
int __builtin_ia32_ptestc128 (v2di, v2di)
int __builtin_ia32_ptestnzc128 (v2di, v2di)
int __builtin_ia32_ptestz128 (v2di, v2di)
v2df __builtin_ia32_roundpd (v2df, const int)
v4sf __builtin_ia32_roundps (v4sf, const int)
v2df __builtin_ia32_roundsd (v2df, v2df, const int)
v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
</pre></div>
<p>The following built-in functions are available when <samp>-msse4.1</samp> is
used.
</p>
<dl compact="compact">
<dt><code>v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)</code></dt>
<dd><p>Generates the <code>insertps</code> machine instruction.
</p></dd>
<dt><code>int __builtin_ia32_vec_ext_v16qi (v16qi, const int)</code></dt>
<dd><p>Generates the <code>pextrb</code> machine instruction.
</p></dd>
<dt><code>v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)</code></dt>
<dd><p>Generates the <code>pinsrb</code> machine instruction.
</p></dd>
<dt><code>v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)</code></dt>
<dd><p>Generates the <code>pinsrd</code> machine instruction.
</p></dd>
<dt><code>v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)</code></dt>
<dd><p>Generates the <code>pinsrq</code> machine instruction in 64bit mode.
</p></dd>
</dl>
<p>The following built-in functions are changed to generate new SSE4.1
instructions when <samp>-msse4.1</samp> is used.
</p>
<dl compact="compact">
<dt><code>float __builtin_ia32_vec_ext_v4sf (v4sf, const int)</code></dt>
<dd><p>Generates the <code>extractps</code> machine instruction.
</p></dd>
<dt><code>int __builtin_ia32_vec_ext_v4si (v4si, const int)</code></dt>
<dd><p>Generates the <code>pextrd</code> machine instruction.
</p></dd>
<dt><code>long long __builtin_ia32_vec_ext_v2di (v2di, const int)</code></dt>
<dd><p>Generates the <code>pextrq</code> machine instruction in 64bit mode.
</p></dd>
</dl>
<p>The following built-in functions are available when <samp>-msse4.2</samp> is
used. All of them generate the machine instruction that is part of the
name.
</p>
<div class="smallexample">
<pre class="smallexample">v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
v2di __builtin_ia32_pcmpgtq (v2di, v2di)
</pre></div>
<p>The following built-in functions are available when <samp>-msse4.2</samp> is
used.
</p>
<dl compact="compact">
<dt><code>unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)</code></dt>
<dd><p>Generates the <code>crc32b</code> machine instruction.
</p></dd>
<dt><code>unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)</code></dt>
<dd><p>Generates the <code>crc32w</code> machine instruction.
</p></dd>
<dt><code>unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)</code></dt>
<dd><p>Generates the <code>crc32l</code> machine instruction.
</p></dd>
<dt><code>unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)</code></dt>
<dd><p>Generates the <code>crc32q</code> machine instruction.
</p></dd>
</dl>
<p>The following built-in functions are changed to generate new SSE4.2
instructions when <samp>-msse4.2</samp> is used.
</p>
<dl compact="compact">
<dt><code>int __builtin_popcount (unsigned int)</code></dt>
<dd><p>Generates the <code>popcntl</code> machine instruction.
</p></dd>
<dt><code>int __builtin_popcountl (unsigned long)</code></dt>
<dd><p>Generates the <code>popcntl</code> or <code>popcntq</code> machine instruction,
depending on the size of <code>unsigned long</code>.
</p></dd>
<dt><code>int __builtin_popcountll (unsigned long long)</code></dt>
<dd><p>Generates the <code>popcntq</code> machine instruction.
</p></dd>
</dl>
<p>The following built-in functions are available when <samp>-mavx</samp> is
used. All of them generate the machine instruction that is part of the
name.
</p>
<div class="smallexample">
<pre class="smallexample">v4df __builtin_ia32_addpd256 (v4df,v4df)
v8sf __builtin_ia32_addps256 (v8sf,v8sf)
v4df __builtin_ia32_addsubpd256 (v4df,v4df)
v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
v4df __builtin_ia32_andnpd256 (v4df,v4df)
v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
v4df __builtin_ia32_andpd256 (v4df,v4df)
v8sf __builtin_ia32_andps256 (v8sf,v8sf)
v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
v2df __builtin_ia32_cmppd (v2df,v2df,int)
v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
v2df __builtin_ia32_cmpsd (v2df,v2df,int)
v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
v4df __builtin_ia32_cvtdq2pd256 (v4si)
v8sf __builtin_ia32_cvtdq2ps256 (v8si)
v4si __builtin_ia32_cvtpd2dq256 (v4df)
v4sf __builtin_ia32_cvtpd2ps256 (v4df)
v8si __builtin_ia32_cvtps2dq256 (v8sf)
v4df __builtin_ia32_cvtps2pd256 (v4sf)
v4si __builtin_ia32_cvttpd2dq256 (v4df)
v8si __builtin_ia32_cvttps2dq256 (v8sf)
v4df __builtin_ia32_divpd256 (v4df,v4df)
v8sf __builtin_ia32_divps256 (v8sf,v8sf)
v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
v4df __builtin_ia32_haddpd256 (v4df,v4df)
v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
v4df __builtin_ia32_hsubpd256 (v4df,v4df)
v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
v32qi __builtin_ia32_lddqu256 (pcchar)
v32qi __builtin_ia32_loaddqu256 (pcchar)
v4df __builtin_ia32_loadupd256 (pcdouble)
v8sf __builtin_ia32_loadups256 (pcfloat)
v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
v4df __builtin_ia32_maxpd256 (v4df,v4df)
v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
v4df __builtin_ia32_minpd256 (v4df,v4df)
v8sf __builtin_ia32_minps256 (v8sf,v8sf)
v4df __builtin_ia32_movddup256 (v4df)
int __builtin_ia32_movmskpd256 (v4df)
int __builtin_ia32_movmskps256 (v8sf)
v8sf __builtin_ia32_movshdup256 (v8sf)
v8sf __builtin_ia32_movsldup256 (v8sf)
v4df __builtin_ia32_mulpd256 (v4df,v4df)
v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
v4df __builtin_ia32_orpd256 (v4df,v4df)
v8sf __builtin_ia32_orps256 (v8sf,v8sf)
v2df __builtin_ia32_pd_pd256 (v4df)
v4df __builtin_ia32_pd256_pd (v2df)
v4sf __builtin_ia32_ps_ps256 (v8sf)
v8sf __builtin_ia32_ps256_ps (v4sf)
int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
v8sf __builtin_ia32_rcpps256 (v8sf)
v4df __builtin_ia32_roundpd256 (v4df,int)
v8sf __builtin_ia32_roundps256 (v8sf,int)
v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
v8sf __builtin_ia32_rsqrtps256 (v8sf)
v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
v4si __builtin_ia32_si_si256 (v8si)
v8si __builtin_ia32_si256_si (v4si)
v4df __builtin_ia32_sqrtpd256 (v4df)
v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
v8sf __builtin_ia32_sqrtps256 (v8sf)
void __builtin_ia32_storedqu256 (pchar,v32qi)
void __builtin_ia32_storeupd256 (pdouble,v4df)
void __builtin_ia32_storeups256 (pfloat,v8sf)
v4df __builtin_ia32_subpd256 (v4df,v4df)
v8sf __builtin_ia32_subps256 (v8sf,v8sf)
v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
v4sf __builtin_ia32_vbroadcastss (pcfloat)
v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
v4si __builtin_ia32_vextractf128_si256 (v8si,int)
v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
v2df __builtin_ia32_vpermilpd (v2df,int)
v4df __builtin_ia32_vpermilpd256 (v4df,int)
v4sf __builtin_ia32_vpermilps (v4sf,int)
v8sf __builtin_ia32_vpermilps256 (v8sf,int)
v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
void __builtin_ia32_vzeroall (void)
void __builtin_ia32_vzeroupper (void)
v4df __builtin_ia32_xorpd256 (v4df,v4df)
v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
</pre></div>
<p>The following built-in functions are available when <samp>-mavx2</samp> is
used. All of them generate the machine instruction that is part of the
name.
</p>
<div class="smallexample">
<pre class="smallexample">v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
v32qi __builtin_ia32_pabsb256 (v32qi)
v16hi __builtin_ia32_pabsw256 (v16hi)
v8si __builtin_ia32_pabsd256 (v8si)
v16hi __builtin_ia32_packssdw256 (v8si,v8si)
v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
v16hi __builtin_ia32_packusdw256 (v8si,v8si)
v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
v8si __builtin_ia32_paddd256 (v8si,v8si)
v4di __builtin_ia32_paddq256 (v4di,v4di)
v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
v4di __builtin_ia32_palignr256 (v4di,v4di,int)
v4di __builtin_ia32_andsi256 (v4di,v4di)
v4di __builtin_ia32_andnotsi256 (v4di,v4di)
v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
v8si __builtin_ia32_phaddd256 (v8si,v8si)
v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
v8si __builtin_ia32_phsubd256 (v8si,v8si)
v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
v8si __builtin_ia32_pmaxud256 (v8si,v8si)
v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
v8si __builtin_ia32_pminsd256 (v8si,v8si)
v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
v8si __builtin_ia32_pminud256 (v8si,v8si)
int __builtin_ia32_pmovmskb256 (v32qi)
v16hi __builtin_ia32_pmovsxbw256 (v16qi)
v8si __builtin_ia32_pmovsxbd256 (v16qi)
v4di __builtin_ia32_pmovsxbq256 (v16qi)
v8si __builtin_ia32_pmovsxwd256 (v8hi)
v4di __builtin_ia32_pmovsxwq256 (v8hi)
v4di __builtin_ia32_pmovsxdq256 (v4si)
v16hi __builtin_ia32_pmovzxbw256 (v16qi)
v8si __builtin_ia32_pmovzxbd256 (v16qi)
v4di __builtin_ia32_pmovzxbq256 (v16qi)
v8si __builtin_ia32_pmovzxwd256 (v8hi)
v4di __builtin_ia32_pmovzxwq256 (v8hi)
v4di __builtin_ia32_pmovzxdq256 (v4si)
v4di __builtin_ia32_pmuldq256 (v8si,v8si)
v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
v8si __builtin_ia32_pmulld256 (v8si,v8si)
v4di __builtin_ia32_pmuludq256 (v8si,v8si)
v4di __builtin_ia32_por256 (v4di,v4di)
v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
v8si __builtin_ia32_pshufd256 (v8si,int)
v16hi __builtin_ia32_pshufhw256 (v16hi,int)
v16hi __builtin_ia32_pshuflw256 (v16hi,int)
v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
v8si __builtin_ia32_psignd256 (v8si,v8si)
v4di __builtin_ia32_pslldqi256 (v4di,int)
v16hi __builtin_ia32_psllwi256 (16hi,int)
v16hi __builtin_ia32_psllw256(v16hi,v8hi)
v8si __builtin_ia32_pslldi256 (v8si,int)
v8si __builtin_ia32_pslld256(v8si,v4si)
v4di __builtin_ia32_psllqi256 (v4di,int)
v4di __builtin_ia32_psllq256(v4di,v2di)
v16hi __builtin_ia32_psrawi256 (v16hi,int)
v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
v8si __builtin_ia32_psradi256 (v8si,int)
v8si __builtin_ia32_psrad256 (v8si,v4si)
v4di __builtin_ia32_psrldqi256 (v4di, int)
v16hi __builtin_ia32_psrlwi256 (v16hi,int)
v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
v8si __builtin_ia32_psrldi256 (v8si,int)
v8si __builtin_ia32_psrld256 (v8si,v4si)
v4di __builtin_ia32_psrlqi256 (v4di,int)
v4di __builtin_ia32_psrlq256(v4di,v2di)
v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
v8si __builtin_ia32_psubd256 (v8si,v8si)
v4di __builtin_ia32_psubq256 (v4di,v4di)
v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
v8si __builtin_ia32_punpckldq256 (v8si,v8si)
v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
v4di __builtin_ia32_pxor256 (v4di,v4di)
v4di __builtin_ia32_movntdqa256 (pv4di)
v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
v4di __builtin_ia32_vbroadcastsi256 (v2di)
v4si __builtin_ia32_pblendd128 (v4si,v4si)
v8si __builtin_ia32_pblendd256 (v8si,v8si)
v32qi __builtin_ia32_pbroadcastb256 (v16qi)
v16hi __builtin_ia32_pbroadcastw256 (v8hi)
v8si __builtin_ia32_pbroadcastd256 (v4si)
v4di __builtin_ia32_pbroadcastq256 (v2di)
v16qi __builtin_ia32_pbroadcastb128 (v16qi)
v8hi __builtin_ia32_pbroadcastw128 (v8hi)
v4si __builtin_ia32_pbroadcastd128 (v4si)
v2di __builtin_ia32_pbroadcastq128 (v2di)
v8si __builtin_ia32_permvarsi256 (v8si,v8si)
v4df __builtin_ia32_permdf256 (v4df,int)
v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
v4di __builtin_ia32_permdi256 (v4di,int)
v4di __builtin_ia32_permti256 (v4di,v4di,int)
v4di __builtin_ia32_extract128i256 (v4di,int)
v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
v4si __builtin_ia32_maskloadd (pcv4si,v4si)
v2di __builtin_ia32_maskloadq (pcv2di,v2di)
void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
void __builtin_ia32_maskstored (pv4si,v4si,v4si)
void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
v8si __builtin_ia32_psllv8si (v8si,v8si)
v4si __builtin_ia32_psllv4si (v4si,v4si)
v4di __builtin_ia32_psllv4di (v4di,v4di)
v2di __builtin_ia32_psllv2di (v2di,v2di)
v8si __builtin_ia32_psrav8si (v8si,v8si)
v4si __builtin_ia32_psrav4si (v4si,v4si)
v8si __builtin_ia32_psrlv8si (v8si,v8si)
v4si __builtin_ia32_psrlv4si (v4si,v4si)
v4di __builtin_ia32_psrlv4di (v4di,v4di)
v2di __builtin_ia32_psrlv2di (v2di,v2di)
v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
</pre></div>
<p>The following built-in functions are available when <samp>-maes</samp> is
used. All of them generate the machine instruction that is part of the
name.
</p>
<div class="smallexample">
<pre class="smallexample">v2di __builtin_ia32_aesenc128 (v2di, v2di)
v2di __builtin_ia32_aesenclast128 (v2di, v2di)
v2di __builtin_ia32_aesdec128 (v2di, v2di)
v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
v2di __builtin_ia32_aesimc128 (v2di)
</pre></div>
<p>The following built-in function is available when <samp>-mpclmul</samp> is
used.
</p>
<dl compact="compact">
<dt><code>v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)</code></dt>
<dd><p>Generates the <code>pclmulqdq</code> machine instruction.
</p></dd>
</dl>
<p>The following built-in function is available when <samp>-mfsgsbase</samp> is
used. All of them generate the machine instruction that is part of the
name.
</p>
<div class="smallexample">
<pre class="smallexample">unsigned int __builtin_ia32_rdfsbase32 (void)
unsigned long long __builtin_ia32_rdfsbase64 (void)
unsigned int __builtin_ia32_rdgsbase32 (void)
unsigned long long __builtin_ia32_rdgsbase64 (void)
void _writefsbase_u32 (unsigned int)
void _writefsbase_u64 (unsigned long long)
void _writegsbase_u32 (unsigned int)
void _writegsbase_u64 (unsigned long long)
</pre></div>
<p>The following built-in function is available when <samp>-mrdrnd</samp> is
used. All of them generate the machine instruction that is part of the
name.
</p>
<div class="smallexample">
<pre class="smallexample">unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
</pre></div>
<p>The following built-in functions are available when <samp>-msse4a</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">void __builtin_ia32_movntsd (double *, v2df)
void __builtin_ia32_movntss (float *, v4sf)
v2di __builtin_ia32_extrq (v2di, v16qi)
v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
v2di __builtin_ia32_insertq (v2di, v2di)
v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
</pre></div>
<p>The following built-in functions are available when <samp>-mxop</samp> is used.
</p><div class="smallexample">
<pre class="smallexample">v2df __builtin_ia32_vfrczpd (v2df)
v4sf __builtin_ia32_vfrczps (v4sf)
v2df __builtin_ia32_vfrczsd (v2df)
v4sf __builtin_ia32_vfrczss (v4sf)
v4df __builtin_ia32_vfrczpd256 (v4df)
v8sf __builtin_ia32_vfrczps256 (v8sf)
v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
v4si __builtin_ia32_vpcomeqd (v4si, v4si)
v2di __builtin_ia32_vpcomeqq (v2di, v2di)
v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
v4si __builtin_ia32_vpcomequd (v4si, v4si)
v2di __builtin_ia32_vpcomequq (v2di, v2di)
v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
v4si __builtin_ia32_vpcomged (v4si, v4si)
v2di __builtin_ia32_vpcomgeq (v2di, v2di)
v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
v4si __builtin_ia32_vpcomgeud (v4si, v4si)
v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
v4si __builtin_ia32_vpcomgtd (v4si, v4si)
v2di __builtin_ia32_vpcomgtq (v2di, v2di)
v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
v4si __builtin_ia32_vpcomgtud (v4si, v4si)
v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
v4si __builtin_ia32_vpcomled (v4si, v4si)
v2di __builtin_ia32_vpcomleq (v2di, v2di)
v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
v4si __builtin_ia32_vpcomleud (v4si, v4si)
v2di __builtin_ia32_vpcomleuq (v2di, v2di)
v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
v4si __builtin_ia32_vpcomltd (v4si, v4si)
v2di __builtin_ia32_vpcomltq (v2di, v2di)
v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
v4si __builtin_ia32_vpcomltud (v4si, v4si)
v2di __builtin_ia32_vpcomltuq (v2di, v2di)
v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
v4si __builtin_ia32_vpcomned (v4si, v4si)
v2di __builtin_ia32_vpcomneq (v2di, v2di)
v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
v4si __builtin_ia32_vpcomneud (v4si, v4si)
v2di __builtin_ia32_vpcomneuq (v2di, v2di)
v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
v4si __builtin_ia32_vpcomtrued (v4si, v4si)
v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
v4si __builtin_ia32_vphaddbd (v16qi)
v2di __builtin_ia32_vphaddbq (v16qi)
v8hi __builtin_ia32_vphaddbw (v16qi)
v2di __builtin_ia32_vphadddq (v4si)
v4si __builtin_ia32_vphaddubd (v16qi)
v2di __builtin_ia32_vphaddubq (v16qi)
v8hi __builtin_ia32_vphaddubw (v16qi)
v2di __builtin_ia32_vphaddudq (v4si)
v4si __builtin_ia32_vphadduwd (v8hi)
v2di __builtin_ia32_vphadduwq (v8hi)
v4si __builtin_ia32_vphaddwd (v8hi)
v2di __builtin_ia32_vphaddwq (v8hi)
v8hi __builtin_ia32_vphsubbw (v16qi)
v2di __builtin_ia32_vphsubdq (v4si)
v4si __builtin_ia32_vphsubwd (v8hi)
v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
v16qi __builtin_ia32_vprotb (v16qi, v16qi)
v4si __builtin_ia32_vprotd (v4si, v4si)
v2di __builtin_ia32_vprotq (v2di, v2di)
v8hi __builtin_ia32_vprotw (v8hi, v8hi)
v16qi __builtin_ia32_vpshab (v16qi, v16qi)
v4si __builtin_ia32_vpshad (v4si, v4si)
v2di __builtin_ia32_vpshaq (v2di, v2di)
v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
v4si __builtin_ia32_vpshld (v4si, v4si)
v2di __builtin_ia32_vpshlq (v2di, v2di)
v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
</pre></div>
<p>The following built-in functions are available when <samp>-mfma4</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
</pre></div>
<p>The following built-in functions are available when <samp>-mlwp</samp> is used.
</p>
<div class="smallexample">
<pre class="smallexample">void __builtin_ia32_llwpcb16 (void *);
void __builtin_ia32_llwpcb32 (void *);
void __builtin_ia32_llwpcb64 (void *);
void * __builtin_ia32_llwpcb16 (void);
void * __builtin_ia32_llwpcb32 (void);
void * __builtin_ia32_llwpcb64 (void);
void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
</pre></div>
<p>The following built-in functions are available when <samp>-mbmi</samp> is used.
All of them generate the machine instruction that is part of the name.
</p><div class="smallexample">
<pre class="smallexample">unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
</pre></div>
<p>The following built-in functions are available when <samp>-mbmi2</samp> is used.
All of them generate the machine instruction that is part of the name.
</p><div class="smallexample">
<pre class="smallexample">unsigned int _bzhi_u32 (unsigned int, unsigned int)
unsigned int _pdep_u32 (unsigned int, unsigned int)
unsigned int _pext_u32 (unsigned int, unsigned int)
unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
unsigned long long _pext_u64 (unsigned long long, unsigned long long)
</pre></div>
<p>The following built-in functions are available when <samp>-mlzcnt</samp> is used.
All of them generate the machine instruction that is part of the name.
</p><div class="smallexample">
<pre class="smallexample">unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
</pre></div>
<p>The following built-in functions are available when <samp>-mfxsr</samp> is used.
All of them generate the machine instruction that is part of the name.
</p><div class="smallexample">
<pre class="smallexample">void __builtin_ia32_fxsave (void *)
void __builtin_ia32_fxrstor (void *)
void __builtin_ia32_fxsave64 (void *)
void __builtin_ia32_fxrstor64 (void *)
</pre></div>
<p>The following built-in functions are available when <samp>-mxsave</samp> is used.
All of them generate the machine instruction that is part of the name.
</p><div class="smallexample">
<pre class="smallexample">void __builtin_ia32_xsave (void *, long long)
void __builtin_ia32_xrstor (void *, long long)
void __builtin_ia32_xsave64 (void *, long long)
void __builtin_ia32_xrstor64 (void *, long long)
</pre></div>
<p>The following built-in functions are available when <samp>-mxsaveopt</samp> is used.
All of them generate the machine instruction that is part of the name.
</p><div class="smallexample">
<pre class="smallexample">void __builtin_ia32_xsaveopt (void *, long long)
void __builtin_ia32_xsaveopt64 (void *, long long)
</pre></div>
<p>The following built-in functions are available when <samp>-mtbm</samp> is used.
Both of them generate the immediate form of the bextr machine instruction.
</p><div class="smallexample">
<pre class="smallexample">unsigned int __builtin_ia32_bextri_u32 (unsigned int,
const unsigned int);
unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
const unsigned long long);
</pre></div>
<p>The following built-in functions are available when <samp>-m3dnow</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">void __builtin_ia32_femms (void)
v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
v2si __builtin_ia32_pf2id (v2sf)
v2sf __builtin_ia32_pfacc (v2sf, v2sf)
v2sf __builtin_ia32_pfadd (v2sf, v2sf)
v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
v2sf __builtin_ia32_pfmax (v2sf, v2sf)
v2sf __builtin_ia32_pfmin (v2sf, v2sf)
v2sf __builtin_ia32_pfmul (v2sf, v2sf)
v2sf __builtin_ia32_pfrcp (v2sf)
v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
v2sf __builtin_ia32_pfrsqrt (v2sf)
v2sf __builtin_ia32_pfsub (v2sf, v2sf)
v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
v2sf __builtin_ia32_pi2fd (v2si)
v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
</pre></div>
<p>The following built-in functions are available when <samp>-m3dnowa</samp> is used.
All of them generate the machine instruction that is part of the name.
</p>
<div class="smallexample">
<pre class="smallexample">v2si __builtin_ia32_pf2iw (v2sf)
v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
v2sf __builtin_ia32_pi2fw (v2si)
v2sf __builtin_ia32_pswapdsf (v2sf)
v2si __builtin_ia32_pswapdsi (v2si)
</pre></div>
<p>The following built-in functions are available when <samp>-mrtm</samp> is used
They are used for restricted transactional memory. These are the internal
low level functions. Normally the functions in
<a href="#x86-transactional-memory-intrinsics">x86 transactional memory intrinsics</a> should be used instead.
</p>
<div class="smallexample">
<pre class="smallexample">int __builtin_ia32_xbegin ()
void __builtin_ia32_xend ()
void __builtin_ia32_xabort (status)
int __builtin_ia32_xtest ()
</pre></div>
<p>The following built-in functions are available when <samp>-mmwaitx</samp> is used.
All of them generate the machine instruction that is part of the name.
</p><div class="smallexample">
<pre class="smallexample">void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
</pre></div>
<p>The following built-in functions are available when <samp>-mclzero</samp> is used.
All of them generate the machine instruction that is part of the name.
</p><div class="smallexample">
<pre class="smallexample">void __builtin_i32_clzero (void *)
</pre></div>
<p>The following built-in functions are available when <samp>-mpku</samp> is used.
They generate reads and writes to PKRU.
</p><div class="smallexample">
<pre class="smallexample">void __builtin_ia32_wrpkru (unsigned int)
unsigned int __builtin_ia32_rdpkru ()
</pre></div>
<p>The following built-in functions are available when <samp>-mcet</samp> or
<samp>-mshstk</samp> option is used. They support shadow stack
machine instructions from Intel Control-flow Enforcement Technology (CET).
Each built-in function generates the machine instruction that is part
of the function’s name. These are the internal low-level functions.
Normally the functions in <a href="#x86-control_002dflow-protection-intrinsics">x86 control-flow protection intrinsics</a>
should be used instead.
</p>
<div class="smallexample">
<pre class="smallexample">unsigned int __builtin_ia32_rdsspd (void)
unsigned long long __builtin_ia32_rdsspq (void)
void __builtin_ia32_incsspd (unsigned int)
void __builtin_ia32_incsspq (unsigned long long)
void __builtin_ia32_saveprevssp(void);
void __builtin_ia32_rstorssp(void *);
void __builtin_ia32_wrssd(unsigned int, void *);
void __builtin_ia32_wrssq(unsigned long long, void *);
void __builtin_ia32_wrussd(unsigned int, void *);
void __builtin_ia32_wrussq(unsigned long long, void *);
void __builtin_ia32_setssbsy(void);
void __builtin_ia32_clrssbsy(void *);
</pre></div>
<hr>
<a name="x86-transactional-memory-intrinsics"></a>
<div class="header">
<p>
Next: <a href="#x86-control_002dflow-protection-intrinsics" accesskey="n" rel="next">x86 control-flow protection intrinsics</a>, Previous: <a href="#x86-Built_002din-Functions" accesskey="p" rel="prev">x86 Built-in Functions</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86-Transactional-Memory-Intrinsics"></a>
<h4 class="subsection">6.59.34 x86 Transactional Memory Intrinsics</h4>
<p>These hardware transactional memory intrinsics for x86 allow you to use
memory transactions with RTM (Restricted Transactional Memory).
This support is enabled with the <samp>-mrtm</samp> option.
For using HLE (Hardware Lock Elision) see
<a href="#x86-specific-memory-model-extensions-for-transactional-memory">x86 specific memory model extensions for transactional memory</a> instead.
</p>
<p>A memory transaction commits all changes to memory in an atomic way,
as visible to other threads. If the transaction fails it is rolled back
and all side effects discarded.
</p>
<p>Generally there is no guarantee that a memory transaction ever succeeds
and suitable fallback code always needs to be supplied.
</p>
<dl>
<dt><a name="index-_005fxbegin"></a>RTM Function: <em>unsigned</em> <strong>_xbegin</strong> <em>()</em></dt>
<dd><p>Start a RTM (Restricted Transactional Memory) transaction.
Returns <code>_XBEGIN_STARTED</code> when the transaction
started successfully (note this is not 0, so the constant has to be
explicitly tested).
</p>
<p>If the transaction aborts, all side effects
are undone and an abort code encoded as a bit mask is returned.
The following macros are defined:
</p>
<dl compact="compact">
<dt><code>_XABORT_EXPLICIT</code></dt>
<dd><p>Transaction was explicitly aborted with <code>_xabort</code>. The parameter passed
to <code>_xabort</code> is available with <code>_XABORT_CODE(status)</code>.
</p></dd>
<dt><code>_XABORT_RETRY</code></dt>
<dd><p>Transaction retry is possible.
</p></dd>
<dt><code>_XABORT_CONFLICT</code></dt>
<dd><p>Transaction abort due to a memory conflict with another thread.
</p></dd>
<dt><code>_XABORT_CAPACITY</code></dt>
<dd><p>Transaction abort due to the transaction using too much memory.
</p></dd>
<dt><code>_XABORT_DEBUG</code></dt>
<dd><p>Transaction abort due to a debug trap.
</p></dd>
<dt><code>_XABORT_NESTED</code></dt>
<dd><p>Transaction abort in an inner nested transaction.
</p></dd>
</dl>
<p>There is no guarantee
any transaction ever succeeds, so there always needs to be a valid
fallback path.
</p></dd></dl>
<dl>
<dt><a name="index-_005fxend"></a>RTM Function: <em>void</em> <strong>_xend</strong> <em>()</em></dt>
<dd><p>Commit the current transaction. When no transaction is active this faults.
All memory side effects of the transaction become visible
to other threads in an atomic manner.
</p></dd></dl>
<dl>
<dt><a name="index-_005fxtest"></a>RTM Function: <em>int</em> <strong>_xtest</strong> <em>()</em></dt>
<dd><p>Return a nonzero value if a transaction is currently active, otherwise 0.
</p></dd></dl>
<dl>
<dt><a name="index-_005fxabort"></a>RTM Function: <em>void</em> <strong>_xabort</strong> <em>(status)</em></dt>
<dd><p>Abort the current transaction. When no transaction is active this is a no-op.
The <var>status</var> is an 8-bit constant; its value is encoded in the return
value from <code>_xbegin</code>.
</p></dd></dl>
<p>Here is an example showing handling for <code>_XABORT_RETRY</code>
and a fallback path for other failures:
</p>
<div class="smallexample">
<pre class="smallexample">#include <immintrin.h>
int n_tries, max_tries;
unsigned status = _XABORT_EXPLICIT;
...
for (n_tries = 0; n_tries < max_tries; n_tries++)
{
status = _xbegin ();
if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
break;
}
if (status == _XBEGIN_STARTED)
{
... transaction code...
_xend ();
}
else
{
... non-transactional fallback path...
}
</pre></div>
<p>Note that, in most cases, the transactional and non-transactional code
must synchronize together to ensure consistency.
</p>
<hr>
<a name="x86-control_002dflow-protection-intrinsics"></a>
<div class="header">
<p>
Previous: <a href="#x86-transactional-memory-intrinsics" accesskey="p" rel="prev">x86 transactional memory intrinsics</a>, Up: <a href="#Target-Builtins" accesskey="u" rel="up">Target Builtins</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="x86-Control_002dFlow-Protection-Intrinsics"></a>
<h4 class="subsection">6.59.35 x86 Control-Flow Protection Intrinsics</h4>
<dl>
<dt><a name="index-_005fget_005fssp"></a>CET Function: <em>ret_type</em> <strong>_get_ssp</strong> <em>(void)</em></dt>
<dd><p>Get the current value of shadow stack pointer if shadow stack support
from Intel CET is enabled in the hardware or <code>0</code> otherwise.
The <code>ret_type</code> is <code>unsigned long long</code> for 64-bit targets
and <code>unsigned int</code> for 32-bit targets.
</p></dd></dl>
<dl>
<dt><a name="index-_005finc_005fssp"></a>CET Function: <em>void</em> <strong>_inc_ssp</strong> <em>(unsigned int)</em></dt>
<dd><p>Increment the current shadow stack pointer by the size specified by the
function argument. The argument is masked to a byte value for security
reasons, so to increment by more than 255 bytes you must call the function
multiple times.
</p></dd></dl>
<p>The shadow stack unwind code looks like:
</p>
<div class="smallexample">
<pre class="smallexample">#include <immintrin.h>
/* Unwind the shadow stack for EH. */
#define _Unwind_Frames_Extra(x) \
do \
{ \
_Unwind_Word ssp = _get_ssp (); \
if (ssp != 0) \
{ \
_Unwind_Word tmp = (x); \
while (tmp > 255) \
{ \
_inc_ssp (tmp); \
tmp -= 255; \
} \
_inc_ssp (tmp); \
} \
} \
while (0)
</pre></div>
<p>This code runs unconditionally on all 64-bit processors. For 32-bit
processors the code runs on those that support multi-byte NOP instructions.
</p>
<hr>
<a name="Target-Format-Checks"></a>
<div class="header">
<p>
Next: <a href="#Pragmas" accesskey="n" rel="next">Pragmas</a>, Previous: <a href="#Target-Builtins" accesskey="p" rel="prev">Target Builtins</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Format-Checks-Specific-to-Particular-Target-Machines"></a>
<h3 class="section">6.60 Format Checks Specific to Particular Target Machines</h3>
<p>For some target machines, GCC supports additional options to the
format attribute
(see <a href="#Function-Attributes">Declaring Attributes of Functions</a>).
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Solaris-Format-Checks" accesskey="1">Solaris Format Checks</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Darwin-Format-Checks" accesskey="2">Darwin Format Checks</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Solaris-Format-Checks"></a>
<div class="header">
<p>
Next: <a href="#Darwin-Format-Checks" accesskey="n" rel="next">Darwin Format Checks</a>, Up: <a href="#Target-Format-Checks" accesskey="u" rel="up">Target Format Checks</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Solaris-Format-Checks-1"></a>
<h4 class="subsection">6.60.1 Solaris Format Checks</h4>
<p>Solaris targets support the <code>cmn_err</code> (or <code>__cmn_err__</code>) format
check. <code>cmn_err</code> accepts a subset of the standard <code>printf</code>
conversions, and the two-argument <code>%b</code> conversion for displaying
bit-fields. See the Solaris man page for <code>cmn_err</code> for more information.
</p>
<hr>
<a name="Darwin-Format-Checks"></a>
<div class="header">
<p>
Previous: <a href="#Solaris-Format-Checks" accesskey="p" rel="prev">Solaris Format Checks</a>, Up: <a href="#Target-Format-Checks" accesskey="u" rel="up">Target Format Checks</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Darwin-Format-Checks-1"></a>
<h4 class="subsection">6.60.2 Darwin Format Checks</h4>
<p>Darwin targets support the <code>CFString</code> (or <code>__CFString__</code>) in the format
attribute context. Declarations made with such attribution are parsed for correct syntax
and format argument types. However, parsing of the format string itself is currently undefined
and is not carried out by this version of the compiler.
</p>
<p>Additionally, <code>CFStringRefs</code> (defined by the <code>CoreFoundation</code> headers) may
also be used as format arguments. Note that the relevant headers are only likely to be
available on Darwin (OSX) installations. On such installations, the XCode and system
documentation provide descriptions of <code>CFString</code>, <code>CFStringRefs</code> and
associated functions.
</p>
<hr>
<a name="Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Unnamed-Fields" accesskey="n" rel="next">Unnamed Fields</a>, Previous: <a href="#Target-Format-Checks" accesskey="p" rel="prev">Target Format Checks</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Pragmas-Accepted-by-GCC"></a>
<h3 class="section">6.61 Pragmas Accepted by GCC</h3>
<a name="index-pragmas"></a>
<a name="index-_0023pragma"></a>
<p>GCC supports several types of pragmas, primarily in order to compile
code originally written for other compilers. Note that in general
we do not recommend the use of pragmas; See <a href="#Function-Attributes">Function Attributes</a>,
for further explanation.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#AArch64-Pragmas" accesskey="1">AArch64 Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ARM-Pragmas" accesskey="2">ARM Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#M32C-Pragmas" accesskey="3">M32C Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#MeP-Pragmas" accesskey="4">MeP Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#RS_002f6000-and-PowerPC-Pragmas" accesskey="5">RS/6000 and PowerPC Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#S_002f390-Pragmas" accesskey="6">S/390 Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Darwin-Pragmas" accesskey="7">Darwin Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Solaris-Pragmas" accesskey="8">Solaris Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Symbol_002dRenaming-Pragmas" accesskey="9">Symbol-Renaming Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Structure_002dLayout-Pragmas">Structure-Layout Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Weak-Pragmas">Weak Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Diagnostic-Pragmas">Diagnostic Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Visibility-Pragmas">Visibility Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Loop_002dSpecific-Pragmas">Loop-Specific Pragmas</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="AArch64-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#ARM-Pragmas" accesskey="n" rel="next">ARM Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="AArch64-Pragmas-1"></a>
<h4 class="subsection">6.61.1 AArch64 Pragmas</h4>
<p>The pragmas defined by the AArch64 target correspond to the AArch64
target function attributes. They can be specified as below:
</p><div class="smallexample">
<pre class="smallexample">#pragma GCC target("string")
</pre></div>
<p>where <code><var>string</var></code> can be any string accepted as an AArch64 target
attribute. See <a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a>, for more details
on the permissible values of <code>string</code>.
</p>
<hr>
<a name="ARM-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#M32C-Pragmas" accesskey="n" rel="next">M32C Pragmas</a>, Previous: <a href="#AArch64-Pragmas" accesskey="p" rel="prev">AArch64 Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ARM-Pragmas-1"></a>
<h4 class="subsection">6.61.2 ARM Pragmas</h4>
<p>The ARM target defines pragmas for controlling the default addition of
<code>long_call</code> and <code>short_call</code> attributes to functions.
See <a href="#Function-Attributes">Function Attributes</a>, for information about the effects of these
attributes.
</p>
<dl compact="compact">
<dt><code>long_calls</code></dt>
<dd><a name="index-pragma_002c-long_005fcalls"></a>
<p>Set all subsequent functions to have the <code>long_call</code> attribute.
</p>
</dd>
<dt><code>no_long_calls</code></dt>
<dd><a name="index-pragma_002c-no_005flong_005fcalls"></a>
<p>Set all subsequent functions to have the <code>short_call</code> attribute.
</p>
</dd>
<dt><code>long_calls_off</code></dt>
<dd><a name="index-pragma_002c-long_005fcalls_005foff"></a>
<p>Do not affect the <code>long_call</code> or <code>short_call</code> attributes of
subsequent functions.
</p></dd>
</dl>
<hr>
<a name="M32C-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#MeP-Pragmas" accesskey="n" rel="next">MeP Pragmas</a>, Previous: <a href="#ARM-Pragmas" accesskey="p" rel="prev">ARM Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="M32C-Pragmas-1"></a>
<h4 class="subsection">6.61.3 M32C Pragmas</h4>
<dl compact="compact">
<dt><code>GCC memregs <var>number</var></code></dt>
<dd><a name="index-pragma_002c-memregs"></a>
<p>Overrides the command-line option <code>-memregs=</code> for the current
file. Use with care! This pragma must be before any function in the
file, and mixing different memregs values in different objects may
make them incompatible. This pragma is useful when a
performance-critical function uses a memreg for temporary values,
as it may allow you to reduce the number of memregs used.
</p>
</dd>
<dt><code>ADDRESS <var>name</var> <var>address</var></code></dt>
<dd><a name="index-pragma_002c-address"></a>
<p>For any declared symbols matching <var>name</var>, this does three things
to that symbol: it forces the symbol to be located at the given
address (a number), it forces the symbol to be volatile, and it
changes the symbol’s scope to be static. This pragma exists for
compatibility with other compilers, but note that the common
<code>1234H</code> numeric syntax is not supported (use <code>0x1234</code>
instead). Example:
</p>
<div class="smallexample">
<pre class="smallexample">#pragma ADDRESS port3 0x103
char port3;
</pre></div>
</dd>
</dl>
<hr>
<a name="MeP-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#RS_002f6000-and-PowerPC-Pragmas" accesskey="n" rel="next">RS/6000 and PowerPC Pragmas</a>, Previous: <a href="#M32C-Pragmas" accesskey="p" rel="prev">M32C Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="MeP-Pragmas-1"></a>
<h4 class="subsection">6.61.4 MeP Pragmas</h4>
<dl compact="compact">
<dt><code>custom io_volatile (on|off)</code></dt>
<dd><a name="index-pragma_002c-custom-io_005fvolatile"></a>
<p>Overrides the command-line option <code>-mio-volatile</code> for the current
file. Note that for compatibility with future GCC releases, this
option should only be used once before any <code>io</code> variables in each
file.
</p>
</dd>
<dt><code>GCC coprocessor available <var>registers</var></code></dt>
<dd><a name="index-pragma_002c-coprocessor-available"></a>
<p>Specifies which coprocessor registers are available to the register
allocator. <var>registers</var> may be a single register, register range
separated by ellipses, or comma-separated list of those. Example:
</p>
<div class="smallexample">
<pre class="smallexample">#pragma GCC coprocessor available $c0...$c10, $c28
</pre></div>
</dd>
<dt><code>GCC coprocessor call_saved <var>registers</var></code></dt>
<dd><a name="index-pragma_002c-coprocessor-call_005fsaved"></a>
<p>Specifies which coprocessor registers are to be saved and restored by
any function using them. <var>registers</var> may be a single register,
register range separated by ellipses, or comma-separated list of
those. Example:
</p>
<div class="smallexample">
<pre class="smallexample">#pragma GCC coprocessor call_saved $c4...$c6, $c31
</pre></div>
</dd>
<dt><code>GCC coprocessor subclass '(A|B|C|D)' = <var>registers</var></code></dt>
<dd><a name="index-pragma_002c-coprocessor-subclass"></a>
<p>Creates and defines a register class. These register classes can be
used by inline <code>asm</code> constructs. <var>registers</var> may be a single
register, register range separated by ellipses, or comma-separated
list of those. Example:
</p>
<div class="smallexample">
<pre class="smallexample">#pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
asm ("cpfoo %0" : "=B" (x));
</pre></div>
</dd>
<dt><code>GCC disinterrupt <var>name</var> , <var>name</var> …</code></dt>
<dd><a name="index-pragma_002c-disinterrupt"></a>
<p>For the named functions, the compiler adds code to disable interrupts
for the duration of those functions. If any functions so named
are not encountered in the source, a warning is emitted that the pragma is
not used. Examples:
</p>
<div class="smallexample">
<pre class="smallexample">#pragma disinterrupt foo
#pragma disinterrupt bar, grill
int foo () { … }
</pre></div>
</dd>
<dt><code>GCC call <var>name</var> , <var>name</var> …</code></dt>
<dd><a name="index-pragma_002c-call"></a>
<p>For the named functions, the compiler always uses a register-indirect
call model when calling the named functions. Examples:
</p>
<div class="smallexample">
<pre class="smallexample">extern int foo ();
#pragma call foo
</pre></div>
</dd>
</dl>
<hr>
<a name="RS_002f6000-and-PowerPC-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#S_002f390-Pragmas" accesskey="n" rel="next">S/390 Pragmas</a>, Previous: <a href="#MeP-Pragmas" accesskey="p" rel="prev">MeP Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RS_002f6000-and-PowerPC-Pragmas-1"></a>
<h4 class="subsection">6.61.5 RS/6000 and PowerPC Pragmas</h4>
<p>The RS/6000 and PowerPC targets define one pragma for controlling
whether or not the <code>longcall</code> attribute is added to function
declarations by default. This pragma overrides the <samp>-mlongcall</samp>
option, but not the <code>longcall</code> and <code>shortcall</code> attributes.
See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>, for more information about when long
calls are and are not necessary.
</p>
<dl compact="compact">
<dt><code>longcall (1)</code></dt>
<dd><a name="index-pragma_002c-longcall"></a>
<p>Apply the <code>longcall</code> attribute to all subsequent function
declarations.
</p>
</dd>
<dt><code>longcall (0)</code></dt>
<dd><p>Do not apply the <code>longcall</code> attribute to subsequent function
declarations.
</p></dd>
</dl>
<hr>
<a name="S_002f390-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Darwin-Pragmas" accesskey="n" rel="next">Darwin Pragmas</a>, Previous: <a href="#RS_002f6000-and-PowerPC-Pragmas" accesskey="p" rel="prev">RS/6000 and PowerPC Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="S_002f390-Pragmas-1"></a>
<h4 class="subsection">6.61.6 S/390 Pragmas</h4>
<p>The pragmas defined by the S/390 target correspond to the S/390
target function attributes and some the additional options:
</p>
<dl compact="compact">
<dt>‘<samp>zvector</samp>’</dt>
<dt>‘<samp>no-zvector</samp>’</dt>
</dl>
<p>Note that options of the pragma, unlike options of the target
attribute, do change the value of preprocessor macros like
<code>__VEC__</code>. They can be specified as below:
</p>
<div class="smallexample">
<pre class="smallexample">#pragma GCC target("string[,string]...")
#pragma GCC target("string"[,"string"]...)
</pre></div>
<hr>
<a name="Darwin-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Solaris-Pragmas" accesskey="n" rel="next">Solaris Pragmas</a>, Previous: <a href="#S_002f390-Pragmas" accesskey="p" rel="prev">S/390 Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Darwin-Pragmas-1"></a>
<h4 class="subsection">6.61.7 Darwin Pragmas</h4>
<p>The following pragmas are available for all architectures running the
Darwin operating system. These are useful for compatibility with other
Mac OS compilers.
</p>
<dl compact="compact">
<dt><code>mark <var>tokens</var>…</code></dt>
<dd><a name="index-pragma_002c-mark"></a>
<p>This pragma is accepted, but has no effect.
</p>
</dd>
<dt><code>options align=<var>alignment</var></code></dt>
<dd><a name="index-pragma_002c-options-align"></a>
<p>This pragma sets the alignment of fields in structures. The values of
<var>alignment</var> may be <code>mac68k</code>, to emulate m68k alignment, or
<code>power</code>, to emulate PowerPC alignment. Uses of this pragma nest
properly; to restore the previous setting, use <code>reset</code> for the
<var>alignment</var>.
</p>
</dd>
<dt><code>segment <var>tokens</var>…</code></dt>
<dd><a name="index-pragma_002c-segment"></a>
<p>This pragma is accepted, but has no effect.
</p>
</dd>
<dt><code>unused (<var>var</var> [, <var>var</var>]…)</code></dt>
<dd><a name="index-pragma_002c-unused"></a>
<p>This pragma declares variables to be possibly unused. GCC does not
produce warnings for the listed variables. The effect is similar to
that of the <code>unused</code> attribute, except that this pragma may appear
anywhere within the variables’ scopes.
</p></dd>
</dl>
<hr>
<a name="Solaris-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Symbol_002dRenaming-Pragmas" accesskey="n" rel="next">Symbol-Renaming Pragmas</a>, Previous: <a href="#Darwin-Pragmas" accesskey="p" rel="prev">Darwin Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Solaris-Pragmas-1"></a>
<h4 class="subsection">6.61.8 Solaris Pragmas</h4>
<p>The Solaris target supports <code>#pragma redefine_extname</code>
(see <a href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>). It also supports additional
<code>#pragma</code> directives for compatibility with the system compiler.
</p>
<dl compact="compact">
<dt><code>align <var>alignment</var> (<var>variable</var> [, <var>variable</var>]...)</code></dt>
<dd><a name="index-pragma_002c-align"></a>
<p>Increase the minimum alignment of each <var>variable</var> to <var>alignment</var>.
This is the same as GCC’s <code>aligned</code> attribute see <a href="#Variable-Attributes">Variable Attributes</a>). Macro expansion occurs on the arguments to this pragma
when compiling C and Objective-C. It does not currently occur when
compiling C++, but this is a bug which may be fixed in a future
release.
</p>
</dd>
<dt><code>fini (<var>function</var> [, <var>function</var>]...)</code></dt>
<dd><a name="index-pragma_002c-fini"></a>
<p>This pragma causes each listed <var>function</var> to be called after
main, or during shared module unloading, by adding a call to the
<code>.fini</code> section.
</p>
</dd>
<dt><code>init (<var>function</var> [, <var>function</var>]...)</code></dt>
<dd><a name="index-pragma_002c-init"></a>
<p>This pragma causes each listed <var>function</var> to be called during
initialization (before <code>main</code>) or during shared module loading, by
adding a call to the <code>.init</code> section.
</p>
</dd>
</dl>
<hr>
<a name="Symbol_002dRenaming-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Structure_002dLayout-Pragmas" accesskey="n" rel="next">Structure-Layout Pragmas</a>, Previous: <a href="#Solaris-Pragmas" accesskey="p" rel="prev">Solaris Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Symbol_002dRenaming-Pragmas-1"></a>
<h4 class="subsection">6.61.9 Symbol-Renaming Pragmas</h4>
<p>GCC supports a <code>#pragma</code> directive that changes the name used in
assembly for a given declaration. While this pragma is supported on all
platforms, it is intended primarily to provide compatibility with the
Solaris system headers. This effect can also be achieved using the asm
labels extension (see <a href="#Asm-Labels">Asm Labels</a>).
</p>
<dl compact="compact">
<dt><code>redefine_extname <var>oldname</var> <var>newname</var></code></dt>
<dd><a name="index-pragma_002c-redefine_005fextname"></a>
<p>This pragma gives the C function <var>oldname</var> the assembly symbol
<var>newname</var>. The preprocessor macro <code>__PRAGMA_REDEFINE_EXTNAME</code>
is defined if this pragma is available (currently on all platforms).
</p></dd>
</dl>
<p>This pragma and the asm labels extension interact in a complicated
manner. Here are some corner cases you may want to be aware of:
</p>
<ol>
<li> This pragma silently applies only to declarations with external
linkage. Asm labels do not have this restriction.
</li><li> In C++, this pragma silently applies only to declarations with
“C” linkage. Again, asm labels do not have this restriction.
</li><li> If either of the ways of changing the assembly name of a
declaration are applied to a declaration whose assembly name has
already been determined (either by a previous use of one of these
features, or because the compiler needed the assembly name in order to
generate code), and the new name is different, a warning issues and
the name does not change.
</li><li> The <var>oldname</var> used by <code>#pragma redefine_extname</code> is
always the C-language name.
</li></ol>
<hr>
<a name="Structure_002dLayout-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Weak-Pragmas" accesskey="n" rel="next">Weak Pragmas</a>, Previous: <a href="#Symbol_002dRenaming-Pragmas" accesskey="p" rel="prev">Symbol-Renaming Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Structure_002dLayout-Pragmas-1"></a>
<h4 class="subsection">6.61.10 Structure-Layout Pragmas</h4>
<p>For compatibility with Microsoft Windows compilers, GCC supports a
set of <code>#pragma</code> directives that change the maximum alignment of
members of structures (other than zero-width bit-fields), unions, and
classes subsequently defined. The <var>n</var> value below always is required
to be a small power of two and specifies the new alignment in bytes.
</p>
<ol>
<li> <code>#pragma pack(<var>n</var>)</code> simply sets the new alignment.
</li><li> <code>#pragma pack()</code> sets the alignment to the one that was in
effect when compilation started (see also command-line option
<samp>-fpack-struct[=<var>n</var>]</samp> see <a href="#Code-Gen-Options">Code Gen Options</a>).
</li><li> <code>#pragma pack(push[,<var>n</var>])</code> pushes the current alignment
setting on an internal stack and then optionally sets the new alignment.
</li><li> <code>#pragma pack(pop)</code> restores the alignment setting to the one
saved at the top of the internal stack (and removes that stack entry).
Note that <code>#pragma pack([<var>n</var>])</code> does not influence this internal
stack; thus it is possible to have <code>#pragma pack(push)</code> followed by
multiple <code>#pragma pack(<var>n</var>)</code> instances and finalized by a single
<code>#pragma pack(pop)</code>.
</li></ol>
<p>Some targets, e.g. x86 and PowerPC, support the <code>#pragma ms_struct</code>
directive which lays out structures and unions subsequently defined as the
documented <code>__attribute__ ((ms_struct))</code>.
</p>
<ol>
<li> <code>#pragma ms_struct on</code> turns on the Microsoft layout.
</li><li> <code>#pragma ms_struct off</code> turns off the Microsoft layout.
</li><li> <code>#pragma ms_struct reset</code> goes back to the default layout.
</li></ol>
<p>Most targets also support the <code>#pragma scalar_storage_order</code> directive
which lays out structures and unions subsequently defined as the documented
<code>__attribute__ ((scalar_storage_order))</code>.
</p>
<ol>
<li> <code>#pragma scalar_storage_order big-endian</code> sets the storage order
of the scalar fields to big-endian.
</li><li> <code>#pragma scalar_storage_order little-endian</code> sets the storage order
of the scalar fields to little-endian.
</li><li> <code>#pragma scalar_storage_order default</code> goes back to the endianness
that was in effect when compilation started (see also command-line option
<samp>-fsso-struct=<var>endianness</var></samp> see <a href="#C-Dialect-Options">C Dialect Options</a>).
</li></ol>
<hr>
<a name="Weak-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Diagnostic-Pragmas" accesskey="n" rel="next">Diagnostic Pragmas</a>, Previous: <a href="#Structure_002dLayout-Pragmas" accesskey="p" rel="prev">Structure-Layout Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Weak-Pragmas-1"></a>
<h4 class="subsection">6.61.11 Weak Pragmas</h4>
<p>For compatibility with SVR4, GCC supports a set of <code>#pragma</code>
directives for declaring symbols to be weak, and defining weak
aliases.
</p>
<dl compact="compact">
<dt><code>#pragma weak <var>symbol</var></code></dt>
<dd><a name="index-pragma_002c-weak"></a>
<p>This pragma declares <var>symbol</var> to be weak, as if the declaration
had the attribute of the same name. The pragma may appear before
or after the declaration of <var>symbol</var>. It is not an error for
<var>symbol</var> to never be defined at all.
</p>
</dd>
<dt><code>#pragma weak <var>symbol1</var> = <var>symbol2</var></code></dt>
<dd><p>This pragma declares <var>symbol1</var> to be a weak alias of <var>symbol2</var>.
It is an error if <var>symbol2</var> is not defined in the current
translation unit.
</p></dd>
</dl>
<hr>
<a name="Diagnostic-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Visibility-Pragmas" accesskey="n" rel="next">Visibility Pragmas</a>, Previous: <a href="#Weak-Pragmas" accesskey="p" rel="prev">Weak Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Diagnostic-Pragmas-1"></a>
<h4 class="subsection">6.61.12 Diagnostic Pragmas</h4>
<p>GCC allows the user to selectively enable or disable certain types of
diagnostics, and change the kind of the diagnostic. For example, a
project’s policy might require that all sources compile with
<samp>-Werror</samp> but certain files might have exceptions allowing
specific types of warnings. Or, a project might selectively enable
diagnostics and treat them as errors depending on which preprocessor
macros are defined.
</p>
<dl compact="compact">
<dt><code>#pragma GCC diagnostic <var>kind</var> <var>option</var></code></dt>
<dd><a name="index-pragma_002c-diagnostic"></a>
<p>Modifies the disposition of a diagnostic. Note that not all
diagnostics are modifiable; at the moment only warnings (normally
controlled by ‘<samp>-W…</samp>’) can be controlled, and not all of them.
Use <samp>-fdiagnostics-show-option</samp> to determine which diagnostics
are controllable and which option controls them.
</p>
<p><var>kind</var> is ‘<samp>error</samp>’ to treat this diagnostic as an error,
‘<samp>warning</samp>’ to treat it like a warning (even if <samp>-Werror</samp> is
in effect), or ‘<samp>ignored</samp>’ if the diagnostic is to be ignored.
<var>option</var> is a double quoted string that matches the command-line
option.
</p>
<div class="smallexample">
<pre class="smallexample">#pragma GCC diagnostic warning "-Wformat"
#pragma GCC diagnostic error "-Wformat"
#pragma GCC diagnostic ignored "-Wformat"
</pre></div>
<p>Note that these pragmas override any command-line options. GCC keeps
track of the location of each pragma, and issues diagnostics according
to the state as of that point in the source file. Thus, pragmas occurring
after a line do not affect diagnostics caused by that line.
</p>
</dd>
<dt><code>#pragma GCC diagnostic push</code></dt>
<dt><code>#pragma GCC diagnostic pop</code></dt>
<dd>
<p>Causes GCC to remember the state of the diagnostics as of each
<code>push</code>, and restore to that point at each <code>pop</code>. If a
<code>pop</code> has no matching <code>push</code>, the command-line options are
restored.
</p>
<div class="smallexample">
<pre class="smallexample">#pragma GCC diagnostic error "-Wuninitialized"
foo(a); /* error is given for this one */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
foo(b); /* no diagnostic for this one */
#pragma GCC diagnostic pop
foo(c); /* error is given for this one */
#pragma GCC diagnostic pop
foo(d); /* depends on command-line options */
</pre></div>
</dd>
</dl>
<p>GCC also offers a simple mechanism for printing messages during
compilation.
</p>
<dl compact="compact">
<dt><code>#pragma message <var>string</var></code></dt>
<dd><a name="index-pragma_002c-diagnostic-1"></a>
<p>Prints <var>string</var> as a compiler message on compilation. The message
is informational only, and is neither a compilation warning nor an error.
</p>
<div class="smallexample">
<pre class="smallexample">#pragma message "Compiling " __FILE__ "..."
</pre></div>
<p><var>string</var> may be parenthesized, and is printed with location
information. For example,
</p>
<div class="smallexample">
<pre class="smallexample">#define DO_PRAGMA(x) _Pragma (#x)
#define TODO(x) DO_PRAGMA(message ("TODO - " #x))
TODO(Remember to fix this)
</pre></div>
<p>prints ‘<samp>/tmp/file.c:4: note: #pragma message:
TODO - Remember to fix this</samp>’.
</p>
</dd>
</dl>
<hr>
<a name="Visibility-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Push_002fPop-Macro-Pragmas" accesskey="n" rel="next">Push/Pop Macro Pragmas</a>, Previous: <a href="#Diagnostic-Pragmas" accesskey="p" rel="prev">Diagnostic Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Visibility-Pragmas-1"></a>
<h4 class="subsection">6.61.13 Visibility Pragmas</h4>
<dl compact="compact">
<dt><code>#pragma GCC visibility push(<var>visibility</var>)</code></dt>
<dt><code>#pragma GCC visibility pop</code></dt>
<dd><a name="index-pragma_002c-visibility"></a>
<p>This pragma allows the user to set the visibility for multiple
declarations without having to give each a visibility attribute
(see <a href="#Function-Attributes">Function Attributes</a>).
</p>
<p>In C++, ‘<samp>#pragma GCC visibility</samp>’ affects only namespace-scope
declarations. Class members and template specializations are not
affected; if you want to override the visibility for a particular
member or instantiation, you must use an attribute.
</p>
</dd>
</dl>
<hr>
<a name="Push_002fPop-Macro-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Function-Specific-Option-Pragmas" accesskey="n" rel="next">Function Specific Option Pragmas</a>, Previous: <a href="#Visibility-Pragmas" accesskey="p" rel="prev">Visibility Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Push_002fPop-Macro-Pragmas-1"></a>
<h4 class="subsection">6.61.14 Push/Pop Macro Pragmas</h4>
<p>For compatibility with Microsoft Windows compilers, GCC supports
‘<samp>#pragma push_macro(<var>"macro_name"</var>)</samp>’
and ‘<samp>#pragma pop_macro(<var>"macro_name"</var>)</samp>’.
</p>
<dl compact="compact">
<dt><code>#pragma push_macro(<var>"macro_name"</var>)</code></dt>
<dd><a name="index-pragma_002c-push_005fmacro"></a>
<p>This pragma saves the value of the macro named as <var>macro_name</var> to
the top of the stack for this macro.
</p>
</dd>
<dt><code>#pragma pop_macro(<var>"macro_name"</var>)</code></dt>
<dd><a name="index-pragma_002c-pop_005fmacro"></a>
<p>This pragma sets the value of the macro named as <var>macro_name</var> to
the value on top of the stack for this macro. If the stack for
<var>macro_name</var> is empty, the value of the macro remains unchanged.
</p></dd>
</dl>
<p>For example:
</p>
<div class="smallexample">
<pre class="smallexample">#define X 1
#pragma push_macro("X")
#undef X
#define X -1
#pragma pop_macro("X")
int x [X];
</pre></div>
<p>In this example, the definition of X as 1 is saved by <code>#pragma
push_macro</code> and restored by <code>#pragma pop_macro</code>.
</p>
<hr>
<a name="Function-Specific-Option-Pragmas"></a>
<div class="header">
<p>
Next: <a href="#Loop_002dSpecific-Pragmas" accesskey="n" rel="next">Loop-Specific Pragmas</a>, Previous: <a href="#Push_002fPop-Macro-Pragmas" accesskey="p" rel="prev">Push/Pop Macro Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Function-Specific-Option-Pragmas-1"></a>
<h4 class="subsection">6.61.15 Function Specific Option Pragmas</h4>
<dl compact="compact">
<dt><code>#pragma GCC target (<var>"string"</var>...)</code></dt>
<dd><a name="index-pragma-GCC-target"></a>
<p>This pragma allows you to set target specific options for functions
defined later in the source file. One or more strings can be
specified. Each function that is defined after this point is as
if <code>attribute((target("STRING")))</code> was specified for that
function. The parenthesis around the options is optional.
See <a href="#Function-Attributes">Function Attributes</a>, for more information about the
<code>target</code> attribute and the attribute syntax.
</p>
<p>The <code>#pragma GCC target</code> pragma is presently implemented for
x86, ARM, AArch64, PowerPC, S/390, and Nios II targets only.
</p>
</dd>
<dt><code>#pragma GCC optimize (<var>"string"</var>...)</code></dt>
<dd><a name="index-pragma-GCC-optimize"></a>
<p>This pragma allows you to set global optimization options for functions
defined later in the source file. One or more strings can be
specified. Each function that is defined after this point is as
if <code>attribute((optimize("STRING")))</code> was specified for that
function. The parenthesis around the options is optional.
See <a href="#Function-Attributes">Function Attributes</a>, for more information about the
<code>optimize</code> attribute and the attribute syntax.
</p>
</dd>
<dt><code>#pragma GCC push_options</code></dt>
<dt><code>#pragma GCC pop_options</code></dt>
<dd><a name="index-pragma-GCC-push_005foptions"></a>
<a name="index-pragma-GCC-pop_005foptions"></a>
<p>These pragmas maintain a stack of the current target and optimization
options. It is intended for include files where you temporarily want
to switch to using a different ‘<samp>#pragma GCC target</samp>’ or
‘<samp>#pragma GCC optimize</samp>’ and then to pop back to the previous
options.
</p>
</dd>
<dt><code>#pragma GCC reset_options</code></dt>
<dd><a name="index-pragma-GCC-reset_005foptions"></a>
<p>This pragma clears the current <code>#pragma GCC target</code> and
<code>#pragma GCC optimize</code> to use the default switches as specified
on the command line.
</p>
</dd>
</dl>
<hr>
<a name="Loop_002dSpecific-Pragmas"></a>
<div class="header">
<p>
Previous: <a href="#Function-Specific-Option-Pragmas" accesskey="p" rel="prev">Function Specific Option Pragmas</a>, Up: <a href="#Pragmas" accesskey="u" rel="up">Pragmas</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Loop_002dSpecific-Pragmas-1"></a>
<h4 class="subsection">6.61.16 Loop-Specific Pragmas</h4>
<dl compact="compact">
<dt><code>#pragma GCC ivdep</code></dt>
<dd><a name="index-pragma-GCC-ivdep"></a>
<p>With this pragma, the programmer asserts that there are no loop-carried
dependencies which would prevent consecutive iterations of
the following loop from executing concurrently with SIMD
(single instruction multiple data) instructions.
</p>
<p>For example, the compiler can only unconditionally vectorize the following
loop with the pragma:
</p>
<div class="smallexample">
<pre class="smallexample">void foo (int n, int *a, int *b, int *c)
{
int i, j;
#pragma GCC ivdep
for (i = 0; i < n; ++i)
a[i] = b[i] + c[i];
}
</pre></div>
<p>In this example, using the <code>restrict</code> qualifier had the same
effect. In the following example, that would not be possible. Assume
<em>k < -m</em> or <em>k >= m</em>. Only with the pragma, the compiler knows
that it can unconditionally vectorize the following loop:
</p>
<div class="smallexample">
<pre class="smallexample">void ignore_vec_dep (int *a, int k, int c, int m)
{
#pragma GCC ivdep
for (int i = 0; i < m; i++)
a[i] = a[i + k] * c;
}
</pre></div>
</dd>
<dt><code>#pragma GCC unroll <var>n</var></code></dt>
<dd><a name="index-pragma-GCC-unroll-n"></a>
<p>You can use this pragma to control how many times a loop should be unrolled.
It must be placed immediately before a <code>for</code>, <code>while</code> or <code>do</code>
loop or a <code>#pragma GCC ivdep</code>, and applies only to the loop that follows.
<var>n</var> is an integer constant expression specifying the unrolling factor.
The values of <em>0</em> and <em>1</em> block any unrolling of the loop.
</p>
</dd>
</dl>
<hr>
<a name="Unnamed-Fields"></a>
<div class="header">
<p>
Next: <a href="#Thread_002dLocal" accesskey="n" rel="next">Thread-Local</a>, Previous: <a href="#Pragmas" accesskey="p" rel="prev">Pragmas</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Unnamed-Structure-and-Union-Fields"></a>
<h3 class="section">6.62 Unnamed Structure and Union Fields</h3>
<a name="index-struct"></a>
<a name="index-union"></a>
<p>As permitted by ISO C11 and for compatibility with other compilers,
GCC allows you to define
a structure or union that contains, as fields, structures and unions
without names. For example:
</p>
<div class="smallexample">
<pre class="smallexample">struct {
int a;
union {
int b;
float c;
};
int d;
} foo;
</pre></div>
<p>In this example, you are able to access members of the unnamed
union with code like ‘<samp>foo.b</samp>’. Note that only unnamed structs and
unions are allowed, you may not have, for example, an unnamed
<code>int</code>.
</p>
<p>You must never create such structures that cause ambiguous field definitions.
For example, in this structure:
</p>
<div class="smallexample">
<pre class="smallexample">struct {
int a;
struct {
int a;
};
} foo;
</pre></div>
<p>it is ambiguous which <code>a</code> is being referred to with ‘<samp>foo.a</samp>’.
The compiler gives errors for such constructs.
</p>
<a name="index-fms_002dextensions-2"></a>
<p>Unless <samp>-fms-extensions</samp> is used, the unnamed field must be a
structure or union definition without a tag (for example, ‘<samp>struct
{ int a; };</samp>’). If <samp>-fms-extensions</samp> is used, the field may
also be a definition with a tag such as ‘<samp>struct foo { int a;
};</samp>’, a reference to a previously defined structure or union such as
‘<samp>struct foo;</samp>’, or a reference to a <code>typedef</code> name for a
previously defined structure or union type.
</p>
<a name="index-fplan9_002dextensions-1"></a>
<p>The option <samp>-fplan9-extensions</samp> enables
<samp>-fms-extensions</samp> as well as two other extensions. First, a
pointer to a structure is automatically converted to a pointer to an
anonymous field for assignments and function calls. For example:
</p>
<div class="smallexample">
<pre class="smallexample">struct s1 { int a; };
struct s2 { struct s1; };
extern void f1 (struct s1 *);
void f2 (struct s2 *p) { f1 (p); }
</pre></div>
<p>In the call to <code>f1</code> inside <code>f2</code>, the pointer <code>p</code> is
converted into a pointer to the anonymous field.
</p>
<p>Second, when the type of an anonymous field is a <code>typedef</code> for a
<code>struct</code> or <code>union</code>, code may refer to the field using the
name of the <code>typedef</code>.
</p>
<div class="smallexample">
<pre class="smallexample">typedef struct { int a; } s1;
struct s2 { s1; };
s1 f1 (struct s2 *p) { return p->s1; }
</pre></div>
<p>These usages are only permitted when they are not ambiguous.
</p>
<hr>
<a name="Thread_002dLocal"></a>
<div class="header">
<p>
Next: <a href="#Binary-constants" accesskey="n" rel="next">Binary constants</a>, Previous: <a href="#Unnamed-Fields" accesskey="p" rel="prev">Unnamed Fields</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Thread_002dLocal-Storage"></a>
<h3 class="section">6.63 Thread-Local Storage</h3>
<a name="index-Thread_002dLocal-Storage"></a>
<a name="index-TLS"></a>
<a name="index-_005f_005fthread"></a>
<p>Thread-local storage (<acronym>TLS</acronym>) is a mechanism by which variables
are allocated such that there is one instance of the variable per extant
thread. The runtime model GCC uses to implement this originates
in the IA-64 processor-specific ABI, but has since been migrated
to other processors as well. It requires significant support from
the linker (<code>ld</code>), dynamic linker (<code>ld.so</code>), and
system libraries (<samp>libc.so</samp> and <samp>libpthread.so</samp>), so it
is not available everywhere.
</p>
<p>At the user level, the extension is visible with a new storage
class keyword: <code>__thread</code>. For example:
</p>
<div class="smallexample">
<pre class="smallexample">__thread int i;
extern __thread struct state s;
static __thread char *p;
</pre></div>
<p>The <code>__thread</code> specifier may be used alone, with the <code>extern</code>
or <code>static</code> specifiers, but with no other storage class specifier.
When used with <code>extern</code> or <code>static</code>, <code>__thread</code> must appear
immediately after the other storage class specifier.
</p>
<p>The <code>__thread</code> specifier may be applied to any global, file-scoped
static, function-scoped static, or static data member of a class. It may
not be applied to block-scoped automatic or non-static data member.
</p>
<p>When the address-of operator is applied to a thread-local variable, it is
evaluated at run time and returns the address of the current thread’s
instance of that variable. An address so obtained may be used by any
thread. When a thread terminates, any pointers to thread-local variables
in that thread become invalid.
</p>
<p>No static initialization may refer to the address of a thread-local variable.
</p>
<p>In C++, if an initializer is present for a thread-local variable, it must
be a <var>constant-expression</var>, as defined in 5.19.2 of the ANSI/ISO C++
standard.
</p>
<p>See <a href="https://www.akkadia.org/drepper/tls.pdf">ELF Handling For Thread-Local Storage</a> for a detailed explanation of
the four thread-local storage addressing models, and how the runtime
is expected to function.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#C99-Thread_002dLocal-Edits" accesskey="1">C99 Thread-Local Edits</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b98-Thread_002dLocal-Edits" accesskey="2">C++98 Thread-Local Edits</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="C99-Thread_002dLocal-Edits"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b98-Thread_002dLocal-Edits" accesskey="n" rel="next">C++98 Thread-Local Edits</a>, Up: <a href="#Thread_002dLocal" accesskey="u" rel="up">Thread-Local</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ISO_002fIEC-9899_003a1999-Edits-for-Thread_002dLocal-Storage"></a>
<h4 class="subsection">6.63.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage</h4>
<p>The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
that document the exact semantics of the language extension.
</p>
<ul>
<li> <cite>5.1.2 Execution environments</cite>
<p>Add new text after paragraph 1
</p>
<blockquote>
<p>Within either execution environment, a <em>thread</em> is a flow of
control within a program. It is implementation defined whether
or not there may be more than one thread associated with a program.
It is implementation defined how threads beyond the first are
created, the name and type of the function called at thread
startup, and how threads may be terminated. However, objects
with thread storage duration shall be initialized before thread
startup.
</p></blockquote>
</li><li> <cite>6.2.4 Storage durations of objects</cite>
<p>Add new text before paragraph 3
</p>
<blockquote>
<p>An object whose identifier is declared with the storage-class
specifier <code><span class="nolinebreak">__thread</span></code><!-- /@w --> has <em>thread storage duration</em>.
Its lifetime is the entire execution of the thread, and its
stored value is initialized only once, prior to thread startup.
</p></blockquote>
</li><li> <cite>6.4.1 Keywords</cite>
<p>Add <code>__thread</code>.
</p>
</li><li> <cite>6.7.1 Storage-class specifiers</cite>
<p>Add <code>__thread</code> to the list of storage class specifiers in
paragraph 1.
</p>
<p>Change paragraph 2 to
</p>
<blockquote>
<p>With the exception of <code>__thread</code>, at most one storage-class
specifier may be given […]. The <code>__thread</code> specifier may
be used alone, or immediately following <code>extern</code> or
<code>static</code>.
</p></blockquote>
<p>Add new text after paragraph 6
</p>
<blockquote>
<p>The declaration of an identifier for a variable that has
block scope that specifies <code>__thread</code> shall also
specify either <code>extern</code> or <code>static</code>.
</p>
<p>The <code>__thread</code> specifier shall be used only with
variables.
</p></blockquote>
</li></ul>
<hr>
<a name="C_002b_002b98-Thread_002dLocal-Edits"></a>
<div class="header">
<p>
Previous: <a href="#C99-Thread_002dLocal-Edits" accesskey="p" rel="prev">C99 Thread-Local Edits</a>, Up: <a href="#Thread_002dLocal" accesskey="u" rel="up">Thread-Local</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ISO_002fIEC-14882_003a1998-Edits-for-Thread_002dLocal-Storage"></a>
<h4 class="subsection">6.63.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage</h4>
<p>The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
that document the exact semantics of the language extension.
</p>
<ul>
<li> <b>[intro.execution]</b>
<p>New text after paragraph 4
</p>
<blockquote>
<p>A <em>thread</em> is a flow of control within the abstract machine.
It is implementation defined whether or not there may be more than
one thread.
</p></blockquote>
<p>New text after paragraph 7
</p>
<blockquote>
<p>It is unspecified whether additional action must be taken to
ensure when and whether side effects are visible to other threads.
</p></blockquote>
</li><li> <b>[lex.key]</b>
<p>Add <code>__thread</code>.
</p>
</li><li> <b>[basic.start.main]</b>
<p>Add after paragraph 5
</p>
<blockquote>
<p>The thread that begins execution at the <code>main</code> function is called
the <em>main thread</em>. It is implementation defined how functions
beginning threads other than the main thread are designated or typed.
A function so designated, as well as the <code>main</code> function, is called
a <em>thread startup function</em>. It is implementation defined what
happens if a thread startup function returns. It is implementation
defined what happens to other threads when any thread calls <code>exit</code>.
</p></blockquote>
</li><li> <b>[basic.start.init]</b>
<p>Add after paragraph 4
</p>
<blockquote>
<p>The storage for an object of thread storage duration shall be
statically initialized before the first statement of the thread startup
function. An object of thread storage duration shall not require
dynamic initialization.
</p></blockquote>
</li><li> <b>[basic.start.term]</b>
<p>Add after paragraph 3
</p>
<blockquote>
<p>The type of an object with thread storage duration shall not have a
non-trivial destructor, nor shall it be an array type whose elements
(directly or indirectly) have non-trivial destructors.
</p></blockquote>
</li><li> <b>[basic.stc]</b>
<p>Add “thread storage duration” to the list in paragraph 1.
</p>
<p>Change paragraph 2
</p>
<blockquote>
<p>Thread, static, and automatic storage durations are associated with
objects introduced by declarations […].
</p></blockquote>
<p>Add <code>__thread</code> to the list of specifiers in paragraph 3.
</p>
</li><li> <b>[basic.stc.thread]</b>
<p>New section before <b>[basic.stc.static]</b>
</p>
<blockquote>
<p>The keyword <code>__thread</code> applied to a non-local object gives the
object thread storage duration.
</p>
<p>A local variable or class data member declared both <code>static</code>
and <code>__thread</code> gives the variable or member thread storage
duration.
</p></blockquote>
</li><li> <b>[basic.stc.static]</b>
<p>Change paragraph 1
</p>
<blockquote>
<p>All objects that have neither thread storage duration, dynamic
storage duration nor are local […].
</p></blockquote>
</li><li> <b>[dcl.stc]</b>
<p>Add <code>__thread</code> to the list in paragraph 1.
</p>
<p>Change paragraph 1
</p>
<blockquote>
<p>With the exception of <code>__thread</code>, at most one
<var>storage-class-specifier</var> shall appear in a given
<var>decl-specifier-seq</var>. The <code>__thread</code> specifier may
be used alone, or immediately following the <code>extern</code> or
<code>static</code> specifiers. […]
</p></blockquote>
<p>Add after paragraph 5
</p>
<blockquote>
<p>The <code>__thread</code> specifier can be applied only to the names of objects
and to anonymous unions.
</p></blockquote>
</li><li> <b>[class.mem]</b>
<p>Add after paragraph 6
</p>
<blockquote>
<p>Non-<code>static</code> members shall not be <code>__thread</code>.
</p></blockquote>
</li></ul>
<hr>
<a name="Binary-constants"></a>
<div class="header">
<p>
Previous: <a href="#Thread_002dLocal" accesskey="p" rel="prev">Thread-Local</a>, Up: <a href="#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Binary-Constants-using-the-0b-Prefix"></a>
<h3 class="section">6.64 Binary Constants using the ‘<samp>0b</samp>’ Prefix</h3>
<a name="index-Binary-constants-using-the-0b-prefix"></a>
<p>Integer constants can be written as binary constants, consisting of a
sequence of ‘<samp>0</samp>’ and ‘<samp>1</samp>’ digits, prefixed by ‘<samp>0b</samp>’ or
‘<samp>0B</samp>’. This is particularly useful in environments that operate a
lot on the bit level (like microcontrollers).
</p>
<p>The following statements are identical:
</p>
<div class="smallexample">
<pre class="smallexample">i = 42;
i = 0x2a;
i = 052;
i = 0b101010;
</pre></div>
<p>The type of these constants follows the same rules as for octal or
hexadecimal integer constants, so suffixes like ‘<samp>L</samp>’ or ‘<samp>UL</samp>’
can be applied.
</p>
<hr>
<a name="C_002b_002b-Extensions"></a>
<div class="header">
<p>
Next: <a href="#Objective_002dC" accesskey="n" rel="next">Objective-C</a>, Previous: <a href="#C-Extensions" accesskey="p" rel="prev">C Extensions</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Extensions-to-the-C_002b_002b-Language"></a>
<h2 class="chapter">7 Extensions to the C++ Language</h2>
<a name="index-extensions_002c-C_002b_002b-language"></a>
<a name="index-C_002b_002b-language-extensions"></a>
<p>The GNU compiler provides these extensions to the C++ language (and you
can also use most of the C language extensions in your C++ programs). If you
want to write code that checks whether these features are available, you can
test for the GNU compiler the same way as for C programs: check for a
predefined macro <code>__GNUC__</code>. You can also use <code>__GNUG__</code> to
test specifically for GNU C++ (see <a href="x86_64-linux-gnu-cpp-8.html#Common-Predefined-Macros">Predefined Macros</a> in <cite>The GNU C Preprocessor</cite>).
