This file is indexed.

/usr/share/genius/help/ru/genius.xml is in genius-common 1.0.23-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" [
<!ENTITY app "<application>Genius Mathematics Tool</application>">
<!ENTITY appname "Genius">
<!ENTITY appversion "1.0.22">
<!ENTITY date "September 2016">
<!ENTITY legal SYSTEM "legal.xml">
<!ENTITY manrevision "0.2">
<!ENTITY lt "&#60;">
<!ENTITY gt "&#62;">
<!ENTITY le "&#8804;">
<!ENTITY ge "&#8805;">
<!ENTITY lsquo "&#8216;">
<!ENTITY rsquo "&#8217;">
<!--<!ENTITY gel-function-list SYSTEM "gel-function-list.xml">-->]>
<!-- 
      (Do not remove this comment block.)
  Maintained by the GNOME Documentation Project
  http://developer.gnome.org/projects/gdp
  Template version: 2.0 beta
  Template last modified Apr 11, 2002
-->
<!-- =============Document Header ============================= -->
<book id="index" lang="ru">
<!-- please do not change the id; for translations, change lang to -->
<!-- appropriate code -->
  <bookinfo>
	  <abstract role="description"><para>Руководство по Математическому инструменту Genius.</para></abstract>
    <title>Руководство пользователя Genius</title>       

    <copyright>
      <year>1997-2016</year>
      <holder>Jiří (George) Lebl</holder>
    </copyright>
    <copyright>
      <year>2004</year>
      <holder>Kai Willadsen</holder>
    </copyright><copyright><year>2012</year><holder>Алексей Кабанов (ak099@mail.ru)</holder></copyright>
<!-- translators: uncomment this:
  <copyright>
   <year>2002</year>
   <holder>ME-THE-TRANSLATOR (Latin translation)</holder>
  </copyright>
-->

    <publisher> 
      <publishername/> 
    </publisher> 

     <legalnotice id="legalnotice">
	<para>
	  Permission is granted to copy, distribute and/or modify this
	  document under the terms of the GNU Free Documentation
	  License (GFDL), Version 1.1 or any later version published
	  by the Free Software Foundation with no Invariant Sections,
	  no Front-Cover Texts, and no Back-Cover Texts.  You can find
	  a copy of the GFDL at this <ulink type="help" url="ghelp:fdl">link</ulink> or in the file COPYING-DOCS
	  distributed with this manual.
         </para>
         <para> This manual is part of a collection of GNOME manuals
          distributed under the GFDL.  If you want to distribute this
          manual separately from the collection, you can do so by
          adding a copy of the license to the manual, as described in
          section 6 of the license.
	</para>

	<para>
	  Many of the names used by companies to distinguish their
	  products and services are claimed as trademarks. Where those
	  names appear in any GNOME documentation, and the members of
	  the GNOME Documentation Project are made aware of those
	  trademarks, then the names are in capital letters or initial
	  capital letters.
	</para>

	<para>
	  DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDED
	  UNDER  THE TERMS OF THE GNU FREE DOCUMENTATION LICENSE
	  WITH THE FURTHER UNDERSTANDING THAT:

	  <orderedlist>
		<listitem>
		  <para>DOCUMENT IS PROVIDED ON AN "AS IS" BASIS,
                    WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
                    IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
                    THAT THE DOCUMENT OR MODIFIED VERSION OF THE
                    DOCUMENT IS FREE OF DEFECTS MERCHANTABLE, FIT FOR
                    A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE
                    RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE
                    OF THE DOCUMENT OR MODIFIED VERSION OF THE
                    DOCUMENT IS WITH YOU. SHOULD ANY DOCUMENT OR
                    MODIFIED VERSION PROVE DEFECTIVE IN ANY RESPECT,
                    YOU (NOT THE INITIAL WRITER, AUTHOR OR ANY
                    CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
                    SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER
                    OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
                    LICENSE. NO USE OF ANY DOCUMENT OR MODIFIED
                    VERSION OF THE DOCUMENT IS AUTHORIZED HEREUNDER
                    EXCEPT UNDER THIS DISCLAIMER; AND
		  </para>
		</listitem>
		<listitem>
		  <para>UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL
                       THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE),
                       CONTRACT, OR OTHERWISE, SHALL THE AUTHOR,
                       INITIAL WRITER, ANY CONTRIBUTOR, OR ANY
                       DISTRIBUTOR OF THE DOCUMENT OR MODIFIED VERSION
                       OF THE DOCUMENT, OR ANY SUPPLIER OF ANY OF SUCH
                       PARTIES, BE LIABLE TO ANY PERSON FOR ANY
                       DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
                       CONSEQUENTIAL DAMAGES OF ANY CHARACTER
                       INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
                       OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR
                       MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR
                       LOSSES ARISING OUT OF OR RELATING TO USE OF THE
                       DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT,
                       EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED OF
                       THE POSSIBILITY OF SUCH DAMAGES.
		  </para>
		</listitem>
	  </orderedlist>
	</para>
  </legalnotice>


   <!-- This file  contains link to license for the documentation (GNU FDL), and 
        other legal stuff such as "NO WARRANTY" statement. Please do not change 
	any of this. -->

    <authorgroup> 
      <author role="maintainer"> 
		<firstname>Jiří</firstname> 
		<surname>Lebl</surname> 
		<affiliation> 
	  		<orgname>Oklahoma State University</orgname> 
	  		<address> <email>jirka@5z.com</email> </address> 
		</affiliation> 
      </author> 
      <author> 
		<firstname>Kai</firstname> 
		<surname>Willadsen</surname> 
		<affiliation> 
	  		<orgname>Университет Квинслэнда, Австралия</orgname> 
	  		<address> <email>kaiw@itee.uq.edu.au</email> </address> 
		</affiliation> 
      </author> 
      
<!-- This is appropriate place for other contributors: translators,
     maintainers,  etc. Commented out by default.
     
      <othercredit role="translator">
		<firstname>Latin</firstname> 
		<surname>Translator 1</surname> 
		<affiliation> 
	  		<orgname>Latin Translation Team</orgname> 
	  		<address> <email>translator@gnome.org</email> </address> 
		</affiliation>
		<contrib>Latin translation</contrib>
      </othercredit>
-->
    </authorgroup>


<!-- According to GNU FDL, revision history is mandatory if you are -->
<!-- modifying/reusing someone else's document.  If not, you can omit it. -->
<!-- Remember to remove the &manrevision; entity from the revision entries other
-->
<!-- than the current revision. -->
<!-- The revision numbering system for GNOME manuals is as follows: -->
<!-- * the revision number consists of two components -->
<!-- * the first component of the revision number reflects the release version of the GNOME desktop. -->
<!-- * the second component of the revision number is a decimal unit that is incremented with each revision of the manual. -->
<!-- For example, if the GNOME desktop release is V2.x, the first version of the manual that -->
<!-- is written in that desktop timeframe is V2.0, the second version of the manual is V2.1, etc. -->
<!-- When the desktop release version changes to V3.x, the revision number of the manual changes -->
<!-- to V3.0, and so on. -->  
<!--  This is unmaintained quite a bit so screw this it just makes things
      ugly and we don't update the manrevision stuff anyway
    <revhistory>
      <revision> 
		<revnumber>&manrevision;</revnumber> 
		<date>&date;</date> 
		<revdescription> 
	  		<para role="author">Jiri (George) Lebl
	    	<email>jirka@5z.com</email>
	  		</para>
		</revdescription> 
      </revision> 
      <revision> 
		<revnumber>0.1</revnumber> 
		<date>September 2004</date> 
		<revdescription> 
	  		<para role="author">Kai Willadsen
	    	<email>kaiw@itee.uq.edu.au</email>
	  		</para>
		</revdescription> 
      </revision> 
      <revision> 
		<revnumber>Genius Calculator Manual</revnumber> 
		<date>August 2004</date> 
		<revdescription> 
	  		<para role="author">Jiri (George) Lebl
	    	<email>jirka@5z.com</email>
	  		</para>
		</revdescription> 
      </revision> 
    </revhistory> 
-->

    <revhistory>
      <revision> 
		<revnumber>0.2</revnumber> 
		<date>September 2016</date> 
		<revdescription> 
	  		<para role="author">Jiri (George) Lebl <email>jirka@5z.com</email></para>
		</revdescription> 
      </revision> 
    </revhistory>
    <releaseinfo>This manual describes version 1.0.22 of Genius.
    </releaseinfo> 
    <legalnotice> 
      <title>Обратная связь</title> 
      <para>
	      To report a bug or make a suggestion regarding the <application>Genius Mathematics Tool</application>
	      application or this manual, please visit the
	      <ulink url="http://www.jirka.org/genius.html" type="http">Genius
		      Web page</ulink>
	      or email me at <email>jirka@5z.com</email>.
      </para>
<!-- Translators may also add here feedback address for translations -->
    </legalnotice> 
  </bookinfo> 

<!-- ============= Introduction =============================== -->
  <chapter id="genius-introduction"> 
    <title>Введение</title> 
    <para>
	The <application>Genius Mathematics Tool</application> application is a general calculator for use as a desktop
	calculator, an educational tool in mathematics, and is useful even for
	research.  The language used in <application>Genius Mathematics Tool</application> is designed to be
	‘mathematical’ in the sense that it should be ‘what
	you mean is what you get’.  Of course that is not an
	entirely attainable goal.  <application>Genius Mathematics Tool</application> features rationals, arbitrary
	precision integers and multiple precision floats using the GMP library.
	It handles complex numbers using cartesian notation.  It has good
	vector and matrix manipulation and can handle basic linear algebra.
	The programming language allows user defined functions, variables and
	modification of parameters.
    </para> 

    <para><application>Математический инструмент Genius</application> имеет две версии. Одна из них — это версия с графическим интерфейсом для GNOME, имеющая интерфейс в стиле интегрированных сред разработки (IDE) и способная строить графики функций одной или двух переменных. Версия для командной строки не требует наличия GNOME, но и не реализует тех возможностей, которые требуют наличия графического интерфейса.</para> 

    <para>
	    Parts of this manual describe the graphical version of the calculator,
	but the language is of course the same.  The command line only version
	lacks the graphing capabilities and all other capabilities that require
	the graphical user interface.
    </para>

    <para>
	    Generally, when some feature of the language (function, operator, etc...)
	    is new in some version past 1.0.5, it is mentioned, but
	    below 1.0.5 you would have to look at the NEWS file.
    </para>

  </chapter>

<!-- =========== Getting Started ============================== -->
  <chapter id="genius-getting-started"> 
    <title>Приступая к работе</title> 

    <sect1 id="genius-to-start">
      <title>Запуск <application>Математического инструмента Genius</application></title>
      <para>You can start <application>Genius Mathematics Tool</application> in the following ways:
      </para> 
      <variablelist>
        <varlistentry>
          <term>Меню <guimenu>Приложения</guimenu></term>
          <listitem>
	    <para>В зависимости от установленной операционной системы и её версии, команда меню для запуска <application>Математического инструмента Genius</application> может находиться в различных местах. Она может располагаться в подменю <guisubmenu>Образование</guisubmenu>, <guisubmenu>Стандартные</guisubmenu>, <guisubmenu>Офис</guisubmenu>, <guisubmenu>Наука</guisubmenu> или других подобных подменю. Нужный вам элемент меню называется <guimenuitem>Математический инструмент Genius</guimenuitem>. Когда вы найдёте этот элемент меню, щёлкните на нём, чтобы запустить <application>Математический инструмент Genius</application>.</para>
	      </listitem>
        </varlistentry>
        <varlistentry>
          <term>Диалог запуска</term>
          <listitem>
	    <para>В некоторых операционных системах упомянутая выше команда меню может быть недоступна. В этом случае можно открыть диалог запуска и выполнить команду <command>gnome-genius</command>.</para>
	      </listitem>
        </varlistentry>
        <varlistentry>
    	  <term>Командная строка</term>
    	  <listitem>
    	    <para>Чтобы запустить версию <application>Математического инструмента Genius</application> для GNOME, выполните в командной строке <command>gnome-genius</command>.</para>
	    <para>Чтобы запустить версию для командной строки, выполните следующую команду: <command>genius</command>. Эта версия не содержит графического интерфейса и некоторые возможности, такие как построение графиков, будут в ней недоступны.</para> 
          </listitem>
        </varlistentry>
      </variablelist>
    </sect1>

    <sect1 id="genius-when-start">
    <title>После запуска Genius</title>
      <para>После запуска версии <application>Математического инструмента Genius</application> для GNOME появится окно, изображённое на иллюстрации <xref linkend="mainwindow-fig"/>.</para>

      <figure id="mainwindow-fig"> 
        <title>Окно <application>Математического инструмента Genius</application></title> 
        <screenshot> 
          <mediaobject> 
            <imageobject>
              <imagedata fileref="figures/genius_window.png" format="PNG" scalefit="1"/> 
            </imageobject>
            <textobject> 
	      <phrase>Shows <application>Математический инструмент Genius</application> main window. Contains titlebar, menubar,
toolbar and working area. Menubar contains <guilabel>Файл</guilabel>,
<guilabel>Правка</guilabel>, <guilabel>Калькулятор</guilabel>,
<guilabel>Examples</guilabel>,
<guilabel>Programs</guilabel>,
<guilabel>Настройки</guilabel>, and <guilabel>Справка</guilabel> menus.</phrase> 
            </textobject> 
          </mediaobject>
        </screenshot> 
      </figure>

      <para>Окно <application>Математического инструмента Genius</application> содержит следующие элементы:</para>
      <variablelist>
        <varlistentry>
          <term>Строка меню.</term>
          <listitem>
            <para>Строка меню содержит все команды, необходимые для работы с файлами в <application>Математическом инструменте Genius</application>. Меню <guilabel>Файл</guilabel> содержит команды для загрузки и сохранения объектов и создания новых программ. Команда <guilabel>Загрузить и выполнить...</guilabel> не открывает новое окно для программы, а просто сразу выполняет программу. Её действие эквивалентно действию команды <command>load</command>.</para>
	    <para>
		The <guilabel>Calculator</guilabel> menu controls the
calculator engine.  It allows you to run the currently selected program or to
interrupt the current calculation.  You can also look at the full expression of
the last answer (useful if the last answer was too large to fit onto the
console), or you can view a listing of the values of all user defined
variables.  You can also monitor user variables, which is especially useful
while a long calculation is running, or to debug a certain program.
		    Finally the <guilabel>Calculator</guilabel> allows plotting functions using a user friendly dialog box.
	   </para>
	   <para>
		   The <guilabel>Examples</guilabel> menu is a list of example
		   programs or demos.  If you open the menu, it will load the
		   example into a new program, which you can run, edit, modify,
		   and save.  These programs should be well documented
		   and generally demonstrate either some feature of <application>Genius Mathematics Tool</application>
		   or some mathematical concept.
	   </para>
	   <para>
		   The <guilabel>Programs</guilabel> menu lists
		   the currently open programs and allows you to switch
		   between them.
	   </para>
	   <para>Остальные меню выполняют такие же действия, как в других приложениях.</para>
          </listitem>
        </varlistentry>
        <varlistentry>
          <term>Панель инструментов.</term>
          <listitem>
            <para>Панель инструментов содержит некоторые из команд, к которым можно получить доступ через строку меню.</para>
          </listitem>
        </varlistentry>
        <varlistentry>
          <term>Рабочая область</term>
          <listitem>
            <para>Рабочая область — основной способ взаимодействия с приложением.</para>
	    <para>
	    	The working area initially has just the <guilabel>Console</guilabel> tab, which is
		the main way of interacting with the calculator.  Here you
		type expressions and the results are immediately returned
		after you hit the Enter key.
	    </para>
	    <para>
	    	Alternatively you can write longer programs and those can
		appear in separate tabs.  The programs are a set of commands or
	        functions that can be run all at once rather than entering them
		at the command line.  The programs can be saved in files for later
		retrieval.
	    </para>
          </listitem>
        </varlistentry>
      </variablelist>
    </sect1>

  </chapter>

<!-- ================ Usage =================================== -->
  <chapter id="genius-usage"> 
    <title>Основы работы с программой</title> 

    <sect1 id="genius-usage-workarea"> 
      <title>Использование рабочей области</title> 

      <para>
        Normally you interact with the calculator in the <guilabel>Console</guilabel> tab of the
	work area.  If you are running the text only version then the console
	will be the only thing that is available to you.  If you want to use
	<application>Genius Mathematics Tool</application> as a calculator only, just type in your expression in the console, it
	will be evaluated, and the returned value will be printed.
      </para>

      <para>
	      To evaluate an expression, type it into the <guilabel>Console</guilabel> work area and press enter.
	      Expressions are written in a
language called GEL.  The most simple GEL expressions just looks like
mathematics.  For example
<screen><prompt>genius&gt; </prompt><userinput>30*70 + 67^3.0 + ln(7) * (88.8/100)</userinput>
</screen>
or
<screen><prompt>genius&gt; </prompt><userinput>62734 + 812634 + 77^4 mod 5</userinput>
</screen>
or
<screen><prompt>genius&gt; </prompt><userinput>| sin(37) - e^7 |</userinput>
</screen>
or
<screen><prompt>genius&gt; </prompt><userinput>sum n=1 to 70 do 1/n</userinput>
</screen>
(Last is the harmonic sum from 1 to 70)
</para>
<para>Чтобы получить список функций и команд, наберите: <screen><prompt>genius&gt; </prompt><userinput>help</userinput>
</screen> Для получения дополнительной справки по отдельной функции наберите : <screen><prompt>genius&gt; </prompt><userinput>help ИмяФункции</userinput>
</screen> Чтобы увидеть это руководство, наберите: <screen><prompt>genius&gt; </prompt><userinput>manual</userinput>
</screen></para>
<para>
Suppose you have previously saved some GEL commands as a program to a file and
you now want to execute them.
To load this program from the file <filename>path/to/program.gel</filename>,
type
<screen><prompt>genius&gt; </prompt><userinput>load path/to/program.gel</userinput>
</screen>
<application>Genius Mathematics Tool</application> keeps track of the current directory.
To list files in the current directory type <command>ls</command>, to change directory
do <userinput>cd directory</userinput> as in the UNIX command shell.
</para>
    </sect1>

    <sect1 id="genius-usage-create-program"> 
      <title>Создание новой программы</title> 
      <para>
	      If you wish to enter several more complicated commands, or perhaps write a complicated
	      function using the <link linkend="genius-gel">GEL</link> language, you can create a new
	     program.
      </para>
      <para>
To start writing a new program, choose
<menuchoice><guimenu>File</guimenu><guimenuitem>New
Program</guimenuitem></menuchoice>. A new tab will appear in the work area. You
can write a <link linkend="genius-gel">GEL</link> program in this work area.
Once you have written your program you can run it by 
<menuchoice><guimenu>Calculator</guimenu><guimenuitem>Run</guimenuitem></menuchoice> (or
the <guilabel>Run</guilabel> toolbar button).
This will execute your program and will display any output on the <guilabel>Console</guilabel> tab.
Executing a program is equivalent of taking the text of the program and
typing it into the console.  The only difference is that this input is done
independent of the console and just the output goes onto the console.
<menuchoice><guimenu>Calculator</guimenu><guimenuitem>Run</guimenuitem></menuchoice>
will always run the currently selected program even if you are on the <guilabel>Console</guilabel>
tab.  The currently selected program has its tab in bold type.  To select a
program, just click on its tab.
      </para>
      <para>
To save the program you've just written, choose <menuchoice><guimenu>File</guimenu><guimenuitem>Save As...</guimenuitem></menuchoice>.
Similarly as in other programs you can choose
<menuchoice><guimenu>File</guimenu><guimenuitem>Save</guimenuitem></menuchoice> to save a program that already has
a filename attached to it.  If you have many opened programs you have edited and wish to save you can also choose
<menuchoice><guimenu>File</guimenu><guimenuitem>Save All Unsaved</guimenuitem></menuchoice>.
      </para>
      <para>
	      Programs that have unsaved changes will have a "[+]" next to their filename.  This way you can see if the file
	      on disk and the currently opened tab differ in content.  Programs which have not yet had a filename associated
	      with them are always considered unsaved and no "[+]" is printed.
      </para>
    </sect1>

