/usr/share/gnudatalanguage/coyote/sharpen.pro is in gdl-coyote 2016.11.13-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | ;+
; NAME:
; Sharpen
;
; PURPOSE:
;
; This function sharpens an image using a Laplacian kernel.
; The final result is color adjusted to match the histogram
; of the input image.
;
; AUTHOR:
;
; FANNING SOFTWARE CONSULTING
; David Fanning, Ph.D.
; 1645 Sheely Drive
; Fort Collins, CO 80526 USA
; Phone: 970-221-0438
; E-mail: david@idlcoyote.com
; Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; CATEGORY:
;
; Image Processing
;
; CALLING SEQUENCE:
;
; sharp_image = Sharpen(image)
;
; INPUTS:
;
; image - The input image to be sharpened. Assumed to be a 2D byte array.
;
; OUTPUTS:
;
; sharp_image - The sharpened image.
;
; INPUT KEYWORDS:
;
; KERNEL -- By default the image is convolved with this 3-by-3 Laplacian kernel:
; [ [-1, -1, -1], [-1, +8, -1], [-1, -1, -1] ]. You can pass in any kernel
; of odd width. The filtered image is added back to the original image to provide
; the sharpening effect.
;
; DISPLAY -- If this keyword is set a window is opened and the details of the sharpening
; process are displayed.
;
; OUTPUT KEYWORDS:
;
; None.
;
; DEPENDENCIES:
;
; None.
;
; METHOD:
;
; This function is based on the Laplacian kernel sharpening method on pages 128-131
; of Digital Image Processing, 2nd Edition, Rafael C. Gonzalez and Richard E. Woods,
; ISBN 0-20-118075-8.
;
; EXAMPLE:
;
; There is an example program at the end of this file.
;
; MODIFICATION HISTORY:
;
; Written by David W. Fanning, January 2003.
; Updated slightly to use Coyote Library routines. 3 Dec. 2010. DWF.
; Modified the example to work with cgImage. 29 March 2011. DWF.
;-
;
;******************************************************************************************;
; Copyright (c) 2008, by Fanning Software Consulting, Inc. ;
; All rights reserved. ;
; ;
; Redistribution and use in source and binary forms, with or without ;
; modification, are permitted provided that the following conditions are met: ;
; ;
; * Redistributions of source code must retain the above copyright ;
; notice, this list of conditions and the following disclaimer. ;
; * Redistributions in binary form must reproduce the above copyright ;
; notice, this list of conditions and the following disclaimer in the ;
; documentation and/or other materials provided with the distribution. ;
; * Neither the name of Fanning Software Consulting, Inc. nor the names of its ;
; contributors may be used to endorse or promote products derived from this ;
; software without specific prior written permission. ;
; ;
; THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY ;
; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ;
; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT ;
; SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, ;
; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED ;
; TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ;
; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ;
; ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ;
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;
;******************************************************************************************;
FUNCTION Sharpen_HistoMatch, image, histogram_to_match
; Error handling.
Catch, theError
IF theError NE 0 THEN BEGIN
Catch, /Cancel
; Get the call stack and the calling routine's name.
Help, Calls=callStack
IF Float(!Version.Release) GE 5.2 THEN $
callingRoutine = (StrSplit(StrCompress(callStack[1])," ", /Extract))[0] ELSE $
callingRoutine = (Str_Sep(StrCompress(callStack[1])," "))[0]
; Print a traceback.
Help, /Last_Message, Output=traceback
Print,''
Print, 'Traceback Report from ' + StrUpCase(callingRoutine) + ':'
Print, ''
FOR j=0,N_Elements(traceback)-1 DO Print, " " + traceback[j]
IF N_Elements(image) NE 0 THEN RETURN, image ELSE RETURN, -1L
ENDIF
; We require two input parameters.
IF N_Params() NE 2 THEN Message, 'Two arguments required. Please read the program documentation.'
; Must have 2D image array.
IF Size(image, /N_Dimensions) NE 2 THEN Message, 'Image argument must be 2D. Returning.'
; Is the histogram_to_match variable a 1D or 2D array? Branch accordingly.
CASE Size(histogram_to_match, /N_Dimensions) OF
1: BEGIN
IF N_Elements(histogram_to_match) NE 256 THEN $
Message, 'Histogram to match has incorrect size. Returning.'
match_histogram = histogram_to_match
END
2: match_histogram = Histogram(Byte(histogram_to_match), Min=0, Max=255, Binsize=1)
ELSE: Message, 'Histogram to match has incorrect number of dimensions. Returning.'
ENDCASE
; Calculate the histogram of the input image.
h = Histogram(Byte(image), Binsize=1, Min=0, Max=255)
; Make sure the two histograms have the same number of pixels. This will
; be a problem if the two images are different sizes, you are matching a
; histogram from an image subset, etc.
totalPixels = Float(N_Elements(image))
totalHistogramPixels = Float(Total(match_histogram))
IF totalPixels NE totalHistogramPixels THEN $
factor = totalPixels / totalHistogramPixels ELSE $
factor = 1.0
match_histogram = match_histogram * factor
; Find a mapping from the input pixels to the transformation function s.
s = FltArr(256)
FOR k=0,255 DO BEGIN
s[k] = Total(h(0:k) / totalPixels)
ENDFOR
; Find a mapping from input histogram to the transformation function v.
v = FltArr(256)
FOR q=0,255 DO BEGIN
v[q] = Total(match_histogram(0:q) / Total(match_histogram))
ENDFOR
; Find probablitly density function z from v and s.
z = BytArr(256)
FOR j=0,255 DO BEGIN
i = Where(v LT s[j], count)
IF count GT 0 THEN z[j] = (Reverse(i))[0] ELSE z[j]=0
ENDFOR
; Create the matched image.
matchedImage = z[Byte(image)]
RETURN, matchedImage
END
; ----------------------------------------------------------------------------
FUNCTION Sharpen, image, Display=display, Kernel=kernel
; Error handling.