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Volatiles" accesskey="1">C++ Volatiles</a>:</td><td> </td><td align="left" valign="top">What constitutes an access to a volatile object.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Restricted-Pointers" accesskey="2">Restricted Pointers</a>:</td><td> </td><td align="left" valign="top">C99 restricted pointers and references.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Vague-Linkage" accesskey="3">Vague Linkage</a>:</td><td> </td><td align="left" valign="top">Where G++ puts inlines, vtables and such.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Interface" accesskey="4">C++ Interface</a>:</td><td> </td><td align="left" valign="top">You can use a single C++ header file for both
declarations and definitions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Template-Instantiation" accesskey="5">Template Instantiation</a>:</td><td> </td><td align="left" valign="top">Methods for ensuring that exactly one copy of
each needed template instantiation is emitted.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Bound-member-functions" accesskey="6">Bound member functions</a>:</td><td> </td><td align="left" valign="top">You can extract a function pointer to the
method denoted by a ‘<samp>->*</samp>’ or ‘<samp>.*</samp>’ expression.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Attributes" accesskey="7">C++ Attributes</a>:</td><td> </td><td align="left" valign="top">Variable, function, and type attributes for C++ only.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Function-Multiversioning" accesskey="8">Function Multiversioning</a>:</td><td> </td><td align="left" valign="top">Declaring multiple function versions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Type-Traits" accesskey="9">Type Traits</a>:</td><td> </td><td align="left" valign="top">Compiler support for type traits.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Concepts">C++ Concepts</a>:</td><td> </td><td align="left" valign="top">Improved support for generic programming.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Deprecated-Features">Deprecated Features</a>:</td><td> </td><td align="left" valign="top">Things will disappear from G++.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Backwards-Compatibility">Backwards Compatibility</a>:</td><td> </td><td align="left" valign="top">Compatibilities with earlier definitions of C++.
</td></tr>
</table>
<hr>
<a name="C_002b_002b-Volatiles"></a>
<div class="header">
<p>
Next: <a href="#Restricted-Pointers" accesskey="n" rel="next">Restricted Pointers</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="When-is-a-Volatile-C_002b_002b-Object-Accessed_003f"></a>
<h3 class="section">7.1 When is a Volatile C++ Object Accessed?</h3>
<a name="index-accessing-volatiles-1"></a>
<a name="index-volatile-read-1"></a>
<a name="index-volatile-write-1"></a>
<a name="index-volatile-access-1"></a>
<p>The C++ standard differs from the C standard in its treatment of
volatile objects. It fails to specify what constitutes a volatile
access, except to say that C++ should behave in a similar manner to C
with respect to volatiles, where possible. However, the different
lvalueness of expressions between C and C++ complicate the behavior.
G++ behaves the same as GCC for volatile access, See <a href="#C-Extensions">Volatiles</a>, for a description of GCC’s behavior.
</p>
<p>The C and C++ language specifications differ when an object is
accessed in a void context:
</p>
<div class="smallexample">
<pre class="smallexample">volatile int *src = <var>somevalue</var>;
*src;
</pre></div>
<p>The C++ standard specifies that such expressions do not undergo lvalue
to rvalue conversion, and that the type of the dereferenced object may
be incomplete. The C++ standard does not specify explicitly that it
is lvalue to rvalue conversion that is responsible for causing an
access. There is reason to believe that it is, because otherwise
certain simple expressions become undefined. However, because it
would surprise most programmers, G++ treats dereferencing a pointer to
volatile object of complete type as GCC would do for an equivalent
type in C. When the object has incomplete type, G++ issues a
warning; if you wish to force an error, you must force a conversion to
rvalue with, for instance, a static cast.
</p>
<p>When using a reference to volatile, G++ does not treat equivalent
expressions as accesses to volatiles, but instead issues a warning that
no volatile is accessed. The rationale for this is that otherwise it
becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile
references. Again, if you wish to force a read, cast the reference to
an rvalue.
</p>
<p>G++ implements the same behavior as GCC does when assigning to a
volatile object—there is no reread of the assigned-to object, the
assigned rvalue is reused. Note that in C++ assignment expressions
are lvalues, and if used as an lvalue, the volatile object is
referred to. For instance, <var>vref</var> refers to <var>vobj</var>, as
expected, in the following example:
</p>
<div class="smallexample">
<pre class="smallexample">volatile int vobj;
volatile int &vref = vobj = <var>something</var>;
</pre></div>
<hr>
<a name="Restricted-Pointers"></a>
<div class="header">
<p>
Next: <a href="#Vague-Linkage" accesskey="n" rel="next">Vague Linkage</a>, Previous: <a href="#C_002b_002b-Volatiles" accesskey="p" rel="prev">C++ Volatiles</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Restricting-Pointer-Aliasing"></a>
<h3 class="section">7.2 Restricting Pointer Aliasing</h3>
<a name="index-restricted-pointers"></a>
<a name="index-restricted-references"></a>
<a name="index-restricted-this-pointer"></a>
<p>As with the C front end, G++ understands the C99 feature of restricted pointers,
specified with the <code>__restrict__</code>, or <code>__restrict</code> type
qualifier. Because you cannot compile C++ by specifying the <samp>-std=c99</samp>
language flag, <code>restrict</code> is not a keyword in C++.
</p>
<p>In addition to allowing restricted pointers, you can specify restricted
references, which indicate that the reference is not aliased in the local
context.
</p>
<div class="smallexample">
<pre class="smallexample">void fn (int *__restrict__ rptr, int &__restrict__ rref)
{
/* <span class="roman">…</span> */
}
</pre></div>
<p>In the body of <code>fn</code>, <var>rptr</var> points to an unaliased integer and
<var>rref</var> refers to a (different) unaliased integer.
</p>
<p>You may also specify whether a member function’s <var>this</var> pointer is
unaliased by using <code>__restrict__</code> as a member function qualifier.
</p>
<div class="smallexample">
<pre class="smallexample">void T::fn () __restrict__
{
/* <span class="roman">…</span> */
}
</pre></div>
<p>Within the body of <code>T::fn</code>, <var>this</var> has the effective
definition <code>T *__restrict__ const this</code>. Notice that the
interpretation of a <code>__restrict__</code> member function qualifier is
different to that of <code>const</code> or <code>volatile</code> qualifier, in that it
is applied to the pointer rather than the object. This is consistent with
other compilers that implement restricted pointers.
</p>
<p>As with all outermost parameter qualifiers, <code>__restrict__</code> is
ignored in function definition matching. This means you only need to
specify <code>__restrict__</code> in a function definition, rather than
in a function prototype as well.
</p>
<hr>
<a name="Vague-Linkage"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b-Interface" accesskey="n" rel="next">C++ Interface</a>, Previous: <a href="#Restricted-Pointers" accesskey="p" rel="prev">Restricted Pointers</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Vague-Linkage-1"></a>
<h3 class="section">7.3 Vague Linkage</h3>
<a name="index-vague-linkage"></a>
<p>There are several constructs in C++ that require space in the object
file but are not clearly tied to a single translation unit. We say that
these constructs have “vague linkage”. Typically such constructs are
emitted wherever they are needed, though sometimes we can be more
clever.
</p>
<dl compact="compact">
<dt>Inline Functions</dt>
<dd><p>Inline functions are typically defined in a header file which can be
included in many different compilations. Hopefully they can usually be
inlined, but sometimes an out-of-line copy is necessary, if the address
of the function is taken or if inlining fails. In general, we emit an
out-of-line copy in all translation units where one is needed. As an
exception, we only emit inline virtual functions with the vtable, since
it always requires a copy.
</p>
<p>Local static variables and string constants used in an inline function
are also considered to have vague linkage, since they must be shared
between all inlined and out-of-line instances of the function.
</p>
</dd>
<dt>VTables</dt>
<dd><a name="index-vtable"></a>
<p>C++ virtual functions are implemented in most compilers using a lookup
table, known as a vtable. The vtable contains pointers to the virtual
functions provided by a class, and each object of the class contains a
pointer to its vtable (or vtables, in some multiple-inheritance
situations). If the class declares any non-inline, non-pure virtual
functions, the first one is chosen as the “key method” for the class,
and the vtable is only emitted in the translation unit where the key
method is defined.
</p>
<p><em>Note:</em> If the chosen key method is later defined as inline, the
vtable is still emitted in every translation unit that defines it.
Make sure that any inline virtuals are declared inline in the class
body, even if they are not defined there.
</p>
</dd>
<dt><code>type_info</code> objects</dt>
<dd><a name="index-type_005finfo"></a>
<a name="index-RTTI"></a>
<p>C++ requires information about types to be written out in order to
implement ‘<samp>dynamic_cast</samp>’, ‘<samp>typeid</samp>’ and exception handling.
For polymorphic classes (classes with virtual functions), the ‘<samp>type_info</samp>’
object is written out along with the vtable so that ‘<samp>dynamic_cast</samp>’
can determine the dynamic type of a class object at run time. For all
other types, we write out the ‘<samp>type_info</samp>’ object when it is used: when
applying ‘<samp>typeid</samp>’ to an expression, throwing an object, or
referring to a type in a catch clause or exception specification.
</p>
</dd>
<dt>Template Instantiations</dt>
<dd><p>Most everything in this section also applies to template instantiations,
but there are other options as well.
See <a href="#Template-Instantiation">Where’s the Template?</a>.
</p>
</dd>
</dl>
<p>When used with GNU ld version 2.8 or later on an ELF system such as
GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
these constructs will be discarded at link time. This is known as
COMDAT support.
</p>
<p>On targets that don’t support COMDAT, but do support weak symbols, GCC
uses them. This way one copy overrides all the others, but
the unused copies still take up space in the executable.
</p>
<p>For targets that do not support either COMDAT or weak symbols,
most entities with vague linkage are emitted as local symbols to
avoid duplicate definition errors from the linker. This does not happen
for local statics in inlines, however, as having multiple copies
almost certainly breaks things.
</p>
<p>See <a href="#C_002b_002b-Interface">Declarations and Definitions in One Header</a>, for
another way to control placement of these constructs.
</p>
<hr>
<a name="C_002b_002b-Interface"></a>
<div class="header">
<p>
Next: <a href="#Template-Instantiation" accesskey="n" rel="next">Template Instantiation</a>, Previous: <a href="#Vague-Linkage" accesskey="p" rel="prev">Vague Linkage</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C_002b_002b-Interface-and-Implementation-Pragmas"></a>
<h3 class="section">7.4 C++ Interface and Implementation Pragmas</h3>
<a name="index-interface-and-implementation-headers_002c-C_002b_002b"></a>
<a name="index-C_002b_002b-interface-and-implementation-headers"></a>
<a name="index-pragmas_002c-interface-and-implementation"></a>
<p><code>#pragma interface</code> and <code>#pragma implementation</code> provide the
user with a way of explicitly directing the compiler to emit entities
with vague linkage (and debugging information) in a particular
translation unit.
</p>
<p><em>Note:</em> These <code>#pragma</code>s have been superceded as of GCC 2.7.2
by COMDAT support and the “key method” heuristic
mentioned in <a href="#Vague-Linkage">Vague Linkage</a>. Using them can actually cause your
program to grow due to unnecessary out-of-line copies of inline
functions.
</p>
<dl compact="compact">
<dt><code>#pragma interface</code></dt>
<dt><code>#pragma interface "<var>subdir</var>/<var>objects</var>.h"</code></dt>
<dd><a name="index-_0023pragma-interface"></a>
<p>Use this directive in <em>header files</em> that define object classes, to save
space in most of the object files that use those classes. Normally,
local copies of certain information (backup copies of inline member
functions, debugging information, and the internal tables that implement
virtual functions) must be kept in each object file that includes class
definitions. You can use this pragma to avoid such duplication. When a
header file containing ‘<samp>#pragma interface</samp>’ is included in a
compilation, this auxiliary information is not generated (unless
the main input source file itself uses ‘<samp>#pragma implementation</samp>’).
Instead, the object files contain references to be resolved at link
time.
</p>
<p>The second form of this directive is useful for the case where you have
multiple headers with the same name in different directories. If you
use this form, you must specify the same string to ‘<samp>#pragma
implementation</samp>’.
</p>
</dd>
<dt><code>#pragma implementation</code></dt>
<dt><code>#pragma implementation "<var>objects</var>.h"</code></dt>
<dd><a name="index-_0023pragma-implementation"></a>
<p>Use this pragma in a <em>main input file</em>, when you want full output from
included header files to be generated (and made globally visible). The
included header file, in turn, should use ‘<samp>#pragma interface</samp>’.
Backup copies of inline member functions, debugging information, and the
internal tables used to implement virtual functions are all generated in
implementation files.
</p>
<a name="index-implied-_0023pragma-implementation"></a>
<a name="index-_0023pragma-implementation_002c-implied"></a>
<a name="index-naming-convention_002c-implementation-headers"></a>
<p>If you use ‘<samp>#pragma implementation</samp>’ with no argument, it applies to
an include file with the same basename<a name="DOCF4" href="#FOOT4"><sup>4</sup></a> as your source
file. For example, in <samp>allclass.cc</samp>, giving just
‘<samp>#pragma implementation</samp>’
by itself is equivalent to ‘<samp>#pragma implementation "allclass.h"</samp>’.
</p>
<p>Use the string argument if you want a single implementation file to
include code from multiple header files. (You must also use
‘<samp>#include</samp>’ to include the header file; ‘<samp>#pragma
implementation</samp>’ only specifies how to use the file—it doesn’t actually
include it.)
</p>
<p>There is no way to split up the contents of a single header file into
multiple implementation files.
</p></dd>
</dl>
<a name="index-inlining-and-C_002b_002b-pragmas"></a>
<a name="index-C_002b_002b-pragmas_002c-effect-on-inlining"></a>
<a name="index-pragmas-in-C_002b_002b_002c-effect-on-inlining"></a>
<p>‘<samp>#pragma implementation</samp>’ and ‘<samp>#pragma interface</samp>’ also have an
effect on function inlining.
</p>
<p>If you define a class in a header file marked with ‘<samp>#pragma
interface</samp>’, the effect on an inline function defined in that class is
similar to an explicit <code>extern</code> declaration—the compiler emits
no code at all to define an independent version of the function. Its
definition is used only for inlining with its callers.
</p>
<a name="index-fno_002dimplement_002dinlines-1"></a>
<p>Conversely, when you include the same header file in a main source file
that declares it as ‘<samp>#pragma implementation</samp>’, the compiler emits
code for the function itself; this defines a version of the function
that can be found via pointers (or by callers compiled without
inlining). If all calls to the function can be inlined, you can avoid
emitting the function by compiling with <samp>-fno-implement-inlines</samp>.
If any calls are not inlined, you will get linker errors.
</p>
<hr>
<a name="Template-Instantiation"></a>
<div class="header">
<p>
Next: <a href="#Bound-member-functions" accesskey="n" rel="next">Bound member functions</a>, Previous: <a href="#C_002b_002b-Interface" accesskey="p" rel="prev">C++ Interface</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Where_0027s-the-Template_003f"></a>
<h3 class="section">7.5 Where’s the Template?</h3>
<a name="index-template-instantiation"></a>
<p>C++ templates were the first language feature to require more
intelligence from the environment than was traditionally found on a UNIX
system. Somehow the compiler and linker have to make sure that each
template instance occurs exactly once in the executable if it is needed,
and not at all otherwise. There are two basic approaches to this
problem, which are referred to as the Borland model and the Cfront model.
</p>
<dl compact="compact">
<dt>Borland model</dt>
<dd><p>Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template
instances in each translation unit that uses them, and the linker
collapses them together. The advantage of this model is that the linker
only has to consider the object files themselves; there is no external
complexity to worry about. The disadvantage is that compilation time
is increased because the template code is being compiled repeatedly.
Code written for this model tends to include definitions of all
templates in the header file, since they must be seen to be
instantiated.
</p>
</dd>
<dt>Cfront model</dt>
<dd><p>The AT&T C++ translator, Cfront, solved the template instantiation
problem by creating the notion of a template repository, an
automatically maintained place where template instances are stored. A
more modern version of the repository works as follows: As individual
object files are built, the compiler places any template definitions and
instantiations encountered in the repository. At link time, the link
wrapper adds in the objects in the repository and compiles any needed
instances that were not previously emitted. The advantages of this
model are more optimal compilation speed and the ability to use the
system linker; to implement the Borland model a compiler vendor also
needs to replace the linker. The disadvantages are vastly increased
complexity, and thus potential for error; for some code this can be
just as transparent, but in practice it can been very difficult to build
multiple programs in one directory and one program in multiple
directories. Code written for this model tends to separate definitions
of non-inline member templates into a separate file, which should be
compiled separately.
</p></dd>
</dl>
<p>G++ implements the Borland model on targets where the linker supports it,
including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
Otherwise G++ implements neither automatic model.
</p>
<p>You have the following options for dealing with template instantiations:
</p>
<ol>
<li> Do nothing. Code written for the Borland model works fine, but
each translation unit contains instances of each of the templates it
uses. The duplicate instances will be discarded by the linker, but in
a large program, this can lead to an unacceptable amount of code
duplication in object files or shared libraries.
<p>Duplicate instances of a template can be avoided by defining an explicit
instantiation in one object file, and preventing the compiler from doing
implicit instantiations in any other object files by using an explicit
instantiation declaration, using the <code>extern template</code> syntax:
</p>
<div class="smallexample">
<pre class="smallexample">extern template int max (int, int);
</pre></div>
<p>This syntax is defined in the C++ 2011 standard, but has been supported by
G++ and other compilers since well before 2011.
</p>
<p>Explicit instantiations can be used for the largest or most frequently
duplicated instances, without having to know exactly which other instances
are used in the rest of the program. You can scatter the explicit
instantiations throughout your program, perhaps putting them in the
translation units where the instances are used or the translation units
that define the templates themselves; you can put all of the explicit
instantiations you need into one big file; or you can create small files
like
</p>
<div class="smallexample">
<pre class="smallexample">#include "Foo.h"
#include "Foo.cc"
template class Foo<int>;
template ostream& operator <<
(ostream&, const Foo<int>&);
</pre></div>
<p>for each of the instances you need, and create a template instantiation
library from those.
</p>
<p>This is the simplest option, but also offers flexibility and
fine-grained control when necessary. It is also the most portable
alternative and programs using this approach will work with most modern
compilers.
</p>
</li><li> <a name="index-frepo-1"></a>
Compile your template-using code with <samp>-frepo</samp>. The compiler
generates files with the extension ‘<samp>.rpo</samp>’ listing all of the
template instantiations used in the corresponding object files that
could be instantiated there; the link wrapper, ‘<samp>collect2</samp>’,
then updates the ‘<samp>.rpo</samp>’ files to tell the compiler where to place
those instantiations and rebuild any affected object files. The
link-time overhead is negligible after the first pass, as the compiler
continues to place the instantiations in the same files.
<p>This can be a suitable option for application code written for the Borland
model, as it usually just works. Code written for the Cfront model
needs to be modified so that the template definitions are available at
one or more points of instantiation; usually this is as simple as adding
<code>#include <tmethods.cc></code> to the end of each template header.
</p>
<p>For library code, if you want the library to provide all of the template
instantiations it needs, just try to link all of its object files
together; the link will fail, but cause the instantiations to be
generated as a side effect. Be warned, however, that this may cause
conflicts if multiple libraries try to provide the same instantiations.
For greater control, use explicit instantiation as described in the next
option.
</p>
</li><li> <a name="index-fno_002dimplicit_002dtemplates-1"></a>
Compile your code with <samp>-fno-implicit-templates</samp> to disable the
implicit generation of template instances, and explicitly instantiate
all the ones you use. This approach requires more knowledge of exactly
which instances you need than do the others, but it’s less
mysterious and allows greater control if you want to ensure that only
the intended instances are used.
<p>If you are using Cfront-model code, you can probably get away with not
using <samp>-fno-implicit-templates</samp> when compiling files that don’t
‘<samp>#include</samp>’ the member template definitions.
</p>
<p>If you use one big file to do the instantiations, you may want to
compile it without <samp>-fno-implicit-templates</samp> so you get all of the
instances required by your explicit instantiations (but not by any
other files) without having to specify them as well.
</p>
<p>In addition to forward declaration of explicit instantiations
(with <code>extern</code>), G++ has extended the template instantiation
syntax to support instantiation of the compiler support data for a
template class (i.e. the vtable) without instantiating any of its
members (with <code>inline</code>), and instantiation of only the static data
members of a template class, without the support data or member
functions (with <code>static</code>):
</p>
<div class="smallexample">
<pre class="smallexample">inline template class Foo<int>;
static template class Foo<int>;
</pre></div>
</li></ol>
<hr>
<a name="Bound-member-functions"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b-Attributes" accesskey="n" rel="next">C++ Attributes</a>, Previous: <a href="#Template-Instantiation" accesskey="p" rel="prev">Template Instantiation</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Extracting-the-Function-Pointer-from-a-Bound-Pointer-to-Member-Function"></a>
<h3 class="section">7.6 Extracting the Function Pointer from a Bound Pointer to Member Function</h3>
<a name="index-pmf"></a>
<a name="index-pointer-to-member-function"></a>
<a name="index-bound-pointer-to-member-function"></a>
<p>In C++, pointer to member functions (PMFs) are implemented using a wide
pointer of sorts to handle all the possible call mechanisms; the PMF
needs to store information about how to adjust the ‘<samp>this</samp>’ pointer,
and if the function pointed to is virtual, where to find the vtable, and
where in the vtable to look for the member function. If you are using
PMFs in an inner loop, you should really reconsider that decision. If
that is not an option, you can extract the pointer to the function that
would be called for a given object/PMF pair and call it directly inside
the inner loop, to save a bit of time.
</p>
<p>Note that you still pay the penalty for the call through a
function pointer; on most modern architectures, such a call defeats the
branch prediction features of the CPU. This is also true of normal
virtual function calls.
</p>
<p>The syntax for this extension is
</p>
<div class="smallexample">
<pre class="smallexample">extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);
fptr p = (fptr)(a.*fp);
</pre></div>
<p>For PMF constants (i.e. expressions of the form ‘<samp>&Klasse::Member</samp>’),
no object is needed to obtain the address of the function. They can be
converted to function pointers directly:
</p>
<div class="smallexample">
<pre class="smallexample">fptr p1 = (fptr)(&A::foo);
</pre></div>
<a name="index-Wno_002dpmf_002dconversions-1"></a>
<p>You must specify <samp>-Wno-pmf-conversions</samp> to use this extension.
</p>
<hr>
<a name="C_002b_002b-Attributes"></a>
<div class="header">
<p>
Next: <a href="#Function-Multiversioning" accesskey="n" rel="next">Function Multiversioning</a>, Previous: <a href="#Bound-member-functions" accesskey="p" rel="prev">Bound member functions</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C_002b_002b_002dSpecific-Variable_002c-Function_002c-and-Type-Attributes"></a>
<h3 class="section">7.7 C++-Specific Variable, Function, and Type Attributes</h3>
<p>Some attributes only make sense for C++ programs.
</p>
<dl compact="compact">
<dt><code>abi_tag ("<var>tag</var>", ...)</code></dt>
<dd><a name="index-abi_005ftag-function-attribute"></a>
<a name="index-abi_005ftag-variable-attribute"></a>
<a name="index-abi_005ftag-type-attribute"></a>
<p>The <code>abi_tag</code> attribute can be applied to a function, variable, or class
declaration. It modifies the mangled name of the entity to
incorporate the tag name, in order to distinguish the function or
class from an earlier version with a different ABI; perhaps the class
has changed size, or the function has a different return type that is
not encoded in the mangled name.
</p>
<p>The attribute can also be applied to an inline namespace, but does not
affect the mangled name of the namespace; in this case it is only used
for <samp>-Wabi-tag</samp> warnings and automatic tagging of functions and
variables. Tagging inline namespaces is generally preferable to
tagging individual declarations, but the latter is sometimes
necessary, such as when only certain members of a class need to be
tagged.
</p>
<p>The argument can be a list of strings of arbitrary length. The
strings are sorted on output, so the order of the list is
unimportant.
</p>
<p>A redeclaration of an entity must not add new ABI tags,
since doing so would change the mangled name.
</p>
<p>The ABI tags apply to a name, so all instantiations and
specializations of a template have the same tags. The attribute will
be ignored if applied to an explicit specialization or instantiation.
</p>
<p>The <samp>-Wabi-tag</samp> flag enables a warning about a class which does
not have all the ABI tags used by its subobjects and virtual functions; for users with code
that needs to coexist with an earlier ABI, using this option can help
to find all affected types that need to be tagged.
</p>
<p>When a type involving an ABI tag is used as the type of a variable or
return type of a function where that tag is not already present in the
signature of the function, the tag is automatically applied to the
variable or function. <samp>-Wabi-tag</samp> also warns about this
situation; this warning can be avoided by explicitly tagging the
variable or function or moving it into a tagged inline namespace.
</p>
</dd>
<dt><code>init_priority (<var>priority</var>)</code></dt>
<dd><a name="index-init_005fpriority-variable-attribute"></a>
<p>In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions
<em>in a given translation unit</em>. No guarantee is made for initializations
across translation units. However, GNU C++ allows users to control the
order of initialization of objects defined at namespace scope with the
<code>init_priority</code> attribute by specifying a relative <var>priority</var>,
a constant integral expression currently bounded between 101 and 65535
inclusive. Lower numbers indicate a higher priority.
</p>
<p>In the following example, <code>A</code> would normally be created before
<code>B</code>, but the <code>init_priority</code> attribute reverses that order:
</p>
<div class="smallexample">
<pre class="smallexample">Some_Class A __attribute__ ((init_priority (2000)));
Some_Class B __attribute__ ((init_priority (543)));
</pre></div>
<p>Note that the particular values of <var>priority</var> do not matter; only their
relative ordering.
</p>
</dd>
<dt><code>warn_unused</code></dt>
<dd><a name="index-warn_005funused-type-attribute"></a>
<p>For C++ types with non-trivial constructors and/or destructors it is
impossible for the compiler to determine whether a variable of this
type is truly unused if it is not referenced. This type attribute
informs the compiler that variables of this type should be warned
about if they appear to be unused, just like variables of fundamental
types.
</p>
<p>This attribute is appropriate for types which just represent a value,
such as <code>std::string</code>; it is not appropriate for types which
control a resource, such as <code>std::lock_guard</code>.
</p>
<p>This attribute is also accepted in C, but it is unnecessary because C
does not have constructors or destructors.
</p>
</dd>
</dl>
<hr>
<a name="Function-Multiversioning"></a>
<div class="header">
<p>
Next: <a href="#Type-Traits" accesskey="n" rel="next">Type Traits</a>, Previous: <a href="#C_002b_002b-Attributes" accesskey="p" rel="prev">C++ Attributes</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Function-Multiversioning-1"></a>
<h3 class="section">7.8 Function Multiversioning</h3>
<a name="index-function-versions"></a>
<p>With the GNU C++ front end, for x86 targets, you may specify multiple
versions of a function, where each function is specialized for a
specific target feature. At runtime, the appropriate version of the
function is automatically executed depending on the characteristics of
the execution platform. Here is an example.
</p>
<div class="smallexample">
<pre class="smallexample">__attribute__ ((target ("default")))
int foo ()
{
// The default version of foo.
return 0;
}
__attribute__ ((target ("sse4.2")))
int foo ()
{
// foo version for SSE4.2
return 1;
}
__attribute__ ((target ("arch=atom")))
int foo ()
{
// foo version for the Intel ATOM processor
return 2;
}
__attribute__ ((target ("arch=amdfam10")))
int foo ()
{
// foo version for the AMD Family 0x10 processors.
return 3;
}
int main ()
{
int (*p)() = &foo;
assert ((*p) () == foo ());
return 0;
}
</pre></div>
<p>In the above example, four versions of function foo are created. The
first version of foo with the target attribute "default" is the default
version. This version gets executed when no other target specific
version qualifies for execution on a particular platform. A new version
of foo is created by using the same function signature but with a
different target string. Function foo is called or a pointer to it is
taken just like a regular function. GCC takes care of doing the
dispatching to call the right version at runtime. Refer to the
<a href="http://gcc.gnu.org/wiki/FunctionMultiVersioning">GCC wiki on
Function Multiversioning</a> for more details.
</p>
<hr>
<a name="Type-Traits"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b-Concepts" accesskey="n" rel="next">C++ Concepts</a>, Previous: <a href="#Function-Multiversioning" accesskey="p" rel="prev">Function Multiversioning</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Type-Traits-1"></a>
<h3 class="section">7.9 Type Traits</h3>
<p>The C++ front end implements syntactic extensions that allow
compile-time determination of
various characteristics of a type (or of a
pair of types).
</p>
<dl compact="compact">
<dt><code>__has_nothrow_assign (type)</code></dt>
<dd><p>If <code>type</code> is const qualified or is a reference type then the trait is
false. Otherwise if <code>__has_trivial_assign (type)</code> is true then the trait
is true, else if <code>type</code> is a cv class or union type with copy assignment
operators that are known not to throw an exception then the trait is true,
else it is false. Requires: <code>type</code> shall be a complete type,
(possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__has_nothrow_copy (type)</code></dt>
<dd><p>If <code>__has_trivial_copy (type)</code> is true then the trait is true, else if
<code>type</code> is a cv class or union type with copy constructors that
are known not to throw an exception then the trait is true, else it is false.
Requires: <code>type</code> shall be a complete type, (possibly cv-qualified)
<code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__has_nothrow_constructor (type)</code></dt>
<dd><p>If <code>__has_trivial_constructor (type)</code> is true then the trait is
true, else if <code>type</code> is a cv class or union type (or array
thereof) with a default constructor that is known not to throw an
exception then the trait is true, else it is false. Requires:
<code>type</code> shall be a complete type, (possibly cv-qualified)
<code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__has_trivial_assign (type)</code></dt>
<dd><p>If <code>type</code> is const qualified or is a reference type then the trait is
false. Otherwise if <code>__is_pod (type)</code> is true then the trait is
true, else if <code>type</code> is a cv class or union type with a trivial
copy assignment ([class.copy]) then the trait is true, else it is
false. Requires: <code>type</code> shall be a complete type, (possibly
cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__has_trivial_copy (type)</code></dt>
<dd><p>If <code>__is_pod (type)</code> is true or <code>type</code> is a reference type
then the trait is true, else if <code>type</code> is a cv class or union type
with a trivial copy constructor ([class.copy]) then the trait
is true, else it is false. Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__has_trivial_constructor (type)</code></dt>
<dd><p>If <code>__is_pod (type)</code> is true then the trait is true, else if
<code>type</code> is a cv class or union type (or array thereof) with a
trivial default constructor ([class.ctor]) then the trait is true,
else it is false. Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__has_trivial_destructor (type)</code></dt>
<dd><p>If <code>__is_pod (type)</code> is true or <code>type</code> is a reference type then
the trait is true, else if <code>type</code> is a cv class or union type (or
array thereof) with a trivial destructor ([class.dtor]) then the trait
is true, else it is false. Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__has_virtual_destructor (type)</code></dt>
<dd><p>If <code>type</code> is a class type with a virtual destructor
([class.dtor]) then the trait is true, else it is false. Requires:
<code>type</code> shall be a complete type, (possibly cv-qualified)
<code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__is_abstract (type)</code></dt>
<dd><p>If <code>type</code> is an abstract class ([class.abstract]) then the trait
is true, else it is false. Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__is_base_of (base_type, derived_type)</code></dt>
<dd><p>If <code>base_type</code> is a base class of <code>derived_type</code>
([class.derived]) then the trait is true, otherwise it is false.
Top-level cv qualifications of <code>base_type</code> and
<code>derived_type</code> are ignored. For the purposes of this trait, a
class type is considered is own base. Requires: if <code>__is_class
(base_type)</code> and <code>__is_class (derived_type)</code> are true and
<code>base_type</code> and <code>derived_type</code> are not the same type
(disregarding cv-qualifiers), <code>derived_type</code> shall be a complete
type. A diagnostic is produced if this requirement is not met.
</p>
</dd>
<dt><code>__is_class (type)</code></dt>
<dd><p>If <code>type</code> is a cv class type, and not a union type
([basic.compound]) the trait is true, else it is false.
</p>
</dd>
<dt><code>__is_empty (type)</code></dt>
<dd><p>If <code>__is_class (type)</code> is false then the trait is false.
Otherwise <code>type</code> is considered empty if and only if: <code>type</code>
has no non-static data members, or all non-static data members, if
any, are bit-fields of length 0, and <code>type</code> has no virtual
members, and <code>type</code> has no virtual base classes, and <code>type</code>
has no base classes <code>base_type</code> for which
<code>__is_empty (base_type)</code> is false. Requires: <code>type</code> shall
be a complete type, (possibly cv-qualified) <code>void</code>, or an array
of unknown bound.
</p>
</dd>
<dt><code>__is_enum (type)</code></dt>
<dd><p>If <code>type</code> is a cv enumeration type ([basic.compound]) the trait is
true, else it is false.
</p>
</dd>
<dt><code>__is_literal_type (type)</code></dt>
<dd><p>If <code>type</code> is a literal type ([basic.types]) the trait is
true, else it is false. Requires: <code>type</code> shall be a complete type,
(possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__is_pod (type)</code></dt>
<dd><p>If <code>type</code> is a cv POD type ([basic.types]) then the trait is true,
else it is false. Requires: <code>type</code> shall be a complete type,
(possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__is_polymorphic (type)</code></dt>
<dd><p>If <code>type</code> is a polymorphic class ([class.virtual]) then the trait
is true, else it is false. Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__is_standard_layout (type)</code></dt>
<dd><p>If <code>type</code> is a standard-layout type ([basic.types]) the trait is
true, else it is false. Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__is_trivial (type)</code></dt>
<dd><p>If <code>type</code> is a trivial type ([basic.types]) the trait is
true, else it is false. Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.
</p>
</dd>
<dt><code>__is_union (type)</code></dt>
<dd><p>If <code>type</code> is a cv union type ([basic.compound]) the trait is
true, else it is false.
</p>
</dd>
<dt><code>__underlying_type (type)</code></dt>
<dd><p>The underlying type of <code>type</code>. Requires: <code>type</code> shall be
an enumeration type ([dcl.enum]).
</p>
</dd>
<dt><code>__integer_pack (length)</code></dt>
<dd><p>When used as the pattern of a pack expansion within a template
definition, expands to a template argument pack containing integers
from <code>0</code> to <code>length-1</code>. This is provided for efficient
implementation of <code>std::make_integer_sequence</code>.
</p>
</dd>
</dl>
<hr>
<a name="C_002b_002b-Concepts"></a>
<div class="header">
<p>
Next: <a href="#Deprecated-Features" accesskey="n" rel="next">Deprecated Features</a>, Previous: <a href="#Type-Traits" accesskey="p" rel="prev">Type Traits</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C_002b_002b-Concepts-1"></a>
<h3 class="section">7.10 C++ Concepts</h3>
<p>C++ concepts provide much-improved support for generic programming. In
particular, they allow the specification of constraints on template arguments.
The constraints are used to extend the usual overloading and partial
specialization capabilities of the language, allowing generic data structures
and algorithms to be “refined” based on their properties rather than their
type names.
</p>
<p>The following keywords are reserved for concepts.
</p>
<dl compact="compact">
<dt><code>assumes</code></dt>
<dd><p>States an expression as an assumption, and if possible, verifies that the
assumption is valid. For example, <code>assume(n > 0)</code>.
</p>
</dd>
<dt><code>axiom</code></dt>
<dd><p>Introduces an axiom definition. Axioms introduce requirements on values.
</p>
</dd>
<dt><code>forall</code></dt>
<dd><p>Introduces a universally quantified object in an axiom. For example,
<code>forall (int n) n + 0 == n</code>).
</p>
</dd>
<dt><code>concept</code></dt>
<dd><p>Introduces a concept definition. Concepts are sets of syntactic and semantic
requirements on types and their values.
</p>
</dd>
<dt><code>requires</code></dt>
<dd><p>Introduces constraints on template arguments or requirements for a member
function of a class template.
</p>
</dd>
</dl>
<p>The front end also exposes a number of internal mechanism that can be used
to simplify the writing of type traits. Note that some of these traits are
likely to be removed in the future.
</p>
<dl compact="compact">
<dt><code>__is_same (type1, type2)</code></dt>
<dd><p>A binary type trait: true whenever the type arguments are the same.
</p>
</dd>
</dl>
<hr>
<a name="Deprecated-Features"></a>
<div class="header">
<p>
Next: <a href="#Backwards-Compatibility" accesskey="n" rel="next">Backwards Compatibility</a>, Previous: <a href="#C_002b_002b-Concepts" accesskey="p" rel="prev">C++ Concepts</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Deprecated-Features-1"></a>
<h3 class="section">7.11 Deprecated Features</h3>
<p>In the past, the GNU C++ compiler was extended to experiment with new
features, at a time when the C++ language was still evolving. Now that
the C++ standard is complete, some of those features are superseded by
superior alternatives. Using the old features might cause a warning in
some cases that the feature will be dropped in the future. In other
cases, the feature might be gone already.
</p>
<p>While the list below is not exhaustive, it documents some of the options
that are now deprecated or have been removed:
</p>
<dl compact="compact">
<dt><code>-fno-for-scope</code></dt>
<dt><code>-ffriend-injection</code></dt>
<dd><p>These two options provide compatibility with pre-standard C++.
See <a href="#Backwards-Compatibility">Backwards Compatibility</a>.
</p>
</dd>
</dl>
<p>G++ allows a virtual function returning ‘<samp>void *</samp>’ to be overridden
by one returning a different pointer type. This extension to the
covariant return type rules is now deprecated and will be removed from a
future version.
</p>
<p>The use of default arguments in function pointers, function typedefs
and other places where they are not permitted by the standard is
deprecated and will be removed from a future version of G++.
</p>
<p>G++ allows floating-point literals to appear in integral constant expressions,
e.g. ‘<samp> enum E { e = int(2.2 * 3.7) } </samp>’
This extension is deprecated and will be removed from a future version.
</p>
<p>G++ allows static data members of const floating-point type to be declared
with an initializer in a class definition. The standard only allows
initializers for static members of const integral types and const
enumeration types so this extension has been deprecated and will be removed
from a future version.
</p>
<p>G++ allows attributes to follow a parenthesized direct initializer,
e.g. ‘<samp> int f (0) __attribute__ ((something)); </samp>’ This extension
has been ignored since G++ 3.3 and is deprecated.
</p>
<p>G++ allows anonymous structs and unions to have members that are not
public non-static data members (i.e. fields). These extensions are
deprecated.
</p>
<hr>
<a name="Backwards-Compatibility"></a>
<div class="header">
<p>
Previous: <a href="#Deprecated-Features" accesskey="p" rel="prev">Deprecated Features</a>, Up: <a href="#C_002b_002b-Extensions" accesskey="u" rel="up">C++ Extensions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Backwards-Compatibility-1"></a>
<h3 class="section">7.12 Backwards Compatibility</h3>
<a name="index-Backwards-Compatibility"></a>
<a name="index-ARM-_005bAnnotated-C_002b_002b-Reference-Manual_005d"></a>
<p>Now that there is a definitive ISO standard C++, G++ has a specification
to adhere to. The C++ language evolved over time, and features that
used to be acceptable in previous drafts of the standard, such as the ARM
[Annotated C++ Reference Manual], are no longer accepted. In order to allow
compilation of C++ written to such drafts, G++ contains some backwards
compatibilities. <em>All such backwards compatibility features are
liable to disappear in future versions of G++.</em> They should be considered
deprecated. See <a href="#Deprecated-Features">Deprecated Features</a>.
</p>
<dl compact="compact">
<dt><code>For scope</code></dt>
<dd><p>If a variable is declared at for scope, it used to remain in scope
until the end of the scope that contained the for statement (rather
than just within the for scope). The deprecated
<samp>-fno-for-scope</samp> option enables this non-standard behavior.
Without the option, G++ retains this, but issues a warning, if such a
variable is accessed outside the for scope.
</p>
<p>The behavior is deprecated, only available with <samp>-std=c++98</samp>
<samp>-std=gnu++98</samp> languages and you must use the
<samp>-fpermissive</samp> option to enable it. The behavior will be
removed.
</p>
</dd>
<dt><code>Friend Injection</code></dt>
<dd><p>The <samp>-ffriend-injection</samp> option makes injected friends visible
to regular name lookup, unlike standard C++. This option is
deprecated and will be removed.
</p>
</dd>
<dt><code>Implicit C language</code></dt>
<dd><p>Old C system header files did not contain an <code>extern "C" {…}</code>
scope to set the language. On such systems, all header files are
implicitly scoped inside a C language scope. Also, an empty prototype
<code>()</code> is treated as an unspecified number of arguments, rather
than no arguments, as C++ demands.
</p></dd>
</dl>
<hr>
<a name="Objective_002dC"></a>
<div class="header">
<p>
Next: <a href="#Compatibility" accesskey="n" rel="next">Compatibility</a>, Previous: <a href="#C_002b_002b-Extensions" accesskey="p" rel="prev">C++ Extensions</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="GNU-Objective_002dC-Features"></a>
<h2 class="chapter">8 GNU Objective-C Features</h2>
<p>This document is meant to describe some of the GNU Objective-C
features. It is not intended to teach you Objective-C. There are
several resources on the Internet that present the language.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#GNU-Objective_002dC-runtime-API" accesskey="1">GNU Objective-C runtime API</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Executing-code-before-main" accesskey="2">Executing code before main</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Type-encoding" accesskey="3">Type encoding</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Garbage-Collection" accesskey="4">Garbage Collection</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Constant-string-objects" accesskey="5">Constant string objects</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#compatibility_005falias" accesskey="6">compatibility_alias</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Exceptions" accesskey="7">Exceptions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Synchronization" accesskey="8">Synchronization</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Fast-enumeration" accesskey="9">Fast enumeration</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Messaging-with-the-GNU-Objective_002dC-runtime">Messaging with the GNU Objective-C runtime</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="GNU-Objective_002dC-runtime-API"></a>
<div class="header">
<p>
Next: <a href="#Executing-code-before-main" accesskey="n" rel="next">Executing code before main</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="GNU-Objective_002dC-Runtime-API"></a>
<h3 class="section">8.1 GNU Objective-C Runtime API</h3>
<p>This section is specific for the GNU Objective-C runtime. If you are
using a different runtime, you can skip it.
</p>
<p>The GNU Objective-C runtime provides an API that allows you to
interact with the Objective-C runtime system, querying the live
runtime structures and even manipulating them. This allows you for
example to inspect and navigate classes, methods and protocols; to
define new classes or new methods, and even to modify existing classes
or protocols.
</p>
<p>If you are using a “Foundation” library such as GNUstep-Base, this
library will provide you with a rich set of functionality to do most
of the inspection tasks, and you probably will only need direct access
to the GNU Objective-C runtime API to define new classes or methods.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Modern-GNU-Objective_002dC-runtime-API" accesskey="1">Modern GNU Objective-C runtime API</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Traditional-GNU-Objective_002dC-runtime-API" accesskey="2">Traditional GNU Objective-C runtime API</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Modern-GNU-Objective_002dC-runtime-API"></a>
<div class="header">
<p>
Next: <a href="#Traditional-GNU-Objective_002dC-runtime-API" accesskey="n" rel="next">Traditional GNU Objective-C runtime API</a>, Up: <a href="#GNU-Objective_002dC-runtime-API" accesskey="u" rel="up">GNU Objective-C runtime API</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Modern-GNU-Objective_002dC-Runtime-API"></a>
<h4 class="subsection">8.1.1 Modern GNU Objective-C Runtime API</h4>
<p>The GNU Objective-C runtime provides an API which is similar to the
one provided by the “Objective-C 2.0” Apple/NeXT Objective-C
runtime. The API is documented in the public header files of the GNU
Objective-C runtime:
</p>
<ul>
<li> <samp>objc/objc.h</samp>: this is the basic Objective-C header file,
defining the basic Objective-C types such as <code>id</code>, <code>Class</code>
and <code>BOOL</code>. You have to include this header to do almost
anything with Objective-C.
</li><li> <samp>objc/runtime.h</samp>: this header declares most of the public runtime
API functions allowing you to inspect and manipulate the Objective-C
runtime data structures. These functions are fairly standardized
across Objective-C runtimes and are almost identical to the Apple/NeXT
Objective-C runtime ones. It does not declare functions in some
specialized areas (constructing and forwarding message invocations,
threading) which are in the other headers below. You have to include
<samp>objc/objc.h</samp> and <samp>objc/runtime.h</samp> to use any of the
functions, such as <code>class_getName()</code>, declared in
<samp>objc/runtime.h</samp>.
</li><li> <samp>objc/message.h</samp>: this header declares public functions used to
construct, deconstruct and forward message invocations. Because
messaging is done in quite a different way on different runtimes,
functions in this header are specific to the GNU Objective-C runtime
implementation.
</li><li> <samp>objc/objc-exception.h</samp>: this header declares some public
functions related to Objective-C exceptions. For example functions in
this header allow you to throw an Objective-C exception from plain
C/C++ code.
</li><li> <samp>objc/objc-sync.h</samp>: this header declares some public functions
related to the Objective-C <code>@synchronized()</code> syntax, allowing
you to emulate an Objective-C <code>@synchronized()</code> block in plain
C/C++ code.
</li><li> <samp>objc/thr.h</samp>: this header declares a public runtime API threading
layer that is only provided by the GNU Objective-C runtime. It
declares functions such as <code>objc_mutex_lock()</code>, which provide a
platform-independent set of threading functions.
</li></ul>
<p>The header files contain detailed documentation for each function in
the GNU Objective-C runtime API.
</p>
<hr>
<a name="Traditional-GNU-Objective_002dC-runtime-API"></a>
<div class="header">
<p>
Previous: <a href="#Modern-GNU-Objective_002dC-runtime-API" accesskey="p" rel="prev">Modern GNU Objective-C runtime API</a>, Up: <a href="#GNU-Objective_002dC-runtime-API" accesskey="u" rel="up">GNU Objective-C runtime API</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Traditional-GNU-Objective_002dC-Runtime-API"></a>
<h4 class="subsection">8.1.2 Traditional GNU Objective-C Runtime API</h4>
<p>The GNU Objective-C runtime used to provide a different API, which we
call the “traditional” GNU Objective-C runtime API. Functions
belonging to this API are easy to recognize because they use a
different naming convention, such as <code>class_get_super_class()</code>
(traditional API) instead of <code>class_getSuperclass()</code> (modern
API). Software using this API includes the file
<samp>objc/objc-api.h</samp> where it is declared.
</p>
<p>Starting with GCC 4.7.0, the traditional GNU runtime API is no longer
available.
</p>
<hr>
<a name="Executing-code-before-main"></a>
<div class="header">
<p>
Next: <a href="#Type-encoding" accesskey="n" rel="next">Type encoding</a>, Previous: <a href="#GNU-Objective_002dC-runtime-API" accesskey="p" rel="prev">GNU Objective-C runtime API</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="g_t_002bload_003a-Executing-Code-before-main"></a>
<h3 class="section">8.2 <code>+load</code>: Executing Code before <code>main</code></h3>
<p>This section is specific for the GNU Objective-C runtime. If you are
using a different runtime, you can skip it.
</p>
<p>The GNU Objective-C runtime provides a way that allows you to execute
code before the execution of the program enters the <code>main</code>
function. The code is executed on a per-class and a per-category basis,
through a special class method <code>+load</code>.
</p>
<p>This facility is very useful if you want to initialize global variables
which can be accessed by the program directly, without sending a message
to the class first. The usual way to initialize global variables, in the
<code>+initialize</code> method, might not be useful because
<code>+initialize</code> is only called when the first message is sent to a
class object, which in some cases could be too late.
</p>
<p>Suppose for example you have a <code>FileStream</code> class that declares
<code>Stdin</code>, <code>Stdout</code> and <code>Stderr</code> as global variables, like
below:
</p>
<div class="smallexample">
<pre class="smallexample">
FileStream *Stdin = nil;
FileStream *Stdout = nil;
FileStream *Stderr = nil;
@implementation FileStream
+ (void)initialize
{
Stdin = [[FileStream new] initWithFd:0];
Stdout = [[FileStream new] initWithFd:1];
Stderr = [[FileStream new] initWithFd:2];
}
/* <span class="roman">Other methods here</span> */
@end
</pre></div>
<p>In this example, the initialization of <code>Stdin</code>, <code>Stdout</code> and
<code>Stderr</code> in <code>+initialize</code> occurs too late. The programmer can
send a message to one of these objects before the variables are actually
initialized, thus sending messages to the <code>nil</code> object. The
<code>+initialize</code> method which actually initializes the global
variables is not invoked until the first message is sent to the class
object. The solution would require these variables to be initialized
just before entering <code>main</code>.
</p>
<p>The correct solution of the above problem is to use the <code>+load</code>
method instead of <code>+initialize</code>:
</p>
<div class="smallexample">
<pre class="smallexample">
@implementation FileStream
+ (void)load
{
Stdin = [[FileStream new] initWithFd:0];
Stdout = [[FileStream new] initWithFd:1];
Stderr = [[FileStream new] initWithFd:2];
}
/* <span class="roman">Other methods here</span> */
@end
</pre></div>
<p>The <code>+load</code> is a method that is not overridden by categories. If a
class and a category of it both implement <code>+load</code>, both methods are
invoked. This allows some additional initializations to be performed in
a category.
</p>
<p>This mechanism is not intended to be a replacement for <code>+initialize</code>.
You should be aware of its limitations when you decide to use it
instead of <code>+initialize</code>.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#What-you-can-and-what-you-cannot-do-in-_002bload" accesskey="1">What you can and what you cannot do in +load</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="What-you-can-and-what-you-cannot-do-in-_002bload"></a>
<div class="header">
<p>
Up: <a href="#Executing-code-before-main" accesskey="u" rel="up">Executing code before main</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="What-You-Can-and-Cannot-Do-in-_002bload"></a>
<h4 class="subsection">8.2.1 What You Can and Cannot Do in <code>+load</code></h4>
<p><code>+load</code> is to be used only as a last resort. Because it is
executed very early, most of the Objective-C runtime machinery will
not be ready when <code>+load</code> is executed; hence <code>+load</code> works
best for executing C code that is independent on the Objective-C
runtime.
</p>
<p>The <code>+load</code> implementation in the GNU runtime guarantees you the
following things:
</p>
<ul>
<li> you can write whatever C code you like;
</li><li> you can allocate and send messages to objects whose class is implemented
in the same file;
</li><li> the <code>+load</code> implementation of all super classes of a class are
executed before the <code>+load</code> of that class is executed;
</li><li> the <code>+load</code> implementation of a class is executed before the
<code>+load</code> implementation of any category.
</li></ul>
<p>In particular, the following things, even if they can work in a
particular case, are not guaranteed:
</p>
<ul>
<li> allocation of or sending messages to arbitrary objects;
</li><li> allocation of or sending messages to objects whose classes have a
category implemented in the same file;
</li><li> sending messages to Objective-C constant strings (<code>@"this is a
constant string"</code>);
</li></ul>
<p>You should make no assumptions about receiving <code>+load</code> in sibling
classes when you write <code>+load</code> of a class. The order in which
sibling classes receive <code>+load</code> is not guaranteed.
</p>
<p>The order in which <code>+load</code> and <code>+initialize</code> are called could
be problematic if this matters. If you don’t allocate objects inside
<code>+load</code>, it is guaranteed that <code>+load</code> is called before
<code>+initialize</code>. If you create an object inside <code>+load</code> the
<code>+initialize</code> method of object’s class is invoked even if
<code>+load</code> was not invoked. Note if you explicitly call <code>+load</code>
on a class, <code>+initialize</code> will be called first. To avoid possible
problems try to implement only one of these methods.
</p>
<p>The <code>+load</code> method is also invoked when a bundle is dynamically
loaded into your running program. This happens automatically without any
intervening operation from you. When you write bundles and you need to
write <code>+load</code> you can safely create and send messages to objects whose
classes already exist in the running program. The same restrictions as
above apply to classes defined in bundle.
</p>
<hr>
<a name="Type-encoding"></a>
<div class="header">
<p>
Next: <a href="#Garbage-Collection" accesskey="n" rel="next">Garbage Collection</a>, Previous: <a href="#Executing-code-before-main" accesskey="p" rel="prev">Executing code before main</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Type-Encoding"></a>
<h3 class="section">8.3 Type Encoding</h3>
<p>This is an advanced section. Type encodings are used extensively by
the compiler and by the runtime, but you generally do not need to know
about them to use Objective-C.
</p>
<p>The Objective-C compiler generates type encodings for all the types.
These type encodings are used at runtime to find out information about
selectors and methods and about objects and classes.
</p>
<p>The types are encoded in the following way:
</p>
<table>
<tr><td width="25%"><code>_Bool</code></td><td width="75%"><code>B</code></td></tr>
<tr><td width="25%"><code>char</code></td><td width="75%"><code>c</code></td></tr>
<tr><td width="25%"><code>unsigned char</code></td><td width="75%"><code>C</code></td></tr>
<tr><td width="25%"><code>short</code></td><td width="75%"><code>s</code></td></tr>
<tr><td width="25%"><code>unsigned short</code></td><td width="75%"><code>S</code></td></tr>
<tr><td width="25%"><code>int</code></td><td width="75%"><code>i</code></td></tr>
<tr><td width="25%"><code>unsigned int</code></td><td width="75%"><code>I</code></td></tr>
<tr><td width="25%"><code>long</code></td><td width="75%"><code>l</code></td></tr>
<tr><td width="25%"><code>unsigned long</code></td><td width="75%"><code>L</code></td></tr>
<tr><td width="25%"><code>long long</code></td><td width="75%"><code>q</code></td></tr>
<tr><td width="25%"><code>unsigned long long</code></td><td width="75%"><code>Q</code></td></tr>
<tr><td width="25%"><code>float</code></td><td width="75%"><code>f</code></td></tr>
<tr><td width="25%"><code>double</code></td><td width="75%"><code>d</code></td></tr>
<tr><td width="25%"><code>long double</code></td><td width="75%"><code>D</code></td></tr>
<tr><td width="25%"><code>void</code></td><td width="75%"><code>v</code></td></tr>
<tr><td width="25%"><code>id</code></td><td width="75%"><code>@</code></td></tr>
<tr><td width="25%"><code>Class</code></td><td width="75%"><code>#</code></td></tr>
<tr><td width="25%"><code>SEL</code></td><td width="75%"><code>:</code></td></tr>
<tr><td width="25%"><code>char*</code></td><td width="75%"><code>*</code></td></tr>
<tr><td width="25%"><code>enum</code></td><td width="75%">an <code>enum</code> is encoded exactly as the integer type that the compiler uses for it, which depends on the enumeration
values. Often the compiler users <code>unsigned int</code>, which is then encoded as <code>I</code>.</td></tr>
<tr><td width="25%">unknown type</td><td width="75%"><code>?</code></td></tr>
<tr><td width="25%">Complex types</td><td width="75%"><code>j</code> followed by the inner type. For example <code>_Complex double</code> is encoded as "jd".</td></tr>
<tr><td width="25%">bit-fields</td><td width="75%"><code>b</code> followed by the starting position of the bit-field, the type of the bit-field and the size of the bit-field (the bit-fields encoding was changed from the NeXT’s compiler encoding, see below)</td></tr>
</table>
<p>The encoding of bit-fields has changed to allow bit-fields to be
properly handled by the runtime functions that compute sizes and
alignments of types that contain bit-fields. The previous encoding
contained only the size of the bit-field. Using only this information
it is not possible to reliably compute the size occupied by the
bit-field. This is very important in the presence of the Boehm’s
garbage collector because the objects are allocated using the typed
memory facility available in this collector. The typed memory
allocation requires information about where the pointers are located
inside the object.
</p>
<p>The position in the bit-field is the position, counting in bits, of the
bit closest to the beginning of the structure.
</p>
<p>The non-atomic types are encoded as follows:
</p>
<table>
<tr><td width="20%">pointers</td><td width="80%">‘<samp>^</samp>’ followed by the pointed type.</td></tr>
<tr><td width="20%">arrays</td><td width="80%">‘<samp>[</samp>’ followed by the number of elements in the array followed by the type of the elements followed by ‘<samp>]</samp>’</td></tr>
<tr><td width="20%">structures</td><td width="80%">‘<samp>{</samp>’ followed by the name of the structure (or ‘<samp>?</samp>’ if the structure is unnamed), the ‘<samp>=</samp>’ sign, the type of the members and by ‘<samp>}</samp>’</td></tr>
<tr><td width="20%">unions</td><td width="80%">‘<samp>(</samp>’ followed by the name of the structure (or ‘<samp>?</samp>’ if the union is unnamed), the ‘<samp>=</samp>’ sign, the type of the members followed by ‘<samp>)</samp>’</td></tr>
<tr><td width="20%">vectors</td><td width="80%">‘<samp>![</samp>’ followed by the vector_size (the number of bytes composing the vector) followed by a comma, followed by the alignment (in bytes) of the vector, followed by the type of the elements followed by ‘<samp>]</samp>’</td></tr>
</table>
<p>Here are some types and their encodings, as they are generated by the
compiler on an i386 machine:
</p>
<br>
<table>
<tr><td width="60%">Objective-C type</td><td width="40%">Compiler encoding</td></tr>
<tr><td width="60%"><div class="smallexample">
<pre class="smallexample">int a[10];
</pre></div></td><td width="40%"><code>[10i]</code></td></tr>
<tr><td width="60%"><div class="smallexample">
<pre class="smallexample">struct {
int i;
float f[3];
int a:3;
int b:2;
char c;
}
</pre></div></td><td width="40%"><code>{?=i[3f]b128i3b131i2c}</code></td></tr>
<tr><td width="60%"><div class="smallexample">
<pre class="smallexample">int a __attribute__ ((vector_size (16)));
</pre></div></td><td width="40%"><code>![16,16i]</code> (alignment depends on the machine)</td></tr>
</table>
<br>
<p>In addition to the types the compiler also encodes the type
specifiers. The table below describes the encoding of the current
Objective-C type specifiers:
</p>
<br>
<table>
<tr><td width="25%">Specifier</td><td width="75%">Encoding</td></tr>
<tr><td width="25%"><code>const</code></td><td width="75%"><code>r</code></td></tr>
<tr><td width="25%"><code>in</code></td><td width="75%"><code>n</code></td></tr>
<tr><td width="25%"><code>inout</code></td><td width="75%"><code>N</code></td></tr>
<tr><td width="25%"><code>out</code></td><td width="75%"><code>o</code></td></tr>
<tr><td width="25%"><code>bycopy</code></td><td width="75%"><code>O</code></td></tr>
<tr><td width="25%"><code>byref</code></td><td width="75%"><code>R</code></td></tr>
<tr><td width="25%"><code>oneway</code></td><td width="75%"><code>V</code></td></tr>
</table>
<br>
<p>The type specifiers are encoded just before the type. Unlike types
however, the type specifiers are only encoded when they appear in method
argument types.
</p>
<p>Note how <code>const</code> interacts with pointers:
</p>
<br>
<table>
<tr><td width="25%">Objective-C type</td><td width="75%">Compiler encoding</td></tr>
<tr><td width="25%"><div class="smallexample">
<pre class="smallexample">const int
</pre></div></td><td width="75%"><code>ri</code></td></tr>
<tr><td width="25%"><div class="smallexample">
<pre class="smallexample">const int*
</pre></div></td><td width="75%"><code>^ri</code></td></tr>
<tr><td width="25%"><div class="smallexample">
<pre class="smallexample">int *const
</pre></div></td><td width="75%"><code>r^i</code></td></tr>
</table>
<br>
<p><code>const int*</code> is a pointer to a <code>const int</code>, and so is
encoded as <code>^ri</code>. <code>int* const</code>, instead, is a <code>const</code>
pointer to an <code>int</code>, and so is encoded as <code>r^i</code>.
</p>
<p>Finally, there is a complication when encoding <code>const char *</code>
versus <code>char * const</code>. Because <code>char *</code> is encoded as
<code>*</code> and not as <code>^c</code>, there is no way to express the fact
that <code>r</code> applies to the pointer or to the pointee.
</p>
<p>Hence, it is assumed as a convention that <code>r*</code> means <code>const
char *</code> (since it is what is most often meant), and there is no way to
encode <code>char *const</code>. <code>char *const</code> would simply be encoded
as <code>*</code>, and the <code>const</code> is lost.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Legacy-type-encoding" accesskey="1">Legacy type encoding</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#g_t_0040encode" accesskey="2">@encode</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Method-signatures" accesskey="3">Method signatures</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Legacy-type-encoding"></a>
<div class="header">
<p>
Next: <a href="#g_t_0040encode" accesskey="n" rel="next">@encode</a>, Up: <a href="#Type-encoding" accesskey="u" rel="up">Type encoding</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Legacy-Type-Encoding"></a>
<h4 class="subsection">8.3.1 Legacy Type Encoding</h4>
<p>Unfortunately, historically GCC used to have a number of bugs in its
encoding code. The NeXT runtime expects GCC to emit type encodings in
this historical format (compatible with GCC-3.3), so when using the
NeXT runtime, GCC will introduce on purpose a number of incorrect
encodings:
</p>
<ul>
<li> the read-only qualifier of the pointee gets emitted before the ’^’.
The read-only qualifier of the pointer itself gets ignored, unless it
is a typedef. Also, the ’r’ is only emitted for the outermost type.
</li><li> 32-bit longs are encoded as ’l’ or ’L’, but not always. For typedefs,
the compiler uses ’i’ or ’I’ instead if encoding a struct field or a
pointer.
</li><li> <code>enum</code>s are always encoded as ’i’ (int) even if they are actually
unsigned or long.
</li></ul>
<p>In addition to that, the NeXT runtime uses a different encoding for
bitfields. It encodes them as <code>b</code> followed by the size, without
a bit offset or the underlying field type.
</p>
<hr>
<a name="g_t_0040encode"></a>
<div class="header">
<p>
Next: <a href="#Method-signatures" accesskey="n" rel="next">Method signatures</a>, Previous: <a href="#Legacy-type-encoding" accesskey="p" rel="prev">Legacy type encoding</a>, Up: <a href="#Type-encoding" accesskey="u" rel="up">Type encoding</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="g_t_0040encode-1"></a>
<h4 class="subsection">8.3.2 <code>@encode</code></h4>
<p>GNU Objective-C supports the <code>@encode</code> syntax that allows you to
create a type encoding from a C/Objective-C type. For example,
<code>@encode(int)</code> is compiled by the compiler into <code>"i"</code>.
</p>
<p><code>@encode</code> does not support type qualifiers other than
<code>const</code>. For example, <code>@encode(const char*)</code> is valid and
is compiled into <code>"r*"</code>, while <code>@encode(bycopy char *)</code> is
invalid and will cause a compilation error.
</p>
<hr>
<a name="Method-signatures"></a>
<div class="header">
<p>
Previous: <a href="#g_t_0040encode" accesskey="p" rel="prev">@encode</a>, Up: <a href="#Type-encoding" accesskey="u" rel="up">Type encoding</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Method-Signatures"></a>
<h4 class="subsection">8.3.3 Method Signatures</h4>
<p>This section documents the encoding of method types, which is rarely
needed to use Objective-C. You should skip it at a first reading; the
runtime provides functions that will work on methods and can walk
through the list of parameters and interpret them for you. These
functions are part of the public “API” and are the preferred way to
interact with method signatures from user code.
</p>
<p>But if you need to debug a problem with method signatures and need to
know how they are implemented (i.e., the “ABI”), read on.
</p>
<p>Methods have their “signature” encoded and made available to the
runtime. The “signature” encodes all the information required to
dynamically build invocations of the method at runtime: return type
and arguments.
</p>
<p>The “signature” is a null-terminated string, composed of the following:
</p>
<ul>
<li> The return type, including type qualifiers. For example, a method
returning <code>int</code> would have <code>i</code> here.
</li><li> The total size (in bytes) required to pass all the parameters. This
includes the two hidden parameters (the object <code>self</code> and the
method selector <code>_cmd</code>).
</li><li> Each argument, with the type encoding, followed by the offset (in
bytes) of the argument in the list of parameters.
</li></ul>
<p>For example, a method with no arguments and returning <code>int</code> would
have the signature <code>i8@0:4</code> if the size of a pointer is 4. The
signature is interpreted as follows: the <code>i</code> is the return type
(an <code>int</code>), the <code>8</code> is the total size of the parameters in
bytes (two pointers each of size 4), the <code>@0</code> is the first
parameter (an object at byte offset <code>0</code>) and <code>:4</code> is the
second parameter (a <code>SEL</code> at byte offset <code>4</code>).
</p>
<p>You can easily find more examples by running the “strings” program
on an Objective-C object file compiled by GCC. You’ll see a lot of
strings that look very much like <code>i8@0:4</code>. They are signatures
of Objective-C methods.
</p>
<hr>
<a name="Garbage-Collection"></a>
<div class="header">
<p>
Next: <a href="#Constant-string-objects" accesskey="n" rel="next">Constant string objects</a>, Previous: <a href="#Type-encoding" accesskey="p" rel="prev">Type encoding</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Garbage-Collection-1"></a>
<h3 class="section">8.4 Garbage Collection</h3>
<p>This section is specific for the GNU Objective-C runtime. If you are
using a different runtime, you can skip it.
</p>
<p>Support for garbage collection with the GNU runtime has been added by
using a powerful conservative garbage collector, known as the
Boehm-Demers-Weiser conservative garbage collector.
</p>
<p>To enable the support for it you have to configure the compiler using
an additional argument, <samp><span class="nolinebreak">--enable-objc-gc</span></samp><!-- /@w -->. This will
build the boehm-gc library, and build an additional runtime library
which has several enhancements to support the garbage collector. The
new library has a new name, <samp>libobjc_gc.a</samp> to not conflict with
the non-garbage-collected library.
</p>
<p>When the garbage collector is used, the objects are allocated using the
so-called typed memory allocation mechanism available in the
Boehm-Demers-Weiser collector. This mode requires precise information on
where pointers are located inside objects. This information is computed
once per class, immediately after the class has been initialized.
</p>
<p>There is a new runtime function <code>class_ivar_set_gcinvisible()</code>
which can be used to declare a so-called <em>weak pointer</em>
reference. Such a pointer is basically hidden for the garbage collector;
this can be useful in certain situations, especially when you want to
keep track of the allocated objects, yet allow them to be
collected. This kind of pointers can only be members of objects, you
cannot declare a global pointer as a weak reference. Every type which is
a pointer type can be declared a weak pointer, including <code>id</code>,
<code>Class</code> and <code>SEL</code>.
</p>
<p>Here is an example of how to use this feature. Suppose you want to
implement a class whose instances hold a weak pointer reference; the
following class does this:
</p>
<div class="smallexample">
<pre class="smallexample">
@interface WeakPointer : Object
{
const void* weakPointer;
}
- initWithPointer:(const void*)p;
- (const void*)weakPointer;
@end
@implementation WeakPointer
+ (void)initialize
{
if (self == objc_lookUpClass ("WeakPointer"))
class_ivar_set_gcinvisible (self, "weakPointer", YES);
}
- initWithPointer:(const void*)p
{
weakPointer = p;
return self;
}
- (const void*)weakPointer
{
return weakPointer;
}
@end
</pre></div>
<p>Weak pointers are supported through a new type character specifier
represented by the ‘<samp>!</samp>’ character. The
<code>class_ivar_set_gcinvisible()</code> function adds or removes this
specifier to the string type description of the instance variable named
as argument.
</p>
<hr>
<a name="Constant-string-objects"></a>
<div class="header">
<p>
Next: <a href="#compatibility_005falias" accesskey="n" rel="next">compatibility_alias</a>, Previous: <a href="#Garbage-Collection" accesskey="p" rel="prev">Garbage Collection</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constant-String-Objects"></a>
<h3 class="section">8.5 Constant String Objects</h3>
<p>GNU Objective-C provides constant string objects that are generated
directly by the compiler. You declare a constant string object by
prefixing a C constant string with the character ‘<samp>@</samp>’:
</p>
<div class="smallexample">
<pre class="smallexample"> id myString = @"this is a constant string object";
</pre></div>
<p>The constant string objects are by default instances of the
<code>NXConstantString</code> class which is provided by the GNU Objective-C
runtime. To get the definition of this class you must include the
<samp>objc/NXConstStr.h</samp> header file.
</p>
<p>User defined libraries may want to implement their own constant string
class. To be able to support them, the GNU Objective-C compiler provides
a new command line options <samp>-fconstant-string-class=<var>class-name</var></samp>.
The provided class should adhere to a strict structure, the same
as <code>NXConstantString</code>’s structure:
</p>
<div class="smallexample">
<pre class="smallexample">
@interface MyConstantStringClass
{
Class isa;
char *c_string;
unsigned int len;
}
@end
</pre></div>
<p><code>NXConstantString</code> inherits from <code>Object</code>; user class
libraries may choose to inherit the customized constant string class
from a different class than <code>Object</code>. There is no requirement in
the methods the constant string class has to implement, but the final
ivar layout of the class must be the compatible with the given
structure.
</p>
<p>When the compiler creates the statically allocated constant string
object, the <code>c_string</code> field will be filled by the compiler with
the string; the <code>length</code> field will be filled by the compiler with
the string length; the <code>isa</code> pointer will be filled with
<code>NULL</code> by the compiler, and it will later be fixed up automatically
at runtime by the GNU Objective-C runtime library to point to the class
which was set by the <samp>-fconstant-string-class</samp> option when the
object file is loaded (if you wonder how it works behind the scenes, the
name of the class to use, and the list of static objects to fixup, are
stored by the compiler in the object file in a place where the GNU
runtime library will find them at runtime).
</p>
<p>As a result, when a file is compiled with the
<samp>-fconstant-string-class</samp> option, all the constant string objects
will be instances of the class specified as argument to this option. It
is possible to have multiple compilation units referring to different
constant string classes, neither the compiler nor the linker impose any
restrictions in doing this.
</p>
<hr>
<a name="compatibility_005falias"></a>
<div class="header">
<p>
Next: <a href="#Exceptions" accesskey="n" rel="next">Exceptions</a>, Previous: <a href="#Constant-string-objects" accesskey="p" rel="prev">Constant string objects</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="compatibility_005falias-1"></a>
<h3 class="section">8.6 <code>compatibility_alias</code></h3>
<p>The keyword <code>@compatibility_alias</code> allows you to define a class name
as equivalent to another class name. For example:
</p>
<div class="smallexample">
<pre class="smallexample">@compatibility_alias WOApplication GSWApplication;
</pre></div>
<p>tells the compiler that each time it encounters <code>WOApplication</code> as
a class name, it should replace it with <code>GSWApplication</code> (that is,
<code>WOApplication</code> is just an alias for <code>GSWApplication</code>).
</p>
<p>There are some constraints on how this can be used—
</p>
<ul>
<li> <code>WOApplication</code> (the alias) must not be an existing class;
</li><li> <code>GSWApplication</code> (the real class) must be an existing class.
</li></ul>
<hr>
<a name="Exceptions"></a>
<div class="header">
<p>
Next: <a href="#Synchronization" accesskey="n" rel="next">Synchronization</a>, Previous: <a href="#compatibility_005falias" accesskey="p" rel="prev">compatibility_alias</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Exceptions-1"></a>
<h3 class="section">8.7 Exceptions</h3>
<p>GNU Objective-C provides exception support built into the language, as
in the following example:
</p>
<div class="smallexample">
<pre class="smallexample"> @try {
…
@throw expr;
…
}
@catch (AnObjCClass *exc) {
…
@throw expr;
…
@throw;
…
}
@catch (AnotherClass *exc) {
…
}
@catch (id allOthers) {
…
}
@finally {
…
@throw expr;
…
}
</pre></div>
<p>The <code>@throw</code> statement may appear anywhere in an Objective-C or
Objective-C++ program; when used inside of a <code>@catch</code> block, the
<code>@throw</code> may appear without an argument (as shown above), in
which case the object caught by the <code>@catch</code> will be rethrown.
</p>
<p>Note that only (pointers to) Objective-C objects may be thrown and
caught using this scheme. When an object is thrown, it will be caught
by the nearest <code>@catch</code> clause capable of handling objects of
that type, analogously to how <code>catch</code> blocks work in C++ and
Java. A <code>@catch(id …)</code> clause (as shown above) may also
be provided to catch any and all Objective-C exceptions not caught by
previous <code>@catch</code> clauses (if any).
</p>
<p>The <code>@finally</code> clause, if present, will be executed upon exit
from the immediately preceding <code>@try … @catch</code> section.
This will happen regardless of whether any exceptions are thrown,
caught or rethrown inside the <code>@try … @catch</code> section,
analogously to the behavior of the <code>finally</code> clause in Java.
</p>
<p>There are several caveats to using the new exception mechanism:
</p>
<ul>
<li> The <samp>-fobjc-exceptions</samp> command line option must be used when
compiling Objective-C files that use exceptions.
</li><li> With the GNU runtime, exceptions are always implemented as “native”
exceptions and it is recommended that the <samp>-fexceptions</samp> and
<samp>-shared-libgcc</samp> options are used when linking.
</li><li> With the NeXT runtime, although currently designed to be binary
compatible with <code>NS_HANDLER</code>-style idioms provided by the
<code>NSException</code> class, the new exceptions can only be used on Mac
OS X 10.3 (Panther) and later systems, due to additional functionality
needed in the NeXT Objective-C runtime.
</li><li> As mentioned above, the new exceptions do not support handling
types other than Objective-C objects. Furthermore, when used from
Objective-C++, the Objective-C exception model does not interoperate with C++
exceptions at this time. This means you cannot <code>@throw</code> an exception
from Objective-C and <code>catch</code> it in C++, or vice versa
(i.e., <code>throw … @catch</code>).
</li></ul>
<hr>
<a name="Synchronization"></a>
<div class="header">
<p>
Next: <a href="#Fast-enumeration" accesskey="n" rel="next">Fast enumeration</a>, Previous: <a href="#Exceptions" accesskey="p" rel="prev">Exceptions</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Synchronization-1"></a>
<h3 class="section">8.8 Synchronization</h3>
<p>GNU Objective-C provides support for synchronized blocks:
</p>
<div class="smallexample">
<pre class="smallexample"> @synchronized (ObjCClass *guard) {
…
}
</pre></div>
<p>Upon entering the <code>@synchronized</code> block, a thread of execution
shall first check whether a lock has been placed on the corresponding
<code>guard</code> object by another thread. If it has, the current thread
shall wait until the other thread relinquishes its lock. Once
<code>guard</code> becomes available, the current thread will place its own
lock on it, execute the code contained in the <code>@synchronized</code>
block, and finally relinquish the lock (thereby making <code>guard</code>
available to other threads).
</p>
<p>Unlike Java, Objective-C does not allow for entire methods to be
marked <code>@synchronized</code>. Note that throwing exceptions out of
<code>@synchronized</code> blocks is allowed, and will cause the guarding
object to be unlocked properly.
</p>
<p>Because of the interactions between synchronization and exception
handling, you can only use <code>@synchronized</code> when compiling with
exceptions enabled, that is with the command line option
<samp>-fobjc-exceptions</samp>.
</p>
<hr>
<a name="Fast-enumeration"></a>
<div class="header">
<p>
Next: <a href="#Messaging-with-the-GNU-Objective_002dC-runtime" accesskey="n" rel="next">Messaging with the GNU Objective-C runtime</a>, Previous: <a href="#Synchronization" accesskey="p" rel="prev">Synchronization</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Fast-Enumeration"></a>
<h3 class="section">8.9 Fast Enumeration</h3>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Using-fast-enumeration" accesskey="1">Using fast enumeration</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#c99_002dlike-fast-enumeration-syntax" accesskey="2">c99-like fast enumeration syntax</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Fast-enumeration-details" accesskey="3">Fast enumeration details</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Fast-enumeration-protocol" accesskey="4">Fast enumeration protocol</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Using-fast-enumeration"></a>
<div class="header">
<p>
Next: <a href="#c99_002dlike-fast-enumeration-syntax" accesskey="n" rel="next">c99-like fast enumeration syntax</a>, Up: <a href="#Fast-enumeration" accesskey="u" rel="up">Fast enumeration</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-Fast-Enumeration"></a>
<h4 class="subsection">8.9.1 Using Fast Enumeration</h4>
<p>GNU Objective-C provides support for the fast enumeration syntax:
</p>
<div class="smallexample">
<pre class="smallexample"> id array = …;
id object;
for (object in array)
{
/* Do something with 'object' */
}
</pre></div>
<p><code>array</code> needs to be an Objective-C object (usually a collection
object, for example an array, a dictionary or a set) which implements
the “Fast Enumeration Protocol” (see below). If you are using a
Foundation library such as GNUstep Base or Apple Cocoa Foundation, all
collection objects in the library implement this protocol and can be
used in this way.
</p>
<p>The code above would iterate over all objects in <code>array</code>. For
each of them, it assigns it to <code>object</code>, then executes the
<code>Do something with 'object'</code> statements.
</p>
<p>Here is a fully worked-out example using a Foundation library (which
provides the implementation of <code>NSArray</code>, <code>NSString</code> and
<code>NSLog</code>):
</p>
<div class="smallexample">
<pre class="smallexample"> NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil];
NSString *object;
for (object in array)
NSLog (@"Iterating over %@", object);
</pre></div>
<hr>
<a name="c99_002dlike-fast-enumeration-syntax"></a>
<div class="header">
<p>
Next: <a href="#Fast-enumeration-details" accesskey="n" rel="next">Fast enumeration details</a>, Previous: <a href="#Using-fast-enumeration" accesskey="p" rel="prev">Using fast enumeration</a>, Up: <a href="#Fast-enumeration" accesskey="u" rel="up">Fast enumeration</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C99_002dLike-Fast-Enumeration-Syntax"></a>
<h4 class="subsection">8.9.2 C99-Like Fast Enumeration Syntax</h4>
<p>A c99-like declaration syntax is also allowed:
</p>
<div class="smallexample">
<pre class="smallexample"> id array = …;
for (id object in array)
{
/* Do something with 'object' */
}
</pre></div>
<p>this is completely equivalent to:
</p>
<div class="smallexample">
<pre class="smallexample"> id array = …;
{
id object;
for (object in array)
{
/* Do something with 'object' */
}
}
</pre></div>
<p>but can save some typing.
</p>
<p>Note that the option <samp>-std=c99</samp> is not required to allow this
syntax in Objective-C.
</p>
<hr>
<a name="Fast-enumeration-details"></a>
<div class="header">
<p>
Next: <a href="#Fast-enumeration-protocol" accesskey="n" rel="next">Fast enumeration protocol</a>, Previous: <a href="#c99_002dlike-fast-enumeration-syntax" accesskey="p" rel="prev">c99-like fast enumeration syntax</a>, Up: <a href="#Fast-enumeration" accesskey="u" rel="up">Fast enumeration</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Fast-Enumeration-Details"></a>
<h4 class="subsection">8.9.3 Fast Enumeration Details</h4>
<p>Here is a more technical description with the gory details. Consider the code
</p>
<div class="smallexample">
<pre class="smallexample"> for (<var>object expression</var> in <var>collection expression</var>)
{
<var>statements</var>
}
</pre></div>
<p>here is what happens when you run it:
</p>
<ul>
<li> <code><var>collection expression</var></code> is evaluated exactly once and the
result is used as the collection object to iterate over. This means
it is safe to write code such as <code>for (object in [NSDictionary
keyEnumerator]) …</code>.