    <sect1 id="genius-usage-open-program"> 
      <title>Открытие и запуск программы</title> 
      <para>Чтобы открыть файл, выберите <menuchoice><guimenu>Файл</guimenu><guimenuitem>Открыть</guimenuitem></menuchoice>. В рабочей области появится новая вкладка с содержимым файла. Вы можете использовать её для редактирования файла.</para>
      <para>Чтобы запустить программу из файла, выберите <menuchoice><guimenu>Файл</guimenu><guimenuitem>Загрузить и выполнить...</guimenuitem></menuchoice>. Это действие запустит программу, не открывая её в отдельной вкладке. Это эквивалентно команде <command>load</command>.</para>
      <para>
	      If you have made edits to a file you wish to throw away and want to reload to the version that's on disk,
	      you can choose the
	      <menuchoice><guimenu>File</guimenu><guimenuitem>Reload from Disk</guimenuitem></menuchoice> menuitem.  This is useful for experimenting
	      with a program and making temporary edits, to run a program, but that you do not intend to keep.
      </para>
    </sect1>

  </chapter>

  <!-- ============= Plotting ============================== -->
  <chapter id="genius-gel-plotting">
    <title>Построение графиков</title>

    <para>Построение графиков поддерживается только в версии с графическим интерфейсом для GNOME. Все варианты графиков, имеющиеся в графическом интерфейсе, доступны из окна <guilabel>Создать график</guilabel>. Чтобы открыть это окно, нажмите кнопку <guilabel>График</guilabel> на панели инструментов или выберите <guilabel>Нарисовать график</guilabel> из меню <guilabel>Калькулятор</guilabel>. Можно также использовать команды <link linkend="genius-gel-function-list-plotting">построения графиков</link> языка GEL. Смотрите <xref linkend="genius-gel"/>, чтобы узнать, как вводить выражения, которые понимает Genius.</para>

    <sect1 id="genius-line-plots">
      <title>Линейные графики</title>
      <para>
	To graph real valued functions of one variable open the <guilabel>Create Plot</guilabel>
	window.  You can also use the
        <link linkend="gel-function-LinePlot"><function>LinePlot</function></link> function
	on the command line (see its documentation).
      </para>
      <para>После нажатия кнопки <guilabel>График</guilabel> откроется окно с несколькими вкладками. Вам нужна вкладка <guilabel>Линейный график функции</guilabel>, внутри которой следует выбрать вкладку <guilabel>Функции / Выражения</guilabel>. Смотрите <xref linkend="lineplot-fig"/>.</para>

      <figure id="lineplot-fig"> 
        <title>Create Plot Window</title> 
        <screenshot> 
          <mediaobject> 
            <imageobject>
              <imagedata fileref="figures/line_plot.png" format="PNG" scalefit="1"/> 
            </imageobject>
            <textobject> 
              <phrase>Shows the line plotting window.</phrase> 
            </textobject> 
          </mediaobject> 
        </screenshot> 
      </figure>

      <para>
	Type expressions with <userinput>x</userinput> as
	the independent variable into the textboxes.  Alternatively you can give names of functions such as
	<userinput>cos</userinput> rather then having to type <userinput>cos(x)</userinput>.
	You can graph up to ten functions.  If you make a mistake and Genius cannot
	parse the input it will signify this with a warning icon on the right of the text
	input box where the error occurred, as well as giving you an error dialog.
	You can change the ranges of the dependent and independent variables in the bottom
	part of the dialog.
	The <varname>y</varname> (dependent) range can be set automatically by turning on the <guilabel>Fit dependent axis</guilabel>
	checkbox.
	The names of the variables can also be changed.
	Pressing the <guilabel>Plot</guilabel> button produces the graph shown in <xref linkend="lineplot2-fig"/>.
      </para>
      <para>
	      The variables can be renamed by clicking the <guilabel>Change variable names...</guilabel> button, which is useful if you wish to print or save the figure and don't want to use the standard
	      names.  Finally you can also avoid printing the legend and the axis labels completely,
	      which is also useful if printing or
	      saving, when the legend might simply be clutter.
      </para>

      <figure id="lineplot2-fig"> 
        <title>Plot Window</title> 
        <screenshot> 
          <mediaobject> 
            <imageobject>
              <imagedata fileref="figures/line_plot_graph.png" format="PNG" scalefit="1"/> 
            </imageobject>
            <textobject> 
              <phrase>The graph produced.</phrase> 
            </textobject> 
          </mediaobject> 
        </screenshot> 
      </figure>

      <para>
	From here you can print out the plot, create encapsulated postscript
	or a PNG version of the plot or change the zoom.  If the dependent axis was
	not set correctly you can have Genius fit it by finding out the extrema of
	the graphed functions.
      </para>

      <para>
	For plotting using the command line see the documentation of the
        <link linkend="gel-function-LinePlot"><function>LinePlot</function></link> function.
      </para>
    </sect1>

    <sect1 id="genius-parametric-plots">
      <title>Parametric Plots</title>
      <para>
	In the create plot window, you can also choose the <guilabel>Parametric</guilabel> notebook
        tab to create two dimensional parametric plots.  This way you can
	plot a single parametric function.  You can either specify the
	points as <varname>x</varname> and <varname>y</varname>, or giving a single complex number
	as a function of the variable <varname>t</varname>.
	The range of the variable <varname>t</varname> is given explicitly, and the function is sampled
	according to the given increment.
	The <varname>x</varname> and <varname>y</varname> range can be set
	automatically by turning on the <guilabel>Fit dependent axis</guilabel>
	checkbox, or it can be specified explicitly.
	See <xref linkend="paramplot-fig"/>.
      </para>

      <figure id="paramplot-fig"> 
        <title>Parametric Plot Tab</title> 
        <screenshot> 
          <mediaobject> 
            <imageobject>
              <imagedata fileref="figures/parametric.png" format="PNG" scalefit="1"/> 
            </imageobject>
            <textobject> 
              <phrase>Parametric plotting tab in the <guilabel>Create Plot</guilabel> window.</phrase> 
            </textobject> 
          </mediaobject> 
        </screenshot> 
      </figure>

      <para>
	An example of a parametric plot is given in
	<xref linkend="paramplot2-fig"/>.
	Similar operations can be
	done on such graphs as can be done on the other line plots.
	For plotting using the command line see the documentation of the
        <link linkend="gel-function-LinePlotParametric"><function>LinePlotParametric</function></link> or
        <link linkend="gel-function-LinePlotCParametric"><function>LinePlotCParametric</function></link> function.
      </para>

      <figure id="paramplot2-fig"> 
        <title>Parametric Plot</title> 
        <screenshot> 
          <mediaobject> 
            <imageobject>
              <imagedata fileref="figures/parametric_graph.png" format="PNG" scalefit="1"/> 
            </imageobject>
            <textobject> 
              <phrase>Parametric plot produced</phrase> 
            </textobject> 
          </mediaobject> 
        </screenshot> 
      </figure>

    </sect1>

    <sect1 id="genius-slopefield-plots">
      <title>Slopefield Plots</title>
      <para>
	In the create plot window, you can also choose the <guilabel>Slope field</guilabel> notebook
        tab to create a two dimensional slope field plot.
	Similar operations can be
	done on such graphs as can be done on the other line plots.
	For plotting using the command line see the documentation of the
        <link linkend="gel-function-SlopefieldPlot"><function>SlopefieldPlot</function></link> function.
      </para>

      <para>
	When a slope field is active, there is an extra <guilabel>Solver</guilabel> menu available,
	through which you can bring up the solver dialog.  Here you can have Genius plot specific
	solutions for the given initial conditions.  You can either specify initial conditions in the dialog,
	or you can click on the plot directly to specify the initial point.  While the solver dialog
	is active, the zooming by clicking and dragging does not work.  You have to close the dialog first
	if you want to zoom using the mouse.
      </para>

      <para>
	The solver uses the standard Runge-Kutta method.
	The plots will stay on the screen until cleared.  The solver will stop whenever it reaches the boundary
	of the plot window.  Zooming does not change the limits or parameters of the solutions,
	you will have to clear and redraw them with appropriate parameters.
	You can also use the
        <link linkend="gel-function-SlopefieldDrawSolution"><function>SlopefieldDrawSolution</function></link>
	function to draw solutions from the command line or programs.  
      </para>

    </sect1>

    <sect1 id="genius-vectorfield-plots">
      <title>Vectorfield Plots</title>
      <para>
	In the create plot window, you can also choose the <guilabel>Vector field</guilabel> notebook
        tab to create a two dimensional vector field plot.
	Similar operations can be
	done on such graphs as can be done on the other line plots.
	For plotting using the command line see the documentation of the
        <link linkend="gel-function-VectorfieldPlot"><function>VectorfieldPlot</function></link> function.
      </para>

      <para>
	By default the direction and magnitude of the vector field is shown.
	To only show direction and not the magnitude, check the appropriate
	checkbox to normalize the arrow lengths.
      </para>

      <para>
	When a vector field is active, there is an extra <guilabel>Solver</guilabel> menu available,
	through which you can bring up the solver dialog.  Here you can have Genius plot specific
	solutions for the given initial conditions.  You can either specify initial conditions in the dialog,
	or you can click on the plot directly to specify the initial point.  While the solver dialog
	is active, the zooming by clicking and dragging does not work.  You have to close the dialog first
	if you want to zoom using the mouse.
      </para>

      <para>
	The solver uses the standard Runge-Kutta method.
	The plots will stay on the screen until cleared.
	Zooming does not change the limits or parameters of the solutions,
	you will have to clear and redraw them with appropriate parameters.
	You can also use the
        <link linkend="gel-function-VectorfieldDrawSolution"><function>VectorfieldDrawSolution</function></link>
	function to draw solutions from the command line or programs.  
      </para>

    </sect1>

    <sect1 id="genius-surface-plots">
      <title>Графики поверхностей</title>
      <para>
	Genius can also plot surfaces.  Select the <guilabel>Surface plot</guilabel> tab in the
	main notebook of the <guilabel>Create Plot</guilabel> window.  Here you can specify a single
	expression that should use either <varname>x</varname> and <varname>y</varname> as real independent variables
	or <varname>z</varname> as a complex variable (where <varname>x</varname> is the real part of <varname>z</varname> and <varname>y</varname> is the
	imaginary part).  For example to plot the modulus of the cosine
	function for complex parameters,
	you could enter <userinput>|cos(z)|</userinput>.  This would be
	equivalent to <userinput>|cos(x+1i*y)|</userinput>.
	See <xref linkend="surfaceplot-fig"/>.
	For plotting using the command line see the documentation of the
        <link linkend="gel-function-SurfacePlot"><function>SurfacePlot</function></link> function.
      </para>
      <para>
	      The <varname>z</varname> range can be set automatically by turning on the <guilabel>Fit dependent axis</guilabel>
	      checkbox.  The variables can be renamed by clicking the <guilabel>Change variable names...</guilabel> button, which is useful if you wish to print or save the figure and don't want to use the standard
	      names.  Finally you can also avoid printing the legend, which is also useful if printing or
	      saving, when the legend might simply be clutter.
      </para>

      <figure id="surfaceplot-fig"> 
        <title>Surface Plot</title> 
        <screenshot> 
          <mediaobject> 
            <imageobject>
              <imagedata fileref="figures/surface_graph.png" format="PNG" scalefit="1"/> 
            </imageobject>
            <textobject> 
              <phrase>Modulus of the complex cosine function.</phrase> 
            </textobject> 
          </mediaobject> 
        </screenshot> 
      </figure>

      <para>
	      In surface mode, left and right arrow keys on your keyboard will rotate the
	      view along the z axis.  Alternatively you can rotate along any axis by
	      selecting <guilabel>Rotate axis...</guilabel> in the <guilabel>View</guilabel> 
	      menu.  The <guilabel>View</guilabel> menu also has a top view mode which rotates the
	      graph so that the z axis is facing straight out, that is, we view the graph from the top
	      and get essentially just the colors that define the values of the function getting a
	      temperature plot of the function.  Finally you should
	      try <guilabel>Start rotate animation</guilabel>, to start a continuous slow rotation.
	      This is especially good if using <application>Genius Mathematics Tool</application> to present to an audience.
      </para>

    </sect1>

  </chapter>

  <!-- ============= GEL ====================================== -->
  <chapter id="genius-gel"> 
    <title>Основы GEL</title> 

	<para>
	  GEL stands for Genius Extension Language.    It is the language you use
	  to write programs in Genius. A program in GEL is simply an
	  expression that evaluates to a number, a matrix, or another object
	  in GEL.
	  <application>Genius Mathematics Tool</application> can be used as a simple calculator, or as a
	  powerful theoretical research tool.  The syntax is meant to
	  have as shallow of a learning curve as possible, especially for use
	  as a calculator.
	</para>

    <sect1 id="genius-gel-values">
      <title>Значения</title>

      <para>
	      Values in GEL can be <link linkend="genius-gel-values-numbers">numbers</link>, <link linkend="genius-gel-values-booleans">Booleans</link>, or <link linkend="genius-gel-values-strings">strings</link>.   GEL also treats 
<link linkend="genius-gel-matrices">matrices</link> as values.
	      Values can be used in calculations, assigned to variables and returned from functions, among other uses.
      </para>

      <sect2 id="genius-gel-values-numbers">
        <title>Числа</title>
        <para>Целые числа — первый тип чисел в GEL. Целые числа записываются общепринятым способом. <programlisting>1234
</programlisting> Шестнадцатиричные и восьмиричные числа можно записать, используя нотацию языка C. Например: <programlisting>0x123ABC
01234
</programlisting> Можно также набрать числа в произвольной системе счисления, используя запись <literal>&lt;основание&gt;\&lt;число&gt;</literal>. Для цифр больше 10 используются буквы, как и в шестнадцатиричном счислении. Например, число по основанию 23 может быть записано в виде: <programlisting>23\1234ABCD
</programlisting></para>

        <para>Второй тип чисел в GEL — это рациональные числа. Они получаются делением двух целых чисел. Поэтому можно написать: <programlisting>3/4
</programlisting> чтобы обозначить три четвёртых. Рациональные числа также можно записывать в виде смешанных дробей. Чтобы указать одну целую три десятых, можно написать: <programlisting>1 3/10
</programlisting></para>

        <para>
The next type of number is floating point. These are entered in a similar fashion to C notation. You can use <literal>E</literal>, <literal>e</literal> or <literal>@</literal> as the exponent delimiter. Note that using the exponent delimiter gives a float even if there is no decimal point in the number. Examples:
<programlisting>1.315
7.887e77
7.887e-77
.3
0.3
77e5
</programlisting>
	When Genius prints a floating point number it will always append a
	<computeroutput>.0</computeroutput> even if the number is whole.  This is to indicate that
	floating point numbers are taken as imprecise quantities.  When a number is written in the
	scientific notation, it is always a floating point number and thus Genius does not
	print the <computeroutput>.0</computeroutput>.
        </para>

        <para>
The final type of number in GEL is the complex numbers. You can enter a complex number as a sum of real and imaginary parts. To add an imaginary part, append an <literal>i</literal>.  Here are examples of entering complex numbers:
<programlisting>1+2i
8.01i
77*e^(1.3i)
</programlisting>
        </para>

        <important>
          <para>При вводе мнимых чисел перед символом <literal>i</literal> должно стоять число. Если использовать символ <literal>i</literal> сам по себе, Genius интерпретирует его как ссылку на переменную <varname>i</varname>. Если нужно указать саму мнимую единицу <literal>i</literal>, используйте вместо неё <literal>1i</literal>.</para>

          <para>Чтобы использовать смешанные дроби в мнимых числах, нужно взять смешанную дробь в круглые скобки: (например, <userinput>(1 2/5)i</userinput>)</para>
        </important>

      </sect2>


      <sect2 id="genius-gel-values-booleans">
        <title>Логические значения</title>
        <para>Genius также поддерживает логические значения. Определены две логические константы: <constant>true</constant> и <constant>false</constant>; их можно использовать, как и любую переменную. В качестве псевдонимов к ним можно также использовать <constant>True</constant>, <constant>TRUE</constant>, <constant>False</constant> и <constant>FALSE</constant>.</para>
        <para>Там, где требуется логическое выражение, можно использовать логическое значение или любое выражение, дающее в результате число или логическое значение. Если Genius нужно использовать число как логическое значение, он будет интерпретировать 0 как <constant>false</constant> и любое другое число как <constant>true</constant>.</para>
        <para>Кроме того, с логическими значениями можно выполнять арифметические операции. Например: <programlisting>( (1 + true) - false ) * true
</programlisting> это то же самое, что и: <programlisting>( (true or true) or not false ) and true
</programlisting> Поддерживаются только сложение, вычитание и умножение. Если вы используете в выражении смесь чисел с логическими значениями, то числа преобразовываются в логические значения, как описано выше. То есть, результатом выражения: <programlisting>1 == true
</programlisting> всегда будет <constant>true</constant>, так как 1 преобразовывается в <constant>true</constant> перед сравнением с <constant>true</constant>.</para>
      </sect2>


      <sect2 id="genius-gel-values-strings">
        <title>Строки</title>
        <para>
Like numbers and Booleans, strings in GEL can be stored as values inside variables and passed to functions. You can also concatenate a string with another value using the plus operator. For example:
<programlisting>a=2+3;"Результат равен: "+a
</programlisting>
will create the string:
<programlisting>Результат равен: 5
</programlisting>
You can also use C-like escape sequences such as <literal>\n</literal>,<literal>\t</literal>,<literal>\b</literal>,<literal>\a</literal> and <literal>\r</literal>. To get a <literal>\</literal> or <literal>"</literal> into the string you can quote it with a <literal>\</literal>. For example:
<programlisting>"Косая черта: \\ Кавычки: \" Табуляция: \t1\t2\t3"
</programlisting>
will make a string:
<programlisting>Косая черта: \ Кавычки: " Табуляция: 	1	2	3
</programlisting>
Do note however that when a string is returned from a function, escapes are
quoted, so that the output can be used as input.  If you wish to print the
string as it is (without escapes), use the 
<link linkend="gel-function-print"><function>print</function></link>
or
<link linkend="gel-function-printn"><function>printn</function></link> functions.
        </para>
        <para>
		In addition, you can use the library function <link linkend="gel-function-string"><function>string</function></link> to convert anything to a string. For example:
<programlisting>string(22)
</programlisting>
will return
<programlisting>"22"
</programlisting>
Strings can also be compared with <literal>==</literal> (equal), <literal>!=</literal> (not equal) and <literal>&lt;=&gt;</literal> (comparison) operators
        </para>
      </sect2>


      <sect2 id="genius-gel-values-null">
        <title>Null</title>
        <para>
There is a special value called
<constant>null</constant>. No operations can be performed on
it, and nothing is printed when it is returned. Therefore,
<constant>null</constant> is useful when you do not want output from an
expression.  The value <constant>null</constant> can be obtained as an expression when you
type <literal>.</literal>, the constant <constant>null</constant> or nothing.
By nothing we mean that if you end an expression with
a separator <literal>;</literal>, it is equivalent to ending it with a
separator followed by a <constant>null</constant>.
        </para>
        <para>Пример: <programlisting>x=5;.
x=5;
</programlisting></para>
<para>Некоторые функции возвращают <constant>null</constant>, если невозможно вернуть значение или произошла ошибка. Также <constant>null</constant> используется как пустой вектор или матрица, или пустая ссылка.</para>
      </sect2>

    </sect1>

    <sect1 id="genius-gel-variables">
      <title>Использование переменных</title>

      <para>Синтаксис: <programlisting>ИмяПеременной
</programlisting> Пример: <screen><prompt>genius&gt; </prompt><userinput>e</userinput>
= 2.71828182846
</screen></para>

      <para>Чтобы вычислить значение переменной, просто введите имя переменной и программа вернёт её значение. Можно использовать переменную в любом месте, где обычно используется число или строка. Кроме того, переменные необходимы при определении функций, принимающих аргументы (см. <xref linkend="genius-gel-functions-defining"/>).</para>

      <tip>
        <title>Использование автозавершения по клавише Tab</title>
        <para>Вы можете использовать автозавершение по нажатию клавиши Tab, чтобы Genius автоматически подставлял полное имя переменной. Попробуйте набрать несколько первых букв имени и нажать <userinput>Tab</userinput>.</para>
      </tip>

      <important>
        <title>Имена переменных чувствительны к регистру</title>
        <para>Имена переменных чувствительны к регистру символов. Это означает, что переменные <varname>hello</varname>, <varname>HELLO</varname> и <varname>Hello</varname> — это разные переменные.</para>
      </important>


