/usr/share/gnudatalanguage/coyote/fit_ellipse.pro is in gdl-coyote 2016.11.13-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | ;+
; NAME:
; Fit_Ellipse
;
; PURPOSE:
;
; This program fits an ellipse to an ROI given by a vector of ROI indices.
;
; AUTHOR:
;
; FANNING SOFTWARE CONSULTING
; David Fanning, Ph.D.
; 1645 Sheely Drive
; Fort Collins, CO 80526 USA
; Phone: 970-221-0438
; E-mail: david@idlcoyote.com
; Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; CATEGORY:
;
; Graphics, math.
;
; CALLING SEQUENCE:
;
; ellipsePts = Fit_Ellipse(indices)
;
; OPTIONAL INPUTS:
;
; indices - A 1D vector of pixel indices that describe the ROI. For example,
; the indices may be returned as a result of the WHERE function.
;
; OUTPUTS:
;
; ellipsePts - A 2-by-npoints array of the X and Y points that describe the
; fitted ellipse. The points are in the device coodinate system.
;
; INPUT KEYWORDS:
;
; NPOINTS - The number of points in the fitted ellipse. Set to 120 by default.
;
; SCALE - A two-element array that gives the scaling parameters for each X and Y pixel, respectively.
; Set to [1.0,1.0] by default.
;
; XSIZE - The X size of the window or array from which the ROI indices are taken.
; Set to !D.X_Size by default.
;
; YSIZE - The Y size of the window or array from which the ROI indices are taken.
; Set to !D.Y_Size by default.
;
; OUTPUT KEYWORDS:
;
; CENTER -- Set to a named variable that contains the X and Y location of the center
; of the fitted ellipse in device coordinates.
;
; ORIENTATION - Set to a named variable that contains the orientation of the major
; axis of the fitted ellipse. The direction is calculated in degrees
; counter-clockwise from the X axis.
;
; AXES - A two element array that contains the length of the major and minor
; axes of the fitted ellipse, respectively.
;
; SEMIAXES - A two element array that contains the length of the semi-major and semi-minor
; axes of the fitted ellipse, respectively. (This is simple AXES/2.)
;
; EXAMPLE:
;
; LoadCT, 0, /Silent
; image = BytArr(400, 300)+125
; image[180:245, 125:175] = 255B
; indices = Where(image EQ 255)
; Window, XSize=400, YSize=300
; TV, image
; PLOTS, Fit_Ellipse(indices, XSize=400, YSize=300), /Device, Color=cgColor('red')
;
; MODIFICATION HISTORY:
;
; Written by David W. Fanning, April 2002. Based on algorithms provided by Craig Markwardt
; and Wayne Landsman in his TVEllipse program.
; Added SCALE keyword and modified the algorithm to use memory more efficiently.
; I no longer have to make huge arrays. The arrays are only as big as the blob
; being fitted. 17 AUG 2008. DWF.
; Fixed small typo that caused blobs of indices with a longer X axis than Y axis
; to misrepresent the center of the ellipse. 23 February 2009.
;-
;******************************************************************************************;
; Copyright (c) 2008-2009, by Fanning Software Consulting, Inc. ;
; All rights reserved. ;
; ;
; Redistribution and use in source and binary forms, with or without ;
; modification, are permitted provided that the following conditions are met: ;
; ;
; * Redistributions of source code must retain the above copyright ;
; notice, this list of conditions and the following disclaimer. ;
; * Redistributions in binary form must reproduce the above copyright ;
; notice, this list of conditions and the following disclaimer in the ;
; documentation and/or other materials provided with the distribution. ;
; * Neither the name of Fanning Software Consulting, Inc. nor the names of its ;
; contributors may be used to endorse or promote products derived from this ;
; software without specific prior written permission. ;
; ;
; THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY ;
; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ;
; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT ;
; SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, ;
; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED ;
; TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ;
; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ;
; ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ;
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;
;******************************************************************************************;
FUNCTION Fit_Ellipse, indices, $
AXES=axes, $
CENTER=center, $
NPOINTS=npoints, $
ORIENTATION=orientation, $
SEMIAXES=semiAxes, $
SCALE=scale, $
XSIZE=xsize, $
YSIZE=ysize
; The following method determines the "mass density" of the ROI and fits
; an ellipse to it. This is used to calculate the major and minor axes of
; the ellipse, as well as its orientation. The orientation is calculated in
; degrees counter-clockwise from the X axis.