</li><li> the iteration is implemented by the compiler by repeatedly getting
batches of objects from the collection object using the fast
enumeration protocol (see below), then iterating over all objects in
the batch. This is faster than a normal enumeration where objects are
retrieved one by one (hence the name “fast enumeration”).
</li><li> if there are no objects in the collection, then
<code><var>object expression</var></code> is set to <code>nil</code> and the loop
immediately terminates.
</li><li> if there are objects in the collection, then for each object in the
collection (in the order they are returned) <code><var>object expression</var></code>
is set to the object, then <code><var>statements</var></code> are executed.
</li><li> <code><var>statements</var></code> can contain <code>break</code> and <code>continue</code>
commands, which will abort the iteration or skip to the next loop
iteration as expected.
</li><li> when the iteration ends because there are no more objects to iterate
over, <code><var>object expression</var></code> is set to <code>nil</code>. This allows
you to determine whether the iteration finished because a <code>break</code>
command was used (in which case <code><var>object expression</var></code> will remain
set to the last object that was iterated over) or because it iterated
over all the objects (in which case <code><var>object expression</var></code> will be
set to <code>nil</code>).
</li><li> <code><var>statements</var></code> must not make any changes to the collection
object; if they do, it is a hard error and the fast enumeration
terminates by invoking <code>objc_enumerationMutation</code>, a runtime
function that normally aborts the program but which can be customized
by Foundation libraries via <code>objc_set_mutation_handler</code> to do
something different, such as raising an exception.
</li></ul>
<hr>
<a name="Fast-enumeration-protocol"></a>
<div class="header">
<p>
Previous: <a href="#Fast-enumeration-details" accesskey="p" rel="prev">Fast enumeration details</a>, Up: <a href="#Fast-enumeration" accesskey="u" rel="up">Fast enumeration</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Fast-Enumeration-Protocol"></a>
<h4 class="subsection">8.9.4 Fast Enumeration Protocol</h4>
<p>If you want your own collection object to be usable with fast
enumeration, you need to have it implement the method
</p>
<div class="smallexample">
<pre class="smallexample">- (unsigned long) countByEnumeratingWithState: (NSFastEnumerationState *)state
objects: (id *)objects
count: (unsigned long)len;
</pre></div>
<p>where <code>NSFastEnumerationState</code> must be defined in your code as follows:
</p>
<div class="smallexample">
<pre class="smallexample">typedef struct
{
unsigned long state;
id *itemsPtr;
unsigned long *mutationsPtr;
unsigned long extra[5];
} NSFastEnumerationState;
</pre></div>
<p>If no <code>NSFastEnumerationState</code> is defined in your code, the
compiler will automatically replace <code>NSFastEnumerationState *</code>
with <code>struct __objcFastEnumerationState *</code>, where that type is
silently defined by the compiler in an identical way. This can be
confusing and we recommend that you define
<code>NSFastEnumerationState</code> (as shown above) instead.
</p>
<p>The method is called repeatedly during a fast enumeration to retrieve
batches of objects. Each invocation of the method should retrieve the
next batch of objects.
</p>
<p>The return value of the method is the number of objects in the current
batch; this should not exceed <code>len</code>, which is the maximum size of
a batch as requested by the caller. The batch itself is returned in
the <code>itemsPtr</code> field of the <code>NSFastEnumerationState</code> struct.
</p>
<p>To help with returning the objects, the <code>objects</code> array is a C
array preallocated by the caller (on the stack) of size <code>len</code>.
In many cases you can put the objects you want to return in that
<code>objects</code> array, then do <code>itemsPtr = objects</code>. But you
don’t have to; if your collection already has the objects to return in
some form of C array, it could return them from there instead.
</p>
<p>The <code>state</code> and <code>extra</code> fields of the
<code>NSFastEnumerationState</code> structure allows your collection object
to keep track of the state of the enumeration. In a simple array
implementation, <code>state</code> may keep track of the index of the last
object that was returned, and <code>extra</code> may be unused.
</p>
<p>The <code>mutationsPtr</code> field of the <code>NSFastEnumerationState</code> is
used to keep track of mutations. It should point to a number; before
working on each object, the fast enumeration loop will check that this
number has not changed. If it has, a mutation has happened and the
fast enumeration will abort. So, <code>mutationsPtr</code> could be set to
point to some sort of version number of your collection, which is
increased by one every time there is a change (for example when an
object is added or removed). Or, if you are content with less strict
mutation checks, it could point to the number of objects in your
collection or some other value that can be checked to perform an
approximate check that the collection has not been mutated.
</p>
<p>Finally, note how we declared the <code>len</code> argument and the return
value to be of type <code>unsigned long</code>. They could also be declared
to be of type <code>unsigned int</code> and everything would still work.
</p>
<hr>
<a name="Messaging-with-the-GNU-Objective_002dC-runtime"></a>
<div class="header">
<p>
Previous: <a href="#Fast-enumeration" accesskey="p" rel="prev">Fast enumeration</a>, Up: <a href="#Objective_002dC" accesskey="u" rel="up">Objective-C</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Messaging-with-the-GNU-Objective_002dC-Runtime"></a>
<h3 class="section">8.10 Messaging with the GNU Objective-C Runtime</h3>
<p>This section is specific for the GNU Objective-C runtime. If you are
using a different runtime, you can skip it.
</p>
<p>The implementation of messaging in the GNU Objective-C runtime is
designed to be portable, and so is based on standard C.
</p>
<p>Sending a message in the GNU Objective-C runtime is composed of two
separate steps. First, there is a call to the lookup function,
<code>objc_msg_lookup ()</code> (or, in the case of messages to super,
<code>objc_msg_lookup_super ()</code>). This runtime function takes as
argument the receiver and the selector of the method to be called; it
returns the <code>IMP</code>, that is a pointer to the function implementing
the method. The second step of method invocation consists of casting
this pointer function to the appropriate function pointer type, and
calling the function pointed to it with the right arguments.
</p>
<p>For example, when the compiler encounters a method invocation such as
<code>[object init]</code>, it compiles it into a call to
<code>objc_msg_lookup (object, @selector(init))</code> followed by a cast
of the returned value to the appropriate function pointer type, and
then it calls it.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Dynamically-registering-methods" accesskey="1">Dynamically registering methods</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Forwarding-hook" accesskey="2">Forwarding hook</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Dynamically-registering-methods"></a>
<div class="header">
<p>
Next: <a href="#Forwarding-hook" accesskey="n" rel="next">Forwarding hook</a>, Up: <a href="#Messaging-with-the-GNU-Objective_002dC-runtime" accesskey="u" rel="up">Messaging with the GNU Objective-C runtime</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Dynamically-Registering-Methods"></a>
<h4 class="subsection">8.10.1 Dynamically Registering Methods</h4>
<p>If <code>objc_msg_lookup()</code> does not find a suitable method
implementation, because the receiver does not implement the required
method, it tries to see if the class can dynamically register the
method.
</p>
<p>To do so, the runtime checks if the class of the receiver implements
the method
</p>
<div class="smallexample">
<pre class="smallexample">+ (BOOL) resolveInstanceMethod: (SEL)selector;
</pre></div>
<p>in the case of an instance method, or
</p>
<div class="smallexample">
<pre class="smallexample">+ (BOOL) resolveClassMethod: (SEL)selector;
</pre></div>
<p>in the case of a class method. If the class implements it, the
runtime invokes it, passing as argument the selector of the original
method, and if it returns <code>YES</code>, the runtime tries the lookup
again, which could now succeed if a matching method was added
dynamically by <code>+resolveInstanceMethod:</code> or
<code>+resolveClassMethod:</code>.
</p>
<p>This allows classes to dynamically register methods (by adding them to
the class using <code>class_addMethod</code>) when they are first called.
To do so, a class should implement <code>+resolveInstanceMethod:</code> (or,
depending on the case, <code>+resolveClassMethod:</code>) and have it
recognize the selectors of methods that can be registered dynamically
at runtime, register them, and return <code>YES</code>. It should return
<code>NO</code> for methods that it does not dynamically registered at
runtime.
</p>
<p>If <code>+resolveInstanceMethod:</code> (or <code>+resolveClassMethod:</code>) is
not implemented or returns <code>NO</code>, the runtime then tries the
forwarding hook.
</p>
<p>Support for <code>+resolveInstanceMethod:</code> and
<code>resolveClassMethod:</code> was added to the GNU Objective-C runtime in
GCC version 4.6.
</p>
<hr>
<a name="Forwarding-hook"></a>
<div class="header">
<p>
Previous: <a href="#Dynamically-registering-methods" accesskey="p" rel="prev">Dynamically registering methods</a>, Up: <a href="#Messaging-with-the-GNU-Objective_002dC-runtime" accesskey="u" rel="up">Messaging with the GNU Objective-C runtime</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Forwarding-Hook"></a>
<h4 class="subsection">8.10.2 Forwarding Hook</h4>
<p>The GNU Objective-C runtime provides a hook, called
<code>__objc_msg_forward2</code>, which is called by
<code>objc_msg_lookup()</code> when it cannot find a method implementation in
the runtime tables and after calling <code>+resolveInstanceMethod:</code>
and <code>+resolveClassMethod:</code> has been attempted and did not succeed
in dynamically registering the method.
</p>
<p>To configure the hook, you set the global variable
<code>__objc_msg_forward2</code> to a function with the same argument and
return types of <code>objc_msg_lookup()</code>. When
<code>objc_msg_lookup()</code> can not find a method implementation, it
invokes the hook function you provided to get a method implementation
to return. So, in practice <code>__objc_msg_forward2</code> allows you to
extend <code>objc_msg_lookup()</code> by adding some custom code that is
called to do a further lookup when no standard method implementation
can be found using the normal lookup.
</p>
<p>This hook is generally reserved for “Foundation” libraries such as
GNUstep Base, which use it to implement their high-level method
forwarding API, typically based around the <code>forwardInvocation:</code>
method. So, unless you are implementing your own “Foundation”
library, you should not set this hook.
</p>
<p>In a typical forwarding implementation, the <code>__objc_msg_forward2</code>
hook function determines the argument and return type of the method
that is being looked up, and then creates a function that takes these
arguments and has that return type, and returns it to the caller.
Creating this function is non-trivial and is typically performed using
a dedicated library such as <code>libffi</code>.
</p>
<p>The forwarding method implementation thus created is returned by
<code>objc_msg_lookup()</code> and is executed as if it was a normal method
implementation. When the forwarding method implementation is called,
it is usually expected to pack all arguments into some sort of object
(typically, an <code>NSInvocation</code> in a “Foundation” library), and
hand it over to the programmer (<code>forwardInvocation:</code>) who is then
allowed to manipulate the method invocation using a high-level API
provided by the “Foundation” library. For example, the programmer
may want to examine the method invocation arguments and name and
potentially change them before forwarding the method invocation to one
or more local objects (<code>performInvocation:</code>) or even to remote
objects (by using Distributed Objects or some other mechanism). When
all this completes, the return value is passed back and must be
returned correctly to the original caller.
</p>
<p>Note that the GNU Objective-C runtime currently provides no support
for method forwarding or method invocations other than the
<code>__objc_msg_forward2</code> hook.
</p>
<p>If the forwarding hook does not exist or returns <code>NULL</code>, the
runtime currently attempts forwarding using an older, deprecated API,
and if that fails, it aborts the program. In future versions of the
GNU Objective-C runtime, the runtime will immediately abort.
</p>
<hr>
<a name="Compatibility"></a>
<div class="header">
<p>
Next: <a href="#Gcov" accesskey="n" rel="next">Gcov</a>, Previous: <a href="#Objective_002dC" accesskey="p" rel="prev">Objective-C</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Binary-Compatibility"></a>
<h2 class="chapter">9 Binary Compatibility</h2>
<a name="index-binary-compatibility"></a>
<a name="index-ABI"></a>
<a name="index-application-binary-interface"></a>
<p>Binary compatibility encompasses several related concepts:
</p>
<dl compact="compact">
<dt><em>application binary interface (ABI)</em></dt>
<dd><p>The set of runtime conventions followed by all of the tools that deal
with binary representations of a program, including compilers, assemblers,
linkers, and language runtime support.
Some ABIs are formal with a written specification, possibly designed
by multiple interested parties. Others are simply the way things are
actually done by a particular set of tools.
</p>
</dd>
<dt><em>ABI conformance</em></dt>
<dd><p>A compiler conforms to an ABI if it generates code that follows all of
the specifications enumerated by that ABI.
A library conforms to an ABI if it is implemented according to that ABI.
An application conforms to an ABI if it is built using tools that conform
to that ABI and does not contain source code that specifically changes
behavior specified by the ABI.
</p>
</dd>
<dt><em>calling conventions</em></dt>
<dd><p>Calling conventions are a subset of an ABI that specify of how arguments
are passed and function results are returned.
</p>
</dd>
<dt><em>interoperability</em></dt>
<dd><p>Different sets of tools are interoperable if they generate files that
can be used in the same program. The set of tools includes compilers,
assemblers, linkers, libraries, header files, startup files, and debuggers.
Binaries produced by different sets of tools are not interoperable unless
they implement the same ABI. This applies to different versions of the
same tools as well as tools from different vendors.
</p>
</dd>
<dt><em>intercallability</em></dt>
<dd><p>Whether a function in a binary built by one set of tools can call a
function in a binary built by a different set of tools is a subset
of interoperability.
</p>
</dd>
<dt><em>implementation-defined features</em></dt>
<dd><p>Language standards include lists of implementation-defined features whose
behavior can vary from one implementation to another. Some of these
features are normally covered by a platform’s ABI and others are not.
The features that are not covered by an ABI generally affect how a
program behaves, but not intercallability.
</p>
</dd>
<dt><em>compatibility</em></dt>
<dd><p>Conformance to the same ABI and the same behavior of implementation-defined
features are both relevant for compatibility.
</p></dd>
</dl>
<p>The application binary interface implemented by a C or C++ compiler
affects code generation and runtime support for:
</p>
<ul>
<li> size and alignment of data types
</li><li> layout of structured types
</li><li> calling conventions
</li><li> register usage conventions
</li><li> interfaces for runtime arithmetic support
</li><li> object file formats
</li></ul>
<p>In addition, the application binary interface implemented by a C++ compiler
affects code generation and runtime support for:
</p><ul>
<li> name mangling
</li><li> exception handling
</li><li> invoking constructors and destructors
</li><li> layout, alignment, and padding of classes
</li><li> layout and alignment of virtual tables
</li></ul>
<p>Some GCC compilation options cause the compiler to generate code that
does not conform to the platform’s default ABI. Other options cause
different program behavior for implementation-defined features that are
not covered by an ABI. These options are provided for consistency with
other compilers that do not follow the platform’s default ABI or the
usual behavior of implementation-defined features for the platform.
Be very careful about using such options.
</p>
<p>Most platforms have a well-defined ABI that covers C code, but ABIs
that cover C++ functionality are not yet common.
</p>
<p>Starting with GCC 3.2, GCC binary conventions for C++ are based on a
written, vendor-neutral C++ ABI that was designed to be specific to
64-bit Itanium but also includes generic specifications that apply to
any platform.
This C++ ABI is also implemented by other compiler vendors on some
platforms, notably GNU/Linux and BSD systems.
We have tried hard to provide a stable ABI that will be compatible with
future GCC releases, but it is possible that we will encounter problems
that make this difficult. Such problems could include different
interpretations of the C++ ABI by different vendors, bugs in the ABI, or
bugs in the implementation of the ABI in different compilers.
GCC’s <samp>-Wabi</samp> switch warns when G++ generates code that is
probably not compatible with the C++ ABI.
</p>
<p>The C++ library used with a C++ compiler includes the Standard C++
Library, with functionality defined in the C++ Standard, plus language
runtime support. The runtime support is included in a C++ ABI, but there
is no formal ABI for the Standard C++ Library. Two implementations
of that library are interoperable if one follows the de-facto ABI of the
other and if they are both built with the same compiler, or with compilers
that conform to the same ABI for C++ compiler and runtime support.
</p>
<p>When G++ and another C++ compiler conform to the same C++ ABI, but the
implementations of the Standard C++ Library that they normally use do not
follow the same ABI for the Standard C++ Library, object files built with
those compilers can be used in the same program only if they use the same
C++ library. This requires specifying the location of the C++ library
header files when invoking the compiler whose usual library is not being
used. The location of GCC’s C++ header files depends on how the GCC
build was configured, but can be seen by using the G++ <samp>-v</samp> option.
With default configuration options for G++ 3.3 the compile line for a
different C++ compiler needs to include
</p>
<div class="smallexample">
<pre class="smallexample"> -I<var>gcc_install_directory</var>/include/c++/3.3
</pre></div>
<p>Similarly, compiling code with G++ that must use a C++ library other
than the GNU C++ library requires specifying the location of the header
files for that other library.
</p>
<p>The most straightforward way to link a program to use a particular
C++ library is to use a C++ driver that specifies that C++ library by
default. The <code>g++</code> driver, for example, tells the linker where
to find GCC’s C++ library (<samp>libstdc++</samp>) plus the other libraries
and startup files it needs, in the proper order.
</p>
<p>If a program must use a different C++ library and it’s not possible
to do the final link using a C++ driver that uses that library by default,
it is necessary to tell <code>g++</code> the location and name of that
library. It might also be necessary to specify different startup files
and other runtime support libraries, and to suppress the use of GCC’s
support libraries with one or more of the options <samp>-nostdlib</samp>,
<samp>-nostartfiles</samp>, and <samp>-nodefaultlibs</samp>.
</p>
<hr>
<a name="Gcov"></a>
<div class="header">
<p>
Next: <a href="#Gcov_002dtool" accesskey="n" rel="next">Gcov-tool</a>, Previous: <a href="#Compatibility" accesskey="p" rel="prev">Compatibility</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="gcov_002d_002d_002da-Test-Coverage-Program"></a>
<h2 class="chapter">10 <code>gcov</code>—a Test Coverage Program</h2>
<p><code>gcov</code> is a tool you can use in conjunction with GCC to
test code coverage in your programs.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Gcov-Intro" accesskey="1">Gcov Intro</a>:</td><td> </td><td align="left" valign="top">Introduction to gcov.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Invoking-Gcov" accesskey="2">Invoking Gcov</a>:</td><td> </td><td align="left" valign="top">How to use gcov.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Gcov-and-Optimization" accesskey="3">Gcov and Optimization</a>:</td><td> </td><td align="left" valign="top">Using gcov with GCC optimization.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Gcov-Data-Files" accesskey="4">Gcov Data Files</a>:</td><td> </td><td align="left" valign="top">The files used by gcov.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Cross_002dprofiling" accesskey="5">Cross-profiling</a>:</td><td> </td><td align="left" valign="top">Data file relocation.
</td></tr>
</table>
<hr>
<a name="Gcov-Intro"></a>
<div class="header">
<p>
Next: <a href="#Invoking-Gcov" accesskey="n" rel="next">Invoking Gcov</a>, Up: <a href="#Gcov" accesskey="u" rel="up">Gcov</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction-to-gcov"></a>
<h3 class="section">10.1 Introduction to <code>gcov</code></h3>
<p><code>gcov</code> is a test coverage program. Use it in concert with GCC
to analyze your programs to help create more efficient, faster running
code and to discover untested parts of your program. You can use
<code>gcov</code> as a profiling tool to help discover where your
optimization efforts will best affect your code. You can also use
<code>gcov</code> along with the other profiling tool, <code>gprof</code>, to
assess which parts of your code use the greatest amount of computing
time.
</p>
<p>Profiling tools help you analyze your code’s performance. Using a
profiler such as <code>gcov</code> or <code>gprof</code>, you can find out some
basic performance statistics, such as:
</p>
<ul>
<li> how often each line of code executes
</li><li> what lines of code are actually executed
</li><li> how much computing time each section of code uses
</li></ul>
<p>Once you know these things about how your code works when compiled, you
can look at each module to see which modules should be optimized.
<code>gcov</code> helps you determine where to work on optimization.
</p>
<p>Software developers also use coverage testing in concert with
testsuites, to make sure software is actually good enough for a release.
Testsuites can verify that a program works as expected; a coverage
program tests to see how much of the program is exercised by the
testsuite. Developers can then determine what kinds of test cases need
to be added to the testsuites to create both better testing and a better
final product.
</p>
<p>You should compile your code without optimization if you plan to use
<code>gcov</code> because the optimization, by combining some lines of code
into one function, may not give you as much information as you need to
look for ‘hot spots’ where the code is using a great deal of computer
time. Likewise, because <code>gcov</code> accumulates statistics by line (at
the lowest resolution), it works best with a programming style that
places only one statement on each line. If you use complicated macros
that expand to loops or to other control structures, the statistics are
less helpful—they only report on the line where the macro call
appears. If your complex macros behave like functions, you can replace
them with inline functions to solve this problem.
</p>
<p><code>gcov</code> creates a logfile called <samp><var>sourcefile</var>.gcov</samp> which
indicates how many times each line of a source file <samp><var>sourcefile</var>.c</samp>
has executed. You can use these logfiles along with <code>gprof</code> to aid
in fine-tuning the performance of your programs. <code>gprof</code> gives
timing information you can use along with the information you get from
<code>gcov</code>.
</p>
<p><code>gcov</code> works only on code compiled with GCC. It is not
compatible with any other profiling or test coverage mechanism.
</p>
<hr>
<a name="Invoking-Gcov"></a>
<div class="header">
<p>
Next: <a href="#Gcov-and-Optimization" accesskey="n" rel="next">Gcov and Optimization</a>, Previous: <a href="#Gcov-Intro" accesskey="p" rel="prev">Gcov Intro</a>, Up: <a href="#Gcov" accesskey="u" rel="up">Gcov</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Invoking-gcov"></a>
<h3 class="section">10.2 Invoking <code>gcov</code></h3>
<div class="smallexample">
<pre class="smallexample">gcov <span class="roman">[</span><var>options</var><span class="roman">]</span> <var>files</var>
</pre></div>
<p><code>gcov</code> accepts the following options:
</p>
<dl compact="compact">
<dt><code>-a</code></dt>
<dt><code>--all-blocks</code></dt>
<dd><p>Write individual execution counts for every basic block. Normally gcov
outputs execution counts only for the main blocks of a line. With this
option you can determine if blocks within a single line are not being
executed.
</p>
</dd>
<dt><code>-b</code></dt>
<dt><code>--branch-probabilities</code></dt>
<dd><p>Write branch frequencies to the output file, and write branch summary
info to the standard output. This option allows you to see how often
each branch in your program was taken. Unconditional branches will not
be shown, unless the <samp>-u</samp> option is given.
</p>
</dd>
<dt><code>-c</code></dt>
<dt><code>--branch-counts</code></dt>
<dd><p>Write branch frequencies as the number of branches taken, rather than
the percentage of branches taken.
</p>
</dd>
<dt><code>-d</code></dt>
<dt><code>--display-progress</code></dt>
<dd><p>Display the progress on the standard output.
</p>
</dd>
<dt><code>-f</code></dt>
<dt><code>--function-summaries</code></dt>
<dd><p>Output summaries for each function in addition to the file level summary.
</p>
</dd>
<dt><code>-h</code></dt>
<dt><code>--help</code></dt>
<dd><p>Display help about using <code>gcov</code> (on the standard output), and
exit without doing any further processing.
</p>
</dd>
<dt><code>-i</code></dt>
<dt><code>--intermediate-format</code></dt>
<dd><p>Output gcov file in an easy-to-parse intermediate text format that can
be used by <code>lcov</code> or other tools. The output is a single
<samp>.gcov</samp> file per <samp>.gcda</samp> file. No source code is required.
</p>
<p>The format of the intermediate <samp>.gcov</samp> file is plain text with
one entry per line
</p>
<div class="smallexample">
<pre class="smallexample">version:<var>gcc_version</var>
file:<var>source_file_name</var>
function:<var>start_line_number</var>,<var>end_line_number</var>,<var>execution_count</var>,<var>function_name</var>
lcount:<var>line number</var>,<var>execution_count</var>,<var>has_unexecuted_block</var>
branch:<var>line_number</var>,<var>branch_coverage_type</var>
Where the <var>branch_coverage_type</var> is
notexec (Branch not executed)
taken (Branch executed and taken)
nottaken (Branch executed, but not taken)
</pre></div>
<p>There can be multiple <var>file</var> entries in an intermediate gcov
file. All entries following a <var>file</var> pertain to that source file
until the next <var>file</var> entry. If there are multiple functions that
start on a single line, then corresponding lcount is repeated multiple
times.
</p>
<p>Here is a sample when <samp>-i</samp> is used in conjunction with <samp>-b</samp> option:
</p>
<div class="smallexample">
<pre class="smallexample">version: 8.1.0 20180103
file:tmp.cpp
function:7,7,0,_ZN3FooIcEC2Ev
function:7,7,1,_ZN3FooIiEC2Ev
function:8,8,0,_ZN3FooIcE3incEv
function:8,8,2,_ZN3FooIiE3incEv
function:18,37,1,main
lcount:7,0,1
lcount:7,1,0
lcount:8,0,1
lcount:8,2,0
lcount:18,1,0
lcount:21,1,0
branch:21,taken
branch:21,nottaken
lcount:23,1,0
branch:23,taken
branch:23,nottaken
lcount:24,1,0
branch:24,taken
branch:24,nottaken
lcount:25,1,0
lcount:27,11,0
branch:27,taken
branch:27,taken
lcount:28,10,0
lcount:30,1,1
branch:30,nottaken
branch:30,taken
lcount:32,1,0
branch:32,nottaken
branch:32,taken
lcount:33,0,1
branch:33,notexec
branch:33,notexec
lcount:35,1,0
branch:35,taken
branch:35,nottaken
lcount:36,1,0
</pre></div>
</dd>
<dt><code>-j</code></dt>
<dt><code>--human-readable</code></dt>
<dd><p>Write counts in human readable format (like 24k).
</p>
</dd>
<dt><code>-k</code></dt>
<dt><code>--use-colors</code></dt>
<dd>
<p>Use colors for lines of code that have zero coverage. We use red color for
non-exceptional lines and cyan for exceptional. Same colors are used for
basic blocks with <samp>-a</samp> option.
</p>
</dd>
<dt><code>-l</code></dt>
<dt><code>--long-file-names</code></dt>
<dd><p>Create long file names for included source files. For example, if the
header file <samp>x.h</samp> contains code, and was included in the file
<samp>a.c</samp>, then running <code>gcov</code> on the file <samp>a.c</samp> will
produce an output file called <samp>a.c##x.h.gcov</samp> instead of
<samp>x.h.gcov</samp>. This can be useful if <samp>x.h</samp> is included in
multiple source files and you want to see the individual
contributions. If you use the ‘<samp>-p</samp>’ option, both the including
and included file names will be complete path names.
</p>
</dd>
<dt><code>-m</code></dt>
<dt><code>--demangled-names</code></dt>
<dd><p>Display demangled function names in output. The default is to show
mangled function names.
</p>
</dd>
<dt><code>-n</code></dt>
<dt><code>--no-output</code></dt>
<dd><p>Do not create the <code>gcov</code> output file.
</p>
</dd>
<dt><code>-o <var>directory|file</var></code></dt>
<dt><code>--object-directory <var>directory</var></code></dt>
<dt><code>--object-file <var>file</var></code></dt>
<dd><p>Specify either the directory containing the gcov data files, or the
object path name. The <samp>.gcno</samp>, and
<samp>.gcda</samp> data files are searched for using this option. If a directory
is specified, the data files are in that directory and named after the
input file name, without its extension. If a file is specified here,
the data files are named after that file, without its extension.
</p>
</dd>
<dt><code>-p</code></dt>
<dt><code>--preserve-paths</code></dt>
<dd><p>Preserve complete path information in the names of generated
<samp>.gcov</samp> files. Without this option, just the filename component is
used. With this option, all directories are used, with ‘<samp>/</samp>’ characters
translated to ‘<samp>#</samp>’ characters, <samp>.</samp> directory components
removed and unremoveable <samp>..</samp>
components renamed to ‘<samp>^</samp>’. This is useful if sourcefiles are in several
different directories.
</p>
</dd>
<dt><code>-r</code></dt>
<dt><code>--relative-only</code></dt>
<dd><p>Only output information about source files with a relative pathname
(after source prefix elision). Absolute paths are usually system
header files and coverage of any inline functions therein is normally
uninteresting.
</p>
</dd>
<dt><code>-s <var>directory</var></code></dt>
<dt><code>--source-prefix <var>directory</var></code></dt>
<dd><p>A prefix for source file names to remove when generating the output
coverage files. This option is useful when building in a separate
directory, and the pathname to the source directory is not wanted when
determining the output file names. Note that this prefix detection is
applied before determining whether the source file is absolute.
</p>
</dd>
<dt><code>-u</code></dt>
<dt><code>--unconditional-branches</code></dt>
<dd><p>When branch probabilities are given, include those of unconditional branches.
Unconditional branches are normally not interesting.
</p>
</dd>
<dt><code>-v</code></dt>
<dt><code>--version</code></dt>
<dd><p>Display the <code>gcov</code> version number (on the standard output),
and exit without doing any further processing.
</p>
</dd>
<dt><code>-w</code></dt>
<dt><code>--verbose</code></dt>
<dd><p>Print verbose informations related to basic blocks and arcs.
</p>
</dd>
<dt><code>-x</code></dt>
<dt><code>--hash-filenames</code></dt>
<dd><p>By default, gcov uses the full pathname of the source files to to create
an output filename. This can lead to long filenames that can overflow
filesystem limits. This option creates names of the form
<samp><var>source-file</var>##<var>md5</var>.gcov</samp>,
where the <var>source-file</var> component is the final filename part and
the <var>md5</var> component is calculated from the full mangled name that
would have been used otherwise.
</p>
</dd>
</dl>
<p><code>gcov</code> should be run with the current directory the same as that
when you invoked the compiler. Otherwise it will not be able to locate
the source files. <code>gcov</code> produces files called
<samp><var>mangledname</var>.gcov</samp> in the current directory. These contain
the coverage information of the source file they correspond to.
One <samp>.gcov</samp> file is produced for each source (or header) file
containing code,
which was compiled to produce the data files. The <var>mangledname</var> part
of the output file name is usually simply the source file name, but can
be something more complicated if the ‘<samp>-l</samp>’ or ‘<samp>-p</samp>’ options are
given. Refer to those options for details.
</p>
<p>If you invoke <code>gcov</code> with multiple input files, the
contributions from each input file are summed. Typically you would
invoke it with the same list of files as the final link of your executable.
</p>
<p>The <samp>.gcov</samp> files contain the ‘<samp>:</samp>’ separated fields along with
program source code. The format is
</p>
<div class="smallexample">
<pre class="smallexample"><var>execution_count</var>:<var>line_number</var>:<var>source line text</var>
</pre></div>
<p>Additional block information may succeed each line, when requested by
command line option. The <var>execution_count</var> is ‘<samp>-</samp>’ for lines
containing no code. Unexecuted lines are marked ‘<samp>#####</samp>’ or
‘<samp>=====</samp>’, depending on whether they are reachable by
non-exceptional paths or only exceptional paths such as C++ exception
handlers, respectively. Given ‘<samp>-a</samp>’ option, unexecuted blocks are
marked ‘<samp>$$$$$</samp>’ or ‘<samp>%%%%%</samp>’, depending on whether a basic block
is reachable via non-exceptional or exceptional paths.
Executed basic blocks having a statement with zero <var>execution_count</var>
end with ‘<samp>*</samp>’ character and are colored with magenta color with <samp>-k</samp>
option. The functionality is not supported in Ada.
</p>
<p>Note that GCC can completely remove the bodies of functions that are
not needed – for instance if they are inlined everywhere. Such functions
are marked with ‘<samp>-</samp>’, which can be confusing.
Use the <samp>-fkeep-inline-functions</samp> and <samp>-fkeep-static-functions</samp>
options to retain these functions and
allow gcov to properly show their <var>execution_count</var>.
</p>
<p>Some lines of information at the start have <var>line_number</var> of zero.
These preamble lines are of the form
</p>
<div class="smallexample">
<pre class="smallexample">-:0:<var>tag</var>:<var>value</var>
</pre></div>
<p>The ordering and number of these preamble lines will be augmented as
<code>gcov</code> development progresses — do not rely on them remaining
unchanged. Use <var>tag</var> to locate a particular preamble line.
</p>
<p>The additional block information is of the form
</p>
<div class="smallexample">
<pre class="smallexample"><var>tag</var> <var>information</var>
</pre></div>
<p>The <var>information</var> is human readable, but designed to be simple
enough for machine parsing too.
</p>
<p>When printing percentages, 0% and 100% are only printed when the values
are <em>exactly</em> 0% and 100% respectively. Other values which would
conventionally be rounded to 0% or 100% are instead printed as the
nearest non-boundary value.
</p>
<p>When using <code>gcov</code>, you must first compile your program with two
special GCC options: ‘<samp>-fprofile-arcs -ftest-coverage</samp>’.
This tells the compiler to generate additional information needed by
gcov (basically a flow graph of the program) and also includes
additional code in the object files for generating the extra profiling
information needed by gcov. These additional files are placed in the
directory where the object file is located.
</p>
<p>Running the program will cause profile output to be generated. For each
source file compiled with <samp>-fprofile-arcs</samp>, an accompanying
<samp>.gcda</samp> file will be placed in the object file directory.
</p>
<p>Running <code>gcov</code> with your program’s source file names as arguments
will now produce a listing of the code along with frequency of execution
for each line. For example, if your program is called <samp>tmp.cpp</samp>, this
is what you see when you use the basic <code>gcov</code> facility:
</p>
<div class="smallexample">
<pre class="smallexample">$ g++ -fprofile-arcs -ftest-coverage tmp.cpp
$ a.out
$ gcov tmp.cpp -m
File 'tmp.cpp'
Lines executed:92.86% of 14
Creating 'tmp.cpp.gcov'
</pre></div>
<p>The file <samp>tmp.cpp.gcov</samp> contains output from <code>gcov</code>.
Here is a sample:
</p>
<div class="smallexample">
<pre class="smallexample"> -: 0:Source:tmp.cpp
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
-: 22:
1: 23: counter.inc();
1: 24: counter.inc();
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
10: 28: total += i;
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
-: 31:
1: 32: if (total != 45)
#####: 33: printf ("Failure\n");
-: 34: else
1: 35: printf ("Success\n");
1: 36: return 0;
-: 37:}
</pre></div>
<p>Note that line 7 is shown in the report multiple times. First occurrence
presents total number of execution of the line and the next two belong
to instances of class Foo constructors. As you can also see, line 30 contains
some unexecuted basic blocks and thus execution count has asterisk symbol.
</p>
<p>When you use the <samp>-a</samp> option, you will get individual block
counts, and the output looks like this:
</p>
<div class="smallexample">
<pre class="smallexample"> -: 0:Source:tmp.cpp
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
1: 21-block 0
-: 22:
1: 23: counter.inc();
1: 23-block 0
1: 24: counter.inc();
1: 24-block 0
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
1: 27-block 0
11: 27-block 1
10: 28: total += i;
10: 28-block 0
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
1: 30-block 0
%%%%%: 30-block 1
1: 30-block 2
-: 31:
1: 32: if (total != 45)
1: 32-block 0
#####: 33: printf ("Failure\n");
%%%%%: 33-block 0
-: 34: else
1: 35: printf ("Success\n");
1: 35-block 0
1: 36: return 0;
1: 36-block 0
-: 37:}
</pre></div>
<p>In this mode, each basic block is only shown on one line – the last
line of the block. A multi-line block will only contribute to the
execution count of that last line, and other lines will not be shown
to contain code, unless previous blocks end on those lines.
The total execution count of a line is shown and subsequent lines show
the execution counts for individual blocks that end on that line. After each
block, the branch and call counts of the block will be shown, if the
<samp>-b</samp> option is given.
</p>
<p>Because of the way GCC instruments calls, a call count can be shown
after a line with no individual blocks.
As you can see, line 33 contains a basic block that was not executed.
</p>
<p>When you use the <samp>-b</samp> option, your output looks like this:
</p>
<div class="smallexample">
<pre class="smallexample"> -: 0:Source:tmp.cpp
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:template<class T>
-: 4:class Foo
-: 5:{
-: 6: public:
1*: 7: Foo(): b (1000) {}
------------------
Foo<char>::Foo():
function Foo<char>::Foo() called 0 returned 0% blocks executed 0%
#####: 7: Foo(): b (1000) {}
------------------
Foo<int>::Foo():
function Foo<int>::Foo() called 1 returned 100% blocks executed 100%
1: 7: Foo(): b (1000) {}
------------------
2*: 8: void inc () { b++; }
------------------
Foo<char>::inc():
function Foo<char>::inc() called 0 returned 0% blocks executed 0%
#####: 8: void inc () { b++; }
------------------
Foo<int>::inc():
function Foo<int>::inc() called 2 returned 100% blocks executed 100%
2: 8: void inc () { b++; }
------------------
-: 9:
-: 10: private:
-: 11: int b;
-: 12:};
-: 13:
-: 14:template class Foo<int>;
-: 15:template class Foo<char>;
-: 16:
-: 17:int
function main called 1 returned 100% blocks executed 81%
1: 18:main (void)
-: 19:{
-: 20: int i, total;
1: 21: Foo<int> counter;
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
-: 22:
1: 23: counter.inc();
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 24: counter.inc();
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 25: total = 0;
-: 26:
11: 27: for (i = 0; i < 10; i++)
branch 0 taken 91% (fallthrough)
branch 1 taken 9%
10: 28: total += i;
-: 29:
1*: 30: int v = total > 100 ? 1 : 2;
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
-: 31:
1: 32: if (total != 45)
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
#####: 33: printf ("Failure\n");
call 0 never executed
branch 1 never executed
branch 2 never executed
-: 34: else
1: 35: printf ("Success\n");
call 0 returned 100%
branch 1 taken 100% (fallthrough)
branch 2 taken 0% (throw)
1: 36: return 0;
-: 37:}
</pre></div>
<p>For each function, a line is printed showing how many times the function
is called, how many times it returns and what percentage of the
function’s blocks were executed.
</p>
<p>For each basic block, a line is printed after the last line of the basic
block describing the branch or call that ends the basic block. There can
be multiple branches and calls listed for a single source line if there
are multiple basic blocks that end on that line. In this case, the
branches and calls are each given a number. There is no simple way to map
these branches and calls back to source constructs. In general, though,
the lowest numbered branch or call will correspond to the leftmost construct
on the source line.
</p>
<p>For a branch, if it was executed at least once, then a percentage
indicating the number of times the branch was taken divided by the
number of times the branch was executed will be printed. Otherwise, the
message “never executed” is printed.
</p>
<p>For a call, if it was executed at least once, then a percentage
indicating the number of times the call returned divided by the number
of times the call was executed will be printed. This will usually be
100%, but may be less for functions that call <code>exit</code> or <code>longjmp</code>,
and thus may not return every time they are called.
</p>
<p>The execution counts are cumulative. If the example program were
executed again without removing the <samp>.gcda</samp> file, the count for the
number of times each line in the source was executed would be added to
the results of the previous run(s). This is potentially useful in
several ways. For example, it could be used to accumulate data over a
number of program runs as part of a test verification suite, or to
provide more accurate long-term information over a large number of
program runs.
</p>
<p>The data in the <samp>.gcda</samp> files is saved immediately before the program
exits. For each source file compiled with <samp>-fprofile-arcs</samp>, the
profiling code first attempts to read in an existing <samp>.gcda</samp> file; if
the file doesn’t match the executable (differing number of basic block
counts) it will ignore the contents of the file. It then adds in the
new execution counts and finally writes the data to the file.
</p>
<hr>
<a name="Gcov-and-Optimization"></a>
<div class="header">
<p>
Next: <a href="#Gcov-Data-Files" accesskey="n" rel="next">Gcov Data Files</a>, Previous: <a href="#Invoking-Gcov" accesskey="p" rel="prev">Invoking Gcov</a>, Up: <a href="#Gcov" accesskey="u" rel="up">Gcov</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-gcov-with-GCC-Optimization"></a>
<h3 class="section">10.3 Using <code>gcov</code> with GCC Optimization</h3>
<p>If you plan to use <code>gcov</code> to help optimize your code, you must
first compile your program with two special GCC options:
‘<samp>-fprofile-arcs -ftest-coverage</samp>’. Aside from that, you can use any
other GCC options; but if you want to prove that every single line
in your program was executed, you should not compile with optimization
at the same time. On some machines the optimizer can eliminate some
simple code lines by combining them with other lines. For example, code
like this:
</p>
<div class="smallexample">
<pre class="smallexample">if (a != b)
c = 1;
else
c = 0;
</pre></div>
<p>can be compiled into one instruction on some machines. In this case,
there is no way for <code>gcov</code> to calculate separate execution counts
for each line because there isn’t separate code for each line. Hence
the <code>gcov</code> output looks like this if you compiled the program with
optimization:
</p>
<div class="smallexample">
<pre class="smallexample"> 100: 12:if (a != b)
100: 13: c = 1;
100: 14:else
100: 15: c = 0;
</pre></div>
<p>The output shows that this block of code, combined by optimization,
executed 100 times. In one sense this result is correct, because there
was only one instruction representing all four of these lines. However,
the output does not indicate how many times the result was 0 and how
many times the result was 1.
</p>
<p>Inlineable functions can create unexpected line counts. Line counts are
shown for the source code of the inlineable function, but what is shown
depends on where the function is inlined, or if it is not inlined at all.
</p>
<p>If the function is not inlined, the compiler must emit an out of line
copy of the function, in any object file that needs it. If
<samp>fileA.o</samp> and <samp>fileB.o</samp> both contain out of line bodies of a
particular inlineable function, they will also both contain coverage
counts for that function. When <samp>fileA.o</samp> and <samp>fileB.o</samp> are
linked together, the linker will, on many systems, select one of those
out of line bodies for all calls to that function, and remove or ignore
the other. Unfortunately, it will not remove the coverage counters for
the unused function body. Hence when instrumented, all but one use of
that function will show zero counts.
</p>
<p>If the function is inlined in several places, the block structure in
each location might not be the same. For instance, a condition might
now be calculable at compile time in some instances. Because the
coverage of all the uses of the inline function will be shown for the
same source lines, the line counts themselves might seem inconsistent.
</p>
<p>Long-running applications can use the <code>__gcov_reset</code> and <code>__gcov_dump</code>
facilities to restrict profile collection to the program region of
interest. Calling <code>__gcov_reset(void)</code> will clear all profile counters
to zero, and calling <code>__gcov_dump(void)</code> will cause the profile information
collected at that point to be dumped to <samp>.gcda</samp> output files.
Instrumented applications use a static destructor with priority 99
to invoke the <code>__gcov_dump</code> function. Thus <code>__gcov_dump</code>
is executed after all user defined static destructors,
as well as handlers registered with <code>atexit</code>.
If an executable loads a dynamic shared object via dlopen functionality,
<samp>-Wl,--dynamic-list-data</samp> is needed to dump all profile data.
</p>
<hr>
<a name="Gcov-Data-Files"></a>
<div class="header">
<p>
Next: <a href="#Cross_002dprofiling" accesskey="n" rel="next">Cross-profiling</a>, Previous: <a href="#Gcov-and-Optimization" accesskey="p" rel="prev">Gcov and Optimization</a>, Up: <a href="#Gcov" accesskey="u" rel="up">Gcov</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Brief-Description-of-gcov-Data-Files"></a>
<h3 class="section">10.4 Brief Description of <code>gcov</code> Data Files</h3>
<p><code>gcov</code> uses two files for profiling. The names of these files
are derived from the original <em>object</em> file by substituting the
file suffix with either <samp>.gcno</samp>, or <samp>.gcda</samp>. The files
contain coverage and profile data stored in a platform-independent format.
The <samp>.gcno</samp> files are placed in the same directory as the object
file. By default, the <samp>.gcda</samp> files are also stored in the same
directory as the object file, but the GCC <samp>-fprofile-dir</samp> option
may be used to store the <samp>.gcda</samp> files in a separate directory.
</p>
<p>The <samp>.gcno</samp> notes file is generated when the source file is compiled
with the GCC <samp>-ftest-coverage</samp> option. It contains information to
reconstruct the basic block graphs and assign source line numbers to
blocks.
</p>
<p>The <samp>.gcda</samp> count data file is generated when a program containing
object files built with the GCC <samp>-fprofile-arcs</samp> option is executed.
A separate <samp>.gcda</samp> file is created for each object file compiled with
this option. It contains arc transition counts, value profile counts, and
some summary information.
</p>
<p>It is not recommended to access the coverage files directly.
Consumers should use the intermediate format that is provided
by <code>gcov</code> tool via <samp>--intermediate-format</samp> option.
</p>
<hr>
<a name="Cross_002dprofiling"></a>
<div class="header">
<p>
Previous: <a href="#Gcov-Data-Files" accesskey="p" rel="prev">Gcov Data Files</a>, Up: <a href="#Gcov" accesskey="u" rel="up">Gcov</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Data-File-Relocation-to-Support-Cross_002dProfiling"></a>
<h3 class="section">10.5 Data File Relocation to Support Cross-Profiling</h3>
<p>Running the program will cause profile output to be generated. For each
source file compiled with <samp>-fprofile-arcs</samp>, an accompanying <samp>.gcda</samp>
file will be placed in the object file directory. That implicitly requires
running the program on the same system as it was built or having the same
absolute directory structure on the target system. The program will try
to create the needed directory structure, if it is not already present.
</p>
<p>To support cross-profiling, a program compiled with <samp>-fprofile-arcs</samp>
can relocate the data files based on two environment variables:
</p>
<ul>
<li> GCOV_PREFIX contains the prefix to add to the absolute paths
in the object file. Prefix can be absolute, or relative. The
default is no prefix.
</li><li> GCOV_PREFIX_STRIP indicates the how many initial directory names to strip off
the hardwired absolute paths. Default value is 0.
<p><em>Note:</em> If GCOV_PREFIX_STRIP is set without GCOV_PREFIX is undefined,
then a relative path is made out of the hardwired absolute paths.
</p></li></ul>
<p>For example, if the object file <samp>/user/build/foo.o</samp> was built with
<samp>-fprofile-arcs</samp>, the final executable will try to create the data file
<samp>/user/build/foo.gcda</samp> when running on the target system. This will
fail if the corresponding directory does not exist and it is unable to create
it. This can be overcome by, for example, setting the environment as
‘<samp>GCOV_PREFIX=/target/run</samp>’ and ‘<samp>GCOV_PREFIX_STRIP=1</samp>’. Such a
setting will name the data file <samp>/target/run/build/foo.gcda</samp>.
</p>
<p>You must move the data files to the expected directory tree in order to
use them for profile directed optimizations (<samp>-fprofile-use</samp>), or to
use the <code>gcov</code> tool.
</p>
<hr>
<a name="Gcov_002dtool"></a>
<div class="header">
<p>
Next: <a href="#Gcov_002ddump" accesskey="n" rel="next">Gcov-dump</a>, Previous: <a href="#Gcov" accesskey="p" rel="prev">Gcov</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="gcov_002dtool_002d_002d_002dan-Offline-Gcda-Profile-Processing-Tool"></a>
<h2 class="chapter">11 <code>gcov-tool</code>—an Offline Gcda Profile Processing Tool</h2>
<p><code>gcov-tool</code> is a tool you can use in conjunction with GCC to
manipulate or process gcda profile files offline.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Gcov_002dtool-Intro" accesskey="1">Gcov-tool Intro</a>:</td><td> </td><td align="left" valign="top">Introduction to gcov-tool.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Invoking-Gcov_002dtool" accesskey="2">Invoking Gcov-tool</a>:</td><td> </td><td align="left" valign="top">How to use gcov-tool.
</td></tr>
</table>
<hr>
<a name="Gcov_002dtool-Intro"></a>
<div class="header">
<p>
Next: <a href="#Invoking-Gcov_002dtool" accesskey="n" rel="next">Invoking Gcov-tool</a>, Up: <a href="#Gcov_002dtool" accesskey="u" rel="up">Gcov-tool</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction-to-gcov_002dtool"></a>
<h3 class="section">11.1 Introduction to <code>gcov-tool</code></h3>
<p><code>gcov-tool</code> is an offline tool to process gcc’s gcda profile files.
</p>
<p>Current gcov-tool supports the following functionalities:
</p>
<ul>
<li> merge two sets of profiles with weights.
</li><li> read one set of profile and rewrite profile contents. One can scale or
normalize the count values.
</li></ul>
<p>Examples of the use cases for this tool are:
</p><ul>
<li> Collect the profiles for different set of inputs, and use this tool to merge
them. One can specify the weight to factor in the relative importance of
each input.
</li><li> Rewrite the profile after removing a subset of the gcda files, while maintaining
the consistency of the summary and the histogram.
</li><li> It can also be used to debug or libgcov code as the tools shares the majority
code as the runtime library.
</li></ul>
<p>Note that for the merging operation, this profile generated offline may
contain slight different values from the online merged profile. Here are
a list of typical differences:
</p>
<ul>
<li> histogram difference: This offline tool recomputes the histogram after merging
the counters. The resulting histogram, therefore, is precise. The online
merging does not have this capability – the histogram is merged from two
histograms and the result is an approximation.
</li><li> summary checksum difference: Summary checksum uses a CRC32 operation. The value
depends on the link list order of gcov-info objects. This order is different in
gcov-tool from that in the online merge. It’s expected to have different
summary checksums. It does not really matter as the compiler does not use this
checksum anywhere.
</li><li> value profile counter values difference: Some counter values for value profile
are runtime dependent, like heap addresses. It’s normal to see some difference
in these kind of counters.
</li></ul>
<hr>
<a name="Invoking-Gcov_002dtool"></a>
<div class="header">
<p>
Previous: <a href="#Gcov_002dtool-Intro" accesskey="p" rel="prev">Gcov-tool Intro</a>, Up: <a href="#Gcov_002dtool" accesskey="u" rel="up">Gcov-tool</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Invoking-gcov_002dtool"></a>
<h3 class="section">11.2 Invoking <code>gcov-tool</code></h3>
<div class="smallexample">
<pre class="smallexample">gcov-tool <span class="roman">[</span><var>global-options</var><span class="roman">]</span> SUB_COMMAND <span class="roman">[</span><var>sub_command-options</var><span class="roman">]</span> <var>profile_dir</var>
</pre></div>
<p><code>gcov-tool</code> accepts the following options:
</p>
<dl compact="compact">
<dt><code>-h</code></dt>
<dt><code>--help</code></dt>
<dd><p>Display help about using <code>gcov-tool</code> (on the standard output), and
exit without doing any further processing.
</p>
</dd>
<dt><code>-v</code></dt>
<dt><code>--version</code></dt>
<dd><p>Display the <code>gcov-tool</code> version number (on the standard output),
and exit without doing any further processing.
</p>
</dd>
<dt><code>merge</code></dt>
<dd><p>Merge two profile directories.
</p><dl compact="compact">
<dt><code>-o <var>directory</var></code></dt>
<dt><code>--output <var>directory</var></code></dt>
<dd><p>Set the output profile directory. Default output directory name is
<var>merged_profile</var>.
</p>
</dd>
<dt><code>-v</code></dt>
<dt><code>--verbose</code></dt>
<dd><p>Set the verbose mode.
</p>
</dd>
<dt><code>-w <var>w1</var>,<var>w2</var></code></dt>
<dt><code>--weight <var>w1</var>,<var>w2</var></code></dt>
<dd><p>Set the merge weights of the <var>directory1</var> and <var>directory2</var>,
respectively. The default weights are 1 for both.
</p></dd>
</dl>
</dd>
<dt><code>rewrite</code></dt>
<dd><p>Read the specified profile directory and rewrite to a new directory.
</p><dl compact="compact">
<dt><code>-n <var>long_long_value</var></code></dt>
<dt><code>--normalize <long_long_value></code></dt>
<dd><p>Normalize the profile. The specified value is the max counter value
in the new profile.
</p>
</dd>
<dt><code>-o <var>directory</var></code></dt>
<dt><code>--output <var>directory</var></code></dt>
<dd><p>Set the output profile directory. Default output name is <var>rewrite_profile</var>.
</p>
</dd>
<dt><code>-s <var>float_or_simple-frac_value</var></code></dt>
<dt><code>--scale <var>float_or_simple-frac_value</var></code></dt>
<dd><p>Scale the profile counters. The specified value can be in floating point value,
or simple fraction value form, such 1, 2, 2/3, and 5/3.
</p>
</dd>
<dt><code>-v</code></dt>
<dt><code>--verbose</code></dt>
<dd><p>Set the verbose mode.
</p></dd>
</dl>
</dd>
<dt><code>overlap</code></dt>
<dd><p>Compute the overlap score between the two specified profile directories.
The overlap score is computed based on the arc profiles. It is defined as
the sum of min (p1_counter[i] / p1_sum_all, p2_counter[i] / p2_sum_all),
for all arc counter i, where p1_counter[i] and p2_counter[i] are two
matched counters and p1_sum_all and p2_sum_all are the sum of counter
values in profile 1 and profile 2, respectively.
</p>
<dl compact="compact">
<dt><code>-f</code></dt>
<dt><code>--function</code></dt>
<dd><p>Print function level overlap score.
</p>
</dd>
<dt><code>-F</code></dt>
<dt><code>--fullname</code></dt>
<dd><p>Print full gcda filename.
</p>
</dd>
<dt><code>-h</code></dt>
<dt><code>--hotonly</code></dt>
<dd><p>Only print info for hot objects/functions.
</p>
</dd>
<dt><code>-o</code></dt>
<dt><code>--object</code></dt>
<dd><p>Print object level overlap score.
</p>
</dd>
<dt><code>-t <var>float</var></code></dt>
<dt><code>--hot_threshold <float></code></dt>
<dd><p>Set the threshold for hot counter value.
</p>
</dd>
<dt><code>-v</code></dt>
<dt><code>--verbose</code></dt>
<dd><p>Set the verbose mode.
</p></dd>
</dl>
</dd>
</dl>
<hr>
<a name="Gcov_002ddump"></a>
<div class="header">
<p>
Next: <a href="#Trouble" accesskey="n" rel="next">Trouble</a>, Previous: <a href="#Gcov_002dtool" accesskey="p" rel="prev">Gcov-tool</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="gcov_002ddump_002d_002d_002dan-Offline-Gcda-and-Gcno-Profile-Dump-Tool"></a>
<h2 class="chapter">12 <code>gcov-dump</code>—an Offline Gcda and Gcno Profile Dump Tool</h2>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Gcov_002ddump-Intro" accesskey="1">Gcov-dump Intro</a>:</td><td> </td><td align="left" valign="top">Introduction to gcov-dump.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Invoking-Gcov_002ddump" accesskey="2">Invoking Gcov-dump</a>:</td><td> </td><td align="left" valign="top">How to use gcov-dump.
</td></tr>
</table>
<hr>
<a name="Gcov_002ddump-Intro"></a>
<div class="header">
<p>
Next: <a href="#Invoking-Gcov_002ddump" accesskey="n" rel="next">Invoking Gcov-dump</a>, Up: <a href="#Gcov_002ddump" accesskey="u" rel="up">Gcov-dump</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction-to-gcov_002ddump"></a>
<h3 class="section">12.1 Introduction to <code>gcov-dump</code></h3>
<p><code>gcov-dump</code> is a tool you can use in conjunction with GCC to
dump content of gcda and gcno profile files offline.
</p>
<hr>
<a name="Invoking-Gcov_002ddump"></a>
<div class="header">
<p>
Previous: <a href="#Gcov_002ddump-Intro" accesskey="p" rel="prev">Gcov-dump Intro</a>, Up: <a href="#Gcov_002ddump" accesskey="u" rel="up">Gcov-dump</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Invoking-gcov_002ddump"></a>
<h3 class="section">12.2 Invoking <code>gcov-dump</code></h3>
<div class="smallexample">
<pre class="smallexample">Usage: gcov-dump <span class="roman">[</span><var>OPTION</var><span class="roman">]</span> ... <var>gcovfiles</var>
</pre></div>
<p><code>gcov-dump</code> accepts the following options:
</p>
<dl compact="compact">
<dt><code>-h</code></dt>
<dt><code>--help</code></dt>
<dd><p>Display help about using <code>gcov-dump</code> (on the standard output), and
exit without doing any further processing.
</p>
</dd>
<dt><code>-l</code></dt>
<dt><code>--long</code></dt>
<dd><p>Dump content of records.
</p>
</dd>
<dt><code>-p</code></dt>
<dt><code>--positions</code></dt>
<dd><p>Dump positions of records.
</p>
</dd>
<dt><code>-v</code></dt>
<dt><code>--version</code></dt>
<dd><p>Display the <code>gcov-dump</code> version number (on the standard output),
and exit without doing any further processing.
</p>
</dd>
<dt><code>-w</code></dt>
<dt><code>--working-sets</code></dt>
<dd><p>Dump working set computed from summary.
</p></dd>
</dl>
<hr>
<a name="Trouble"></a>
<div class="header">
<p>
Next: <a href="#Bugs" accesskey="n" rel="next">Bugs</a>, Previous: <a href="#Gcov_002ddump" accesskey="p" rel="prev">Gcov-dump</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Known-Causes-of-Trouble-with-GCC"></a>
<h2 class="chapter">13 Known Causes of Trouble with GCC</h2>
<a name="index-bugs_002c-known"></a>
<a name="index-installation-trouble"></a>
<a name="index-known-causes-of-trouble"></a>
<p>This section describes known problems that affect users of GCC. Most
of these are not GCC bugs per se—if they were, we would fix them.
But the result for a user may be like the result of a bug.
</p>
<p>Some of these problems are due to bugs in other software, some are
missing features that are too much work to add, and some are places
where people’s opinions differ as to what is best.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Actual-Bugs" accesskey="1">Actual Bugs</a>:</td><td> </td><td align="left" valign="top">Bugs we will fix later.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Interoperation" accesskey="2">Interoperation</a>:</td><td> </td><td align="left" valign="top">Problems using GCC with other compilers,
and with certain linkers, assemblers and debuggers.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Incompatibilities" accesskey="3">Incompatibilities</a>:</td><td> </td><td align="left" valign="top">GCC is incompatible with traditional C.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Fixed-Headers" accesskey="4">Fixed Headers</a>:</td><td> </td><td align="left" valign="top">GCC uses corrected versions of system header files.
This is necessary, but doesn’t always work smoothly.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Standard-Libraries" accesskey="5">Standard Libraries</a>:</td><td> </td><td align="left" valign="top">GCC uses the system C library, which might not be
compliant with the ISO C standard.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Disappointments" accesskey="6">Disappointments</a>:</td><td> </td><td align="left" valign="top">Regrettable things we cannot change, but not quite bugs.
</td></tr>
<tr><td align="left" valign="top">• <a href="#C_002b_002b-Misunderstandings" accesskey="7">C++ Misunderstandings</a>:</td><td> </td><td align="left" valign="top">Common misunderstandings with GNU C++.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Non_002dbugs" accesskey="8">Non-bugs</a>:</td><td> </td><td align="left" valign="top">Things we think are right, but some others disagree.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Warnings-and-Errors" accesskey="9">Warnings and Errors</a>:</td><td> </td><td align="left" valign="top">Which problems in your code get warnings,
and which get errors.
</td></tr>
</table>
<hr>
<a name="Actual-Bugs"></a>
<div class="header">
<p>
Next: <a href="#Interoperation" accesskey="n" rel="next">Interoperation</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Actual-Bugs-We-Haven_0027t-Fixed-Yet"></a>
<h3 class="section">13.1 Actual Bugs We Haven’t Fixed Yet</h3>
<ul>
<li> The <code>fixincludes</code> script interacts badly with automounters; if the
directory of system header files is automounted, it tends to be
unmounted while <code>fixincludes</code> is running. This would seem to be a
bug in the automounter. We don’t know any good way to work around it.
</li></ul>
<hr>
<a name="Interoperation"></a>
<div class="header">
<p>
Next: <a href="#Incompatibilities" accesskey="n" rel="next">Incompatibilities</a>, Previous: <a href="#Actual-Bugs" accesskey="p" rel="prev">Actual Bugs</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Interoperation-1"></a>
<h3 class="section">13.2 Interoperation</h3>
<p>This section lists various difficulties encountered in using GCC
together with other compilers or with the assemblers, linkers,
libraries and debuggers on certain systems.
</p>
<ul>
<li> On many platforms, GCC supports a different ABI for C++ than do other
compilers, so the object files compiled by GCC cannot be used with object
files generated by another C++ compiler.
<p>An area where the difference is most apparent is name mangling. The use
of different name mangling is intentional, to protect you from more subtle
problems.
Compilers differ as to many internal details of C++ implementation,
including: how class instances are laid out, how multiple inheritance is
implemented, and how virtual function calls are handled. If the name
encoding were made the same, your programs would link against libraries
provided from other compilers—but the programs would then crash when
run. Incompatible libraries are then detected at link time, rather than
at run time.
</p>
</li><li> On some BSD systems, including some versions of Ultrix, use of profiling
causes static variable destructors (currently used only in C++) not to
be run.
</li><li> On a SPARC, GCC aligns all values of type <code>double</code> on an 8-byte
boundary, and it expects every <code>double</code> to be so aligned. The Sun
compiler usually gives <code>double</code> values 8-byte alignment, with one
exception: function arguments of type <code>double</code> may not be aligned.
<p>As a result, if a function compiled with Sun CC takes the address of an
argument of type <code>double</code> and passes this pointer of type
<code>double *</code> to a function compiled with GCC, dereferencing the
pointer may cause a fatal signal.
</p>
<p>One way to solve this problem is to compile your entire program with GCC.
Another solution is to modify the function that is compiled with
Sun CC to copy the argument into a local variable; local variables
are always properly aligned. A third solution is to modify the function
that uses the pointer to dereference it via the following function
<code>access_double</code> instead of directly with ‘<samp>*</samp>’:
</p>
<div class="smallexample">
<pre class="smallexample">inline double
access_double (double *unaligned_ptr)
{
union d2i { double d; int i[2]; };
union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;
u.i[0] = p->i[0];
u.i[1] = p->i[1];
return u.d;
}
</pre></div>
<p>Storing into the pointer can be done likewise with the same union.
</p>
</li><li> On Solaris, the <code>malloc</code> function in the <samp>libmalloc.a</samp> library
may allocate memory that is only 4 byte aligned. Since GCC on the
SPARC assumes that doubles are 8 byte aligned, this may result in a
fatal signal if doubles are stored in memory allocated by the
<samp>libmalloc.a</samp> library.
<p>The solution is to not use the <samp>libmalloc.a</samp> library. Use instead
<code>malloc</code> and related functions from <samp>libc.a</samp>; they do not have
this problem.
</p>
</li><li> On the HP PA machine, ADB sometimes fails to work on functions compiled
with GCC. Specifically, it fails to work on functions that use
<code>alloca</code> or variable-size arrays. This is because GCC doesn’t
generate HP-UX unwind descriptors for such functions. It may even be
impossible to generate them.
</li><li> Debugging (<samp>-g</samp>) is not supported on the HP PA machine, unless you use
the preliminary GNU tools.
</li><li> Taking the address of a label may generate errors from the HP-UX
PA assembler. GAS for the PA does not have this problem.
</li><li> Using floating point parameters for indirect calls to static functions
will not work when using the HP assembler. There simply is no way for GCC
to specify what registers hold arguments for static functions when using
the HP assembler. GAS for the PA does not have this problem.
</li><li> In extremely rare cases involving some very large functions you may
receive errors from the HP linker complaining about an out of bounds
unconditional branch offset. This used to occur more often in previous
versions of GCC, but is now exceptionally rare. If you should run
into it, you can work around by making your function smaller.
</li><li> GCC compiled code sometimes emits warnings from the HP-UX assembler of
the form:
<div class="smallexample">
<pre class="smallexample">(warning) Use of GR3 when
frame >= 8192 may cause conflict.
</pre></div>
<p>These warnings are harmless and can be safely ignored.
</p>
</li><li> In extremely rare cases involving some very large functions you may
receive errors from the AIX Assembler complaining about a displacement
that is too large. If you should run into it, you can work around by
making your function smaller.
</li><li> The <samp>libstdc++.a</samp> library in GCC relies on the SVR4 dynamic
linker semantics which merges global symbols between libraries and
applications, especially necessary for C++ streams functionality.
This is not the default behavior of AIX shared libraries and dynamic
linking. <samp>libstdc++.a</samp> is built on AIX with “runtime-linking”
enabled so that symbol merging can occur. To utilize this feature,
the application linked with <samp>libstdc++.a</samp> must include the
<samp>-Wl,-brtl</samp> flag on the link line. G++ cannot impose this
because this option may interfere with the semantics of the user
program and users may not always use ‘<samp>g++</samp>’ to link his or her
application. Applications are not required to use the
<samp>-Wl,-brtl</samp> flag on the link line—the rest of the
<samp>libstdc++.a</samp> library which is not dependent on the symbol
merging semantics will continue to function correctly.
</li><li> An application can interpose its own definition of functions for
functions invoked by <samp>libstdc++.a</samp> with “runtime-linking”
enabled on AIX. To accomplish this the application must be linked
with “runtime-linking” option and the functions explicitly must be
exported by the application (<samp>-Wl,-brtl,-bE:exportfile</samp>).
</li><li> AIX on the RS/6000 provides support (NLS) for environments outside of
the United States. Compilers and assemblers use NLS to support
locale-specific representations of various objects including
floating-point numbers (‘<samp>.</samp>’ vs ‘<samp>,</samp>’ for separating decimal
fractions). There have been problems reported where the library linked
with GCC does not produce the same floating-point formats that the
assembler accepts. If you have this problem, set the <code>LANG</code>
environment variable to ‘<samp>C</samp>’ or ‘<samp>En_US</samp>’.
</li><li> <a name="index-fdollars_002din_002didentifiers-1"></a>
Even if you specify <samp>-fdollars-in-identifiers</samp>,
you cannot successfully use ‘<samp>$</samp>’ in identifiers on the RS/6000 due
to a restriction in the IBM assembler. GAS supports these
identifiers.
</li></ul>
<hr>
<a name="Incompatibilities"></a>
<div class="header">
<p>
Next: <a href="#Fixed-Headers" accesskey="n" rel="next">Fixed Headers</a>, Previous: <a href="#Interoperation" accesskey="p" rel="prev">Interoperation</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Incompatibilities-of-GCC"></a>
<h3 class="section">13.3 Incompatibilities of GCC</h3>
<a name="index-incompatibilities-of-GCC"></a>
<a name="index-traditional-1"></a>
<p>There are several noteworthy incompatibilities between GNU C and K&R
(non-ISO) versions of C.
</p>
<ul>
<li> <a name="index-string-constants"></a>
<a name="index-read_002donly-strings"></a>
<a name="index-shared-strings"></a>
GCC normally makes string constants read-only. If several
identical-looking string constants are used, GCC stores only one
copy of the string.
<a name="index-mktemp_002c-and-constant-strings"></a>
<p>One consequence is that you cannot call <code>mktemp</code> with a string
constant argument. The function <code>mktemp</code> always alters the
string its argument points to.
</p>
<a name="index-sscanf_002c-and-constant-strings"></a>
<a name="index-fscanf_002c-and-constant-strings"></a>
<a name="index-scanf_002c-and-constant-strings"></a>
<p>Another consequence is that <code>sscanf</code> does not work on some very
old systems when passed a string constant as its format control string
or input. This is because <code>sscanf</code> incorrectly tries to write
into the string constant. Likewise <code>fscanf</code> and <code>scanf</code>.
</p>
<p>The solution to these problems is to change the program to use
<code>char</code>-array variables with initialization strings for these
purposes instead of string constants.
</p>
</li><li> <code>-2147483648</code> is positive.
<p>This is because 2147483648 cannot fit in the type <code>int</code>, so
(following the ISO C rules) its data type is <code>unsigned long int</code>.
Negating this value yields 2147483648 again.
</p>
</li><li> GCC does not substitute macro arguments when they appear inside of
string constants. For example, the following macro in GCC
<div class="smallexample">
<pre class="smallexample">#define foo(a) "a"
</pre></div>
<p>will produce output <code>"a"</code> regardless of what the argument <var>a</var> is.
</p>
</li><li> <a name="index-setjmp-incompatibilities"></a>
<a name="index-longjmp-incompatibilities"></a>
When you use <code>setjmp</code> and <code>longjmp</code>, the only automatic
variables guaranteed to remain valid are those declared
<code>volatile</code>. This is a consequence of automatic register
allocation. Consider this function:
<div class="smallexample">
<pre class="smallexample">jmp_buf j;
foo ()
{
int a, b;
a = fun1 ();
if (setjmp (j))
return a;
a = fun2 ();
/* <span class="roman"><code>longjmp (j)</code> may occur in <code>fun3</code>.</span> */
return a + fun3 ();
}
</pre></div>
<p>Here <code>a</code> may or may not be restored to its first value when the
<code>longjmp</code> occurs. If <code>a</code> is allocated in a register, then
its first value is restored; otherwise, it keeps the last value stored
in it.
</p>
<a name="index-W-3"></a>
<p>If you use the <samp>-W</samp> option with the <samp>-O</samp> option, you will
get a warning when GCC thinks such a problem might be possible.
</p>
</li><li> Programs that use preprocessing directives in the middle of macro
arguments do not work with GCC. For example, a program like this
will not work:
<div class="smallexample">
<pre class="smallexample">foobar (
#define luser
hack)
</pre></div>
<p>ISO C does not permit such a construct.
</p>
</li><li> K&R compilers allow comments to cross over an inclusion boundary
(i.e. started in an include file and ended in the including file).
</li><li> <a name="index-external-declaration-scope"></a>
<a name="index-scope-of-external-declarations"></a>
<a name="index-declaration-scope"></a>
Declarations of external variables and functions within a block apply
only to the block containing the declaration. In other words, they
have the same scope as any other declaration in the same place.
<p>In some other C compilers, an <code>extern</code> declaration affects all the
rest of the file even if it happens within a block.
</p>
</li><li> In traditional C, you can combine <code>long</code>, etc., with a typedef name,
as shown here:
<div class="smallexample">
<pre class="smallexample">typedef int foo;
typedef long foo bar;
</pre></div>
<p>In ISO C, this is not allowed: <code>long</code> and other type modifiers
require an explicit <code>int</code>.
</p>
</li><li> <a name="index-typedef-names-as-function-parameters"></a>
PCC allows typedef names to be used as function parameters.
</li><li> Traditional C allows the following erroneous pair of declarations to
appear together in a given scope:
<div class="smallexample">
<pre class="smallexample">typedef int foo;
typedef foo foo;
</pre></div>
</li><li> GCC treats all characters of identifiers as significant. According to
K&R-1 (2.2), “No more than the first eight characters are significant,
although more may be used.”. Also according to K&R-1 (2.2), “An
identifier is a sequence of letters and digits; the first character must
be a letter. The underscore _ counts as a letter.”, but GCC also
allows dollar signs in identifiers.
</li><li> <a name="index-whitespace"></a>
PCC allows whitespace in the middle of compound assignment operators
such as ‘<samp>+=</samp>’. GCC, following the ISO standard, does not
allow this.
</li><li> <a name="index-apostrophes"></a>
<a name="index-_0027"></a>
GCC complains about unterminated character constants inside of
preprocessing conditionals that fail. Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if these
comments contain apostrophes, GCC will probably report an error. For
example, this code would produce an error:
<div class="smallexample">
<pre class="smallexample">#if 0
You can't expect this to work.
#endif
</pre></div>
<p>The best solution to such a problem is to put the text into an actual
C comment delimited by ‘<samp>/*…*/</samp>’.
</p>
</li><li> Many user programs contain the declaration ‘<samp>long time ();</samp>’. In the
past, the system header files on many systems did not actually declare
<code>time</code>, so it did not matter what type your program declared it to
return. But in systems with ISO C headers, <code>time</code> is declared to
return <code>time_t</code>, and if that is not the same as <code>long</code>, then
‘<samp>long time ();</samp>’ is erroneous.
<p>The solution is to change your program to use appropriate system headers
(<code><time.h></code> on systems with ISO C headers) and not to declare
<code>time</code> if the system header files declare it, or failing that to
use <code>time_t</code> as the return type of <code>time</code>.
</p>
</li><li> <a name="index-float-as-function-value-type"></a>
When compiling functions that return <code>float</code>, PCC converts it to
a double. GCC actually returns a <code>float</code>. If you are concerned
with PCC compatibility, you should declare your functions to return
<code>double</code>; you might as well say what you mean.
</li><li> <a name="index-structures"></a>
<a name="index-unions"></a>
When compiling functions that return structures or unions, GCC
output code normally uses a method different from that used on most
versions of Unix. As a result, code compiled with GCC cannot call
a structure-returning function compiled with PCC, and vice versa.
<p>The method used by GCC is as follows: a structure or union which is
1, 2, 4 or 8 bytes long is returned like a scalar. A structure or union
with any other size is stored into an address supplied by the caller
(usually in a special, fixed register, but on some machines it is passed
on the stack). The target hook <code>TARGET_STRUCT_VALUE_RTX</code>
tells GCC where to pass this address.
</p>
<p>By contrast, PCC on most target machines returns structures and unions
of any size by copying the data into an area of static storage, and then
returning the address of that storage as if it were a pointer value.
The caller must copy the data from that memory area to the place where
the value is wanted. GCC does not use this method because it is
slower and nonreentrant.
</p>
<p>On some newer machines, PCC uses a reentrant convention for all
structure and union returning. GCC on most of these machines uses a
compatible convention when returning structures and unions in memory,
but still returns small structures and unions in registers.
</p>
<a name="index-fpcc_002dstruct_002dreturn-1"></a>
<p>You can tell GCC to use a compatible convention for all structure and
union returning with the option <samp>-fpcc-struct-return</samp>.
</p>
</li><li> <a name="index-preprocessing-tokens"></a>
<a name="index-preprocessing-numbers"></a>
GCC complains about program fragments such as ‘<samp>0x74ae-0x4000</samp>’
which appear to be two hexadecimal constants separated by the minus
operator. Actually, this string is a single <em>preprocessing token</em>.
Each such token must correspond to one token in C. Since this does not,
GCC prints an error message. Although it may appear obvious that what
is meant is an operator and two values, the ISO C standard specifically
requires that this be treated as erroneous.
<p>A <em>preprocessing token</em> is a <em>preprocessing number</em> if it
begins with a digit and is followed by letters, underscores, digits,
periods and ‘<samp>e+</samp>’, ‘<samp>e-</samp>’, ‘<samp>E+</samp>’, ‘<samp>E-</samp>’, ‘<samp>p+</samp>’,
‘<samp>p-</samp>’, ‘<samp>P+</samp>’, or ‘<samp>P-</samp>’ character sequences. (In strict C90
mode, the sequences ‘<samp>p+</samp>’, ‘<samp>p-</samp>’, ‘<samp>P+</samp>’ and ‘<samp>P-</samp>’ cannot
appear in preprocessing numbers.)
</p>
<p>To make the above program fragment valid, place whitespace in front of
the minus sign. This whitespace will end the preprocessing number.
</p></li></ul>
<hr>
<a name="Fixed-Headers"></a>
<div class="header">
<p>
Next: <a href="#Standard-Libraries" accesskey="n" rel="next">Standard Libraries</a>, Previous: <a href="#Incompatibilities" accesskey="p" rel="prev">Incompatibilities</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Fixed-Header-Files"></a>
<h3 class="section">13.4 Fixed Header Files</h3>
<p>GCC needs to install corrected versions of some system header files.
This is because most target systems have some header files that won’t
work with GCC unless they are changed. Some have bugs, some are
incompatible with ISO C, and some depend on special features of other
compilers.
</p>
<p>Installing GCC automatically creates and installs the fixed header
files, by running a program called <code>fixincludes</code>. Normally, you
don’t need to pay attention to this. But there are cases where it
doesn’t do the right thing automatically.
</p>
<ul>
<li> If you update the system’s header files, such as by installing a new
system version, the fixed header files of GCC are not automatically
updated. They can be updated using the <code>mkheaders</code> script
installed in
<samp><var>libexecdir</var>/gcc/<var>target</var>/<var>version</var>/install-tools/</samp>.
</li><li> On some systems, header file directories contain
machine-specific symbolic links in certain places. This makes it
possible to share most of the header files among hosts running the
same version of the system on different machine models.
<p>The programs that fix the header files do not understand this special
way of using symbolic links; therefore, the directory of fixed header
files is good only for the machine model used to build it.
</p>
<p>It is possible to make separate sets of fixed header files for the
different machine models, and arrange a structure of symbolic links so
as to use the proper set, but you’ll have to do this by hand.
</p></li></ul>
<hr>
<a name="Standard-Libraries"></a>
<div class="header">
<p>
Next: <a href="#Disappointments" accesskey="n" rel="next">Disappointments</a>, Previous: <a href="#Fixed-Headers" accesskey="p" rel="prev">Fixed Headers</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Standard-Libraries-1"></a>
<h3 class="section">13.5 Standard Libraries</h3>
<a name="index-Wall-1"></a>
<p>GCC by itself attempts to be a conforming freestanding implementation.
See <a href="#Standards">Language Standards Supported by GCC</a>, for details of
what this means. Beyond the library facilities required of such an
implementation, the rest of the C library is supplied by the vendor of
the operating system. If that C library doesn’t conform to the C
standards, then your programs might get warnings (especially when using
<samp>-Wall</samp>) that you don’t expect.
</p>
<p>For example, the <code>sprintf</code> function on SunOS 4.1.3 returns
<code>char *</code> while the C standard says that <code>sprintf</code> returns an
<code>int</code>. The <code>fixincludes</code> program could make the prototype for
this function match the Standard, but that would be wrong, since the
function will still return <code>char *</code>.
</p>
<p>If you need a Standard compliant library, then you need to find one, as
GCC does not provide one. The GNU C library (called <code>glibc</code>)
provides ISO C, POSIX, BSD, SystemV and X/Open compatibility for
GNU/Linux and HURD-based GNU systems; no recent version of it supports
other systems, though some very old versions did. Version 2.2 of the
GNU C library includes nearly complete C99 support. You could also ask
your operating system vendor if newer libraries are available.