      <sect2 id="genius-gel-variables-setting">
        <title>Присваивание значения переменным</title>
        <para>Синтаксис: <programlisting><![CDATA[<identifier> = <value>
<identifier> := <value>]]>
</programlisting> Пример: <programlisting>x = 3
x := 3
</programlisting></para>

        <para>
To assign a value to a variable, use the <literal>=</literal> or <literal>:=</literal> operators. These operators set the value of the variable and return the value you set, so you can do things like
<programlisting>a = b = 5
</programlisting>
This will set <varname>b</varname> to 5 and then also set <varname>a</varname> to 5.
        </para>

        <para>Для присваивания значения переменным можно использовать любой из операторов <literal>=</literal> и <literal>:=</literal>. Различие между ними в том, что оператор <literal>:=</literal> всегда действует как оператор присваивания, а оператор <literal>=</literal> может интерпретироваться как проверка на равенство там, где ожидается логическое выражение.</para>

	<para>
	  For more information about the scope of variables, that is when are what variables visible, see <xref linkend="genius-gel-variables-global"/>.
	</para>
      </sect2>

      <sect2 id="genius-gel-variables-built-in">
        <title>Встроенные переменные</title>
        <para>
GEL has a number of built-in ‘variables’, such as
<varname>e</varname>, <varname>pi</varname> or <varname>GoldenRatio</varname>.  These are widely used constants with a preset value, and
they cannot be assigned new values.
There are a number of other built-in variables.
See <xref linkend="genius-gel-function-list-constants"/> for a full list.  Note that <varname>i</varname> is not by default
the square root of negative one (the imaginary number), and is undefined to allow its use as a counter.  If you wish to write the imaginary number you need to
use <userinput>1i</userinput>.
        </para>
      </sect2>


      <sect2 id="genius-gel-previous-result">
        <title>Переменные с результатом предыдущего вычисления</title>
        <para>Переменные <varname>Ans</varname> и <varname>ans</varname> могут использоваться для получения результата последнего вычисления. Например, чтобы добавить 389 к результату предыдущего вычисления, можно набрать: <programlisting>Ans+389
</programlisting></para>
      </sect2>
    </sect1>

    <sect1 id="genius-gel-functions">
      <title>Использование функций</title>

      <para>Синтаксис: <programlisting>ИмяФункции(аргумент1, аргумент2, ...)
</programlisting> Пример: <programlisting>Factorial(5)
cos(2*pi)
gcd(921,317)
</programlisting> Чтобы вычислить значение функции, введите имя функции, за которым следуют аргументы функции (если они имеются) в круглых скобках. Программа вернёт результат применения функции к её аргументам. Разумеется, число аргументов  может быть разным для разных функций.</para>

      <para>
	      There are many built-in functions, such as <link linkend="gel-function-sin"><function>sin</function></link>, <link linkend="gel-function-cos"><function>cos</function></link> and <link linkend="gel-function-tan"><function>tan</function></link>. You can use the <link linkend="gel-command-help"><function>help</function></link> built-in command to get a list of available functions, or see <xref linkend="genius-gel-function-list"/> for a full listing.
      </para>

      <tip>
        <title>Использование автозавершения по клавише Tab</title>
        <para>Можно использовать автозавершение по клавише Tab, чтобы Genius автоматически подставлял имена функций. Попробуйте набрать первые несколько букв имени и нажать <userinput>Tab</userinput>.</para>
      </tip>

      <important>
        <title>Имена функций чувствительны к регистру</title>
        <para>Имена функций чувствительны к регистру символов. Это означает, что функции <function>dosomething</function>, <function>DOSOMETHING</function> и <function>DoSomething</function> — это разные функции.</para>
      </important>


      <sect2 id="genius-gel-functions-defining">
        <title>Определение функций</title>
        <para>
Syntax:
<programlisting><![CDATA[function <identifier>(<comma separated arguments>) = <function body>
<identifier> = (`() = <function body>)
]]></programlisting>
The <literal>`</literal> is the backquote character, and signifies an anonymous function. By setting it to a variable name you effectively define a function.
        </para>

        <para>
A function takes zero or more comma separated arguments, and returns the result of the function body. Defining your own functions is primarily a matter of convenience; one possible use is to have sets of functions defined in GEL files that Genius can load in order to make them available.
Example:
<programlisting>function addup(a,b,c) = a+b+c
</programlisting>
then <userinput>addup(1,4,9)</userinput> yields 14
        </para>
      </sect2>

      <sect2 id="genius-gel-functions-variable-argument-lists">
        <title>Variable Argument Lists</title>
        <para>
If you include <literal>...</literal> after the last argument name in the function declaration, then Genius will allow any number of arguments to be passed in place of that argument. If no arguments were passed then that argument will be set to <constant>null</constant>. Otherwise, it will be a horizontal vector containing all the arguments. For example:
<programlisting>function f(a,b...) = b
</programlisting>
Then <userinput>f(1,2,3)</userinput> yields <computeroutput>[2,3]</computeroutput>, while <userinput>f(1)</userinput> yields a <constant>null</constant>.
        </para>
      </sect2>


      <sect2 id="genius-gel-functions-passing-functions">
        <title>Passing Functions to Functions</title>

        <para>
In Genius, it is possible to pass a function as an argument to another function. This can be done using either ‘function nodes’ or anonymous functions.
        </para>

        <para>
If you do not enter the parentheses after a function name, instead of being evaluated, the function will instead be returned as a ‘function node’. The function node can then be passed to another function.
Example:
<programlisting>function f(a,b) = a(b)+1;
function b(x) = x*x;
f(b,2)
</programlisting>
        </para>
        <para>
To pass functions that are not defined,
you can use an anonymous function (see <xref linkend="genius-gel-functions-defining"/>).  That is, you want to pass a function without giving it a name.
Syntax:
<programlisting><![CDATA[function(<comma separated arguments>) = <function body>
`(<comma separated arguments>) = <function body>
]]></programlisting>
Example:
<programlisting>function f(a,b) = a(b)+1;
f(`(x) = x*x,2)
</programlisting>
This will return 5.
        </para>
      </sect2>


    <sect2 id="genius-gel-functions-operations">
      <title>Операции с функциями</title>
      <para>
	      Some functions allow arithmetic operations, and some single argument functions such as <link linkend="gel-function-exp"><function>exp</function></link> or <link linkend="gel-function-ln"><function>ln</function></link>, to operate on the function. For example,
<programlisting>exp(sin*cos+4)
</programlisting>
will return a function that takes <varname>x</varname> and returns <userinput>exp(sin(x)*cos(x)+4)</userinput>.  It is functionally equivalent
to typing
<programlisting>`(x) = exp(sin(x)*cos(x)+4)
</programlisting>

This operation can be useful when quickly defining functions. For example to create a function called <varname>f</varname>
to perform the above operation, you can just type:
<programlisting>f = exp(sin*cos+4)
</programlisting>
It can also be used in plotting. For example, to plot sin squared you can enter:
<programlisting>LinePlot(sin^2)
</programlisting>
      </para>

      <warning>
        <para>
Not all functions can be used in this way.  For example, when you use a binary operation the functions must take the same number of arguments. 
        </para>
      </warning>
    </sect2>


    </sect1>

    <sect1 id="genius-gel-separator">
      <title>Разделитель</title>
      <para>
	      GEL is somewhat different from other languages in how it deals with multiple commands and functions.
	      In GEL you must chain commands together with a separator operator.
That is, if you want to type more than one expression you have to use
the <literal>;</literal> operator in between the expressions.   This is
a way in which both expressions are evaluated and the result of the second one (or the last one
if there is more than two expressions) is returned.
Suppose you type the following:
<programlisting>3 ; 5
</programlisting>
This expression will yield 5.
      </para>
      <para>
This will require some parenthesizing to make it unambiguous sometimes,
especially if the <literal>;</literal> is not the top most primitive. This slightly differs from
other programming languages where the <literal>;</literal> is a terminator of statements, whereas
in GEL it’s actually a binary operator. If you are familiar with pascal
this should be second nature. However genius can let you pretend it is a
terminator to some degree.  If a <literal>;</literal> is found at the end of a parenthesis or a block,
genius will append a null to it as if you would have written
<userinput>;null</userinput>.
This is useful in case you do not want to return a value from say a loop,
or if you handle the return differently. Note that it will slightly slow down
the code if it is executed too often as there is one more operator involved.
      </para>
      <para>
	      If you are typing expressions in a program you do not have to add a semicolon.  In this case
	      genius will simply print the return value whenever it executes the expression.  However, do note that if you are defining a
	      function, the body of the function is a single expression.
      </para>
    </sect1>

    <sect1 id="genius-gel-comments">
      <title>Comments</title>
      <para>
	      GEL is similar to other scripting languages in that <literal>#</literal> denotes
	      a comment, that is text that is not meant to be evaluated.  Everything beyond the
	      pound sign till the end of line will just be ignored.  For example,
<programlisting># This is just a comment
# every line in a comment must have its own pound sign
# in the next line we set x to the value 123
x=123;
</programlisting>
      </para>
    </sect1>

    <sect1 id="genius-gel-modular-evaluation">
      <title>Modular Evaluation</title>
      <para>
	      Genius implements modular arithmetic.
To use it you just add "mod &lt;integer&gt;" after
the expression.  Example:
<userinput>2^(5!) * 3^(6!) mod 5</userinput>
It could be possible to do modular arithmetic by computing with integers and then modding in the end with
the <literal>%</literal> operator, which simply gives the remainder, but
that may be time consuming if not impossible when working with larger numbers.
For example, <userinput>10^(10^10) % 6</userinput> will simply not work (the exponent
will be too large), while
<userinput>10^(10^10) mod 6</userinput> is instantaneous.  The first expression first tries to compute the integer
<userinput>10^(10^10)</userinput> and then find remainder after division by 6, while the second expression evaluates
everything modulo 6 to begin with.
      </para>
      <para>
You can calculate the inverses of numbers mod some integer by just using
rational numbers (of course the inverse has to exist).
Examples:
<programlisting>10^-1 mod 101
1/10 mod 101</programlisting>
You can also do modular evaluation with matrices including taking inverses,
powers and dividing.
Example:
<programlisting>A = [1,2;3,4]
B = A^-1 mod 5
A*B mod 5</programlisting>
This should yield the identity matrix as B will be the inverse of A mod 5.
      </para>
      <para>
Some functions such as
<link linkend="gel-function-sqrt"><function>sqrt</function></link> or
<link linkend="gel-function-log"><function>log</function></link>
work in a different way when in modulo mode.  These will then work like their
discrete versions working within the ring of integers you selected.  For
example:
<programlisting>genius&gt; sqrt(4) mod 7
=
[2, 5]
genius&gt; 2*2 mod 7
= 4</programlisting>
	<function>sqrt</function> will actually return all the possible square
	roots.
      </para>
      <para>
	      Do not chain mod operators, simply place it at the end of the computation, all computations in the expression on the left
	      will be carried out in mod arithmetic.  If you place a mod inside
	      a mod, you will get unexpected results.  If you simply want to
	      mod a single number and control exactly when remainders are
	      taken, best to use the <literal>%</literal> operator.  When you
	      need to chain several expressions in modular arithmetic with
	      different divisors, it may be best to just split up the expression into several and use
	      temporary variables to avoid a mod inside a mod.
      </para>
    </sect1>

    <sect1 id="genius-gel-operator-list">
      <title>Список операторов GEL</title>

      <para>
	      Everything in GEL is really just an expression.  Expressions are stringed together with
	      different operators.  As we have seen, even the separator is simply a binary operator
	      in GEL.  Here is a list of the operators in GEL. 
      </para>

      <variablelist>
        <varlistentry>
         <term><userinput>a;b</userinput></term>
         <listitem>
           <para>Разделитель, просто вычисляющий как <varname>a</varname>, так и <varname>b</varname>, но возвращающий только результат <varname>b</varname>.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a=b</userinput></term>
         <listitem>
           <para>
	     The assignment operator.  This assigns <varname>b</varname> to
<varname>a</varname> (<varname>a</varname> must be a valid <link linkend="genius-gel-lvalues">lvalue</link>) (note however that this operator
may be translated to <literal>==</literal> if used in a place where boolean
expression is expected)
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a:=b</userinput></term>
         <listitem>
           <para>
	     The assignment operator.  Assigns <varname>b</varname> to
<varname>a</varname> (<varname>a</varname> must be a valid <link linkend="genius-gel-lvalues">lvalue</link>).  This is
different from <literal>=</literal> because it never gets translated to a
<literal>==</literal>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>|a|</userinput></term>
         <listitem>
           <para>
		   Absolute value.
		   In case the expression is a complex number the result will be the modulus
(distance from the origin).  For example:
<userinput>|3 * e^(1i*pi)|</userinput>
returns 3.
	  </para>
          <para>Смотрите <ulink url="http://mathworld.wolfram.com/AbsoluteValue.html">Mathworld</ulink> для дополнительной информации.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a^b</userinput></term>
         <listitem>
           <para>Возводит переменную <varname>a</varname> в степень <varname>b</varname>.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a.^b</userinput></term>
         <listitem>
           <para>Поэлементное возведение в степень. Возводит каждый элемент матрицы <varname>a</varname> в степень <varname>b</varname>. Или, если <varname>b</varname> — матрица той же размерности, что и <varname>a</varname>, выполняет операцию поэлементно. Если <varname>a</varname> — число, а <varname>b</varname> — матрица, то создаёт матрицу той же размерности, что и <varname>b</varname> со значением <varname>a</varname>, возведённым во все степени, содержащиеся в <varname>b</varname>.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a+b</userinput></term>
         <listitem>
           <para>
             Addition.  Adds two numbers, matrices, functions or strings.  If
	     you add a string to anything the result will just be a string.  If one is
	     a square matrix and the other a number, then the number is multiplied by
	     the identity matrix.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a-b</userinput></term>
         <listitem>
           <para>Вычитание. Вычитает два числа, матрицы или функции.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a*b</userinput></term>
         <listitem>
           <para>Умножение. Это обычное умножение матриц.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a.*b</userinput></term>
         <listitem>
           <para>Поэлементное умножение, если <varname>a</varname> и <varname>b</varname> являются матрицами.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a/b</userinput></term>
         <listitem>
           <para>
		   Division.  When <varname>a</varname> and <varname>b</varname> are just numbers
		   this is the normal division.  When they are matrices, then this is
		   equivalent to <userinput>a*b^-1</userinput>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a./b</userinput></term>
         <listitem>
           <para>
		   Element by element division.  Same as <userinput>a/b</userinput> for
		   numbers, but operates element by element on matrices.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a\b</userinput></term>
         <listitem>
           <para>Обратное деление. Это то же самое, что <userinput>b/a</userinput>.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a.\b</userinput></term>
         <listitem>
           <para>Поэлементное обратное деление.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a%b</userinput></term>
         <listitem>
           <para>
	     The mod operator.  This does not turn on the <link linkend="genius-gel-modular-evaluation">modular mode</link>, but
             just returns the remainder of integer division
             <userinput>a/b</userinput>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a.%b</userinput></term>
         <listitem>
           <para>
             Element by element mod operator.  Returns the remainder
	     after element by element integer division
	     <userinput>a./b</userinput>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a mod b</userinput></term>
         <listitem>
           <para>
             Modular evaluation operator.  The expression <varname>a</varname>
	     is evaluated modulo <varname>b</varname>.  See <xref linkend="genius-gel-modular-evaluation"/>.
	     Some functions and operators behave differently modulo an integer.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a!</userinput></term>
         <listitem>
           <para>Факториал: <userinput>1*...*(n-2)*(n-1)*n</userinput>.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a!!</userinput></term>
         <listitem>
           <para>Двойной факториал: <userinput>1*...*(n-4)*(n-2)*n</userinput>.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a==b</userinput></term>
         <listitem>
           <para>
	     Equality operator.
	     Returns <constant>true</constant> or <constant>false</constant>
	     depending on <varname>a</varname> and <varname>b</varname> being equal or not.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a!=b</userinput></term>
         <listitem>
           <para>Оператор неравенства, возвращает <constant>true</constant>, если <varname>a</varname> не равно <varname>b</varname>, в противном случае возвращает <constant>false</constant>.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a&lt;&gt;b</userinput></term>
         <listitem>
           <para>Альтернативный оператор неравенства, возвращает <constant>true</constant>, если <varname>a</varname> не равно <varname>b</varname>, иначе возвращает <constant>false</constant>.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a&lt;=b</userinput></term>
         <listitem>
           <para>
             Less than or equal operator,
	     returns <constant>true</constant> if <varname>a</varname> is
	     less than or equal to 
	     <varname>b</varname> else returns <constant>false</constant>.
	     These can be chained as in <userinput>a &lt;= b &lt;= c</userinput> (can
	     also be combined with the less than operator).
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a&gt;=b</userinput></term>
         <listitem>
           <para>
             Greater than or equal operator,
	     returns <constant>true</constant> if <varname>a</varname> is
	     greater than or equal to 
	     <varname>b</varname> else returns <constant>false</constant>.
	     These can be chained as in <userinput>a &gt;= b &gt;= c</userinput>
	     (and they can also be combined with the greater than operator).
           </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><userinput>a&lt;b</userinput></term>
         <listitem>
           <para>
             Less than operator,
	     returns <constant>true</constant> if <varname>a</varname> is
	     less than 
	     <varname>b</varname> else returns <constant>false</constant>.
	     These can be chained as in <userinput>a &lt; b &lt; c</userinput>
	     (they can also be combined with the less than or equal to operator).
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a&gt;b</userinput></term>
         <listitem>
           <para>
             Greater than operator,
	     returns <constant>true</constant> if <varname>a</varname> is
	     greater than 
	     <varname>b</varname> else returns <constant>false</constant>.
	     These can be chained as in <userinput>a &gt; b &gt; c</userinput>
	     (they can also be combined with the greater than or equal to operator).
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a&lt;=&gt;b</userinput></term>
         <listitem>
           <para>Оператор сравнения. Если <varname>a</varname> равно <varname>b</varname>, возвращает 0; если <varname>a</varname> меньше <varname>b</varname>, возвращает -1; если <varname>a</varname> больше <varname>b</varname>, возвращает 1.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a and b</userinput></term>
         <listitem>
           <para>
		   Logical and.  Returns true if both
		   <varname>a</varname> and <varname>b</varname> are true,
		   else returns false.  If given numbers, nonzero numbers
		   are treated as true.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a or b</userinput></term>
         <listitem>
           <para>
             Logical or.
	     Returns true if either
	     <varname>a</varname> or <varname>b</varname> is true,
	     else returns false.  If given numbers, nonzero numbers
	     are treated as true.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a xor b</userinput></term>
         <listitem>
           <para>
             Logical xor.
	     Returns true if exactly one of
	     <varname>a</varname> or <varname>b</varname> is true,
	     else returns false.  If given numbers, nonzero numbers
	     are treated as true.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>not a</userinput></term>
         <listitem>
           <para>
		   Logical not.  Returns the logical negation of <varname>a</varname>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>-a</userinput></term>
         <listitem>
           <para>
             Negation operator.  Returns the negative of a number or a matrix (works element-wise on a matrix).
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>&amp;a</userinput></term>
         <listitem>
           <para>
             Variable referencing (to pass a reference to a variable).
	     See <xref linkend="genius-gel-references"/>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>*a</userinput></term>
         <listitem>
           <para>
             Variable dereferencing (to access a referenced variable).
	     See <xref linkend="genius-gel-references"/>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a'</userinput></term>
         <listitem>
           <para>
		   Matrix conjugate transpose.  That is, rows and columns get swapped and we take complex conjugate of all entries.  That is
		   if the i,j element of <varname>a</varname> is x+iy, then the j,i element of <userinput>a'</userinput> is x-iy.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a.'</userinput></term>
         <listitem>
           <para>
             Matrix transpose, does not conjugate the entries.  That is, 
	     the i,j element of <varname>a</varname>  becomes the j,i element of <userinput>a.'</userinput>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a@(b,c)</userinput></term>
         <listitem>
           <para>
	     Get element of a matrix in row <varname>b</varname> and column
	     <varname>c</varname>.   If <varname>b</varname>,
	     <varname>c</varname> are vectors, then this gets the corresponding
	     rows, columns or submatrices.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a@(b,)</userinput></term>
         <listitem>
           <para>
             Get row of a matrix (or multiple rows if <varname>b</varname> is a vector).
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a@(b,:)</userinput></term>
         <listitem>
           <para>То же, что и выше.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a@(,c)</userinput></term>
         <listitem>
           <para>Возвращает столбец матрицы (или столбцы, если <varname>c</varname> является вектором).</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a@(:,c)</userinput></term>
         <listitem>
           <para>То же, что и выше.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a@(b)</userinput></term>
         <listitem>
           <para>
             Get an element from a matrix treating it as a vector.  This will
	     traverse the matrix row-wise.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a:b</userinput></term>
         <listitem>
           <para>
             Build a vector from <varname>a</varname> to <varname>b</varname> (or specify a row, column region for the <literal>@</literal> operator).  For example to get rows 2 to 4 of matrix <varname>A</varname> we could do
	     <programlisting>A@(2:4,)
	     </programlisting>
	     as <userinput>2:4</userinput> will return a vector
	     <userinput>[2,3,4]</userinput>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>a:b:c</userinput></term>
         <listitem>
           <para>
	     Build a vector from <varname>a</varname> to <varname>c</varname>
	     with <varname>b</varname> as a step.  That is for example
	     <programlisting>genius&gt; 1:2:9
=
`[1, 3, 5, 7, 9]
</programlisting>
           </para>
	   <para>
	     When the numbers involved are floating point numbers, for example
	     <userinput>1.0:0.4:3.0</userinput>, the output is what is expected
	     even though adding 0.4 to 1.0 five times is actually just slightly
	     more than 3.0 due to the way that floating point numbers are
	     stored in base 2 (there is no 0.4, the actual number stored is
	     just ever so slightly bigger).  The way this is handled is the
	     same as in the for, sum, and prod loops.  If the end is within
	     <userinput>2^-20</userinput> times the step size of the endpoint,
	     the endpoint is used and we assume there were roundoff errors.
	     This is not perfect, but it handles the majority of the cases.
	     This check is done only from version 1.0.18 onwards, so execution
	     of your code may differ on older versions.  If you want to avoid
	     dealing with this issue, use actual rational numbers, possibly
	     using the <function>float</function> if you wish to get floating
	     point numbers in the end.  For example
	     <userinput>1:2/5:3</userinput> does the right thing and
	     <userinput>float(1:2/5:3)</userinput> even gives you floating
	     point numbers and is ever so slightly more precise than
	     <userinput>1.0:0.4:3.0</userinput>.
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>(a)i</userinput></term>
         <listitem>
           <para>
	     Make <varname>a</varname> into an imaginary number (multiply <varname>a</varname> by the
	     imaginary).  Normally the imaginary number <varname>i</varname> is
	     written as <userinput>1i</userinput>.  So the above is equal to
	     <programlisting>(a)*1i
	     </programlisting>
           </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><userinput>`a</userinput></term>
         <listitem>
           <para>
             Quote an identifier so that it doesn't get evaluated.  Or
	     quote a matrix so that it doesn't get expanded.
           </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><userinput>a swapwith b</userinput></term>
         <listitem>
           <para>Меняет местами значение <varname>a</varname> со значением <varname>b</varname>. В настоящее время не работает с диапазонами элементов матрицы. Возвращает <constant>null</constant>. Доступен, начиная с версии 1.0.13.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><userinput>increment a</userinput></term>
         <listitem>
           <para>Инкремент переменной <varname>a</varname> на 1. Если <varname>a</varname> — матрица, то инкрементирует каждый элемент. Это эквивалентно   <userinput>a=a+1</userinput>, но немного быстрее. Возвращает <constant>null</constant>. Доступен с версии 1.0.13.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><userinput>increment a by b</userinput></term>
         <listitem>
           <para>Инкремент переменной <varname>a</varname> на величину <varname>b</varname>. Если <varname>a</varname> — матрица, то инкрементирует каждый элемент. Это эквивалентно <userinput>a=a+b</userinput>, но немного быстрее. Возвращает <constant>null</constant>. Доступен с версии 1.0.13.</para>
         </listitem>
        </varlistentry>