IF N_Elements(xsize) EQ 0 THEN xsize = !D.X_Size
IF N_Elements(ysize) EQ 0 THEN ysize = !D.Y_Size
IF N_Elements(npoints) EQ 0 THEN npoints = 120
IF N_Elements(scale) EQ 0 THEN scale = [1.0, 1.0]
IF N_Elements(scale) EQ 1 THEN scale = [scale, scale]
; Fake indices for testing purposes.
IF N_Elements(indices) EQ 0 THEN BEGIN
xs = xsize / 4
xf = xsize / 4 * 2
ys = ysize / 4
yf = ysize / 4 * 2
array = BytArr(xsize, ysize)
array[xs:xf, ys:yf] = 255B
indices = Where(array EQ 255)
ENDIF
; Convert the indices to COL/ROW coordinates. Find min and max values
xyindices = Array_Indices([xsize,ysize], indices, /DIMENSIONS)
minX = Min(xyindices[0,*], MAX=maxX)
minY = Min(xyindices[1,*], MAX=maxY)
cols = Reform(xyindices[0,*]) - minX
rows = Reform(xyindices[1,*]) - minY
; Make an array large enough to hold the blob.
arrayXSize = maxX-minX+1
arrayYSize = maxY-minY+1
array = BytArr(arrayXSize, arrayYSize)
array[xyindices[0,*] - minX, xyindices[1,*] - minY] = 255B
totalMass = Total(array)
xcm = Total( Total(array, 2) * Indgen(arrayXSize) * scale[0] ) / totalMass
ycm = Total( Total(array, 1) * Indgen(arrayYSize) * scale[1] ) / totalMass
center = [xcm, ycm]
; Obtain the position of every pixel in the image, with the origin
; at the center of mass of the ROI.
x = Findgen(arrayXSize) * scale[0]
y = Findgen(arrayYSize) * scale[1]
xx = (x # (y * 0 + 1)) - (xcm)
yy = ((x * 0 + 1) # y) - (ycm)
npts = N_Elements(indices)
; Calculate the mass distribution tensor.
i11 = Total(yy[cols, rows]^2) / npts
i22 = Total(xx[cols, rows]^2) / npts
i12 = -Total(xx[cols, rows] * yy[cols, rows]) / npts
tensor = [[ i11, i12],[i12,i22]]
; Find the eigenvalues and eigenvectors of the tensor.
evals = Eigenql(tensor, Eigenvectors=evecs)
; The semi-major and semi-minor axes of the ellipse are obtained from the eigenvalues.
semimajor = Sqrt(evals[0]) * 2.0
semiminor = Sqrt(evals[1]) * 2.0
; We want the actual axes lengths.
major = semimajor * 2.0
minor = semiminor * 2.0
semiAxes = [semimajor, semiminor]
axes = [major, minor]
; The orientation of the ellipse is obtained from the first eigenvector.
evec = evecs[*,0]
; Degrees counter-clockwise from the X axis.
orientation = ATAN(evec[1], evec[0]) * 180. / !Pi - 90.0
; Divide a circle into Npoints.
phi = 2 * !PI * (Findgen(npoints) / (npoints-1))
; Position angle in radians.
ang = orientation / !RADEG
; Sin and cos of angle.
cosang = Cos(ang)
sinang = Sin(ang)
; Parameterized equation of ellipse.
x = semimajor * Cos(phi)
y = semiminor * Sin(phi)
; Rotate to desired position angle.
xprime = xcm + (x * cosang) - (y * sinang)
yprime = ycm + (x * sinang) + (y * cosang)
; Extract the points to return.
pts = FltArr(2, N_Elements(xprime))
pts[0,*] = xprime + minX
pts[1,*] = yprime + minY
center = center + [minX, minY]
RETURN, pts
END
|