</p>
<hr>
<a name="Disappointments"></a>
<div class="header">
<p>
Next: <a href="#C_002b_002b-Misunderstandings" accesskey="n" rel="next">C++ Misunderstandings</a>, Previous: <a href="#Standard-Libraries" accesskey="p" rel="prev">Standard Libraries</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Disappointments-and-Misunderstandings"></a>
<h3 class="section">13.6 Disappointments and Misunderstandings</h3>
<p>These problems are perhaps regrettable, but we don’t know any practical
way around them.
</p>
<ul>
<li> Certain local variables aren’t recognized by debuggers when you compile
with optimization.
<p>This occurs because sometimes GCC optimizes the variable out of
existence. There is no way to tell the debugger how to compute the
value such a variable “would have had”, and it is not clear that would
be desirable anyway. So GCC simply does not mention the eliminated
variable when it writes debugging information.
</p>
<p>You have to expect a certain amount of disagreement between the
executable and your source code, when you use optimization.
</p>
</li><li> <a name="index-conflicting-types"></a>
<a name="index-scope-of-declaration"></a>
Users often think it is a bug when GCC reports an error for code
like this:
<div class="smallexample">
<pre class="smallexample">int foo (struct mumble *);
struct mumble { … };
int foo (struct mumble *x)
{ … }
</pre></div>
<p>This code really is erroneous, because the scope of <code>struct
mumble</code> in the prototype is limited to the argument list containing it.
It does not refer to the <code>struct mumble</code> defined with file scope
immediately below—they are two unrelated types with similar names in
different scopes.
</p>
<p>But in the definition of <code>foo</code>, the file-scope type is used
because that is available to be inherited. Thus, the definition and
the prototype do not match, and you get an error.
</p>
<p>This behavior may seem silly, but it’s what the ISO standard specifies.
It is easy enough for you to make your code work by moving the
definition of <code>struct mumble</code> above the prototype. It’s not worth
being incompatible with ISO C just to avoid an error for the example
shown above.
</p>
</li><li> Accesses to bit-fields even in volatile objects works by accessing larger
objects, such as a byte or a word. You cannot rely on what size of
object is accessed in order to read or write the bit-field; it may even
vary for a given bit-field according to the precise usage.
<p>If you care about controlling the amount of memory that is accessed, use
volatile but do not use bit-fields.
</p>
</li><li> GCC comes with shell scripts to fix certain known problems in system
header files. They install corrected copies of various header files in
a special directory where only GCC will normally look for them. The
scripts adapt to various systems by searching all the system header
files for the problem cases that we know about.
<p>If new system header files are installed, nothing automatically arranges
to update the corrected header files. They can be updated using the
<code>mkheaders</code> script installed in
<samp><var>libexecdir</var>/gcc/<var>target</var>/<var>version</var>/install-tools/</samp>.
</p>
</li><li> <a name="index-floating-point-precision"></a>
On 68000 and x86 systems, for instance, you can get paradoxical results
if you test the precise values of floating point numbers. For example,
you can find that a floating point value which is not a NaN is not equal
to itself. This results from the fact that the floating point registers
hold a few more bits of precision than fit in a <code>double</code> in memory.
Compiled code moves values between memory and floating point registers
at its convenience, and moving them into memory truncates them.
<a name="index-ffloat_002dstore-1"></a>
<p>You can partially avoid this problem by using the <samp>-ffloat-store</samp>
option (see <a href="#Optimize-Options">Optimize Options</a>).
</p>
</li><li> On AIX and other platforms without weak symbol support, templates
need to be instantiated explicitly and symbols for static members
of templates will not be generated.
</li><li> On AIX, GCC scans object files and library archives for static
constructors and destructors when linking an application before the
linker prunes unreferenced symbols. This is necessary to prevent the
AIX linker from mistakenly assuming that static constructor or
destructor are unused and removing them before the scanning can occur.
All static constructors and destructors found will be referenced even
though the modules in which they occur may not be used by the program.
This may lead to both increased executable size and unexpected symbol
references.
</li></ul>
<hr>
<a name="C_002b_002b-Misunderstandings"></a>
<div class="header">
<p>
Next: <a href="#Non_002dbugs" accesskey="n" rel="next">Non-bugs</a>, Previous: <a href="#Disappointments" accesskey="p" rel="prev">Disappointments</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Common-Misunderstandings-with-GNU-C_002b_002b"></a>
<h3 class="section">13.7 Common Misunderstandings with GNU C++</h3>
<a name="index-misunderstandings-in-C_002b_002b"></a>
<a name="index-surprises-in-C_002b_002b"></a>
<a name="index-C_002b_002b-misunderstandings"></a>
<p>C++ is a complex language and an evolving one, and its standard
definition (the ISO C++ standard) was only recently completed. As a
result, your C++ compiler may occasionally surprise you, even when its
behavior is correct. This section discusses some areas that frequently
give rise to questions of this sort.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Static-Definitions" accesskey="1">Static Definitions</a>:</td><td> </td><td align="left" valign="top">Static member declarations are not definitions
</td></tr>
<tr><td align="left" valign="top">• <a href="#Name-lookup" accesskey="2">Name lookup</a>:</td><td> </td><td align="left" valign="top">Name lookup, templates, and accessing members of base classes
</td></tr>
<tr><td align="left" valign="top">• <a href="#Temporaries" accesskey="3">Temporaries</a>:</td><td> </td><td align="left" valign="top">Temporaries may vanish before you expect
</td></tr>
<tr><td align="left" valign="top">• <a href="#Copy-Assignment" accesskey="4">Copy Assignment</a>:</td><td> </td><td align="left" valign="top">Copy Assignment operators copy virtual bases twice
</td></tr>
</table>
<hr>
<a name="Static-Definitions"></a>
<div class="header">
<p>
Next: <a href="#Name-lookup" accesskey="n" rel="next">Name lookup</a>, Up: <a href="#C_002b_002b-Misunderstandings" accesskey="u" rel="up">C++ Misunderstandings</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Declare-and-Define-Static-Members"></a>
<h4 class="subsection">13.7.1 Declare <em>and</em> Define Static Members</h4>
<a name="index-C_002b_002b-static-data_002c-declaring-and-defining"></a>
<a name="index-static-data-in-C_002b_002b_002c-declaring-and-defining"></a>
<a name="index-declaring-static-data-in-C_002b_002b"></a>
<a name="index-defining-static-data-in-C_002b_002b"></a>
<p>When a class has static data members, it is not enough to <em>declare</em>
the static member; you must also <em>define</em> it. For example:
</p>
<div class="smallexample">
<pre class="smallexample">class Foo
{
…
void method();
static int bar;
};
</pre></div>
<p>This declaration only establishes that the class <code>Foo</code> has an
<code>int</code> named <code>Foo::bar</code>, and a member function named
<code>Foo::method</code>. But you still need to define <em>both</em>
<code>method</code> and <code>bar</code> elsewhere. According to the ISO
standard, you must supply an initializer in one (and only one) source
file, such as:
</p>
<div class="smallexample">
<pre class="smallexample">int Foo::bar = 0;
</pre></div>
<p>Other C++ compilers may not correctly implement the standard behavior.
As a result, when you switch to <code>g++</code> from one of these compilers,
you may discover that a program that appeared to work correctly in fact
does not conform to the standard: <code>g++</code> reports as undefined
symbols any static data members that lack definitions.
</p>
<hr>
<a name="Name-lookup"></a>
<div class="header">
<p>
Next: <a href="#Temporaries" accesskey="n" rel="next">Temporaries</a>, Previous: <a href="#Static-Definitions" accesskey="p" rel="prev">Static Definitions</a>, Up: <a href="#C_002b_002b-Misunderstandings" accesskey="u" rel="up">C++ Misunderstandings</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Name-Lookup_002c-Templates_002c-and-Accessing-Members-of-Base-Classes"></a>
<h4 class="subsection">13.7.2 Name Lookup, Templates, and Accessing Members of Base Classes</h4>
<a name="index-base-class-members"></a>
<a name="index-two_002dstage-name-lookup"></a>
<a name="index-dependent-name-lookup"></a>
<p>The C++ standard prescribes that all names that are not dependent on
template parameters are bound to their present definitions when parsing
a template function or class.<a name="DOCF5" href="#FOOT5"><sup>5</sup></a> Only names that are dependent are looked up at the point
of instantiation. For example, consider
</p>
<div class="smallexample">
<pre class="smallexample"> void foo(double);
struct A {
template <typename T>
void f () {
foo (1); // <span class="roman">1</span>
int i = N; // <span class="roman">2</span>
T t;
t.bar(); // <span class="roman">3</span>
foo (t); // <span class="roman">4</span>
}
static const int N;
};
</pre></div>
<p>Here, the names <code>foo</code> and <code>N</code> appear in a context that does
not depend on the type of <code>T</code>. The compiler will thus require that
they are defined in the context of use in the template, not only before
the point of instantiation, and will here use <code>::foo(double)</code> and
<code>A::N</code>, respectively. In particular, it will convert the integer
value to a <code>double</code> when passing it to <code>::foo(double)</code>.
</p>
<p>Conversely, <code>bar</code> and the call to <code>foo</code> in the fourth marked
line are used in contexts that do depend on the type of <code>T</code>, so
they are only looked up at the point of instantiation, and you can
provide declarations for them after declaring the template, but before
instantiating it. In particular, if you instantiate <code>A::f<int></code>,
the last line will call an overloaded <code>::foo(int)</code> if one was
provided, even if after the declaration of <code>struct A</code>.
</p>
<p>This distinction between lookup of dependent and non-dependent names is
called two-stage (or dependent) name lookup. G++ implements it
since version 3.4.
</p>
<p>Two-stage name lookup sometimes leads to situations with behavior
different from non-template codes. The most common is probably this:
</p>
<div class="smallexample">
<pre class="smallexample"> template <typename T> struct Base {
int i;
};
template <typename T> struct Derived : public Base<T> {
int get_i() { return i; }
};
</pre></div>
<p>In <code>get_i()</code>, <code>i</code> is not used in a dependent context, so the
compiler will look for a name declared at the enclosing namespace scope
(which is the global scope here). It will not look into the base class,
since that is dependent and you may declare specializations of
<code>Base</code> even after declaring <code>Derived</code>, so the compiler cannot
really know what <code>i</code> would refer to. If there is no global
variable <code>i</code>, then you will get an error message.
</p>
<p>In order to make it clear that you want the member of the base class,
you need to defer lookup until instantiation time, at which the base
class is known. For this, you need to access <code>i</code> in a dependent
context, by either using <code>this->i</code> (remember that <code>this</code> is of
type <code>Derived<T>*</code>, so is obviously dependent), or using
<code>Base<T>::i</code>. Alternatively, <code>Base<T>::i</code> might be brought
into scope by a <code>using</code>-declaration.
</p>
<p>Another, similar example involves calling member functions of a base
class:
</p>
<div class="smallexample">
<pre class="smallexample"> template <typename T> struct Base {
int f();
};
template <typename T> struct Derived : Base<T> {
int g() { return f(); };
};
</pre></div>
<p>Again, the call to <code>f()</code> is not dependent on template arguments
(there are no arguments that depend on the type <code>T</code>, and it is also
not otherwise specified that the call should be in a dependent context).
Thus a global declaration of such a function must be available, since
the one in the base class is not visible until instantiation time. The
compiler will consequently produce the following error message:
</p>
<div class="smallexample">
<pre class="smallexample"> x.cc: In member function `int Derived<T>::g()':
x.cc:6: error: there are no arguments to `f' that depend on a template
parameter, so a declaration of `f' must be available
x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but
allowing the use of an undeclared name is deprecated)
</pre></div>
<p>To make the code valid either use <code>this->f()</code>, or
<code>Base<T>::f()</code>. Using the <samp>-fpermissive</samp> flag will also let
the compiler accept the code, by marking all function calls for which no
declaration is visible at the time of definition of the template for
later lookup at instantiation time, as if it were a dependent call.
We do not recommend using <samp>-fpermissive</samp> to work around invalid
code, and it will also only catch cases where functions in base classes
are called, not where variables in base classes are used (as in the
example above).
</p>
<p>Note that some compilers (including G++ versions prior to 3.4) get these
examples wrong and accept above code without an error. Those compilers
do not implement two-stage name lookup correctly.
</p>
<hr>
<a name="Temporaries"></a>
<div class="header">
<p>
Next: <a href="#Copy-Assignment" accesskey="n" rel="next">Copy Assignment</a>, Previous: <a href="#Name-lookup" accesskey="p" rel="prev">Name lookup</a>, Up: <a href="#C_002b_002b-Misunderstandings" accesskey="u" rel="up">C++ Misunderstandings</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Temporaries-May-Vanish-Before-You-Expect"></a>
<h4 class="subsection">13.7.3 Temporaries May Vanish Before You Expect</h4>
<a name="index-temporaries_002c-lifetime-of"></a>
<a name="index-portions-of-temporary-objects_002c-pointers-to"></a>
<p>It is dangerous to use pointers or references to <em>portions</em> of a
temporary object. The compiler may very well delete the object before
you expect it to, leaving a pointer to garbage. The most common place
where this problem crops up is in classes like string classes,
especially ones that define a conversion function to type <code>char *</code>
or <code>const char *</code>—which is one reason why the standard
<code>string</code> class requires you to call the <code>c_str</code> member
function. However, any class that returns a pointer to some internal
structure is potentially subject to this problem.
</p>
<p>For example, a program may use a function <code>strfunc</code> that returns
<code>string</code> objects, and another function <code>charfunc</code> that
operates on pointers to <code>char</code>:
</p>
<div class="smallexample">
<pre class="smallexample">string strfunc ();
void charfunc (const char *);
void
f ()
{
const char *p = strfunc().c_str();
…
charfunc (p);
…
charfunc (p);
}
</pre></div>
<p>In this situation, it may seem reasonable to save a pointer to the C
string returned by the <code>c_str</code> member function and use that rather
than call <code>c_str</code> repeatedly. However, the temporary string
created by the call to <code>strfunc</code> is destroyed after <code>p</code> is
initialized, at which point <code>p</code> is left pointing to freed memory.
</p>
<p>Code like this may run successfully under some other compilers,
particularly obsolete cfront-based compilers that delete temporaries
along with normal local variables. However, the GNU C++ behavior is
standard-conforming, so if your program depends on late destruction of
temporaries it is not portable.
</p>
<p>The safe way to write such code is to give the temporary a name, which
forces it to remain until the end of the scope of the name. For
example:
</p>
<div class="smallexample">
<pre class="smallexample">const string& tmp = strfunc ();
charfunc (tmp.c_str ());
</pre></div>
<hr>
<a name="Copy-Assignment"></a>
<div class="header">
<p>
Previous: <a href="#Temporaries" accesskey="p" rel="prev">Temporaries</a>, Up: <a href="#C_002b_002b-Misunderstandings" accesskey="u" rel="up">C++ Misunderstandings</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Implicit-Copy_002dAssignment-for-Virtual-Bases"></a>
<h4 class="subsection">13.7.4 Implicit Copy-Assignment for Virtual Bases</h4>
<p>When a base class is virtual, only one subobject of the base class
belongs to each full object. Also, the constructors and destructors are
invoked only once, and called from the most-derived class. However, such
objects behave unspecified when being assigned. For example:
</p>
<div class="smallexample">
<pre class="smallexample">struct Base{
char *name;
Base(char *n) : name(strdup(n)){}
Base& operator= (const Base& other){
free (name);
name = strdup (other.name);
}
};
struct A:virtual Base{
int val;
A():Base("A"){}
};
struct B:virtual Base{
int bval;
B():Base("B"){}
};
struct Derived:public A, public B{
Derived():Base("Derived"){}
};
void func(Derived &d1, Derived &d2)
{
d1 = d2;
}
</pre></div>
<p>The C++ standard specifies that ‘<samp>Base::Base</samp>’ is only called once
when constructing or copy-constructing a Derived object. It is
unspecified whether ‘<samp>Base::operator=</samp>’ is called more than once when
the implicit copy-assignment for Derived objects is invoked (as it is
inside ‘<samp>func</samp>’ in the example).
</p>
<p>G++ implements the “intuitive” algorithm for copy-assignment: assign all
direct bases, then assign all members. In that algorithm, the virtual
base subobject can be encountered more than once. In the example, copying
proceeds in the following order: ‘<samp>val</samp>’, ‘<samp>name</samp>’ (via
<code>strdup</code>), ‘<samp>bval</samp>’, and ‘<samp>name</samp>’ again.
</p>
<p>If application code relies on copy-assignment, a user-defined
copy-assignment operator removes any uncertainties. With such an
operator, the application can define whether and how the virtual base
subobject is assigned.
</p>
<hr>
<a name="Non_002dbugs"></a>
<div class="header">
<p>
Next: <a href="#Warnings-and-Errors" accesskey="n" rel="next">Warnings and Errors</a>, Previous: <a href="#C_002b_002b-Misunderstandings" accesskey="p" rel="prev">C++ Misunderstandings</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Certain-Changes-We-Don_0027t-Want-to-Make"></a>
<h3 class="section">13.8 Certain Changes We Don’t Want to Make</h3>
<p>This section lists changes that people frequently request, but which
we do not make because we think GCC is better without them.
</p>
<ul>
<li> Checking the number and type of arguments to a function which has an
old-fashioned definition and no prototype.
<p>Such a feature would work only occasionally—only for calls that appear
in the same file as the called function, following the definition. The
only way to check all calls reliably is to add a prototype for the
function. But adding a prototype eliminates the motivation for this
feature. So the feature is not worthwhile.
</p>
</li><li> Warning about using an expression whose type is signed as a shift count.
<p>Shift count operands are probably signed more often than unsigned.
Warning about this would cause far more annoyance than good.
</p>
</li><li> Warning about assigning a signed value to an unsigned variable.
<p>Such assignments must be very common; warning about them would cause
more annoyance than good.
</p>
</li><li> Warning when a non-void function value is ignored.
<p>C contains many standard functions that return a value that most
programs choose to ignore. One obvious example is <code>printf</code>.
Warning about this practice only leads the defensive programmer to
clutter programs with dozens of casts to <code>void</code>. Such casts are
required so frequently that they become visual noise. Writing those
casts becomes so automatic that they no longer convey useful
information about the intentions of the programmer. For functions
where the return value should never be ignored, use the
<code>warn_unused_result</code> function attribute (see <a href="#Function-Attributes">Function Attributes</a>).
</p>
</li><li> <a name="index-fshort_002denums-3"></a>
Making <samp>-fshort-enums</samp> the default.
<p>This would cause storage layout to be incompatible with most other C
compilers. And it doesn’t seem very important, given that you can get
the same result in other ways. The case where it matters most is when
the enumeration-valued object is inside a structure, and in that case
you can specify a field width explicitly.
</p>
</li><li> Making bit-fields unsigned by default on particular machines where “the
ABI standard” says to do so.
<p>The ISO C standard leaves it up to the implementation whether a bit-field
declared plain <code>int</code> is signed or not. This in effect creates two
alternative dialects of C.
</p>
<a name="index-fsigned_002dbitfields-1"></a>
<a name="index-funsigned_002dbitfields-2"></a>
<p>The GNU C compiler supports both dialects; you can specify the signed
dialect with <samp>-fsigned-bitfields</samp> and the unsigned dialect with
<samp>-funsigned-bitfields</samp>. However, this leaves open the question of
which dialect to use by default.
</p>
<p>Currently, the preferred dialect makes plain bit-fields signed, because
this is simplest. Since <code>int</code> is the same as <code>signed int</code> in
every other context, it is cleanest for them to be the same in bit-fields
as well.
</p>
<p>Some computer manufacturers have published Application Binary Interface
standards which specify that plain bit-fields should be unsigned. It is
a mistake, however, to say anything about this issue in an ABI. This is
because the handling of plain bit-fields distinguishes two dialects of C.
Both dialects are meaningful on every type of machine. Whether a
particular object file was compiled using signed bit-fields or unsigned
is of no concern to other object files, even if they access the same
bit-fields in the same data structures.
</p>
<p>A given program is written in one or the other of these two dialects.
The program stands a chance to work on most any machine if it is
compiled with the proper dialect. It is unlikely to work at all if
compiled with the wrong dialect.
</p>
<p>Many users appreciate the GNU C compiler because it provides an
environment that is uniform across machines. These users would be
inconvenienced if the compiler treated plain bit-fields differently on
certain machines.
</p>
<p>Occasionally users write programs intended only for a particular machine
type. On these occasions, the users would benefit if the GNU C compiler
were to support by default the same dialect as the other compilers on
that machine. But such applications are rare. And users writing a
program to run on more than one type of machine cannot possibly benefit
from this kind of compatibility.
</p>
<p>This is why GCC does and will treat plain bit-fields in the same
fashion on all types of machines (by default).
</p>
<p>There are some arguments for making bit-fields unsigned by default on all
machines. If, for example, this becomes a universal de facto standard,
it would make sense for GCC to go along with it. This is something
to be considered in the future.
</p>
<p>(Of course, users strongly concerned about portability should indicate
explicitly in each bit-field whether it is signed or not. In this way,
they write programs which have the same meaning in both C dialects.)
</p>
</li><li> <a name="index-ansi-3"></a>
<a name="index-std-3"></a>
Undefining <code>__STDC__</code> when <samp>-ansi</samp> is not used.
<p>Currently, GCC defines <code>__STDC__</code> unconditionally. This provides
good results in practice.
</p>
<p>Programmers normally use conditionals on <code>__STDC__</code> to ask whether
it is safe to use certain features of ISO C, such as function
prototypes or ISO token concatenation. Since plain <code>gcc</code> supports
all the features of ISO C, the correct answer to these questions is
“yes”.
</p>
<p>Some users try to use <code>__STDC__</code> to check for the availability of
certain library facilities. This is actually incorrect usage in an ISO
C program, because the ISO C standard says that a conforming
freestanding implementation should define <code>__STDC__</code> even though it
does not have the library facilities. ‘<samp>gcc -ansi -pedantic</samp>’ is a
conforming freestanding implementation, and it is therefore required to
define <code>__STDC__</code>, even though it does not come with an ISO C
library.
</p>
<p>Sometimes people say that defining <code>__STDC__</code> in a compiler that
does not completely conform to the ISO C standard somehow violates the
standard. This is illogical. The standard is a standard for compilers
that claim to support ISO C, such as ‘<samp>gcc -ansi</samp>’—not for other
compilers such as plain <code>gcc</code>. Whatever the ISO C standard says
is relevant to the design of plain <code>gcc</code> without <samp>-ansi</samp> only
for pragmatic reasons, not as a requirement.
</p>
<p>GCC normally defines <code>__STDC__</code> to be 1, and in addition
defines <code>__STRICT_ANSI__</code> if you specify the <samp>-ansi</samp> option,
or a <samp>-std</samp> option for strict conformance to some version of ISO C.
On some hosts, system include files use a different convention, where
<code>__STDC__</code> is normally 0, but is 1 if the user specifies strict
conformance to the C Standard. GCC follows the host convention when
processing system include files, but when processing user files it follows
the usual GNU C convention.
</p>
</li><li> Undefining <code>__STDC__</code> in C++.
<p>Programs written to compile with C++-to-C translators get the
value of <code>__STDC__</code> that goes with the C compiler that is
subsequently used. These programs must test <code>__STDC__</code>
to determine what kind of C preprocessor that compiler uses:
whether they should concatenate tokens in the ISO C fashion
or in the traditional fashion.
</p>
<p>These programs work properly with GNU C++ if <code>__STDC__</code> is defined.
They would not work otherwise.
</p>
<p>In addition, many header files are written to provide prototypes in ISO
C but not in traditional C. Many of these header files can work without
change in C++ provided <code>__STDC__</code> is defined. If <code>__STDC__</code>
is not defined, they will all fail, and will all need to be changed to
test explicitly for C++ as well.
</p>
</li><li> Deleting “empty” loops.
<p>Historically, GCC has not deleted “empty” loops under the
assumption that the most likely reason you would put one in a program is
to have a delay, so deleting them will not make real programs run any
faster.
</p>
<p>However, the rationale here is that optimization of a nonempty loop
cannot produce an empty one. This held for carefully written C compiled
with less powerful optimizers but is not always the case for carefully
written C++ or with more powerful optimizers.
Thus GCC will remove operations from loops whenever it can determine
those operations are not externally visible (apart from the time taken
to execute them, of course). In case the loop can be proved to be finite,
GCC will also remove the loop itself.
</p>
<p>Be aware of this when performing timing tests, for instance the
following loop can be completely removed, provided
<code>some_expression</code> can provably not change any global state.
</p>
<div class="smallexample">
<pre class="smallexample">{
int sum = 0;
int ix;
for (ix = 0; ix != 10000; ix++)
sum += some_expression;
}
</pre></div>
<p>Even though <code>sum</code> is accumulated in the loop, no use is made of
that summation, so the accumulation can be removed.
</p>
</li><li> Making side effects happen in the same order as in some other compiler.
<a name="index-side-effects_002c-order-of-evaluation"></a>
<a name="index-order-of-evaluation_002c-side-effects"></a>
<p>It is never safe to depend on the order of evaluation of side effects.
For example, a function call like this may very well behave differently
from one compiler to another:
</p>
<div class="smallexample">
<pre class="smallexample">void func (int, int);
int i = 2;
func (i++, i++);
</pre></div>
<p>There is no guarantee (in either the C or the C++ standard language
definitions) that the increments will be evaluated in any particular
order. Either increment might happen first. <code>func</code> might get the
arguments ‘<samp>2, 3</samp>’, or it might get ‘<samp>3, 2</samp>’, or even ‘<samp>2, 2</samp>’.
</p>
</li><li> Making certain warnings into errors by default.
<p>Some ISO C testsuites report failure when the compiler does not produce
an error message for a certain program.
</p>
<a name="index-pedantic_002derrors-2"></a>
<p>ISO C requires a “diagnostic” message for certain kinds of invalid
programs, but a warning is defined by GCC to count as a diagnostic. If
GCC produces a warning but not an error, that is correct ISO C support.
If testsuites call this “failure”, they should be run with the GCC
option <samp>-pedantic-errors</samp>, which will turn these warnings into
errors.
</p>
</li></ul>
<hr>
<a name="Warnings-and-Errors"></a>
<div class="header">
<p>
Previous: <a href="#Non_002dbugs" accesskey="p" rel="prev">Non-bugs</a>, Up: <a href="#Trouble" accesskey="u" rel="up">Trouble</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Warning-Messages-and-Error-Messages"></a>
<h3 class="section">13.9 Warning Messages and Error Messages</h3>
<a name="index-error-messages"></a>
<a name="index-warnings-vs-errors"></a>
<a name="index-messages_002c-warning-and-error"></a>
<p>The GNU compiler can produce two kinds of diagnostics: errors and
warnings. Each kind has a different purpose:
</p>
<ul class="no-bullet">
<li><!-- /@w --> <em>Errors</em> report problems that make it impossible to compile your
program. GCC reports errors with the source file name and line
number where the problem is apparent.
</li><li><!-- /@w --> <em>Warnings</em> report other unusual conditions in your code that
<em>may</em> indicate a problem, although compilation can (and does)
proceed. Warning messages also report the source file name and line
number, but include the text ‘<samp>warning:</samp>’ to distinguish them
from error messages.
</li></ul>
<p>Warnings may indicate danger points where you should check to make sure
that your program really does what you intend; or the use of obsolete
features; or the use of nonstandard features of GNU C or C++. Many
warnings are issued only if you ask for them, with one of the <samp>-W</samp>
options (for instance, <samp>-Wall</samp> requests a variety of useful
warnings).
</p>
<a name="index-pedantic-4"></a>
<a name="index-pedantic_002derrors-3"></a>
<p>GCC always tries to compile your program if possible; it never
gratuitously rejects a program whose meaning is clear merely because
(for instance) it fails to conform to a standard. In some cases,
however, the C and C++ standards specify that certain extensions are
forbidden, and a diagnostic <em>must</em> be issued by a conforming
compiler. The <samp>-pedantic</samp> option tells GCC to issue warnings in
such cases; <samp>-pedantic-errors</samp> says to make them errors instead.
This does not mean that <em>all</em> non-ISO constructs get warnings
or errors.
</p>
<p>See <a href="#Warning-Options">Options to Request or Suppress Warnings</a>, for
more detail on these and related command-line options.
</p>
<hr>
<a name="Bugs"></a>
<div class="header">
<p>
Next: <a href="#Service" accesskey="n" rel="next">Service</a>, Previous: <a href="#Trouble" accesskey="p" rel="prev">Trouble</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Reporting-Bugs"></a>
<h2 class="chapter">14 Reporting Bugs</h2>
<a name="index-bugs"></a>
<a name="index-reporting-bugs"></a>
<p>Your bug reports play an essential role in making GCC reliable.
</p>
<p>When you encounter a problem, the first thing to do is to see if it is
already known. See <a href="#Trouble">Trouble</a>. If it isn’t known, then you should
report the problem.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Bug-Criteria" accesskey="1">Criteria</a>:</td><td> </td><td align="left" valign="top">Have you really found a bug?
</td></tr>
<tr><td align="left" valign="top">• <a href="#Bug-Reporting" accesskey="2">Reporting</a>:</td><td> </td><td align="left" valign="top">How to report a bug effectively.
</td></tr>
</table>
<hr>
<a name="Bug-Criteria"></a>
<div class="header">
<p>
Next: <a href="#Bug-Reporting" accesskey="n" rel="next">Bug Reporting</a>, Up: <a href="#Bugs" accesskey="u" rel="up">Bugs</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Have-You-Found-a-Bug_003f"></a>
<h3 class="section">14.1 Have You Found a Bug?</h3>
<a name="index-bug-criteria"></a>
<p>If you are not sure whether you have found a bug, here are some guidelines:
</p>
<ul>
<li> <a name="index-fatal-signal"></a>
<a name="index-core-dump"></a>
If the compiler gets a fatal signal, for any input whatever, that is a
compiler bug. Reliable compilers never crash.
</li><li> <a name="index-invalid-assembly-code"></a>
<a name="index-assembly-code_002c-invalid"></a>
If the compiler produces invalid assembly code, for any input whatever
(except an <code>asm</code> statement), that is a compiler bug, unless the
compiler reports errors (not just warnings) which would ordinarily
prevent the assembler from being run.
</li><li> <a name="index-undefined-behavior"></a>
<a name="index-undefined-function-value"></a>
<a name="index-increment-operators"></a>
If the compiler produces valid assembly code that does not correctly
execute the input source code, that is a compiler bug.
<p>However, you must double-check to make sure, because you may have a
program whose behavior is undefined, which happened by chance to give
the desired results with another C or C++ compiler.
</p>
<p>For example, in many nonoptimizing compilers, you can write ‘<samp>x;</samp>’
at the end of a function instead of ‘<samp>return x;</samp>’, with the same
results. But the value of the function is undefined if <code>return</code>
is omitted; it is not a bug when GCC produces different results.
</p>
<p>Problems often result from expressions with two increment operators,
as in <code>f (*p++, *p++)</code>. Your previous compiler might have
interpreted that expression the way you intended; GCC might
interpret it another way. Neither compiler is wrong. The bug is
in your code.
</p>
<p>After you have localized the error to a single source line, it should
be easy to check for these things. If your program is correct and
well defined, you have found a compiler bug.
</p>
</li><li> If the compiler produces an error message for valid input, that is a
compiler bug.
</li><li> <a name="index-invalid-input"></a>
If the compiler does not produce an error message for invalid input,
that is a compiler bug. However, you should note that your idea of
“invalid input” might be someone else’s idea of “an extension” or
“support for traditional practice”.
</li><li> If you are an experienced user of one of the languages GCC supports, your
suggestions for improvement of GCC are welcome in any case.
</li></ul>
<hr>
<a name="Bug-Reporting"></a>
<div class="header">
<p>
Previous: <a href="#Bug-Criteria" accesskey="p" rel="prev">Bug Criteria</a>, Up: <a href="#Bugs" accesskey="u" rel="up">Bugs</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="How-and-Where-to-Report-Bugs"></a>
<h3 class="section">14.2 How and Where to Report Bugs</h3>
<a name="index-compiler-bugs_002c-reporting"></a>
<p>Bugs should be reported to the bug database at <a href="file:///usr/share/doc/gcc-8/README.Bugs">file:///usr/share/doc/gcc-8/README.Bugs</a>.
</p>
<hr>
<a name="Service"></a>
<div class="header">
<p>
Next: <a href="#Contributing" accesskey="n" rel="next">Contributing</a>, Previous: <a href="#Bugs" accesskey="p" rel="prev">Bugs</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="How-To-Get-Help-with-GCC"></a>
<h2 class="chapter">15 How To Get Help with GCC</h2>
<p>If you need help installing, using or changing GCC, there are two
ways to find it:
</p>
<ul>
<li> Send a message to a suitable network mailing list. First try
<a href="mailto:gcc-help@gcc.gnu.org">gcc-help@gcc.gnu.org</a> (for help installing or using GCC), and if
that brings no response, try <a href="mailto:gcc@gcc.gnu.org">gcc@gcc.gnu.org</a>. For help
changing GCC, ask <a href="mailto:gcc@gcc.gnu.org">gcc@gcc.gnu.org</a>. If you think you have found
a bug in GCC, please report it following the instructions at
see <a href="#Bug-Reporting">Bug Reporting</a>.
</li><li> Look in the service directory for someone who might help you for a fee.
The service directory is found at
<a href="http://www.fsf.org/resources/service">http://www.fsf.org/resources/service</a>.
</li></ul>
<p>For further information, see
<a href="http://gcc.gnu.org/faq.html#support">http://gcc.gnu.org/faq.html#support</a>.
</p>
<hr>
<a name="Contributing"></a>
<div class="header">
<p>
Next: <a href="#Funding" accesskey="n" rel="next">Funding</a>, Previous: <a href="#Service" accesskey="p" rel="prev">Service</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Contributing-to-GCC-Development"></a>
<h2 class="chapter">16 Contributing to GCC Development</h2>
<p>If you would like to help pretest GCC releases to assure they work well,
current development sources are available by SVN (see
<a href="http://gcc.gnu.org/svn.html">http://gcc.gnu.org/svn.html</a>). Source and binary snapshots are
also available for FTP; see <a href="http://gcc.gnu.org/snapshots.html">http://gcc.gnu.org/snapshots.html</a>.
</p>
<p>If you would like to work on improvements to GCC, please read the
advice at these URLs:
</p>
<div class="smallexample">
<pre class="smallexample"><a href="http://gcc.gnu.org/contribute.html">http://gcc.gnu.org/contribute.html</a>
<a href="http://gcc.gnu.org/contributewhy.html">http://gcc.gnu.org/contributewhy.html</a>
</pre></div>
<p>for information on how to make useful contributions and avoid
duplication of effort. Suggested projects are listed at
<a href="http://gcc.gnu.org/projects/">http://gcc.gnu.org/projects/</a>.
</p>
<hr>
<a name="Funding"></a>
<div class="header">
<p>
Next: <a href="#GNU-Project" accesskey="n" rel="next">GNU Project</a>, Previous: <a href="#Contributing" accesskey="p" rel="prev">Contributing</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Funding-Free-Software"></a>
<h2 class="unnumbered">Funding Free Software</h2>
<p>If you want to have more free software a few years from now, it makes
sense for you to help encourage people to contribute funds for its
development. The most effective approach known is to encourage
commercial redistributors to donate.
</p>
<p>Users of free software systems can boost the pace of development by
encouraging for-a-fee distributors to donate part of their selling price
to free software developers—the Free Software Foundation, and others.
</p>
<p>The way to convince distributors to do this is to demand it and expect
it from them. So when you compare distributors, judge them partly by
how much they give to free software development. Show distributors
they must compete to be the one who gives the most.
</p>
<p>To make this approach work, you must insist on numbers that you can
compare, such as, “We will donate ten dollars to the Frobnitz project
for each disk sold.” Don’t be satisfied with a vague promise, such as
“A portion of the profits are donated,” since it doesn’t give a basis
for comparison.
</p>
<p>Even a precise fraction “of the profits from this disk” is not very
meaningful, since creative accounting and unrelated business decisions
can greatly alter what fraction of the sales price counts as profit.
If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.
</p>
<p>Some redistributors do development work themselves. This is useful too;
but to keep everyone honest, you need to inquire how much they do, and
what kind. Some kinds of development make much more long-term
difference than others. For example, maintaining a separate version of
a program contributes very little; maintaining the standard version of a
program for the whole community contributes much. Easy new ports
contribute little, since someone else would surely do them; difficult
ports such as adding a new CPU to the GNU Compiler Collection contribute more;
major new features or packages contribute the most.
</p>
<p>By establishing the idea that supporting further development is “the
proper thing to do” when distributing free software for a fee, we can
assure a steady flow of resources into making more free software.
</p>
<div class="display">
<pre class="display">Copyright © 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.
</pre></div>
<hr>
<a name="GNU-Project"></a>
<div class="header">
<p>
Next: <a href="#Copying" accesskey="n" rel="next">Copying</a>, Previous: <a href="#Funding" accesskey="p" rel="prev">Funding</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-GNU-Project-and-GNU_002fLinux"></a>
<h2 class="unnumbered">The GNU Project and GNU/Linux</h2>
<p>The GNU Project was launched in 1984 to develop a complete Unix-like
operating system which is free software: the GNU system. (GNU is a
recursive acronym for “GNU’s Not Unix”; it is pronounced
“guh-NEW”.) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often
referred to as “Linux”, they are more accurately called GNU/Linux
systems.
</p>
<p>For more information, see:
</p><div class="smallexample">
<pre class="smallexample"><a href="http://www.gnu.org/">http://www.gnu.org/</a>
<a href="http://www.gnu.org/gnu/linux-and-gnu.html">http://www.gnu.org/gnu/linux-and-gnu.html</a>
</pre></div>
<hr>
<a name="Copying"></a>
<div class="header">
<p>
Next: <a href="#GNU-Free-Documentation-License" accesskey="n" rel="next">GNU Free Documentation License</a>, Previous: <a href="#GNU-Project" accesskey="p" rel="prev">GNU Project</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="GNU-General-Public-License"></a>
<h2 class="unnumbered">GNU General Public License</h2>
<div align="center">Version 3, 29 June 2007
</div>
<div class="display">
<pre class="display">Copyright © 2007 Free Software Foundation, Inc. <a href="http://fsf.org/">http://fsf.org/</a>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
</pre></div>
<a name="Preamble"></a>
<h3 class="heading">Preamble</h3>
<p>The GNU General Public License is a free, copyleft license for
software and other kinds of works.
</p>
<p>The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors. You
can apply it to your programs, too.
</p>
<p>When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
</p>
<p>To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.
</p>
<p>For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.
</p>
<p>Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
</p>
<p>For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
</p>
<p>Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
</p>
<p>Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.
</p>
<p>The precise terms and conditions for copying, distribution and
modification follow.
</p>
<a name="TERMS-AND-CONDITIONS"></a>
<h3 class="heading">TERMS AND CONDITIONS</h3>
<ol start="0">
<li> Definitions.
<p>“This License” refers to version 3 of the GNU General Public License.
</p>
<p>“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
</p>
<p>“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.
</p>
<p>To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.
</p>
<p>A “covered work” means either the unmodified Program or a work based
on the Program.
</p>
<p>To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
</p>
<p>To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
</p>
<p>An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
</p>
</li><li> Source Code.
<p>The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form
of a work.
</p>
<p>A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
</p>
<p>The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
</p>
<p>The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
</p>
<p>The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
</p>
<p>The Corresponding Source for a work in source code form is that same
work.
</p>
</li><li> Basic Permissions.
<p>All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
</p>
<p>You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
</p>
<p>Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
</p>
</li><li> Protecting Users’ Legal Rights From Anti-Circumvention Law.
<p>No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
</p>
<p>When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work’s users, your or third parties’ legal rights to forbid
circumvention of technological measures.
</p>
</li><li> Conveying Verbatim Copies.
<p>You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
</p>
<p>You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
</p>
</li><li> Conveying Modified Source Versions.
<p>You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
</p>
<ol type="a" start="1">
<li> The work must carry prominent notices stating that you modified it,
and giving a relevant date.
</li><li> The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all
notices”.
</li><li> You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional terms,
to the whole of the work, and all its parts, regardless of how they
are packaged. This License gives no permission to license the work in
any other way, but it does not invalidate such permission if you have
separately received it.
</li><li> If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.
</li></ol>
<p>A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
</p>
</li><li> Conveying Non-Source Forms.
<p>You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
</p>
<ol type="a" start="1">
<li> Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium customarily
used for software interchange.
</li><li> Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a written
offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the
Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used
for software interchange, for a price no more than your reasonable
cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.
</li><li> Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is
allowed only occasionally and noncommercially, and only if you
received the object code with such an offer, in accord with subsection
6b.
</li><li> Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy
the object code is a network server, the Corresponding Source may be
on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to
satisfy these requirements.
</li><li> Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source of
the work are being offered to the general public at no charge under
subsection 6d.
</li></ol>
<p>A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
</p>
<p>A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
</p>
<p>“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
</p>
<p>If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
</p>
<p>The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
</p>
<p>Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
</p>
</li><li> Additional Terms.
<p>“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
</p>
<p>When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
</p>
<p>Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
</p>
<ol type="a" start="1">
<li> Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or
</li><li> Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or
</li><li> Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
</li><li> Limiting the use for publicity purposes of names of licensors or
authors of the material; or
</li><li> Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or
</li><li> Requiring indemnification of licensors and authors of that material by
anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those
licensors and authors.
</li></ol>
<p>All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
</p>
<p>If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
</p>
<p>Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.
</p>
</li><li> Termination.
<p>You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
</p>
<p>However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
</p>
<p>Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
</p>
<p>Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
</p>
</li><li> Acceptance Not Required for Having Copies.
<p>You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
</p>
</li><li> Automatic Licensing of Downstream Recipients.
<p>Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
</p>
<p>An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
</p>
<p>You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
</p>
</li><li> Patents.
<p>A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.
</p>
<p>A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
</p>
<p>Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
</p>
<p>In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
</p>
<p>If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
</p>
<p>If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
</p>
<p>A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
</p>
<p>Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
</p>
</li><li> No Surrender of Others’ Freedom.
<p>If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey
a covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.
</p>
</li><li> Use with the GNU Affero General Public License.
<p>Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
</p>
</li><li> Revised Versions of this License.
<p>The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
</p>
<p>Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If
the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free
Software Foundation.
</p>
<p>If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
</p>
<p>Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
</p>
</li><li> Disclaimer of Warranty.
<p>THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
</p>
</li><li> Limitation of Liability.
<p>IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
</p>
</li><li> Interpretation of Sections 15 and 16.
<p>If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
</p>
</li></ol>
<a name="END-OF-TERMS-AND-CONDITIONS"></a>
<h3 class="heading">END OF TERMS AND CONDITIONS</h3>
<a name="How-to-Apply-These-Terms-to-Your-New-Programs"></a>
<h3 class="heading">How to Apply These Terms to Your New Programs</h3>
<p>If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
</p>
<p>To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.
</p>
<div class="smallexample">
<pre class="smallexample"><var>one line to give the program's name and a brief idea of what it does.</var>
Copyright (C) <var>year</var> <var>name of author</var>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
</pre></div>
<p>Also add information on how to contact you by electronic and paper mail.
</p>
<p>If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
</p>
<div class="smallexample">
<pre class="smallexample"><var>program</var> Copyright (C) <var>year</var> <var>name of author</var>
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘<samp>show w</samp>’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘<samp>show c</samp>’ for details.
</pre></div>
<p>The hypothetical commands ‘<samp>show w</samp>’ and ‘<samp>show c</samp>’ should show
the appropriate parts of the General Public License. Of course, your
program’s commands might be different; for a GUI interface, you would
use an “about box”.
</p>
<p>You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
</p>
<p>The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License. But
first, please read <a href="http://www.gnu.org/philosophy/why-not-lgpl.html">http://www.gnu.org/philosophy/why-not-lgpl.html</a>.
</p>
<hr>
<a name="GNU-Free-Documentation-License"></a>
<div class="header">
<p>
Next: <a href="#Contributors" accesskey="n" rel="next">Contributors</a>, Previous: <a href="#Copying" accesskey="p" rel="prev">Copying</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="GNU-Free-Documentation-License-1"></a>
<h2 class="unnumbered">GNU Free Documentation License</h2>
<a name="index-FDL_002c-GNU-Free-Documentation-License"></a>
<div align="center">Version 1.3, 3 November 2008
</div>
<div class="display">
<pre class="display">Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<a href="http://fsf.org/">http://fsf.org/</a>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
</pre></div>
<ol start="0">
<li> PREAMBLE
<p>The purpose of this License is to make a manual, textbook, or other
functional and useful document <em>free</em> in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
</p>
<p>This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
</p>
<p>We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.
</p>
</li><li> APPLICABILITY AND DEFINITIONS
<p>This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
</p>
<p>A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
</p>
<p>A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
</p>
<p>The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
</p>
<p>The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
</p>
<p>A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.
</p>
<p>Examples of suitable formats for Transparent copies include plain
<small>ASCII</small> without markup, Texinfo input format, LaTeX input
format, <acronym>SGML</acronym> or <acronym>XML</acronym> using a publicly available
<acronym>DTD</acronym>, and standard-conforming simple <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> designed for human modification. Examples
of transparent image formats include <acronym>PNG</acronym>, <acronym>XCF</acronym> and
<acronym>JPG</acronym>. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, <acronym>SGML</acronym> or
<acronym>XML</acronym> for which the <acronym>DTD</acronym> and/or processing tools are
not generally available, and the machine-generated <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> produced by some word processors for
output purposes only.
</p>
<p>The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.
</p>
<p>The “publisher” means any person or entity that distributes copies
of the Document to the public.
</p>
<p>A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
</p>
<p>The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.
</p>
</li><li> VERBATIM COPYING
<p>You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
</p>
<p>You may also lend copies, under the same conditions stated above, and
you may publicly display copies.
</p>
</li><li> COPYING IN QUANTITY
<p>If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
</p>
<p>If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
</p>
<p>If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
</p>
<p>It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
</p>
</li><li> MODIFICATIONS
<p>You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
</p>
<ol type="A" start="1">
<li> Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.
</li><li> List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.
</li><li> State on the Title page the name of the publisher of the
Modified Version, as the publisher.
</li><li> Preserve all the copyright notices of the Document.
</li><li> Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
</li><li> Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.
</li><li> Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.
</li><li> Include an unaltered copy of this License.
</li><li> Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
</li><li> Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.
</li><li> For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.
</li><li> Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.
</li><li> Delete any section Entitled “Endorsements”. Such a section
may not be included in the Modified Version.
</li><li> Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.
</li><li> Preserve any Warranty Disclaimers.
</li></ol>
<p>If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
</p>
<p>You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
</p>
<p>You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
</p>
<p>The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.
</p>
</li><li> COMBINING DOCUMENTS
<p>You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
</p>
<p>The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
</p>
<p>In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must delete all
sections Entitled “Endorsements.”
</p>
</li><li> COLLECTIONS OF DOCUMENTS
<p>You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
</p>
<p>You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.
</p>
</li><li> AGGREGATION WITH INDEPENDENT WORKS
<p>A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
</p>
<p>If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.
</p>
</li><li> TRANSLATION
<p>Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
</p>
<p>If a section in the Document is Entitled “Acknowledgements”,
“Dedications”, or “History”, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.
</p>
</li><li> TERMINATION
<p>You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.
</p>
<p>However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
</p>
<p>Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
</p>
<p>Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.
</p>
</li><li> FUTURE REVISIONS OF THIS LICENSE
<p>The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
<a href="http://www.gnu.org/copyleft/">http://www.gnu.org/copyleft/</a>.
</p>
<p>Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.
</p>
</li><li> RELICENSING
<p>“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC
site.
</p>
<p>“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
</p>
<p>“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.
</p>
<p>An MMC is “eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
</p>
<p>The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.
</p>
</li></ol>
<a name="ADDENDUM_003a-How-to-use-this-License-for-your-documents"></a>
<h3 class="unnumberedsec">ADDENDUM: How to use this License for your documents</h3>
<p>To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:
</p>
<div class="smallexample">
<pre class="smallexample"> Copyright (C) <var>year</var> <var>your name</var>.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
</pre></div>
<p>If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:
</p>
<div class="smallexample">
<pre class="smallexample"> with the Invariant Sections being <var>list their titles</var>, with
the Front-Cover Texts being <var>list</var>, and with the Back-Cover Texts
being <var>list</var>.
</pre></div>
<p>If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
</p>
<p>If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.
</p>
<hr>
<a name="Contributors"></a>
<div class="header">
<p>
Next: <a href="#Option-Index" accesskey="n" rel="next">Option Index</a>, Previous: <a href="#GNU-Free-Documentation-License" accesskey="p" rel="prev">GNU Free Documentation License</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Contributors-to-GCC"></a>
<h2 class="unnumbered">Contributors to GCC</h2>
<a name="index-contributors"></a>
<p>The GCC project would like to thank its many contributors. Without them the
project would not have been nearly as successful as it has been. Any omissions
in this list are accidental. Feel free to contact
<a href="mailto:law@redhat.com">law@redhat.com</a> or <a href="mailto:gerald@pfeifer.com">gerald@pfeifer.com</a> if you have been left
out or some of your contributions are not listed. Please keep this list in
alphabetical order.
</p>
<ul>
<li> Analog Devices helped implement the support for complex data types
and iterators.
</li><li> John David Anglin for threading-related fixes and improvements to
libstdc++-v3, and the HP-UX port.
</li><li> James van Artsdalen wrote the code that makes efficient use of
the Intel 80387 register stack.
</li><li> Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series
port.
</li><li> Alasdair Baird for various bug fixes.
</li><li> Giovanni Bajo for analyzing lots of complicated C++ problem reports.
</li><li> Peter Barada for his work to improve code generation for new
ColdFire cores.
</li><li> Gerald Baumgartner added the signature extension to the C++ front end.
</li><li> Godmar Back for his Java improvements and encouragement.
</li><li> Scott Bambrough for help porting the Java compiler.
</li><li> Wolfgang Bangerth for processing tons of bug reports.
</li><li> Jon Beniston for his Microsoft Windows port of Java and port to Lattice Mico32.
</li><li> Daniel Berlin for better DWARF 2 support, faster/better optimizations,
improved alias analysis, plus migrating GCC to Bugzilla.
</li><li> Geoff Berry for his Java object serialization work and various patches.
</li><li> David Binderman tests weekly snapshots of GCC trunk against Fedora Rawhide
for several architectures.
</li><li> Laurynas Biveinis for memory management work and DJGPP port fixes.
</li><li> Uros Bizjak for the implementation of x87 math built-in functions and
for various middle end and i386 back end improvements and bug fixes.
</li><li> Eric Blake for helping to make GCJ and libgcj conform to the
specifications.
</li><li> Janne Blomqvist for contributions to GNU Fortran.
</li><li> Hans-J. Boehm for his garbage collector, IA-64 libffi port, and other
Java work.
</li><li> Segher Boessenkool for helping maintain the PowerPC port and the
instruction combiner plus various contributions to the middle end.
</li><li> Neil Booth for work on cpplib, lang hooks, debug hooks and other
miscellaneous clean-ups.
</li><li> Steven Bosscher for integrating the GNU Fortran front end into GCC and for
contributing to the tree-ssa branch.
</li><li> Eric Botcazou for fixing middle- and backend bugs left and right.
</li><li> Per Bothner for his direction via the steering committee and various
improvements to the infrastructure for supporting new languages. Chill
front end implementation. Initial implementations of
cpplib, fix-header, config.guess, libio, and past C++ library (libg++)
maintainer. Dreaming up, designing and implementing much of GCJ.
</li><li> Devon Bowen helped port GCC to the Tahoe.
</li><li> Don Bowman for mips-vxworks contributions.
</li><li> James Bowman for the FT32 port.
</li><li> Dave Brolley for work on cpplib and Chill.
</li><li> Paul Brook for work on the ARM architecture and maintaining GNU Fortran.
</li><li> Robert Brown implemented the support for Encore 32000 systems.
</li><li> Christian Bruel for improvements to local store elimination.
</li><li> Herman A.J. ten Brugge for various fixes.
</li><li> Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.
</li><li> Joe Buck for his direction via the steering committee from its creation
to 2013.
</li><li> Craig Burley for leadership of the G77 Fortran effort.
</li><li> Tobias Burnus for contributions to GNU Fortran.
</li><li> Stephan Buys for contributing Doxygen notes for libstdc++.
</li><li> Paolo Carlini for libstdc++ work: lots of efficiency improvements to
the C++ strings, streambufs and formatted I/O, hard detective work on
the frustrating localization issues, and keeping up with the problem reports.
</li><li> John Carr for his alias work, SPARC hacking, infrastructure improvements,
previous contributions to the steering committee, loop optimizations, etc.
</li><li> Stephane Carrez for 68HC11 and 68HC12 ports.
</li><li> Steve Chamberlain for support for the Renesas SH and H8 processors
and the PicoJava processor, and for GCJ config fixes.
</li><li> Glenn Chambers for help with the GCJ FAQ.
</li><li> John-Marc Chandonia for various libgcj patches.
</li><li> Denis Chertykov for contributing and maintaining the AVR port, the first GCC port
for an 8-bit architecture.
</li><li> Kito Cheng for his work on the RISC-V port, including bringing up the test
suite and maintenance.
</li><li> Scott Christley for his Objective-C contributions.
</li><li> Eric Christopher for his Java porting help and clean-ups.
</li><li> Branko Cibej for more warning contributions.
</li><li> The <a href="http://www.gnu.org/software/classpath/">GNU Classpath project</a>
for all of their merged runtime code.
</li><li> Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work,
<samp>--help</samp>, and other random hacking.
</li><li> Michael Cook for libstdc++ cleanup patches to reduce warnings.
</li><li> R. Kelley Cook for making GCC buildable from a read-only directory as
well as other miscellaneous build process and documentation clean-ups.
</li><li> Ralf Corsepius for SH testing and minor bug fixing.
</li><li> François-Xavier Coudert for contributions to GNU Fortran.
</li><li> Stan Cox for care and feeding of the x86 port and lots of behind
the scenes hacking.
</li><li> Alex Crain provided changes for the 3b1.
</li><li> Ian Dall for major improvements to the NS32k port.
</li><li> Paul Dale for his work to add uClinux platform support to the
m68k backend.
</li><li> Palmer Dabbelt for his work maintaining the RISC-V port.
</li><li> Dario Dariol contributed the four varieties of sample programs
that print a copy of their source.
</li><li> Russell Davidson for fstream and stringstream fixes in libstdc++.
</li><li> Bud Davis for work on the G77 and GNU Fortran compilers.
</li><li> Mo DeJong for GCJ and libgcj bug fixes.
</li><li> Jerry DeLisle for contributions to GNU Fortran.
</li><li> DJ Delorie for the DJGPP port, build and libiberty maintenance,
various bug fixes, and the M32C, MeP, MSP430, and RL78 ports.
</li><li> Arnaud Desitter for helping to debug GNU Fortran.
</li><li> Gabriel Dos Reis for contributions to G++, contributions and
maintenance of GCC diagnostics infrastructure, libstdc++-v3,
including <code>valarray<></code>, <code>complex<></code>, maintaining the numerics library
(including that pesky <code><limits></code> :-) and keeping up-to-date anything
to do with numbers.
</li><li> Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99
support, CFG dumping support, etc., plus support of the C++ runtime
libraries including for all kinds of C interface issues, contributing and
maintaining <code>complex<></code>, sanity checking and disbursement, configuration
architecture, libio maintenance, and early math work.
</li><li> François Dumont for his work on libstdc++-v3, especially maintaining and
improving <code>debug-mode</code> and associative and unordered containers.
</li><li> Zdenek Dvorak for a new loop unroller and various fixes.
</li><li> Michael Eager for his work on the Xilinx MicroBlaze port.
</li><li> Richard Earnshaw for his ongoing work with the ARM.
</li><li> David Edelsohn for his direction via the steering committee, ongoing work
with the RS6000/PowerPC port, help cleaning up Haifa loop changes,
doing the entire AIX port of libstdc++ with his bare hands, and for
ensuring GCC properly keeps working on AIX.
</li><li> Kevin Ediger for the floating point formatting of num_put::do_put in
libstdc++.
</li><li> Phil Edwards for libstdc++ work including configuration hackery,
documentation maintainer, chief breaker of the web pages, the occasional
iostream bug fix, and work on shared library symbol versioning.
</li><li> Paul Eggert for random hacking all over GCC.
</li><li> Mark Elbrecht for various DJGPP improvements, and for libstdc++
configuration support for locales and fstream-related fixes.
</li><li> Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.
</li><li> Christian Ehrhardt for dealing with bug reports.
</li><li> Ben Elliston for his work to move the Objective-C runtime into its
own subdirectory and for his work on autoconf.
</li><li> Revital Eres for work on the PowerPC 750CL port.
</li><li> Marc Espie for OpenBSD support.
</li><li> Doug Evans for much of the global optimization framework, arc, m32r,
and SPARC work.
</li><li> Christopher Faylor for his work on the Cygwin port and for caring and
feeding the gcc.gnu.org box and saving its users tons of spam.
</li><li> Fred Fish for BeOS support and Ada fixes.
</li><li> Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
</li><li> Peter Gerwinski for various bug fixes and the Pascal front end.
</li><li> Kaveh R. Ghazi for his direction via the steering committee, amazing
work to make ‘<samp>-W -Wall -W* -Werror</samp>’ useful, and
testing GCC on a plethora of platforms. Kaveh extends his gratitude to
the CAIP Center at Rutgers University for providing him with computing
resources to work on Free Software from the late 1980s to 2010.
</li><li> John Gilmore for a donation to the FSF earmarked improving GNU Java.
</li><li> Judy Goldberg for c++ contributions.
</li><li> Torbjorn Granlund for various fixes and the c-torture testsuite,
multiply- and divide-by-constant optimization, improved long long
support, improved leaf function register allocation, and his direction
via the steering committee.
</li><li> Jonny Grant for improvements to <code>collect2's</code> <samp>--help</samp> documentation.
</li><li> Anthony Green for his <samp>-Os</samp> contributions, the moxie port, and
Java front end work.
</li><li> Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.
</li><li> Michael K. Gschwind contributed the port to the PDP-11.
</li><li> Richard Biener for his ongoing middle-end contributions and bug fixes
and for release management.
</li><li> Ron Guilmette implemented the <code>protoize</code> and <code>unprotoize</code>
tools, the support for DWARF 1 symbolic debugging information, and much of
the support for System V Release 4. He has also worked heavily on the
Intel 386 and 860 support.
</li><li> Sumanth Gundapaneni for contributing the CR16 port.
</li><li> Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.
</li><li> Bruno Haible for improvements in the runtime overhead for EH, new
warnings and assorted bug fixes.
</li><li> Andrew Haley for his amazing Java compiler and library efforts.
</li><li> Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.
</li><li> Michael Hayes for various thankless work he’s done trying to get
the c30/c40 ports functional. Lots of loop and unroll improvements and
fixes.
</li><li> Dara Hazeghi for wading through myriads of target-specific bug reports.
</li><li> Kate Hedstrom for staking the G77 folks with an initial testsuite.
</li><li> Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop
opts, and generally fixing lots of old problems we’ve ignored for
years, flow rewrite and lots of further stuff, including reviewing
tons of patches.
</li><li> Aldy Hernandez for working on the PowerPC port, SIMD support, and
various fixes.
</li><li> Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed
the support for the Sony NEWS machine.
</li><li> Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.
</li><li> Katherine Holcomb for work on GNU Fortran.
</li><li> Manfred Hollstein for his ongoing work to keep the m88k alive, lots
of testing and bug fixing, particularly of GCC configury code.
</li><li> Steve Holmgren for MachTen patches.
</li><li> Mat Hostetter for work on the TILE-Gx and TILEPro ports.
</li><li> Jan Hubicka for his x86 port improvements.
</li><li> Falk Hueffner for working on C and optimization bug reports.
</li><li> Bernardo Innocenti for his m68k work, including merging of
ColdFire improvements and uClinux support.
</li><li> Christian Iseli for various bug fixes.
</li><li> Kamil Iskra for general m68k hacking.
</li><li> Lee Iverson for random fixes and MIPS testing.
</li><li> Balaji V. Iyer for Cilk+ development and merging.
</li><li> Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.
</li><li> Martin Jambor for his work on inter-procedural optimizations, the
switch conversion pass, and scalar replacement of aggregates.
</li><li> Jakub Jelinek for his SPARC work and sibling call optimizations as well
as lots of bug fixes and test cases, and for improving the Java build
system.
</li><li> Janis Johnson for ia64 testing and fixes, her quality improvement
sidetracks, and web page maintenance.
</li><li> Kean Johnston for SCO OpenServer support and various fixes.
</li><li> Tim Josling for the sample language treelang based originally on Richard
Kenner’s “toy” language.
</li><li> Nicolai Josuttis for additional libstdc++ documentation.
</li><li> Klaus Kaempf for his ongoing work to make alpha-vms a viable target.
</li><li> Steven G. Kargl for work on GNU Fortran.
</li><li> David Kashtan of SRI adapted GCC to VMS.
</li><li> Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of
strings, especially member functions, and for auto_ptr fixes.
</li><li> Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux
and his automatic regression tester.
</li><li> Brendan Kehoe for his ongoing work with G++ and for a lot of early work
in just about every part of libstdc++.
</li><li> Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
MIL-STD-1750A.
</li><li> Richard Kenner of the New York University Ultracomputer Research
Laboratory wrote the machine descriptions for the AMD 29000, the DEC
Alpha, the IBM RT PC, and the IBM RS/6000 as well as the support for
instruction attributes. He also made changes to better support RISC
processors including changes to common subexpression elimination,
strength reduction, function calling sequence handling, and condition
code support, in addition to generalizing the code for frame pointer
elimination and delay slot scheduling. Richard Kenner was also the
head maintainer of GCC for several years.
</li><li> Mumit Khan for various contributions to the Cygwin and Mingw32 ports and
maintaining binary releases for Microsoft Windows hosts, and for massive libstdc++
porting work to Cygwin/Mingw32.
</li><li> Robin Kirkham for cpu32 support.
</li><li> Mark Klein for PA improvements.
</li><li> Thomas Koenig for various bug fixes.
</li><li> Bruce Korb for the new and improved fixincludes code.
</li><li> Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 effort.
</li><li> Maxim Kuvyrkov for contributions to the instruction scheduler, the Android
and m68k/Coldfire ports, and optimizations.
</li><li> Charles LaBrec contributed the support for the Integrated Solutions
68020 system.
</li><li> Asher Langton and Mike Kumbera for contributing Cray pointer support
to GNU Fortran, and for other GNU Fortran improvements.
</li><li> Jeff Law for his direction via the steering committee, coordinating the
entire egcs project and GCC 2.95, rolling out snapshots and releases,
handling merges from GCC2, reviewing tons of patches that might have
fallen through the cracks else, and random but extensive hacking.
</li><li> Walter Lee for work on the TILE-Gx and TILEPro ports.
</li><li> Marc Lehmann for his direction via the steering committee and helping
with analysis and improvements of x86 performance.
</li><li> Victor Leikehman for work on GNU Fortran.
</li><li> Ted Lemon wrote parts of the RTL reader and printer.
</li><li> Kriang Lerdsuwanakij for C++ improvements including template as template
parameter support, and many C++ fixes.
</li><li> Warren Levy for tremendous work on libgcj (Java Runtime Library) and
random work on the Java front end.
</li><li> Alain Lichnewsky ported GCC to the MIPS CPU.
</li><li> Oskar Liljeblad for hacking on AWT and his many Java bug reports and
patches.
</li><li> Robert Lipe for OpenServer support, new testsuites, testing, etc.
</li><li> Chen Liqin for various S+core related fixes/improvement, and for
maintaining the S+core port.
</li><li> Martin Liska for his work on identical code folding, the sanitizers,
HSA, general bug fixing and for running automated regression testing of GCC
and reporting numerous bugs.
</li><li> Weiwen Liu for testing and various bug fixes.
</li><li> Manuel López-Ibáñez for improving <samp>-Wconversion</samp> and
many other diagnostics fixes and improvements.
</li><li> Dave Love for his ongoing work with the Fortran front end and
runtime libraries.
</li><li> Martin von Löwis for internal consistency checking infrastructure,
various C++ improvements including namespace support, and tons of
assistance with libstdc++/compiler merges.
</li><li> H.J. Lu for his previous contributions to the steering committee, many x86
bug reports, prototype patches, and keeping the GNU/Linux ports working.
</li><li> Greg McGary for random fixes and (someday) bounded pointers.
</li><li> Andrew MacLeod for his ongoing work in building a real EH system,
various code generation improvements, work on the global optimizer, etc.
</li><li> Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking
improvements to compile-time performance, overall knowledge and
direction in the area of instruction scheduling, design and
implementation of the automaton based instruction scheduler and
design and implementation of the integrated and local register allocators.
</li><li> David Malcolm for his work on improving GCC diagnostics, JIT, self-tests
and unit testing.
</li><li> Bob Manson for his behind the scenes work on dejagnu.
</li><li> John Marino for contributing the DragonFly BSD port.
</li><li> Philip Martin for lots of libstdc++ string and vector iterator fixes and
improvements, and string clean up and testsuites.
</li><li> Michael Matz for his work on dominance tree discovery, the x86-64 port,
link-time optimization framework and general optimization improvements.
</li><li> All of the Mauve project contributors for Java test code.
</li><li> Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
</li><li> Adam Megacz for his work on the Microsoft Windows port of GCJ.
</li><li> Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS,
powerpc, haifa, ECOFF debug support, and other assorted hacking.
</li><li> Jason Merrill for his direction via the steering committee and leading
the G++ effort.
</li><li> Martin Michlmayr for testing GCC on several architectures using the
entire Debian archive.
</li><li> David Miller for his direction via the steering committee, lots of
SPARC work, improvements in jump.c and interfacing with the Linux kernel
developers.
</li><li> Gary Miller ported GCC to Charles River Data Systems machines.
</li><li> Alfred Minarik for libstdc++ string and ios bug fixes, and turning the
entire libstdc++ testsuite namespace-compatible.
</li><li> Mark Mitchell for his direction via the steering committee, mountains of
C++ work, load/store hoisting out of loops, alias analysis improvements,
ISO C <code>restrict</code> support, and serving as release manager from 2000
to 2011.
</li><li> Alan Modra for various GNU/Linux bits and testing.
</li><li> Toon Moene for his direction via the steering committee, Fortran
maintenance, and his ongoing work to make us make Fortran run fast.
</li><li> Jason Molenda for major help in the care and feeding of all the services
on the gcc.gnu.org (formerly egcs.cygnus.com) machine—mail, web
services, ftp services, etc etc. Doing all this work on scrap paper and
the backs of envelopes would have been… difficult.
</li><li> Catherine Moore for fixing various ugly problems we have sent her
way, including the haifa bug which was killing the Alpha & PowerPC
Linux kernels.
</li><li> Mike Moreton for his various Java patches.
</li><li> David Mosberger-Tang for various Alpha improvements, and for the initial
IA-64 port.
</li><li> Stephen Moshier contributed the floating point emulator that assists in
cross-compilation and permits support for floating point numbers wider
than 64 bits and for ISO C99 support.
</li><li> Bill Moyer for his behind the scenes work on various issues.
</li><li> Philippe De Muyter for his work on the m68k port.
</li><li> Joseph S. Myers for his work on the PDP-11 port, format checking and ISO
C99 support, and continuous emphasis on (and contributions to) documentation.
</li><li> Nathan Myers for his work on libstdc++-v3: architecture and authorship
through the first three snapshots, including implementation of locale
infrastructure, string, shadow C headers, and the initial project
documentation (DESIGN, CHECKLIST, and so forth). Later, more work on
MT-safe string and shadow headers.
</li><li> Felix Natter for documentation on porting libstdc++.
</li><li> Nathanael Nerode for cleaning up the configuration/build process.
</li><li> NeXT, Inc. donated the front end that supports the Objective-C
language.
</li><li> Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search
engine setup, various documentation fixes and other small fixes.
</li><li> Geoff Noer for his work on getting cygwin native builds working.
</li><li> Vegard Nossum for running automated regression testing of GCC and reporting
numerous bugs.
</li><li> Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance
tracking web pages, GIMPLE tuples, and assorted fixes.
</li><li> David O’Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,
FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.
</li><li> Alexandre Oliva for various build infrastructure improvements, scripts and
amazing testing work, including keeping libtool issues sane and happy.
</li><li> Stefan Olsson for work on mt_alloc.
</li><li> Melissa O’Neill for various NeXT fixes.
</li><li> Rainer Orth for random MIPS work, including improvements to GCC’s o32
ABI support, improvements to dejagnu’s MIPS support, Java configuration
clean-ups and porting work, and maintaining the IRIX, Solaris 2, and
Tru64 UNIX ports.
</li><li> Steven Pemberton for his contribution of <samp>enquire</samp> which allowed GCC to
determine various properties of the floating point unit and generate
<samp>float.h</samp> in older versions of GCC.
</li><li> Hartmut Penner for work on the s390 port.
</li><li> Paul Petersen wrote the machine description for the Alliant FX/8.
</li><li> Alexandre Petit-Bianco for implementing much of the Java compiler and
continued Java maintainership.
</li><li> Matthias Pfaller for major improvements to the NS32k port.
</li><li> Gerald Pfeifer for his direction via the steering committee, pointing
out lots of problems we need to solve, maintenance of the web pages, and
taking care of documentation maintenance in general.
</li><li> Marek Polacek for his work on the C front end, the sanitizers and general
bug fixing.
</li><li> Andrew Pinski for processing bug reports by the dozen.
</li><li> Ovidiu Predescu for his work on the Objective-C front end and runtime
libraries.
</li><li> Jerry Quinn for major performance improvements in C++ formatted I/O.
</li><li> Ken Raeburn for various improvements to checker, MIPS ports and various
cleanups in the compiler.
</li><li> Rolf W. Rasmussen for hacking on AWT.
</li><li> David Reese of Sun Microsystems contributed to the Solaris on PowerPC
port.
</li><li> John Regehr for running automated regression testing of GCC and reporting
numerous bugs.
</li><li> Volker Reichelt for running automated regression testing of GCC and reporting
numerous bugs and for keeping up with the problem reports.
</li><li> Joern Rennecke for maintaining the sh port, loop, regmove & reload
hacking and developing and maintaining the Epiphany port.
</li><li> Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD
port, threading fixes, thread-related configury changes, critical
threading documentation, and solutions to really tricky I/O problems,
as well as keeping GCC properly working on FreeBSD and continuous testing.
</li><li> Craig Rodrigues for processing tons of bug reports.
</li><li> Ola Rönnerup for work on mt_alloc.
</li><li> Gavin Romig-Koch for lots of behind the scenes MIPS work.
</li><li> David Ronis inspired and encouraged Craig to rewrite the G77
documentation in texinfo format by contributing a first pass at a
translation of the old <samp>g77-0.5.16/f/DOC</samp> file.
</li><li> Ken Rose for fixes to GCC’s delay slot filling code.
</li><li> Ira Rosen for her contributions to the auto-vectorizer.
</li><li> Paul Rubin wrote most of the preprocessor.
</li><li> Pétur Runólfsson for major performance improvements in C++ formatted I/O and
large file support in C++ filebuf.
</li><li> Chip Salzenberg for libstdc++ patches and improvements to locales, traits,
Makefiles, libio, libtool hackery, and “long long” support.
</li><li> Juha Sarlin for improvements to the H8 code generator.
</li><li> Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.
</li><li> Roger Sayle for improvements to constant folding and GCC’s RTL optimizers
as well as for fixing numerous bugs.
</li><li> Bradley Schatz for his work on the GCJ FAQ.
</li><li> Peter Schauer wrote the code to allow debugging to work on the Alpha.
</li><li> William Schelter did most of the work on the Intel 80386 support.
</li><li> Tobias Schlüter for work on GNU Fortran.
</li><li> Bernd Schmidt for various code generation improvements and major
work in the reload pass, serving as release manager for
GCC 2.95.3, and work on the Blackfin and C6X ports.
</li><li> Peter Schmid for constant testing of libstdc++—especially application
testing, going above and beyond what was requested for the release
criteria—and libstdc++ header file tweaks.
</li><li> Jason Schroeder for jcf-dump patches.
</li><li> Andreas Schwab for his work on the m68k port.
</li><li> Lars Segerlund for work on GNU Fortran.
</li><li> Dodji Seketeli for numerous C++ bug fixes and debug info improvements.
</li><li> Tim Shen for major work on <code><regex></code>.
</li><li> Joel Sherrill for his direction via the steering committee, RTEMS
contributions and RTEMS testing.
</li><li> Nathan Sidwell for many C++ fixes/improvements.
</li><li> Jeffrey Siegal for helping RMS with the original design of GCC, some
code which handles the parse tree and RTL data structures, constant
folding and help with the original VAX & m68k ports.
</li><li> Kenny Simpson for prompting libstdc++ fixes due to defect reports from
the LWG (thereby keeping GCC in line with updates from the ISO).
</li><li> Franz Sirl for his ongoing work with making the PPC port stable
for GNU/Linux.
</li><li> Andrey Slepuhin for assorted AIX hacking.
</li><li> Trevor Smigiel for contributing the SPU port.
</li><li> Christopher Smith did the port for Convex machines.
</li><li> Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
Retired from GCC maintainership August 2010, having mentored two
new maintainers into the role.
</li><li> Randy Smith finished the Sun FPA support.
</li><li> Ed Smith-Rowland for his continuous work on libstdc++-v3, special functions,
<code><random></code>, and various improvements to C++11 features.
</li><li> Scott Snyder for queue, iterator, istream, and string fixes and libstdc++
testsuite entries. Also for providing the patch to G77 to add
rudimentary support for <code>INTEGER*1</code>, <code>INTEGER*2</code>, and
<code>LOGICAL*1</code>.
</li><li> Zdenek Sojka for running automated regression testing of GCC and reporting
numerous bugs.
</li><li> Arseny Solokha for running automated regression testing of GCC and reporting
numerous bugs.
</li><li> Jayant Sonar for contributing the CR16 port.
</li><li> Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.
</li><li> Richard Stallman, for writing the original GCC and launching the GNU project.
</li><li> Jan Stein of the Chalmers Computer Society provided support for
Genix, as well as part of the 32000 machine description.
</li><li> Gerhard Steinmetz for running automated regression testing of GCC and reporting
numerous bugs.
</li><li> Nigel Stephens for various mips16 related fixes/improvements.
</li><li> Jonathan Stone wrote the machine description for the Pyramid computer.
</li><li> Graham Stott for various infrastructure improvements.
</li><li> John Stracke for his Java HTTP protocol fixes.
</li><li> Mike Stump for his Elxsi port, G++ contributions over the years and more
recently his vxworks contributions
</li><li> Jeff Sturm for Java porting help, bug fixes, and encouragement.
</li><li> Zhendong Su for running automated regression testing of GCC and reporting
numerous bugs.
</li><li> Chengnian Sun for running automated regression testing of GCC and reporting
numerous bugs.
</li><li> Shigeya Suzuki for this fixes for the bsdi platforms.
</li><li> Ian Lance Taylor for the Go frontend, the initial mips16 and mips64
support, general configury hacking, fixincludes, etc.
</li><li> Holger Teutsch provided the support for the Clipper CPU.
</li><li> Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.
</li><li> Paul Thomas for contributions to GNU Fortran.
</li><li> Philipp Thomas for random bug fixes throughout the compiler
</li><li> Jason Thorpe for thread support in libstdc++ on NetBSD.
</li><li> Kresten Krab Thorup wrote the run time support for the Objective-C
language and the fantastic Java bytecode interpreter.
</li><li> Michael Tiemann for random bug fixes, the first instruction scheduler,
initial C++ support, function integration, NS32k, SPARC and M88k
machine description work, delay slot scheduling.
</li><li> Andreas Tobler for his work porting libgcj to Darwin.
</li><li> Teemu Torma for thread safe exception handling support.
</li><li> Leonard Tower wrote parts of the parser, RTL generator, and RTL
definitions, and of the VAX machine description.
</li><li> Daniel Towner and Hariharan Sandanagobalane contributed and
maintain the picoChip port.
</li><li> Tom Tromey for internationalization support and for his many Java
contributions and libgcj maintainership.
</li><li> Lassi Tuura for improvements to config.guess to determine HP processor
types.
</li><li> Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
</li><li> Andy Vaught for the design and initial implementation of the GNU Fortran
front end.
</li><li> Brent Verner for work with the libstdc++ cshadow files and their
associated configure steps.
</li><li> Todd Vierling for contributions for NetBSD ports.
</li><li> Andrew Waterman for contributing the RISC-V port, as well as maintaining it.
</li><li> Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML
guidance and maintaining libstdc++.
</li><li> Dean Wakerley for converting the install documentation from HTML to texinfo
in time for GCC 3.0.
</li><li> Krister Walfridsson for random bug fixes.
</li><li> Feng Wang for contributions to GNU Fortran.
</li><li> Stephen M. Webb for time and effort on making libstdc++ shadow files
work with the tricky Solaris 8+ headers, and for pushing the build-time
header tree. Also, for starting and driving the <code><regex></code> effort.
</li><li> John Wehle for various improvements for the x86 code generator,
related infrastructure improvements to help x86 code generation,
value range propagation and other work, WE32k port.
</li><li> Ulrich Weigand for work on the s390 port.
</li><li> Janus Weil for contributions to GNU Fortran.
</li><li> Zack Weinberg for major work on cpplib and various other bug fixes.
</li><li> Matt Welsh for help with Linux Threads support in GCJ.
</li><li> Urban Widmark for help fixing java.io.
</li><li> Mark Wielaard for new Java library code and his work integrating with
Classpath.
</li><li> Dale Wiles helped port GCC to the Tahoe.
</li><li> Bob Wilson from Tensilica, Inc. for the Xtensa port.
</li><li> Jim Wilson for his direction via the steering committee, tackling hard
problems in various places that nobody else wanted to work on, strength
reduction and other loop optimizations.
</li><li> Paul Woegerer and Tal Agmon for the CRX port.
</li><li> Carlo Wood for various fixes.
</li><li> Tom Wood for work on the m88k port.
</li><li> Chung-Ju Wu for his work on the Andes NDS32 port.
</li><li> Canqun Yang for work on GNU Fortran.
</li><li> Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).
</li><li> Kevin Zachmann helped port GCC to the Tahoe.
</li><li> Ayal Zaks for Swing Modulo Scheduling (SMS).
</li><li> Qirun Zhang for running automated regression testing of GCC and reporting
numerous bugs.