      </variablelist>

<note>
<para>Оператор @() делает использование оператора : наиболее полезным. С его помощью можно указывать области матрицы. Таким образом, a@(2:4,6) — это строки 2,3,4 столбца 6. Или a@(,1:2) возвращает два первых столбца матрицы. Можно также присваивать значения оператору @(), если правое значение — это матрица, совпадающая по размеру с данной областью, или если это любой другой тип значений.</para>
</note>

<note>
<para>
The comparison operators (except for the &lt;=&gt; operator, which behaves normally), are not strictly binary operators, they can in fact be grouped in the normal mathematical way, e.g.: (1&lt;x&lt;=y&lt;5) is a legal boolean expression and means just what it should, that is (1&lt;x and x≤y and y&lt;5)
</para>
</note>

<note>
<para>
The unitary minus operates in a different fashion depending on where it
appears.  If it appears before a number it binds very closely, if it appears in
front of an expression it binds less than the power and factorial operators.
So for example <userinput>-1^k</userinput> is really <userinput>(-1)^k</userinput>,
but <userinput>-foo(1)^k</userinput> is really <userinput>-(foo(1)^k)</userinput>.  So
be careful how you use it and if in doubt, add parentheses.
</para>
</note>
    </sect1>

  </chapter>

  <!-- ============= GEL Programming ========================== -->
  <chapter id="genius-gel-programming">
    <title>Программирование в GEL</title>

    <sect1 id="genius-gel-conditionals">
      <title>Условные операторы</title>
      <para>
Syntax:
<programlisting><![CDATA[if <expression1> then <expression2> [else <expression3>]
]]></programlisting>
If <literal>else</literal> is omitted, then if the <literal>expression1</literal> yields <constant>false</constant> or 0, <literal>NULL</literal> is returned.
      </para>
      <para>
Examples:
<programlisting><![CDATA[if(a==5)then(a=a-1)
if b<a then b=a
if c>0 then c=c-1 else c=0
a = ( if b>0 then b else 1 )
]]></programlisting>
Note that <literal>=</literal> will be translated to <literal>==</literal> if used inside the expression for <literal>if</literal>, so
<programlisting>if a=5 then a=a-1
</programlisting>
will be interpreted as:
<programlisting>if a==5 then a:=a-1
</programlisting>
      </para>
    </sect1>

    <sect1 id="genius-gel-loops">
      <title>Циклы</title>

      <sect2 id="genius-gel-loops-while">
        <title>Циклы While</title>
        <para>
Syntax:
<programlisting><![CDATA[while <expression1> do <expression2>
until <expression1> do <expression2>
do <expression2> while <expression1>
do <expression2> until <expression1>]]></programlisting>

	These are similar to other languages.  However, as in GEL it is simply an expression that must have some return value, these
	constructs will simply return the result of the last iteration or <literal>NULL</literal> if no iteration was done.  In the boolean expression, <literal>=</literal> is translated into <literal>==</literal> just as for the <literal>if</literal> statement.
        </para>
      </sect2>

      <sect2 id="genius-gel-loops-for">
        <title>Циклы For</title>
        <para>
Syntax:
<programlisting><![CDATA[for <identifier> = <from> to <to> do <body>
for <identifier> = <from> to <to> by <increment> do <body>]]></programlisting>

Loop with identifier being set to all values from <literal>&lt;from&gt;</literal> to <literal>&lt;to&gt;</literal>, optionally using an increment other than 1. These are faster, nicer and more compact than the normal loops such as above, but less flexible. The identifier must be an identifier and can't be a dereference. The value of identifier is the last value of identifier, or <literal>&lt;from&gt;</literal> if body was never evaluated. The variable is guaranteed to be initialized after a loop, so you can safely use it.  Also the <literal>&lt;from&gt;</literal>, <literal>&lt;to&gt;</literal> and <literal>&lt;increment&gt;</literal> must be non complex values. The <literal>&lt;to&gt;</literal> is not guaranteed to be hit, but will never be overshot, for example the following prints out odd numbers from 1 to 19:
<programlisting>for i = 1 to 20 by 2 do print(i)
</programlisting>
        </para>
        <para>
		When one of the values is a floating point number, then the
		final check is done to within 2^-20 of the step size.  That is,
		even if we overshoot by 2^-20 times the "by" above, we still execute the last
		iteration.  This way 
<programlisting>for x = 0 to 1 by 0.1 do print(x)
</programlisting>
does the expected even though adding 0.1 ten times becomes just slightly more than 1.0 due to the way that floating point numbers
are stored in base 2 (there is no 0.1, the actual number stored is just ever so slightly bigger).  This is not perfect but it handles
the majority of the cases.  If you want to avoid dealing with this issue, use actual rational numbers for example:
<programlisting>for x = 0 to 1 by 1/10 do print(x)
</programlisting>
		This check is done only from version 1.0.16 onwards, so execution of your code may differ on older versions.
	</para>
      </sect2>

      <sect2 id="genius-gel-loops-foreach">
        <title>Циклы Foreach</title>
        <para>
Syntax:
<programlisting><![CDATA[for <identifier> in <matrix> do <body>]]></programlisting>

			For each element in the matrix, going row by row from left to right we execute the body
		       with the identifier set to the current element. To
print numbers 1,2,3 and 4 in this order you could do:
<programlisting>for n in [1,2:3,4] do print(n)
</programlisting>
If you wish to run through the rows and columns of a matrix, you can use
the RowsOf and ColumnsOf functions, which return a vector of the rows or
columns of the matrix.  So,
<programlisting>for n in RowsOf ([1,2:3,4]) do print(n)
</programlisting>
will print out [1,2] and then [3,4].
        </para>
      </sect2>

      <sect2 id="genius-gel-loops-break-continue">
        <title>Break и Continue</title>
        <para>В циклах также можно использовать команды <literal>break</literal> и <literal>continue</literal>. Команда <literal>continue</literal> перезапускает текущий цикл с его следующей итерации, а команда <literal>break</literal> позволяет выйти из текущего цикла. <programlisting><![CDATA[while(<expression1>) do (
  if(<expression2>) break
  else if(<expression3>) continue;
  <expression4>
)
]]></programlisting></para>
      </sect2>
    </sect1>

    <sect1 id="genius-gel-sums-products">
      <title>Суммы и произведения</title>
      <para>Синтаксис: <programlisting><![CDATA[sum <identifier> = <from> to <to> do <body>
sum <identifier> = <from> to <to> by <increment> do <body>
sum <identifier> in <matrix> do <body>
prod <identifier> = <from> to <to> do <body>
prod <identifier> = <from> to <to> by <increment> do <body>
prod <identifier> in <matrix> do <body>]]></programlisting> Если заменить <literal>for</literal> на <literal>sum</literal> или <literal>prod</literal>, то вместо цикла <literal>for</literal> получатся циклы вычисления суммы или произведения. Вместо того, чтобы возвращать последнее значение, эти команды возвращают сумму или произведение значений, соответственно.</para>
      <para>Если тело цикла не вычислялось (например, <userinput>sum i=1 to 0 do ...</userinput>), то <literal>sum</literal> возвращает 0, а <literal>prod</literal> возвращает 1.</para>
      <para>
	      For floating point numbers the same roundoff error protection is done as in the for loop.
	     See <xref linkend="genius-gel-loops-for"/>.
      </para>
    </sect1>

    <sect1 id="genius-gel-comparison-operators">
      <title>Операторы сравнения</title>
      <para>В GEL поддерживаются следующие стандартные операторы сравнения, имеющие очевидное значение: <literal>==</literal>, <literal>&gt;=</literal>, <literal>&lt;=</literal>, <literal>!=</literal>, <literal>&lt;&gt;</literal>, <literal>&lt;</literal>, <literal>&gt;</literal>. Они возвращают <constant>true</constant> или <constant>false</constant>. Операторы <literal>!=</literal> и <literal>&lt;&gt;</literal> эквивалентны и означают «не равно». GEL также поддерживает оператор <literal>&lt;=&gt;</literal>, который возвращает -1, если левая сторона меньше, 0 при равенстве обеих сторон и 1, если левая сторона больше.</para>

      <para>
	Normally <literal>=</literal> is translated to <literal>==</literal> if
	it happens to be somewhere where GEL is expecting a condition such as
	in the if condition.  For example
	<programlisting>if a=b then c
if a==b then c
</programlisting>
	are the same thing in GEL.  However you should really use
	<literal>==</literal> or <literal>:=</literal> when you want to compare
	or assign respectively if you want your code to be easy to read and
	to avoid mistakes.
      </para>

      <para>
	All the comparison operators (except for the
	<literal>&lt;=&gt;</literal> operator, which
	behaves normally), are not strictly binary operators, they can in fact
	be grouped in the normal mathematical way, e.g.:
	(<literal>1&lt;x&lt;=y&lt;5</literal>) is
	a legal boolean expression and means just what it should, that is
	(1&lt;x and x≤y and y&lt;5)
      </para>
      <para>
	To build up logical expressions use the words <literal>not</literal>,
	<literal>and</literal>, <literal>or</literal>, <literal>xor</literal>.
	The operators <literal>or</literal> and <literal>and</literal> are
special beasts as they evaluate their arguments one by one, so the usual trick
for conditional evaluation works here as well. For example, <literal>1 or a=1</literal> will not set
<literal>a=1</literal> since the first argument was true.
      </para>
    </sect1>

      <sect1 id="genius-gel-variables-global">
        <title>Глобальные переменные и область видимости переменных</title>
	<para>
	  GEL is a
	  <ulink url="https://en.wikipedia.org/wiki/Scope_%28programming%29">
	  dynamically scoped language</ulink>.  We will explain what this
	  means below.  That is, normal variables and functions are dynamically
	  scoped.  The exception are 
	  <link linkend="genius-gel-parameters">parameter variables</link>,
	  which are always global.
	</para>
	<para>
	  Like most programming languages, GEL has different types
	  of variables.  Normally when a variable is defined in a function,
	  it is visible from that function and from all functions that are
	  called (all higher contexts).  For example, suppose a function
	  <function>f</function> defines a variable <varname>a</varname>
	  and then calls function <function>g</function>.  Then
	  function <function>g</function> can reference
	  <varname>a</varname>.  But once <function>f</function> returns,
	  the variable <varname>a</varname> goes out of scope.
	  For example, the following code will print out 5.
	  The function <function>g</function> cannot be called on the
	  top level (outside <function>f</function> as <varname>a</varname>
	  will not be defined).
<programlisting>function f() = (a:=5; g());
function g() = print(a);
f();
</programlisting>
        </para>
        <para>
	  If you define a variable inside a function it will override
	  any variables defined in calling functions.  For example,
	  we modify the above code and write:
<programlisting>function f() = (a:=5; g());
function g() = print(a);
a:=10;
f();
</programlisting>
	  This code will still print out 5.  But if you call
	  <function>g</function> outside of <function>f</function> then
	  you will get a printout of 10.  Note that
	  setting <varname>a</varname>
	  to 5 inside <function>f</function> does not change
	  the value of <varname>a</varname> at the top (global) level,
	  so if you now check the value of <varname>a</varname> it will
	  still be 10.
        </para>
	<para>
	  Function arguments are exactly like variables defined inside
	  the function, except that they are initialized with the value
	  that was passed to the function.  Other than this point, they are
	  treated just like all other variables defined inside the
	  function.
	</para>
	<para>
	  Functions are treated exactly like variables.  Hence you can
	  locally redefine functions.  Normally (on the top level) you
	  cannot redefine protected variables and functions.  But locally
	  you can do this.  Consider the following session:
<screen><prompt>genius&gt; </prompt><userinput>function f(x) = sin(x)^2</userinput>
= (`(x)=(sin(x)^2))
<prompt>genius&gt; </prompt><userinput>function f(x) = sin(x)^2</userinput>
= (`(x)=(sin(x)^2))
<prompt>genius&gt; </prompt><userinput>function g(x) = ((function sin(x)=x^10);f(x))</userinput>
= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
<prompt>genius&gt; </prompt><userinput>g(10)</userinput>
= 1e20
</screen>
	</para>
	<para>
	  Functions and variables defined at the top level are
	  considered global.  They are visible from anywhere.  As we
	  said the following function <function>f</function>
	  will not change the value of <varname>a</varname> to 5.
<programlisting>a=6;
function f() = (a:=5);
f();
</programlisting>
	  Sometimes, however, it is necessary to set
a global variable from inside a function.  When this behavior is needed,
use the
<link linkend="gel-function-set"><function>set</function></link> function. Passing a string or a quoted identifier to
this function sets the variable globally (on the top level).
For example, to set
<varname>a</varname> to the value 3 you could call:
<programlisting>set(`a,3)
</programlisting>
or:
<programlisting>set("a",3)
</programlisting>
        </para>
        <para>
	  The <function>set</function> function always sets the toplevel
	  global.  There is no way to set a local variable in some function
	  from a subroutine.  If this is required, must use passing by
	  reference.
        </para>
	<para>
		See also the
		<link linkend="gel-function-SetElement"><function>SetElement</function></link> and
		<link linkend="gel-function-SetVElement"><function>SetVElement</function></link> functions.
	</para>
	<para>
	  So to recap in a more technical language:  Genius operates with
	  different numbered contexts.  The top level is the context 0
	  (zero).  Whenever a function is entered, the context is raised,
	  and when the function returns the context is lowered.  A function
	  or a variable is always visible from all higher numbered contexts.
	  When a variable was defined in a lower numbered context, then
	  setting this variable has the effect of creating a new local
	  variable in the current context number and this variable
	  will now be visible from all higher numbered contexts.
	</para>
	<para>
	  There are also true local variables that are not seen from
	  anywhere but the current context.  Also when returning functions
	  by value it may reference variables not visible from higher context
	  and this may be a problem.  See the sections
	  <link linkend="genius-gel-true-local-variables">True
	  Local Variables</link> and
	  <link linkend="genius-gel-returning-functions">Returning
	  Functions</link>.
	</para>
      </sect1>

      <sect1 id="genius-gel-parameters">
        <title>Parameter variables</title>
	<para>
	  As we said before, there exist special variables called parameters
	  that exist in all scopes.  To declare a parameter called
	  <varname>foo</varname> with the initial value 1, we write
<programlisting><![CDATA[parameter foo = 1
]]></programlisting>
	  From then on, <varname>foo</varname> is a strictly global variable.
	  Setting <varname>foo</varname> inside any function will modify the
	  variable in all contexts, that is, functions do not have a private
	  copy of parameters.
        </para>
        <para>
	  When you undefine a parameter using the
	  <link linkend="gel-function-undefine">
	  <function>undefine</function></link> function, it stops being
	  a parameter.
        </para>
        <para>
	  Some parameters are built-in and modify the behavior of genius.
        </para>
      </sect1>

    <sect1 id="genius-gel-returning">
      <title>Returning</title>
	<para>
	  Normally a function is one or several expressions separated by a
semicolon, and the value of the last expression is returned.  This is fine for
simple functions, but
sometimes you do not want a function to return the last thing calculated. You may, for example, want to return from a middle of a function. In this case, you can use the <literal>return</literal> keyword. <literal>return</literal> takes one argument, which is the value to be returned.
      </para>
      <para>Пример: <programlisting><![CDATA[function f(x) = (
  y=1;
  while true do (
    if x>50 then return y;
    y=y+1;
    x=x+1
  )
)
]]></programlisting></para>
    </sect1>


    <sect1 id="genius-gel-references">
      <title>References</title>
      <para>
	It may be necessary for some functions to return more than one value.
	This may be accomplished by returning a vector of values, but many
	times it is convenient to use passing a reference to a variable.
	You pass a reference to a variable to a function, and the function
	will set the variable for you using a dereference.  You do not have
	to use references only for this purpose, but this is their main use.
      </para>
      <para>
	When using functions that return values through references
	in the argument list, just pass the variable name with an ampersand.
	For example the following code will compute an eigenvalue of a matrix
	<varname>A</varname> with initial eigenvector guess
	<varname>x</varname>, and store the computed eigenvector
	into the variable named <varname>v</varname>:
<programlisting><![CDATA[RayleighQuotientIteration (A,x,0.001,100,&v)
]]></programlisting>
      </para>
      <para>
The details of how references work and the syntax is similar to the C language.
The operator
<literal>&amp;</literal> references a variable
and <literal>*</literal> dereferences a variable. Both can only be applied to an identifier,
so <literal>**a</literal> is not a legal expression in GEL.
      </para>
      <para>
References are best explained by an example:
<programlisting><![CDATA[a=1;
b=&a;
*b=2;
]]></programlisting>
now <varname>a</varname> contains 2.  You can also reference functions:
<programlisting><![CDATA[function f(x) = x+1;
t=&f;
*t(3)
]]></programlisting>
gives us 4.
      </para>
    </sect1>