Catch, theError
IF theError NE 0 THEN BEGIN
Catch, /Cancel
; Get the call stack and the calling routine's name.
Help, Calls=callStack
IF Float(!Version.Release) GE 5.2 THEN $
callingRoutine = (StrSplit(StrCompress(callStack[1])," ", /Extract))[0] ELSE $
callingRoutine = (Str_Sep(StrCompress(callStack[1])," "))[0]
; Print a traceback.
Help, /Last_Message, Output=traceback
Print,''
Print, 'Traceback Report from ' + StrUpCase(callingRoutine) + ':'
Print, ''
FOR j=0,N_Elements(traceback)-1 DO Print, " " + traceback[j]
IF N_Elements(image) NE 0 THEN RETURN, image ELSE RETURN, -1L
ENDIF
; If an image is not provided. Issue an error message.
IF N_Elements(image) EQ 0 THEN $
Message, 'A 2D image is required as an argument.'
IF Size(image, /N_Dimensions) NE 2 THEN Message, 'Image must be a 2D array in this program.'
; Resize the image, if required.
previewSize = 512
wxsize = previewSize
wysize = previewSize
; Set up the convolution kernel for Laplacian filtering.
IF N_Elements(kernel) EQ 0 THEN BEGIN
k = Replicate(-1, 3, 3)
k[1,1] = 8
ENDIF ELSE BEGIN
s = Size(kernel, /Dimensions)
IF s[0] MOD 2 NE 1 THEN Message, 'Kernel must be an odd width.'
k = kernel
ENDELSE
; Are we doing a display?
IF Keyword_Set(display) THEN BEGIN
s = Size(image, /Dimensions)
xsize = s[0]
ysize = s[1]
needresize = 1
IF xsize NE ysize THEN BEGIN
needresize = 1
aspect = Float(ysize) / xsize
IF aspect LT 1 THEN BEGIN
wxsize = previewSize
wysize = (previewSize * aspect) < previewSize
ENDIF ELSE BEGIN
wysize = previewSize
wxsize = (previewSize / aspect) < previewSize
ENDELSE
ENDIF
Window, /Free, XSize=2*wxsize, YSize=2*wysize, Title='Image Sharpening-Laplacian'
ENDIF ELSE needresize = 0
; Need a resize?
IF needresize THEN thisImage = Byte(Congrid(image, wxsize, wysize)) ELSE $
thisImage = image
; Display the original image.
IF Keyword_Set(display) THEN BEGIN $
cgImage, thisImage, 0, 0, /TV
XYOUTS, wxsize/2, 10, /Device, 'Original Image', Font=0, $
Alignment=0.5, Color=cgColor('red6')
ENDIF
; Create the Laplacian filtered image.
filteredImage = Convol(Float(thisImage), k, Center=1, /Edge_Truncate, /NAN)
; Display the filtered image.
IF Keyword_Set(display) THEN BEGIN
fimage = Convol(thisImage, k, Center=1, /Edge_Truncate, /NAN)
cgImage, fimage, wxsize, wysize, /TV
XYOUTS, (2*wxsize/4)*3, wysize + 10, /Device, 'Filtered Image', Font=0, $
Alignment=0.5, Color=cgColor('red6')
ENDIF
; Scale the Laplacian filtered image. Note conversion of
; image to integer values and use of 255 as a FLOAT value.
filteredImage = filteredImage - (Min(filteredImage))
filteredImage = filteredImage * (255./Max(filteredImage))
IF Keyword_Set(display) THEN BEGIN
cgImage, filteredImage, 0, wysize, /TV
XYOUTS, wxsize/2, wysize + 10, /Device, 'Scaled Filter', Font=0, $
Alignment=0.5, Color=cgColor('red6')
ENDIF
; Create the sharpened image by adding the Laplacian filtered image
; back to the original image and re-scaling.
sharpened = thisImage + filteredImage
sharpened = sharpened - (Min(sharpened))
sharpened = sharpened * (255./Max(sharpened))
; Adjust the sharpened image to match the histogram of the original.
adjusted = Sharpen_HistoMatch(sharpened, image)
; Display the adjusted image.
IF Keyword_Set(display) THEN BEGIN
cgImage, BytScl(adjusted), wxsize, 0, /TV
XYOUTS, (2*wxsize/4)*3, 10, /Device, 'Sharpened Image', Font=0, $
Alignment=0.5, Color=cgColor('red6')
ENDIF
RETURN, adjusted
END
PRO Example
image = cgDemoData(13)
s = Size(image, /Dimensions)
LoadCT, 0, /Silent
Window, /Free, XSize=s[0]*2, YSize=s[1], Title='Image Sharpening'
cgImage, image, 0, /TV
XYOuts, 0.25, 0.1, /Normal, Alignment=0.5, 'Original Image', Font=0, Color=cgColor('red6')
cgImage, Sharpen(image), 1, /NoErase, /TV
XYOuts, 0.75, 0.1, /Normal, Alignment=0.5, 'Sharpened Image', Font=0, Color=cgColor('red6')
END
|