</li><li> Xiaoqiang Zhang for work on GNU Fortran.
</li><li> Gilles Zunino for help porting Java to Irix.
</li></ul>
<p>The following people are recognized for their contributions to GNAT,
the Ada front end of GCC:
</p><ul>
<li> Bernard Banner
</li><li> Romain Berrendonner
</li><li> Geert Bosch
</li><li> Emmanuel Briot
</li><li> Joel Brobecker
</li><li> Ben Brosgol
</li><li> Vincent Celier
</li><li> Arnaud Charlet
</li><li> Chien Chieng
</li><li> Cyrille Comar
</li><li> Cyrille Crozes
</li><li> Robert Dewar
</li><li> Gary Dismukes
</li><li> Robert Duff
</li><li> Ed Falis
</li><li> Ramon Fernandez
</li><li> Sam Figueroa
</li><li> Vasiliy Fofanov
</li><li> Michael Friess
</li><li> Franco Gasperoni
</li><li> Ted Giering
</li><li> Matthew Gingell
</li><li> Laurent Guerby
</li><li> Jerome Guitton
</li><li> Olivier Hainque
</li><li> Jerome Hugues
</li><li> Hristian Kirtchev
</li><li> Jerome Lambourg
</li><li> Bruno Leclerc
</li><li> Albert Lee
</li><li> Sean McNeil
</li><li> Javier Miranda
</li><li> Laurent Nana
</li><li> Pascal Obry
</li><li> Dong-Ik Oh
</li><li> Laurent Pautet
</li><li> Brett Porter
</li><li> Thomas Quinot
</li><li> Nicolas Roche
</li><li> Pat Rogers
</li><li> Jose Ruiz
</li><li> Douglas Rupp
</li><li> Sergey Rybin
</li><li> Gail Schenker
</li><li> Ed Schonberg
</li><li> Nicolas Setton
</li><li> Samuel Tardieu
</li></ul>
<p>The following people are recognized for their contributions of new
features, bug reports, testing and integration of classpath/libgcj for
GCC version 4.1:
</p><ul>
<li> Lillian Angel for <code>JTree</code> implementation and lots Free Swing
additions and bug fixes.
</li><li> Wolfgang Baer for <code>GapContent</code> bug fixes.
</li><li> Anthony Balkissoon for <code>JList</code>, Free Swing 1.5 updates and mouse event
fixes, lots of Free Swing work including <code>JTable</code> editing.
</li><li> Stuart Ballard for RMI constant fixes.
</li><li> Goffredo Baroncelli for <code>HTTPURLConnection</code> fixes.
</li><li> Gary Benson for <code>MessageFormat</code> fixes.
</li><li> Daniel Bonniot for <code>Serialization</code> fixes.
</li><li> Chris Burdess for lots of gnu.xml and http protocol fixes, <code>StAX</code>
and <code>DOM xml:id</code> support.
</li><li> Ka-Hing Cheung for <code>TreePath</code> and <code>TreeSelection</code> fixes.
</li><li> Archie Cobbs for build fixes, VM interface updates,
<code>URLClassLoader</code> updates.
</li><li> Kelley Cook for build fixes.
</li><li> Martin Cordova for Suggestions for better <code>SocketTimeoutException</code>.
</li><li> David Daney for <code>BitSet</code> bug fixes, <code>HttpURLConnection</code>
rewrite and improvements.
</li><li> Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo 2D
support. Lots of imageio framework additions, lots of AWT and Free
Swing bug fixes.
</li><li> Jeroen Frijters for <code>ClassLoader</code> and nio cleanups, serialization fixes,
better <code>Proxy</code> support, bug fixes and IKVM integration.
</li><li> Santiago Gala for <code>AccessControlContext</code> fixes.
</li><li> Nicolas Geoffray for <code>VMClassLoader</code> and <code>AccessController</code>
improvements.
</li><li> David Gilbert for <code>basic</code> and <code>metal</code> icon and plaf support
and lots of documenting, Lots of Free Swing and metal theme
additions. <code>MetalIconFactory</code> implementation.
</li><li> Anthony Green for <code>MIDI</code> framework, <code>ALSA</code> and <code>DSSI</code>
providers.
</li><li> Andrew Haley for <code>Serialization</code> and <code>URLClassLoader</code> fixes,
gcj build speedups.
</li><li> Kim Ho for <code>JFileChooser</code> implementation.
</li><li> Andrew John Hughes for <code>Locale</code> and net fixes, URI RFC2986
updates, <code>Serialization</code> fixes, <code>Properties</code> XML support and
generic branch work, VMIntegration guide update.
</li><li> Bastiaan Huisman for <code>TimeZone</code> bug fixing.
</li><li> Andreas Jaeger for mprec updates.
</li><li> Paul Jenner for better <samp>-Werror</samp> support.
</li><li> Ito Kazumitsu for <code>NetworkInterface</code> implementation and updates.
</li><li> Roman Kennke for <code>BoxLayout</code>, <code>GrayFilter</code> and
<code>SplitPane</code>, plus bug fixes all over. Lots of Free Swing work
including styled text.
</li><li> Simon Kitching for <code>String</code> cleanups and optimization suggestions.
</li><li> Michael Koch for configuration fixes, <code>Locale</code> updates, bug and
build fixes.
</li><li> Guilhem Lavaux for configuration, thread and channel fixes and Kaffe
integration. JCL native <code>Pointer</code> updates. Logger bug fixes.
</li><li> David Lichteblau for JCL support library global/local reference
cleanups.
</li><li> Aaron Luchko for JDWP updates and documentation fixes.
</li><li> Ziga Mahkovec for <code>Graphics2D</code> upgraded to Cairo 0.5 and new regex
features.
</li><li> Sven de Marothy for BMP imageio support, CSS and <code>TextLayout</code>
fixes. <code>GtkImage</code> rewrite, 2D, awt, free swing and date/time fixes and
implementing the Qt4 peers.
</li><li> Casey Marshall for crypto algorithm fixes, <code>FileChannel</code> lock,
<code>SystemLogger</code> and <code>FileHandler</code> rotate implementations, NIO
<code>FileChannel.map</code> support, security and policy updates.
</li><li> Bryce McKinlay for RMI work.
</li><li> Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus
testing and documenting.
</li><li> Kalle Olavi Niemitalo for build fixes.
</li><li> Rainer Orth for build fixes.
</li><li> Andrew Overholt for <code>File</code> locking fixes.
</li><li> Ingo Proetel for <code>Image</code>, <code>Logger</code> and <code>URLClassLoader</code>
updates.
</li><li> Olga Rodimina for <code>MenuSelectionManager</code> implementation.
</li><li> Jan Roehrich for <code>BasicTreeUI</code> and <code>JTree</code> fixes.
</li><li> Julian Scheid for documentation updates and gjdoc support.
</li><li> Christian Schlichtherle for zip fixes and cleanups.
</li><li> Robert Schuster for documentation updates and beans fixes,
<code>TreeNode</code> enumerations and <code>ActionCommand</code> and various
fixes, XML and URL, AWT and Free Swing bug fixes.
</li><li> Keith Seitz for lots of JDWP work.
</li><li> Christian Thalinger for 64-bit cleanups, Configuration and VM
interface fixes and <code>CACAO</code> integration, <code>fdlibm</code> updates.
</li><li> Gael Thomas for <code>VMClassLoader</code> boot packages support suggestions.
</li><li> Andreas Tobler for Darwin and Solaris testing and fixing, <code>Qt4</code>
support for Darwin/OS X, <code>Graphics2D</code> support, <code>gtk+</code>
updates.
</li><li> Dalibor Topic for better <code>DEBUG</code> support, build cleanups and
Kaffe integration. <code>Qt4</code> build infrastructure, <code>SHA1PRNG</code>
and <code>GdkPixbugDecoder</code> updates.
</li><li> Tom Tromey for Eclipse integration, generics work, lots of bug fixes
and gcj integration including coordinating The Big Merge.
</li><li> Mark Wielaard for bug fixes, packaging and release management,
<code>Clipboard</code> implementation, system call interrupts and network
timeouts and <code>GdkPixpufDecoder</code> fixes.
</li></ul>
<p>In addition to the above, all of which also contributed time and energy in
testing GCC, we would like to thank the following for their contributions
to testing:
</p>
<ul>
<li> Michael Abd-El-Malek
</li><li> Thomas Arend
</li><li> Bonzo Armstrong
</li><li> Steven Ashe
</li><li> Chris Baldwin
</li><li> David Billinghurst
</li><li> Jim Blandy
</li><li> Stephane Bortzmeyer
</li><li> Horst von Brand
</li><li> Frank Braun
</li><li> Rodney Brown
</li><li> Sidney Cadot
</li><li> Bradford Castalia
</li><li> Robert Clark
</li><li> Jonathan Corbet
</li><li> Ralph Doncaster
</li><li> Richard Emberson
</li><li> Levente Farkas
</li><li> Graham Fawcett
</li><li> Mark Fernyhough
</li><li> Robert A. French
</li><li> Jörgen Freyh
</li><li> Mark K. Gardner
</li><li> Charles-Antoine Gauthier
</li><li> Yung Shing Gene
</li><li> David Gilbert
</li><li> Simon Gornall
</li><li> Fred Gray
</li><li> John Griffin
</li><li> Patrik Hagglund
</li><li> Phil Hargett
</li><li> Amancio Hasty
</li><li> Takafumi Hayashi
</li><li> Bryan W. Headley
</li><li> Kevin B. Hendricks
</li><li> Joep Jansen
</li><li> Christian Joensson
</li><li> Michel Kern
</li><li> David Kidd
</li><li> Tobias Kuipers
</li><li> Anand Krishnaswamy
</li><li> A. O. V. Le Blanc
</li><li> llewelly
</li><li> Damon Love
</li><li> Brad Lucier
</li><li> Matthias Klose
</li><li> Martin Knoblauch
</li><li> Rick Lutowski
</li><li> Jesse Macnish
</li><li> Stefan Morrell
</li><li> Anon A. Mous
</li><li> Matthias Mueller
</li><li> Pekka Nikander
</li><li> Rick Niles
</li><li> Jon Olson
</li><li> Magnus Persson
</li><li> Chris Pollard
</li><li> Richard Polton
</li><li> Derk Reefman
</li><li> David Rees
</li><li> Paul Reilly
</li><li> Tom Reilly
</li><li> Torsten Rueger
</li><li> Danny Sadinoff
</li><li> Marc Schifer
</li><li> Erik Schnetter
</li><li> Wayne K. Schroll
</li><li> David Schuler
</li><li> Vin Shelton
</li><li> Tim Souder
</li><li> Adam Sulmicki
</li><li> Bill Thorson
</li><li> George Talbot
</li><li> Pedro A. M. Vazquez
</li><li> Gregory Warnes
</li><li> Ian Watson
</li><li> David E. Young
</li><li> And many others
</li></ul>
<p>And finally we’d like to thank everyone who uses the compiler, provides
feedback and generally reminds us why we’re doing this work in the first
place.
</p>
<hr>
<a name="Option-Index"></a>
<div class="header">
<p>
Next: <a href="#Keyword-Index" accesskey="n" rel="next">Keyword Index</a>, Previous: <a href="#Contributors" accesskey="p" rel="prev">Contributors</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Option-Index-1"></a>
<h2 class="unnumbered">Option Index</h2>
<p>GCC’s command line options are indexed here without any initial ‘<samp>-</samp>’
or ‘<samp>--</samp>’. Where an option has both positive and negative forms
(such as <samp>-f<var>option</var></samp> and <samp>-fno-<var>option</var></samp>),
relevant entries in the manual are indexed under the most appropriate
form; it may sometimes be useful to look up both forms.
</p>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Option-Index_op_symbol-1"><b>#</b></a>
<a class="summary-letter" href="#Option-Index_op_symbol-2"><b>-</b></a>
<a class="summary-letter" href="#Option-Index_op_symbol-3"><b>8</b></a>
<br>
<a class="summary-letter" href="#Option-Index_op_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-H"><b>H</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-V"><b>V</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-W"><b>W</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-X"><b>X</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-Y"><b>Y</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-Z"><b>Z</b></a>
</td></tr></table>
<table class="index-op" border="0">
<tr><td></td><th align="left">Index Entry</th><td> </td><th align="left"> Section</th></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_symbol-1">#</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0023_0023_0023"><code>###</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_symbol-2">-</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dfipa_002dbit_002dcp"><code>-fipa-bit-cp</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dfipa_002dvrp"><code>-fipa-vrp</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmfunction_002dreturn"><code>-mfunction-return</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmindirect_002dbranch"><code>-mindirect-branch</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmindirect_002dbranch_002dregister"><code>-mindirect-branch-register</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmlow_002dprecision_002ddiv"><code>-mlow-precision-div</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmlow_002dprecision_002dsqrt"><code>-mlow-precision-sqrt</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmno_002dlow_002dprecision_002ddiv"><code>-mno-low-precision-div</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmno_002dlow_002dprecision_002dsqrt"><code>-mno-low-precision-sqrt</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dWabi_002dtag"><code>-Wabi-tag</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dWno_002dscalar_002dstorage_002dorder"><code>-Wno-scalar-storage-order</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dWscalar_002dstorage_002dorder"><code>-Wscalar-storage-order</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_symbol-3">8</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-80387"><code>80387</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-A">A</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-A"><code>A</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-allowable_005fclient"><code>allowable_client</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-all_005fload"><code>all_load</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ansi"><code>ansi</code></a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ansi-1"><code>ansi</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ansi-2"><code>ansi</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ansi-3"><code>ansi</code></a>:</td><td> </td><td valign="top"><a href="#Non_002dbugs">Non-bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arch_005ferrors_005ffatal"><code>arch_errors_fatal</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aux_002dinfo"><code>aux-info</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-B">B</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-B"><code>B</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Bdynamic"><code>Bdynamic</code></a>:</td><td> </td><td valign="top"><a href="#VxWorks-Options">VxWorks Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bind_005fat_005fload"><code>bind_at_load</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Bstatic"><code>Bstatic</code></a>:</td><td> </td><td valign="top"><a href="#VxWorks-Options">VxWorks Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bundle"><code>bundle</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bundle_005floader"><code>bundle_loader</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-C">C</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-c"><code>c</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C"><code>C</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-c-1"><code>c</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CC"><code>CC</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-client_005fname"><code>client_name</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compatibility_005fversion"><code>compatibility_version</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-coverage"><code>coverage</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-current_005fversion"><code>current_version</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-D">D</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-D-1"><code>D</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-d"><code>d</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-d-1"><code>d</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-da"><code>da</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dA"><code>dA</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dD"><code>dD</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dD-1"><code>dD</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dead_005fstrip"><code>dead_strip</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dependency_002dfile"><code>dependency-file</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dH"><code>dH</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dI"><code>dI</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dM"><code>dM</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dN"><code>dN</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dp"><code>dp</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dP"><code>dP</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dU"><code>dU</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dumpfullversion"><code>dumpfullversion</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dumpmachine"><code>dumpmachine</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dumpspecs"><code>dumpspecs</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dumpversion"><code>dumpversion</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dx"><code>dx</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dylib_005ffile"><code>dylib_file</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dylinker_005finstall_005fname"><code>dylinker_install_name</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dynamic"><code>dynamic</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dynamiclib"><code>dynamiclib</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-E">E</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-E"><code>E</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-E-1"><code>E</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EB"><code>EB</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EB-1"><code>EB</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EL"><code>EL</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EL-1"><code>EL</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exported_005fsymbols_005flist"><code>exported_symbols_list</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-F">F</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-F"><code>F</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fabi_002dcompat_002dversion"><code>fabi-compat-version</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fabi_002dversion"><code>fabi-version</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fada_002dspec_002dparent"><code>fada-spec-parent</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-faggressive_002dloop_002doptimizations"><code>faggressive-loop-optimizations</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-falign_002dfunctions"><code>falign-functions</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-falign_002djumps"><code>falign-jumps</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-falign_002dlabels"><code>falign-labels</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-falign_002dloops"><code>falign-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-faligned_002dnew"><code>faligned-new</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fallow_002dparameterless_002dvariadic_002dfunctions"><code>fallow-parameterless-variadic-functions</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fasan_002dshadow_002doffset"><code>fasan-shadow-offset</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fassociative_002dmath"><code>fassociative-math</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fasynchronous_002dunwind_002dtables"><code>fasynchronous-unwind-tables</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fauto_002dinc_002ddec"><code>fauto-inc-dec</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fauto_002dprofile"><code>fauto-profile</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fbounds_002dcheck"><code>fbounds-check</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fbranch_002dprobabilities"><code>fbranch-probabilities</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fbranch_002dtarget_002dload_002doptimize"><code>fbranch-target-load-optimize</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fbranch_002dtarget_002dload_002doptimize2"><code>fbranch-target-load-optimize2</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fbtr_002dbb_002dexclusive"><code>fbtr-bb-exclusive</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcall_002dsaved"><code>fcall-saved</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcall_002dused"><code>fcall-used</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcaller_002dsaves"><code>fcaller-saves</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcf_002dprotection"><code>fcf-protection</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcheck_002dnew"><code>fcheck-new</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcheck_002dpointer_002dbounds"><code>fcheck-pointer-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchecking"><code>fchecking</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dcheck_002dincomplete_002dtype"><code>fchkp-check-incomplete-type</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dcheck_002dread"><code>fchkp-check-read</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dcheck_002dwrite"><code>fchkp-check-write</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dfirst_002dfield_002dhas_002down_002dbounds"><code>fchkp-first-field-has-own-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dflexible_002dstruct_002dtrailing_002darrays"><code>fchkp-flexible-struct-trailing-arrays</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dinstrument_002dcalls"><code>fchkp-instrument-calls</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dinstrument_002dmarked_002donly"><code>fchkp-instrument-marked-only</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dnarrow_002dbounds"><code>fchkp-narrow-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dnarrow_002dto_002dinnermost_002darray"><code>fchkp-narrow-to-innermost-array</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002doptimize"><code>fchkp-optimize</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dstore_002dbounds"><code>fchkp-store-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002dtreat_002dzero_002ddynamic_002dsize_002das_002dinfinite"><code>fchkp-treat-zero-dynamic-size-as-infinite</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002duse_002dfast_002dstring_002dfunctions"><code>fchkp-use-fast-string-functions</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002duse_002dnochk_002dstring_002dfunctions"><code>fchkp-use-nochk-string-functions</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002duse_002dstatic_002dbounds"><code>fchkp-use-static-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002duse_002dstatic_002dconst_002dbounds"><code>fchkp-use-static-const-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fchkp_002duse_002dwrappers"><code>fchkp-use-wrappers</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcode_002dhoisting"><code>fcode-hoisting</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcombine_002dstack_002dadjustments"><code>fcombine-stack-adjustments</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcommon"><code>fcommon</code></a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcompare_002ddebug"><code>fcompare-debug</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcompare_002ddebug_002dsecond"><code>fcompare-debug-second</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcompare_002delim"><code>fcompare-elim</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fconcepts"><code>fconcepts</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcond_002dmismatch"><code>fcond-mismatch</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fconserve_002dstack"><code>fconserve-stack</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fconstant_002dstring_002dclass"><code>fconstant-string-class</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fconstexpr_002ddepth"><code>fconstexpr-depth</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fconstexpr_002dloop_002dlimit"><code>fconstexpr-loop-limit</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcprop_002dregisters"><code>fcprop-registers</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcrossjumping"><code>fcrossjumping</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcse_002dfollow_002djumps"><code>fcse-follow-jumps</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcse_002dskip_002dblocks"><code>fcse-skip-blocks</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcx_002dfortran_002drules"><code>fcx-fortran-rules</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fcx_002dlimited_002drange"><code>fcx-limited-range</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdata_002dsections"><code>fdata-sections</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdbg_002dcnt"><code>fdbg-cnt</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdbg_002dcnt_002dlist"><code>fdbg-cnt-list</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdce"><code>fdce</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdebug_002dcpp"><code>fdebug-cpp</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdebug_002dprefix_002dmap"><code>fdebug-prefix-map</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdebug_002dtypes_002dsection"><code>fdebug-types-section</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdeclone_002dctor_002ddtor"><code>fdeclone-ctor-dtor</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdeduce_002dinit_002dlist"><code>fdeduce-init-list</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdelayed_002dbranch"><code>fdelayed-branch</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdelete_002ddead_002dexceptions"><code>fdelete-dead-exceptions</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdelete_002dnull_002dpointer_002dchecks"><code>fdelete-null-pointer-checks</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdevirtualize"><code>fdevirtualize</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdevirtualize_002dat_002dltrans"><code>fdevirtualize-at-ltrans</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdevirtualize_002dspeculatively"><code>fdevirtualize-speculatively</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdiagnostics_002dcolor"><code>fdiagnostics-color</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdiagnostics_002dgenerate_002dpatch"><code>fdiagnostics-generate-patch</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdiagnostics_002dparseable_002dfixits"><code>fdiagnostics-parseable-fixits</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdiagnostics_002dshow_002dcaret"><code>fdiagnostics-show-caret</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdiagnostics_002dshow_002dlocation"><code>fdiagnostics-show-location</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdiagnostics_002dshow_002doption"><code>fdiagnostics-show-option</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdiagnostics_002dshow_002dtemplate_002dtree"><code>fdiagnostics-show-template-tree</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdirectives_002donly"><code>fdirectives-only</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdisable_002d"><code>fdisable-</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdollars_002din_002didentifiers"><code>fdollars-in-identifiers</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdollars_002din_002didentifiers-1"><code>fdollars-in-identifiers</code></a>:</td><td> </td><td valign="top"><a href="#Interoperation">Interoperation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdpic"><code>fdpic</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdse"><code>fdse</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dada_002dspec"><code>fdump-ada-spec</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dfinal_002dinsns"><code>fdump-final-insns</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dgo_002dspec"><code>fdump-go-spec</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dipa"><code>fdump-ipa</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dlang"><code>fdump-lang</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dlang_002dall"><code>fdump-lang-all</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dnoaddr"><code>fdump-noaddr</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dpasses"><code>fdump-passes</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dalignments"><code>fdump-rtl-alignments</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dall"><code>fdump-rtl-all</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dasmcons"><code>fdump-rtl-asmcons</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dauto_005finc_005fdec"><code>fdump-rtl-auto_inc_dec</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dbarriers"><code>fdump-rtl-barriers</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dbbpart"><code>fdump-rtl-bbpart</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dbbro"><code>fdump-rtl-bbro</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dbtl2"><code>fdump-rtl-btl2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dbtl2-1"><code>fdump-rtl-btl2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dbypass"><code>fdump-rtl-bypass</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dce1"><code>fdump-rtl-ce1</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dce2"><code>fdump-rtl-ce2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dce3"><code>fdump-rtl-ce3</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dcombine"><code>fdump-rtl-combine</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dcompgotos"><code>fdump-rtl-compgotos</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dcprop_005fhardreg"><code>fdump-rtl-cprop_hardreg</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dcsa"><code>fdump-rtl-csa</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dcse1"><code>fdump-rtl-cse1</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dcse2"><code>fdump-rtl-cse2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002ddbr"><code>fdump-rtl-dbr</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002ddce"><code>fdump-rtl-dce</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002ddce1"><code>fdump-rtl-dce1</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002ddce2"><code>fdump-rtl-dce2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002ddfinish"><code>fdump-rtl-dfinish</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002ddfinit"><code>fdump-rtl-dfinit</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002deh"><code>fdump-rtl-eh</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002deh_005franges"><code>fdump-rtl-eh_ranges</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dexpand"><code>fdump-rtl-expand</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dfwprop1"><code>fdump-rtl-fwprop1</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dfwprop2"><code>fdump-rtl-fwprop2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dgcse1"><code>fdump-rtl-gcse1</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dgcse2"><code>fdump-rtl-gcse2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dinit_002dregs"><code>fdump-rtl-init-regs</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dinitvals"><code>fdump-rtl-initvals</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dinto_005fcfglayout"><code>fdump-rtl-into_cfglayout</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dira"><code>fdump-rtl-ira</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002djump"><code>fdump-rtl-jump</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dloop2"><code>fdump-rtl-loop2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dmach"><code>fdump-rtl-mach</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dmode_005fsw"><code>fdump-rtl-mode_sw</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002doutof_005fcfglayout"><code>fdump-rtl-outof_cfglayout</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dpass"><code>fdump-rtl-<var>pass</var></code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dpeephole2"><code>fdump-rtl-peephole2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dpostreload"><code>fdump-rtl-postreload</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dpro_005fand_005fepilogue"><code>fdump-rtl-pro_and_epilogue</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dree"><code>fdump-rtl-ree</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dregclass"><code>fdump-rtl-regclass</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002drnreg"><code>fdump-rtl-rnreg</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsched1"><code>fdump-rtl-sched1</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsched2"><code>fdump-rtl-sched2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dseqabstr"><code>fdump-rtl-seqabstr</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dshorten"><code>fdump-rtl-shorten</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsibling"><code>fdump-rtl-sibling</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsms"><code>fdump-rtl-sms</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsplit1"><code>fdump-rtl-split1</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsplit2"><code>fdump-rtl-split2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsplit3"><code>fdump-rtl-split3</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsplit4"><code>fdump-rtl-split4</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsplit5"><code>fdump-rtl-split5</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dstack"><code>fdump-rtl-stack</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsubreg1"><code>fdump-rtl-subreg1</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsubreg2"><code>fdump-rtl-subreg2</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsubregs_005fof_005fmode_005ffinish"><code>fdump-rtl-subregs_of_mode_finish</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dsubregs_005fof_005fmode_005finit"><code>fdump-rtl-subregs_of_mode_init</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dunshare"><code>fdump-rtl-unshare</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dvartrack"><code>fdump-rtl-vartrack</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dvregs"><code>fdump-rtl-vregs</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002drtl_002dweb"><code>fdump-rtl-web</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dstatistics"><code>fdump-statistics</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dtree"><code>fdump-tree</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dtree_002dall"><code>fdump-tree-all</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dunnumbered"><code>fdump-unnumbered</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdump_002dunnumbered_002dlinks"><code>fdump-unnumbered-links</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdwarf2_002dcfi_002dasm"><code>fdwarf2-cfi-asm</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fearly_002dinlining"><code>fearly-inlining</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-felide_002dtype"><code>felide-type</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-feliminate_002dunused_002ddebug_002dsymbols"><code>feliminate-unused-debug-symbols</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-feliminate_002dunused_002ddebug_002dtypes"><code>feliminate-unused-debug-types</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-femit_002dclass_002ddebug_002dalways"><code>femit-class-debug-always</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-femit_002dstruct_002ddebug_002dbaseonly"><code>femit-struct-debug-baseonly</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-femit_002dstruct_002ddebug_002ddetailed"><code>femit-struct-debug-detailed</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-femit_002dstruct_002ddebug_002dreduced"><code>femit-struct-debug-reduced</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fenable_002d"><code>fenable-</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fexceptions"><code>fexceptions</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fexcess_002dprecision"><code>fexcess-precision</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fexec_002dcharset"><code>fexec-charset</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fexpensive_002doptimizations"><code>fexpensive-optimizations</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fext_002dnumeric_002dliterals"><code>fext-numeric-literals</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fextended_002didentifiers"><code>fextended-identifiers</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fextern_002dtls_002dinit"><code>fextern-tls-init</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffast_002dmath"><code>ffast-math</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffat_002dlto_002dobjects"><code>ffat-lto-objects</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffile_002dprefix_002dmap"><code>ffile-prefix-map</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffinite_002dmath_002donly"><code>ffinite-math-only</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffix_002dand_002dcontinue"><code>ffix-and-continue</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffixed"><code>ffixed</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffloat_002dstore"><code>ffloat-store</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffloat_002dstore-1"><code>ffloat-store</code></a>:</td><td> </td><td valign="top"><a href="#Disappointments">Disappointments</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffor_002dscope"><code>ffor-scope</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fforward_002dpropagate"><code>fforward-propagate</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffp_002dcontract"><code>ffp-contract</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffreestanding"><code>ffreestanding</code></a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffreestanding-1"><code>ffreestanding</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffreestanding-2"><code>ffreestanding</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffreestanding-3"><code>ffreestanding</code></a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffriend_002dinjection"><code>ffriend-injection</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffunction_002dsections"><code>ffunction-sections</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgcse"><code>fgcse</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgcse_002dafter_002dreload"><code>fgcse-after-reload</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgcse_002dlas"><code>fgcse-las</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgcse_002dlm"><code>fgcse-lm</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgcse_002dsm"><code>fgcse-sm</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgimple"><code>fgimple</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgnu_002druntime"><code>fgnu-runtime</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgnu_002dtm"><code>fgnu-tm</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgnu89_002dinline"><code>fgnu89-inline</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fgraphite_002didentity"><code>fgraphite-identity</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fhoist_002dadjacent_002dloads"><code>fhoist-adjacent-loads</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fhosted"><code>fhosted</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fif_002dconversion"><code>fif-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fif_002dconversion2"><code>fif-conversion2</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-filelist"><code>filelist</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-findirect_002ddata"><code>findirect-data</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-findirect_002dinlining"><code>findirect-inlining</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finhibit_002dsize_002ddirective"><code>finhibit-size-directive</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finline_002dfunctions"><code>finline-functions</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finline_002dfunctions_002dcalled_002donce"><code>finline-functions-called-once</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finline_002dlimit"><code>finline-limit</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finline_002dsmall_002dfunctions"><code>finline-small-functions</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finput_002dcharset"><code>finput-charset</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finstrument_002dfunctions"><code>finstrument-functions</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finstrument_002dfunctions-1"><code>finstrument-functions</code></a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finstrument_002dfunctions_002dexclude_002dfile_002dlist"><code>finstrument-functions-exclude-file-list</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finstrument_002dfunctions_002dexclude_002dfunction_002dlist"><code>finstrument-functions-exclude-function-list</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dcp"><code>fipa-cp</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dcp_002dclone"><code>fipa-cp-clone</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dicf"><code>fipa-icf</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dprofile"><code>fipa-profile</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dpta"><code>fipa-pta</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dpure_002dconst"><code>fipa-pure-const</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dra"><code>fipa-ra</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dreference"><code>fipa-reference</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fipa_002dsra"><code>fipa-sra</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fira_002dalgorithm"><code>fira-algorithm</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fira_002dhoist_002dpressure"><code>fira-hoist-pressure</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fira_002dloop_002dpressure"><code>fira-loop-pressure</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fira_002dregion"><code>fira-region</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fira_002dverbose"><code>fira-verbose</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fisolate_002derroneous_002dpaths_002dattribute"><code>fisolate-erroneous-paths-attribute</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fisolate_002derroneous_002dpaths_002ddereference"><code>fisolate-erroneous-paths-dereference</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fivar_002dvisibility"><code>fivar-visibility</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fivopts"><code>fivopts</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fkeep_002dinline_002dfunctions"><code>fkeep-inline-functions</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fkeep_002dinline_002dfunctions-1"><code>fkeep-inline-functions</code></a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fkeep_002dstatic_002dconsts"><code>fkeep-static-consts</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fkeep_002dstatic_002dfunctions"><code>fkeep-static-functions</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flat_005fnamespace"><code>flat_namespace</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flax_002dvector_002dconversions"><code>flax-vector-conversions</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fleading_002dunderscore"><code>fleading-underscore</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flive_002drange_002dshrinkage"><code>flive-range-shrinkage</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flocal_002divars"><code>flocal-ivars</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floop_002dblock"><code>floop-block</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floop_002dinterchange"><code>floop-interchange</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floop_002dnest_002doptimize"><code>floop-nest-optimize</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floop_002dparallelize_002dall"><code>floop-parallelize-all</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floop_002dstrip_002dmine"><code>floop-strip-mine</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floop_002dunroll_002dand_002djam"><code>floop-unroll-and-jam</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flra_002dremat"><code>flra-remat</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flto"><code>flto</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flto_002dcompression_002dlevel"><code>flto-compression-level</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flto_002dodr_002dtype_002dmerging"><code>flto-odr-type-merging</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flto_002dpartition"><code>flto-partition</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flto_002dreport"><code>flto-report</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flto_002dreport_002dwpa"><code>flto-report-wpa</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmacro_002dprefix_002dmap"><code>fmacro-prefix-map</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmax_002derrors"><code>fmax-errors</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmem_002dreport"><code>fmem-report</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmem_002dreport_002dwpa"><code>fmem-report-wpa</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmerge_002dall_002dconstants"><code>fmerge-all-constants</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmerge_002dconstants"><code>fmerge-constants</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmerge_002ddebug_002dstrings"><code>fmerge-debug-strings</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmessage_002dlength"><code>fmessage-length</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmodulo_002dsched"><code>fmodulo-sched</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmodulo_002dsched_002dallow_002dregmoves"><code>fmodulo-sched-allow-regmoves</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmove_002dloop_002dinvariants"><code>fmove-loop-invariants</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fms_002dextensions"><code>fms-extensions</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fms_002dextensions-1"><code>fms-extensions</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fms_002dextensions-2"><code>fms-extensions</code></a>:</td><td> </td><td valign="top"><a href="#Unnamed-Fields">Unnamed Fields</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fnew_002dinheriting_002dctors"><code>fnew-inheriting-ctors</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fnew_002dttp_002dmatching"><code>fnew-ttp-matching</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fnext_002druntime"><code>fnext-runtime</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002daccess_002dcontrol"><code>fno-access-control</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dasm"><code>fno-asm</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dbranch_002dcount_002dreg"><code>fno-branch-count-reg</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dbuiltin"><code>fno-builtin</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dbuiltin-1"><code>fno-builtin</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dbuiltin-2"><code>fno-builtin</code></a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dbuiltin-3"><code>fno-builtin</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dcanonical_002dsystem_002dheaders"><code>fno-canonical-system-headers</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dcheck_002dpointer_002dbounds"><code>fno-check-pointer-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchecking"><code>fno-checking</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dcheck_002dincomplete_002dtype"><code>fno-chkp-check-incomplete-type</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dcheck_002dread"><code>fno-chkp-check-read</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dcheck_002dwrite"><code>fno-chkp-check-write</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dfirst_002dfield_002dhas_002down_002dbounds"><code>fno-chkp-first-field-has-own-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dflexible_002dstruct_002dtrailing_002darrays"><code>fno-chkp-flexible-struct-trailing-arrays</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dinstrument_002dcalls"><code>fno-chkp-instrument-calls</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dinstrument_002dmarked_002donly"><code>fno-chkp-instrument-marked-only</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dnarrow_002dbounds"><code>fno-chkp-narrow-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dnarrow_002dto_002dinnermost_002darray"><code>fno-chkp-narrow-to-innermost-array</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002doptimize"><code>fno-chkp-optimize</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dstore_002dbounds"><code>fno-chkp-store-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002dtreat_002dzero_002ddynamic_002dsize_002das_002dinfinite"><code>fno-chkp-treat-zero-dynamic-size-as-infinite</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002duse_002dfast_002dstring_002dfunctions"><code>fno-chkp-use-fast-string-functions</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002duse_002dnochk_002dstring_002dfunctions"><code>fno-chkp-use-nochk-string-functions</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002duse_002dstatic_002dbounds"><code>fno-chkp-use-static-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002duse_002dstatic_002dconst_002dbounds"><code>fno-chkp-use-static-const-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dchkp_002duse_002dwrappers"><code>fno-chkp-use-wrappers</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dcommon"><code>fno-common</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dcommon-1"><code>fno-common</code></a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dcompare_002ddebug"><code>fno-compare-debug</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002ddebug_002dtypes_002dsection"><code>fno-debug-types-section</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002ddefault_002dinline"><code>fno-default-inline</code></a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002ddefer_002dpop"><code>fno-defer-pop</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002ddiagnostics_002dshow_002dcaret"><code>fno-diagnostics-show-caret</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002ddiagnostics_002dshow_002doption"><code>fno-diagnostics-show-option</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002ddwarf2_002dcfi_002dasm"><code>fno-dwarf2-cfi-asm</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002delide_002dconstructors"><code>fno-elide-constructors</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002delide_002dtype"><code>fno-elide-type</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002deliminate_002dunused_002ddebug_002dtypes"><code>fno-eliminate-unused-debug-types</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002denforce_002deh_002dspecs"><code>fno-enforce-eh-specs</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dext_002dnumeric_002dliterals"><code>fno-ext-numeric-literals</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dextern_002dtls_002dinit"><code>fno-extern-tls-init</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dfor_002dscope"><code>fno-for-scope</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dfp_002dint_002dbuiltin_002dinexact"><code>fno-fp-int-builtin-inexact</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dfunction_002dcse"><code>fno-function-cse</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dgnu_002dkeywords"><code>fno-gnu-keywords</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dgnu_002dunique"><code>fno-gnu-unique</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dguess_002dbranch_002dprobability"><code>fno-guess-branch-probability</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dident"><code>fno-ident</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dimplement_002dinlines"><code>fno-implement-inlines</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dimplement_002dinlines-1"><code>fno-implement-inlines</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dimplicit_002dinline_002dtemplates"><code>fno-implicit-inline-templates</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dimplicit_002dtemplates"><code>fno-implicit-templates</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dimplicit_002dtemplates-1"><code>fno-implicit-templates</code></a>:</td><td> </td><td valign="top"><a href="#Template-Instantiation">Template Instantiation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dinline"><code>fno-inline</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dira_002dshare_002dsave_002dslots"><code>fno-ira-share-save-slots</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dira_002dshare_002dspill_002dslots"><code>fno-ira-share-spill-slots</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002djump_002dtables"><code>fno-jump-tables</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dkeep_002dinline_002ddllexport"><code>fno-keep-inline-dllexport</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dlifetime_002ddse"><code>fno-lifetime-dse</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dlocal_002divars"><code>fno-local-ivars</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dmath_002derrno"><code>fno-math-errno</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dmerge_002ddebug_002dstrings"><code>fno-merge-debug-strings</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dnil_002dreceivers"><code>fno-nil-receivers</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dnonansi_002dbuiltins"><code>fno-nonansi-builtins</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002doperator_002dnames"><code>fno-operator-names</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002doptional_002ddiags"><code>fno-optional-diags</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dpeephole"><code>fno-peephole</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dpeephole2"><code>fno-peephole2</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dplt"><code>fno-plt</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dpretty_002dtemplates"><code>fno-pretty-templates</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dprintf_002dreturn_002dvalue"><code>fno-printf-return-value</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002drtti"><code>fno-rtti</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dsanitize_002drecover"><code>fno-sanitize-recover</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dsanitize_003dall"><code>fno-sanitize=all</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dsched_002dinterblock"><code>fno-sched-interblock</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dsched_002dspec"><code>fno-sched-spec</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dset_002dstack_002dexecutable"><code>fno-set-stack-executable</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dshow_002dcolumn"><code>fno-show-column</code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dsigned_002dbitfields"><code>fno-signed-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dsigned_002dzeros"><code>fno-signed-zeros</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dstack_002dlimit"><code>fno-stack-limit</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dthreadsafe_002dstatics"><code>fno-threadsafe-statics</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dtoplevel_002dreorder"><code>fno-toplevel-reorder</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dtrapping_002dmath"><code>fno-trapping-math</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dunsigned_002dbitfields"><code>fno-unsigned-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002duse_002dcxa_002dget_002dexception_002dptr"><code>fno-use-cxa-get-exception-ptr</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dvar_002dtracking_002dassignments"><code>fno-var-tracking-assignments</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dvar_002dtracking_002dassignments_002dtoggle"><code>fno-var-tracking-assignments-toggle</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dweak"><code>fno-weak</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dworking_002ddirectory"><code>fno-working-directory</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dwritable_002drelocated_002drdata"><code>fno-writable-relocated-rdata</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fno_002dzero_002dinitialized_002din_002dbss"><code>fno-zero-initialized-in-bss</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fnon_002dcall_002dexceptions"><code>fnon-call-exceptions</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fnothrow_002dopt"><code>fnothrow-opt</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fobjc_002dabi_002dversion"><code>fobjc-abi-version</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fobjc_002dcall_002dcxx_002dcdtors"><code>fobjc-call-cxx-cdtors</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fobjc_002ddirect_002ddispatch"><code>fobjc-direct-dispatch</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fobjc_002dexceptions"><code>fobjc-exceptions</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fobjc_002dgc"><code>fobjc-gc</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fobjc_002dnilcheck"><code>fobjc-nilcheck</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fobjc_002dstd"><code>fobjc-std</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fomit_002dframe_002dpointer"><code>fomit-frame-pointer</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fopenacc"><code>fopenacc</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fopenacc_002ddim"><code>fopenacc-dim</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fopenmp"><code>fopenmp</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fopenmp_002dsimd"><code>fopenmp-simd</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fopt_002dinfo"><code>fopt-info</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-foptimize_002dsibling_002dcalls"><code>foptimize-sibling-calls</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-foptimize_002dstrlen"><code>foptimize-strlen</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-force_005fcpusubtype_005fALL"><code>force_cpusubtype_ALL</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-force_005fflat_005fnamespace"><code>force_flat_namespace</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpack_002dstruct"><code>fpack-struct</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpartial_002dinlining"><code>fpartial-inlining</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpatchable_002dfunction_002dentry"><code>fpatchable-function-entry</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpcc_002dstruct_002dreturn"><code>fpcc-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpcc_002dstruct_002dreturn-1"><code>fpcc-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpch_002ddeps"><code>fpch-deps</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpch_002dpreprocess"><code>fpch-preprocess</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpeel_002dloops"><code>fpeel-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpermissive"><code>fpermissive</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpermitted_002dflt_002deval_002dmethods"><code>fpermitted-flt-eval-methods</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpermitted_002dflt_002deval_002dmethods_003dc11"><code>fpermitted-flt-eval-methods=c11</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpermitted_002dflt_002deval_002dmethods_003dts_002d18661_002d3"><code>fpermitted-flt-eval-methods=ts-18661-3</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpic"><code>fpic</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fPIC"><code>fPIC</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpie"><code>fpie</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fPIE"><code>fPIE</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fplan9_002dextensions"><code>fplan9-extensions</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fplan9_002dextensions-1"><code>fplan9-extensions</code></a>:</td><td> </td><td valign="top"><a href="#Unnamed-Fields">Unnamed Fields</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fplugin"><code>fplugin</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fplugin_002darg"><code>fplugin-arg</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpost_002dipa_002dmem_002dreport"><code>fpost-ipa-mem-report</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpre_002dipa_002dmem_002dreport"><code>fpre-ipa-mem-report</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpredictive_002dcommoning"><code>fpredictive-commoning</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprefetch_002dloop_002darrays"><code>fprefetch-loop-arrays</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpreprocessed"><code>fpreprocessed</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002dabs_002dpath"><code>fprofile-abs-path</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002darcs"><code>fprofile-arcs</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002darcs-1"><code>fprofile-arcs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002dcorrection"><code>fprofile-correction</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002ddir"><code>fprofile-dir</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002dgenerate"><code>fprofile-generate</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002dreorder_002dfunctions"><code>fprofile-reorder-functions</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002dreport"><code>fprofile-report</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002dupdate"><code>fprofile-update</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002duse"><code>fprofile-use</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprofile_002dvalues"><code>fprofile-values</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fpu"><code>fpu</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frandom_002dseed"><code>frandom-seed</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freciprocal_002dmath"><code>freciprocal-math</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frecord_002dgcc_002dswitches"><code>frecord-gcc-switches</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-free"><code>free</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freg_002dstruct_002dreturn"><code>freg-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frename_002dregisters"><code>frename-registers</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freorder_002dblocks"><code>freorder-blocks</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freorder_002dblocks_002dalgorithm"><code>freorder-blocks-algorithm</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freorder_002dblocks_002dand_002dpartition"><code>freorder-blocks-and-partition</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freorder_002dfunctions"><code>freorder-functions</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freplace_002dobjc_002dclasses"><code>freplace-objc-classes</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frepo"><code>frepo</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frepo-1"><code>frepo</code></a>:</td><td> </td><td valign="top"><a href="#Template-Instantiation">Template Instantiation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freport_002dbug"><code>freport-bug</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frerun_002dcse_002dafter_002dloop"><code>frerun-cse-after-loop</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freschedule_002dmodulo_002dscheduled_002dloops"><code>freschedule-modulo-scheduled-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frounding_002dmath"><code>frounding-math</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_002daddress_002duse_002dafter_002dscope"><code>fsanitize-address-use-after-scope</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_002dcoverage_003dtrace_002dcmp"><code>fsanitize-coverage=trace-cmp</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_002dcoverage_003dtrace_002dpc"><code>fsanitize-coverage=trace-pc</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_002drecover"><code>fsanitize-recover</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_002dsections"><code>fsanitize-sections</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_002dundefined_002dtrap_002don_002derror"><code>fsanitize-undefined-trap-on-error</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003daddress"><code>fsanitize=address</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dalignment"><code>fsanitize=alignment</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dbool"><code>fsanitize=bool</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dbounds"><code>fsanitize=bounds</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dbounds_002dstrict"><code>fsanitize=bounds-strict</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dbuiltin"><code>fsanitize=builtin</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003denum"><code>fsanitize=enum</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dfloat_002dcast_002doverflow"><code>fsanitize=float-cast-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dfloat_002ddivide_002dby_002dzero"><code>fsanitize=float-divide-by-zero</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dinteger_002ddivide_002dby_002dzero"><code>fsanitize=integer-divide-by-zero</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dkernel_002daddress"><code>fsanitize=kernel-address</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dleak"><code>fsanitize=leak</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dnonnull_002dattribute"><code>fsanitize=nonnull-attribute</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dnull"><code>fsanitize=null</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dobject_002dsize"><code>fsanitize=object-size</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dpointer_002dcompare"><code>fsanitize=pointer-compare</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dpointer_002doverflow"><code>fsanitize=pointer-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dpointer_002dsubtract"><code>fsanitize=pointer-subtract</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dreturn"><code>fsanitize=return</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dreturns_002dnonnull_002dattribute"><code>fsanitize=returns-nonnull-attribute</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dshift"><code>fsanitize=shift</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dshift_002dbase"><code>fsanitize=shift-base</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dshift_002dexponent"><code>fsanitize=shift-exponent</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dsigned_002dinteger_002doverflow"><code>fsanitize=signed-integer-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dthread"><code>fsanitize=thread</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dundefined"><code>fsanitize=undefined</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dunreachable"><code>fsanitize=unreachable</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dvla_002dbound"><code>fsanitize=vla-bound</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsanitize_003dvptr"><code>fsanitize=vptr</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dcritical_002dpath_002dheuristic"><code>fsched-critical-path-heuristic</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002ddep_002dcount_002dheuristic"><code>fsched-dep-count-heuristic</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dgroup_002dheuristic"><code>fsched-group-heuristic</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dlast_002dinsn_002dheuristic"><code>fsched-last-insn-heuristic</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dpressure"><code>fsched-pressure</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002drank_002dheuristic"><code>fsched-rank-heuristic</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dspec_002dinsn_002dheuristic"><code>fsched-spec-insn-heuristic</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dspec_002dload"><code>fsched-spec-load</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dspec_002dload_002ddangerous"><code>fsched-spec-load-dangerous</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dstalled_002dinsns"><code>fsched-stalled-insns</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dstalled_002dinsns_002ddep"><code>fsched-stalled-insns-dep</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched_002dverbose"><code>fsched-verbose</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsched2_002duse_002dsuperblocks"><code>fsched2-use-superblocks</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fschedule_002dfusion"><code>fschedule-fusion</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fschedule_002dinsns"><code>fschedule-insns</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fschedule_002dinsns2"><code>fschedule-insns2</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsection_002danchors"><code>fsection-anchors</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsel_002dsched_002dpipelining"><code>fsel-sched-pipelining</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsel_002dsched_002dpipelining_002douter_002dloops"><code>fsel-sched-pipelining-outer-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fselective_002dscheduling"><code>fselective-scheduling</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fselective_002dscheduling2"><code>fselective-scheduling2</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsemantic_002dinterposition"><code>fsemantic-interposition</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fshort_002denums"><code>fshort-enums</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fshort_002denums-1"><code>fshort-enums</code></a>:</td><td> </td><td valign="top"><a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fshort_002denums-2"><code>fshort-enums</code></a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fshort_002denums-3"><code>fshort-enums</code></a>:</td><td> </td><td valign="top"><a href="#Non_002dbugs">Non-bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fshort_002dwchar"><code>fshort-wchar</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fshrink_002dwrap"><code>fshrink-wrap</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fshrink_002dwrap_002dseparate"><code>fshrink-wrap-separate</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsignaling_002dnans"><code>fsignaling-nans</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsigned_002dbitfields"><code>fsigned-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsigned_002dbitfields-1"><code>fsigned-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#Non_002dbugs">Non-bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsigned_002dchar"><code>fsigned-char</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsigned_002dchar-1"><code>fsigned-char</code></a>:</td><td> </td><td valign="top"><a href="#Characters-implementation">Characters implementation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsimd_002dcost_002dmodel"><code>fsimd-cost-model</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsingle_002dprecision_002dconstant"><code>fsingle-precision-constant</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsized_002ddeallocation"><code>fsized-deallocation</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsplit_002divs_002din_002dunroller"><code>fsplit-ivs-in-unroller</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsplit_002dloops"><code>fsplit-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsplit_002dpaths"><code>fsplit-paths</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsplit_002dstack"><code>fsplit-stack</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsplit_002dstack-1"><code>fsplit-stack</code></a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsplit_002dwide_002dtypes"><code>fsplit-wide-types</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fssa_002dbackprop"><code>fssa-backprop</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fssa_002dphiopt"><code>fssa-phiopt</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsso_002dstruct"><code>fsso-struct</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dcheck"><code>fstack-check</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dclash_002dprotection"><code>fstack-clash-protection</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dlimit_002dregister"><code>fstack-limit-register</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dlimit_002dsymbol"><code>fstack-limit-symbol</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dprotector"><code>fstack-protector</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dprotector_002dall"><code>fstack-protector-all</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dprotector_002dexplicit"><code>fstack-protector-explicit</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dprotector_002dstrong"><code>fstack-protector-strong</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_002dusage"><code>fstack-usage</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstack_005freuse"><code>fstack_reuse</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstats"><code>fstats</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstdarg_002dopt"><code>fstdarg-opt</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstore_002dmerging"><code>fstore-merging</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstrict_002daliasing"><code>fstrict-aliasing</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstrict_002denums"><code>fstrict-enums</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstrict_002doverflow"><code>fstrict-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstrict_002dvolatile_002dbitfields"><code>fstrict-volatile-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fstrong_002deval_002dorder"><code>fstrong-eval-order</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsync_002dlibcalls"><code>fsync-libcalls</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fsyntax_002donly"><code>fsyntax-only</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftabstop"><code>ftabstop</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftemplate_002dbacktrace_002dlimit"><code>ftemplate-backtrace-limit</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftemplate_002ddepth"><code>ftemplate-depth</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftest_002dcoverage"><code>ftest-coverage</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fthread_002djumps"><code>fthread-jumps</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftime_002dreport"><code>ftime-report</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftime_002dreport_002ddetails"><code>ftime-report-details</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftls_002dmodel"><code>ftls-model</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftracer"><code>ftracer</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftrack_002dmacro_002dexpansion"><code>ftrack-macro-expansion</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftrampolines"><code>ftrampolines</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftrapv"><code>ftrapv</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dbit_002dccp"><code>ftree-bit-ccp</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dbuiltin_002dcall_002ddce"><code>ftree-builtin-call-dce</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dccp"><code>ftree-ccp</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dch"><code>ftree-ch</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dcoalesce_002dvars"><code>ftree-coalesce-vars</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dcopy_002dprop"><code>ftree-copy-prop</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002ddce"><code>ftree-dce</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002ddominator_002dopts"><code>ftree-dominator-opts</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002ddse"><code>ftree-dse</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dforwprop"><code>ftree-forwprop</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dfre"><code>ftree-fre</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dloop_002ddistribute_002dpatterns"><code>ftree-loop-distribute-patterns</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dloop_002ddistribution"><code>ftree-loop-distribution</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dloop_002dif_002dconvert"><code>ftree-loop-if-convert</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dloop_002dim"><code>ftree-loop-im</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dloop_002divcanon"><code>ftree-loop-ivcanon</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dloop_002dlinear"><code>ftree-loop-linear</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dloop_002doptimize"><code>ftree-loop-optimize</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dloop_002dvectorize"><code>ftree-loop-vectorize</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dparallelize_002dloops"><code>ftree-parallelize-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dpartial_002dpre"><code>ftree-partial-pre</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dphiprop"><code>ftree-phiprop</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dpre"><code>ftree-pre</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dpta"><code>ftree-pta</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dreassoc"><code>ftree-reassoc</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dsink"><code>ftree-sink</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dslp_002dvectorize"><code>ftree-slp-vectorize</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dslsr"><code>ftree-slsr</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dsra"><code>ftree-sra</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dswitch_002dconversion"><code>ftree-switch-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dtail_002dmerge"><code>ftree-tail-merge</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dter"><code>ftree-ter</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dvectorize"><code>ftree-vectorize</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftree_002dvrp"><code>ftree-vrp</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funconstrained_002dcommons"><code>funconstrained-commons</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funit_002dat_002da_002dtime"><code>funit-at-a-time</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funroll_002dall_002dloops"><code>funroll-all-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funroll_002dloops"><code>funroll-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funsafe_002dmath_002doptimizations"><code>funsafe-math-optimizations</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funsigned_002dbitfields"><code>funsigned-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funsigned_002dbitfields-1"><code>funsigned-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funsigned_002dbitfields-2"><code>funsigned-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#Non_002dbugs">Non-bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funsigned_002dchar"><code>funsigned-char</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funsigned_002dchar-1"><code>funsigned-char</code></a>:</td><td> </td><td valign="top"><a href="#Characters-implementation">Characters implementation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funswitch_002dloops"><code>funswitch-loops</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-funwind_002dtables"><code>funwind-tables</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fuse_002dcxa_002datexit"><code>fuse-cxa-atexit</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fuse_002dld_003dbfd"><code>fuse-ld=bfd</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fuse_002dld_003dgold"><code>fuse-ld=gold</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fuse_002dld_003dlld"><code>fuse-ld=lld</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fuse_002dlinker_002dplugin"><code>fuse-linker-plugin</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvar_002dtracking"><code>fvar-tracking</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvar_002dtracking_002dassignments"><code>fvar-tracking-assignments</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvar_002dtracking_002dassignments_002dtoggle"><code>fvar-tracking-assignments-toggle</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvariable_002dexpansion_002din_002dunroller"><code>fvariable-expansion-in-unroller</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvect_002dcost_002dmodel"><code>fvect-cost-model</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fverbose_002dasm"><code>fverbose-asm</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvisibility"><code>fvisibility</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvisibility_002dinlines_002dhidden"><code>fvisibility-inlines-hidden</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvisibility_002dms_002dcompat"><code>fvisibility-ms-compat</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvpt"><code>fvpt</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvtable_002dverify"><code>fvtable-verify</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvtv_002dcounts"><code>fvtv-counts</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fvtv_002ddebug"><code>fvtv-debug</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fweb"><code>fweb</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fwhole_002dprogram"><code>fwhole-program</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fwide_002dexec_002dcharset"><code>fwide-exec-charset</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fworking_002ddirectory"><code>fworking-directory</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fwrapv"><code>fwrapv</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fwrapv_002dpointer"><code>fwrapv-pointer</code></a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fzero_002dlink"><code>fzero-link</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-G">G</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-g"><code>g</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-G"><code>G</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-G-1"><code>G</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-G-2"><code>G</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-G-3"><code>G</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-G-4"><code>G</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-G-5"><code>G</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-G-6"><code>G</code></a>:</td><td> </td><td valign="top"><a href="#System-V-Options">System V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gas_002dloc_002dsupport"><code>gas-loc-support</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gas_002dlocview_002dsupport"><code>gas-locview-support</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcolumn_002dinfo"><code>gcolumn-info</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gdwarf"><code>gdwarf</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gen_002ddecls"><code>gen-decls</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gfull"><code>gfull</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ggdb"><code>ggdb</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ggnu_002dpubnames"><code>ggnu-pubnames</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ginline_002dpoints"><code>ginline-points</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ginternal_002dreset_002dlocation_002dviews"><code>ginternal-reset-location-views</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gno_002das_002dloc_002dsupport"><code>gno-as-loc-support</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gno_002dcolumn_002dinfo"><code>gno-column-info</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gno_002dinline_002dpoints"><code>gno-inline-points</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gno_002dinternal_002dreset_002dlocation_002dviews"><code>gno-internal-reset-location-views</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gno_002drecord_002dgcc_002dswitches"><code>gno-record-gcc-switches</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gno_002dstatement_002dfrontiers"><code>gno-statement-frontiers</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gno_002dstrict_002ddwarf"><code>gno-strict-dwarf</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gno_002dvariable_002dlocation_002dviews"><code>gno-variable-location-views</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gpubnames"><code>gpubnames</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-grecord_002dgcc_002dswitches"><code>grecord-gcc-switches</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gsplit_002ddwarf"><code>gsplit-dwarf</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gstabs"><code>gstabs</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gstabs_002b"><code>gstabs+</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gstatement_002dfrontiers"><code>gstatement-frontiers</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gstrict_002ddwarf"><code>gstrict-dwarf</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gtoggle"><code>gtoggle</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gused"><code>gused</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gvariable_002dlocation_002dviews"><code>gvariable-location-views</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gvariable_002dlocation_002dviews_003dincompat5"><code>gvariable-location-views=incompat5</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gvms"><code>gvms</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gxcoff"><code>gxcoff</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gxcoff_002b"><code>gxcoff+</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gz"><code>gz</code></a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-H">H</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-H"><code>H</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-headerpad_005fmax_005finstall_005fnames"><code>headerpad_max_install_names</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-help"><code>help</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-I">I</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-I"><code>I</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-I_002d"><code>I-</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-idirafter"><code>idirafter</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iframework"><code>iframework</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-imacros"><code>imacros</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-image_005fbase"><code>image_base</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-imultilib"><code>imultilib</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-include"><code>include</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-init"><code>init</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-install_005fname"><code>install_name</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iplugindir_003d"><code>iplugindir=</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iprefix"><code>iprefix</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iquote"><code>iquote</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isysroot"><code>isysroot</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isystem"><code>isystem</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iwithprefix"><code>iwithprefix</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iwithprefixbefore"><code>iwithprefixbefore</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-K">K</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-keep_005fprivate_005fexterns"><code>keep_private_externs</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-L">L</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-l"><code>l</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-L"><code>L</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lobjc"><code>lobjc</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-M">M</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-M"><code>M</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m"><code>m</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m-1"><code>m</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m1"><code>m1</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m10"><code>m10</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m128bit_002dlong_002ddouble"><code>m128bit-long-double</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m16"><code>m16</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m16_002dbit"><code>m16-bit</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m16_002dbit-1"><code>m16-bit</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m1reg_002d"><code>m1reg-</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m2"><code>m2</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m210"><code>m210</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m2a"><code>m2a</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m2a_002dnofpu"><code>m2a-nofpu</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m2a_002dsingle"><code>m2a-single</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m2a_002dsingle_002donly"><code>m2a-single-only</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m3"><code>m3</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m31"><code>m31</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32"><code>m32</code></a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32-1"><code>m32</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32-2"><code>m32</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32-3"><code>m32</code></a>:</td><td> </td><td valign="top"><a href="#TILE_002dGx-Options">TILE-Gx Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32-4"><code>m32</code></a>:</td><td> </td><td valign="top"><a href="#TILEPro-Options">TILEPro Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32-5"><code>m32</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32_002dbit"><code>m32-bit</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32bit_002ddoubles"><code>m32bit-doubles</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32bit_002ddoubles-1"><code>m32bit-doubles</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32r"><code>m32r</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32r2"><code>m32r2</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m32rx"><code>m32rx</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m340"><code>m340</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m3dnow"><code>m3dnow</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m3dnowa"><code>m3dnowa</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m3e"><code>m3e</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4"><code>m4</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d100"><code>m4-100</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d100_002dnofpu"><code>m4-100-nofpu</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d100_002dsingle"><code>m4-100-single</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d100_002dsingle_002donly"><code>m4-100-single-only</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d200"><code>m4-200</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d200_002dnofpu"><code>m4-200-nofpu</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d200_002dsingle"><code>m4-200-single</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d200_002dsingle_002donly"><code>m4-200-single-only</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d300"><code>m4-300</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d300_002dnofpu"><code>m4-300-nofpu</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d300_002dsingle"><code>m4-300-single</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d300_002dsingle_002donly"><code>m4-300-single-only</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d340"><code>m4-340</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002d500"><code>m4-500</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002dnofpu"><code>m4-nofpu</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002dsingle"><code>m4-single</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4_002dsingle_002donly"><code>m4-single-only</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m40"><code>m40</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m45"><code>m45</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4a"><code>m4a</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4a_002dnofpu"><code>m4a-nofpu</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4a_002dsingle"><code>m4a-single</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4a_002dsingle_002donly"><code>m4a-single-only</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4al"><code>m4al</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m4byte_002dfunctions"><code>m4byte-functions</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m5200"><code>m5200</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m5206e"><code>m5206e</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m528x"><code>m528x</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m5307"><code>m5307</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m5407"><code>m5407</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m64"><code>m64</code></a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m64-1"><code>m64</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m64-2"><code>m64</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m64-3"><code>m64</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m64-4"><code>m64</code></a>:</td><td> </td><td valign="top"><a href="#TILE_002dGx-Options">TILE-Gx Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m64-5"><code>m64</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m64bit_002ddoubles"><code>m64bit-doubles</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m64bit_002ddoubles-1"><code>m64bit-doubles</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68000"><code>m68000</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68010"><code>m68010</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68020"><code>m68020</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68020_002d40"><code>m68020-40</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68020_002d60"><code>m68020-60</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68030"><code>m68030</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68040"><code>m68040</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68060"><code>m68060</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m68881"><code>m68881</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m8_002dbit"><code>m8-bit</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m8bit_002didiv"><code>m8bit-idiv</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m8byte_002dalign"><code>m8byte-align</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-m96bit_002dlong_002ddouble"><code>m96bit-long-double</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mA6"><code>mA6</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mA7"><code>mA7</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi"><code>mabi</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi-1"><code>mabi</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi-2"><code>mabi</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi-3"><code>mabi</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi-4"><code>mabi</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi-5"><code>mabi</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003d32"><code>mabi=32</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003d64"><code>mabi=64</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003deabi"><code>mabi=eabi</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003delfv1"><code>mabi=elfv1</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003delfv1-1"><code>mabi=elfv1</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003delfv2"><code>mabi=elfv2</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003delfv2-1"><code>mabi=elfv2</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dgnu"><code>mabi=gnu</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dibmlongdouble"><code>mabi=ibmlongdouble</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dibmlongdouble-1"><code>mabi=ibmlongdouble</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dieeelongdouble"><code>mabi=ieeelongdouble</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dieeelongdouble-1"><code>mabi=ieeelongdouble</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dmmixware"><code>mabi=mmixware</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dn32"><code>mabi=n32</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dno_002dspe"><code>mabi=no-spe</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003do64"><code>mabi=o64</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabi_003dspe"><code>mabi=spe</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabicalls"><code>mabicalls</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabm"><code>mabm</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabort_002don_002dnoreturn"><code>mabort-on-noreturn</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabs_003d2008"><code>mabs=2008</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabs_003dlegacy"><code>mabs=legacy</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabsdata"><code>mabsdata</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabsdiff"><code>mabsdiff</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mabshi"><code>mabshi</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mac0"><code>mac0</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-macc_002d4"><code>macc-4</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-macc_002d8"><code>macc-8</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maccumulate_002dargs"><code>maccumulate-args</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maccumulate_002doutgoing_002dargs"><code>maccumulate-outgoing-args</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maccumulate_002doutgoing_002dargs-1"><code>maccumulate-outgoing-args</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maddress_002dmode_003dlong"><code>maddress-mode=long</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maddress_002dmode_003dshort"><code>maddress-mode=short</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maddress_002dspace_002dconversion"><code>maddress-space-conversion</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mads"><code>mads</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mads-1"><code>mads</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maes"><code>maes</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maix_002dstruct_002dreturn"><code>maix-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maix_002dstruct_002dreturn-1"><code>maix-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maix32"><code>maix32</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maix32-1"><code>maix32</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maix64"><code>maix64</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002d300"><code>malign-300</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002dcall"><code>malign-call</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002ddata"><code>malign-data</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002ddouble"><code>malign-double</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002dint"><code>malign-int</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002dlabels"><code>malign-labels</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002dloops"><code>malign-loops</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002dnatural"><code>malign-natural</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002dnatural-1"><code>malign-natural</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002dpower"><code>malign-power</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malign_002dpower-1"><code>malign-power</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mall_002dopts"><code>mall-opts</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malloc_002dcc"><code>malloc-cc</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mallow_002dstring_002dinsns"><code>mallow-string-insns</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mallregs"><code>mallregs</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maltivec"><code>maltivec</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maltivec_003dbe"><code>maltivec=be</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maltivec_003dle"><code>maltivec=le</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mam33"><code>mam33</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mam33_002d2"><code>mam33-2</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mam34"><code>mam34</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mandroid"><code>mandroid</code></a>:</td><td> </td><td valign="top"><a href="#GNU_002fLinux-Options">GNU/Linux Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mannotate_002dalign"><code>mannotate-align</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mapcs"><code>mapcs</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mapcs_002dframe"><code>mapcs-frame</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mapp_002dregs"><code>mapp-regs</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mapp_002dregs-1"><code>mapp-regs</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mARC600"><code>mARC600</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mARC601"><code>mARC601</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mARC700"><code>mARC700</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-1"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-2"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#C6X-Options">C6X Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-3"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-4"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-5"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-6"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-7"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-8"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-9"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-10"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-11"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-march-12"><code>march</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-marclinux"><code>marclinux</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-marclinux_005fprof"><code>marclinux_prof</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-margonaut"><code>margonaut</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-marm"><code>marm</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mas100_002dsyntax"><code>mas100-syntax</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-masm_002dhex"><code>masm-hex</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-masm_002dsyntax_002dunified"><code>masm-syntax-unified</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-masm_003ddialect"><code>masm=<var>dialect</var></code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-matomic"><code>matomic</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-matomic_002dmodel_003dmodel"><code>matomic-model=<var>model</var></code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-matomic_002dupdates"><code>matomic-updates</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mauto_002dlitpools"><code>mauto-litpools</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mauto_002dmodify_002dreg"><code>mauto-modify-reg</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mauto_002dpic"><code>mauto-pic</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-maverage"><code>maverage</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavoid_002dindexed_002daddresses"><code>mavoid-indexed-addresses</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavoid_002dindexed_002daddresses-1"><code>mavoid-indexed-addresses</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx"><code>mavx</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx2"><code>mavx2</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx256_002dsplit_002dunaligned_002dload"><code>mavx256-split-unaligned-load</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx256_002dsplit_002dunaligned_002dstore"><code>mavx256-split-unaligned-store</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512bitalg"><code>mavx512bitalg</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512bw"><code>mavx512bw</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512cd"><code>mavx512cd</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512dq"><code>mavx512dq</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512er"><code>mavx512er</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512f"><code>mavx512f</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512ifma"><code>mavx512ifma</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512pf"><code>mavx512pf</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512vbmi"><code>mavx512vbmi</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512vbmi2"><code>mavx512vbmi2</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512vl"><code>mavx512vl</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mavx512vpopcntdq"><code>mavx512vpopcntdq</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-max_002dvect_002dalign"><code>max-vect-align</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mb"><code>mb</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbackchain"><code>mbackchain</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbarrel_002dshift_002denabled"><code>mbarrel-shift-enabled</code></a>:</td><td> </td><td valign="top"><a href="#LM32-Options">LM32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbarrel_002dshifter"><code>mbarrel-shifter</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbarrel_005fshifter"><code>mbarrel_shifter</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbase_002daddresses"><code>mbase-addresses</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbased_003d"><code>mbased=</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbbit_002dpeephole"><code>mbbit-peephole</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbcopy"><code>mbcopy</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbcopy_002dbuiltin"><code>mbcopy-builtin</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbe8"><code>mbe8</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig"><code>mbig</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig-1"><code>mbig</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-1"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-2"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-3"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#C6X-Options">C6X Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-4"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-5"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-6"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-7"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-8"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-9"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian-10"><code>mbig-endian</code></a>:</td><td> </td><td valign="top"><a href="#TILE_002dGx-Options">TILE-Gx Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dendian_002ddata"><code>mbig-endian-data</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbig_002dswitch"><code>mbig-switch</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbigtable"><code>mbigtable</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbionic"><code>mbionic</code></a>:</td><td> </td><td valign="top"><a href="#GNU_002fLinux-Options">GNU/Linux Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbit_002dalign"><code>mbit-align</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbit_002dops"><code>mbit-ops</code></a>:</td><td> </td><td valign="top"><a href="#CR16-Options">CR16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbitfield"><code>mbitfield</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbitops"><code>mbitops</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbitops-1"><code>mbitops</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mblock_002dcompare_002dinline_002dlimit"><code>mblock-compare-inline-limit</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mblock_002dcompare_002dinline_002dloop_002dlimit"><code>mblock-compare-inline-loop-limit</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mblock_002dmove_002dinline_002dlimit"><code>mblock-move-inline-limit</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mblock_002dmove_002dinline_002dlimit-1"><code>mblock-move-inline-limit</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbmi"><code>mbmi</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dcheap"><code>mbranch-cheap</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dcost"><code>mbranch-cost</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dcost-1"><code>mbranch-cost</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dcost-2"><code>mbranch-cost</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dcost-3"><code>mbranch-cost</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dcost_003dnum"><code>mbranch-cost=<var>num</var></code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dcost_003dnumber"><code>mbranch-cost=<var>number</var></code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dexpensive"><code>mbranch-expensive</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dhints"><code>mbranch-hints</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dlikely"><code>mbranch-likely</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbranch_002dpredict"><code>mbranch-predict</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbss_002dplt"><code>mbss-plt</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbss_002dplt-1"><code>mbss-plt</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbuild_002dconstants"><code>mbuild-constants</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbwx"><code>mbwx</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mbypass_002dcache"><code>mbypass-cache</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mc68000"><code>mc68000</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mc68020"><code>mc68020</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mc_003d"><code>mc=</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcache_002dblock_002dsize"><code>mcache-block-size</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcache_002dsize"><code>mcache-size</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcache_002dvolatile"><code>mcache-volatile</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002deabi"><code>mcall-eabi</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002deabi-1"><code>mcall-eabi</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dfreebsd"><code>mcall-freebsd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dfreebsd-1"><code>mcall-freebsd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dlinux"><code>mcall-linux</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dlinux-1"><code>mcall-linux</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dms2sysv_002dxlogues"><code>mcall-ms2sysv-xlogues</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dnetbsd"><code>mcall-netbsd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dnetbsd-1"><code>mcall-netbsd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dnetbsd-2"><code>mcall-netbsd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dnetbsd-3"><code>mcall-netbsd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dprologues"><code>mcall-prologues</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dsysv"><code>mcall-sysv</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dsysv-1"><code>mcall-sysv</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dsysv_002deabi"><code>mcall-sysv-eabi</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dsysv_002deabi-1"><code>mcall-sysv-eabi</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dsysv_002dnoeabi"><code>mcall-sysv-noeabi</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcall_002dsysv_002dnoeabi-1"><code>mcall-sysv-noeabi</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcallee_002dsuper_002dinterworking"><code>mcallee-super-interworking</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcaller_002dcopies"><code>mcaller-copies</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcaller_002dsuper_002dinterworking"><code>mcaller-super-interworking</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcallgraph_002ddata"><code>mcallgraph-data</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcase_002dvector_002dpcrel"><code>mcase-vector-pcrel</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcbcond"><code>mcbcond</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcbranch_002dforce_002ddelay_002dslot"><code>mcbranch-force-delay-slot</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcc_002dinit"><code>mcc-init</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcet"><code>mcet</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcfv4e"><code>mcfv4e</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcheck_002dzero_002ddivision"><code>mcheck-zero-division</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcix"><code>mcix</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcld"><code>mcld</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mclear_002dhwcap"><code>mclear-hwcap</code></a>:</td><td> </td><td valign="top"><a href="#Solaris-2-Options">Solaris 2 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mclflushopt"><code>mclflushopt</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mclip"><code>mclip</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mclzero"><code>mclzero</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel"><code>mcmodel</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel-1"><code>mcmodel</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dkernel"><code>mcmodel=kernel</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dlarge"><code>mcmodel=large</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dlarge-1"><code>mcmodel=large</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dlarge-2"><code>mcmodel=large</code></a>:</td><td> </td><td valign="top"><a href="#TILE_002dGx-Options">TILE-Gx Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dlarge-3"><code>mcmodel=large</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dmedany"><code>mcmodel=medany</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dmedium"><code>mcmodel=medium</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dmedium-1"><code>mcmodel=medium</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dmedlow"><code>mcmodel=medlow</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dsmall"><code>mcmodel=small</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dsmall-1"><code>mcmodel=small</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dsmall-2"><code>mcmodel=small</code></a>:</td><td> </td><td valign="top"><a href="#TILE_002dGx-Options">TILE-Gx Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dsmall-3"><code>mcmodel=small</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmodel_003dtiny"><code>mcmodel=tiny</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmov"><code>mcmov</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmove"><code>mcmove</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmpb"><code>mcmpb</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcmse"><code>mcmse</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcode_002ddensity"><code>mcode-density</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcode_002dreadable"><code>mcode-readable</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcode_002dregion"><code>mcode-region</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcompact_002dbranches_003dalways"><code>mcompact-branches=always</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcompact_002dbranches_003dnever"><code>mcompact-branches=never</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcompact_002dbranches_003doptimal"><code>mcompact-branches=optimal</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcompact_002dcasesi"><code>mcompact-casesi</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcompat_002dalign_002dparm"><code>mcompat-align-parm</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcompat_002dalign_002dparm-1"><code>mcompat-align-parm</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcompress"><code>mcompress</code></a>:</td><td> </td><td valign="top"><a href="#FT32-Options">FT32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcond_002dexec"><code>mcond-exec</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcond_002dmove"><code>mcond-move</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mconfig_003d"><code>mconfig=</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mconsole"><code>mconsole</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mconst_002dalign"><code>mconst-align</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mconst16"><code>mconst16</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mconstant_002dgp"><code>mconstant-gp</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcop"><code>mcop</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcop32"><code>mcop32</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcop64"><code>mcop64</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcorea"><code>mcorea</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcoreb"><code>mcoreb</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-1"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-2"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-3"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-4"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-5"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-6"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-7"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#picoChip-Options">picoChip Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-8"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-9"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-10"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-11"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-12"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-13"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#TILE_002dGx-Options">TILE-Gx Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-14"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#TILEPro-Options">TILEPro Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-15"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu-16"><code>mcpu</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu32"><code>mcpu32</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu_003d"><code>mcpu=</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu_003d-1"><code>mcpu=</code></a>:</td><td> </td><td valign="top"><a href="#M32C-Options">M32C Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu_003d-2"><code>mcpu=</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcpu_003d-3"><code>mcpu=</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcr16c"><code>mcr16c</code></a>:</td><td> </td><td valign="top"><a href="#CR16-Options">CR16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcr16cplus"><code>mcr16cplus</code></a>:</td><td> </td><td valign="top"><a href="#CR16-Options">CR16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcrc32"><code>mcrc32</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcrypto"><code>mcrypto</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcsync_002danomaly"><code>mcsync-anomaly</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mctor_002ddtor"><code>mctor-dtor</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcustom_002dfpu_002dcfg"><code>mcustom-fpu-cfg</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcustom_002dinsn"><code>mcustom-<var>insn</var></code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mcx16"><code>mcx16</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MD"><code>MD</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdalign"><code>mdalign</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdata_002dalign"><code>mdata-align</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdata_002dmodel"><code>mdata-model</code></a>:</td><td> </td><td valign="top"><a href="#CR16-Options">CR16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdata_002dregion"><code>mdata-region</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdc"><code>mdc</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdebug"><code>mdebug</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdebug-1"><code>mdebug</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdebug-2"><code>mdebug</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdebug_002dmain_003dprefix"><code>mdebug-main=<var>prefix</var></code></a>:</td><td> </td><td valign="top"><a href="#VMS-Options">VMS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdec_002dasm"><code>mdec-asm</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdirect_002dmove"><code>mdirect-move</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdisable_002dcallt"><code>mdisable-callt</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdisable_002dfpregs"><code>mdisable-fpregs</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdisable_002dindexing"><code>mdisable-indexing</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdiv"><code>mdiv</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdiv-1"><code>mdiv</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdiv-2"><code>mdiv</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdiv-3"><code>mdiv</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdiv_002drem"><code>mdiv-rem</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdiv_003dstrategy"><code>mdiv=<var>strategy</var></code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdivide_002dbreaks"><code>mdivide-breaks</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdivide_002denabled"><code>mdivide-enabled</code></a>:</td><td> </td><td valign="top"><a href="#LM32-Options">LM32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdivide_002dtraps"><code>mdivide-traps</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdivsi3_005flibfunc_003dname"><code>mdivsi3_libfunc=<var>name</var></code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdll"><code>mdll</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdlmzb"><code>mdlmzb</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdmx"><code>mdmx</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdouble"><code>mdouble</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdouble_002dfloat"><code>mdouble-float</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdouble_002dfloat-1"><code>mdouble-float</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdouble_002dfloat-2"><code>mdouble-float</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdpfp"><code>mdpfp</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdpfp_002dcompact"><code>mdpfp-compact</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdpfp_002dfast"><code>mdpfp-fast</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdpfp_005fcompact"><code>mdpfp_compact</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdpfp_005ffast"><code>mdpfp_fast</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdsp"><code>mdsp</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdsp_002dpacka"><code>mdsp-packa</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdspr2"><code>mdspr2</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdsp_005fpacka"><code>mdsp_packa</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdual_002dnops"><code>mdual-nops</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdump_002dtune_002dfeatures"><code>mdump-tune-features</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdvbf"><code>mdvbf</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdwarf2_002dasm"><code>mdwarf2-asm</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdword"><code>mdword</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdynamic_002dno_002dpic"><code>mdynamic-no-pic</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mdynamic_002dno_002dpic-1"><code>mdynamic-no-pic</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mea"><code>mea</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mEA"><code>mEA</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mea32"><code>mea32</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mea64"><code>mea64</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-meabi"><code>meabi</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-meabi-1"><code>meabi</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mearly_002dcbranchsi"><code>mearly-cbranchsi</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mearly_002dstop_002dbits"><code>mearly-stop-bits</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-meb"><code>meb</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-meb-1"><code>meb</code></a>:</td><td> </td><td valign="top"><a href="#Moxie-Options">Moxie Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-meb-2"><code>meb</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-meb-3"><code>meb</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mel"><code>mel</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mel-1"><code>mel</code></a>:</td><td> </td><td valign="top"><a href="#Moxie-Options">Moxie Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mel-2"><code>mel</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mel-3"><code>mel</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-melf"><code>melf</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-melf-1"><code>melf</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memb"><code>memb</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memb-1"><code>memb</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-membedded_002ddata"><code>membedded-data</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memregs_003d"><code>memregs=</code></a>:</td><td> </td><td valign="top"><a