    <sect1 id="genius-gel-lvalues">
      <title>Lvalues</title>
      <para>
	An lvalue is the left hand side of an assignment. In other words, an
	lvalue is what you assign something to.  Valid lvalues are:
<variablelist>
  <varlistentry>
    <term><userinput>a</userinput></term>
    <listitem>
      <para>
	Identifier.  Here we would be setting the variable of name
	<varname>a</varname>.
      </para>
    </listitem>
  </varlistentry>
  <varlistentry>
    <term><userinput>*a</userinput></term>
    <listitem>
      <para>
	Dereference of an identifier.  This will set whatever variable
	<varname>a</varname> points to.
      </para>
    </listitem>
  </varlistentry>
  <varlistentry>
    <term><userinput>a@(&lt;region&gt;)</userinput></term>
    <listitem>
      <para>
	A region of a matrix.  Here the region is specified normally as with
	the regular @() operator, and can be a single entry, or an entire
	region of the matrix.
      </para>
    </listitem>
  </varlistentry>
</variablelist>
      </para>
      <para>
Examples:
<programlisting>a:=4
*tmp := 89
a@(1,1) := 5
a@(4:8,3) := [1,2,3,4,5]'
</programlisting>
Note that both <literal>:=</literal> and <literal>=</literal> can be used
interchangeably.  Except if the assignment appears in a condition.
It is thus always safer to just use
<literal>:=</literal> when you mean assignment, and <literal>==</literal>
when you mean comparison.
      </para>
    </sect1>

  </chapter>

  <chapter id="genius-gel-programming-advanced">
    <title>Advanced Programming with GEL</title>

    <sect1 id="genius-gel-error-handling">
      <title>Обработка ошибок</title>
      <para>
If you detect an error in your function, you can bail out of it. For normal
errors, such as wrong types of arguments, you can fail to compute the function
by adding the statement <literal>bailout</literal>. If something went
really wrong and you want to completely kill the current computation, you can
use <literal>exception</literal>.
      </para>
      <para>
	For example if you want to check for arguments in your function.  You
could use the following code.
<programlisting>function f(M) = (
  if not IsMatrix (M) then (
    error ("M not a matrix!");
    bailout
  );
  ...
)
</programlisting>
      </para>
    </sect1>

    <sect1 id="genius-gel-toplevel-syntax">
      <title>Toplevel Syntax</title>
      <para>
	The syntax is slightly different if you enter statements on
	the top level versus when they are inside parentheses or
	inside functions.  On the top level, enter acts the same as if
	you press return on the command line.  Therefore think of programs
	as just a sequence of lines as if they were entered on the command line.
	In particular, you do not need to enter the separator at the end of the
	line (unless it is of course part of several statements inside
	parentheses).  When a statement does not end with a separator on the
	top level, the result is printed after being executed.
      </para>
      <para>
	For example,
	<programlisting>function f(x)=x^2
f(3)
</programlisting>
	will print first the result of setting a function (a representation of
	the function, in this case <computeroutput>(`(x)=(x^2))</computeroutput>)
	and then the expected 9.  To avoid this, enter a separator
	after the function definition.
	<programlisting>function f(x)=x^2;
f(3)
</programlisting>
	If you need to put a separator into your function then you have to surround with
	parenthesis.  For example:
<programlisting>function f(x)=(
  y=1;
  for j=1 to x do
    y = y+j;
  y^2
);
</programlisting>
      </para>
      <para>
	The following code will produce an error when entered on the top
	level of a program, while it will work just fine in a function.
<programlisting>if Something() then
  DoSomething()
else
  DoSomethingElse()
</programlisting>
      </para>
      <para>
	The problem is that after <application>Genius Mathematics Tool</application> sees the end of line after the
	second line, it will decide that we have whole statement and
	it will execute it.  After the execution is done, <application>Genius Mathematics Tool</application> will
	go on to the next
	line, it will see <literal>else</literal>, and it will produce
	a parsing error.  To fix this, use parentheses.  <application>Genius Mathematics Tool</application> will not
	be satisfied until it has found that all parentheses are closed.
<programlisting>if Something() then (
  DoSomething()
) else (
  DoSomethingElse()
)
</programlisting>
      </para>
    </sect1>

     <sect1 id="genius-gel-returning-functions">
       <title>Returning Functions</title>
	<para>
	  It is possible to return functions as value.  This way you can
	  build functions that construct special purpose functions according
	  to some parameters.  The tricky bit is what variables does the
	  function see.  The way this works in GEL is that when a function
	  returns another function, all identifiers referenced in the
	  function body that went out of scope
	  are prepended a private dictionary of the returned
	  function.  So the function will see all variables that were in
	  scope
	  when it was defined.  For example, we define a function that
	  returns a function that adds 5 to its argument.
<programlisting>function f() = (
  k = 5;
  `(x) = (x+k)
)
</programlisting>
	  Notice that the function adds <varname>k</varname> to
	  <varname>x</varname>.  You could use this as follows.
<programlisting>g = f();
g(5)
</programlisting>
	  And <userinput>g(5)</userinput> should return 10.
        </para>
	<para>
	  One thing to note is that the value of <varname>k</varname>
	  that is used is the one that's in effect when the
	  <function>f</function> returns.  For example:
<programlisting>function f() = (
  k := 5;
  function r(x) = (x+k);
  k := 10;
  r
)
</programlisting>
	  will return a function that adds 10 to its argument rather than
	  5.  This is because the extra dictionary is created only when
	  the context
	  in which the function was defined ends, which is when the function
	  <function>f</function> returns.  This is consistent with how you
	  would expect the function <function>r</function> to work inside
	  the function <function>f</function> according to the rules of
	  scope of variables in GEL.  Only those variables are added to the
	  extra dictionary that are in the context that just ended and
	  no longer exists.  Variables
	  used in the function that are in still valid contexts will work
	  as usual, using the current value of the variable.
	  The only difference is with global variables and functions.
	  All identifiers that referenced global variables at time of
	  the function definition are not added to the private dictionary.
	  This is to avoid much unnecessary work when returning functions
	  and would rarely be a problem.  For example, suppose that you
	  delete the "k=5" from the function <function>f</function>,
	  and at the top level you define <varname>k</varname> to be
	  say 5.  Then when you run <function>f</function>, the function
	  <function>r</function> will not put <varname>k</varname> into
	  the private dictionary because it was global (toplevel)
	  at the time of definition of <function>r</function>.
	</para>
	<para>
	  Sometimes it is better to have more control over how variables
	  are copied into the private dictionary.  Since version 1.0.7,
	  you can specify which
	  variables are copied into the private dictionary by putting
	  extra square brackets after the arguments with the list of
	  variables to be copied separated by commas.
	  If you do this, then variables are
	  copied into the private dictionary at time of the function
	  definition, and the private dictionary is not touched afterwards.
	  For example
<programlisting>function f() = (
  k := 5;
  function r(x) [k] = (x+k);
  k := 10;
  r
)
</programlisting>
	  will return a function that when called will add 5 to its
	  argument.  The local copy of <varname>k</varname> was created
	  when the function was defined.
	</para>
	<para>
	  When you want the function to not have any private dictionary
	  then put empty square brackets after the argument list.  Then
	  no private dictionary will be created at all.  Doing this is
	  good to increase efficiency when a private dictionary is not
	  needed or when you want the function to lookup all variables
	  as it sees them when called.  For example suppose you want
	  the function returned from <function>f</function> to see
	  the value of <varname>k</varname> from the toplevel despite
	  there being a local variable of the same name during definition.
	  So the code
<programlisting>function f() = (
  k := 5;
  function r(x) [] = (x+k);
  r
);
k := 10;
g = f();
g(10)
</programlisting>
	  will return 20 and not 15, which would happen if
	  <varname>k</varname> with a value of 5 was added to the private
	  dictionary.
	</para>
    </sect1>

    <sect1 id="genius-gel-true-local-variables">
      <title>True Local Variables</title>
      <para>
	When passing functions into other functions, the normal scoping of
	variables might be undesired.  For example:
<programlisting>k := 10;
function r(x) = (x+k);
function f(g,x) = (
  k := 5;
  g(x)
);
f(r,1)
</programlisting>
	you probably want the function <function>r</function>
	when passed as <function>g</function> into <function>f</function>
	to see <varname>k</varname> as 10 rather than 5, so that
	the code returns 11 and not 6.  However, as written, the function
	when executed will see the <varname>k</varname> that is
	equal to 5.  There are two ways to solve this.  One would be
	to have <function>r</function> get <varname>k</varname> in a
	private dictionary using the square bracket notation section
	<link linkend="genius-gel-returning-functions">Returning
	Functions</link>.
      </para>
      <para>
	But there is another solution.  Since version 1.0.7 there are
	true local variables.  These are variables that are visible only
	from the current context and not from any called functions.
	We could define <varname>k</varname> as a local variable in the
	function <function>f</function>.  To do this add a
	<command>local</command> statement as the first statement in the
	function (it must always be the first statement in the function).
	You can also make any arguments be local variables as well.
	That is,
<programlisting>function f(g,x) = (
  local g,x,k;
  k := 5;
  g(x)
);
</programlisting>
	Then the code will work as expected and prints out 11.
	Note that the <command>local</command> statement initializes
	all the referenced variables (except for function arguments) to
	a <constant>null</constant>.
      </para>
      <para>
	If all variables are to be created as locals you can just pass an
	asterisk instead of a list of variables.  In this case the variables
	will not be initialized until they are actually set of course.
	So the following definition of <function>f</function>
	will also work:
<programlisting>function f(g,x) = (
  local *;
  k := 5;
  g(x)
);
</programlisting>
      </para>
      <para>
	It is good practice that all functions that take other functions
	as arguments use local variables.  This way the passed function 
	does not see implementation details and get confused.
      </para>
    </sect1>

    <sect1 id="genius-gel-startup-procedure">
      <title>GEL Startup Procedure</title>
      <para>
First the program looks for the installed library file (the compiled version <filename>lib.cgel</filename>) in the installed directory, then it looks into the current directory, and then it tries to load an uncompiled file called
<filename>~/.geniusinit</filename>.
      </para>
      <para>
If you ever change the library in its installed place, you’ll have to
first compile it with <command>genius --compile loader.gel &gt; lib.cgel</command>
      </para>
    </sect1>

    <sect1 id="genius-gel-loading-programs">
      <title>Загрузка программ</title>
      <para>
Sometimes you have a larger program you wrote into a file and want to read that file into <application>Genius Mathematics Tool</application>. In these situations, you have two options. You can keep the functions you use most inside the <filename>~/.geniusinit</filename> file. Or if you want to load up a file in a middle of a session (or from within another file), you can type <command>load &lt;list of filenames&gt;</command> at the prompt. This has to be done on the top level and not inside any function or whatnot, and it cannot be part of any expression. It also has a slightly different syntax than the rest of genius, more similar to a shell. You can enter the file in quotes. If you use the '' quotes, you will get exactly the string that you typed, if you use the "" quotes, special characters will be unescaped as they are for strings. Example:
<programlisting>load program1.gel program2.gel
load "Причудливое имя файла с ПРОБЕЛАМИ.gel"
</programlisting>
There are also <command>cd</command>, <command>pwd</command> and <command>ls</command> commands built in. <command>cd</command> will take one argument, <command>ls</command> will take an argument that is like the glob in the UNIX shell (i.e., you can use wildcards). <command>pwd</command> takes no arguments. For example:
<programlisting>cd каталог_с_программами_gel
ls *.gel
</programlisting>
      </para>
    </sect1>

  </chapter>

  <!-- ============= Matrices ================================= -->
  <chapter id="genius-gel-matrices">
    <title>Матрицы в GEL</title>

    <para>
      Genius has support for vectors and matrices and possesses a sizable library of
      matrix manipulation and linear algebra functions.
    </para>

    <sect1 id="genius-gel-matrix-support">
      <title>Ввод матриц</title>
      <para>
To enter matrices, you can use one of the following two syntaxes. You can either enter
the matrix on one line, separating values by commas and rows by semicolons.  Or you
can enter each row on one line, separating
values by commas.
You can also just combine the two methods.
So to enter a 3x3 matrix
of numbers 1-9 you could do
<programlisting>[1,2,3;4,5,6;7,8,9]
</programlisting>
or
<programlisting>[1, 2, 3
 4, 5, 6
 7, 8, 9]
</programlisting>
Do not use both ';' and return at once on the same line though.
      </para>

      <para>
You can also use the matrix expansion functionality to enter matrices.
For example you can do:
<programlisting>a = [ 1, 2, 3
      4, 5, 6
      7, 8, 9]
b = [ a,  10
      11, 12]
</programlisting>
and you should get
<programlisting>[1,   2,  3, 10
 4,   5,  6, 10
 7,   8,  9, 10
 11, 11, 11, 12]
</programlisting>
similarly you can build matrices out of vectors and other stuff like that.
      </para>

      <para>
Another thing is that non-specified spots are initialized to 0, so
<programlisting>[1, 2, 3
 4, 5
 6]
</programlisting>
will end up being
<programlisting>
[1, 2, 3
 4, 5, 0
 6, 0, 0]
</programlisting>
      </para>

      <para>
	When matrices are evaluated, they are evaluated and traversed row-wise.  This is just
	like the <literal>M@(j)</literal> operator, which traverses the matrix row-wise.
      </para>

      <note>
        <para>
Be careful about using returns for expressions inside the
<literal>[ ]</literal> brackets, as they have a slightly different meaning
there.  You will start a new row.
        </para>
      </note>

    </sect1>

    <sect1 id="genius-gel-matrix-transpose">
      <title>Conjugate Transpose and Transpose Operator</title>
      <para>
You can conjugate transpose a matrix by using the <literal>'</literal> operator.  That is
the entry in the
<varname>i</varname>th column and the <varname>j</varname>th row will be
the complex conjugate of the entry in the
<varname>j</varname>th column and the <varname>i</varname>th row of the original matrix.
 For example:
<programlisting>[1,2,3]*[4,5,6]'
</programlisting>
We transpose the second vector to make matrix multiplication possible.
If you just want to transpose a matrix without conjugating it, you would
use the <literal>.'</literal> operator.  For example:
<programlisting>[1,2,3]*[4,5,6i].'
</programlisting>
      </para>
	<para>
	  Note that normal transpose, that is the <literal>.'</literal> operator, is much faster
	  and will not create a new copy of the matrix in memory.  The conjugate transpose does
	  create a new copy unfortunately.
	  It is recommended to always use the <literal>.'</literal> operator when working with real
	  matrices and vectors.
	</para>
    </sect1>

    <sect1 id="genius-gel-matrix-linalg">
      <title>Линейная алгебра</title>
      <para>
	Genius implements many useful linear algebra and matrix manipulation
routines.  See the <link linkend="genius-gel-function-list-linear-algebra">Linear Algebra</link> and
<link linkend="genius-gel-function-list-matrix">Matrix Manipulation</link>
sections of the GEL function listing.
      </para>
      <para>
	The linear algebra routines implemented in GEL do not currently come
from a well tested numerical package, and thus should not be used for critical
numerical computation.  On the other hand, Genius implements very well many
linear algebra operations with rational and integer coefficients.  These are
inherently exact and in fact will give you much better results than common
double precision routines for linear algebra.
      </para>
      <para>
	For example, it is pointless to compute the rank and nullspace of a
floating point matrix since for all practical purposes, we need to consider the
matrix as having some slight errors.  You are likely to get a different result
than you expect.  The problem is that under a small perturbation every matrix
is of full rank and invertible.  If the matrix however is of rational numbers,
then the rank and nullspace are always exact.
      </para>
      <para>
	In general when Genius computes the basis of a certain vectorspace
	(for example with the <link linkend="gel-function-NullSpace"><function>NullSpace</function></link>) it will give the basis as
a matrix, in which the columns are the vectors of the basis.  That is, when
Genius talks of a linear subspace it means a matrix whose column space is
the given linear subspace.
      </para>
      <para>
	It should be noted that Genius can remember certain properties of a
matrix.  For example, it will remember that a matrix is in row reduced form.
If many calls are made to functions that internally use row reduced form of
the matrix, we can just row reduce the matrix beforehand once.  Successive
calls to <link linkend="gel-function-rref"><function>rref</function></link> will be very fast.
      </para>
    </sect1>

  </chapter>

  <!-- ============= Polynomials ============================== -->
  <chapter id="genius-gel-polynomials">
    <title>Многочлены в GEL</title>

    <para>В настоящее время Genius может работать с многочленами одной переменной, записанными в виде векторов, и выполнять некоторые основные операции с ними. В будущем планируется расширить их поддержку.</para>

    <sect1 id="genius-gel-polynomials-using">
      <title>Использование многочленов</title>
      <para>
Currently
polynomials in one variable are just horizontal vectors with value only nodes.
The power of the term is the position in the vector, with the first position
being 0. So,
<programlisting>[1,2,3]
</programlisting>
translates to a polynomial of
<programlisting>1 + 2*x + 3*x^2
</programlisting>
      </para>
      <para>
You can add, subtract and multiply polynomials using the
<link linkend="gel-function-AddPoly"><function>AddPoly</function></link>,
<link linkend="gel-function-SubtractPoly"><function>SubtractPoly</function></link>, and
<link linkend="gel-function-MultiplyPoly"><function>MultiplyPoly</function></link> functions respectively.
You can print a polynomial using the
<link linkend="gel-function-PolyToString"><function>PolyToString</function></link>
function.
For example,
<programlisting>PolyToString([1,2,3],"y")
</programlisting>
gives
<programlisting>3*y^2 + 2*y + 1
</programlisting>
You can also get a function representation of the polynomial so that you can
evaluate it. This is done by using
<link linkend="gel-function-PolyToFunction"><function>PolyToFunction</function></link>,
which
returns an anonymous function.
<programlisting>f = PolyToFunction([0,1,1])
f(2)
</programlisting>
      </para>
      <para>
	It is also possible to find roots of polynomials of degrees 1 through 4 by using the
function
<link linkend="gel-function-PolynomialRoots"><function>PolynomialRoots</function></link>,
which calls the appropriate formula function.  Higher degree polynomials must be converted to
functions and solved
numerically using a function such as
<link linkend="gel-function-FindRootBisection"><function>FindRootBisection</function></link>,
<link linkend="gel-function-FindRootFalsePosition"><function>FindRootFalsePosition</function></link>,
<link linkend="gel-function-FindRootMullersMethod"><function>FindRootMullersMethod</function></link>, or
<link linkend="gel-function-FindRootSecant"><function>FindRootSecant</function></link>.
      </para>
      <para>
See <xref linkend="genius-gel-function-list-polynomials"/> in the function list
for the rest of functions acting on polynomials.
      </para>
    </sect1>

  </chapter>

  <!-- ============= Set Theory ============================== -->
  <chapter id="genius-gel-settheory">
    <title>Теория множеств в GEL</title>

    <para>
      Genius has some basic set theoretic functionality built in.  Currently a set is
      just a vector (or a matrix).  Every distinct object is treated as a different element.
    </para>

    <sect1 id="genius-gel-sets-using">
      <title>Using Sets</title>
      <para>
	Just like vectors, objects
      in sets can include numbers, strings, <constant>null</constant>, matrices and vectors.  It is
      planned in the future to have a dedicated type for sets, rather than using vectors.
      Note that floating point numbers are distinct from integers, even if they appear the same.
      That is, Genius will treat <constant>0</constant> and <constant>0.0</constant>
      as two distinct elements.  The <constant>null</constant> is treated as an empty set.
    </para>
      <para>
	To build a set out of a vector, use the 
	<link linkend="gel-function-MakeSet"><function>MakeSet</function></link> function.
	Currently, it will just return a new vector where every element is unique.
<screen><prompt>genius&gt; </prompt><userinput>MakeSet([1,2,2,3])</userinput>
= [1, 2, 3]
</screen>
</para>

	<para>
	Similarly there are functions 
	<link linkend="gel-function-Union"><function>Union</function></link>,
	<link linkend="gel-function-Intersection"><function>Intersection</function></link>,
	<link linkend="gel-function-SetMinus"><function>SetMinus</function></link>, which
	are rather self explanatory.  For example:
<screen><prompt>genius&gt; </prompt><userinput>Union([1,2,3], [1,2,4])</userinput>
= [1, 2, 4, 3]
</screen>
	Note that no order is guaranteed for the return values.  If you wish to sort the vector you
should use the
	<link linkend="gel-function-SortVector"><function>SortVector</function></link> function.
	</para>

	<para>
	  For testing membership, there are functions
	<link linkend="gel-function-IsIn"><function>IsIn</function></link> and
	<link linkend="gel-function-IsSubset"><function>IsSubset</function></link>,
	which return a boolean value.  For example:
<screen><prompt>genius&gt; </prompt><userinput>IsIn (1, [0,1,2])</userinput>
= true
</screen>
	The input <userinput>IsIn(x,X)</userinput> is of course equivalent to
	<userinput>IsSubset([x],X)</userinput>.  Note that since the empty set is a subset
	of every set, <userinput>IsSubset(null,X)</userinput> is always true.
	</para>

    </sect1>

  </chapter>

  <!-- ============= GEL function list ======================== -->
  <chapter id="genius-gel-function-list">
    <title>Список функций GEL</title>

    <!--&gel-function-list;-->

    <para>Для получения справки по определённой функции, наберите в консоли: <programlisting>help ИмяФункции
</programlisting></para>

    <sect1 id="genius-gel-function-list-commands">
      <title>Команды</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-command-help"/>help</term>
         <listitem>
          <synopsis>help</synopsis>
          <synopsis>help ИмяФункции</synopsis>
          <para>Показывает справку (или справку по функции/команде).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-command-load"/>load</term>
         <listitem>
          <synopsis>load "file.gel"</synopsis>
          <para>Load a file into the interpreter.  The file will execute
as if it were typed onto the command line.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-command-cd"/>cd</term>
         <listitem>
          <synopsis>cd /каталог/имя</synopsis>
          <para>Меняет рабочий каталог на <filename>/каталог/имя</filename>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-command-pwd"/>pwd</term>
         <listitem>
          <synopsis>pwd</synopsis>
          <para>Выводит текущий рабочий каталог.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-command-ls"/>ls</term>
         <listitem>
          <synopsis>ls</synopsis>
          <para>Показывает список файлов в текущем каталоге.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-command-plugin"/>plugin</term>
         <listitem>
          <synopsis>plugin plugin_name</synopsis>
          <para>Load a plugin.  Plugin of that name must be installed on the system
in the proper directory.</para>
         </listitem>
        </varlistentry>
      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-basic">
      <title>Основные</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-AskButtons"/>AskButtons</term>
         <listitem>
          <synopsis>AskButtons (вопрос)</synopsis>
          <synopsis>AskButtons (вопрос, кнопка1, ...)</synopsis>
	  <para>Задаёт вопрос и предлагает пользователю список кнопок (или меню вариантов в текстовом режиме). Возвращает отсчитываемый с 1 индекс нажатой кнопки. То есть 1, если нажата первая кнопка, 2 — если нажата вторая и т.д. Если пользователь закрыл окно (или просто нажал Enter в текстовом режиме), то возвращает <constant>null</constant>. Выполнение программы останавливается, пока пользователь не ответит.</para>
	  <para>Version 1.0.10 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-AskString"/>AskString</term>
         <listitem>
          <synopsis>AskString (query)</synopsis>
          <synopsis>AskString (query, default)</synopsis>
          <para>Asks a question and lets the user enter a string, which
it then returns.  If the user cancels or closes the window, then
<constant>null</constant> is returned.  The execution of the program
is blocked until the user responds.  If <varname>default</varname> is given, then it is pre-typed in for the user to just press enter on (version 1.0.6 onwards).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Compose"/>Compose</term>
         <listitem>
          <synopsis>Compose (f,g)</synopsis>
          <para>Compose two functions and return a function that is the composition of <function>f</function> and <function>g</function>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ComposePower"/>ComposePower</term>
         <listitem>
          <synopsis>ComposePower (f,n,x)</synopsis>
          <para>Compose and execute a function with itself <varname>n</varname> times, passing <varname>x</varname> as argument.  Returning <varname>x</varname> if
<varname>n</varname> equals 0.
		Example:
          <screen><prompt>genius&gt;</prompt> <userinput>function f(x) = x^2 ;</userinput>
<prompt>genius&gt;</prompt> <userinput>ComposePower (f,3,7)</userinput>
= 5764801
<prompt>genius&gt;</prompt> <userinput>f(f(f(7)))</userinput>
= 5764801
</screen>
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Evaluate"/>Evaluate</term>
         <listitem>
          <synopsis>Evaluate (str)</synopsis>
          <para>Parses and evaluates a string.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><anchor id="gel-function-GetCurrentModulo"/>GetCurrentModulo</term>
         <listitem>
          <synopsis>GetCurrentModulo</synopsis>
          <para>Get current modulo from the context outside the function.  That is, if outside of
the function was executed in modulo (using <literal>mod</literal>) then this returns what
this modulo was.  Normally the body of the function called is not executed in modular arithmetic,
and this builtin function makes it possible to make GEL functions aware of modular arithmetic.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Identity"/>Identity</term>
         <listitem>
          <synopsis>Identity (x)</synopsis>
	  <para>Identity function, returns its argument.  It is equivalent to <userinput>function Identity(x)=x</userinput>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IntegerFromBoolean"/>IntegerFromBoolean</term>
         <listitem>
          <synopsis>IntegerFromBoolean (bval)</synopsis>
	  <para>Преобразует логическое значение в целое число (0 для <constant>false</constant> или 1 для <constant>true</constant>). <varname>bval</varname> может также быть числом, в этом случае ненулевое значение интерпретируется как <constant>true</constant>, а нулевое — как <constant>false</constant>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsBoolean"/>IsBoolean</term>
         <listitem>
          <synopsis>IsBoolean (arg)</synopsis>
          <para>Проверяет, является аргумент логическим значением (а не числом).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsDefined"/>IsDefined</term>
         <listitem>
          <synopsis>IsDefined (id)</synopsis>
          <para>Check if an id is defined.  You should pass a string or
	   and identifier.  If you pass a matrix, each entry will be
	   evaluated separately and the matrix should contain strings
	   or identifiers.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsFunction"/>IsFunction</term>
         <listitem>
          <synopsis>IsFunction (arg)</synopsis>
          <para>Проверяет, является ли аргумент функцией.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsFunctionOrIdentifier"/>IsFunctionOrIdentifier</term>
         <listitem>
          <synopsis>IsFunctionOrIdentifier (arg)</synopsis>
          <para>Check if argument is a function or an identifier.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsFunctionRef"/>IsFunctionRef</term>
         <listitem>
          <synopsis>IsFunctionRef (arg)</synopsis>
          <para>Check if argument is a function reference.  This includes variable
references.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsMatrix"/>IsMatrix</term>
         <listitem>
          <synopsis>IsMatrix (arg)</synopsis>
          <para>Проверяет, является ли аргумент матрицей. Хотя <constant>null</constant> иногда используют вместо пустой матрицы, функция <function>IsMatrix</function> не считает <constant>null</constant> матрицей.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsNull"/>IsNull</term>
         <listitem>
          <synopsis>IsNull (arg)</synopsis>
	  <para>Проверяет, имеет ли аргумент значение <constant>null</constant>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsString"/>IsString</term>
         <listitem>
          <synopsis>IsString (arg)</synopsis>
          <para>Проверяет, является ли аргумент текстовой строкой.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsValue"/>IsValue</term>
         <listitem>
          <synopsis>IsValue (arg)</synopsis>
          <para>Проверяет, является ли аргумент числом.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Parse"/>Parse</term>
         <listitem>
          <synopsis>Parse (str)</synopsis>
          <para>Parses but does not evaluate a string.  Note that certain
	    pre-computation is done during the parsing stage.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SetFunctionFlags"/>SetFunctionFlags</term>
         <listitem>
          <synopsis>SetFunctionFlags (id,flags...)</synopsis>
          <para>Set flags for a function, currently <literal>"PropagateMod"</literal> and <literal>"NoModuloArguments"</literal>.
If <literal>"PropagateMod"</literal> is set, then the body of the function is evaluated in modular arithmetic when the function
is called inside a block that was evaluated using modular arithmetic (using <literal>mod</literal>).  If
<literal>"NoModuloArguments"</literal>, then the arguments of the function are never evaluated using modular arithmetic.
 </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SetHelp"/>SetHelp</term>
         <listitem>
          <synopsis>SetHelp (id,category,desc)</synopsis>
          <para>Set the category and help description line for a function.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SetHelpAlias"/>SetHelpAlias</term>
         <listitem>
          <synopsis>SetHelpAlias (id,alias)</synopsis>
          <para>Sets up a help alias.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-chdir"/>chdir</term>
         <listitem>
          <synopsis>chdir (dir)</synopsis>
          <para>Изменяет текущий каталог. То же, что и <command>cd</command>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CurrentTime"/>CurrentTime</term>
         <listitem>
          <synopsis>CurrentTime</synopsis>
          <para>Возвращает текущее время UNIX с точностью до микросекунд в виде числа с плавающей точкой. То есть возвращает число секунд с 1 января 1970 г.</para>
	  <para>Version 1.0.15 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-display"/>display</term>
         <listitem>
          <synopsis>display (str,expr)</synopsis>
          <para>Display a string and an expression with a colon to separate them.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DisplayVariables"/>DisplayVariables</term>
         <listitem>
          <synopsis>DisplayVariables (var1,var2,...)</synopsis>
	  <para>Display set of variables.  The variables can be given as
		  strings or identifiers.  For example:
	    <programlisting>DisplayVariables(`x,`y,`z)
	    </programlisting>
	  </para>
	  <para>
		  If called without arguments (must supply empty argument list) as
	    <programlisting>DisplayVariables()
	    </programlisting>
	    then all variables are printed including a stacktrace similar to
	    <guilabel>Show user variables</guilabel> in the graphical version.
	  </para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-error"/>error</term>
         <listitem>
          <synopsis>error (str)</synopsis>
          <para>Выводит строку в поток ошибок (на консоль).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-exit"/>exit</term>
         <listitem>
          <synopsis>exit</synopsis>
          <para>Псевдоним: <function>quit</function></para>
          <para>Завершает работу программы.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-false"/>false</term>
         <listitem>
          <synopsis>false</synopsis>
          <para>Псевдонимы: <function>False</function><function>FALSE</function></para>
	  <para>Логическое значение <constant>false</constant> (ложь).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-manual"/>manual</term>
         <listitem>
          <synopsis>manual</synopsis>
          <para>Показывает руководство пользователя.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-print"/>print</term>
         <listitem>
          <synopsis>print (str)</synopsis>
          <para>Выводит выражение и выполняет переход на новую строку. Аргумент <varname>str</varname> может быть любым выражением. Он преобразуется в строку перед выводом.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-printn"/>printn</term>
         <listitem>
          <synopsis>printn (str)</synopsis>
          <para>Выводит выражение без перехода на новую строку. Аргумент <varname>str</varname> может быть любым выражением. Он преобразуется в строку перед выводом.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PrintTable"/>PrintTable</term>
         <listitem>
          <synopsis>PrintTable (f,v)</synopsis>
	  <para>Print a table of values for a function.  The values are in the 
		  vector <varname>v</varname>.  You can use the vector
		  building notation as follows:
      		  <programlisting>PrintTable (f,[0:10])
	    </programlisting>
	    If <varname>v</varname> is a positive integer, then the table of
	    integers from 1 up to and including v will be used.
	  </para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-protect"/>protect</term>
         <listitem>
          <synopsis>protect (id)</synopsis>
          <para>Protect a variable from being modified.  This is used on the internal GEL functions to
avoid them being accidentally overridden.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ProtectAll"/>ProtectAll</term>
         <listitem>
          <synopsis>ProtectAll ()</synopsis>
          <para>Protect all currently defined variables, parameters and
functions from being modified.  This is used on the internal GEL functions to
avoid them being accidentally overridden.  Normally <application>Genius Mathematics Tool</application> considers
unprotected variables as user defined.</para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-set"/>set</term>
         <listitem>
          <synopsis>set (id,val)</synopsis>
          <para>Set a global variable.  The <varname>id</varname>
            can be either a string or a quoted identifier.
	    For example:
	    <programlisting>set(`x,1)
	    </programlisting>
	    will set the global variable <varname>x</varname> to the value 1.
	  </para>
	  <para>The function returns the <varname>val</varname>, to be
	  usable in chaining.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SetElement"/>SetElement</term>
         <listitem>
          <synopsis>SetElement (id,row,col,val)</synopsis>
	  <para>Set an element of a global variable which is a matrix.
		  The <varname>id</varname>
            can be either a string or a quoted identifier.
	    For example:
	    <programlisting>SetElement(`x,2,3,1)
	    </programlisting>
	    will set the second row third column element of the global variable <varname>x</varname> to the value 1.  If no global variable of the name exists, or if it is set to something that's not a matrix, a new zero matrix of appropriate size will be created.
	  </para>
	  <para>The <varname>row</varname> and <varname>col</varname> can also be ranges, and the semantics are the same as for regular setting of the elements with an equals sign.
	  </para>
	  <para>The function returns the <varname>val</varname>, to be
	  usable in chaining.</para>
	  <para>Available from 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SetVElement"/>SetVElement</term>
         <listitem>
          <synopsis>SetElement (id,elt,val)</synopsis>
	  <para>Set an element of a global variable which is a vector.
		  The <varname>id</varname>
            can be either a string or a quoted identifier.
	    For example:
	    <programlisting>SetElement(`x,2,1)
	    </programlisting>
	    will set the second element of the global vector variable <varname>x</varname> to the value 1.  If no global variable of the name exists, or if it is set to something that's not a vector (matrix), a new zero row vector of appropriate size will be created.
	  </para>
	  <para>The <varname>elt</varname> can also be a range, and the semantics are the same as for regular setting of the elements with an equals sign.
	  </para>
	  <para>The function returns the <varname>val</varname>, to be
	  usable in chaining.</para>
	  <para>Available from 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-string"/>string</term>
         <listitem>
          <synopsis>string (s)</synopsis>
          <para>Преобразует аргумент любого типа в строку.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-true"/>true</term>
         <listitem>
          <synopsis>true</synopsis>
          <para>Псевдонимы: <function>True</function><function>TRUE</function></para>
	  <para>Логическое значение <constant>true</constant> (истина).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-undefine"/>undefine</term>
         <listitem>
          <synopsis>undefine (id)</synopsis>
          <para>Alias: <function>Undefine</function></para>
          <para>Undefine a variable.  This includes locals and globals,
	    every value on all context levels is wiped.  This function
	    should really not be used on local variables.  A vector of
	    identifiers can also be passed to undefine several variables.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-UndefineAll"/>UndefineAll</term>
         <listitem>
          <synopsis>UndefineAll ()</synopsis>
	  <para>Undefine all unprotected global variables
	    (including functions and parameters).  Normally <application>Genius Mathematics Tool</application>
	    considers protected variables as system defined functions
	    and variables.  Note that <function>UndefineAll</function>
	    only removes the global definition of symbols not local ones,
	    so that it may be run from inside other functions safely.
	  </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-unprotect"/>unprotect</term>
         <listitem>
          <synopsis>unprotect (id)</synopsis>
          <para>Unprotect a variable from being modified.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-UserVariables"/>UserVariables</term>
         <listitem>
          <synopsis>UserVariables ()</synopsis>
          <para>Возвращает вектор идентификаторов определённых пользователем (незащищённых) глобальных переменных.</para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-wait"/>wait</term>
         <listitem>
          <synopsis>wait (secs)</synopsis>
          <para>Waits a specified number of seconds.  <varname>secs</varname>
must be non-negative.  Zero is accepted and nothing happens in this case,
except possibly user interface events are processed.</para>
	  <para>Since version 1.0.18, <varname>secs</varname> can be a noninteger number, so
		  <userinput>wait(0.1)</userinput> will wait for one tenth of a second.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-version"/>version</term>
         <listitem>
          <synopsis>version</synopsis>
          <para>Returns the version of Genius as a horizontal 3-vector with
	  major version first, then minor version and finally the patch level.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-warranty"/>warranty</term>
         <listitem>
          <synopsis>warranty</synopsis>
          <para>Gives the warranty information.</para>
         </listitem>
        </varlistentry>
      </variablelist>