href="#M32C-Options">M32C Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mep"><code>mep</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mepsilon"><code>mepsilon</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-merror_002dreloc"><code>merror-reloc</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mesa"><code>mesa</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-metrax100"><code>metrax100</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-metrax4"><code>metrax4</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-meva"><code>meva</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mexpand_002dadddi"><code>mexpand-adddi</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mexplicit_002drelocs"><code>mexplicit-relocs</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mexplicit_002drelocs-1"><code>mexplicit-relocs</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mexr"><code>mexr</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mextern_002dsdata"><code>mextern-sdata</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MF"><code>MF</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mf16c"><code>mf16c</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfast_002dfp"><code>mfast-fp</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfast_002dindirect_002dcalls"><code>mfast-indirect-calls</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfast_002dsw_002ddiv"><code>mfast-sw-div</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfaster_002dstructs"><code>mfaster-structs</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfdiv"><code>mfdiv</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfdpic"><code>mfdpic</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfentry"><code>mfentry</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix"><code>mfix</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002d24k"><code>mfix-24k</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dand_002dcontinue"><code>mfix-and-continue</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dat697f"><code>mfix-at697f</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dcortex_002da53_002d835769"><code>mfix-cortex-a53-835769</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dcortex_002da53_002d843419"><code>mfix-cortex-a53-843419</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dcortex_002dm3_002dldrd"><code>mfix-cortex-m3-ldrd</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dgr712rc"><code>mfix-gr712rc</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dr10000"><code>mfix-r10000</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dr4000"><code>mfix-r4000</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dr4400"><code>mfix-r4400</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002drm7000"><code>mfix-rm7000</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dsb1"><code>mfix-sb1</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dut699"><code>mfix-ut699</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dut700"><code>mfix-ut700</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dvr4120"><code>mfix-vr4120</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfix_002dvr4130"><code>mfix-vr4130</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfixed_002dcc"><code>mfixed-cc</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfixed_002drange"><code>mfixed-range</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfixed_002drange-1"><code>mfixed-range</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfixed_002drange-2"><code>mfixed-range</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfixed_002drange-3"><code>mfixed-range</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mflat"><code>mflat</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mflip_002dmips16"><code>mflip-mips16</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mflip_002dthumb"><code>mflip-thumb</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat_002dabi"><code>mfloat-abi</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat_002dgprs"><code>mfloat-gprs</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat_002dieee"><code>mfloat-ieee</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat_002dvax"><code>mfloat-vax</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat128"><code>mfloat128</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat128-1"><code>mfloat128</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat128_002dhardware"><code>mfloat128-hardware</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat32"><code>mfloat32</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfloat64"><code>mfloat64</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mflush_002dfunc"><code>mflush-func</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mflush_002dfunc_003dname"><code>mflush-func=<var>name</var></code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mflush_002dtrap_003dnumber"><code>mflush-trap=<var>number</var></code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfma"><code>mfma</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfma4"><code>mfma4</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfmaf"><code>mfmaf</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfmovd"><code>mfmovd</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mforce_002dindirect_002dcall"><code>mforce-indirect-call</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mforce_002dno_002dpic"><code>mforce-no-pic</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfp_002dexceptions"><code>mfp-exceptions</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfp_002dmode"><code>mfp-mode</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfp_002dreg"><code>mfp-reg</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfp_002drounding_002dmode"><code>mfp-rounding-mode</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfp_002dtrap_002dmode"><code>mfp-trap-mode</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfp16_002dformat"><code>mfp16-format</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfp32"><code>mfp32</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfp64"><code>mfp64</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpmath"><code>mfpmath</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpmath-1"><code>mfpmath</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpr_002d32"><code>mfpr-32</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpr_002d64"><code>mfpr-64</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfprnd"><code>mfprnd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpu"><code>mfpu</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpu-1"><code>mfpu</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpu-2"><code>mfpu</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpu-3"><code>mfpu</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpu-4"><code>mfpu</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpu-5"><code>mfpu</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfpxx"><code>mfpxx</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfract_002dconvert_002dtruncate"><code>mfract-convert-truncate</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mframe_002dheader_002dopt"><code>mframe-header-opt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfriz"><code>mfriz</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfsca"><code>mfsca</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfsgsbase"><code>mfsgsbase</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfsmuld"><code>mfsmuld</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfsrra"><code>mfsrra</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mft32b"><code>mft32b</code></a>:</td><td> </td><td valign="top"><a href="#FT32-Options">FT32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfull_002dregs"><code>mfull-regs</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfull_002dtoc"><code>mfull-toc</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfull_002dtoc-1"><code>mfull-toc</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfused_002dmadd"><code>mfused-madd</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfused_002dmadd-1"><code>mfused-madd</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfused_002dmadd-2"><code>mfused-madd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfused_002dmadd-3"><code>mfused-madd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfused_002dmadd-4"><code>mfused-madd</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfused_002dmadd-5"><code>mfused-madd</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfused_002dmadd-6"><code>mfused-madd</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mfxsr"><code>mfxsr</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MG"><code>MG</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mg"><code>mg</code></a>:</td><td> </td><td valign="top"><a href="#VAX-Options">VAX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mg10"><code>mg10</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mg13"><code>mg13</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mg14"><code>mg14</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgas"><code>mgas</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgas_002disr_002dprologues"><code>mgas-isr-prologues</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgcc_002dabi"><code>mgcc-abi</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgeneral_002dregs_002donly"><code>mgeneral-regs-only</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgeneral_002dregs_002donly-1"><code>mgeneral-regs-only</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgfni"><code>mgfni</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mghs"><code>mghs</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mglibc"><code>mglibc</code></a>:</td><td> </td><td valign="top"><a href="#GNU_002fLinux-Options">GNU/Linux Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgnu"><code>mgnu</code></a>:</td><td> </td><td valign="top"><a href="#VAX-Options">VAX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgnu_002das"><code>mgnu-as</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgnu_002dattribute"><code>mgnu-attribute</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgnu_002dattribute-1"><code>mgnu-attribute</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgnu_002dld"><code>mgnu-ld</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgnu_002dld-1"><code>mgnu-ld</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgomp"><code>mgomp</code></a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgotplt"><code>mgotplt</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgp32"><code>mgp32</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgp64"><code>mgp64</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgpopt"><code>mgpopt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgpopt-1"><code>mgpopt</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgpr_002d32"><code>mgpr-32</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgpr_002d64"><code>mgpr-64</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgprel_002dro"><code>mgprel-ro</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mgprel_002dsec"><code>mgprel-sec</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mh"><code>mh</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhal"><code>mhal</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhalf_002dreg_002dfile"><code>mhalf-reg-file</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002ddfp"><code>mhard-dfp</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002ddfp-1"><code>mhard-dfp</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-1"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-2"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-3"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-4"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-5"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-6"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-7"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-8"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-9"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dfloat-10"><code>mhard-float</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhard_002dquad_002dfloat"><code>mhard-quad-float</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhardlit"><code>mhardlit</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhint_002dmax_002ddistance"><code>mhint-max-distance</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhint_002dmax_002dnops"><code>mhint-max-nops</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhotpatch"><code>mhotpatch</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhp_002dld"><code>mhp-ld</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhtm"><code>mhtm</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhtm-1"><code>mhtm</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhw_002ddiv"><code>mhw-div</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhw_002dmul"><code>mhw-mul</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhw_002dmulx"><code>mhw-mulx</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mhwmult_003d"><code>mhwmult=</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-miamcu"><code>miamcu</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mibt"><code>mibt</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-micplb"><code>micplb</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mid_002dshared_002dlibrary"><code>mid-shared-library</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mieee"><code>mieee</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mieee-1"><code>mieee</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mieee_002dconformant"><code>mieee-conformant</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mieee_002dfp"><code>mieee-fp</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mieee_002dwith_002dinexact"><code>mieee-with-inexact</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-milp32"><code>milp32</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mimadd"><code>mimadd</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mimpure_002dtext"><code>mimpure-text</code></a>:</td><td> </td><td valign="top"><a href="#Solaris-2-Options">Solaris 2 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mincoming_002dstack_002dboundary"><code>mincoming-stack-boundary</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mindexed_002dloads"><code>mindexed-loads</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dall_002dstringops"><code>minline-all-stringops</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dfloat_002ddivide_002dmax_002dthroughput"><code>minline-float-divide-max-throughput</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dfloat_002ddivide_002dmin_002dlatency"><code>minline-float-divide-min-latency</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dic_005finvalidate"><code>minline-ic_invalidate</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dint_002ddivide_002dmax_002dthroughput"><code>minline-int-divide-max-throughput</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dint_002ddivide_002dmin_002dlatency"><code>minline-int-divide-min-latency</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dplt"><code>minline-plt</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dplt-1"><code>minline-plt</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dsqrt_002dmax_002dthroughput"><code>minline-sqrt-max-throughput</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dsqrt_002dmin_002dlatency"><code>minline-sqrt-min-latency</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minline_002dstringops_002ddynamically"><code>minline-stringops-dynamically</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minrt"><code>minrt</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minsert_002dsched_002dnops"><code>minsert-sched-nops</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minsert_002dsched_002dnops-1"><code>minsert-sched-nops</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mint_002dregister"><code>mint-register</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mint16"><code>mint16</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mint32"><code>mint32</code></a>:</td><td> </td><td valign="top"><a href="#CR16-Options">CR16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mint32-1"><code>mint32</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mint32-2"><code>mint32</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mint8"><code>mint8</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minterlink_002dcompressed"><code>minterlink-compressed</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minterlink_002dmips16"><code>minterlink-mips16</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mio_002dvolatile"><code>mio-volatile</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips1"><code>mips1</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips16"><code>mips16</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips2"><code>mips2</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips3"><code>mips3</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips32"><code>mips32</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips32r3"><code>mips32r3</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips32r5"><code>mips32r5</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips32r6"><code>mips32r6</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips3d"><code>mips3d</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips4"><code>mips4</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips64"><code>mips64</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips64r2"><code>mips64r2</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips64r3"><code>mips64r3</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips64r5"><code>mips64r5</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips64r6"><code>mips64r6</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mirq_002dctrl_002dsaved"><code>mirq-ctrl-saved</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-misel"><code>misel</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-misel-1"><code>misel</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-misize"><code>misize</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-misize-1"><code>misize</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-misr_002dvector_002dsize"><code>misr-vector-size</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-missue_002drate_003dnumber"><code>missue-rate=<var>number</var></code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mivc2"><code>mivc2</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mjli_002dalawys"><code>mjli-alawys</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mjsr"><code>mjsr</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mjump_002din_002ddelay"><code>mjump-in-delay</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mkernel"><code>mkernel</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mknuthdiv"><code>mknuthdiv</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ml"><code>ml</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ml-1"><code>ml</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlarge"><code>mlarge</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlarge_002ddata"><code>mlarge-data</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlarge_002ddata_002dthreshold"><code>mlarge-data-threshold</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlarge_002dmem"><code>mlarge-mem</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlarge_002dtext"><code>mlarge-text</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mleadz"><code>mleadz</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mleaf_002did_002dshared_002dlibrary"><code>mleaf-id-shared-library</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlibfuncs"><code>mlibfuncs</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlibrary_002dpic"><code>mlibrary-pic</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlinked_002dfp"><code>mlinked-fp</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlinker_002dopt"><code>mlinker-opt</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlinux"><code>mlinux</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle"><code>mlittle</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle-1"><code>mlittle</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-1"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-2"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-3"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#C6X-Options">C6X Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-4"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-5"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-6"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-7"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-8"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-9"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian-10"><code>mlittle-endian</code></a>:</td><td> </td><td valign="top"><a href="#TILE_002dGx-Options">TILE-Gx Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlittle_002dendian_002ddata"><code>mlittle-endian-data</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mliw"><code>mliw</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mll64"><code>mll64</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mllsc"><code>mllsc</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mload_002dstore_002dpairs"><code>mload-store-pairs</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlocal_002dsdata"><code>mlocal-sdata</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlock"><code>mlock</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002dcalls"><code>mlong-calls</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002dcalls-1"><code>mlong-calls</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002dcalls-2"><code>mlong-calls</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002dcalls-3"><code>mlong-calls</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002dcalls-4"><code>mlong-calls</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002dcalls-5"><code>mlong-calls</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002dcalls-6"><code>mlong-calls</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002ddouble_002d128"><code>mlong-double-128</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002ddouble_002d128-1"><code>mlong-double-128</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002ddouble_002d64"><code>mlong-double-64</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002ddouble_002d64-1"><code>mlong-double-64</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002ddouble_002d80"><code>mlong-double-80</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002djump_002dtable_002doffsets"><code>mlong-jump-table-offsets</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002djumps"><code>mlong-jumps</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong_002dload_002dstore"><code>mlong-load-store</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong32"><code>mlong32</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlong64"><code>mlong64</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlongcall"><code>mlongcall</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlongcall-1"><code>mlongcall</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlongcalls"><code>mlongcalls</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mloop"><code>mloop</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlow_002d64k"><code>mlow-64k</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlow_002dprecision_002drecip_002dsqrt"><code>mlow-precision-recip-sqrt</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlp64"><code>mlp64</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlpc_002dwidth"><code>mlpc-width</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlra"><code>mlra</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlra-1"><code>mlra</code></a>:</td><td> </td><td valign="top"><a href="#FT32-Options">FT32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlra-2"><code>mlra</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlra_002dpriority_002dcompact"><code>mlra-priority-compact</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlra_002dpriority_002dnoncompact"><code>mlra-priority-noncompact</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlra_002dpriority_002dnone"><code>mlra-priority-none</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlwp"><code>mlwp</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlxc1_002dsxc1"><code>mlxc1-sxc1</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mlzcnt"><code>mlzcnt</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MM"><code>MM</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mm"><code>mm</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmac"><code>mmac</code></a>:</td><td> </td><td valign="top"><a href="#CR16-Options">CR16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmac-1"><code>mmac</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmac_002d24"><code>mmac-24</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmac_002dd16"><code>mmac-d16</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmac_005f24"><code>mmac_24</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmac_005fd16"><code>mmac_d16</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmad"><code>mmad</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmadd4"><code>mmadd4</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmain_002dis_002dOS_005ftask"><code>mmain-is-OS_task</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmainkernel"><code>mmainkernel</code></a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmalloc64"><code>mmalloc64</code></a>:</td><td> </td><td valign="top"><a href="#VMS-Options">VMS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmax"><code>mmax</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmax_002dconstant_002dsize"><code>mmax-constant-size</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmax_002dstack_002dframe"><code>mmax-stack-frame</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmcount_002dra_002daddress"><code>mmcount-ra-address</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmcu"><code>mmcu</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmcu-1"><code>mmcu</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmcu_003d"><code>mmcu=</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MMD"><code>MMD</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmedia"><code>mmedia</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmedium_002dcalls"><code>mmedium-calls</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmemcpy"><code>mmemcpy</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmemcpy-1"><code>mmemcpy</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmemcpy_002dstrategy_003dstrategy"><code>mmemcpy-strategy=<var>strategy</var></code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmemory_002dlatency"><code>mmemory-latency</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmemory_002dmodel"><code>mmemory-model</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmemset_002dstrategy_003dstrategy"><code>mmemset-strategy=<var>strategy</var></code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmfcrf"><code>mmfcrf</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmfcrf-1"><code>mmfcrf</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmfpgpr"><code>mmfpgpr</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmicromips"><code>mmicromips</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mminimal_002dtoc"><code>mminimal-toc</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mminimal_002dtoc-1"><code>mminimal-toc</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mminmax"><code>mminmax</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmitigate_002drop"><code>mmitigate-rop</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmixed_002dcode"><code>mmixed-code</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmmx"><code>mmmx</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmodel_003dlarge"><code>mmodel=large</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmodel_003dmedium"><code>mmodel=medium</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmodel_003dsmall"><code>mmodel=small</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmovbe"><code>mmovbe</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmpx"><code>mmpx</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmpy_002doption"><code>mmpy-option</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mms_002dbitfields"><code>mms-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmt"><code>mmt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmul"><code>mmul</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmul_002dbug_002dworkaround"><code>mmul-bug-workaround</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmul_002ex"><code>mmul.x</code></a>:</td><td> </td><td valign="top"><a href="#Moxie-Options">Moxie Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmul32x16"><code>mmul32x16</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmul64"><code>mmul64</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmuladd"><code>mmuladd</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmulhw"><code>mmulhw</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmult"><code>mmult</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmult_002dbug"><code>mmult-bug</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmultcost"><code>mmultcost</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmulti_002dcond_002dexec"><code>mmulti-cond-exec</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmulticore"><code>mmulticore</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmultiple"><code>mmultiple</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmultiple-1"><code>mmultiple</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmusl"><code>mmusl</code></a>:</td><td> </td><td valign="top"><a href="#GNU_002fLinux-Options">GNU/Linux Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmvcle"><code>mmvcle</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmvme"><code>mmvme</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmvme-1"><code>mmvme</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mmwaitx"><code>mmwaitx</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mn"><code>mn</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mn_002dflash"><code>mn-flash</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnan_003d2008"><code>mnan=2008</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnan_003dlegacy"><code>mnan=legacy</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mneon_002dfor_002d64bits"><code>mneon-for-64bits</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnested_002dcond_002dexec"><code>mnested-cond-exec</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnhwloop"><code>mnhwloop</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002d16_002dbit"><code>mno-16-bit</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002d4byte_002dfunctions"><code>mno-4byte-functions</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002d8byte_002dalign"><code>mno-8byte-align</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dabicalls"><code>mno-abicalls</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dabshi"><code>mno-abshi</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dac0"><code>mno-ac0</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002daddress_002dspace_002dconversion"><code>mno-address-space-conversion</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dalign_002ddouble"><code>mno-align-double</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dalign_002dint"><code>mno-align-int</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dalign_002dloops"><code>mno-align-loops</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dalign_002dstringops"><code>mno-align-stringops</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dallow_002dstring_002dinsns"><code>mno-allow-string-insns</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002daltivec"><code>mno-altivec</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dam33"><code>mno-am33</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dapp_002dregs"><code>mno-app-regs</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dapp_002dregs-1"><code>mno-app-regs</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002das100_002dsyntax"><code>mno-as100-syntax</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002datomic_002dupdates"><code>mno-atomic-updates</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dauto_002dlitpools"><code>mno-auto-litpools</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002davoid_002dindexed_002daddresses"><code>mno-avoid-indexed-addresses</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002davoid_002dindexed_002daddresses-1"><code>mno-avoid-indexed-addresses</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbackchain"><code>mno-backchain</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbase_002daddresses"><code>mno-base-addresses</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbit_002dalign"><code>mno-bit-align</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbitfield"><code>mno-bitfield</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbranch_002dlikely"><code>mno-branch-likely</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbranch_002dpredict"><code>mno-branch-predict</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbrcc"><code>mno-brcc</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbwx"><code>mno-bwx</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dbypass_002dcache"><code>mno-bypass-cache</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcache_002dvolatile"><code>mno-cache-volatile</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcall_002dms2sysv_002dxlogues"><code>mno-call-ms2sysv-xlogues</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcallgraph_002ddata"><code>mno-callgraph-data</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcbcond"><code>mno-cbcond</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcheck_002dzero_002ddivision"><code>mno-check-zero-division</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcix"><code>mno-cix</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dclearbss"><code>mno-clearbss</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcmov"><code>mno-cmov</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcmpb"><code>mno-cmpb</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcond_002dexec"><code>mno-cond-exec</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcond_002dexec-1"><code>mno-cond-exec</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcond_002dmove"><code>mno-cond-move</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dconst_002dalign"><code>mno-const-align</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dconst16"><code>mno-const16</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcrt0"><code>mno-crt0</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcrt0-1"><code>mno-crt0</code></a>:</td><td> </td><td valign="top"><a href="#Moxie-Options">Moxie Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcrypto"><code>mno-crypto</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcsync_002danomaly"><code>mno-csync-anomaly</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dcustom_002dinsn"><code>mno-custom-<var>insn</var></code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddata_002dalign"><code>mno-data-align</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddebug"><code>mno-debug</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddefault"><code>mno-default</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddirect_002dmove"><code>mno-direct-move</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddisable_002dcallt"><code>mno-disable-callt</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddiv"><code>mno-div</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddiv-1"><code>mno-div</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddlmzb"><code>mno-dlmzb</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddouble"><code>mno-double</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddpfp_002dlrsr"><code>mno-dpfp-lrsr</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddsp"><code>mno-dsp</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddspr2"><code>mno-dspr2</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddwarf2_002dasm"><code>mno-dwarf2-asm</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002ddword"><code>mno-dword</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002deabi"><code>mno-eabi</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002deabi-1"><code>mno-eabi</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dearly_002dstop_002dbits"><code>mno-early-stop-bits</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002deflags"><code>mno-eflags</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dembedded_002ddata"><code>mno-embedded-data</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dep"><code>mno-ep</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002depsilon"><code>mno-epsilon</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002deva"><code>mno-eva</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dexplicit_002drelocs"><code>mno-explicit-relocs</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dexplicit_002drelocs-1"><code>mno-explicit-relocs</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dexr"><code>mno-exr</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dextern_002dsdata"><code>mno-extern-sdata</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfancy_002dmath_002d387"><code>mno-fancy-math-387</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfast_002dsw_002ddiv"><code>mno-fast-sw-div</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfaster_002dstructs"><code>mno-faster-structs</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfix"><code>mno-fix</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfix_002d24k"><code>mno-fix-24k</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfix_002dcortex_002da53_002d835769"><code>mno-fix-cortex-a53-835769</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfix_002dcortex_002da53_002d843419"><code>mno-fix-cortex-a53-843419</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfix_002dr10000"><code>mno-fix-r10000</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfix_002dr4000"><code>mno-fix-r4000</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfix_002dr4400"><code>mno-fix-r4400</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dflat"><code>mno-flat</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfloat"><code>mno-float</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfloat128"><code>mno-float128</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfloat128-1"><code>mno-float128</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfloat128_002dhardware"><code>mno-float128-hardware</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfloat32"><code>mno-float32</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfloat64"><code>mno-float64</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dflush_002dfunc"><code>mno-flush-func</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dflush_002dtrap"><code>mno-flush-trap</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfmaf"><code>mno-fmaf</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfp_002din_002dtoc"><code>mno-fp-in-toc</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfp_002din_002dtoc-1"><code>mno-fp-in-toc</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfp_002dregs"><code>mno-fp-regs</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfp_002dret_002din_002d387"><code>mno-fp-ret-in-387</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfprnd"><code>mno-fprnd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfpu"><code>mno-fpu</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfpu-1"><code>mno-fpu</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfsca"><code>mno-fsca</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfsmuld"><code>mno-fsmuld</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfsrra"><code>mno-fsrra</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfused_002dmadd"><code>mno-fused-madd</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfused_002dmadd-1"><code>mno-fused-madd</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfused_002dmadd-2"><code>mno-fused-madd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfused_002dmadd-3"><code>mno-fused-madd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfused_002dmadd-4"><code>mno-fused-madd</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfused_002dmadd-5"><code>mno-fused-madd</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dfused_002dmadd-6"><code>mno-fused-madd</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dgnu_002das"><code>mno-gnu-as</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dgnu_002dattribute"><code>mno-gnu-attribute</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dgnu_002dattribute-1"><code>mno-gnu-attribute</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dgnu_002dld"><code>mno-gnu-ld</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dgotplt"><code>mno-gotplt</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dgpopt"><code>mno-gpopt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dgpopt-1"><code>mno-gpopt</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dhard_002ddfp"><code>mno-hard-dfp</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dhard_002ddfp-1"><code>mno-hard-dfp</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dhardlit"><code>mno-hardlit</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dhtm"><code>mno-htm</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dhtm-1"><code>mno-htm</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dhw_002ddiv"><code>mno-hw-div</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dhw_002dmul"><code>mno-hw-mul</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dhw_002dmulx"><code>mno-hw-mulx</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002did_002dshared_002dlibrary"><code>mno-id-shared-library</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dieee"><code>mno-ieee</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dieee_002dfp"><code>mno-ieee-fp</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dimadd"><code>mno-imadd</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dinline_002dfloat_002ddivide"><code>mno-inline-float-divide</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dinline_002dint_002ddivide"><code>mno-inline-int-divide</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dinline_002dsqrt"><code>mno-inline-sqrt</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dint16"><code>mno-int16</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dint32"><code>mno-int32</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dinterlink_002dcompressed"><code>mno-interlink-compressed</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dinterlink_002dmips16"><code>mno-interlink-mips16</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dinterrupts"><code>mno-interrupts</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002disel"><code>mno-isel</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002disel-1"><code>mno-isel</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002djsr"><code>mno-jsr</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dknuthdiv"><code>mno-knuthdiv</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dleaf_002did_002dshared_002dlibrary"><code>mno-leaf-id-shared-library</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlibfuncs"><code>mno-libfuncs</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dllsc"><code>mno-llsc</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dload_002dstore_002dpairs"><code>mno-load-store-pairs</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlocal_002dsdata"><code>mno-local-sdata</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlong_002dcalls"><code>mno-long-calls</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlong_002dcalls-1"><code>mno-long-calls</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlong_002dcalls-2"><code>mno-long-calls</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlong_002dcalls-3"><code>mno-long-calls</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlong_002dcalls-4"><code>mno-long-calls</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlong_002djumps"><code>mno-long-jumps</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlongcall"><code>mno-longcall</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlongcall-1"><code>mno-longcall</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlongcalls"><code>mno-longcalls</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlow_002d64k"><code>mno-low-64k</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlow_002dprecision_002drecip_002dsqrt"><code>mno-low-precision-recip-sqrt</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlra"><code>mno-lra</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlsim"><code>mno-lsim</code></a>:</td><td> </td><td valign="top"><a href="#FR30-Options">FR30 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dlsim-1"><code>mno-lsim</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmad"><code>mno-mad</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmax"><code>mno-max</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmcount_002dra_002daddress"><code>mno-mcount-ra-address</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmcu"><code>mno-mcu</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmdmx"><code>mno-mdmx</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmedia"><code>mno-media</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmemcpy"><code>mno-memcpy</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmfcrf"><code>mno-mfcrf</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmfcrf-1"><code>mno-mfcrf</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmfpgpr"><code>mno-mfpgpr</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmillicode"><code>mno-millicode</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmips16"><code>mno-mips16</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmips3d"><code>mno-mips3d</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmmicromips"><code>mno-mmicromips</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmpy"><code>mno-mpy</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dms_002dbitfields"><code>mno-ms-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmt"><code>mno-mt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmul_002dbug_002dworkaround"><code>mno-mul-bug-workaround</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmuladd"><code>mno-muladd</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmulhw"><code>mno-mulhw</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmult_002dbug"><code>mno-mult-bug</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmulti_002dcond_002dexec"><code>mno-multi-cond-exec</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmultiple"><code>mno-multiple</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmultiple-1"><code>mno-multiple</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dmvcle"><code>mno-mvcle</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dnested_002dcond_002dexec"><code>mno-nested-cond-exec</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dodd_002dspreg"><code>mno-odd-spreg</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002domit_002dleaf_002dframe_002dpointer"><code>mno-omit-leaf-frame-pointer</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002doptimize_002dmembar"><code>mno-optimize-membar</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dopts"><code>mno-opts</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpack"><code>mno-pack</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpacked_002dstack"><code>mno-packed-stack</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpaired"><code>mno-paired</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpaired_002dsingle"><code>mno-paired-single</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpc_002drelative_002dliteral_002dloads"><code>mno-pc-relative-literal-loads</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dperf_002dext"><code>mno-perf-ext</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dperf_002dext-1"><code>mno-perf-ext</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dperf_002dext-2"><code>mno-perf-ext</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpic"><code>mno-pic</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpid"><code>mno-pid</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dplt"><code>mno-plt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpopc"><code>mno-popc</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpopcntb"><code>mno-popcntb</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpopcntb-1"><code>mno-popcntb</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpopcntd"><code>mno-popcntd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpostinc"><code>mno-postinc</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpostmodify"><code>mno-postmodify</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpower8_002dfusion"><code>mno-power8-fusion</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpower8_002dvector"><code>mno-power8-vector</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpowerpc_002dgfxopt"><code>mno-powerpc-gfxopt</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpowerpc_002dgpopt"><code>mno-powerpc-gpopt</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpowerpc64"><code>mno-powerpc64</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dprolog_002dfunction"><code>mno-prolog-function</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dprologue_002depilogue"><code>mno-prologue-epilogue</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dprototype"><code>mno-prototype</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dprototype-1"><code>mno-prototype</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dpush_002dargs"><code>mno-push-args</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dquad_002dmemory"><code>mno-quad-memory</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dquad_002dmemory_002datomic"><code>mno-quad-memory-atomic</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dreadonly_002din_002dsdata"><code>mno-readonly-in-sdata</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dred_002dzone"><code>mno-red-zone</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dregister_002dnames"><code>mno-register-names</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dregnames"><code>mno-regnames</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dregnames-1"><code>mno-regnames</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002drelax"><code>mno-relax</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002drelax_002dimmediate"><code>mno-relax-immediate</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002drelocatable"><code>mno-relocatable</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002drelocatable-1"><code>mno-relocatable</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002drelocatable_002dlib"><code>mno-relocatable-lib</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002drelocatable_002dlib-1"><code>mno-relocatable-lib</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002drenesas"><code>mno-renesas</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dround_002dnearest"><code>mno-round-nearest</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002drtd"><code>mno-rtd</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsave_002dmduc_002din_002dinterrupts"><code>mno-save-mduc-in-interrupts</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dscc"><code>mno-scc</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dar_002ddata_002dspec"><code>mno-sched-ar-data-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dar_002din_002ddata_002dspec"><code>mno-sched-ar-in-data-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dbr_002ddata_002dspec"><code>mno-sched-br-data-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dbr_002din_002ddata_002dspec"><code>mno-sched-br-in-data-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dcontrol_002dspec"><code>mno-sched-control-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dcount_002dspec_002din_002dcritical_002dpath"><code>mno-sched-count-spec-in-critical-path</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002din_002dcontrol_002dspec"><code>mno-sched-in-control-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns"><code>mno-sched-prefer-non-control-spec-insns</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dprefer_002dnon_002ddata_002dspec_002dinsns"><code>mno-sched-prefer-non-data-spec-insns</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsched_002dprolog"><code>mno-sched-prolog</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsdata"><code>mno-sdata</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsdata-1"><code>mno-sdata</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsdata-2"><code>mno-sdata</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsdata-3"><code>mno-sdata</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsep_002ddata"><code>mno-sep-data</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dserialize_002dvolatile"><code>mno-serialize-volatile</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dshort"><code>mno-short</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dside_002deffects"><code>mno-side-effects</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsim"><code>mno-sim</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsingle_002dexit"><code>mno-single-exit</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dslow_002dbytes"><code>mno-slow-bytes</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsmall_002dexec"><code>mno-small-exec</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsmartmips"><code>mno-smartmips</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsoft_002dcmpsf"><code>mno-soft-cmpsf</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsoft_002dfloat"><code>mno-soft-float</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dspace_002dregs"><code>mno-space-regs</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dspe"><code>mno-spe</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dspecld_002danomaly"><code>mno-specld-anomaly</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsplit_002daddresses"><code>mno-split-addresses</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dstack_002dalign"><code>mno-stack-align</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dstack_002dbias"><code>mno-stack-bias</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dstd_002dstruct_002dreturn"><code>mno-std-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dstrict_002dalign"><code>mno-strict-align</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dstrict_002dalign-1"><code>mno-strict-align</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dstrict_002dalign-2"><code>mno-strict-align</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsubxc"><code>mno-subxc</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsum_002din_002dtoc"><code>mno-sum-in-toc</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsum_002din_002dtoc-1"><code>mno-sum-in-toc</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dsym32"><code>mno-sym32</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dtarget_002dalign"><code>mno-target-align</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dtext_002dsection_002dliterals"><code>mno-text-section-literals</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dtls_002dmarkers"><code>mno-tls-markers</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dtls_002dmarkers-1"><code>mno-tls-markers</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dtoc"><code>mno-toc</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dtoc-1"><code>mno-toc</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dtoplevel_002dsymbols"><code>mno-toplevel-symbols</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dtpf_002dtrace"><code>mno-tpf-trace</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dunaligned_002daccess"><code>mno-unaligned-access</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dunaligned_002ddoubles"><code>mno-unaligned-doubles</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002duninit_002dconst_002din_002drodata"><code>mno-uninit-const-in-rodata</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dupdate"><code>mno-update</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dupdate-1"><code>mno-update</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002duser_002dmode"><code>mno-user-mode</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dusermode"><code>mno-usermode</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dv3push"><code>mno-v3push</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dv8plus"><code>mno-v8plus</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvect_002ddouble"><code>mno-vect-double</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvirt"><code>mno-virt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvis"><code>mno-vis</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvis2"><code>mno-vis2</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvis3"><code>mno-vis3</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvis4"><code>mno-vis4</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvis4b"><code>mno-vis4b</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvliw_002dbranch"><code>mno-vliw-branch</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvolatile_002dasm_002dstop"><code>mno-volatile-asm-stop</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvolatile_002dcache"><code>mno-volatile-cache</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvrsave"><code>mno-vrsave</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvsx"><code>mno-vsx</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dvx"><code>mno-vx</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dwarn_002dmcu"><code>mno-warn-mcu</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dwarn_002dmultiple_002dfast_002dinterrupts"><code>mno-warn-multiple-fast-interrupts</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dwide_002dbitfields"><code>mno-wide-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dxgot"><code>mno-xgot</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dxgot-1"><code>mno-xgot</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dxl_002dcompat"><code>mno-xl-compat</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dxl_002dcompat-1"><code>mno-xl-compat</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dxpa"><code>mno-xpa</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dzdcbranch"><code>mno-zdcbranch</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dzero_002dextend"><code>mno-zero-extend</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mno_002dzvector"><code>mno-zvector</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnobitfield"><code>mnobitfield</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnodiv"><code>mnodiv</code></a>:</td><td> </td><td valign="top"><a href="#FT32-Options">FT32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnoliw"><code>mnoliw</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnomacsave"><code>mnomacsave</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnop_002dfun_002ddllimport"><code>mnop-fun-dllimport</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnop_002dmcount"><code>mnop-mcount</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnopm"><code>mnopm</code></a>:</td><td> </td><td valign="top"><a href="#FT32-Options">FT32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnops"><code>mnops</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnorm"><code>mnorm</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnosetlb"><code>mnosetlb</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mnosplit_002dlohi"><code>mnosplit-lohi</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-modd_002dspreg"><code>modd-spreg</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-momit_002dleaf_002dframe_002dpointer"><code>momit-leaf-frame-pointer</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-momit_002dleaf_002dframe_002dpointer-1"><code>momit-leaf-frame-pointer</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-momit_002dleaf_002dframe_002dpointer-2"><code>momit-leaf-frame-pointer</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mone_002dbyte_002dbool"><code>mone-byte-bool</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-moptimize"><code>moptimize</code></a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-moptimize_002dmembar"><code>moptimize-membar</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-moverride"><code>moverride</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MP"><code>MP</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpa_002drisc_002d1_002d0"><code>mpa-risc-1-0</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpa_002drisc_002d1_002d1"><code>mpa-risc-1-1</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpa_002drisc_002d2_002d0"><code>mpa-risc-2-0</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpack"><code>mpack</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpacked_002dstack"><code>mpacked-stack</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpadstruct"><code>mpadstruct</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpaired"><code>mpaired</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpaired_002dsingle"><code>mpaired-single</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpc_002drelative_002dliteral_002dloads"><code>mpc-relative-literal-loads</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpc32"><code>mpc32</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpc64"><code>mpc64</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpc80"><code>mpc80</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpclmul"><code>mpclmul</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpconfig"><code>mpconfig</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpcrel"><code>mpcrel</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpdebug"><code>mpdebug</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpe"><code>mpe</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpe_002daligned_002dcommons"><code>mpe-aligned-commons</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mperf_002dext"><code>mperf-ext</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mperf_002dext-1"><code>mperf-ext</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mperf_002dext-2"><code>mperf-ext</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpic_002ddata_002dis_002dtext_002drelative"><code>mpic-data-is-text-relative</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpic_002dregister"><code>mpic-register</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpid"><code>mpid</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpku"><code>mpku</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mplt"><code>mplt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpointer_002dsize_003dsize"><code>mpointer-size=<var>size</var></code></a>:</td><td> </td><td valign="top"><a href="#VMS-Options">VMS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpointers_002dto_002dnested_002dfunctions"><code>mpointers-to-nested-functions</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpointers_002dto_002dnested_002dfunctions-1"><code>mpointers-to-nested-functions</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpoke_002dfunction_002dname"><code>mpoke-function-name</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpopc"><code>mpopc</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpopcnt"><code>mpopcnt</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpopcntb"><code>mpopcntb</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpopcntb-1"><code>mpopcntb</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpopcntd"><code>mpopcntd</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mportable_002druntime"><code>mportable-runtime</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpower8_002dfusion"><code>mpower8-fusion</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpower8_002dvector"><code>mpower8-vector</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpowerpc_002dgfxopt"><code>mpowerpc-gfxopt</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpowerpc_002dgpopt"><code>mpowerpc-gpopt</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpowerpc64"><code>mpowerpc64</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprefer_002davx128"><code>mprefer-avx128</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprefer_002dshort_002dinsn_002dregs"><code>mprefer-short-insn-regs</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprefer_002dvector_002dwidth"><code>mprefer-vector-width</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprefergot"><code>mprefergot</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpreferred_002dstack_002dboundary"><code>mpreferred-stack-boundary</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpreferred_002dstack_002dboundary-1"><code>mpreferred-stack-boundary</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprefetchwt1"><code>mprefetchwt1</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpretend_002dcmove"><code>mpretend-cmove</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprint_002dtune_002dinfo"><code>mprint-tune-info</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprioritize_002drestricted_002dinsns"><code>mprioritize-restricted-insns</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprioritize_002drestricted_002dinsns-1"><code>mprioritize-restricted-insns</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprolog_002dfunction"><code>mprolog-function</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprologue_002depilogue"><code>mprologue-epilogue</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprototype"><code>mprototype</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mprototype-1"><code>mprototype</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpure_002dcode"><code>mpure-code</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mpush_002dargs"><code>mpush-args</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MQ"><code>MQ</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mq_002dclass"><code>mq-class</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mquad_002dmemory"><code>mquad-memory</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mquad_002dmemory_002datomic"><code>mquad-memory-atomic</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mr0rel_002dsec"><code>mr0rel-sec</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mr10k_002dcache_002dbarrier"><code>mr10k-cache-barrier</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mRcq"><code>mRcq</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mRcw"><code>mRcw</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrdrnd"><code>mrdrnd</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mreadonly_002din_002dsdata"><code>mreadonly-in-sdata</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecip"><code>mrecip</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecip-1"><code>mrecip</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecip-2"><code>mrecip</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecip_002dprecision"><code>mrecip-precision</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecip_002dprecision-1"><code>mrecip-precision</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecip_003dopt"><code>mrecip=opt</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecip_003dopt-1"><code>mrecip=opt</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecip_003dopt-2"><code>mrecip=opt</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrecord_002dmcount"><code>mrecord-mcount</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mreduced_002dregs"><code>mreduced-regs</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mregister_002dnames"><code>mregister-names</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mregnames"><code>mregnames</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mregnames-1"><code>mregnames</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mregparm"><code>mregparm</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax"><code>mrelax</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax-1"><code>mrelax</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax-2"><code>mrelax</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax-3"><code>mrelax</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax-4"><code>mrelax</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax-5"><code>mrelax</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax-6"><code>mrelax</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax-7"><code>mrelax</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax_002dimmediate"><code>mrelax-immediate</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelax_002dpic_002dcalls"><code>mrelax-pic-calls</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelocatable"><code>mrelocatable</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelocatable-1"><code>mrelocatable</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelocatable_002dlib"><code>mrelocatable-lib</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrelocatable_002dlib-1"><code>mrelocatable-lib</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrenesas"><code>mrenesas</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrepeat"><code>mrepeat</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrestrict_002dit"><code>mrestrict-it</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mreturn_002dpointer_002don_002dd0"><code>mreturn-pointer-on-d0</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrf16"><code>mrf16</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrgf_002dbanked_002dregs"><code>mrgf-banked-regs</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrh850_002dabi"><code>mrh850-abi</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrl78"><code>mrl78</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrmw"><code>mrmw</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrtd"><code>mrtd</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrtd-1"><code>mrtd</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrtd-2"><code>mrtd</code></a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrtm"><code>mrtm</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrtp"><code>mrtp</code></a>:</td><td> </td><td valign="top"><a href="#VxWorks-Options">VxWorks Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mrtsc"><code>mrtsc</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms"><code>ms</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms-1"><code>ms</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms2600"><code>ms2600</code></a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Options">H8/300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msafe_002ddma"><code>msafe-dma</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msafe_002dhints"><code>msafe-hints</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msahf"><code>msahf</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msatur"><code>msatur</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msave_002dacc_002din_002dinterrupts"><code>msave-acc-in-interrupts</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msave_002dmduc_002din_002dinterrupts"><code>msave-mduc-in-interrupts</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msave_002drestore"><code>msave-restore</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msave_002dtoc_002dindirect"><code>msave-toc-indirect</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msave_002dtoc_002dindirect-1"><code>msave-toc-indirect</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mscc"><code>mscc</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dar_002ddata_002dspec"><code>msched-ar-data-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dar_002din_002ddata_002dspec"><code>msched-ar-in-data-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dbr_002ddata_002dspec"><code>msched-br-data-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dbr_002din_002ddata_002dspec"><code>msched-br-in-data-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dcontrol_002dspec"><code>msched-control-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dcostly_002ddep"><code>msched-costly-dep</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dcostly_002ddep-1"><code>msched-costly-dep</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dcount_002dspec_002din_002dcritical_002dpath"><code>msched-count-spec-in-critical-path</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dfp_002dmem_002ddeps_002dzero_002dcost"><code>msched-fp-mem-deps-zero-cost</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002din_002dcontrol_002dspec"><code>msched-in-control-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dmax_002dmemory_002dinsns"><code>msched-max-memory-insns</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dmax_002dmemory_002dinsns_002dhard_002dlimit"><code>msched-max-memory-insns-hard-limit</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns"><code>msched-prefer-non-control-spec-insns</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dprefer_002dnon_002ddata_002dspec_002dinsns"><code>msched-prefer-non-data-spec-insns</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dspec_002dldc"><code>msched-spec-ldc</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dspec_002dldc-1"><code>msched-spec-ldc</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msched_002dstop_002dbits_002dafter_002devery_002dcycle"><code>msched-stop-bits-after-every-cycle</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mschedule"><code>mschedule</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mscore5"><code>mscore5</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mscore5u"><code>mscore5u</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mscore7"><code>mscore7</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mscore7d"><code>mscore7d</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msda"><code>msda</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata"><code>msdata</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata-1"><code>msdata</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata-2"><code>msdata</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003dall"><code>msdata=all</code></a>:</td><td> </td><td valign="top"><a href="#C6X-Options">C6X Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003ddata"><code>msdata=data</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003ddata-1"><code>msdata=data</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003ddefault"><code>msdata=default</code></a>:</td><td> </td><td valign="top"><a href="#C6X-Options">C6X Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003ddefault-1"><code>msdata=default</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003ddefault-2"><code>msdata=default</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003deabi"><code>msdata=eabi</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003deabi-1"><code>msdata=eabi</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003dnone"><code>msdata=none</code></a>:</td><td> </td><td valign="top"><a href="#C6X-Options">C6X Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003dnone-1"><code>msdata=none</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003dnone-2"><code>msdata=none</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003dnone-3"><code>msdata=none</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003dsdata"><code>msdata=sdata</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003dsysv"><code>msdata=sysv</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003dsysv-1"><code>msdata=sysv</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdata_003duse"><code>msdata=use</code></a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdram"><code>msdram</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msdram-1"><code>msdram</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msecure_002dplt"><code>msecure-plt</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msecure_002dplt-1"><code>msecure-plt</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msel_002dsched_002ddont_002dcheck_002dcontrol_002dspec"><code>msel-sched-dont-check-control-spec</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msep_002ddata"><code>msep-data</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mserialize_002dvolatile"><code>mserialize-volatile</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msetlb"><code>msetlb</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msha"><code>msha</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mshared_002dlibrary_002did"><code>mshared-library-id</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mshort"><code>mshort</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mshort_002dcalls"><code>mshort-calls</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mshstk"><code>mshstk</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msign_002dextend_002denabled"><code>msign-extend-enabled</code></a>:</td><td> </td><td valign="top"><a href="#LM32-Options">LM32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msign_002dreturn_002daddress"><code>msign-return-address</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msilicon_002derrata"><code>msilicon-errata</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msilicon_002derrata_002dwarn"><code>msilicon-errata-warn</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-1"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#C6X-Options">C6X Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-2"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#CR16-Options">CR16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-3"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#FT32-Options">FT32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-4"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#M32C-Options">M32C Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-5"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-6"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-7"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-8"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-9"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-10"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-11"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msim-12"><code>msim</code></a>:</td><td> </td><td valign="top"><a href="#Xstormy16-Options">Xstormy16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msimd"><code>msimd</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msimnovec"><code>msimnovec</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msimple_002dfpu"><code>msimple-fpu</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msingle_002dexit"><code>msingle-exit</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msingle_002dfloat"><code>msingle-float</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msingle_002dfloat-1"><code>msingle-float</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msingle_002dfloat-2"><code>msingle-float</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msingle_002dpic_002dbase"><code>msingle-pic-base</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msingle_002dpic_002dbase-1"><code>msingle-pic-base</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msingle_002dpic_002dbase-2"><code>msingle-pic-base</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msio"><code>msio</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msize_002dlevel"><code>msize-level</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mskip_002drax_002dsetup"><code>mskip-rax-setup</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mslow_002dbytes"><code>mslow-bytes</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mslow_002dflash_002ddata"><code>mslow-flash-data</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall"><code>msmall</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall_002ddata"><code>msmall-data</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall_002ddata_002dlimit"><code>msmall-data-limit</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall_002ddata_002dlimit-1"><code>msmall-data-limit</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall_002ddivides"><code>msmall-divides</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall_002dexec"><code>msmall-exec</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall_002dmem"><code>msmall-mem</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall_002dmodel"><code>msmall-model</code></a>:</td><td> </td><td valign="top"><a href="#FR30-Options">FR30 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall_002dtext"><code>msmall-text</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmall16"><code>msmall16</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmallc"><code>msmallc</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msmartmips"><code>msmartmips</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-1"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-2"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-3"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-4"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-5"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-6"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-7"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-8"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-9"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-10"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-11"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-12"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-13"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dfloat-14"><code>msoft-float</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dquad_002dfloat"><code>msoft-quad-float</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msoft_002dstack"><code>msoft-stack</code></a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msp8"><code>msp8</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mspace"><code>mspace</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mspe"><code>mspe</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mspecld_002danomaly"><code>mspecld-anomaly</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mspfp"><code>mspfp</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mspfp_002dcompact"><code>mspfp-compact</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mspfp_002dfast"><code>mspfp-fast</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mspfp_005fcompact"><code>mspfp_compact</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mspfp_005ffast"><code>mspfp_fast</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msplit_002daddresses"><code>msplit-addresses</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msplit_002dvecmove_002dearly"><code>msplit-vecmove-early</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msse"><code>msse</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msse2"><code>msse2</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msse2avx"><code>msse2avx</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msse3"><code>msse3</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msse4"><code>msse4</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msse4_002e1"><code>msse4.1</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msse4_002e2"><code>msse4.2</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msse4a"><code>msse4a</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msseregparm"><code>msseregparm</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mssse3"><code>mssse3</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dalign"><code>mstack-align</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dbias"><code>mstack-bias</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dcheck_002dl1"><code>mstack-check-l1</code></a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dguard"><code>mstack-guard</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dincrement"><code>mstack-increment</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002doffset"><code>mstack-offset</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard"><code>mstack-protector-guard</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard-1"><code>mstack-protector-guard</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard-2"><code>mstack-protector-guard</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard_002doffset"><code>mstack-protector-guard-offset</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard_002doffset-1"><code>mstack-protector-guard-offset</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard_002doffset-2"><code>mstack-protector-guard-offset</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard_002dreg"><code>mstack-protector-guard-reg</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard_002dreg-1"><code>mstack-protector-guard-reg</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard_002dreg-2"><code>mstack-protector-guard-reg</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard_002dsymbol"><code>mstack-protector-guard-symbol</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dprotector_002dguard_002dsymbol-1"><code>mstack-protector-guard-symbol</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstack_002dsize"><code>mstack-size</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstackrealign"><code>mstackrealign</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstd_002dstruct_002dreturn"><code>mstd-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstdmain"><code>mstdmain</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstrict_002dalign"><code>mstrict-align</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstrict_002dalign-1"><code>mstrict-align</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstrict_002dalign-2"><code>mstrict-align</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstrict_002dalign-3"><code>mstrict-align</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstrict_002dalign-4"><code>mstrict-align</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstrict_002dX"><code>mstrict-X</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstring_002dcompare_002dinline_002dlimit"><code>mstring-compare-inline-limit</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstringop_002dstrategy_003dalg"><code>mstringop-strategy=<var>alg</var></code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mstructure_002dsize_002dboundary"><code>mstructure-size-boundary</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msubxc"><code>msubxc</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msv_002dmode"><code>msv-mode</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msve_002dvector_002dbits"><code>msve-vector-bits</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msvr4_002dstruct_002dreturn"><code>msvr4-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msvr4_002dstruct_002dreturn-1"><code>msvr4-struct-return</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mswap"><code>mswap</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mswape"><code>mswape</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msym32"><code>msym32</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msynci"><code>msynci</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msys_002dcrt0"><code>msys-crt0</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-msys_002dlib"><code>msys-lib</code></a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MT"><code>MT</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtarget_002dalign"><code>mtarget-align</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtas"><code>mtas</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtbm"><code>mtbm</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtda"><code>mtda</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtelephony"><code>mtelephony</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtext_002dsection_002dliterals"><code>mtext-section-literals</code></a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtf"><code>mtf</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mthread"><code>mthread</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mthreads"><code>mthreads</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mthumb"><code>mthumb</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mthumb_002dinterwork"><code>mthumb-interwork</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtiny_002dstack"><code>mtiny-stack</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtiny_003d"><code>mtiny=</code></a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mTLS"><code>mTLS</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls"><code>mtls</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002ddialect"><code>mtls-dialect</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002ddialect-1"><code>mtls-dialect</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002ddialect_003ddesc"><code>mtls-dialect=desc</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002ddialect_003dtraditional"><code>mtls-dialect=traditional</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002ddirect_002dseg_002drefs"><code>mtls-direct-seg-refs</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002dmarkers"><code>mtls-markers</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002dmarkers-1"><code>mtls-markers</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002dsize"><code>mtls-size</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtls_002dsize-1"><code>mtls-size</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtoc"><code>mtoc</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtoc-1"><code>mtoc</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtomcat_002dstats"><code>mtomcat-stats</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtoplevel_002dsymbols"><code>mtoplevel-symbols</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtp"><code>mtp</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtp_002dregno"><code>mtp-regno</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtpcs_002dframe"><code>mtpcs-frame</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtpcs_002dleaf_002dframe"><code>mtpcs-leaf-frame</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtpf_002dtrace"><code>mtpf-trace</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtraceback"><code>mtraceback</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtrap_002dprecision"><code>mtrap-precision</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-1"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-2"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-3"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-4"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-5"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#DEC-Alpha-Options">DEC Alpha Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-6"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-7"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-8"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-9"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-10"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-11"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-12"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-13"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-14"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-15"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune-16"><code>mtune</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mtune_002dctrl_003dfeature_002dlist"><code>mtune-ctrl=<var>feature-list</var></code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-muclibc"><code>muclibc</code></a>:</td><td> </td><td valign="top"><a href="#GNU_002fLinux-Options">GNU/Linux Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-muls"><code>muls</code></a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multcost"><code>multcost</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multcost_003dnumber"><code>multcost=<var>number</var></code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multilib_002dlibrary_002dpic"><code>multilib-library-pic</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiply_002denabled"><code>multiply-enabled</code></a>:</td><td> </td><td valign="top"><a href="#LM32-Options">LM32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiply_005fdefined"><code>multiply_defined</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiply_005fdefined_005funused"><code>multiply_defined_unused</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multi_005fmodule"><code>multi_module</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-munalign_002dprob_002dthreshold"><code>munalign-prob-threshold</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-munaligned_002daccess"><code>munaligned-access</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-munaligned_002ddoubles"><code>munaligned-doubles</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-municode"><code>municode</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-muniform_002dsimt"><code>muniform-simt</code></a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-muninit_002dconst_002din_002drodata"><code>muninit-const-in-rodata</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-munix"><code>munix</code></a>:</td><td> </td><td valign="top"><a href="#VAX-Options">VAX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-munix_002dasm"><code>munix-asm</code></a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-munsafe_002ddma"><code>munsafe-dma</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mupdate"><code>mupdate</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mupdate-1"><code>mupdate</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-muser_002denabled"><code>muser-enabled</code></a>:</td><td> </td><td valign="top"><a href="#LM32-Options">LM32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-muser_002dmode"><code>muser-mode</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-muser_002dmode-1"><code>muser-mode</code></a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-musermode"><code>musermode</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv3push"><code>mv3push</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv850"><code>mv850</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv850e"><code>mv850e</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv850e1"><code>mv850e1</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv850e2"><code>mv850e2</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv850e2v3"><code>mv850e2v3</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv850e2v4"><code>mv850e2v4</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv850e3v5"><code>mv850e3v5</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv850es"><code>mv850es</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mv8plus"><code>mv8plus</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvaes"><code>mvaes</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mveclibabi"><code>mveclibabi</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mveclibabi-1"><code>mveclibabi</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvect8_002dret_002din_002dmem"><code>mvect8-ret-in-mem</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mverbose_002dcost_002ddump"><code>mverbose-cost-dump</code></a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mverbose_002dcost_002ddump-1"><code>mverbose-cost-dump</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvirt"><code>mvirt</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvis"><code>mvis</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvis2"><code>mvis2</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvis3"><code>mvis3</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvis4"><code>mvis4</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvis4b"><code>mvis4b</code></a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvliw_002dbranch"><code>mvliw-branch</code></a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvms_002dreturn_002dcodes"><code>mvms-return-codes</code></a>:</td><td> </td><td valign="top"><a href="#VMS-Options">VMS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvolatile_002dasm_002dstop"><code>mvolatile-asm-stop</code></a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvolatile_002dcache"><code>mvolatile-cache</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvpclmulqdq"><code>mvpclmulqdq</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvr4130_002dalign"><code>mvr4130-align</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvrsave"><code>mvrsave</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvsx"><code>mvsx</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvx"><code>mvx</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvxworks"><code>mvxworks</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvxworks-1"><code>mvxworks</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mvzeroupper"><code>mvzeroupper</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwarn_002ddynamicstack"><code>mwarn-dynamicstack</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwarn_002dframesize"><code>mwarn-framesize</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwarn_002dmcu"><code>mwarn-mcu</code></a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwarn_002dmultiple_002dfast_002dinterrupts"><code>mwarn-multiple-fast-interrupts</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwarn_002dreloc"><code>mwarn-reloc</code></a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwbnoinvd"><code>mwbnoinvd</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwide_002dbitfields"><code>mwide-bitfields</code></a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwin32"><code>mwin32</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mwindows"><code>mwindows</code></a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mword_002drelocations"><code>mword-relocations</code></a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mx32"><code>mx32</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxgot"><code>mxgot</code></a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxgot-1"><code>mxgot</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxilinx_002dfpu"><code>mxilinx-fpu</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dbarrel_002dshift"><code>mxl-barrel-shift</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dcompat"><code>mxl-compat</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dcompat-1"><code>mxl-compat</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dfloat_002dconvert"><code>mxl-float-convert</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dfloat_002dsqrt"><code>mxl-float-sqrt</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dgp_002dopt"><code>mxl-gp-opt</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dmultiply_002dhigh"><code>mxl-multiply-high</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dpattern_002dcompare"><code>mxl-pattern-compare</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dreorder"><code>mxl-reorder</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dsoft_002ddiv"><code>mxl-soft-div</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dsoft_002dmul"><code>mxl-soft-mul</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxl_002dstack_002dcheck"><code>mxl-stack-check</code></a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxop"><code>mxop</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxpa"><code>mxpa</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxsave"><code>mxsave</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxsavec"><code>mxsavec</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxsaveopt"><code>mxsaveopt</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxsaves"><code>mxsaves</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mxy"><code>mxy</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-myellowknife"><code>myellowknife</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-myellowknife-1"><code>myellowknife</code></a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mzarch"><code>mzarch</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mzda"><code>mzda</code></a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mzdcbranch"><code>mzdcbranch</code></a>:</td><td> </td><td valign="top"><a href="#SH-Options">SH Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mzero_002dextend"><code>mzero-extend</code></a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mzvector"><code>mzvector</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-N">N</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_002d80387"><code>no-80387</code></a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_002dcanonical_002dprefixes"><code>no-canonical-prefixes</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_002dintegrated_002dcpp"><code>no-integrated-cpp</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_002dpie"><code>no-pie</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_002dsysroot_002dsuffix"><code>no-sysroot-suffix</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noall_005fload"><code>noall_load</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nocpp"><code>nocpp</code></a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nodefaultlibs"><code>nodefaultlibs</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nodevicelib"><code>nodevicelib</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nofixprebinding"><code>nofixprebinding</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nofpu"><code>nofpu</code></a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nolibdld"><code>nolibdld</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nomultidefs"><code>nomultidefs</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-non_002dstatic"><code>non-static</code></a>:</td><td> </td><td valign="top"><a href="#VxWorks-Options">VxWorks Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noprebind"><code>noprebind</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noseglinkedit"><code>noseglinkedit</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nostartfiles"><code>nostartfiles</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nostdinc"><code>nostdinc</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nostdinc_002b_002b"><code>nostdinc++</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nostdinc_002b_002b-1"><code>nostdinc++</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nostdlib"><code>nostdlib</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fdead_005fstrip_005finits_005fand_005fterms"><code>no_dead_strip_inits_and_terms</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-O">O</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-o"><code>o</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-O"><code>O</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-O0"><code>O0</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-O1"><code>O1</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-O2"><code>O2</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-O3"><code>O3</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Ofast"><code>Ofast</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Og"><code>Og</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Os"><code>Os</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-P">P</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-p"><code>p</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-P"><code>P</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pagezero_005fsize"><code>pagezero_size</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-param"><code>param</code></a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pass_002dexit_002dcodes"><code>pass-exit-codes</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic"><code>pedantic</code></a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic-1"><code>pedantic</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic-2"><code>pedantic</code></a>:</td><td> </td><td valign="top"><a href="#C-Extensions">C Extensions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic-3"><code>pedantic</code></a>:</td><td> </td><td valign="top"><a href="#Alternate-Keywords">Alternate Keywords</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic-4"><code>pedantic</code></a>:</td><td> </td><td valign="top"><a href="#Warnings-and-Errors">Warnings and Errors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic_002derrors"><code>pedantic-errors</code></a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic_002derrors-1"><code>pedantic-errors</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic_002derrors-2"><code>pedantic-errors</code></a>:</td><td> </td><td valign="top"><a href="#Non_002dbugs">Non-bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pedantic_002derrors-3"><code>pedantic-errors</code></a>:</td><td> </td><td valign="top"><a href="#Warnings-and-Errors">Warnings and Errors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pg"><code>pg</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pie"><code>pie</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pipe"><code>pipe</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-plt"><code>plt</code></a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-prebind"><code>prebind</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-prebind_005fall_005ftwolevel_005fmodules"><code>prebind_all_twolevel_modules</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dfile_002dname"><code>print-file-name</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dlibgcc_002dfile_002dname"><code>print-libgcc-file-name</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dmulti_002ddirectory"><code>print-multi-directory</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dmulti_002dlib"><code>print-multi-lib</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dmulti_002dos_002ddirectory"><code>print-multi-os-directory</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dmultiarch"><code>print-multiarch</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dobjc_002druntime_002dinfo"><code>print-objc-runtime-info</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dprog_002dname"><code>print-prog-name</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dsearch_002ddirs"><code>print-search-dirs</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dsysroot"><code>print-sysroot</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-print_002dsysroot_002dheaders_002dsuffix"><code>print-sysroot-headers-suffix</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-private_005fbundle"><code>private_bundle</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pthread"><code>pthread</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pthread-1"><code>pthread</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pthreads"><code>pthreads</code></a>:</td><td> </td><td valign="top"><a href="#Solaris-2-Options">Solaris 2 Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-Q">Q</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Q"><code>Q</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Qn"><code>Qn</code></a>:</td><td> </td><td valign="top"><a href="#System-V-Options">System V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Qy"><code>Qy</code></a>:</td><td> </td><td valign="top"><a href="#System-V-Options">System V Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-R">R</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-rdynamic"><code>rdynamic</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-read_005fonly_005frelocs"><code>read_only_relocs</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-remap"><code>remap</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-S">S</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-S"><code>S</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-S-1"><code>S</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-s"><code>s</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-save_002dtemps"><code>save-temps</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-save_002dtemps_003dobj"><code>save-temps=obj</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sectalign"><code>sectalign</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sectcreate"><code>sectcreate</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sectobjectsymbols"><code>sectobjectsymbols</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sectobjectsymbols-1"><code>sectobjectsymbols</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sectorder"><code>sectorder</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-seg1addr"><code>seg1addr</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-segaddr"><code>segaddr</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-seglinkedit"><code>seglinkedit</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-segprot"><code>segprot</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-segs_005fread_005fonly_005faddr"><code>segs_read_only_addr</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-segs_005fread_005fonly_005faddr-1"><code>segs_read_only_addr</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-segs_005fread_005fwrite_005faddr"><code>segs_read_write_addr</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-segs_005fread_005fwrite_005faddr-1"><code>segs_read_write_addr</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-seg_005faddr_005ftable"><code>seg_addr_table</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-seg_005faddr_005ftable_005ffilename"><code>seg_addr_table_filename</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-shared"><code>shared</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-shared_002dlibgcc"><code>shared-libgcc</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-short_002dcalls"><code>short-calls</code></a>:</td><td> </td><td valign="top"><a href="#Adapteva-Epiphany-Options">Adapteva Epiphany Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sim"><code>sim</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sim2"><code>sim2</code></a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-single_005fmodule"><code>single_module</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-specs"><code>specs</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static"><code>static</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static-1"><code>static</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static-2"><code>static</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dlibasan"><code>static-libasan</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dlibgcc"><code>static-libgcc</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dliblsan"><code>static-liblsan</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dlibmpx"><code>static-libmpx</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dlibmpxwrappers"><code>static-libmpxwrappers</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dlibstdc_002b_002b"><code>static-libstdc++</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dlibtsan"><code>static-libtsan</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dlibubsan"><code>static-libubsan</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static_002dpie"><code>static-pie</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-std"><code>std</code></a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-std-1"><code>std</code></a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-std-2"><code>std</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-std-3"><code>std</code></a>:</td><td> </td><td valign="top"><a href="#Non_002dbugs">Non-bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sub_005flibrary"><code>sub_library</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sub_005fumbrella"><code>sub_umbrella</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-symbolic"><code>symbolic</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sysroot"><code>sysroot</code></a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-T">T</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-T"><code>T</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_002dhelp"><code>target-help</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-threads"><code>threads</code></a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-time"><code>time</code></a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tno_002dandroid_002dcc"><code>tno-android-cc</code></a>:</td><td> </td><td valign="top"><a href="#GNU_002fLinux-Options">GNU/Linux Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tno_002dandroid_002dld"><code>tno-android-ld</code></a>:</td><td> </td><td valign="top"><a href="#GNU_002fLinux-Options">GNU/Linux Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-traditional"><code>traditional</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-traditional-1"><code>traditional</code></a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-traditional_002dcpp"><code>traditional-cpp</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-trigraphs"><code>trigraphs</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-twolevel_005fnamespace"><code>twolevel_namespace</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-U">U</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-U"><code>U</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-u"><code>u</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umbrella"><code>umbrella</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-undef"><code>undef</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-undefined"><code>undefined</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unexported_005fsymbols_005flist"><code>unexported_symbols_list</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-V">V</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-v"><code>v</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-version"><code>version</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-W">W</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-w"><code>w</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-W"><code>W</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-W-1"><code>W</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-W-2"><code>W</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-W-3"><code>W</code></a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wa"><code>Wa</code></a>:</td><td> </td><td valign="top"><a href="#Assembler-Options">Assembler Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wabi"><code>Wabi</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wabi_002dtag"><code>Wabi-tag</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Waddr_002dspace_002dconvert"><code>Waddr-space-convert</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Waddress"><code>Waddress</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Waggregate_002dreturn"><code>Waggregate-return</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Waggressive_002dloop_002doptimizations"><code>Waggressive-loop-optimizations</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Waligned_002dnew"><code>Waligned-new</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wall"><code>Wall</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wall-1"><code>Wall</code></a>:</td><td> </td><td valign="top"><a href="#Standard-Libraries">Standard Libraries</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Walloc_002dzero"><code>Walloc-zero</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Walloca"><code>Walloca</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Warray_002dbounds"><code>Warray-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wassign_002dintercept"><code>Wassign-intercept</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wattributes"><code>Wattributes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wbad_002dfunction_002dcast"><code>Wbad-function-cast</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wbool_002dcompare"><code>Wbool-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wbool_002doperation"><code>Wbool-operation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wbuiltin_002ddeclaration_002dmismatch"><code>Wbuiltin-declaration-mismatch</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wbuiltin_002dmacro_002dredefined"><code>Wbuiltin-macro-redefined</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wc_002b_002b_002dcompat"><code>Wc++-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wc_002b_002b11_002dcompat"><code>Wc++11-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wc_002b_002b14_002dcompat"><code>Wc++14-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wc_002b_002b17_002dcompat"><code>Wc++17-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wc90_002dc99_002dcompat"><code>Wc90-c99-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wc99_002dc11_002dcompat"><code>Wc99-c11-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wcast_002dalign"><code>Wcast-align</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wcast_002dalign_003dstrict"><code>Wcast-align=strict</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wcast_002dfunction_002dtype"><code>Wcast-function-type</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wcast_002dqual"><code>Wcast-qual</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wcatch_002dvalue"><code>Wcatch-value</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wchar_002dsubscripts"><code>Wchar-subscripts</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wchkp"><code>Wchkp</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wclass_002dmemaccess"><code>Wclass-memaccess</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wclobbered"><code>Wclobbered</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wcomment"><code>Wcomment</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wcomments"><code>Wcomments</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wconditionally_002dsupported"><code>Wconditionally-supported</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wconversion"><code>Wconversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wconversion_002dnull"><code>Wconversion-null</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wctor_002ddtor_002dprivacy"><code>Wctor-dtor-privacy</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdangling_002delse"><code>Wdangling-else</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdate_002dtime"><code>Wdate-time</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdeclaration_002dafter_002dstatement"><code>Wdeclaration-after-statement</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdelete_002dincomplete"><code>Wdelete-incomplete</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdelete_002dnon_002dvirtual_002ddtor"><code>Wdelete-non-virtual-dtor</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdeprecated"><code>Wdeprecated</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdeprecated_002ddeclarations"><code>Wdeprecated-declarations</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdisabled_002doptimization"><code>Wdisabled-optimization</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdiscarded_002darray_002dqualifiers"><code>Wdiscarded-array-qualifiers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdiscarded_002dqualifiers"><code>Wdiscarded-qualifiers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdiv_002dby_002dzero"><code>Wdiv-by-zero</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wdouble_002dpromotion"><code>Wdouble-promotion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wduplicate_002ddecl_002dspecifier"><code>Wduplicate-decl-specifier</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wduplicated_002dbranches"><code>Wduplicated-branches</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wduplicated_002dcond"><code>Wduplicated-cond</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-weak_005freference_005fmismatches"><code>weak_reference_mismatches</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Weffc_002b_002b"><code>Weffc++</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wempty_002dbody"><code>Wempty-body</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wendif_002dlabels"><code>Wendif-labels</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wenum_002dcompare"><code>Wenum-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Werror"><code>Werror</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Werror_003d"><code>Werror=</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wexpansion_002dto_002ddefined"><code>Wexpansion-to-defined</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wextra"><code>Wextra</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wextra-1"><code>Wextra</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wextra-2"><code>Wextra</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wextra_002dsemi"><code>Wextra-semi</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wfatal_002derrors"><code>Wfatal-errors</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wfloat_002dconversion"><code>Wfloat-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wfloat_002dequal"><code>Wfloat-equal</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat"><code>Wformat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat-1"><code>Wformat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat-2"><code>Wformat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat-3"><code>Wformat</code></a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dcontains_002dnul"><code>Wformat-contains-nul</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dextra_002dargs"><code>Wformat-extra-args</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dnonliteral"><code>Wformat-nonliteral</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dnonliteral-1"><code>Wformat-nonliteral</code></a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002doverflow"><code>Wformat-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002doverflow-1"><code>Wformat-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dsecurity"><code>Wformat-security</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dsignedness"><code>Wformat-signedness</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dtruncation"><code>Wformat-truncation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dtruncation-1"><code>Wformat-truncation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dy2k"><code>Wformat-y2k</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_002dzero_002dlength"><code>Wformat-zero-length</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_003d"><code>Wformat=</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_003d1"><code>Wformat=1</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wformat_003d2"><code>Wformat=2</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wframe_002daddress"><code>Wframe-address</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wframe_002dlarger_002dthan"><code>Wframe-larger-than</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wfree_002dnonheap_002dobject"><code>Wfree-nonheap-object</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-whatsloaded"><code>whatsloaded</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-whyload"><code>whyload</code></a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wif_002dnot_002daligned"><code>Wif-not-aligned</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wignored_002dattributes"><code>Wignored-attributes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wignored_002dqualifiers"><code>Wignored-qualifiers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wimplicit"><code>Wimplicit</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wimplicit_002dfallthrough"><code>Wimplicit-fallthrough</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wimplicit_002dfallthrough_003d"><code>Wimplicit-fallthrough=</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wimplicit_002dfunction_002ddeclaration"><code>Wimplicit-function-declaration</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wimplicit_002dint"><code>Wimplicit-int</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wincompatible_002dpointer_002dtypes"><code>Wincompatible-pointer-types</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Winherited_002dvariadic_002dctor"><code>Winherited-variadic-ctor</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Winit_002dself"><code>Winit-self</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Winline"><code>Winline</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Winline-1"><code>Winline</code></a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wint_002dconversion"><code>Wint-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wint_002din_002dbool_002dcontext"><code>Wint-in-bool-context</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wint_002dto_002dpointer_002dcast"><code>Wint-to-pointer-cast</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Winvalid_002dmemory_002dmodel"><code>Winvalid-memory-model</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Winvalid_002doffsetof"><code>Winvalid-offsetof</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Winvalid_002dpch"><code>Winvalid-pch</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wjump_002dmisses_002dinit"><code>Wjump-misses-init</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wl"><code>Wl</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wlarger_002dthan_002dlen"><code>Wlarger-than-<var>len</var></code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wlarger_002dthan_003dlen"><code>Wlarger-than=<var>len</var></code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wliteral_002dsuffix"><code>Wliteral-suffix</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wlogical_002dnot_002dparentheses"><code>Wlogical-not-parentheses</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wlogical_002dop"><code>Wlogical-op</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wlong_002dlong"><code>Wlong-long</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wlto_002dtype_002dmismatch"><code>Wlto-type-mismatch</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmain"><code>Wmain</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmaybe_002duninitialized"><code>Wmaybe-uninitialized</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmemset_002delt_002dsize"><code>Wmemset-elt-size</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmemset_002dtransposed_002dargs"><code>Wmemset-transposed-args</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmisleading_002dindentation"><code>Wmisleading-indentation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmissing_002dattributes"><code>Wmissing-attributes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmissing_002dbraces"><code>Wmissing-braces</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmissing_002ddeclarations"><code>Wmissing-declarations</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmissing_002dfield_002dinitializers"><code>Wmissing-field-initializers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmissing_002dformat_002dattribute"><code>Wmissing-format-attribute</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmissing_002dinclude_002ddirs"><code>Wmissing-include-dirs</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmissing_002dparameter_002dtype"><code>Wmissing-parameter-type</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmissing_002dprototypes"><code>Wmissing-prototypes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmisspelled_002disr"><code>Wmisspelled-isr</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmultichar"><code>Wmultichar</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmultiple_002dinheritance"><code>Wmultiple-inheritance</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wmultistatement_002dmacros"><code>Wmultistatement-macros</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnamespaces"><code>Wnamespaces</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnarrowing"><code>Wnarrowing</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnested_002dexterns"><code>Wnested-externs</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dabi"><code>Wno-abi</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002daddress"><code>Wno-address</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002daggregate_002dreturn"><code>Wno-aggregate-return</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002daggressive_002dloop_002doptimizations"><code>Wno-aggressive-loop-optimizations</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002daligned_002dnew"><code>Wno-aligned-new</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dall"><code>Wno-all</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dalloc_002dzero"><code>Wno-alloc-zero</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dalloca"><code>Wno-alloca</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002darray_002dbounds"><code>Wno-array-bounds</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dassign_002dintercept"><code>Wno-assign-intercept</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dattributes"><code>Wno-attributes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dbad_002dfunction_002dcast"><code>Wno-bad-function-cast</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dbool_002dcompare"><code>Wno-bool-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dbool_002doperation"><code>Wno-bool-operation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dbuiltin_002ddeclaration_002dmismatch"><code>Wno-builtin-declaration-mismatch</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dbuiltin_002dmacro_002dredefined"><code>Wno-builtin-macro-redefined</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dc90_002dc99_002dcompat"><code>Wno-c90-c99-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dc99_002dc11_002dcompat"><code>Wno-c99-c11-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dcast_002dalign"><code>Wno-cast-align</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dcast_002dfunction_002dtype"><code>Wno-cast-function-type</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dcast_002dqual"><code>Wno-cast-qual</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dcatch_002dvalue"><code>Wno-catch-value</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dchar_002dsubscripts"><code>Wno-char-subscripts</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dclobbered"><code>Wno-clobbered</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dconditionally_002dsupported"><code>Wno-conditionally-supported</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dconversion"><code>Wno-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dconversion_002dnull"><code>Wno-conversion-null</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dcoverage_002dmismatch"><code>Wno-coverage-mismatch</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dctor_002ddtor_002dprivacy"><code>Wno-ctor-dtor-privacy</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddangling_002delse"><code>Wno-dangling-else</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddate_002dtime"><code>Wno-date-time</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddeclaration_002dafter_002dstatement"><code>Wno-declaration-after-statement</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddelete_002dincomplete"><code>Wno-delete-incomplete</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddelete_002dnon_002dvirtual_002ddtor"><code>Wno-delete-non-virtual-dtor</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddeprecated"><code>Wno-deprecated</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddeprecated_002ddeclarations"><code>Wno-deprecated-declarations</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddisabled_002doptimization"><code>Wno-disabled-optimization</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddiscarded_002darray_002dqualifiers"><code>Wno-discarded-array-qualifiers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddiscarded_002dqualifiers"><code>Wno-discarded-qualifiers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddiv_002dby_002dzero"><code>Wno-div-by-zero</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002ddouble_002dpromotion"><code>Wno-double-promotion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dduplicate_002ddecl_002dspecifier"><code>Wno-duplicate-decl-specifier</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dduplicated_002dbranches"><code>Wno-duplicated-branches</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dduplicated_002dcond"><code>Wno-duplicated-cond</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002deffc_002b_002b"><code>Wno-effc++</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dempty_002dbody"><code>Wno-empty-body</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dendif_002dlabels"><code>Wno-endif-labels</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002denum_002dcompare"><code>Wno-enum-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002derror"><code>Wno-error</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002derror_003d"><code>Wno-error=</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dextra"><code>Wno-extra</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dextra-1"><code>Wno-extra</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dextra-2"><code>Wno-extra</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dextra_002dsemi"><code>Wno-extra-semi</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dfatal_002derrors"><code>Wno-fatal-errors</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dfloat_002dconversion"><code>Wno-float-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dfloat_002dequal"><code>Wno-float-equal</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat"><code>Wno-format</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat-1"><code>Wno-format</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002dcontains_002dnul"><code>Wno-format-contains-nul</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002dextra_002dargs"><code>Wno-format-extra-args</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002dnonliteral"><code>Wno-format-nonliteral</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002doverflow"><code>Wno-format-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002doverflow-1"><code>Wno-format-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002doverflow-2"><code>Wno-format-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002dsecurity"><code>Wno-format-security</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002dsignedness"><code>Wno-format-signedness</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002dtruncation"><code>Wno-format-truncation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002dy2k"><code>Wno-format-y2k</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dformat_002dzero_002dlength"><code>Wno-format-zero-length</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dframe_002daddress"><code>Wno-frame-address</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dfree_002dnonheap_002dobject"><code>Wno-free-nonheap-object</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dif_002dnot_002daligned"><code>Wno-if-not-aligned</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dignored_002dattributes"><code>Wno-ignored-attributes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dignored_002dqualifiers"><code>Wno-ignored-qualifiers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dimplicit"><code>Wno-implicit</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dimplicit_002dfallthrough"><code>Wno-implicit-fallthrough</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dimplicit_002dfunction_002ddeclaration"><code>Wno-implicit-function-declaration</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dimplicit_002dint"><code>Wno-implicit-int</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dincompatible_002dpointer_002dtypes"><code>Wno-incompatible-pointer-types</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dinherited_002dvariadic_002dctor"><code>Wno-inherited-variadic-ctor</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dinit_002dself"><code>Wno-init-self</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dinline"><code>Wno-inline</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dint_002dconversion"><code>Wno-int-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dint_002din_002dbool_002dcontext"><code>Wno-int-in-bool-context</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dint_002dto_002dpointer_002dcast"><code>Wno-int-to-pointer-cast</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dinvalid_002dmemory_002dmodel"><code>Wno-invalid-memory-model</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dinvalid_002doffsetof"><code>Wno-invalid-offsetof</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dinvalid_002dpch"><code>Wno-invalid-pch</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002djump_002dmisses_002dinit"><code>Wno-jump-misses-init</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dliteral_002dsuffix"><code>Wno-literal-suffix</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dlogical_002dnot_002dparentheses"><code>Wno-logical-not-parentheses</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dlogical_002dop"><code>Wno-logical-op</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dlong_002dlong"><code>Wno-long-long</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dlto_002dtype_002dmismatch"><code>Wno-lto-type-mismatch</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmain"><code>Wno-main</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmaybe_002duninitialized"><code>Wno-maybe-uninitialized</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmemset_002delt_002dsize"><code>Wno-memset-elt-size</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmemset_002dtransposed_002dargs"><code>Wno-memset-transposed-args</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmisleading_002dindentation"><code>Wno-misleading-indentation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmissing_002dattributes"><code>Wno-missing-attributes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmissing_002dbraces"><code>Wno-missing-braces</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmissing_002ddeclarations"><code>Wno-missing-declarations</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmissing_002dfield_002dinitializers"><code>Wno-missing-field-initializers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmissing_002dformat_002dattribute"><code>Wno-missing-format-attribute</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmissing_002dinclude_002ddirs"><code>Wno-missing-include-dirs</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmissing_002dparameter_002dtype"><code>Wno-missing-parameter-type</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmissing_002dprototypes"><code>Wno-missing-prototypes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmultichar"><code>Wno-multichar</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dmultistatement_002dmacros"><code>Wno-multistatement-macros</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnarrowing"><code>Wno-narrowing</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnested_002dexterns"><code>Wno-nested-externs</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnoexcept"><code>Wno-noexcept</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnoexcept_002dtype"><code>Wno-noexcept-type</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnon_002dtemplate_002dfriend"><code>Wno-non-template-friend</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnon_002dvirtual_002ddtor"><code>Wno-non-virtual-dtor</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnonnull"><code>Wno-nonnull</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnonnull_002dcompare"><code>Wno-nonnull-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnormalized"><code>Wno-normalized</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dnull_002ddereference"><code>Wno-null-dereference</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dodr"><code>Wno-odr</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dold_002dstyle_002dcast"><code>Wno-old-style-cast</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dold_002dstyle_002ddeclaration"><code>Wno-old-style-declaration</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dold_002dstyle_002ddefinition"><code>Wno-old-style-definition</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002doverflow"><code>Wno-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002doverlength_002dstrings"><code>Wno-overlength-strings</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002doverloaded_002dvirtual"><code>Wno-overloaded-virtual</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002doverride_002dinit"><code>Wno-override-init</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002doverride_002dinit_002dside_002deffects"><code>Wno-override-init-side-effects</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpacked"><code>Wno-packed</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpacked_002dbitfield_002dcompat"><code>Wno-packed-bitfield-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpacked_002dnot_002daligned"><code>Wno-packed-not-aligned</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpadded"><code>Wno-padded</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dparentheses"><code>Wno-parentheses</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpedantic_002dms_002dformat"><code>Wno-pedantic-ms-format</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dplacement_002dnew"><code>Wno-placement-new</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpmf_002dconversions"><code>Wno-pmf-conversions</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpmf_002dconversions-1"><code>Wno-pmf-conversions</code></a>:</td><td> </td><td