    </sect1>

    <sect1 id="genius-gel-function-parameters">
      <title>Параметры</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-ChopTolerance"/>ChopTolerance</term>
         <listitem>
          <synopsis>ChopTolerance = number</synopsis>
          <para>Tolerance of the <function>Chop</function> function.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ContinuousNumberOfTries"/>ContinuousNumberOfTries</term>
         <listitem>
          <synopsis>ContinuousNumberOfTries = number</synopsis>
          <para>How many iterations to try to find the limit for continuity and limits.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ContinuousSFS"/>ContinuousSFS</term>
         <listitem>
          <synopsis>ContinuousSFS = number</synopsis>
          <para>How many successive steps to be within tolerance for calculation of continuity.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ContinuousTolerance"/>ContinuousTolerance</term>
         <listitem>
          <synopsis>ContinuousTolerance = number</synopsis>
          <para>Tolerance for continuity of functions and for calculating the limit.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DerivativeNumberOfTries"/>DerivativeNumberOfTries</term>
         <listitem>
          <synopsis>DerivativeNumberOfTries = number</synopsis>
          <para>How many iterations to try to find the limit for derivative.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DerivativeSFS"/>DerivativeSFS</term>
         <listitem>
          <synopsis>DerivativeSFS = number</synopsis>
          <para>How many successive steps to be within tolerance for calculation of derivative.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DerivativeTolerance"/>DerivativeTolerance</term>
         <listitem>
          <synopsis>DerivativeTolerance = number</synopsis>
          <para>Tolerance for calculating the derivatives of functions.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ErrorFunctionTolerance"/>ErrorFunctionTolerance</term>
         <listitem>
          <synopsis>ErrorFunctionTolerance = number</synopsis>
	  <para>Tolerance of the <link linkend="gel-function-ErrorFunction"><function>ErrorFunction</function></link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FloatPrecision"/>FloatPrecision</term>
         <listitem>
          <synopsis>FloatPrecision = число</synopsis>
          <para>Точность чисел с плавающей точкой.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FullExpressions"/>FullExpressions</term>
         <listitem>
          <synopsis>FullExpressions = логическое значение</synopsis>
          <para>Выводить полные выражения, даже если они превышают длину строки.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-GaussDistributionTolerance"/>GaussDistributionTolerance</term>
         <listitem>
          <synopsis>GaussDistributionTolerance = number</synopsis>
	  <para>Tolerance of the <link linkend="gel-function-GaussDistribution"><function>GaussDistribution</function></link> function.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IntegerOutputBase"/>IntegerOutputBase</term>
         <listitem>
          <synopsis>IntegerOutputBase = number</synopsis>
          <para>Integer output base.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPrimeMillerRabinReps"/>IsPrimeMillerRabinReps</term>
         <listitem>
          <synopsis>IsPrimeMillerRabinReps = number</synopsis>
	  <para>Number of extra Miller-Rabin tests to run on a number before declaring it a prime in <link linkend="gel-function-IsPrime"><function>IsPrime</function></link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotDrawLegends"/>LinePlotDrawLegends</term>
         <listitem>
          <synopsis>LinePlotDrawLegends = true</synopsis>
          <para>Tells genius to draw the legends for <link linkend="genius-gel-function-list-plotting">line plotting
	  functions</link> such as <link linkend="gel-function-LinePlot"><function>LinePlot</function></link>.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotDrawAxisLabels"/>LinePlotDrawAxisLabels</term>
         <listitem>
          <synopsis>LinePlotDrawAxisLabels = true</synopsis>
          <para>Tells genius to draw the axis labels for <link linkend="genius-gel-function-list-plotting">line plotting
	  functions</link> such as <link linkend="gel-function-LinePlot"><function>LinePlot</function></link>.
          </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotVariableNames"/>LinePlotVariableNames</term>
         <listitem>
          <synopsis>LinePlotVariableNames = ["x","y","z","t"]</synopsis>
          <para>Tells genius which variable names are used as default names  for <link linkend="genius-gel-function-list-plotting">line plotting
	  functions</link> such as <link linkend="gel-function-LinePlot"><function>LinePlot</function></link> and friends.
          </para>
	  <para>Version 1.0.10 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotWindow"/>LinePlotWindow</term>
         <listitem>
          <synopsis>LinePlotWindow = [x1,x2,y1,y2]</synopsis>
          <para>Sets the limits for <link linkend="genius-gel-function-list-plotting">line plotting
	  functions</link> such as <link linkend="gel-function-LinePlot"><function>LinePlot</function></link>.
          </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><anchor id="gel-function-MaxDigits"/>MaxDigits</term>
         <listitem>
          <synopsis>MaxDigits = number</synopsis>
          <para>Maximum digits to display.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MaxErrors"/>MaxErrors</term>
         <listitem>
          <synopsis>MaxErrors = number</synopsis>
          <para>Maximum errors to display.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MixedFractions"/>MixedFractions</term>
         <listitem>
          <synopsis>MixedFractions = логическое значение</synopsis>
          <para>Если true, выводятся смешанные дроби.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalIntegralFunction"/>NumericalIntegralFunction</term>
         <listitem>
          <synopsis>NumericalIntegralFunction = function</synopsis>
	  <para>The function used for numerical integration in <link linkend="gel-function-NumericalIntegral"><function>NumericalIntegral</function></link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalIntegralSteps"/>NumericalIntegralSteps</term>
         <listitem>
          <synopsis>NumericalIntegralSteps = number</synopsis>
	  <para>Steps to perform in <link linkend="gel-function-NumericalIntegral"><function>NumericalIntegral</function></link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-OutputChopExponent"/>OutputChopExponent</term>
         <listitem>
          <synopsis>OutputChopExponent = number</synopsis>
	  <para>When another number in the object being printed (a matrix or a
value) is greater than
10<superscript>-OutputChopWhenExponent</superscript>, and
the number being printed is less than 
10<superscript>-OutputChopExponent</superscript>, then
display <computeroutput>0.0</computeroutput> instead of the number.
</para>
<para>
Output is never chopped if <function>OutputChopExponent</function> is zero.
It must be a non-negative integer.
</para>
<para>
If you want output always chopped according to
<function>OutputChopExponent</function>, then set
<function>OutputChopWhenExponent</function>, to something
greater than or equal to
<function>OutputChopExponent</function>.
</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-OutputChopWhenExponent"/>OutputChopWhenExponent</term>
         <listitem>
          <synopsis>OutputChopWhenExponent = number</synopsis>
	  <para>When to chop output.  See
          <link linkend="gel-function-OutputChopExponent"><function>OutputChopExponent</function></link>.
</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-OutputStyle"/>OutputStyle</term>
         <listitem>
          <synopsis>OutputStyle = строка</synopsis>
          <para>Стиль вывода, может быть <literal>normal</literal>, <literal>latex</literal>, <literal>mathml</literal> или <literal>troff</literal>.</para>
	  <para>В основном влияет на то, как выводятся матрицы и дроби, и может быть полезно для копирования и вставки в документы. Например, задать вывод в стиле latex можно с помощью: <programlisting>OutputStyle = "latex"
</programlisting></para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ResultsAsFloats"/>ResultsAsFloats</term>
         <listitem>
          <synopsis>ResultsAsFloats = boolean</synopsis>
          <para>Convert all results to floats before printing.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ScientificNotation"/>ScientificNotation</term>
         <listitem>
          <synopsis>ScientificNotation = boolean</synopsis>
          <para>Use scientific notation.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SlopefieldTicks"/>SlopefieldTicks</term>
         <listitem>
          <synopsis>SlopefieldTicks = [vertical,horizontal]</synopsis>
          <para>Sets the number of vertical and horizontal ticks in a
slopefield plot.  (See <link linkend="gel-function-SlopefieldPlot"><function>SlopefieldPlot</function></link>).
          </para>
	  <para>Version 1.0.10 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SumProductNumberOfTries"/>SumProductNumberOfTries</term>
         <listitem>
          <synopsis>SumProductNumberOfTries = number</synopsis>
	  <para>How many iterations to try for <link linkend="gel-function-InfiniteSum"><function>InfiniteSum</function></link> and <link linkend="gel-function-InfiniteProduct"><function>InfiniteProduct</function></link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SumProductSFS"/>SumProductSFS</term>
         <listitem>
          <synopsis>SumProductSFS = number</synopsis>
          <para>How many successive steps to be within tolerance for <link linkend="gel-function-InfiniteSum"><function>InfiniteSum</function></link> and <link linkend="gel-function-InfiniteProduct"><function>InfiniteProduct</function></link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SumProductTolerance"/>SumProductTolerance</term>
         <listitem>
          <synopsis>SumProductTolerance = number</synopsis>
          <para>Tolerance for <link linkend="gel-function-InfiniteSum"><function>InfiniteSum</function></link> and <link linkend="gel-function-InfiniteProduct"><function>InfiniteProduct</function></link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SurfacePlotDrawLegends"/>SurfacePlotDrawLegends</term>
         <listitem>
          <synopsis>SurfacePlotDrawLegends = true</synopsis>
          <para>Tells genius to draw the legends for <link linkend="genius-gel-function-list-plotting">surface plotting
	  functions</link> such as <link linkend="gel-function-SurfacePlot"><function>SurfacePlot</function></link>.
          </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SurfacePlotVariableNames"/>SurfacePlotVariableNames</term>
         <listitem>
          <synopsis>SurfacePlotVariableNames = ["x","y","z"]</synopsis>
          <para>Tells genius which variable names are used as default names for <link linkend="genius-gel-function-list-plotting">surface plotting
	  functions</link> using <link linkend="gel-function-SurfacePlot"><function>SurfacePlot</function></link>.
          Note that the <varname>z</varname> does not refer to the dependent (vertical) axis, but to the independent complex variable
          <userinput>z=x+iy</userinput>.
          </para>
	  <para>Version 1.0.10 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SurfacePlotWindow"/>SurfacePlotWindow</term>
         <listitem>
          <synopsis>SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</synopsis>
          <para>Sets the limits for surface plotting (See <link linkend="gel-function-SurfacePlot"><function>SurfacePlot</function></link>).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorfieldNormalized"/>VectorfieldNormalized</term>
         <listitem>
          <synopsis>VectorfieldNormalized = true</synopsis>
          <para>Should the vectorfield plotting have normalized arrow length.  If true, vector fields will only show direction
	   and not magnitude.  (See <link linkend="gel-function-VectorfieldPlot"><function>VectorfieldPlot</function></link>).
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorfieldTicks"/>VectorfieldTicks</term>
         <listitem>
          <synopsis>VectorfieldTicks = [vertical,horizontal]</synopsis>
          <para>Sets the number of vertical and horizontal ticks in a
vectorfield plot.  (See <link linkend="gel-function-VectorfieldPlot"><function>VectorfieldPlot</function></link>).
          </para>
	  <para>Version 1.0.10 onwards.</para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-constants">
      <title>Константы</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-CatalanConstant"/>CatalanConstant</term>
         <listitem>
          <synopsis>CatalanConstant</synopsis>
          <para>
	    Catalan's Constant, approximately 0.915...  It is defined to be the series where terms are <userinput>(-1^k)/((2*k+1)^2)</userinput>, where <varname>k</varname> ranges from 0 to infinity.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Catalan%27s_constant">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/CatalansConstant.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-EulerConstant"/>EulerConstant</term>
         <listitem>
          <synopsis>EulerConstant</synopsis>
          <para>Aliases: <function>gamma</function></para>
          <para>
	    Euler's constant gamma.  Sometimes called the
	    Euler-Mascheroni constant.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/MascheroniConstant">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/Euler-MascheroniConstant.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-GoldenRatio"/>GoldenRatio</term>
         <listitem>
          <synopsis>GoldenRatio</synopsis>
          <para>The Golden Ratio.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Golden_ratio">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/GoldenRatio">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/GoldenRatio.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Gravity"/>Gravity</term>
         <listitem>
          <synopsis>Gravity</synopsis>
	  <para>Free fall acceleration at sea level in meters per second squared.  This is the standard gravity constant 9.80665.  The gravity
		  in your particular neck of the woods might be different due to different altitude and the fact that the earth is not perfectly
	  	  round and uniform.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Standard_gravity">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-e"/>e</term>
         <listitem>
          <synopsis>e</synopsis>
          <para>
	    The base of the natural logarithm.  <userinput>e^x</userinput>
	    is the exponential function
	    <link linkend="gel-function-exp"><function>exp</function></link>.  It is approximately
	    2.71828182846...  This number is sometimes called Euler's number, although there are
	    several numbers that are also called Euler's.  An example is the gamma constant: <link linkend="gel-function-EulerConstant"><function>EulerConstant</function></link>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/E_(mathematical_constant)">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/E">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/e.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-pi"/>pi</term>
         <listitem>
          <synopsis>pi</synopsis>
          <para>Число «пи» — отношение длины окружности к её диаметру. Значение приблизительно равно 3.14159265359...</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Pi">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/Pi">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/Pi.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-numeric">
      <title>Числовые</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-AbsoluteValue"/>AbsoluteValue</term>
         <listitem>
          <synopsis>AbsoluteValue (x)</synopsis>
          <para>Синонимы: <function>abs</function></para>
          <para>
	    Absolute value of a number and if <varname>x</varname> is
	    a complex value the modulus of <varname>x</varname>.  I.e. this
	    the distance of <varname>x</varname> to the origin.  This is equivalent
	    to <userinput>|x|</userinput>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Absolute_value">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/AbsoluteValue">Planetmath (absolute value)</ulink>,
	    <ulink url="http://planetmath.org/ModulusOfComplexNumber">Planetmath (modulus)</ulink>,
	    <ulink url="http://mathworld.wolfram.com/AbsoluteValue.html">Mathworld (absolute value)</ulink> or
	    <ulink url="http://mathworld.wolfram.com/ComplexModulus.html">Mathworld (complex modulus)</ulink>
for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Chop"/>Chop</term>
         <listitem>
          <synopsis>Chop (x)</synopsis>
          <para>Заменяет очень малое число нулём.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ComplexConjugate"/>ComplexConjugate</term>
         <listitem>
          <synopsis>ComplexConjugate (z)</synopsis>
          <para>Aliases: <function>conj</function> <function>Conj</function></para>
          <para>Calculates the complex conjugate of the complex number <varname>z</varname>.  If <varname>z</varname> is a vector or matrix,
all its elements are conjugated.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Complex_conjugate">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Denominator"/>Denominator</term>
         <listitem>
          <synopsis>Denominator (x)</synopsis>
          <para>Возвращает знаменатель рационального числа.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Denominator">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FractionalPart"/>FractionalPart</term>
         <listitem>
          <synopsis>FractionalPart (x)</synopsis>
          <para>Возвращает дробную часть числа.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fractional_part">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Im"/>Im</term>
         <listitem>
          <synopsis>Im (z)</synopsis>
          <para>Синонимы: <function>ImaginaryPart</function></para>
          <para>Get the imaginary part of a complex number.  For example <userinput>Re(3+4i)</userinput> yields 4.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Imaginary_part">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IntegerQuotient"/>IntegerQuotient</term>
         <listitem>
          <synopsis>IntegerQuotient (m,n)</synopsis>
          <para>Деление без остатка.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsComplex"/>IsComplex</term>
         <listitem>
          <synopsis>IsComplex (num)</synopsis>
	  <para>Check if argument is a complex (non-real) number.  Do note that we really mean nonreal number.  That is,
	  <userinput>IsComplex(3)</userinput> yields false, while
	  <userinput>IsComplex(3-1i)</userinput> yields true.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsComplexRational"/>IsComplexRational</term>
         <listitem>
          <synopsis>IsComplexRational (num)</synopsis>
	  <para>Check if argument is a possibly complex rational number.  That is, if both real and imaginary parts are
	  given as rational numbers.  Of course rational simply means "not stored as a floating point number."</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsFloat"/>IsFloat</term>
         <listitem>
          <synopsis>IsFloat (num)</synopsis>
          <para>Check if argument is a real floating point number (non-complex).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsGaussInteger"/>IsGaussInteger</term>
         <listitem>
          <synopsis>IsGaussInteger (num)</synopsis>
          <para>Aliases: <function>IsComplexInteger</function></para>
	  <para>Check if argument is a possibly complex integer.  That is a complex integer is a number of
		  the form <userinput>n+1i*m</userinput> where <varname>n</varname> and <varname>m</varname>
	  are integers.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsInteger"/>IsInteger</term>
         <listitem>
          <synopsis>IsInteger (num)</synopsis>
          <para>Проверяет, является ли аргумент целым числом (не комплексным).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsNonNegativeInteger"/>IsNonNegativeInteger</term>
         <listitem>
          <synopsis>IsNonNegativeInteger (num)</synopsis>
          <para>Check if argument is a non-negative real integer.  That is, either a positive integer or zero.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPositiveInteger"/>IsPositiveInteger</term>
         <listitem>
          <synopsis>IsPositiveInteger (num)</synopsis>
          <para>Синонимы: <function>IsNaturalNumber</function></para>
          <para>Проверяет, является ли аргумент положительным действительным целым числом. Обратите внимание, что мы придерживаемся соглашения о том, что 0 не является натуральным числом.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsRational"/>IsRational</term>
         <listitem>
          <synopsis>IsRational (num)</synopsis>
          <para>Проверяет, является ли аргумент рациональным числом (не комплексным). Разумеется, «рациональное» означает просто «не хранящееся в виде числа с плавающей точкой».</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsReal"/>IsReal</term>
         <listitem>
          <synopsis>IsReal (num)</synopsis>
          <para>Проверяет, является ли аргумент действительным числом.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Numerator"/>Numerator</term>
         <listitem>
          <synopsis>Numerator (x)</synopsis>
          <para>Возвращает числитель рационального числа.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Numerator">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Re"/>Re</term>
         <listitem>
          <synopsis>Re (z)</synopsis>
          <para>Синонимы: <function>RealPart</function></para>
	  <para>Get the real part of a complex number.  For example <userinput>Re(3+4i)</userinput> yields 3.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Real_part">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Sign"/>Sign</term>
         <listitem>
          <synopsis>Sign (x)</synopsis>
          <para>Синонимы: <function>sign</function></para>
          <para>Возвращает знак числа. То есть, возвращает <literal>-1</literal>, если значение отрицательно, <literal>0</literal>, если рано нулю и <literal>1</literal>, если значение положительно. Если <varname>x</varname> — комплексное число, то <function>Sign</function> возвращает направление на числовой оси (положительное или отрицательное) или 0.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ceil"/>ceil</term>
         <listitem>
          <synopsis>ceil (x)</synopsis>
          <para>Синонимы: <function>Ceiling</function></para>
	  <para>Возвращает наименьшее целое число, которое больше или равно <varname>n</varname>. Примеры: <screen><prompt>genius&gt;</prompt> <userinput>ceil(1.1)</userinput>
= 2
<prompt>genius&gt;</prompt> <userinput>ceil(-1.1)</userinput>
= -1
</screen></para>
	   <para>Note that you should be careful and notice that floating point
		   numbers are stored in binary and so may not be what you
		   expect.  For example <userinput>ceil(420/4.2)</userinput>
		   returns 101 instead of the expected 100.  This is because
		   4.2 is actually very slightly less than 4.2.  Use rational
		   representation <userinput>42/10</userinput> if you want
		   exact arithmetic.
           </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-exp"/>exp</term>
         <listitem>
          <synopsis>exp (x)</synopsis>
          <para>Экспоненциальная функция. Это функция <userinput>e^x</userinput>, где <varname>e</varname><link linkend="gel-function-e">основание натурального логарифма</link>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Exponential_function">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/LogarithmFunction">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/ExponentialFunction.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-float"/>float</term>
         <listitem>
          <synopsis>float (x)</synopsis>
          <para>Возвращает представление числа <varname>x</varname> в виде числа с плавающей точкой.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-floor"/>floor</term>
         <listitem>
          <synopsis>floor (x)</synopsis>
          <para>Синонимы: <function>Floor</function></para>
          <para>Возвращает наибольшее целое число, которое меньше или равно <varname>n</varname>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ln"/>ln</term>
         <listitem>
          <synopsis>ln (x)</synopsis>
          <para>Натуральный логарифм (логарифм по основанию <varname>e</varname>).</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Natural_logarithm">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/LogarithmFunction">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/NaturalLogarithm.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-log"/>log</term>
         <listitem>
          <synopsis>log (x)</synopsis>
          <synopsis>log (x,b)</synopsis>
	  <para>Logarithm of <varname>x</varname> base <varname>b</varname> (calls <link linkend="gel-function-DiscreteLog"><function>DiscreteLog</function></link> if in modulo mode), if base is not given, <link linkend="gel-function-e"><varname>e</varname></link> is used.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-log10"/>log10</term>
         <listitem>
          <synopsis>log10 (x)</synopsis>
          <para>Логарифм <varname>x</varname> по основанию 10.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-log2"/>log2</term>
         <listitem>
          <synopsis>log2 (x)</synopsis>
          <para>Синоним: <function>lg</function></para>
          <para>Логарифм <varname>x</varname> по основанию 2.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-max"/>max</term>
         <listitem>
          <synopsis>max (a,args...)</synopsis>
          <para>Псевдонимы: <function>Max</function><function>Maximum</function></para>
          <para>Возвращает максимальный из аргументов или элементов матрицы.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-min"/>min</term>
         <listitem>
          <synopsis>min (a,args...)</synopsis>
          <para>Псевдонимы: <function>Min</function><function>Minimum</function></para>
          <para>Возвращает минимальный из аргументов или элементов матрицы.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-rand"/>rand</term>
         <listitem>
          <synopsis>rand (size...)</synopsis>
          <para>Генерирует случайное число с плавающей точкой в диапазоне <literal>[0,1)</literal>. Если задан аргумент size, то может возвращать матрицу (если указано два числа) или вектор (если указано одно число) заданной размерности.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-randint"/>randint</term>
         <listitem>
          <synopsis>randint (max,size...)</synopsis>
          <para>Генерирует случайное целое число в диапазоне <literal>[0,max)</literal>. Если задан аргумент size, возвращает матрицу (если указано два числа) или вектор (если указано одно число) заданной размерности. Например, <screen><prompt>genius&gt;</prompt> <userinput>randint(4)</userinput>
= 3
<prompt>genius&gt;</prompt> <userinput>randint(4,2)</userinput>
=
[0      1]
<prompt>genius&gt;</prompt> <userinput>randint(4,2,3)</userinput>
=
[2      2       1
 0      0       3]