valign="top"><a href="#Bound-member-functions">Bound member functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpointer_002darith"><code>Wno-pointer-arith</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpointer_002dcompare"><code>Wno-pointer-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpointer_002dsign"><code>Wno-pointer-sign</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpointer_002dto_002dint_002dcast"><code>Wno-pointer-to-int-cast</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dpragmas"><code>Wno-pragmas</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dprotocol"><code>Wno-protocol</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dredundant_002ddecls"><code>Wno-redundant-decls</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dregister"><code>Wno-register</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dreorder"><code>Wno-reorder</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002drestrict"><code>Wno-restrict</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dreturn_002dlocal_002daddr"><code>Wno-return-local-addr</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dreturn_002dtype"><code>Wno-return-type</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dselector"><code>Wno-selector</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsequence_002dpoint"><code>Wno-sequence-point</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dshadow"><code>Wno-shadow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dshadow_002divar"><code>Wno-shadow-ivar</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dshift_002dcount_002dnegative"><code>Wno-shift-count-negative</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dshift_002dcount_002doverflow"><code>Wno-shift-count-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dshift_002dnegative_002dvalue"><code>Wno-shift-negative-value</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dshift_002doverflow"><code>Wno-shift-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsign_002dcompare"><code>Wno-sign-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsign_002dconversion"><code>Wno-sign-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsign_002dpromo"><code>Wno-sign-promo</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsized_002ddeallocation"><code>Wno-sized-deallocation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsizeof_002darray_002dargument"><code>Wno-sizeof-array-argument</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsizeof_002dpointer_002ddiv"><code>Wno-sizeof-pointer-div</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsizeof_002dpointer_002dmemaccess"><code>Wno-sizeof-pointer-memaccess</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstack_002dprotector"><code>Wno-stack-protector</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstrict_002daliasing"><code>Wno-strict-aliasing</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstrict_002dnull_002dsentinel"><code>Wno-strict-null-sentinel</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstrict_002doverflow"><code>Wno-strict-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstrict_002dprototypes"><code>Wno-strict-prototypes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstrict_002dselector_002dmatch"><code>Wno-strict-selector-match</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstringop_002doverflow"><code>Wno-stringop-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstringop_002doverflow-1"><code>Wno-stringop-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dstringop_002dtruncation"><code>Wno-stringop-truncation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsubobject_002dlinkage"><code>Wno-subobject-linkage</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dattribute_003d"><code>Wno-suggest-attribute=</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dattribute_003dcold"><code>Wno-suggest-attribute=cold</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dattribute_003dconst"><code>Wno-suggest-attribute=const</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dattribute_003dformat"><code>Wno-suggest-attribute=format</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dattribute_003dmalloc"><code>Wno-suggest-attribute=malloc</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dattribute_003dnoreturn"><code>Wno-suggest-attribute=noreturn</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dattribute_003dpure"><code>Wno-suggest-attribute=pure</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dfinal_002dmethods"><code>Wno-suggest-final-methods</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsuggest_002dfinal_002dtypes"><code>Wno-suggest-final-types</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dswitch"><code>Wno-switch</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dswitch_002dbool"><code>Wno-switch-bool</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dswitch_002ddefault"><code>Wno-switch-default</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dswitch_002denum"><code>Wno-switch-enum</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dswitch_002dunreachable"><code>Wno-switch-unreachable</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsync_002dnand"><code>Wno-sync-nand</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dsystem_002dheaders"><code>Wno-system-headers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dtautological_002dcompare"><code>Wno-tautological-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dterminate"><code>Wno-terminate</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dtraditional"><code>Wno-traditional</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dtraditional_002dconversion"><code>Wno-traditional-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dtrampolines"><code>Wno-trampolines</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dtype_002dlimits"><code>Wno-type-limits</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dundeclared_002dselector"><code>Wno-undeclared-selector</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dundef"><code>Wno-undef</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002duninitialized"><code>Wno-uninitialized</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunknown_002dpragmas"><code>Wno-unknown-pragmas</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunsafe_002dloop_002doptimizations"><code>Wno-unsafe-loop-optimizations</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused"><code>Wno-unused</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dbut_002dset_002dparameter"><code>Wno-unused-but-set-parameter</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dbut_002dset_002dvariable"><code>Wno-unused-but-set-variable</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dconst_002dvariable"><code>Wno-unused-const-variable</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dfunction"><code>Wno-unused-function</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dlabel"><code>Wno-unused-label</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dparameter"><code>Wno-unused-parameter</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dresult"><code>Wno-unused-result</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dvalue"><code>Wno-unused-value</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dunused_002dvariable"><code>Wno-unused-variable</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002duseless_002dcast"><code>Wno-useless-cast</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dvarargs"><code>Wno-varargs</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dvariadic_002dmacros"><code>Wno-variadic-macros</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dvector_002doperation_002dperformance"><code>Wno-vector-operation-performance</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dvirtual_002dmove_002dassign"><code>Wno-virtual-move-assign</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dvla"><code>Wno-vla</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dvolatile_002dregister_002dvar"><code>Wno-volatile-register-var</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dwrite_002dstrings"><code>Wno-write-strings</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wno_002dzero_002das_002dnull_002dpointer_002dconstant"><code>Wno-zero-as-null-pointer-constant</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnoexcept"><code>Wnoexcept</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnoexcept_002dtype"><code>Wnoexcept-type</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnon_002dtemplate_002dfriend"><code>Wnon-template-friend</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnon_002dvirtual_002ddtor"><code>Wnon-virtual-dtor</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnonnull"><code>Wnonnull</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnonnull_002dcompare"><code>Wnonnull-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnormalized"><code>Wnormalized</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnormalized_003d"><code>Wnormalized=</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wnull_002ddereference"><code>Wnull-dereference</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wodr"><code>Wodr</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wold_002dstyle_002dcast"><code>Wold-style-cast</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wold_002dstyle_002ddeclaration"><code>Wold-style-declaration</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wold_002dstyle_002ddefinition"><code>Wold-style-definition</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wopenm_002dsimd"><code>Wopenm-simd</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Woverflow"><code>Woverflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Woverlength_002dstrings"><code>Woverlength-strings</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Woverloaded_002dvirtual"><code>Woverloaded-virtual</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Woverride_002dinit"><code>Woverride-init</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Woverride_002dinit_002dside_002deffects"><code>Woverride-init-side-effects</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wp"><code>Wp</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpacked"><code>Wpacked</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpacked_002dbitfield_002dcompat"><code>Wpacked-bitfield-compat</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpacked_002dnot_002daligned"><code>Wpacked-not-aligned</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpadded"><code>Wpadded</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wparentheses"><code>Wparentheses</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpedantic"><code>Wpedantic</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpedantic_002dms_002dformat"><code>Wpedantic-ms-format</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wplacement_002dnew"><code>Wplacement-new</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpmf_002dconversions"><code>Wpmf-conversions</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpointer_002darith"><code>Wpointer-arith</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpointer_002darith-1"><code>Wpointer-arith</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Arith">Pointer Arith</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpointer_002dcompare"><code>Wpointer-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpointer_002dsign"><code>Wpointer-sign</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpointer_002dto_002dint_002dcast"><code>Wpointer-to-int-cast</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wpragmas"><code>Wpragmas</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wprotocol"><code>Wprotocol</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-wrapper"><code>wrapper</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wredundant_002ddecls"><code>Wredundant-decls</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wregister"><code>Wregister</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wreorder"><code>Wreorder</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wrestrict"><code>Wrestrict</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wreturn_002dlocal_002daddr"><code>Wreturn-local-addr</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wreturn_002dtype"><code>Wreturn-type</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wselector"><code>Wselector</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsequence_002dpoint"><code>Wsequence-point</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshadow"><code>Wshadow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshadow_002divar"><code>Wshadow-ivar</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshadow_003dcompatible_002dlocal"><code>Wshadow=compatible-local</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshadow_003dlocal"><code>Wshadow=local</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshadow_003dlocal-1"><code>Wshadow=local</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshift_002dcount_002dnegative"><code>Wshift-count-negative</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshift_002dcount_002doverflow"><code>Wshift-count-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshift_002dnegative_002dvalue"><code>Wshift-negative-value</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wshift_002doverflow"><code>Wshift-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsign_002dcompare"><code>Wsign-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsign_002dconversion"><code>Wsign-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsign_002dpromo"><code>Wsign-promo</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsized_002ddeallocation"><code>Wsized-deallocation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsizeof_002darray_002dargument"><code>Wsizeof-array-argument</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsizeof_002dpointer_002ddiv"><code>Wsizeof-pointer-div</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsizeof_002dpointer_002dmemaccess"><code>Wsizeof-pointer-memaccess</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstack_002dprotector"><code>Wstack-protector</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstack_002dusage"><code>Wstack-usage</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstrict_002daliasing"><code>Wstrict-aliasing</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstrict_002daliasing_003dn"><code>Wstrict-aliasing=n</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstrict_002dnull_002dsentinel"><code>Wstrict-null-sentinel</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstrict_002doverflow"><code>Wstrict-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstrict_002dprototypes"><code>Wstrict-prototypes</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstrict_002dselector_002dmatch"><code>Wstrict-selector-match</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstringop_002doverflow"><code>Wstringop-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstringop_002doverflow-1"><code>Wstringop-overflow</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wstringop_002dtruncation"><code>Wstringop-truncation</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsubobject_002dlinkage"><code>Wsubobject-linkage</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dattribute_003d"><code>Wsuggest-attribute=</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dattribute_003dcold"><code>Wsuggest-attribute=cold</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dattribute_003dconst"><code>Wsuggest-attribute=const</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dattribute_003dformat"><code>Wsuggest-attribute=format</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dattribute_003dmalloc"><code>Wsuggest-attribute=malloc</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dattribute_003dnoreturn"><code>Wsuggest-attribute=noreturn</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dattribute_003dpure"><code>Wsuggest-attribute=pure</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dfinal_002dmethods"><code>Wsuggest-final-methods</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsuggest_002dfinal_002dtypes"><code>Wsuggest-final-types</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wswitch"><code>Wswitch</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wswitch_002dbool"><code>Wswitch-bool</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wswitch_002ddefault"><code>Wswitch-default</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wswitch_002denum"><code>Wswitch-enum</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wswitch_002dunreachable"><code>Wswitch-unreachable</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsync_002dnand"><code>Wsync-nand</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wsystem_002dheaders"><code>Wsystem-headers</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wtautological_002dcompare"><code>Wtautological-compare</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wtemplates"><code>Wtemplates</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wterminate"><code>Wterminate</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wtraditional"><code>Wtraditional</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wtraditional_002dconversion"><code>Wtraditional-conversion</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wtrampolines"><code>Wtrampolines</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wtrigraphs"><code>Wtrigraphs</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wtype_002dlimits"><code>Wtype-limits</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wundeclared_002dselector"><code>Wundeclared-selector</code></a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wundef"><code>Wundef</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wuninitialized"><code>Wuninitialized</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunknown_002dpragmas"><code>Wunknown-pragmas</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunsafe_002dloop_002doptimizations"><code>Wunsafe-loop-optimizations</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunsuffixed_002dfloat_002dconstants"><code>Wunsuffixed-float-constants</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused"><code>Wunused</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dbut_002dset_002dparameter"><code>Wunused-but-set-parameter</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dbut_002dset_002dvariable"><code>Wunused-but-set-variable</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dconst_002dvariable"><code>Wunused-const-variable</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dfunction"><code>Wunused-function</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dlabel"><code>Wunused-label</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dlocal_002dtypedefs"><code>Wunused-local-typedefs</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dmacros"><code>Wunused-macros</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dparameter"><code>Wunused-parameter</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dresult"><code>Wunused-result</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dvalue"><code>Wunused-value</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wunused_002dvariable"><code>Wunused-variable</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wuseless_002dcast"><code>Wuseless-cast</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wvarargs"><code>Wvarargs</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wvariadic_002dmacros"><code>Wvariadic-macros</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wvector_002doperation_002dperformance"><code>Wvector-operation-performance</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wvirtual_002dinheritance"><code>Wvirtual-inheritance</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wvirtual_002dmove_002dassign"><code>Wvirtual-move-assign</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wvla"><code>Wvla</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wvolatile_002dregister_002dvar"><code>Wvolatile-register-var</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wwrite_002dstrings"><code>Wwrite-strings</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Wzero_002das_002dnull_002dpointer_002dconstant"><code>Wzero-as-null-pointer-constant</code></a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-X">X</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-x"><code>x</code></a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Xassembler"><code>Xassembler</code></a>:</td><td> </td><td valign="top"><a href="#Assembler-Options">Assembler Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Xbind_002dlazy"><code>Xbind-lazy</code></a>:</td><td> </td><td valign="top"><a href="#VxWorks-Options">VxWorks Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Xbind_002dnow"><code>Xbind-now</code></a>:</td><td> </td><td valign="top"><a href="#VxWorks-Options">VxWorks Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Xlinker"><code>Xlinker</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Xpreprocessor"><code>Xpreprocessor</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-Y">Y</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Ym"><code>Ym</code></a>:</td><td> </td><td valign="top"><a href="#System-V-Options">System V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-YP"><code>YP</code></a>:</td><td> </td><td valign="top"><a href="#System-V-Options">System V Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Option-Index_op_letter-Z">Z</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-z"><code>z</code></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
</table>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Option-Index_op_symbol-1"><b>#</b></a>
<a class="summary-letter" href="#Option-Index_op_symbol-2"><b>-</b></a>
<a class="summary-letter" href="#Option-Index_op_symbol-3"><b>8</b></a>
<br>
<a class="summary-letter" href="#Option-Index_op_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-H"><b>H</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-V"><b>V</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-W"><b>W</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-X"><b>X</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-Y"><b>Y</b></a>
<a class="summary-letter" href="#Option-Index_op_letter-Z"><b>Z</b></a>
</td></tr></table>
<hr>
<a name="Keyword-Index"></a>
<div class="header">
<p>
Previous: <a href="#Option-Index" accesskey="p" rel="prev">Option Index</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Option-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Keyword-Index-1"></a>
<h2 class="unnumbered">Keyword Index</h2>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Keyword-Index_cp_symbol-1"><b>#</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-2"><b>$</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-3"><b>%</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-4"><b>&</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-5"><b>'</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-6"><b>*</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-7"><b>+</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-8"><b>-</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-9"><b>.</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-10"><b>/</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-11"><b>0</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-12"><b><</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-13"><b>=</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-14"><b>></b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-15"><b>?</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-16"><b>_</b></a>
<br>
<a class="summary-letter" href="#Keyword-Index_cp_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-H"><b>H</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-J"><b>J</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-V"><b>V</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-W"><b>W</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-X"><b>X</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-Y"><b>Y</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-Z"><b>Z</b></a>
</td></tr></table>
<table class="index-cp" border="0">
<tr><td></td><th align="left">Index Entry</th><td> </td><th align="left"> Section</th></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-1">#</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0023pragma"><code>#pragma</code></a>:</td><td> </td><td valign="top"><a href="#Pragmas">Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0023pragma-implementation"><code>#pragma implementation</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0023pragma-implementation_002c-implied"><code>#pragma implementation</code>, implied</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0023pragma-interface"><code>#pragma interface</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-2">$</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0024">$</a>:</td><td> </td><td valign="top"><a href="#Dollar-Signs">Dollar Signs</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-3">%</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0025-in-constraint">‘<samp>%</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Modifiers">Modifiers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0025include"><code>%include</code></a>:</td><td> </td><td valign="top"><a href="#Spec-Files">Spec Files</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0025include_005fnoerr"><code>%include_noerr</code></a>:</td><td> </td><td valign="top"><a href="#Spec-Files">Spec Files</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0025rename"><code>%rename</code></a>:</td><td> </td><td valign="top"><a href="#Spec-Files">Spec Files</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-4">&</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0026-in-constraint">‘<samp>&</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Modifiers">Modifiers</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-5">'</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_0027"><code>'</code></a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-6">*</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002a_005f_005fbuiltin_005falloca"><code>*__builtin_alloca</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002a_005f_005fbuiltin_005falloca_005fwith_005falign"><code>*__builtin_alloca_with_align</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002a_005f_005fbuiltin_005falloca_005fwith_005falign_005fand_005fmax"><code>*__builtin_alloca_with_align_and_max</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-7">+</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002b-in-constraint">‘<samp>+</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Modifiers">Modifiers</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-8">-</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dlgcc_002c-use-with-_002dnodefaultlibs"><samp>-lgcc</samp>, use with <samp>-nodefaultlibs</samp></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dlgcc_002c-use-with-_002dnostdlib"><samp>-lgcc</samp>, use with <samp>-nostdlib</samp></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmarch-feature-modifiers"><samp>-march</samp> feature modifiers</a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dmcpu-feature-modifiers"><samp>-mcpu</samp> feature modifiers</a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dnodefaultlibs-and-unresolved-references"><samp>-nodefaultlibs</samp> and unresolved references</a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002dnostdlib-and-unresolved-references"><samp>-nostdlib</samp> and unresolved references</a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-9">.</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002esdata_002f_002esdata2-references-_0028PowerPC_0029">.sdata/.sdata2 references (PowerPC)</a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002esdata_002f_002esdata2-references-_0028PowerPC_0029-1">.sdata/.sdata2 references (PowerPC)</a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-10">/</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_002f_002f"><code>//</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Comments">C++ Comments</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-11">0</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-0-in-constraint">‘<samp>0</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-12"><</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003c-in-constraint">‘<samp><</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-13">=</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003d-in-constraint">‘<samp>=</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Modifiers">Modifiers</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-14">></a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003e-in-constraint">‘<samp>></samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-15">?</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003f_003a-extensions"><code>?:</code> extensions</a>:</td><td> </td><td valign="top"><a href="#Conditionals">Conditionals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_003f_003a-side-effect"><code>?:</code> side effect</a>:</td><td> </td><td valign="top"><a href="#Conditionals">Conditionals</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_symbol-16">_</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f-in-variables-in-macros">‘<samp>_</samp>’ in variables in macros</a>:</td><td> </td><td valign="top"><a href="#Typeof">Typeof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fAccum-data-type"><code>_Accum</code> data type</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fComplex-keyword"><code>_Complex</code> keyword</a>:</td><td> </td><td valign="top"><a href="#Complex">Complex</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fDecimal128-data-type"><code>_Decimal128</code> data type</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fDecimal32-data-type"><code>_Decimal32</code> data type</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fDecimal64-data-type"><code>_Decimal64</code> data type</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fExit"><code>_Exit</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fexit"><code>_exit</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fFloatn-data-types"><code>_Float<var>n</var></code> data types</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fFloatnx-data-types"><code>_Float<var>n</var>x</code> data types</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fFract-data-type"><code>_Fract</code> data type</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fget_005fssp"><code>_get_ssp</code></a>:</td><td> </td><td valign="top"><a href="#x86-control_002dflow-protection-intrinsics">x86 control-flow protection intrinsics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fHTM_005fFIRST_005fUSER_005fABORT_005fCODE"><code>_HTM_FIRST_USER_ABORT_CODE</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005finc_005fssp"><code>_inc_ssp</code></a>:</td><td> </td><td valign="top"><a href="#x86-control_002dflow-protection-intrinsics">x86 control-flow protection intrinsics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fSat-data-type"><code>_Sat</code> data type</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fxabort"><code>_xabort</code></a>:</td><td> </td><td valign="top"><a href="#x86-transactional-memory-intrinsics">x86 transactional memory intrinsics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fxbegin"><code>_xbegin</code></a>:</td><td> </td><td valign="top"><a href="#x86-transactional-memory-intrinsics">x86 transactional memory intrinsics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fxend"><code>_xend</code></a>:</td><td> </td><td valign="top"><a href="#x86-transactional-memory-intrinsics">x86 transactional memory intrinsics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005fxtest"><code>_xtest</code></a>:</td><td> </td><td valign="top"><a href="#x86-transactional-memory-intrinsics">x86 transactional memory intrinsics</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fadd_005ffetch"><code>__atomic_add_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005falways_005flock_005ffree"><code>__atomic_always_lock_free</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fand_005ffetch"><code>__atomic_and_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fclear"><code>__atomic_clear</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fcompare_005fexchange"><code>__atomic_compare_exchange</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fcompare_005fexchange_005fn"><code>__atomic_compare_exchange_n</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fexchange"><code>__atomic_exchange</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fexchange_005fn"><code>__atomic_exchange_n</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005ffetch_005fadd"><code>__atomic_fetch_add</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005ffetch_005fand"><code>__atomic_fetch_and</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005ffetch_005fnand"><code>__atomic_fetch_nand</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005ffetch_005for"><code>__atomic_fetch_or</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005ffetch_005fsub"><code>__atomic_fetch_sub</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005ffetch_005fxor"><code>__atomic_fetch_xor</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fis_005flock_005ffree"><code>__atomic_is_lock_free</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fload"><code>__atomic_load</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fload_005fn"><code>__atomic_load_n</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fnand_005ffetch"><code>__atomic_nand_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005for_005ffetch"><code>__atomic_or_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fsignal_005ffence"><code>__atomic_signal_fence</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fstore"><code>__atomic_store</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fstore_005fn"><code>__atomic_store_n</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fsub_005ffetch"><code>__atomic_sub_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005ftest_005fand_005fset"><code>__atomic_test_and_set</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fthread_005ffence"><code>__atomic_thread_fence</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fatomic_005fxor_005ffetch"><code>__atomic_xor_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fatomic-Builtins">__atomic Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005faddf128_005fround_005fto_005fodd"><code>__builtin_addf128_round_to_odd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fadd_005foverflow"><code>__builtin_add_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fadd_005foverflow_005fp"><code>__builtin_add_overflow_p</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005falloca"><code>__builtin_alloca</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005falloca_005fwith_005falign"><code>__builtin_alloca_with_align</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005falloca_005fwith_005falign_005fand_005fmax"><code>__builtin_alloca_with_align_and_max</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fapply"><code>__builtin_apply</code></a>:</td><td> </td><td valign="top"><a href="#Constructing-Calls">Constructing Calls</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fapply_005fargs"><code>__builtin_apply_args</code></a>:</td><td> </td><td valign="top"><a href="#Constructing-Calls">Constructing Calls</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005faligned"><code>__builtin_arc_aligned</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fbrk"><code>__builtin_arc_brk</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fcore_005fread"><code>__builtin_arc_core_read</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fcore_005fwrite"><code>__builtin_arc_core_write</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fdivaw"><code>__builtin_arc_divaw</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fflag"><code>__builtin_arc_flag</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005flr"><code>__builtin_arc_lr</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fmul64"><code>__builtin_arc_mul64</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fmulu64"><code>__builtin_arc_mulu64</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fnop"><code>__builtin_arc_nop</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fnorm"><code>__builtin_arc_norm</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fnormw"><code>__builtin_arc_normw</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005frtie"><code>__builtin_arc_rtie</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fsleep"><code>__builtin_arc_sleep</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fsr"><code>__builtin_arc_sr</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fswap"><code>__builtin_arc_swap</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fswi"><code>__builtin_arc_swi</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005fsync"><code>__builtin_arc_sync</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005ftrap_005fs"><code>__builtin_arc_trap_s</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005farc_005funimp_005fs"><code>__builtin_arc_unimp_s</code></a>:</td><td> </td><td valign="top"><a href="#ARC-Built_002din-Functions">ARC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fassume_005faligned"><code>__builtin_assume_aligned</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fbswap16"><code>__builtin_bswap16</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fbswap32"><code>__builtin_bswap32</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fbswap64"><code>__builtin_bswap64</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcall_005fwith_005fstatic_005fchain"><code>__builtin_call_with_static_chain</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcall_005fwith_005fstatic_005fchain-1"><code>__builtin_call_with_static_chain</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fchoose_005fexpr"><code>__builtin_choose_expr</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fclrsb"><code>__builtin_clrsb</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fclrsbl"><code>__builtin_clrsbl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fclrsbll"><code>__builtin_clrsbll</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fclz"><code>__builtin_clz</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fclzl"><code>__builtin_clzl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fclzll"><code>__builtin_clzll</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcomplex"><code>__builtin_complex</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fconstant_005fp"><code>__builtin_constant_p</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcpu_005finit"><code>__builtin_cpu_init</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcpu_005finit-1"><code>__builtin_cpu_init</code></a>:</td><td> </td><td valign="top"><a href="#x86-Built_002din-Functions">x86 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcpu_005fis"><code>__builtin_cpu_is</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcpu_005fis-1"><code>__builtin_cpu_is</code></a>:</td><td> </td><td valign="top"><a href="#x86-Built_002din-Functions">x86 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcpu_005fsupports"><code>__builtin_cpu_supports</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fcpu_005fsupports-1"><code>__builtin_cpu_supports</code></a>:</td><td> </td><td valign="top"><a href="#x86-Built_002din-Functions">x86 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fctz"><code>__builtin_ctz</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fctzl"><code>__builtin_ctzl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fctzll"><code>__builtin_ctzll</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fdivf128_005fround_005fto_005fodd"><code>__builtin_divf128_round_to_odd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fexpect"><code>__builtin_expect</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fextend_005fpointer"><code>__builtin_extend_pointer</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fextend_005fpointer-1"><code>__builtin_extend_pointer</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fextract_005freturn_005faddr"><code>__builtin_extract_return_addr</code></a>:</td><td> </td><td valign="top"><a href="#Return-Address">Return Address</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fffs"><code>__builtin_ffs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fffsl"><code>__builtin_ffsl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fffsll"><code>__builtin_ffsll</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fFILE"><code>__builtin_FILE</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ffmaf128"><code>__builtin_fmaf128</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ffmaf128_005fround_005fto_005fodd"><code>__builtin_fmaf128_round_to_odd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ffpclassify"><code>__builtin_fpclassify</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ffpclassify-1"><code>__builtin_fpclassify</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fframe_005faddress"><code>__builtin_frame_address</code></a>:</td><td> </td><td valign="top"><a href="#Return-Address">Return Address</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ffrob_005freturn_005faddress"><code>__builtin_frob_return_address</code></a>:</td><td> </td><td valign="top"><a href="#Return-Address">Return Address</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fFUNCTION"><code>__builtin_FUNCTION</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fhuge_005fval"><code>__builtin_huge_val</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fhuge_005fvalf"><code>__builtin_huge_valf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fhuge_005fvalfn"><code>__builtin_huge_valf<var>n</var></code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fhuge_005fvalfnx"><code>__builtin_huge_valf<var>n</var>x</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fhuge_005fvall"><code>__builtin_huge_vall</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fhuge_005fvalq"><code>__builtin_huge_valq</code></a>:</td><td> </td><td valign="top"><a href="#x86-Built_002din-Functions">x86 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finf"><code>__builtin_inf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finfd128"><code>__builtin_infd128</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finfd32"><code>__builtin_infd32</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finfd64"><code>__builtin_infd64</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finff"><code>__builtin_inff</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finffn"><code>__builtin_inff<var>n</var></code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finffnx"><code>__builtin_inff<var>n</var>x</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finfl"><code>__builtin_infl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005finfq"><code>__builtin_infq</code></a>:</td><td> </td><td valign="top"><a href="#x86-Built_002din-Functions">x86 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fisfinite"><code>__builtin_isfinite</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fisgreater"><code>__builtin_isgreater</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fisgreaterequal"><code>__builtin_isgreaterequal</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fisinf_005fsign"><code>__builtin_isinf_sign</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fisinf_005fsign-1"><code>__builtin_isinf_sign</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fisless"><code>__builtin_isless</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fislessequal"><code>__builtin_islessequal</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fislessgreater"><code>__builtin_islessgreater</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fisnormal"><code>__builtin_isnormal</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fisunordered"><code>__builtin_isunordered</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fLINE"><code>__builtin_LINE</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fmulf128_005fround_005fto_005fodd"><code>__builtin_mulf128_round_to_odd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fmul_005foverflow"><code>__builtin_mul_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fmul_005foverflow_005fp"><code>__builtin_mul_overflow_p</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnan"><code>__builtin_nan</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnand128"><code>__builtin_nand128</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnand32"><code>__builtin_nand32</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnand64"><code>__builtin_nand64</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnanf"><code>__builtin_nanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnanfn"><code>__builtin_nanf<var>n</var></code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnanfnx"><code>__builtin_nanf<var>n</var>x</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnanl"><code>__builtin_nanl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnanq"><code>__builtin_nanq</code></a>:</td><td> </td><td valign="top"><a href="#x86-Built_002din-Functions">x86 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnans"><code>__builtin_nans</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnansf"><code>__builtin_nansf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnansfn"><code>__builtin_nansf<var>n</var></code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnansfnx"><code>__builtin_nansf<var>n</var>x</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnansl"><code>__builtin_nansl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnansq"><code>__builtin_nansq</code></a>:</td><td> </td><td valign="top"><a href="#x86-Built_002din-Functions">x86 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnds32_005fisb"><code>__builtin_nds32_isb</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnds32_005fisync"><code>__builtin_nds32_isync</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnds32_005fmfsr"><code>__builtin_nds32_mfsr</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnds32_005fmfusr"><code>__builtin_nds32_mfusr</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnds32_005fmtsr"><code>__builtin_nds32_mtsr</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnds32_005fmtusr"><code>__builtin_nds32_mtusr</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnds32_005fsetgie_005fdis"><code>__builtin_nds32_setgie_dis</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnds32_005fsetgie_005fen"><code>__builtin_nds32_setgie_en</code></a>:</td><td> </td><td valign="top"><a href="#NDS32-Built_002din-Functions">NDS32 Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fnon_005ftx_005fstore"><code>__builtin_non_tx_store</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fobject_005fsize"><code>__builtin_object_size</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fobject_005fsize-1"><code>__builtin_object_size</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005foffsetof"><code>__builtin_offsetof</code></a>:</td><td> </td><td valign="top"><a href="#Offsetof">Offsetof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fparity"><code>__builtin_parity</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fparityl"><code>__builtin_parityl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fparityll"><code>__builtin_parityll</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpopcount"><code>__builtin_popcount</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpopcountl"><code>__builtin_popcountl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpopcountll"><code>__builtin_popcountll</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpowi"><code>__builtin_powi</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpowi-1"><code>__builtin_powi</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpowif"><code>__builtin_powif</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpowif-1"><code>__builtin_powif</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpowil"><code>__builtin_powil</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fpowil-1"><code>__builtin_powil</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fprefetch"><code>__builtin_prefetch</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005freturn"><code>__builtin_return</code></a>:</td><td> </td><td valign="top"><a href="#Constructing-Calls">Constructing Calls</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005freturn_005faddress"><code>__builtin_return_address</code></a>:</td><td> </td><td valign="top"><a href="#Return-Address">Return Address</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fbrk"><code>__builtin_rx_brk</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fclrpsw"><code>__builtin_rx_clrpsw</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fint"><code>__builtin_rx_int</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmachi"><code>__builtin_rx_machi</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmaclo"><code>__builtin_rx_maclo</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmulhi"><code>__builtin_rx_mulhi</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmullo"><code>__builtin_rx_mullo</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmvfachi"><code>__builtin_rx_mvfachi</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmvfacmi"><code>__builtin_rx_mvfacmi</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmvfc"><code>__builtin_rx_mvfc</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmvtachi"><code>__builtin_rx_mvtachi</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmvtaclo"><code>__builtin_rx_mvtaclo</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmvtc"><code>__builtin_rx_mvtc</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fmvtipl"><code>__builtin_rx_mvtipl</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fracw"><code>__builtin_rx_racw</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005frevw"><code>__builtin_rx_revw</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005frmpa"><code>__builtin_rx_rmpa</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fround"><code>__builtin_rx_round</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fsat"><code>__builtin_rx_sat</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fsetpsw"><code>__builtin_rx_setpsw</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005frx_005fwait"><code>__builtin_rx_wait</code></a>:</td><td> </td><td valign="top"><a href="#RX-Built_002din-Functions">RX Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsaddll_005foverflow"><code>__builtin_saddll_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsaddl_005foverflow"><code>__builtin_saddl_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsadd_005foverflow"><code>__builtin_sadd_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fset_005fthread_005fpointer"><code>__builtin_set_thread_pointer</code></a>:</td><td> </td><td valign="top"><a href="#SH-Built_002din-Functions">SH Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fshuffle"><code>__builtin_shuffle</code></a>:</td><td> </td><td valign="top"><a href="#Vector-Extensions">Vector Extensions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsh_005fget_005ffpscr"><code>__builtin_sh_get_fpscr</code></a>:</td><td> </td><td valign="top"><a href="#SH-Built_002din-Functions">SH Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsh_005fset_005ffpscr"><code>__builtin_sh_set_fpscr</code></a>:</td><td> </td><td valign="top"><a href="#SH-Built_002din-Functions">SH Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsmulll_005foverflow"><code>__builtin_smulll_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsmull_005foverflow"><code>__builtin_smull_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsmul_005foverflow"><code>__builtin_smul_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsqrtf128"><code>__builtin_sqrtf128</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsqrtf128_005fround_005fto_005fodd"><code>__builtin_sqrtf128_round_to_odd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fssubll_005foverflow"><code>__builtin_ssubll_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fssubl_005foverflow"><code>__builtin_ssubl_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fssub_005foverflow"><code>__builtin_ssub_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsubf128_005fround_005fto_005fodd"><code>__builtin_subf128_round_to_odd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsub_005foverflow"><code>__builtin_sub_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fsub_005foverflow_005fp"><code>__builtin_sub_overflow_p</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftabort"><code>__builtin_tabort</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftbegin"><code>__builtin_tbegin</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftbeginc"><code>__builtin_tbeginc</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftbegin_005fnofloat"><code>__builtin_tbegin_nofloat</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftbegin_005fretry"><code>__builtin_tbegin_retry</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftbegin_005fretry_005fnofloat"><code>__builtin_tbegin_retry_nofloat</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftend"><code>__builtin_tend</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftgmath"><code>__builtin_tgmath</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fthread_005fpointer"><code>__builtin_thread_pointer</code></a>:</td><td> </td><td valign="top"><a href="#SH-Built_002din-Functions">SH Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftrap"><code>__builtin_trap</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftruncf128_005fround_005fto_005fodd"><code>__builtin_truncf128_round_to_odd</code></a>:</td><td> </td><td valign="top"><a href="#PowerPC-Built_002din-Functions">PowerPC Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftx_005fassist"><code>__builtin_tx_assist</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftx_005fnesting_005fdepth"><code>__builtin_tx_nesting_depth</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005ftypes_005fcompatible_005fp"><code>__builtin_types_compatible_p</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fuaddll_005foverflow"><code>__builtin_uaddll_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fuaddl_005foverflow"><code>__builtin_uaddl_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fuadd_005foverflow"><code>__builtin_uadd_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fumulll_005foverflow"><code>__builtin_umulll_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fumull_005foverflow"><code>__builtin_umull_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fumul_005foverflow"><code>__builtin_umul_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005funreachable"><code>__builtin_unreachable</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fusubll_005foverflow"><code>__builtin_usubll_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fusubl_005foverflow"><code>__builtin_usubl_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fusub_005foverflow"><code>__builtin_usub_overflow</code></a>:</td><td> </td><td valign="top"><a href="#Integer-Overflow-Builtins">Integer Overflow Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fva_005farg_005fpack"><code>__builtin_va_arg_pack</code></a>:</td><td> </td><td valign="top"><a href="#Constructing-Calls">Constructing Calls</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005fva_005farg_005fpack_005flen"><code>__builtin_va_arg_pack_len</code></a>:</td><td> </td><td valign="top"><a href="#Constructing-Calls">Constructing Calls</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005fbounds"><code>__builtin___bnd_chk_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005fbounds-1"><code>__builtin___bnd_chk_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005flbounds"><code>__builtin___bnd_chk_ptr_lbounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005flbounds-1"><code>__builtin___bnd_chk_ptr_lbounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005fubounds"><code>__builtin___bnd_chk_ptr_ubounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fchk_005fptr_005fubounds-1"><code>__builtin___bnd_chk_ptr_ubounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fcopy_005fptr_005fbounds"><code>__builtin___bnd_copy_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fcopy_005fptr_005fbounds-1"><code>__builtin___bnd_copy_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fget_005fptr_005flbound"><code>__builtin___bnd_get_ptr_lbound</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fget_005fptr_005flbound-1"><code>__builtin___bnd_get_ptr_lbound</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fget_005fptr_005fubound"><code>__builtin___bnd_get_ptr_ubound</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fget_005fptr_005fubound-1"><code>__builtin___bnd_get_ptr_ubound</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005finit_005fptr_005fbounds"><code>__builtin___bnd_init_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005finit_005fptr_005fbounds-1"><code>__builtin___bnd_init_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fnarrow_005fptr_005fbounds"><code>__builtin___bnd_narrow_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fnarrow_005fptr_005fbounds-1"><code>__builtin___bnd_narrow_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fnull_005fptr_005fbounds"><code>__builtin___bnd_null_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fnull_005fptr_005fbounds-1"><code>__builtin___bnd_null_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fset_005fptr_005fbounds"><code>__builtin___bnd_set_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fset_005fptr_005fbounds-1"><code>__builtin___bnd_set_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fstore_005fptr_005fbounds"><code>__builtin___bnd_store_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fbnd_005fstore_005fptr_005fbounds-1"><code>__builtin___bnd_store_ptr_bounds</code></a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fclear_005fcache"><code>__builtin___clear_cache</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005ffprintf_005fchk"><code>__builtin___fprintf_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fmemcpy_005fchk"><code>__builtin___memcpy_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fmemmove_005fchk"><code>__builtin___memmove_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fmempcpy_005fchk"><code>__builtin___mempcpy_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fmemset_005fchk"><code>__builtin___memset_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fprintf_005fchk"><code>__builtin___printf_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fsnprintf_005fchk"><code>__builtin___snprintf_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fsprintf_005fchk"><code>__builtin___sprintf_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fstpcpy_005fchk"><code>__builtin___stpcpy_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fstrcat_005fchk"><code>__builtin___strcat_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fstrcpy_005fchk"><code>__builtin___strcpy_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fstrncat_005fchk"><code>__builtin___strncat_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fstrncpy_005fchk"><code>__builtin___strncpy_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fvfprintf_005fchk"><code>__builtin___vfprintf_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fvprintf_005fchk"><code>__builtin___vprintf_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fvsnprintf_005fchk"><code>__builtin___vsnprintf_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fbuiltin_005f_005f_005fvsprintf_005fchk"><code>__builtin___vsprintf_chk</code></a>:</td><td> </td><td valign="top"><a href="#Object-Size-Checking">Object Size Checking</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fcomplex_005f_005f-keyword"><code>__complex__</code> keyword</a>:</td><td> </td><td valign="top"><a href="#Complex">Complex</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fdeclspec_0028dllexport_0029"><code>__declspec(dllexport)</code></a>:</td><td> </td><td valign="top"><a href="#Microsoft-Windows-Function-Attributes">Microsoft Windows Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fdeclspec_0028dllimport_0029"><code>__declspec(dllimport)</code></a>:</td><td> </td><td valign="top"><a href="#Microsoft-Windows-Function-Attributes">Microsoft Windows Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fea-SPU-Named-Address-Spaces"><code>__ea</code> SPU Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fextension_005f_005f"><code>__extension__</code></a>:</td><td> </td><td valign="top"><a href="#Alternate-Keywords">Alternate Keywords</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005ffar-M32C-Named-Address-Spaces"><code>__far</code> M32C Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005ffar-RL78-Named-Address-Spaces"><code>__far</code> RL78 Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fflash-AVR-Named-Address-Spaces"><code>__flash</code> AVR Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fflash1-AVR-Named-Address-Spaces"><code>__flash1</code> AVR Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fflash2-AVR-Named-Address-Spaces"><code>__flash2</code> AVR Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fflash3-AVR-Named-Address-Spaces"><code>__flash3</code> AVR Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fflash4-AVR-Named-Address-Spaces"><code>__flash4</code> AVR Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fflash5-AVR-Named-Address-Spaces"><code>__flash5</code> AVR Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005ffloat128-data-type"><code>__float128</code> data type</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005ffloat80-data-type"><code>__float80</code> data type</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005ffp16-data-type"><code>__fp16</code> data type</a>:</td><td> </td><td valign="top"><a href="#Half_002dPrecision">Half-Precision</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fFUNCTION_005f_005f-identifier"><code>__FUNCTION__</code> identifier</a>:</td><td> </td><td valign="top"><a href="#Function-Names">Function Names</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005ffunc_005f_005f-identifier"><code>__func__</code> identifier</a>:</td><td> </td><td valign="top"><a href="#Function-Names">Function Names</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fibm128-data-type"><code>__ibm128</code> data type</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fimag_005f_005f-keyword"><code>__imag__</code> keyword</a>:</td><td> </td><td valign="top"><a href="#Complex">Complex</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fint128-data-types"><code>__int128</code> data types</a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fint128">__int128</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fmemx-AVR-Named-Address-Spaces"><code>__memx</code> AVR Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fPRETTY_005fFUNCTION_005f_005f-identifier"><code>__PRETTY_FUNCTION__</code> identifier</a>:</td><td> </td><td valign="top"><a href="#Function-Names">Function Names</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005freal_005f_005f-keyword"><code>__real__</code> keyword</a>:</td><td> </td><td valign="top"><a href="#Complex">Complex</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fseg_005ffs-x86-named-address-space"><code>__seg_fs</code> x86 named address space</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fseg_005fgs-x86-named-address-space"><code>__seg_gs</code> x86 named address space</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fSTDC_005fHOSTED_005f_005f"><code>__STDC_HOSTED__</code></a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005fadd_005fand_005ffetch"><code>__sync_add_and_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005fand_005fand_005ffetch"><code>__sync_and_and_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005fbool_005fcompare_005fand_005fswap"><code>__sync_bool_compare_and_swap</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005ffetch_005fand_005fadd"><code>__sync_fetch_and_add</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005ffetch_005fand_005fand"><code>__sync_fetch_and_and</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005ffetch_005fand_005fnand"><code>__sync_fetch_and_nand</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005ffetch_005fand_005for"><code>__sync_fetch_and_or</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005ffetch_005fand_005fsub"><code>__sync_fetch_and_sub</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005ffetch_005fand_005fxor"><code>__sync_fetch_and_xor</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005flock_005frelease"><code>__sync_lock_release</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005flock_005ftest_005fand_005fset"><code>__sync_lock_test_and_set</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005fnand_005fand_005ffetch"><code>__sync_nand_and_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005for_005fand_005ffetch"><code>__sync_or_and_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005fsub_005fand_005ffetch"><code>__sync_sub_and_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005fsynchronize"><code>__sync_synchronize</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005fval_005fcompare_005fand_005fswap"><code>__sync_val_compare_and_swap</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fsync_005fxor_005fand_005ffetch"><code>__sync_xor_and_fetch</code></a>:</td><td> </td><td valign="top"><a href="#g_t_005f_005fsync-Builtins">__sync Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-_005f_005fthread"><code>__thread</code></a>:</td><td> </td><td valign="top"><a href="#Thread_002dLocal">Thread-Local</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-A">A</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-AArch64-Options">AArch64 Options</a>:</td><td> </td><td valign="top"><a href="#AArch64-Options">AArch64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ABI">ABI</a>:</td><td> </td><td valign="top"><a href="#Compatibility">Compatibility</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-abi_005ftag-function-attribute"><code>abi_tag</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Attributes">C++ Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-abi_005ftag-type-attribute"><code>abi_tag</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Attributes">C++ Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-abi_005ftag-variable-attribute"><code>abi_tag</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Attributes">C++ Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-abort"><code>abort</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-abs"><code>abs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-absdata-variable-attribute_002c-AVR"><code>absdata</code> variable attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Variable-Attributes">AVR Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-accessing-volatiles">accessing volatiles</a>:</td><td> </td><td valign="top"><a href="#Volatiles">Volatiles</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-accessing-volatiles-1">accessing volatiles</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Volatiles">C++ Volatiles</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-acos"><code>acos</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-acosf"><code>acosf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-acosh"><code>acosh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-acoshf"><code>acoshf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-acoshl"><code>acoshl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-acosl"><code>acosl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Ada">Ada</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Ada-1">Ada</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-additional-floating-types">additional floating types</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-address-constraints">address constraints</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-address-of-a-label">address of a label</a>:</td><td> </td><td valign="top"><a href="#Labels-as-Values">Labels as Values</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-address-variable-attribute_002c-AVR"><code>address</code> variable attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Variable-Attributes">AVR Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-address_005foperand"><code>address_operand</code></a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-alias-function-attribute"><code>alias</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aligned-function-attribute"><code>aligned</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aligned-type-attribute"><code>aligned</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aligned-variable-attribute"><code>aligned</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-alignment">alignment</a>:</td><td> </td><td valign="top"><a href="#Alignment">Alignment</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-alloca"><code>alloca</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-alloca-vs-variable_002dlength-arrays"><code>alloca</code> vs variable-length arrays</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-alloc_005falign-function-attribute"><code>alloc_align</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-alloc_005fsize-function-attribute"><code>alloc_size</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Allow-nesting-in-an-interrupt-handler-on-the-Blackfin-processor">Allow nesting in an interrupt handler on the Blackfin processor</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Altera-Nios-II-options">Altera Nios II options</a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-alternate-keywords">alternate keywords</a>:</td><td> </td><td valign="top"><a href="#Alternate-Keywords">Alternate Keywords</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-altivec-type-attribute_002c-PowerPC"><code>altivec</code> type attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Type-Attributes">PowerPC Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-altivec-variable-attribute_002c-PowerPC"><code>altivec</code> variable attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Variable-Attributes">PowerPC Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-always_005finline-function-attribute"><code>always_inline</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-AMD1">AMD1</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ANSI-C">ANSI C</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ANSI-C-standard">ANSI C standard</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ANSI-C89">ANSI C89</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ANSI-support">ANSI support</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ANSI-X3_002e159_002d1989">ANSI X3.159-1989</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-apostrophes">apostrophes</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-application-binary-interface">application binary interface</a>:</td><td> </td><td valign="top"><a href="#Compatibility">Compatibility</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ARC-options">ARC options</a>:</td><td> </td><td valign="top"><a href="#ARC-Options">ARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arch_003d-function-attribute_002c-AArch64"><code>arch=</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arch_003d-function-attribute_002c-ARM"><code>arch=</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ARM-options">ARM options</a>:</td><td> </td><td valign="top"><a href="#ARM-Options">ARM Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ARM-_005bAnnotated-C_002b_002b-Reference-Manual_005d">ARM [Annotated C++ Reference Manual]</a>:</td><td> </td><td valign="top"><a href="#Backwards-Compatibility">Backwards Compatibility</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arrays-of-length-zero">arrays of length zero</a>:</td><td> </td><td valign="top"><a href="#Zero-Length">Zero Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arrays-of-variable-length">arrays of variable length</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arrays_002c-non_002dlvalue">arrays, non-lvalue</a>:</td><td> </td><td valign="top"><a href="#Subscripting">Subscripting</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-artificial-function-attribute"><code>artificial</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asin"><code>asin</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asinf"><code>asinf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asinh"><code>asinh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asinhf"><code>asinhf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asinhl"><code>asinhl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asinl"><code>asinl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-assembler-template"><code>asm</code> assembler template</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-clobbers"><code>asm</code> clobbers</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-constraints"><code>asm</code> constraints</a>:</td><td> </td><td valign="top"><a href="#Constraints">Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-expressions"><code>asm</code> expressions</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-flag-output-operands"><code>asm</code> flag output operands</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-goto-labels"><code>asm</code> goto labels</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-input-operands"><code>asm</code> input operands</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-keyword"><code>asm</code> keyword</a>:</td><td> </td><td valign="top"><a href="#Using-Assembly-Language-with-C">Using Assembly Language with C</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-output-operands"><code>asm</code> output operands</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-scratch-registers"><code>asm</code> scratch registers</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asm-volatile"><code>asm</code> volatile</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-assembler-names-for-identifiers">assembler names for identifiers</a>:</td><td> </td><td valign="top"><a href="#Asm-Labels">Asm Labels</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-assembly-code_002c-invalid">assembly code, invalid</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-assembly-language-in-C">assembly language in C</a>:</td><td> </td><td valign="top"><a href="#Using-Assembly-Language-with-C">Using Assembly Language with C</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-assembly-language-in-C_002c-basic">assembly language in C, basic</a>:</td><td> </td><td valign="top"><a href="#Basic-Asm">Basic Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-assembly-language-in-C_002c-extended">assembly language in C, extended</a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-assume_005faligned-function-attribute"><code>assume_aligned</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atan"><code>atan</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atan2"><code>atan2</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atan2f"><code>atan2f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atan2l"><code>atan2l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atanf"><code>atanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atanh"><code>atanh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atanhf"><code>atanhf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atanhl"><code>atanhl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atanl"><code>atanl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-attribute-of-types">attribute of types</a>:</td><td> </td><td valign="top"><a href="#Type-Attributes">Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-attribute-of-variables">attribute of variables</a>:</td><td> </td><td valign="top"><a href="#Variable-Attributes">Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-attribute-syntax">attribute syntax</a>:</td><td> </td><td valign="top"><a href="#Attribute-Syntax">Attribute Syntax</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-autoincrement_002fdecrement-addressing">autoincrement/decrement addressing</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-automatic-inline-for-C_002b_002b-member-fns">automatic <code>inline</code> for C++ member fns</a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aux-variable-attribute_002c-ARC"><code>aux</code> variable attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Variable-Attributes">ARC Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-AVR-Options">AVR Options</a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-B">B</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Backwards-Compatibility">Backwards Compatibility</a>:</td><td> </td><td valign="top"><a href="#Backwards-Compatibility">Backwards Compatibility</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bank_005fswitch-function-attribute_002c-M32C"><code>bank_switch</code> function attribute, M32C</a>:</td><td> </td><td valign="top"><a href="#M32C-Function-Attributes">M32C Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base-class-members">base class members</a>:</td><td> </td><td valign="top"><a href="#Name-lookup">Name lookup</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-based-type-attribute_002c-MeP"><code>based</code> type attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Type-Attributes">MeP Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-based-variable-attribute_002c-MeP"><code>based</code> variable attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Variable-Attributes">MeP Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-basic-asm">basic <code>asm</code></a>:</td><td> </td><td valign="top"><a href="#Basic-Asm">Basic Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bcmp"><code>bcmp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-below100-variable-attribute_002c-Xstormy16"><code>below100</code> variable attribute, Xstormy16</a>:</td><td> </td><td valign="top"><a href="#Xstormy16-Variable-Attributes">Xstormy16 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-binary-compatibility">binary compatibility</a>:</td><td> </td><td valign="top"><a href="#Compatibility">Compatibility</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Binary-constants-using-the-0b-prefix">Binary constants using the ‘<samp>0b</samp>’ prefix</a>:</td><td> </td><td valign="top"><a href="#Binary-constants">Binary constants</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Blackfin-Options">Blackfin Options</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Options">Blackfin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bnd_005finstrument-function-attribute"><code>bnd_instrument</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bnd_005flegacy-function-attribute"><code>bnd_legacy</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bnd_005fvariable_005fsize-type-attribute"><code>bnd_variable_size</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bound-pointer-to-member-function">bound pointer to member function</a>:</td><td> </td><td valign="top"><a href="#Bound-member-functions">Bound member functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-break-handler-functions">break handler functions</a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Function-Attributes">MicroBlaze Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-break_005fhandler-function-attribute_002c-MicroBlaze"><code>break_handler</code> function attribute, MicroBlaze</a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Function-Attributes">MicroBlaze Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-brk_005finterrupt-function-attribute_002c-RL78"><code>brk_interrupt</code> function attribute, RL78</a>:</td><td> </td><td valign="top"><a href="#RL78-Function-Attributes">RL78 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bug-criteria">bug criteria</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bugs">bugs</a>:</td><td> </td><td valign="top"><a href="#Bugs">Bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bugs_002c-known">bugs, known</a>:</td><td> </td><td valign="top"><a href="#Trouble">Trouble</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-built_002din-functions">built-in functions</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-built_002din-functions-1">built-in functions</a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bzero"><code>bzero</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-C">C</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-C-compilation-options">C compilation options</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C-intermediate-output_002c-nonexistent">C intermediate output, nonexistent</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C-language-extensions">C language extensions</a>:</td><td> </td><td valign="top"><a href="#C-Extensions">C Extensions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C-language_002c-traditional">C language, traditional</a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C-standard">C standard</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C-standards">C standards</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-c_002b_002b"><code>c++</code></a>:</td><td> </td><td valign="top"><a href="#Invoking-G_002b_002b">Invoking G++</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b">C++</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-comments">C++ comments</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Comments">C++ Comments</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-interface-and-implementation-headers">C++ interface and implementation headers</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-language-extensions">C++ language extensions</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Extensions">C++ Extensions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-member-fns_002c-automatically-inline">C++ member fns, automatically <code>inline</code></a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-misunderstandings">C++ misunderstandings</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-options_002c-command_002dline">C++ options, command-line</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-pragmas_002c-effect-on-inlining">C++ pragmas, effect on inlining</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-source-file-suffixes">C++ source file suffixes</a>:</td><td> </td><td valign="top"><a href="#Invoking-G_002b_002b">Invoking G++</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_002b_002b-static-data_002c-declaring-and-defining">C++ static data, declaring and defining</a>:</td><td> </td><td valign="top"><a href="#Static-Definitions">Static Definitions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C11">C11</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C17">C17</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C1X">C1X</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C6X-Options">C6X Options</a>:</td><td> </td><td valign="top"><a href="#C6X-Options">C6X Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C89">C89</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C90">C90</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C94">C94</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C95">C95</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C99">C99</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C9X">C9X</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cabs"><code>cabs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cabsf"><code>cabsf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cabsl"><code>cabsl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cacos"><code>cacos</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cacosf"><code>cacosf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cacosh"><code>cacosh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cacoshf"><code>cacoshf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cacoshl"><code>cacoshl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cacosl"><code>cacosl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-callee_005fpop_005faggregate_005freturn-function-attribute_002c-x86"><code>callee_pop_aggregate_return</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-calling-functions-through-the-function-vector-on-SH2A">calling functions through the function vector on SH2A</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-calloc"><code>calloc</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-carg"><code>carg</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cargf"><code>cargf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cargl"><code>cargl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-case-labels-in-initializers">case labels in initializers</a>:</td><td> </td><td valign="top"><a href="#Designated-Inits">Designated Inits</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-case-ranges">case ranges</a>:</td><td> </td><td valign="top"><a href="#Case-Ranges">Case Ranges</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-casin"><code>casin</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-casinf"><code>casinf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-casinh"><code>casinh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-casinhf"><code>casinhf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-casinhl"><code>casinhl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-casinl"><code>casinl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cast-to-a-union">cast to a union</a>:</td><td> </td><td valign="top"><a href="#Cast-to-Union">Cast to Union</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-catan"><code>catan</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-catanf"><code>catanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-catanh"><code>catanh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-catanhf"><code>catanhf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-catanhl"><code>catanhl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-catanl"><code>catanl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cb-variable-attribute_002c-MeP"><code>cb</code> variable attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Variable-Attributes">MeP Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cbrt"><code>cbrt</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cbrtf"><code>cbrtf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cbrtl"><code>cbrtl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccos"><code>ccos</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccosf"><code>ccosf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccosh"><code>ccosh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccoshf"><code>ccoshf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccoshl"><code>ccoshl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccosl"><code>ccosl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cdecl-function-attribute_002c-x86_002d32"><code>cdecl</code> function attribute, x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ceil"><code>ceil</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ceilf"><code>ceilf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ceill"><code>ceill</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cexp"><code>cexp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cexpf"><code>cexpf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cexpl"><code>cexpl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-character-set_002c-execution">character set, execution</a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-character-set_002c-input">character set, input</a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-character-set_002c-input-normalization">character set, input normalization</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-character-set_002c-wide-execution">character set, wide execution</a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cimag"><code>cimag</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cimagf"><code>cimagf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cimagl"><code>cimagl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cleanup-variable-attribute"><code>cleanup</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-clog"><code>clog</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-clog10"><code>clog10</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-clog10f"><code>clog10f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-clog10l"><code>clog10l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-clogf"><code>clogf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-clogl"><code>clogl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cmodel_003d-function-attribute_002c-AArch64"><code>cmodel=</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-COBOL">COBOL</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-code-generation-conventions">code generation conventions</a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-code_002c-mixed-with-declarations">code, mixed with declarations</a>:</td><td> </td><td valign="top"><a href="#Mixed-Declarations">Mixed Declarations</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cold-function-attribute"><code>cold</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cold-label-attribute"><code>cold</code> label attribute</a>:</td><td> </td><td valign="top"><a href="#Label-Attributes">Label Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-command-options">command options</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-comments_002c-C_002b_002b-style">comments, C++ style</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Comments">C++ Comments</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-common-variable-attribute"><code>common</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-comparison-of-signed-and-unsigned-values_002c-warning">comparison of signed and unsigned values, warning</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compilation-statistics">compilation statistics</a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compiler-bugs_002c-reporting">compiler bugs, reporting</a>:</td><td> </td><td valign="top"><a href="#Bug-Reporting">Bug Reporting</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compiler-compared-to-C_002b_002b-preprocessor">compiler compared to C++ preprocessor</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compiler-options_002c-C_002b_002b">compiler options, C++</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compiler-options_002c-Objective_002dC-and-Objective_002dC_002b_002b">compiler options, Objective-C and Objective-C++</a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compiler-version_002c-specifying">compiler version, specifying</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-COMPILER_005fPATH"><code>COMPILER_PATH</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-complex-conjugation">complex conjugation</a>:</td><td> </td><td valign="top"><a href="#Complex">Complex</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-complex-numbers">complex numbers</a>:</td><td> </td><td valign="top"><a href="#Complex">Complex</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compound-literals">compound literals</a>:</td><td> </td><td valign="top"><a href="#Compound-Literals">Compound Literals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-computed-gotos">computed gotos</a>:</td><td> </td><td valign="top"><a href="#Labels-as-Values">Labels as Values</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conditional-expressions_002c-extensions">conditional expressions, extensions</a>:</td><td> </td><td valign="top"><a href="#Conditionals">Conditionals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conflicting-types">conflicting types</a>:</td><td> </td><td valign="top"><a href="#Disappointments">Disappointments</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conj"><code>conj</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conjf"><code>conjf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conjl"><code>conjl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-const-applied-to-function"><code>const</code> applied to function</a>:</td><td> </td><td valign="top"><a href="#Function-Attributes">Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-const-function-attribute"><code>const</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-const-qualifier">const qualifier</a>:</td><td> </td><td valign="top"><a href="#Pointers-to-Arrays">Pointers to Arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-constants-in-constraints">constants in constraints</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-constraint-modifier-characters">constraint modifier characters</a>:</td><td> </td><td valign="top"><a href="#Modifiers">Modifiers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-constraint_002c-matching">constraint, matching</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-constraints_002c-asm">constraints, <code>asm</code></a>:</td><td> </td><td valign="top"><a href="#Constraints">Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-constraints_002c-machine-specific">constraints, machine specific</a>:</td><td> </td><td valign="top"><a href="#Machine-Constraints">Machine Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-constructing-calls">constructing calls</a>:</td><td> </td><td valign="top"><a href="#Constructing-Calls">Constructing Calls</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-constructor-expressions">constructor expressions</a>:</td><td> </td><td valign="top"><a href="#Compound-Literals">Compound Literals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-constructor-function-attribute"><code>constructor</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-contributors">contributors</a>:</td><td> </td><td valign="top"><a href="#Contributors">Contributors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-copysign"><code>copysign</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-copysignf"><code>copysignf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-copysignl"><code>copysignl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-core-dump">core dump</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cos"><code>cos</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cosf"><code>cosf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cosh"><code>cosh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-coshf"><code>coshf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-coshl"><code>coshl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cosl"><code>cosl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CPATH"><code>CPATH</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CPLUS_005fINCLUDE_005fPATH"><code>CPLUS_INCLUDE_PATH</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cpow"><code>cpow</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cpowf"><code>cpowf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cpowl"><code>cpowl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cproj"><code>cproj</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cprojf"><code>cprojf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cprojl"><code>cprojl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cpu_003d-function-attribute_002c-AArch64"><code>cpu=</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CR16-Options">CR16 Options</a>:</td><td> </td><td valign="top"><a href="#CR16-Options">CR16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-creal"><code>creal</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-crealf"><code>crealf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-creall"><code>creall</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CRIS-Options">CRIS Options</a>:</td><td> </td><td valign="top"><a href="#CRIS-Options">CRIS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-critical-function-attribute_002c-MSP430"><code>critical</code> function attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cross-compiling">cross compiling</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csin"><code>csin</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csinf"><code>csinf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csinh"><code>csinh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csinhf"><code>csinhf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csinhl"><code>csinhl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csinl"><code>csinl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csqrt"><code>csqrt</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csqrtf"><code>csqrtf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-csqrtl"><code>csqrtl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctan"><code>ctan</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctanf"><code>ctanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctanh"><code>ctanh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctanhf"><code>ctanhf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctanhl"><code>ctanhl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctanl"><code>ctanl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-C_005fINCLUDE_005fPATH"><code>C_INCLUDE_PATH</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-D">D</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-D">D</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Darwin-options">Darwin options</a>:</td><td> </td><td valign="top"><a href="#Darwin-Options">Darwin Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dcgettext"><code>dcgettext</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dd-integer-suffix"><code>dd</code> integer suffix</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DD-integer-suffix"><code>DD</code> integer suffix</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deallocating-variable-length-arrays">deallocating variable length arrays</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-debug-dump-options">debug dump options</a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-debugging-GCC">debugging GCC</a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-debugging-information-options">debugging information options</a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-decimal-floating-types">decimal floating types</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-declaration-scope">declaration scope</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-declarations-inside-expressions">declarations inside expressions</a>:</td><td> </td><td valign="top"><a href="#Statement-Exprs">Statement Exprs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-declarations_002c-mixed-with-code">declarations, mixed with code</a>:</td><td> </td><td valign="top"><a href="#Mixed-Declarations">Mixed Declarations</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-declaring-attributes-of-functions">declaring attributes of functions</a>:</td><td> </td><td valign="top"><a href="#Function-Attributes">Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-declaring-static-data-in-C_002b_002b">declaring static data in C++</a>:</td><td> </td><td valign="top"><a href="#Static-Definitions">Static Definitions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-defining-static-data-in-C_002b_002b">defining static data in C++</a>:</td><td> </td><td valign="top"><a href="#Static-Definitions">Static Definitions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dependencies-for-make-as-output">dependencies for make as output</a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dependencies-for-make-as-output-1">dependencies for make as output</a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dependencies_002c-make">dependencies, <code>make</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DEPENDENCIES_005fOUTPUT"><code>DEPENDENCIES_OUTPUT</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dependent-name-lookup">dependent name lookup</a>:</td><td> </td><td valign="top"><a href="#Name-lookup">Name lookup</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deprecated-enumerator-attribute"><code>deprecated</code> enumerator attribute</a>:</td><td> </td><td valign="top"><a href="#Enumerator-Attributes">Enumerator Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deprecated-function-attribute"><code>deprecated</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deprecated-type-attribute"><code>deprecated</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deprecated-variable-attribute"><code>deprecated</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-designated-initializers">designated initializers</a>:</td><td> </td><td valign="top"><a href="#Designated-Inits">Designated Inits</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-designated_005finit-type-attribute"><code>designated_init</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-designator-lists">designator lists</a>:</td><td> </td><td valign="top"><a href="#Designated-Inits">Designated Inits</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-designators">designators</a>:</td><td> </td><td valign="top"><a href="#Designated-Inits">Designated Inits</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-destructor-function-attribute"><code>destructor</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-developer-options">developer options</a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-df-integer-suffix"><code>df</code> integer suffix</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DF-integer-suffix"><code>DF</code> integer suffix</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dgettext"><code>dgettext</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-diagnostic-messages">diagnostic messages</a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dialect-options">dialect options</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-diff_002ddelete-GCC_005fCOLORS-capability"><code>diff-delete GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-diff_002dfilename-GCC_005fCOLORS-capability"><code>diff-filename GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-diff_002dhunk-GCC_005fCOLORS-capability"><code>diff-hunk GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-diff_002dinsert-GCC_005fCOLORS-capability"><code>diff-insert GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-digits-in-constraint">digits in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-directory-options">directory options</a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-disinterrupt-function-attribute_002c-Epiphany"><code>disinterrupt</code> function attribute, Epiphany</a>:</td><td> </td><td valign="top"><a href="#Epiphany-Function-Attributes">Epiphany Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-disinterrupt-function-attribute_002c-MeP"><code>disinterrupt</code> function attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Function-Attributes">MeP Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dl-integer-suffix"><code>dl</code> integer suffix</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DL-integer-suffix"><code>DL</code> integer suffix</a>:</td><td> </td><td valign="top"><a href="#Decimal-Float">Decimal Float</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dllexport-function-attribute"><code>dllexport</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Microsoft-Windows-Function-Attributes">Microsoft Windows Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dllexport-variable-attribute"><code>dllexport</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Microsoft-Windows-Variable-Attributes">Microsoft Windows Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dllimport-function-attribute"><code>dllimport</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Microsoft-Windows-Function-Attributes">Microsoft Windows Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dllimport-variable-attribute"><code>dllimport</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Microsoft-Windows-Variable-Attributes">Microsoft Windows Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dollar-signs-in-identifier-names">dollar signs in identifier names</a>:</td><td> </td><td valign="top"><a href="#Dollar-Signs">Dollar Signs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-double_002dword-arithmetic">double-word arithmetic</a>:</td><td> </td><td valign="top"><a href="#Long-Long">Long Long</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-downward-funargs">downward funargs</a>:</td><td> </td><td valign="top"><a href="#Nested-Functions">Nested Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-drem"><code>drem</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dremf"><code>dremf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dreml"><code>dreml</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dump-options">dump options</a>:</td><td> </td><td valign="top"><a href="#Developer-Options">Developer Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-E">E</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-E-in-constraint">‘<samp>E</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-earlyclobber-operand">earlyclobber operand</a>:</td><td> </td><td valign="top"><a href="#Modifiers">Modifiers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eight_002dbit-data-on-the-H8_002f300_002c-H8_002f300H_002c-and-H8S">eight-bit data on the H8/300, H8/300H, and H8S</a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Variable-Attributes">H8/300 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eightbit_005fdata-variable-attribute_002c-H8_002f300"><code>eightbit_data</code> variable attribute, H8/300</a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Variable-Attributes">H8/300 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EIND"><code>EIND</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-either-function-attribute_002c-MSP430"><code>either</code> function attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-either-variable-attribute_002c-MSP430"><code>either</code> variable attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Variable-Attributes">MSP430 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-empty-structures">empty structures</a>:</td><td> </td><td valign="top"><a href="#Empty-Structures">Empty Structures</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Enumerator-Attributes">Enumerator Attributes</a>:</td><td> </td><td valign="top"><a href="#Enumerator-Attributes">Enumerator Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-environment-variables">environment variables</a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-erf"><code>erf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-erfc"><code>erfc</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-erfcf"><code>erfcf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-erfcl"><code>erfcl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-erff"><code>erff</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-erfl"><code>erfl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-error-function-attribute"><code>error</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-error-GCC_005fCOLORS-capability"><code>error GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-error-messages">error messages</a>:</td><td> </td><td valign="top"><a href="#Warnings-and-Errors">Warnings and Errors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-escaped-newlines">escaped newlines</a>:</td><td> </td><td valign="top"><a href="#Escaped-Newlines">Escaped Newlines</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exception-function-attribute"><code>exception</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exception-handler-functions_002c-Blackfin">exception handler functions, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exception-handler-functions_002c-NDS32">exception handler functions, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exception_005fhandler-function-attribute"><code>exception_handler</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exit"><code>exit</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp"><code>exp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp10"><code>exp10</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp10f"><code>exp10f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp10l"><code>exp10l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp2"><code>exp2</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp2f"><code>exp2f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp2l"><code>exp2l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expf"><code>expf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expl"><code>expl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-explicit-register-variables">explicit register variables</a>:</td><td> </td><td valign="top"><a href="#Explicit-Register-Variables">Explicit Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expm1"><code>expm1</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expm1f"><code>expm1f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expm1l"><code>expm1l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expressions-containing-statements">expressions containing statements</a>:</td><td> </td><td valign="top"><a href="#Statement-Exprs">Statement Exprs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expressions_002c-constructor">expressions, constructor</a>:</td><td> </td><td valign="top"><a href="#Compound-Literals">Compound Literals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-extended-asm">extended <code>asm</code></a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-extensible-constraints">extensible constraints</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-extensions_002c-_003f_003a">extensions, <code>?:</code></a>:</td><td> </td><td valign="top"><a href="#Conditionals">Conditionals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-extensions_002c-C-language">extensions, C language</a>:</td><td> </td><td valign="top"><a href="#C-Extensions">C Extensions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-extensions_002c-C_002b_002b-language">extensions, C++ language</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Extensions">C++ Extensions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-external-declaration-scope">external declaration scope</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-externally_005fvisible-function-attribute"><code>externally_visible</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-extra-NOP-instructions-at-the-function-entry-point">extra NOP instructions at the function entry point</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-F">F</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-F-in-constraint">‘<samp>F</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fabs"><code>fabs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fabsf"><code>fabsf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fabsl"><code>fabsl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fallthrough-statement-attribute"><code>fallthrough</code> statement attribute</a>:</td><td> </td><td valign="top"><a href="#Statement-Attributes">Statement Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-far-function-attribute_002c-MeP"><code>far</code> function attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Function-Attributes">MeP Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-far-function-attribute_002c-MIPS"><code>far</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-far-type-attribute_002c-MeP"><code>far</code> type attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Type-Attributes">MeP Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-far-variable-attribute_002c-MeP"><code>far</code> variable attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Variable-Attributes">MeP Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fastcall-function-attribute_002c-x86_002d32"><code>fastcall</code> function attribute, x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fast_005finterrupt-function-attribute_002c-M32C"><code>fast_interrupt</code> function attribute, M32C</a>:</td><td> </td><td valign="top"><a href="#M32C-Function-Attributes">M32C Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fast_005finterrupt-function-attribute_002c-MicroBlaze"><code>fast_interrupt</code> function attribute, MicroBlaze</a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Function-Attributes">MicroBlaze Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fast_005finterrupt-function-attribute_002c-RX"><code>fast_interrupt</code> function attribute, RX</a>:</td><td> </td><td valign="top"><a href="#RX-Function-Attributes">RX Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fatal-signal">fatal signal</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdim"><code>fdim</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdimf"><code>fdimf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fdiml"><code>fdiml</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-FDL_002c-GNU-Free-Documentation-License">FDL, GNU Free Documentation License</a>:</td><td> </td><td valign="top"><a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffs"><code>ffs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-file-name-suffix">file name suffix</a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-file-names">file names</a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fix_002dcortex_002da53_002d835769-function-attribute_002c-AArch64"><code>fix-cortex-a53-835769</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fixed_002dpoint-types">fixed-point types</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fixit_002ddelete-GCC_005fCOLORS-capability"><code>fixit-delete GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fixit_002dinsert-GCC_005fCOLORS-capability"><code>fixit-insert GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flatten-function-attribute"><code>flatten</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-flexible-array-members">flexible array members</a>:</td><td> </td><td valign="top"><a href="#Zero-Length">Zero Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float-as-function-value-type"><code>float</code> as function value type</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floating-point-precision">floating point precision</a>:</td><td> </td><td valign="top"><a href="#Disappointments">Disappointments</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floating_002dpoint-precision">floating-point precision</a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floor"><code>floor</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floorf"><code>floorf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floorl"><code>floorl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fma"><code>fma</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmaf"><code>fmaf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmal"><code>fmal</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmax"><code>fmax</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmaxf"><code>fmaxf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmaxl"><code>fmaxl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmin"><code>fmin</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fminf"><code>fminf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fminl"><code>fminl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmod"><code>fmod</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmodf"><code>fmodf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fmodl"><code>fmodl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-force_005falign_005farg_005fpointer-function-attribute_002c-x86"><code>force_align_arg_pointer</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-format-function-attribute"><code>format</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-format_005farg-function-attribute"><code>format_arg</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Fortran">Fortran</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-forwarder_005fsection-function-attribute_002c-Epiphany"><code>forwarder_section</code> function attribute, Epiphany</a>:</td><td> </td><td valign="top"><a href="#Epiphany-Function-Attributes">Epiphany Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-forwarding-calls">forwarding calls</a>:</td><td> </td><td valign="top"><a href="#Constructing-Calls">Constructing Calls</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprintf"><code>fprintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprintf_005funlocked"><code>fprintf_unlocked</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fputs"><code>fputs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fputs_005funlocked"><code>fputs_unlocked</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-FR30-Options">FR30 Options</a>:</td><td> </td><td valign="top"><a href="#FR30-Options">FR30 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freestanding-environment">freestanding environment</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-freestanding-implementation">freestanding implementation</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frexp"><code>frexp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frexpf"><code>frexpf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-frexpl"><code>frexpl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-FRV-Options">FRV Options</a>:</td><td> </td><td valign="top"><a href="#FRV-Options">FRV Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fscanf"><code>fscanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fscanf_002c-and-constant-strings"><code>fscanf</code>, and constant strings</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-FT32-Options">FT32 Options</a>:</td><td> </td><td valign="top"><a href="#FT32-Options">FT32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function-addressability-on-the-M32R_002fD">function addressability on the M32R/D</a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Function-Attributes">M32R/D Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function-attributes">function attributes</a>:</td><td> </td><td valign="top"><a href="#Function-Attributes">Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function-pointers_002c-arithmetic">function pointers, arithmetic</a>:</td><td> </td><td valign="top"><a href="#Pointer-Arith">Pointer Arith</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function-prototype-declarations">function prototype declarations</a>:</td><td> </td><td valign="top"><a href="#Function-Prototypes">Function Prototypes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function-versions">function versions</a>:</td><td> </td><td valign="top"><a href="#Function-Multiversioning">Function Multiversioning</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function_002c-size-of-pointer-to">function, size of pointer to</a>:</td><td> </td><td valign="top"><a href="#Pointer-Arith">Pointer Arith</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-in-arbitrary-sections">functions in arbitrary sections</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-are-dynamically-resolved">functions that are dynamically resolved</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-are-passed-arguments-in-registers-on-x86_002d32">functions that are passed arguments in registers on x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-behave-like-malloc">functions that behave like malloc</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-have-no-side-effects">functions that have no side effects</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-have-no-side-effects-1">functions that have no side effects</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-never-return">functions that never return</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-pop-the-argument-stack-on-x86_002d32">functions that pop the argument stack on x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-pop-the-argument-stack-on-x86_002d32-1">functions that pop the argument stack on x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-pop-the-argument-stack-on-x86_002d32-2">functions that pop the argument stack on x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-pop-the-argument-stack-on-x86_002d32-3">functions that pop the argument stack on x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-that-return-more-than-once">functions that return more than once</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-with-non_002dnull-pointer-arguments">functions with non-null pointer arguments</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-functions-with-printf_002c-scanf_002c-strftime-or-strfmon-style-arguments">functions with <code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style arguments</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function_005freturn-function-attribute_002c-x86"><code>function_return</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function_005fvector-function-attribute_002c-H8_002f300"><code>function_vector</code> function attribute, H8/300</a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Function-Attributes">H8/300 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function_005fvector-function-attribute_002c-M16C_002fM32C"><code>function_vector</code> function attribute, M16C/M32C</a>:</td><td> </td><td valign="top"><a href="#M32C-Function-Attributes">M32C Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-function_005fvector-function-attribute_002c-SH"><code>function_vector</code> function attribute, SH</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-G">G</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-G-in-constraint">‘<samp>G</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-g-in-constraint">‘<samp>g</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-g_002b_002b"><code>g++</code></a>:</td><td> </td><td valign="top"><a href="#Invoking-G_002b_002b">Invoking G++</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-G_002b_002b">G++</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gamma"><code>gamma</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gammaf"><code>gammaf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gammaf_005fr"><code>gammaf_r</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gammal"><code>gammal</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gammal_005fr"><code>gammal_r</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gamma_005fr"><code>gamma_r</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCC">GCC</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCC-command-options">GCC command options</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCC_005fCOLORS-environment-variable"><code>GCC_COLORS <span class="roman">environment variable</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCC_005fCOMPARE_005fDEBUG"><code>GCC_COMPARE_DEBUG</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCC_005fEXEC_005fPREFIX"><code>GCC_EXEC_PREFIX</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcc_005fstruct-type-attribute_002c-PowerPC"><code>gcc_struct</code> type attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Type-Attributes">PowerPC Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcc_005fstruct-type-attribute_002c-x86"><code>gcc_struct</code> type attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Type-Attributes">x86 Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcc_005fstruct-variable-attribute_002c-PowerPC"><code>gcc_struct</code> variable attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Variable-Attributes">PowerPC Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcc_005fstruct-variable-attribute_002c-x86"><code>gcc_struct</code> variable attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Variable-Attributes">x86 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcov"><code>gcov</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-general_002dregs_002donly-function-attribute_002c-AArch64"><code>general-regs-only</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gettext"><code>gettext</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-global-offset-table">global offset table</a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-global-register-after-longjmp">global register after <code>longjmp</code></a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-global-register-variables">global register variables</a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GNAT">GNAT</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GNU-C-Compiler">GNU C Compiler</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GNU-Compiler-Collection">GNU Compiler Collection</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gnu_005finline-function-attribute"><code>gnu_inline</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Go">Go</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-goto-with-computed-label">goto with computed label</a>:</td><td> </td><td valign="top"><a href="#Labels-as-Values">Labels as Values</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gprof"><code>gprof</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-grouping-options">grouping options</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-H">H</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-H-in-constraint">‘<samp>H</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-half_002dprecision-floating-point">half-precision floating point</a>:</td><td> </td><td valign="top"><a href="#Half_002dPrecision">Half-Precision</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hardware-models-and-configurations_002c-specifying">hardware models and configurations, specifying</a>:</td><td> </td><td valign="top"><a href="#Submodel-Options">Submodel Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hex-floats">hex floats</a>:</td><td> </td><td valign="top"><a href="#Hex-Floats">Hex Floats</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-highlight_002c-color">highlight, color</a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hk-fixed_002dsuffix"><code>hk</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-HK-fixed_002dsuffix"><code>HK</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hosted-environment">hosted environment</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hosted-environment-1">hosted environment</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hosted-environment-2">hosted environment</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hosted-implementation">hosted implementation</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hot-function-attribute"><code>hot</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hot-label-attribute"><code>hot</code> label attribute</a>:</td><td> </td><td valign="top"><a href="#Label-Attributes">Label Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hotpatch-function-attribute_002c-S_002f390"><code>hotpatch</code> function attribute, S/390</a>:</td><td> </td><td valign="top"><a href="#S_002f390-Function-Attributes">S/390 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-HPPA-Options">HPPA Options</a>:</td><td> </td><td valign="top"><a href="#HPPA-Options">HPPA Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hr-fixed_002dsuffix"><code>hr</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-HR-fixed_002dsuffix"><code>HR</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hypot"><code>hypot</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hypotf"><code>hypotf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hypotl"><code>hypotl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-I">I</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-i-in-constraint">‘<samp>i</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-I-in-constraint">‘<samp>I</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-IA_002d64-Options">IA-64 Options</a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Options">IA-64 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-IBM-RS_002f6000-and-PowerPC-Options">IBM RS/6000 and PowerPC Options</a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-identifier-names_002c-dollar-signs-in">identifier names, dollar signs in</a>:</td><td> </td><td valign="top"><a href="#Dollar-Signs">Dollar Signs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-identifiers_002c-names-in-assembler-code">identifiers, names in assembler code</a>:</td><td> </td><td valign="top"><a href="#Asm-Labels">Asm Labels</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ifunc-function-attribute"><code>ifunc</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ilogb"><code>ilogb</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ilogbf"><code>ilogbf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ilogbl"><code>ilogbl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-imaxabs"><code>imaxabs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-implementation_002ddefined-behavior_002c-C-language">implementation-defined behavior, C language</a>:</td><td> </td><td valign="top"><a href="#C-Implementation">C Implementation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-implementation_002ddefined-behavior_002c-C_002b_002b-language">implementation-defined behavior, C++ language</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Implementation">C++ Implementation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-implied-_0023pragma-implementation">implied <code>#pragma implementation</code></a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-incompatibilities-of-GCC">incompatibilities of GCC</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-increment-operators">increment operators</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-index"><code>index</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-indirect-calls_002c-ARC">indirect calls, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Function-Attributes">ARC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-indirect-calls_002c-ARM">indirect calls, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-indirect-calls_002c-Blackfin">indirect calls, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-indirect-calls_002c-Epiphany">indirect calls, Epiphany</a>:</td><td> </td><td valign="top"><a href="#Epiphany-Function-Attributes">Epiphany Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-indirect-calls_002c-MIPS">indirect calls, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-indirect-calls_002c-PowerPC">indirect calls, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-indirect-functions">indirect functions</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-indirect_005fbranch-function-attribute_002c-x86"><code>indirect_branch</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-initializations-in-expressions">initializations in expressions</a>:</td><td> </td><td valign="top"><a href="#Compound-Literals">Compound Literals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-initializers-with-labeled-elements">initializers with labeled elements</a>:</td><td> </td><td valign="top"><a href="#Designated-Inits">Designated Inits</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-initializers_002c-non_002dconstant">initializers, non-constant</a>:</td><td> </td><td valign="top"><a href="#Initializers">Initializers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-init_005fpriority-variable-attribute"><code>init_priority</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Attributes">C++ Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-inline-assembly-language">inline assembly language</a>:</td><td> </td><td valign="top"><a href="#Using-Assembly-Language-with-C">Using Assembly Language with C</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-inline-automatic-for-C_002b_002b-member-fns"><code>inline</code> automatic for C++ member fns</a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-inline-functions">inline functions</a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-inline-functions_002c-omission-of">inline functions, omission of</a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-inlining-and-C_002b_002b-pragmas">inlining and C++ pragmas</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-installation-trouble">installation trouble</a>:</td><td> </td><td valign="top"><a href="#Trouble">Trouble</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-instrumentation-options">instrumentation options</a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-integrating-function-code">integrating function code</a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interface-and-implementation-headers_002c-C_002b_002b">interface and implementation headers, C++</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-intermediate-C-version_002c-nonexistent">intermediate C version, nonexistent</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-ARC"><code>interrupt</code> function attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Function-Attributes">ARC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-ARM"><code>interrupt</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-AVR"><code>interrupt</code> function attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Function-Attributes">AVR Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-CR16"><code>interrupt</code> function attribute, CR16</a>:</td><td> </td><td valign="top"><a href="#CR16-Function-Attributes">CR16 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-Epiphany"><code>interrupt</code> function attribute, Epiphany</a>:</td><td> </td><td valign="top"><a href="#Epiphany-Function-Attributes">Epiphany Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-M32C"><code>interrupt</code> function attribute, M32C</a>:</td><td> </td><td valign="top"><a href="#M32C-Function-Attributes">M32C Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-M32R_002fD"><code>interrupt</code> function attribute, M32R/D</a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Function-Attributes">M32R/D Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-m68k"><code>interrupt</code> function attribute, m68k</a>:</td><td> </td><td valign="top"><a href="#m68k-Function-Attributes">m68k Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-MeP"><code>interrupt</code> function attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Function-Attributes">MeP Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-MIPS"><code>interrupt</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-MSP430"><code>interrupt</code> function attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-NDS32"><code>interrupt</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-RL78"><code>interrupt</code> function attribute, RL78</a>:</td><td> </td><td valign="top"><a href="#RL78-Function-Attributes">RL78 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-RX"><code>interrupt</code> function attribute, RX</a>:</td><td> </td><td valign="top"><a href="#RX-Function-Attributes">RX Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-V850"><code>interrupt</code> function attribute, V850</a>:</td><td> </td><td valign="top"><a href="#V850-Function-Attributes">V850 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-Visium"><code>interrupt</code> function attribute, Visium</a>:</td><td> </td><td valign="top"><a href="#Visium-Function-Attributes">Visium Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-x86"><code>interrupt</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt-function-attribute_002c-Xstormy16"><code>interrupt</code> function attribute, Xstormy16</a>:</td><td> </td><td valign="top"><a href="#Xstormy16-Function-Attributes">Xstormy16 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt_005fhandler-function-attribute_002c-Blackfin"><code>interrupt_handler</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt_005fhandler-function-attribute_002c-H8_002f300"><code>interrupt_handler</code> function attribute, H8/300</a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Function-Attributes">H8/300 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt_005fhandler-function-attribute_002c-m68k"><code>interrupt_handler</code> function attribute, m68k</a>:</td><td> </td><td valign="top"><a href="#m68k-Function-Attributes">m68k Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt_005fhandler-function-attribute_002c-MicroBlaze"><code>interrupt_handler</code> function attribute, MicroBlaze</a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Function-Attributes">MicroBlaze Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt_005fhandler-function-attribute_002c-SH"><code>interrupt_handler</code> function attribute, SH</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt_005fhandler-function-attribute_002c-V850"><code>interrupt_handler</code> function attribute, V850</a>:</td><td> </td><td valign="top"><a href="#V850-Function-Attributes">V850 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-interrupt_005fthread-function-attribute_002c-fido"><code>interrupt_thread</code> function attribute, fido</a>:</td><td> </td><td valign="top"><a href="#m68k-Function-Attributes">m68k Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-introduction">introduction</a>:</td><td> </td><td valign="top"><a href="#Top">Top</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-invalid-assembly-code">invalid assembly code</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-invalid-input">invalid input</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-invoking-g_002b_002b">invoking <code>g++</code></a>:</td><td> </td><td valign="top"><a href="#Invoking-G_002b_002b">Invoking G++</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-io-variable-attribute_002c-AVR"><code>io</code> variable attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Variable-Attributes">AVR Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-io-variable-attribute_002c-MeP"><code>io</code> variable attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Variable-Attributes">MeP Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-io_005flow-variable-attribute_002c-AVR"><code>io_low</code> variable attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Variable-Attributes">AVR Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isalnum"><code>isalnum</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isalpha"><code>isalpha</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isascii"><code>isascii</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isblank"><code>isblank</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iscntrl"><code>iscntrl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isdigit"><code>isdigit</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isgraph"><code>isgraph</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-islower"><code>islower</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-9899">ISO 9899</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C">ISO C</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C-standard">ISO C standard</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C11">ISO C11</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C17">ISO C17</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C1X">ISO C1X</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C90">ISO C90</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C94">ISO C94</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C95">ISO C95</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C99">ISO C99</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-C9X">ISO C9X</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO-support">ISO support</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ISO_002fIEC-9899">ISO/IEC 9899</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isprint"><code>isprint</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ispunct"><code>ispunct</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isr-function-attribute_002c-ARM"><code>isr</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isspace"><code>isspace</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isupper"><code>isupper</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswalnum"><code>iswalnum</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswalpha"><code>iswalpha</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswblank"><code>iswblank</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswcntrl"><code>iswcntrl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswdigit"><code>iswdigit</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswgraph"><code>iswgraph</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswlower"><code>iswlower</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswprint"><code>iswprint</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswpunct"><code>iswpunct</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswspace"><code>iswspace</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswupper"><code>iswupper</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-iswxdigit"><code>iswxdigit</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isxdigit"><code>isxdigit</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-J">J</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-j0"><code>j0</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-j0f"><code>j0f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-j0l"><code>j0l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-j1"><code>j1</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-j1f"><code>j1f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-j1l"><code>j1l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-jli_005falways-function-attribute_002c-ARC"><code>jli_always</code> function attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Function-Attributes">ARC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-jli_005ffixed-function-attribute_002c-ARC"><code>jli_fixed</code> function attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Function-Attributes">ARC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-jn"><code>jn</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-jnf"><code>jnf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-jnl"><code>jnl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-K">K</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-k-fixed_002dsuffix"><code>k</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-K-fixed_002dsuffix"><code>K</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-keep_005finterrupts_005fmasked-function-attribute_002c-MIPS"><code>keep_interrupts_masked</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-kernel-attribute_002c-Nvidia-PTX"><code>kernel</code> attribute, Nvidia PTX</a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Function-Attributes">Nvidia PTX Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-keywords_002c-alternate">keywords, alternate</a>:</td><td> </td><td valign="top"><a href="#Alternate-Keywords">Alternate Keywords</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-known-causes-of-trouble">known causes of trouble</a>:</td><td> </td><td valign="top"><a href="#Trouble">Trouble</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-kspisusp-function-attribute_002c-Blackfin"><code>kspisusp</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-L">L</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-l1_005fdata-variable-attribute_002c-Blackfin"><code>l1_data</code> variable attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Variable-Attributes">Blackfin Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-l1_005fdata_005fA-variable-attribute_002c-Blackfin"><code>l1_data_A</code> variable attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Variable-Attributes">Blackfin Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-l1_005fdata_005fB-variable-attribute_002c-Blackfin"><code>l1_data_B</code> variable attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Variable-Attributes">Blackfin Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-l1_005ftext-function-attribute_002c-Blackfin"><code>l1_text</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-l2-function-attribute_002c-Blackfin"><code>l2</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-l2-variable-attribute_002c-Blackfin"><code>l2</code> variable attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Variable-Attributes">Blackfin Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Label-Attributes">Label Attributes</a>:</td><td> </td><td valign="top"><a href="#Label-Attributes">Label Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-labeled-elements-in-initializers">labeled elements in initializers</a>:</td><td> </td><td valign="top"><a href="#Designated-Inits">Designated Inits</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-labels-as-values">labels as values</a>:</td><td> </td><td valign="top"><a href="#Labels-as-Values">Labels as Values</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-labs"><code>labs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LANG"><code>LANG</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LANG-1"><code>LANG</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-language-dialect-options">language dialect options</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LC_005fALL"><code>LC_ALL</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LC_005fCTYPE"><code>LC_CTYPE</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LC_005fMESSAGES"><code>LC_MESSAGES</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ldexp"><code>ldexp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ldexpf"><code>ldexpf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ldexpl"><code>ldexpl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-leaf-function-attribute"><code>leaf</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-length_002dzero-arrays">length-zero arrays</a>:</td><td> </td><td valign="top"><a href="#Zero-Length">Zero Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lgamma"><code>lgamma</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lgammaf"><code>lgammaf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lgammaf_005fr"><code>lgammaf_r</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lgammal"><code>lgammal</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lgammal_005fr"><code>lgammal_r</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lgamma_005fr"><code>lgamma_r</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Libraries">Libraries</a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LIBRARY_005fPATH"><code>LIBRARY_PATH</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-link-options">link options</a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-linker-script">linker script</a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lk-fixed_002dsuffix"><code>lk</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LK-fixed_002dsuffix"><code>LK</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LL-integer-suffix"><code>LL</code> integer suffix</a>:</td><td> </td><td valign="top"><a href="#Long-Long">Long Long</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llabs"><code>llabs</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llk-fixed_002dsuffix"><code>llk</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LLK-fixed_002dsuffix"><code>LLK</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llr-fixed_002dsuffix"><code>llr</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LLR-fixed_002dsuffix"><code>LLR</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llrint"><code>llrint</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llrintf"><code>llrintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llrintl"><code>llrintl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llround"><code>llround</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llroundf"><code>llroundf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-llroundl"><code>llroundl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LM32-options">LM32 options</a>:</td><td> </td><td valign="top"><a href="#LM32-Options">LM32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-load-address-instruction">load address instruction</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-local-labels">local labels</a>:</td><td> </td><td valign="top"><a href="#Local-Labels">Local Labels</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-local-variables-in-macros">local variables in macros</a>:</td><td> </td><td valign="top"><a href="#Typeof">Typeof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-local-variables_002c-specifying-registers">local variables, specifying registers</a>:</td><td> </td><td valign="top"><a href="#Local-Register-Variables">Local Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-locale">locale</a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-locale-definition">locale definition</a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-locus-GCC_005fCOLORS-capability"><code>locus GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log"><code>log</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log10"><code>log10</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log10f"><code>log10f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log10l"><code>log10l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log1p"><code>log1p</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log1pf"><code>log1pf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log1pl"><code>log1pl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log2"><code>log2</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log2f"><code>log2f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log2l"><code>log2l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logb"><code>logb</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logbf"><code>logbf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logbl"><code>logbl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logf"><code>logf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logl"><code>logl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-long-long-data-types"><code>long long</code> data types</a>:</td><td> </td><td valign="top"><a href="#Long-Long">Long Long</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-longcall-function-attribute_002c-Blackfin"><code>longcall</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-longcall-function-attribute_002c-PowerPC"><code>longcall</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-longjmp"><code>longjmp</code></a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-longjmp-incompatibilities"><code>longjmp</code> incompatibilities</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-longjmp-warnings"><code>longjmp</code> warnings</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-long_005fcall-function-attribute_002c-ARC"><code>long_call</code> function attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Function-Attributes">ARC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-long_005fcall-function-attribute_002c-ARM"><code>long_call</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-long_005fcall-function-attribute_002c-Epiphany"><code>long_call</code> function attribute, Epiphany</a>:</td><td> </td><td valign="top"><a href="#Epiphany-Function-Attributes">Epiphany Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-long_005fcall-function-attribute_002c-MIPS"><code>long_call</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lower-function-attribute_002c-MSP430"><code>lower</code> function attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lower-variable-attribute_002c-MSP430"><code>lower</code> variable attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Variable-Attributes">MSP430 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lr-fixed_002dsuffix"><code>lr</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LR-fixed_002dsuffix"><code>LR</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lrint"><code>lrint</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lrintf"><code>lrintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lrintl"><code>lrintl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lround"><code>lround</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lroundf"><code>lroundf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lroundl"><code>lroundl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-M">M</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-m-in-constraint">‘<samp>m</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M32C-options">M32C options</a>:</td><td> </td><td valign="top"><a href="#M32C-Options">M32C Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M32R_002fD-options">M32R/D options</a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M680x0-options">M680x0 options</a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-machine-specific-constraints">machine specific constraints</a>:</td><td> </td><td valign="top"><a href="#Machine-Constraints">Machine Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-machine_002ddependent-options">machine-dependent options</a>:</td><td> </td><td valign="top"><a href="#Submodel-Options">Submodel Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-macro-with-variable-arguments">macro with variable arguments</a>:</td><td> </td><td valign="top"><a href="#Variadic-Macros">Variadic Macros</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-macros_002c-inline-alternative">macros, inline alternative</a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-macros_002c-local-labels">macros, local labels</a>:</td><td> </td><td valign="top"><a href="#Local-Labels">Local Labels</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-macros_002c-local-variables-in">macros, local variables in</a>:</td><td> </td><td valign="top"><a href="#Typeof">Typeof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-macros_002c-statements-in-expressions">macros, statements in expressions</a>:</td><td> </td><td valign="top"><a href="#Statement-Exprs">Statement Exprs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-macros_002c-types-of-arguments">macros, types of arguments</a>:</td><td> </td><td valign="top"><a href="#Typeof">Typeof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-make"><code>make</code></a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malloc"><code>malloc</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malloc-function-attribute"><code>malloc</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-matching-constraint">matching constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-may_005falias-type-attribute"><code>may_alias</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MCore-options">MCore options</a>:</td><td> </td><td valign="top"><a href="#MCore-Options">MCore Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-medium_005fcall-function-attribute_002c-ARC"><code>medium_call</code> function attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Function-Attributes">ARC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-member-fns_002c-automatically-inline">member fns, automatically <code>inline</code></a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memchr"><code>memchr</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memcmp"><code>memcmp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memcpy"><code>memcpy</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memory-references-in-constraints">memory references in constraints</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mempcpy"><code>mempcpy</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memset"><code>memset</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MeP-options">MeP options</a>:</td><td> </td><td valign="top"><a href="#MeP-Options">MeP Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mercury">Mercury</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-message-formatting">message formatting</a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-messages_002c-warning">messages, warning</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-messages_002c-warning-and-error">messages, warning and error</a>:</td><td> </td><td valign="top"><a href="#Warnings-and-Errors">Warnings and Errors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MicroBlaze-Options">MicroBlaze Options</a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Options">MicroBlaze Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-micromips-function-attribute"><code>micromips</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-middle_002doperands_002c-omitted">middle-operands, omitted</a>:</td><td> </td><td valign="top"><a href="#Conditionals">Conditionals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MIPS-options">MIPS options</a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mips16-function-attribute_002c-MIPS"><code>mips16</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-misunderstandings-in-C_002b_002b">misunderstandings in C++</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mixed-declarations-and-code">mixed declarations and code</a>:</td><td> </td><td valign="top"><a href="#Mixed-Declarations">Mixed Declarations</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mixing-assembly-language-and-C">mixing assembly language and C</a>:</td><td> </td><td valign="top"><a href="#Using-Assembly-Language-with-C">Using Assembly Language with C</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mktemp_002c-and-constant-strings"><code>mktemp</code>, and constant strings</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MMIX-Options">MMIX Options</a>:</td><td> </td><td valign="top"><a href="#MMIX-Options">MMIX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MN10300-options">MN10300 options</a>:</td><td> </td><td valign="top"><a href="#MN10300-Options">MN10300 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mode-variable-attribute"><code>mode</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-model-function-attribute_002c-M32R_002fD"><code>model</code> function attribute, M32R/D</a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Function-Attributes">M32R/D Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-model-variable-attribute_002c-IA_002d64"><code>model</code> variable attribute, IA-64</a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Variable-Attributes">IA-64 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-model_002dname-variable-attribute_002c-M32R_002fD"><code>model-name</code> variable attribute, M32R/D</a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Variable-Attributes">M32R/D Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-modf"><code>modf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-modff"><code>modff</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-modfl"><code>modfl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-modifiers-in-constraints">modifiers in constraints</a>:</td><td> </td><td valign="top"><a href="#Modifiers">Modifiers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Moxie-Options">Moxie Options</a>:</td><td> </td><td valign="top"><a href="#Moxie-Options">Moxie Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MSP430-Options">MSP430 Options</a>:</td><td> </td><td valign="top"><a href="#MSP430-Options">MSP430 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms_005fabi-function-attribute_002c-x86"><code>ms_abi</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms_005fhook_005fprologue-function-attribute_002c-x86"><code>ms_hook_prologue</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms_005fstruct-type-attribute_002c-PowerPC"><code>ms_struct</code> type attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Type-Attributes">PowerPC Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms_005fstruct-type-attribute_002c-x86"><code>ms_struct</code> type attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Type-Attributes">x86 Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms_005fstruct-variable-attribute_002c-PowerPC"><code>ms_struct</code> variable attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Variable-Attributes">PowerPC Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ms_005fstruct-variable-attribute_002c-x86"><code>ms_struct</code> variable attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Variable-Attributes">x86 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiple-alternative-constraints">multiple alternative constraints</a>:</td><td> </td><td valign="top"><a href="#Multi_002dAlternative">Multi-Alternative</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiprecision-arithmetic">multiprecision arithmetic</a>:</td><td> </td><td valign="top"><a href="#Long-Long">Long Long</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-N">N</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-n-in-constraint">‘<samp>n</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-ARM"><code>naked</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-AVR"><code>naked</code> function attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Function-Attributes">AVR Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-MCORE"><code>naked</code> function attribute, MCORE</a>:</td><td> </td><td valign="top"><a href="#MCORE-Function-Attributes">MCORE Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-MSP430"><code>naked</code> function attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-NDS32"><code>naked</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-RISC_002dV"><code>naked</code> function attribute, RISC-V</a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Function-Attributes">RISC-V Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-RL78"><code>naked</code> function attribute, RL78</a>:</td><td> </td><td valign="top"><a href="#RL78-Function-Attributes">RL78 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-RX"><code>naked</code> function attribute, RX</a>:</td><td> </td><td valign="top"><a href="#RX-Function-Attributes">RX Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-SPU"><code>naked</code> function attribute, SPU</a>:</td><td> </td><td valign="top"><a href="#SPU-Function-Attributes">SPU Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naked-function-attribute_002c-x86"><code>naked</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Named-Address-Spaces">Named Address Spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-names-used-in-assembler-code">names used in assembler code</a>:</td><td> </td><td valign="top"><a href="#Asm-Labels">Asm Labels</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-naming-convention_002c-implementation-headers">naming convention, implementation headers</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-NDS32-Options">NDS32 Options</a>:</td><td> </td><td valign="top"><a href="#NDS32-Options">NDS32 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-near-function-attribute_002c-MeP"><code>near</code> function attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Function-Attributes">MeP Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-near-function-attribute_002c-MIPS"><code>near</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-near-type-attribute_002c-MeP"><code>near</code> type attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Type-Attributes">MeP Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-near-variable-attribute_002c-MeP"><code>near</code> variable attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Variable-Attributes">MeP Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nearbyint"><code>nearbyint</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nearbyintf"><code>nearbyintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nearbyintl"><code>nearbyintl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nested-function-attribute_002c-NDS32"><code>nested</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nested-functions">nested functions</a>:</td><td> </td><td valign="top"><a href="#Nested-Functions">Nested Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nested_005fready-function-attribute_002c-NDS32"><code>nested_ready</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nesting-function-attribute_002c-Blackfin"><code>nesting</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-newlines-_0028escaped_0029">newlines (escaped)</a>:</td><td> </td><td valign="top"><a href="#Escaped-Newlines">Escaped Newlines</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nextafter"><code>nextafter</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nextafterf"><code>nextafterf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nextafterl"><code>nextafterl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nexttoward"><code>nexttoward</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nexttowardf"><code>nexttowardf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nexttowardl"><code>nexttowardl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-NFC">NFC</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-NFKC">NFKC</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Nios-II-options">Nios II options</a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nmi-function-attribute_002c-NDS32"><code>nmi</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-NMI-handler-functions-on-the-Blackfin-processor">NMI handler functions on the Blackfin processor</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nmi_005fhandler-function-attribute_002c-Blackfin"><code>nmi_handler</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nocf_005fcheck-function-attribute"><code>nocf_check</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noclone-function-attribute"><code>noclone</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nocommon-variable-attribute"><code>nocommon</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nocompression-function-attribute_002c-MIPS"><code>nocompression</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noinit-variable-attribute_002c-MSP430"><code>noinit</code> variable attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Variable-Attributes">MSP430 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noinline-function-attribute"><code>noinline</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noipa-function-attribute"><code>noipa</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nomicromips-function-attribute"><code>nomicromips</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nomips16-function-attribute_002c-MIPS"><code>nomips16</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-non_002dconstant-initializers">non-constant initializers</a>:</td><td> </td><td valign="top"><a href="#Initializers">Initializers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-non_002dstatic-inline-function">non-static inline function</a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nonnull-function-attribute"><code>nonnull</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nonstring-variable-attribute"><code>nonstring</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noplt-function-attribute"><code>noplt</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-noreturn-function-attribute"><code>noreturn</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nosave_005flow_005fregs-function-attribute_002c-SH"><code>nosave_low_regs</code> function attribute, SH</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-note-GCC_005fCOLORS-capability"><code>note GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nothrow-function-attribute"><code>nothrow</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-notshared-type-attribute_002c-ARM"><code>notshared</code> type attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Type-Attributes">ARM Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-not_005fnested-function-attribute_002c-NDS32"><code>not_nested</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fcaller_005fsaved_005fregisters-function-attribute_002c-x86"><code>no_caller_saved_registers</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fgccisr-function-attribute_002c-AVR"><code>no_gccisr</code> function attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Function-Attributes">AVR Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005ficf-function-attribute"><code>no_icf</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005finstrument_005ffunction-function-attribute"><code>no_instrument_function</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fprofile_005finstrument_005ffunction-function-attribute"><code>no_profile_instrument_function</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005freorder-function-attribute"><code>no_reorder</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fsanitize-function-attribute"><code>no_sanitize</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fsanitize_005faddress-function-attribute"><code>no_sanitize_address</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fsanitize_005fthread-function-attribute"><code>no_sanitize_thread</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fsanitize_005fundefined-function-attribute"><code>no_sanitize_undefined</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fsplit_005fstack-function-attribute"><code>no_split_stack</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-no_005fstack_005flimit-function-attribute"><code>no_stack_limit</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Nvidia-PTX-options">Nvidia PTX options</a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nvptx-options">nvptx options</a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Options">Nvidia PTX Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-O">O</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-o-in-constraint">‘<samp>o</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-OBJC_005fINCLUDE_005fPATH"><code>OBJC_INCLUDE_PATH</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Objective_002dC">Objective-C</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Objective_002dC-1">Objective-C</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Objective_002dC-and-Objective_002dC_002b_002b-options_002c-command_002dline">Objective-C and Objective-C++ options, command-line</a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Objective_002dC_002b_002b">Objective-C++</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Objective_002dC_002b_002b-1">Objective-C++</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-offsettable-address">offsettable address</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-old_002dstyle-function-definitions">old-style function definitions</a>:</td><td> </td><td valign="top"><a href="#Function-Prototypes">Function Prototypes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-omit_002dleaf_002dframe_002dpointer-function-attribute_002c-AArch64"><code>omit-leaf-frame-pointer</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-omitted-middle_002doperands">omitted middle-operands</a>:</td><td> </td><td valign="top"><a href="#Conditionals">Conditionals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-open-coding">open coding</a>:</td><td> </td><td valign="top"><a href="#Inline">Inline</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-OpenACC-accelerator-programming">OpenACC accelerator programming</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-OpenACC-accelerator-programming-1">OpenACC accelerator programming</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-OpenMP-parallel">OpenMP parallel</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-OpenMP-SIMD">OpenMP SIMD</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operand-constraints_002c-asm">operand constraints, <code>asm</code></a>:</td><td> </td><td valign="top"><a href="#Constraints">Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-optimize-function-attribute"><code>optimize</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-optimize-options">optimize options</a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options-to-control-diagnostics-formatting">options to control diagnostics formatting</a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options-to-control-warnings">options to control warnings</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-C_002b_002b">options, C++</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-code-generation">options, code generation</a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-debugging">options, debugging</a>:</td><td> </td><td valign="top"><a href="#Debugging-Options">Debugging Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-dialect">options, dialect</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-directory-search">options, directory search</a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-GCC-command">options, GCC command</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-grouping">options, grouping</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-linking">options, linking</a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-Objective_002dC-and-Objective_002dC_002b_002b">options, Objective-C and Objective-C++</a>:</td><td> </td><td valign="top"><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-optimization">options, optimization</a>:</td><td> </td><td valign="top"><a href="#Optimize-Options">Optimize Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-order">options, order</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-preprocessor">options, preprocessor</a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-profiling">options, profiling</a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-program-instrumentation">options, program instrumentation</a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-options_002c-run_002dtime-error-checking">options, run-time error checking</a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-order-of-evaluation_002c-side-effects">order of evaluation, side effects</a>:</td><td> </td><td valign="top"><a href="#Non_002dbugs">Non-bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-order-of-options">order of options</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-OS_005fmain-function-attribute_002c-AVR"><code>OS_main</code> function attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Function-Attributes">AVR Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-OS_005ftask-function-attribute_002c-AVR"><code>OS_task</code> function attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Function-Attributes">AVR Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-other-register-constraints">other register constraints</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-output-file-option">output file option</a>:</td><td> </td><td valign="top"><a href="#Overall-Options">Overall Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-overloaded-virtual-function_002c-warning">overloaded virtual function, warning</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-P">P</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-p-in-constraint">‘<samp>p</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-packed-type-attribute"><code>packed</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-packed-variable-attribute"><code>packed</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-parameter-forward-declaration">parameter forward declaration</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-partial_005fsave-function-attribute_002c-NDS32"><code>partial_save</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Pascal">Pascal</a>:</td><td> </td><td valign="top"><a href="#G_002b_002b-and-GCC">G++ and GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-patchable_005ffunction_005fentry-function-attribute"><code>patchable_function_entry</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pcs-function-attribute_002c-ARM"><code>pcs</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-PDP_002d11-Options">PDP-11 Options</a>:</td><td> </td><td valign="top"><a href="#PDP_002d11-Options">PDP-11 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-persistent-variable-attribute_002c-MSP430"><code>persistent</code> variable attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Variable-Attributes">MSP430 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-PIC">PIC</a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-picoChip-options">picoChip options</a>:</td><td> </td><td valign="top"><a href="#picoChip-Options">picoChip Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pmf">pmf</a>:</td><td> </td><td valign="top"><a href="#Bound-member-functions">Bound member functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pointer-arguments">pointer arguments</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Pointer-Bounds-Checker-attributes">Pointer Bounds Checker attributes</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Pointer-Bounds-Checker-attributes-1">Pointer Bounds Checker attributes</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a>:</td><td> </td><td valign="top"><a href="#Pointer-Bounds-Checker-builtins">Pointer Bounds Checker builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Pointer-Bounds-Checker-options">Pointer Bounds Checker options</a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pointer-to-member-function">pointer to member function</a>:</td><td> </td><td valign="top"><a href="#Bound-member-functions">Bound member functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pointers-to-arrays">pointers to arrays</a>:</td><td> </td><td valign="top"><a href="#Pointers-to-Arrays">Pointers to Arrays</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-portions-of-temporary-objects_002c-pointers-to">portions of temporary objects, pointers to</a>:</td><td> </td><td valign="top"><a href="#Temporaries">Temporaries</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pow"><code>pow</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pow10"><code>pow10</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pow10f"><code>pow10f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pow10l"><code>pow10l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-PowerPC-options">PowerPC options</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Options">PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-PowerPC-SPE-options">PowerPC SPE options</a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-powf"><code>powf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-powl"><code>powl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma-GCC-ivdep">pragma GCC ivdep</a>:</td><td> </td><td valign="top"><a href="#Loop_002dSpecific-Pragmas">Loop-Specific Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma-GCC-optimize">pragma GCC optimize</a>:</td><td> </td><td valign="top"><a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma-GCC-pop_005foptions">pragma GCC pop_options</a>:</td><td> </td><td valign="top"><a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma-GCC-push_005foptions">pragma GCC push_options</a>:</td><td> </td><td valign="top"><a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma-GCC-reset_005foptions">pragma GCC reset_options</a>:</td><td> </td><td valign="top"><a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma-GCC-target">pragma GCC target</a>:</td><td> </td><td valign="top"><a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma-GCC-unroll-n">pragma GCC unroll <var>n</var></a>:</td><td> </td><td valign="top"><a href="#Loop_002dSpecific-Pragmas">Loop-Specific Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-address">pragma, address</a>:</td><td> </td><td valign="top"><a href="#M32C-Pragmas">M32C Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-align">pragma, align</a>:</td><td> </td><td valign="top"><a href="#Solaris-Pragmas">Solaris Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-call">pragma, call</a>:</td><td> </td><td valign="top"><a href="#MeP-Pragmas">MeP Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-coprocessor-available">pragma, coprocessor available</a>:</td><td> </td><td valign="top"><a href="#MeP-Pragmas">MeP Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-coprocessor-call_005fsaved">pragma, coprocessor call_saved</a>:</td><td> </td><td valign="top"><a href="#MeP-Pragmas">MeP Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-coprocessor-subclass">pragma, coprocessor subclass</a>:</td><td> </td><td valign="top"><a href="#MeP-Pragmas">MeP Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-custom-io_005fvolatile">pragma, custom io_volatile</a>:</td><td> </td><td valign="top"><a href="#MeP-Pragmas">MeP Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-diagnostic">pragma, diagnostic</a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Pragmas">Diagnostic Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-diagnostic-1">pragma, diagnostic</a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Pragmas">Diagnostic Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-disinterrupt">pragma, disinterrupt</a>:</td><td> </td><td valign="top"><a href="#MeP-Pragmas">MeP Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-fini">pragma, fini</a>:</td><td> </td><td valign="top"><a href="#Solaris-Pragmas">Solaris Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-init">pragma, init</a>:</td><td> </td><td valign="top"><a href="#Solaris-Pragmas">Solaris Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-longcall">pragma, longcall</a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-long_005fcalls">pragma, long_calls</a>:</td><td> </td><td valign="top"><a href="#ARM-Pragmas">ARM Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-long_005fcalls_005foff">pragma, long_calls_off</a>:</td><td> </td><td valign="top"><a href="#ARM-Pragmas">ARM Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-mark">pragma, mark</a>:</td><td> </td><td valign="top"><a href="#Darwin-Pragmas">Darwin Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-memregs">pragma, memregs</a>:</td><td> </td><td valign="top"><a href="#M32C-Pragmas">M32C Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-no_005flong_005fcalls">pragma, no_long_calls</a>:</td><td> </td><td valign="top"><a href="#ARM-Pragmas">ARM Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-options-align">pragma, options align</a>:</td><td> </td><td valign="top"><a href="#Darwin-Pragmas">Darwin Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-pop_005fmacro">pragma, pop_macro</a>:</td><td> </td><td valign="top"><a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-push_005fmacro">pragma, push_macro</a>:</td><td> </td><td valign="top"><a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-redefine_005fextname">pragma, redefine_extname</a>:</td><td> </td><td valign="top"><a href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-segment">pragma, segment</a>:</td><td> </td><td valign="top"><a href="#Darwin-Pragmas">Darwin Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-unused">pragma, unused</a>:</td><td> </td><td valign="top"><a href="#Darwin-Pragmas">Darwin Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-visibility">pragma, visibility</a>:</td><td> </td><td valign="top"><a href="#Visibility-Pragmas">Visibility Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragma_002c-weak">pragma, weak</a>:</td><td> </td><td valign="top"><a href="#Weak-Pragmas">Weak Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragmas">pragmas</a>:</td><td> </td><td valign="top"><a href="#Pragmas">Pragmas</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragmas-in-C_002b_002b_002c-effect-on-inlining">pragmas in C++, effect on inlining</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragmas_002c-interface-and-implementation">pragmas, interface and implementation</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Interface">C++ Interface</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pragmas_002c-warning-of-unknown">pragmas, warning of unknown</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-precompiled-headers">precompiled headers</a>:</td><td> </td><td valign="top"><a href="#Precompiled-Headers">Precompiled Headers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-preprocessing-numbers">preprocessing numbers</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-preprocessing-tokens">preprocessing tokens</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-preprocessor-options">preprocessor options</a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-printf"><code>printf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-printf_005funlocked"><code>printf_unlocked</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-prof"><code>prof</code></a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-profiling-options">profiling options</a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-progmem-variable-attribute_002c-AVR"><code>progmem</code> variable attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Variable-Attributes">AVR Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-program-instrumentation-options">program instrumentation options</a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-promotion-of-formal-parameters">promotion of formal parameters</a>:</td><td> </td><td valign="top"><a href="#Function-Prototypes">Function Prototypes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pure-function-attribute"><code>pure</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-push-address-instruction">push address instruction</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-putchar"><code>putchar</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-puts"><code>puts</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-Q">Q</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-q-floating-point-suffix"><code>q</code> floating point suffix</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Q-floating-point-suffix"><code>Q</code> floating point suffix</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsort_002c-and-global-register-variables"><code>qsort</code>, and global register variables</a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-quote-GCC_005fCOLORS-capability"><code>quote GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-R">R</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-r-fixed_002dsuffix"><code>r</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-R-fixed_002dsuffix"><code>R</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-r-in-constraint">‘<samp>r</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RAMPD"><code>RAMPD</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RAMPX"><code>RAMPX</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RAMPY"><code>RAMPY</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RAMPZ"><code>RAMPZ</code></a>:</td><td> </td><td valign="top"><a href="#AVR-Options">AVR Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-range1-GCC_005fCOLORS-capability"><code>range1 GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-range2-GCC_005fCOLORS-capability"><code>range2 GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ranges-in-case-statements">ranges in case statements</a>:</td><td> </td><td valign="top"><a href="#Case-Ranges">Case Ranges</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-read_002donly-strings">read-only strings</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-reentrant-function-attribute_002c-MSP430"><code>reentrant</code> function attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-register-variable-after-longjmp">register variable after <code>longjmp</code></a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-registers-for-local-variables">registers for local variables</a>:</td><td> </td><td valign="top"><a href="#Local-Register-Variables">Local Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-registers-in-constraints">registers in constraints</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-registers_002c-global-allocation">registers, global allocation</a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-registers_002c-global-variables-in">registers, global variables in</a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-regparm-function-attribute_002c-x86"><code>regparm</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-relocation-truncated-to-fit-_0028ColdFire_0029">relocation truncated to fit (ColdFire)</a>:</td><td> </td><td valign="top"><a href="#M680x0-Options">M680x0 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-relocation-truncated-to-fit-_0028MIPS_0029">relocation truncated to fit (MIPS)</a>:</td><td> </td><td valign="top"><a href="#MIPS-Options">MIPS Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-remainder"><code>remainder</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-remainderf"><code>remainderf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-remainderl"><code>remainderl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-remquo"><code>remquo</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-remquof"><code>remquof</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-remquol"><code>remquol</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-renesas-function-attribute_002c-SH"><code>renesas</code> function attribute, SH</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-reordering_002c-warning">reordering, warning</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-reporting-bugs">reporting bugs</a>:</td><td> </td><td valign="top"><a href="#Bugs">Bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-resbank-function-attribute_002c-SH"><code>resbank</code> function attribute, SH</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-reset-function-attribute_002c-NDS32"><code>reset</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-reset-handler-functions">reset handler functions</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rest-argument-_0028in-macro_0029">rest argument (in macro)</a>:</td><td> </td><td valign="top"><a href="#Variadic-Macros">Variadic Macros</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-restricted-pointers">restricted pointers</a>:</td><td> </td><td valign="top"><a href="#Restricted-Pointers">Restricted Pointers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-restricted-references">restricted references</a>:</td><td> </td><td valign="top"><a href="#Restricted-Pointers">Restricted Pointers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-restricted-this-pointer">restricted this pointer</a>:</td><td> </td><td valign="top"><a href="#Restricted-Pointers">Restricted Pointers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-returns_005fnonnull-function-attribute"><code>returns_nonnull</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-returns_005ftwice-function-attribute"><code>returns_twice</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rindex"><code>rindex</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rint"><code>rint</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rintf"><code>rintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rintl"><code>rintl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RISC_002dV-Options">RISC-V Options</a>:</td><td> </td><td valign="top"><a href="#RISC_002dV-Options">RISC-V Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RL78-Options">RL78 Options</a>:</td><td> </td><td valign="top"><a href="#RL78-Options">RL78 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-round"><code>round</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-roundf"><code>roundf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-roundl"><code>roundl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RTTI">RTTI</a>:</td><td> </td><td valign="top"><a href="#Vague-Linkage">Vague Linkage</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-run_002dtime-error-checking-options">run-time error checking options</a>:</td><td> </td><td valign="top"><a href="#Instrumentation-Options">Instrumentation Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-run_002dtime-options">run-time options</a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RX-Options">RX Options</a>:</td><td> </td><td valign="top"><a href="#RX-Options">RX Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-S">S</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-s-in-constraint">‘<samp>s</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>:</td><td> </td><td valign="top"><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-saddr-variable-attribute_002c-RL78"><code>saddr</code> variable attribute, RL78</a>:</td><td> </td><td valign="top"><a href="#RL78-Variable-Attributes">RL78 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-save-all-registers-on-the-Blackfin">save all registers on the Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-save-all-registers-on-the-H8_002f300_002c-H8_002f300H_002c-and-H8S">save all registers on the H8/300, H8/300H, and H8S</a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Function-Attributes">H8/300 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-saveall-function-attribute_002c-Blackfin"><code>saveall</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-saveall-function-attribute_002c-H8_002f300"><code>saveall</code> function attribute, H8/300</a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Function-Attributes">H8/300 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-save_005fall-function-attribute_002c-NDS32"><code>save_all</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-save_005fvolatiles-function-attribute_002c-MicroBlaze"><code>save_volatiles</code> function attribute, MicroBlaze</a>:</td><td> </td><td valign="top"><a href="#MicroBlaze-Function-Attributes">MicroBlaze Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalar_005fstorage_005forder-type-attribute"><code>scalar_storage_order</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalb"><code>scalb</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalbf"><code>scalbf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalbl"><code>scalbl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalbln"><code>scalbln</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalblnf"><code>scalblnf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalblnf-1"><code>scalblnf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalbn"><code>scalbn</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scalbnf"><code>scalbnf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scanf_002c-and-constant-strings"><code>scanf</code>, and constant strings</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scanfnl"><code>scanfnl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scope-of-a-variable-length-array">scope of a variable length array</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scope-of-declaration">scope of declaration</a>:</td><td> </td><td valign="top"><a href="#Disappointments">Disappointments</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-scope-of-external-declarations">scope of external declarations</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Score-Options">Score Options</a>:</td><td> </td><td valign="top"><a href="#Score-Options">Score Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sda-variable-attribute_002c-V850"><code>sda</code> variable attribute, V850</a>:</td><td> </td><td valign="top"><a href="#V850-Variable-Attributes">V850 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-search-path">search path</a>:</td><td> </td><td valign="top"><a href="#Directory-Options">Directory Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-section-function-attribute"><code>section</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-section-variable-attribute"><code>section</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-secure_005fcall-function-attribute_002c-ARC"><code>secure_call</code> function attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Function-Attributes">ARC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-selectany-variable-attribute"><code>selectany</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Microsoft-Windows-Variable-Attributes">Microsoft Windows Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sentinel-function-attribute"><code>sentinel</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-setjmp"><code>setjmp</code></a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-setjmp-incompatibilities"><code>setjmp</code> incompatibilities</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-shared-attribute_002c-Nvidia-PTX"><code>shared</code> attribute, Nvidia PTX</a>:</td><td> </td><td valign="top"><a href="#Nvidia-PTX-Variable-Attributes">Nvidia PTX Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-shared-strings">shared strings</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-shared-variable-attribute"><code>shared</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Microsoft-Windows-Variable-Attributes">Microsoft Windows Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-shortcall-function-attribute_002c-Blackfin"><code>shortcall</code> function attribute, Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-shortcall-function-attribute_002c-PowerPC"><code>shortcall</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-short_005fcall-function-attribute_002c-ARC"><code>short_call</code> function attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Function-Attributes">ARC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-short_005fcall-function-attribute_002c-ARM"><code>short_call</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-short_005fcall-function-attribute_002c-Epiphany"><code>short_call</code> function attribute, Epiphany</a>:</td><td> </td><td valign="top"><a href="#Epiphany-Function-Attributes">Epiphany Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-short_005fcall-function-attribute_002c-MIPS"><code>short_call</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-side-effect-in-_003f_003a">side effect in <code>?:</code></a>:</td><td> </td><td valign="top"><a href="#Conditionals">Conditionals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-side-effects_002c-macro-argument">side effects, macro argument</a>:</td><td> </td><td valign="top"><a href="#Statement-Exprs">Statement Exprs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-side-effects_002c-order-of-evaluation">side effects, order of evaluation</a>:</td><td> </td><td valign="top"><a href="#Non_002dbugs">Non-bugs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sign_002dreturn_002daddress-function-attribute_002c-AArch64"><code>sign-return-address</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signal-function-attribute_002c-AVR"><code>signal</code> function attribute, AVR</a>:</td><td> </td><td valign="top"><a href="#AVR-Function-Attributes">AVR Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signbit"><code>signbit</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signbitd128"><code>signbitd128</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signbitd32"><code>signbitd32</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signbitd64"><code>signbitd64</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signbitf"><code>signbitf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signbitl"><code>signbitl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signed-and-unsigned-values_002c-comparison-warning">signed and unsigned values, comparison warning</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-significand"><code>significand</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-significandf"><code>significandf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-significandl"><code>significandl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-SIMD">SIMD</a>:</td><td> </td><td valign="top"><a href="#C-Dialect-Options">C Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-simd-function-attribute"><code>simd</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-simple-constraints">simple constraints</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sin"><code>sin</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sincos"><code>sincos</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sincosf"><code>sincosf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sincosl"><code>sincosl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sinf"><code>sinf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sinh"><code>sinh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sinhf"><code>sinhf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sinhl"><code>sinhl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sinl"><code>sinl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sizeof"><code>sizeof</code></a>:</td><td> </td><td valign="top"><a href="#Typeof">Typeof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-smaller-data-references">smaller data references</a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Options">M32R/D Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-smaller-data-references-1">smaller data references</a>:</td><td> </td><td valign="top"><a href="#Nios-II-Options">Nios II Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-smaller-data-references-_0028PowerPC_0029">smaller data references (PowerPC)</a>:</td><td> </td><td valign="top"><a href="#PowerPC-SPE-Options">PowerPC SPE Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-smaller-data-references-_0028PowerPC_0029-1">smaller data references (PowerPC)</a>:</td><td> </td><td valign="top"><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-snprintf"><code>snprintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Solaris-2-options">Solaris 2 options</a>:</td><td> </td><td valign="top"><a href="#Solaris-2-Options">Solaris 2 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-SOURCE_005fDATE_005fEPOCH"><code>SOURCE_DATE_EPOCH</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-SPARC-options">SPARC options</a>:</td><td> </td><td valign="top"><a href="#SPARC-Options">SPARC Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Spec-Files">Spec Files</a>:</td><td> </td><td valign="top"><a href="#Spec-Files">Spec Files</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-specified-registers">specified registers</a>:</td><td> </td><td valign="top"><a href="#Explicit-Register-Variables">Explicit Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-specifying-compiler-version-and-target-machine">specifying compiler version and target machine</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-specifying-hardware-config">specifying hardware config</a>:</td><td> </td><td valign="top"><a href="#Submodel-Options">Submodel Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-specifying-machine-version">specifying machine version</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-specifying-registers-for-local-variables">specifying registers for local variables</a>:</td><td> </td><td valign="top"><a href="#Local-Register-Variables">Local Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-speed-of-compilation">speed of compilation</a>:</td><td> </td><td valign="top"><a href="#Precompiled-Headers">Precompiled Headers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sprintf"><code>sprintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-SPU-options">SPU options</a>:</td><td> </td><td valign="top"><a href="#SPU-Options">SPU Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-spu_005fvector-type-attribute_002c-SPU"><code>spu_vector</code> type attribute, SPU</a>:</td><td> </td><td valign="top"><a href="#SPU-Type-Attributes">SPU Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-spu_005fvector-variable-attribute_002c-SPU"><code>spu_vector</code> variable attribute, SPU</a>:</td><td> </td><td valign="top"><a href="#SPU-Variable-Attributes">SPU Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sp_005fswitch-function-attribute_002c-SH"><code>sp_switch</code> function attribute, SH</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sqrt"><code>sqrt</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sqrtf"><code>sqrtf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sqrtl"><code>sqrtl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sscanf"><code>sscanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sscanf_002c-and-constant-strings"><code>sscanf</code>, and constant strings</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sseregparm-function-attribute_002c-x86"><code>sseregparm</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-stack_005fprotect-function-attribute"><code>stack_protect</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Statement-Attributes">Statement Attributes</a>:</td><td> </td><td valign="top"><a href="#Statement-Attributes">Statement Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-statements-inside-expressions">statements inside expressions</a>:</td><td> </td><td valign="top"><a href="#Statement-Exprs">Statement Exprs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-static-data-in-C_002b_002b_002c-declaring-and-defining">static data in C++, declaring and defining</a>:</td><td> </td><td valign="top"><a href="#Static-Definitions">Static Definitions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-stdcall-function-attribute_002c-x86_002d32"><code>stdcall</code> function attribute, x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-stpcpy"><code>stpcpy</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-stpncpy"><code>stpncpy</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strcasecmp"><code>strcasecmp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strcat"><code>strcat</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strchr"><code>strchr</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strcmp"><code>strcmp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strcpy"><code>strcpy</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strcspn"><code>strcspn</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strdup"><code>strdup</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strfmon"><code>strfmon</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strftime"><code>strftime</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strict_002dalign-function-attribute_002c-AArch64"><code>strict-align</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-string-constants">string constants</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strlen"><code>strlen</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strncasecmp"><code>strncasecmp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strncat"><code>strncat</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strncmp"><code>strncmp</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strncpy"><code>strncpy</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strndup"><code>strndup</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strpbrk"><code>strpbrk</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strrchr"><code>strrchr</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strspn"><code>strspn</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strstr"><code>strstr</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-struct"><code>struct</code></a>:</td><td> </td><td valign="top"><a href="#Unnamed-Fields">Unnamed Fields</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-struct-_005f_005fhtm_005ftdb"><code>struct __htm_tdb</code></a>:</td><td> </td><td valign="top"><a href="#S_002f390-System-z-Built_002din-Functions">S/390 System z Built-in Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-structures">structures</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-structures_002c-constructor-expression">structures, constructor expression</a>:</td><td> </td><td valign="top"><a href="#Compound-Literals">Compound Literals</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-submodel-options">submodel options</a>:</td><td> </td><td valign="top"><a href="#Submodel-Options">Submodel Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-subscripting">subscripting</a>:</td><td> </td><td valign="top"><a href="#Subscripting">Subscripting</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-subscripting-and-function-values">subscripting and function values</a>:</td><td> </td><td valign="top"><a href="#Subscripting">Subscripting</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-suffixes-for-C_002b_002b-source">suffixes for C++ source</a>:</td><td> </td><td valign="top"><a href="#Invoking-G_002b_002b">Invoking G++</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-SUNPRO_005fDEPENDENCIES"><code>SUNPRO_DEPENDENCIES</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-suppressing-warnings">suppressing warnings</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-surprises-in-C_002b_002b">surprises in C++</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-syntax-checking">syntax checking</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-syscall_005flinkage-function-attribute_002c-IA_002d64"><code>syscall_linkage</code> function attribute, IA-64</a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Function-Attributes">IA-64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-system-headers_002c-warnings-from">system headers, warnings from</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sysv_005fabi-function-attribute_002c-x86"><code>sysv_abi</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-T">T</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-tan"><code>tan</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tanf"><code>tanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tanh"><code>tanh</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tanhf"><code>tanhf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tanhl"><code>tanhl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tanl"><code>tanl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target-function-attribute"><code>target</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target-function-attribute-1"><code>target</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target-function-attribute-2"><code>target</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Nios-II-Function-Attributes">Nios II Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target-function-attribute-3"><code>target</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target-function-attribute-4"><code>target</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#S_002f390-Function-Attributes">S/390 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target-function-attribute-5"><code>target</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target-machine_002c-specifying">target machine, specifying</a>:</td><td> </td><td valign="top"><a href="#Invoking-GCC">Invoking GCC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022abm_0022_0029-function-attribute_002c-x86"><code>target("abm")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022aes_0022_0029-function-attribute_002c-x86"><code>target("aes")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022align_002dstringops_0022_0029-function-attribute_002c-x86"><code>target("align-stringops")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022altivec_0022_0029-function-attribute_002c-PowerPC"><code>target("altivec")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022arch_003dARCH_0022_0029-function-attribute_002c-x86"><code>target("arch=<var>ARCH</var>")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022arm_0022_0029-function-attribute_002c-ARM"><code>target("arm")</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022avoid_002dindexed_002daddresses_0022_0029-function-attribute_002c-PowerPC"><code>target("avoid-indexed-addresses")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022cld_0022_0029-function-attribute_002c-x86"><code>target("cld")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022cmpb_0022_0029-function-attribute_002c-PowerPC"><code>target("cmpb")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022cpu_003dCPU_0022_0029-function-attribute_002c-PowerPC"><code>target("cpu=<var>CPU</var>")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022custom_002dfpu_002dcfg_003dname_0022_0029-function-attribute_002c-Nios-II"><code>target("custom-fpu-cfg=<var>name</var>")</code> function attribute, Nios II</a>:</td><td> </td><td valign="top"><a href="#Nios-II-Function-Attributes">Nios II Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022custom_002dinsn_003dN_0022_0029-function-attribute_002c-Nios-II"><code>target("custom-<var>insn</var>=<var>N</var>")</code> function attribute, Nios II</a>:</td><td> </td><td valign="top"><a href="#Nios-II-Function-Attributes">Nios II Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022default_0022_0029-function-attribute_002c-x86"><code>target("default")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022dlmzb_0022_0029-function-attribute_002c-PowerPC"><code>target("dlmzb")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022fancy_002dmath_002d387_0022_0029-function-attribute_002c-x86"><code>target("fancy-math-387")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022fma4_0022_0029-function-attribute_002c-x86"><code>target("fma4")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022fpmath_003dFPMATH_0022_0029-function-attribute_002c-x86"><code>target("fpmath=<var>FPMATH</var>")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022fprnd_0022_0029-function-attribute_002c-PowerPC"><code>target("fprnd")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022fpu_003d_0022_0029-function-attribute_002c-ARM"><code>target("fpu=")</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022friz_0022_0029-function-attribute_002c-PowerPC"><code>target("friz")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022hard_002ddfp_0022_0029-function-attribute_002c-PowerPC"><code>target("hard-dfp")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022ieee_002dfp_0022_0029-function-attribute_002c-x86"><code>target("ieee-fp")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022inline_002dall_002dstringops_0022_0029-function-attribute_002c-x86"><code>target("inline-all-stringops")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022inline_002dstringops_002ddynamically_0022_0029-function-attribute_002c-x86"><code>target("inline-stringops-dynamically")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022isel_0022_0029-function-attribute_002c-PowerPC"><code>target("isel")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022longcall_0022_0029-function-attribute_002c-PowerPC"><code>target("longcall")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022lwp_0022_0029-function-attribute_002c-x86"><code>target("lwp")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022mfcrf_0022_0029-function-attribute_002c-PowerPC"><code>target("mfcrf")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022mfpgpr_0022_0029-function-attribute_002c-PowerPC"><code>target("mfpgpr")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022mmx_0022_0029-function-attribute_002c-x86"><code>target("mmx")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022mulhw_0022_0029-function-attribute_002c-PowerPC"><code>target("mulhw")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022multiple_0022_0029-function-attribute_002c-PowerPC"><code>target("multiple")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022no_002dcustom_002dinsn_0022_0029-function-attribute_002c-Nios-II"><code>target("no-custom-<var>insn</var>")</code> function attribute, Nios II</a>:</td><td> </td><td valign="top"><a href="#Nios-II-Function-Attributes">Nios II Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022paired_0022_0029-function-attribute_002c-PowerPC"><code>target("paired")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022pclmul_0022_0029-function-attribute_002c-x86"><code>target("pclmul")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022popcnt_0022_0029-function-attribute_002c-x86"><code>target("popcnt")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022popcntb_0022_0029-function-attribute_002c-PowerPC"><code>target("popcntb")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022popcntd_0022_0029-function-attribute_002c-PowerPC"><code>target("popcntd")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022powerpc_002dgfxopt_0022_0029-function-attribute_002c-PowerPC"><code>target("powerpc-gfxopt")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022powerpc_002dgpopt_0022_0029-function-attribute_002c-PowerPC"><code>target("powerpc-gpopt")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022recip_0022_0029-function-attribute_002c-x86"><code>target("recip")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022recip_002dprecision_0022_0029-function-attribute_002c-PowerPC"><code>target("recip-precision")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022sse_0022_0029-function-attribute_002c-x86"><code>target("sse")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022sse2_0022_0029-function-attribute_002c-x86"><code>target("sse2")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022sse3_0022_0029-function-attribute_002c-x86"><code>target("sse3")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022sse4_0022_0029-function-attribute_002c-x86"><code>target("sse4")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022sse4_002e1_0022_0029-function-attribute_002c-x86"><code>target("sse4.1")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022sse4_002e2_0022_0029-function-attribute_002c-x86"><code>target("sse4.2")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022sse4a_0022_0029-function-attribute_002c-x86"><code>target("sse4a")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022ssse3_0022_0029-function-attribute_002c-x86"><code>target("ssse3")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022string_0022_0029-function-attribute_002c-PowerPC"><code>target("string")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022thumb_0022_0029-function-attribute_002c-ARM"><code>target("thumb")</code> function attribute, ARM</a>:</td><td> </td><td valign="top"><a href="#ARM-Function-Attributes">ARM Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022tune_003dTUNE_0022_0029-function-attribute_002c-PowerPC"><code>target("tune=<var>TUNE</var>")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022tune_003dTUNE_0022_0029-function-attribute_002c-x86"><code>target("tune=<var>TUNE</var>")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022update_0022_0029-function-attribute_002c-PowerPC"><code>target("update")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022vsx_0022_0029-function-attribute_002c-PowerPC"><code>target("vsx")</code> function attribute, PowerPC</a>:</td><td> </td><td valign="top"><a href="#PowerPC-Function-Attributes">PowerPC Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_0028_0022xop_0022_0029-function-attribute_002c-x86"><code>target("xop")</code> function attribute, x86</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_002ddependent-options">target-dependent options</a>:</td><td> </td><td valign="top"><a href="#Submodel-Options">Submodel Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-target_005fclones-function-attribute"><code>target_clones</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-TC1">TC1</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-TC2">TC2</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-TC3">TC3</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tda-variable-attribute_002c-V850"><code>tda</code> variable attribute, V850</a>:</td><td> </td><td valign="top"><a href="#V850-Variable-Attributes">V850 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Technical-Corrigenda">Technical Corrigenda</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Technical-Corrigendum-1">Technical Corrigendum 1</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Technical-Corrigendum-2">Technical Corrigendum 2</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Technical-Corrigendum-3">Technical Corrigendum 3</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-template-instantiation">template instantiation</a>:</td><td> </td><td valign="top"><a href="#Template-Instantiation">Template Instantiation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-temporaries_002c-lifetime-of">temporaries, lifetime of</a>:</td><td> </td><td valign="top"><a href="#Temporaries">Temporaries</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tentative-definitions">tentative definitions</a>:</td><td> </td><td valign="top"><a href="#Code-Gen-Options">Code Gen Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tgamma"><code>tgamma</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tgammaf"><code>tgammaf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tgammal"><code>tgammal</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-thiscall-function-attribute_002c-x86_002d32"><code>thiscall</code> function attribute, x86-32</a>:</td><td> </td><td valign="top"><a href="#x86-Function-Attributes">x86 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Thread_002dLocal-Storage">Thread-Local Storage</a>:</td><td> </td><td valign="top"><a href="#Thread_002dLocal">Thread-Local</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-thunks">thunks</a>:</td><td> </td><td valign="top"><a href="#Nested-Functions">Nested Functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-TILE_002dGx-options">TILE-Gx options</a>:</td><td> </td><td valign="top"><a href="#TILE_002dGx-Options">TILE-Gx Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-TILEPro-options">TILEPro options</a>:</td><td> </td><td valign="top"><a href="#TILEPro-Options">TILEPro Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tiny-data-section-on-the-H8_002f300H-and-H8S">tiny data section on the H8/300H and H8S</a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Variable-Attributes">H8/300 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tiny-type-attribute_002c-MeP"><code>tiny</code> type attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Type-Attributes">MeP Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tiny-variable-attribute_002c-MeP"><code>tiny</code> variable attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Variable-Attributes">MeP Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tiny_005fdata-variable-attribute_002c-H8_002f300"><code>tiny_data</code> variable attribute, H8/300</a>:</td><td> </td><td valign="top"><a href="#H8_002f300-Variable-Attributes">H8/300 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-TLS"><acronym>TLS</acronym></a>:</td><td> </td><td valign="top"><a href="#Thread_002dLocal">Thread-Local</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tls_002ddialect_003d-function-attribute_002c-AArch64"><code>tls-dialect=</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tls_005fmodel-variable-attribute"><code>tls_model</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-TMPDIR"><code>TMPDIR</code></a>:</td><td> </td><td valign="top"><a href="#Environment-Variables">Environment Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-toascii"><code>toascii</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tolower"><code>tolower</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-toupper"><code>toupper</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-towlower"><code>towlower</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-towupper"><code>towupper</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-traditional-C-language">traditional C language</a>:</td><td> </td><td valign="top"><a href="#Preprocessor-Options">Preprocessor Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-transparent_005funion-type-attribute"><code>transparent_union</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-trapa_005fhandler-function-attribute_002c-SH"><code>trapa_handler</code> function attribute, SH</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-trap_005fexit-function-attribute_002c-SH"><code>trap_exit</code> function attribute, SH</a>:</td><td> </td><td valign="top"><a href="#SH-Function-Attributes">SH Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-trunc"><code>trunc</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-truncf"><code>truncf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-truncl"><code>truncl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tune_003d-function-attribute_002c-AArch64"><code>tune=</code> function attribute, AArch64</a>:</td><td> </td><td valign="top"><a href="#AArch64-Function-Attributes">AArch64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-two_002dstage-name-lookup">two-stage name lookup</a>:</td><td> </td><td valign="top"><a href="#Name-lookup">Name lookup</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-type-alignment">type alignment</a>:</td><td> </td><td valign="top"><a href="#Alignment">Alignment</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-type-attributes">type attributes</a>:</td><td> </td><td valign="top"><a href="#Type-Attributes">Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-type_002ddiff-GCC_005fCOLORS-capability"><code>type-diff GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-typedef-names-as-function-parameters">typedef names as function parameters</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-typeof"><code>typeof</code></a>:</td><td> </td><td valign="top"><a href="#Typeof">Typeof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-type_005finfo"><code>type_info</code></a>:</td><td> </td><td valign="top"><a href="#Vague-Linkage">Vague Linkage</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-U">U</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-uhk-fixed_002dsuffix"><code>uhk</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-UHK-fixed_002dsuffix"><code>UHK</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-uhr-fixed_002dsuffix"><code>uhr</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-UHR-fixed_002dsuffix"><code>UHR</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-uk-fixed_002dsuffix"><code>uk</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-UK-fixed_002dsuffix"><code>UK</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ulk-fixed_002dsuffix"><code>ulk</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ULK-fixed_002dsuffix"><code>ULK</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ULL-integer-suffix"><code>ULL</code> integer suffix</a>:</td><td> </td><td valign="top"><a href="#Long-Long">Long Long</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ullk-fixed_002dsuffix"><code>ullk</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ULLK-fixed_002dsuffix"><code>ULLK</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ullr-fixed_002dsuffix"><code>ullr</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ULLR-fixed_002dsuffix"><code>ULLR</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ulr-fixed_002dsuffix"><code>ulr</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ULR-fixed_002dsuffix"><code>ULR</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-uncached-type-attribute_002c-ARC"><code>uncached</code> type attribute, ARC</a>:</td><td> </td><td valign="top"><a href="#ARC-Type-Attributes">ARC Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-undefined-behavior">undefined behavior</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-undefined-function-value">undefined function value</a>:</td><td> </td><td valign="top"><a href="#Bug-Criteria">Bug Criteria</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-underscores-in-variables-in-macros">underscores in variables in macros</a>:</td><td> </td><td valign="top"><a href="#Typeof">Typeof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-union"><code>union</code></a>:</td><td> </td><td valign="top"><a href="#Unnamed-Fields">Unnamed Fields</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-union_002c-casting-to-a">union, casting to a</a>:</td><td> </td><td valign="top"><a href="#Cast-to-Union">Cast to Union</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unions">unions</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unknown-pragmas_002c-warning">unknown pragmas, warning</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unresolved-references-and-_002dnodefaultlibs">unresolved references and <samp>-nodefaultlibs</samp></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unresolved-references-and-_002dnostdlib">unresolved references and <samp>-nostdlib</samp></a>:</td><td> </td><td valign="top"><a href="#Link-Options">Link Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unused-function-attribute"><code>unused</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unused-label-attribute"><code>unused</code> label attribute</a>:</td><td> </td><td valign="top"><a href="#Label-Attributes">Label Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unused-type-attribute"><code>unused</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-unused-variable-attribute"><code>unused</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-upper-function-attribute_002c-MSP430"><code>upper</code> function attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-upper-variable-attribute_002c-MSP430"><code>upper</code> variable attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Variable-Attributes">MSP430 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ur-fixed_002dsuffix"><code>ur</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-UR-fixed_002dsuffix"><code>UR</code> fixed-suffix</a>:</td><td> </td><td valign="top"><a href="#Fixed_002dPoint">Fixed-Point</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-used-function-attribute"><code>used</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-used-variable-attribute"><code>used</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-User-stack-pointer-in-interrupts-on-the-Blackfin">User stack pointer in interrupts on the Blackfin</a>:</td><td> </td><td valign="top"><a href="#Blackfin-Function-Attributes">Blackfin Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-use_005fdebug_005fexception_005freturn-function-attribute_002c-MIPS"><code>use_debug_exception_return</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-use_005fshadow_005fregister_005fset-function-attribute_002c-MIPS"><code>use_shadow_register_set</code> function attribute, MIPS</a>:</td><td> </td><td valign="top"><a href="#MIPS-Function-Attributes">MIPS Function Attributes</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-V">V</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-V-in-constraint">‘<samp>V</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-V850-Options">V850 Options</a>:</td><td> </td><td valign="top"><a href="#V850-Options">V850 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vague-linkage">vague linkage</a>:</td><td> </td><td valign="top"><a href="#Vague-Linkage">Vague Linkage</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-value-after-longjmp">value after <code>longjmp</code></a>:</td><td> </td><td valign="top"><a href="#Global-Register-Variables">Global Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variable-addressability-on-the-M32R_002fD">variable addressability on the M32R/D</a>:</td><td> </td><td valign="top"><a href="#M32R_002fD-Variable-Attributes">M32R/D Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variable-alignment">variable alignment</a>:</td><td> </td><td valign="top"><a href="#Alignment">Alignment</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variable-attributes">variable attributes</a>:</td><td> </td><td valign="top"><a href="#Variable-Attributes">Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variable-number-of-arguments">variable number of arguments</a>:</td><td> </td><td valign="top"><a href="#Variadic-Macros">Variadic Macros</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variable_002dlength-array-in-a-structure">variable-length array in a structure</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variable_002dlength-array-scope">variable-length array scope</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variable_002dlength-arrays">variable-length arrays</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variables-in-specified-registers">variables in specified registers</a>:</td><td> </td><td valign="top"><a href="#Explicit-Register-Variables">Explicit Register Variables</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variables_002c-local_002c-in-macros">variables, local, in macros</a>:</td><td> </td><td valign="top"><a href="#Typeof">Typeof</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-variadic-macros">variadic macros</a>:</td><td> </td><td valign="top"><a href="#Variadic-Macros">Variadic Macros</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-VAX-options">VAX options</a>:</td><td> </td><td valign="top"><a href="#VAX-Options">VAX Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vector-function-attribute_002c-RX"><code>vector</code> function attribute, RX</a>:</td><td> </td><td valign="top"><a href="#RX-Function-Attributes">RX Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vector_005fsize-variable-attribute"><code>vector_size</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-version_005fid-function-attribute_002c-IA_002d64"><code>version_id</code> function attribute, IA-64</a>:</td><td> </td><td valign="top"><a href="#IA_002d64-Function-Attributes">IA-64 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vfprintf"><code>vfprintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vfscanf"><code>vfscanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-visibility-function-attribute"><code>visibility</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-visibility-type-attribute"><code>visibility</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-visibility-variable-attribute"><code>visibility</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Visium-options">Visium options</a>:</td><td> </td><td valign="top"><a href="#Visium-Options">Visium Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-VLAs">VLAs</a>:</td><td> </td><td valign="top"><a href="#Variable-Length">Variable Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vliw-function-attribute_002c-MeP"><code>vliw</code> function attribute, MeP</a>:</td><td> </td><td valign="top"><a href="#MeP-Function-Attributes">MeP Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-void-pointers_002c-arithmetic">void pointers, arithmetic</a>:</td><td> </td><td valign="top"><a href="#Pointer-Arith">Pointer Arith</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-void_002c-size-of-pointer-to">void, size of pointer to</a>:</td><td> </td><td valign="top"><a href="#Pointer-Arith">Pointer Arith</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-volatile-access">volatile access</a>:</td><td> </td><td valign="top"><a href="#Volatiles">Volatiles</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-volatile-access-1">volatile access</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Volatiles">C++ Volatiles</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-volatile-applied-to-function"><code>volatile</code> applied to function</a>:</td><td> </td><td valign="top"><a href="#Function-Attributes">Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-volatile-asm">volatile <code>asm</code></a>:</td><td> </td><td valign="top"><a href="#Extended-Asm">Extended Asm</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-volatile-read">volatile read</a>:</td><td> </td><td valign="top"><a href="#Volatiles">Volatiles</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-volatile-read-1">volatile read</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Volatiles">C++ Volatiles</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-volatile-write">volatile write</a>:</td><td> </td><td valign="top"><a href="#Volatiles">Volatiles</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-volatile-write-1">volatile write</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Volatiles">C++ Volatiles</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vprintf"><code>vprintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vscanf"><code>vscanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vsnprintf"><code>vsnprintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vsprintf"><code>vsprintf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vsscanf"><code>vsscanf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-vtable">vtable</a>:</td><td> </td><td valign="top"><a href="#Vague-Linkage">Vague Linkage</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-VxWorks-Options">VxWorks Options</a>:</td><td> </td><td valign="top"><a href="#VxWorks-Options">VxWorks Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-W">W</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-w-floating-point-suffix"><code>w</code> floating point suffix</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-W-floating-point-suffix"><code>W</code> floating point suffix</a>:</td><td> </td><td valign="top"><a href="#Floating-Types">Floating Types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-wakeup-function-attribute_002c-MSP430"><code>wakeup</code> function attribute, MSP430</a>:</td><td> </td><td valign="top"><a href="#MSP430-Function-Attributes">MSP430 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warm-function-attribute_002c-NDS32"><code>warm</code> function attribute, NDS32</a>:</td><td> </td><td valign="top"><a href="#NDS32-Function-Attributes">NDS32 Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warning-for-comparison-of-signed-and-unsigned-values">warning for comparison of signed and unsigned values</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warning-for-overloaded-virtual-function">warning for overloaded virtual function</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warning-for-reordering-of-member-initializers">warning for reordering of member initializers</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warning-for-unknown-pragmas">warning for unknown pragmas</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warning-function-attribute"><code>warning</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warning-GCC_005fCOLORS-capability"><code>warning GCC_COLORS <span class="roman">capability</span></code></a>:</td><td> </td><td valign="top"><a href="#Diagnostic-Message-Formatting-Options">Diagnostic Message Formatting Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warning-messages">warning messages</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warnings-from-system-headers">warnings from system headers</a>:</td><td> </td><td valign="top"><a href="#Warning-Options">Warning Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warnings-vs-errors">warnings vs errors</a>:</td><td> </td><td valign="top"><a href="#Warnings-and-Errors">Warnings and Errors</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warn_005fif_005fnot_005faligned-type-attribute"><code>warn_if_not_aligned</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Type-Attributes">Common Type Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warn_005fif_005fnot_005faligned-variable-attribute"><code>warn_if_not_aligned</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warn_005funused-type-attribute"><code>warn_unused</code> type attribute</a>:</td><td> </td><td valign="top"><a href="#C_002b_002b-Attributes">C++ Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-warn_005funused_005fresult-function-attribute"><code>warn_unused_result</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-weak-function-attribute"><code>weak</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-weak-variable-attribute"><code>weak</code> variable attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Variable-Attributes">Common Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-weakref-function-attribute"><code>weakref</code> function attribute</a>:</td><td> </td><td valign="top"><a href="#Common-Function-Attributes">Common Function Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-whitespace">whitespace</a>:</td><td> </td><td valign="top"><a href="#Incompatibilities">Incompatibilities</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Windows-Options-for-x86">Windows Options for x86</a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-X">X</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-X-in-constraint">‘<samp>X</samp>’ in constraint</a>:</td><td> </td><td valign="top"><a href="#Simple-Constraints">Simple Constraints</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-X3_002e159_002d1989">X3.159-1989</a>:</td><td> </td><td valign="top"><a href="#Standards">Standards</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-x86-named-address-spaces">x86 named address spaces</a>:</td><td> </td><td valign="top"><a href="#Named-Address-Spaces">Named Address Spaces</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-x86-Options">x86 Options</a>:</td><td> </td><td valign="top"><a href="#x86-Options">x86 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-x86-Windows-Options">x86 Windows Options</a>:</td><td> </td><td valign="top"><a href="#x86-Windows-Options">x86 Windows Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Xstormy16-Options">Xstormy16 Options</a>:</td><td> </td><td valign="top"><a href="#Xstormy16-Options">Xstormy16 Options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Xtensa-Options">Xtensa Options</a>:</td><td> </td><td valign="top"><a href="#Xtensa-Options">Xtensa Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-Y">Y</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-y0"><code>y0</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-y0f"><code>y0f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-y0l"><code>y0l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-y1"><code>y1</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-y1f"><code>y1f</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-y1l"><code>y1l</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yn"><code>yn</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ynf"><code>ynf</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ynl"><code>ynl</code></a>:</td><td> </td><td valign="top"><a href="#Other-Builtins">Other Builtins</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Keyword-Index_cp_letter-Z">Z</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-zda-variable-attribute_002c-V850"><code>zda</code> variable attribute, V850</a>:</td><td> </td><td valign="top"><a href="#V850-Variable-Attributes">V850 Variable Attributes</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zero_002dlength-arrays">zero-length arrays</a>:</td><td> </td><td valign="top"><a href="#Zero-Length">Zero Length</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zero_002dsize-structures">zero-size structures</a>:</td><td> </td><td valign="top"><a href="#Empty-Structures">Empty Structures</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zSeries-options">zSeries options</a>:</td><td> </td><td valign="top"><a href="#zSeries-Options">zSeries Options</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
</table>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Keyword-Index_cp_symbol-1"><b>#</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-2"><b>$</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-3"><b>%</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-4"><b>&</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-5"><b>'</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-6"><b>*</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-7"><b>+</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-8"><b>-</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-9"><b>.</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-10"><b>/</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-11"><b>0</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-12"><b><</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-13"><b>=</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-14"><b>></b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-15"><b>?</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_symbol-16"><b>_</b></a>
<br>
<a class="summary-letter" href="#Keyword-Index_cp_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-H"><b>H</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-J"><b>J</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-V"><b>V</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-W"><b>W</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-X"><b>X</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-Y"><b>Y</b></a>
<a class="summary-letter" href="#Keyword-Index_cp_letter-Z"><b>Z</b></a>
</td></tr></table>
<div class="footnote">
<hr>
<h4 class="footnotes-heading">Footnotes</h4>
<h3><a name="FOOT1" href="#DOCF1">(1)</a></h3>
<p>On some systems, ‘<samp>gcc -shared</samp>’
needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘<samp>gcc -shared</samp>’ must select the correct support
libraries to link against. Failing to supply the correct flags may lead
to subtle defects. Supplying them in cases where they are not necessary
is innocuous.</p>
<h3><a name="FOOT2" href="#DOCF2">(2)</a></h3>
<p>Future versions of GCC may zero-extend, or use
a target-defined <code>ptr_extend</code> pattern. Do not rely on sign extension.</p>
<h3><a name="FOOT3" href="#DOCF3">(3)</a></h3>
<p>The analogous feature in
Fortran is called an assigned goto, but that name seems inappropriate in
C, where one can do more than simply store label addresses in label
variables.</p>
<h3><a name="FOOT4" href="#DOCF4">(4)</a></h3>
<p>A file’s <em>basename</em>
is the name stripped of all leading path information and of trailing
suffixes, such as ‘<samp>.h</samp>’ or ‘<samp>.C</samp>’ or ‘<samp>.cc</samp>’.</p>
<h3><a name="FOOT5" href="#DOCF5">(5)</a></h3>
<p>The C++ standard just uses the
term “dependent” for names that depend on the type or value of
template parameters. This shorter term will also be used in the rest of
this section.</p>
</div>
<hr>
</body>
</html>
|