</screen></para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-round"/>round</term>
         <listitem>
          <synopsis>round (x)</synopsis>
          <para>Синонимы: <function>Round</function></para>
          <para>Округляет число.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-sqrt"/>sqrt</term>
         <listitem>
          <synopsis>sqrt (x)</synopsis>
          <para>Синонимы: <function>SquareRoot</function></para>
          <para>The square root.  When operating modulo some integer will return either a <constant>null</constant> or a vector of the square roots.  Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>sqrt(2)</userinput>
= 1.41421356237
<prompt>genius&gt;</prompt> <userinput>sqrt(-1)</userinput>
= 1i
<prompt>genius&gt;</prompt> <userinput>sqrt(4) mod 7</userinput>
=
[2      5]
<prompt>genius&gt;</prompt> <userinput>2*2 mod 7</userinput>
= 4
</screen>
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Square_root">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/SquareRoot">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-trunc"/>trunc</term>
         <listitem>
          <synopsis>trunc (x)</synopsis>
          <para>Синонимы: <function>Truncate</function><function>IntegerPart</function></para>
          <para>Усекает число до целого (возвращает целую часть).</para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-trigonometry">
      <title>Тригонометрические</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-acos"/>acos</term>
         <listitem>
          <synopsis>acos (x)</synopsis>
          <para>Синонимы: <function>arccos</function></para>
          <para>Функция arccos (арккосинус, обратный косинус).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-acosh"/>acosh</term>
         <listitem>
          <synopsis>acosh (x)</synopsis>
          <para>Синонимы: <function>arccosh</function></para>
          <para>Функция arccosh (обратный гиперболический косинус).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-acot"/>acot</term>
         <listitem>
          <synopsis>acot (x)</synopsis>
          <para>Синонимы: <function>arccot</function></para>
          <para>Фунция arccot (арккотангенс, обратный котангенс).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-acoth"/>acoth</term>
         <listitem>
          <synopsis>acoth (x)</synopsis>
          <para>Синонимы: <function>arccoth</function></para>
          <para>Функция arccoth (обратный гиперболический котангенс).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-acsc"/>acsc</term>
         <listitem>
          <synopsis>acsc (x)</synopsis>
          <para>Синонимы: <function>arccsc</function></para>
          <para>Обратный косеканс.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-acsch"/>acsch</term>
         <listitem>
          <synopsis>acsch (x)</synopsis>
          <para>Синонимы: <function>arccsch</function></para>
          <para>Обратный гиперболический косеканс.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-asec"/>asec</term>
         <listitem>
          <synopsis>asec (x)</synopsis>
          <para>Синонимы: <function>arcsec</function></para>
          <para>Обратный секанс.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-asech"/>asech</term>
         <listitem>
          <synopsis>asech (x)</synopsis>
          <para>Синонимы: <function>arcsech</function></para>
          <para>Обратный гиперболический секанс.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-asin"/>asin</term>
         <listitem>
          <synopsis>asin (x)</synopsis>
          <para>Синонимы: <function>arcsin</function></para>
          <para>Функция arcsin (арксинус, обратный синус).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-asinh"/>asinh</term>
         <listitem>
          <synopsis>asinh (x)</synopsis>
          <para>Синонимы: <function>arcsinh</function></para>
          <para>Фунция arcsinh (обратный гиперболический синус).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-atan"/>atan</term>
         <listitem>
          <synopsis>atan (x)</synopsis>
          <para>Синонимы: <function>arctan</function></para>
          <para>Вычисляет функцию arctan (арктангенс, обратный тангенс).</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Arctangent">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/InverseTangent.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-atanh"/>atanh</term>
         <listitem>
          <synopsis>atanh (x)</synopsis>
          <para>Синонимы: <function>arctanh</function></para>
          <para>Функция arctanh (обратный гиперболический тангенс).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-atan2"/>atan2</term>
         <listitem>
          <synopsis>atan2 (y, x)</synopsis>
          <para>Синонимы: <function>arctan2</function></para>
          <para>Calculates the arctan2 function.  If
	  <userinput>x&gt;0</userinput> then it returns
	  <userinput>atan(y/x)</userinput>.  If <userinput>x&lt;0</userinput>
	  then it returns <userinput>sign(y) * (pi - atan(|y/x|)</userinput>.
	  When <userinput>x=0</userinput> it returns <userinput>sign(y) *
	  pi/2</userinput>.  <userinput>atan2(0,0)</userinput> returns 0
	  rather than failing.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Atan2">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/InverseTangent.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-cos"/>cos</term>
         <listitem>
          <synopsis>cos (x)</synopsis>
          <para>Вычисляет косинус.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-cosh"/>cosh</term>
         <listitem>
          <synopsis>cosh (x)</synopsis>
          <para>Вычисляет гиперболический косинус.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-cot"/>cot</term>
         <listitem>
          <synopsis>cot (x)</synopsis>
          <para>Вычисляет котангенс.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-coth"/>coth</term>
         <listitem>
          <synopsis>coth (x)</synopsis>
          <para>Вычисляет гиперболический котангенс.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-csc"/>csc</term>
         <listitem>
          <synopsis>csc (x)</synopsis>
          <para>Вычисляет косеканс.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-csch"/>csch</term>
         <listitem>
          <synopsis>csch (x)</synopsis>
          <para>Вычисляет гиперболический косеканс.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-sec"/>sec</term>
         <listitem>
          <synopsis>sec (x)</synopsis>
          <para>Вычисляет секанс.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-sech"/>sech</term>
         <listitem>
          <synopsis>sech (x)</synopsis>
          <para>Вычисляет гиперболический секанс.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-sin"/>sin</term>
         <listitem>
          <synopsis>sin (x)</synopsis>
          <para>Вычисляет синус.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-sinh"/>sinh</term>
         <listitem>
          <synopsis>sinh (x)</synopsis>
          <para>Вычисляет гиперболический синус.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-tan"/>tan</term>
         <listitem>
          <synopsis>tan (x)</synopsis>
          <para>Вычисляет тангенс.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-tanh"/>tanh</term>
         <listitem>
          <synopsis>tanh (x)</synopsis>
          <para>Вычисляет гиперболический тангенс.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-number-theory">
      <title>Теория чисел</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-AreRelativelyPrime"/>AreRelativelyPrime</term>
         <listitem>
          <synopsis>AreRelativelyPrime (a,b)</synopsis>
          <para>
	    Are the real integers <varname>a</varname> and <varname>b</varname> relatively prime?
	    Returns <constant>true</constant> or <constant>false</constant>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Coprime_integers">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/RelativelyPrime">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/RelativelyPrime.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BernoulliNumber"/>BernoulliNumber</term>
         <listitem>
          <synopsis>BernoulliNumber (n)</synopsis>
          <para>Return the <varname>n</varname>th Bernoulli number.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Bernoulli_number">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/BernoulliNumber.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ChineseRemainder"/>ChineseRemainder</term>
         <listitem>
          <synopsis>ChineseRemainder (a,m)</synopsis>
          <para>Aliases: <function>CRT</function></para>
	  <para>Find the <varname>x</varname> that solves the system given by
		the vector <varname>a</varname> and modulo the elements of
		<varname>m</varname>, using the Chinese Remainder Theorem.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Chinese_remainder_theorem">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/ChineseRemainderTheorem">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/ChineseRemainderTheorem.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CombineFactorizations"/>CombineFactorizations</term>
         <listitem>
          <synopsis>CombineFactorizations (a,b)</synopsis>
	  <para>Given two factorizations, give the factorization of the
		product.</para>
	  <para>See <link linkend="gel-function-Factorize">Factorize</link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ConvertFromBase"/>ConvertFromBase</term>
         <listitem>
          <synopsis>ConvertFromBase (v,b)</synopsis>
          <para>Convert a vector of values indicating powers of b to a number.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ConvertToBase"/>ConvertToBase</term>
         <listitem>
          <synopsis>ConvertToBase (n,b)</synopsis>
          <para>Convert a number to a vector of powers for elements in base <varname>b</varname>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DiscreteLog"/>DiscreteLog</term>
         <listitem>
          <synopsis>DiscreteLog (n,b,q)</synopsis>
          <para>Find discrete log of <varname>n</varname> base <varname>b</varname> in
	    F<subscript>q</subscript>, the finite field of order <varname>q</varname>, where <varname>q</varname>
	    is a prime, using the Silver-Pohlig-Hellman algorithm.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Discrete_logarithm">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/DiscreteLogarithm">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/DiscreteLogarithm.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Divides"/>Divides</term>
         <listitem>
          <synopsis>Divides (m,n)</synopsis>
          <para>Проверяет делимость (делится ли <varname>n</varname> на <varname>m</varname>).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-EulerPhi"/>EulerPhi</term>
         <listitem>
          <synopsis>EulerPhi (n)</synopsis>
          <para>
	    Compute the Euler phi function for <varname>n</varname>, that is
	    the number of integers between 1 and <varname>n</varname>
	    relatively prime to <varname>n</varname>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Euler_phi">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/EulerPhifunction">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/TotientFunction.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ExactDivision"/>ExactDivision</term>
         <listitem>
          <synopsis>ExactDivision (n,d)</synopsis>
          <para>Возвращает <userinput>n/d</userinput>, но только если <varname>n</varname> делится на <varname>d</varname>. Если не делится, то функция возвращает мусор. Для очень больших чисел это гораздо быстрее, чем операция <userinput>n/d</userinput>, но, разумеется, полезно только в том случае, если вы точно знаете, что числа делятся без остатка.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Factorize"/>Factorize</term>
         <listitem>
          <synopsis>Factorize (n)</synopsis>
          <para>
	    Return factorization of a number as a matrix.  The first
	    row is the primes in the factorization (including 1) and the
	    second row are the powers.  So for example:
	    <screen><prompt>genius&gt;</prompt> <userinput>Factorize(11*11*13)</userinput>
=
[1      11      13
 1      2       1]</screen>
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Factorization">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Factors"/>Factors</term>
         <listitem>
          <synopsis>Factors (n)</synopsis>
          <para>
	    Return all factors of <varname>n</varname> in a vector.  This
	    includes all the non-prime factors as well.  It includes 1 and the
	    number itself.  So for example to print all the perfect numbers
	    (those that are sums of their factors) up to the number 1000 you
	    could do (this is of course very inefficient)
	    <programlisting>for n=1 to 1000 do (
    if MatrixSum (Factors(n)) == 2*n then
        print(n)
)
</programlisting>
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FermatFactorization"/>FermatFactorization</term>
         <listitem>
          <synopsis>FermatFactorization (n,tries)</synopsis>
          <para>
	    Attempt Fermat factorization of <varname>n</varname> into
	    <userinput>(t-s)*(t+s)</userinput>, returns <varname>t</varname>
	    and <varname>s</varname> as a vector if possible, <constant>null</constant> otherwise.
	    <varname>tries</varname> specifies the number of tries before
	    giving up.
	  </para>
          <para>
	    This is a fairly good factorization if your number is the product
	    of two factors that are very close to each other.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fermat_factorization">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FindPrimitiveElementMod"/>FindPrimitiveElementMod</term>
         <listitem>
          <synopsis>FindPrimitiveElementMod (q)</synopsis>
          <para>Find the first primitive element in F<subscript>q</subscript>, the finite
group of order <varname>q</varname>.  Of course <varname>q</varname> must be a prime.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FindRandomPrimitiveElementMod"/>FindRandomPrimitiveElementMod</term>
         <listitem>
          <synopsis>FindRandomPrimitiveElementMod (q)</synopsis>
          <para>Find a random primitive element in F<subscript>q</subscript>, the finite
group of order <varname>q</varname> (q must be a prime).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IndexCalculus"/>IndexCalculus</term>
         <listitem>
          <synopsis>IndexCalculus (n,b,q,S)</synopsis>
          <para>Compute discrete log base <varname>b</varname> of n in F<subscript>q</subscript>, the finite
group of order <varname>q</varname> (<varname>q</varname> a prime), using the
factor base <varname>S</varname>.  <varname>S</varname> should be a column of
primes possibly with second column precalculated by
<link linkend="gel-function-IndexCalculusPrecalculation"><function>IndexCalculusPrecalculation</function></link>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IndexCalculusPrecalculation"/>IndexCalculusPrecalculation</term>
         <listitem>
          <synopsis>IndexCalculusPrecalculation (b,q,S)</synopsis>
	  <para>Run the precalculation step of
		  <link linkend="gel-function-IndexCalculus"><function>IndexCalculus</function></link> for logarithms base <varname>b</varname> in
F<subscript>q</subscript>, the finite group of order <varname>q</varname>
(<varname>q</varname> a prime), for the factor base <varname>S</varname> (where
<varname>S</varname> is a column vector of primes).  The logs will be
precalculated and returned in the second column.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsEven"/>IsEven</term>
         <listitem>
          <synopsis>IsEven (n)</synopsis>
          <para>Проверяет, является ли целое число чётным.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsMersennePrimeExponent"/>IsMersennePrimeExponent</term>
         <listitem>
          <synopsis>IsMersennePrimeExponent (p)</synopsis>
          <para>
	    Tests if a positive integer <varname>p</varname> is a
	    Mersenne prime exponent.  That is if 
            2<superscript>p</superscript>-1 is a prime.  It does this
	    by looking it up in a table of known values, which is relatively
	    short.
	    See also
	    <link linkend="gel-function-MersennePrimeExponents">MersennePrimeExponents</link>
	    and
	    <link linkend="gel-function-LucasLehmer">LucasLehmer</link>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Mersenne_prime">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/MersenneNumbers">Planetmath</ulink>,
	    <ulink url="http://mathworld.wolfram.com/MersennePrime.html">Mathworld</ulink> or 
	    <ulink url="http://www.mersenne.org/">GIMPS</ulink>
 for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsNthPower"/>IsNthPower</term>
         <listitem>
          <synopsis>IsNthPower (m,n)</synopsis>
          <para>
	    Tests if a rational number <varname>m</varname> is a perfect
	    <varname>n</varname>th power.  See also
	    <link linkend="gel-function-IsPerfectPower">IsPerfectPower</link>
	    and
	    <link linkend="gel-function-IsPerfectSquare">IsPerfectSquare</link>.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsOdd"/>IsOdd</term>
         <listitem>
          <synopsis>IsOdd (n)</synopsis>
          <para>Проверяет, является ли целое число нечётным.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPerfectPower"/>IsPerfectPower</term>
         <listitem>
          <synopsis>IsPerfectPower (n)</synopsis>
          <para>Check an integer for being any perfect power, a<superscript>b</superscript>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPerfectSquare"/>IsPerfectSquare</term>
         <listitem>
          <synopsis>IsPerfectSquare (n)</synopsis>
          <para>
	    Check an integer for being a perfect square of an integer.  The number must
	    be an integer.  Negative integers are of course never perfect
	    squares of integers.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPrime"/>IsPrime</term>
         <listitem>
          <synopsis>IsPrime (n)</synopsis>
          <para>
	    Tests primality of integers, for numbers less than 2.5e10 the
	    answer is deterministic (if Riemann hypothesis is true).  For
	    numbers larger, the probability of a false positive
	    depends on
	    <link linkend="gel-function-IsPrimeMillerRabinReps">
	    <function>IsPrimeMillerRabinReps</function></link>.  That
	    is the probability of false positive is 1/4 to the power
	    <function>IsPrimeMillerRabinReps</function>.  The default
	    value of 22 yields a probability of about 5.7e-14.
	  </para>
          <para>
	    If <constant>false</constant> is returned, you can be sure that
	    the number is a composite.  If you want to be absolutely sure
	    that you have a prime you can use 
	    <link linkend="gel-function-MillerRabinTestSure">
	    <function>MillerRabinTestSure</function></link> but it may take
	    a lot longer.
	  </para>
          <para>
	    See
	    <ulink url="http://planetmath.org/PrimeNumber">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/PrimeNumber.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPrimitiveMod"/>IsPrimitiveMod</term>
         <listitem>
          <synopsis>IsPrimitiveMod (g,q)</synopsis>
          <para>Check if <varname>g</varname> is primitive in F<subscript>q</subscript>, the finite
group of order <varname>q</varname>, where <varname>q</varname> is a prime.  If <varname>q</varname> is not prime results are bogus.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPrimitiveModWithPrimeFactors"/>IsPrimitiveModWithPrimeFactors</term>
         <listitem>
          <synopsis>IsPrimitiveModWithPrimeFactors (g,q,f)</synopsis>
          <para>Check if <varname>g</varname> is primitive in F<subscript>q</subscript>, the finite
group of order <varname>q</varname>, where <varname>q</varname> is a prime and
<varname>f</varname> is a vector of prime factors of <varname>q</varname>-1.
If <varname>q</varname> is not prime results are bogus.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPseudoprime"/>IsPseudoprime</term>
         <listitem>
          <synopsis>IsPseudoprime (n,b)</synopsis>
          <para>If <varname>n</varname> is a pseudoprime base <varname>b</varname> but not a prime,
		  that is if <userinput>b^(n-1) == 1 mod n</userinput>.  This calls the <link linkend="gel-function-PseudoprimeTest"><function>PseudoprimeTest</function></link></para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsStrongPseudoprime"/>IsStrongPseudoprime</term>
         <listitem>
          <synopsis>IsStrongPseudoprime (n,b)</synopsis>
          <para>Test if <varname>n</varname> is a strong pseudoprime to base <varname>b</varname> but not a prime.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Jacobi"/>Jacobi</term>
         <listitem>
          <synopsis>Jacobi (a,b)</synopsis>
          <para>Синонимы: <function>JacobiSymbol</function></para>
          <para>Вычисляет символ Якоби (a/b) (b должно быть нечётным).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-JacobiKronecker"/>JacobiKronecker</term>
         <listitem>
          <synopsis>JacobiKronecker (a,b)</synopsis>
          <para>Синонимы: <function>JacobiKroneckerSymbol</function></para>
          <para>Вычисляет символ Якоби (a/b) с дополнением Кронекера (a/2)=(2/a), если нечётное или (a/2)=0, если чётное.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LeastAbsoluteResidue"/>LeastAbsoluteResidue</term>
         <listitem>
          <synopsis>LeastAbsoluteResidue (a,n)</synopsis>
          <para>Return the residue of <varname>a</varname> mod <varname>n</varname> with the least absolute value (in the interval -n/2 to n/2).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Legendre"/>Legendre</term>
         <listitem>
          <synopsis>Legendre (a,p)</synopsis>
          <para>Aliases: <function>LegendreSymbol</function></para>
          <para>Calculate the Legendre symbol (a/p).</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/LegendreSymbol">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/LegendreSymbol.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LucasLehmer"/>LucasLehmer</term>
         <listitem>
          <synopsis>LucasLehmer (p)</synopsis>
          <para>Test if 2<superscript>p</superscript>-1 is a Mersenne prime using the Lucas-Lehmer test.
	    See also
	    <link linkend="gel-function-MersennePrimeExponents">MersennePrimeExponents</link>
	    and
	    <link linkend="gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</link>.
          </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/LucasLhemer">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/Lucas-LehmerTest.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LucasNumber"/>LucasNumber</term>
         <listitem>
          <synopsis>LucasNumber (n)</synopsis>
          <para>Returns the <varname>n</varname>th Lucas number.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Lucas_number">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/LucasNumbers">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/LucasNumber.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MaximalPrimePowerFactors"/>MaximalPrimePowerFactors</term>
         <listitem>
          <synopsis>MaximalPrimePowerFactors (n)</synopsis>
          <para>Return all maximal prime power factors of a number.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MersennePrimeExponents"/>MersennePrimeExponents</term>
         <listitem>
          <synopsis>MersennePrimeExponents</synopsis>
          <para>
	    A vector of known Mersenne prime exponents, that is
	    a list of positive integers
	    <varname>p</varname> such that
            2<superscript>p</superscript>-1 is a prime.
	    See also
	    <link linkend="gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</link>
	    and
	    <link linkend="gel-function-LucasLehmer">LucasLehmer</link>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Mersenne_prime">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/MersenneNumbers">Planetmath</ulink>,
	    <ulink url="http://mathworld.wolfram.com/MersennePrime.html">Mathworld</ulink> or 
	    <ulink url="http://www.mersenne.org/">GIMPS</ulink>
 for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MillerRabinTest"/>MillerRabinTest</term>
         <listitem>
          <synopsis>MillerRabinTest (n,reps)</synopsis>
          <para>
	    Use the Miller-Rabin primality test on <varname>n</varname>,
	    <varname>reps</varname> number of times.  The probability of false
	    positive is <userinput>(1/4)^reps</userinput>.  It is probably
	    usually better to use
	    <link linkend="gel-function-IsPrime">
	    <function>IsPrime</function></link> since that is faster and
	    better on smaller integers.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/MillerRabinPrimeTest">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MillerRabinTestSure"/>MillerRabinTestSure</term>
         <listitem>
          <synopsis>MillerRabinTestSure (n)</synopsis>
          <para>
	    Use the Miller-Rabin primality test on <varname>n</varname> with
	    enough bases that assuming the Generalized Riemann Hypothesis the
	    result is deterministic.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/MillerRabinPrimeTest">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ModInvert"/>ModInvert</term>
         <listitem>
          <synopsis>ModInvert (n,m)</synopsis>
          <para>Returns inverse of n mod m.</para>
          <para>
	    See
	    <ulink url="http://mathworld.wolfram.com/ModularInverse.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MoebiusMu"/>MoebiusMu</term>
         <listitem>
          <synopsis>MoebiusMu (n)</synopsis>
          <para>
	    Return the Moebius mu function evaluated in <varname>n</varname>.
	    That is, it returns 0 if <varname>n</varname> is not a product
	    of distinct primes and <userinput>(-1)^k</userinput> if it is
	    a product of <varname>k</varname> distinct primes.
	  </para>
          <para>
	    See
	    <ulink url="http://planetmath.org/MoebiusFunction">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/MoebiusFunction.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NextPrime"/>NextPrime</term>
         <listitem>
          <synopsis>NextPrime (n)</synopsis>
          <para>
	    Returns the least prime greater than <varname>n</varname>.
	    Negatives of primes are considered prime and so to get the
	    previous prime you can use <userinput>-NextPrime(-n)</userinput>.
	  </para>
          <para>
	    This function uses the GMPs <function>mpz_nextprime</function>,
	    which in turn uses the probabilistic Miller-Rabin test
	    (See also <link linkend="gel-function-MillerRabinTest"><function>MillerRabinTest</function></link>).
	    The probability
	    of false positive is not tunable, but is low enough
	    for all practical purposes.
	  </para>
          <para>
	    See
	    <ulink url="http://planetmath.org/PrimeNumber">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/PrimeNumber.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PadicValuation"/>PadicValuation</term>
         <listitem>
          <synopsis>PadicValuation (n,p)</synopsis>
          <para>Returns the p-adic valuation (number of trailing zeros in base <varname>p</varname>).</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/P-adic_order">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/PAdicValuation">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PowerMod"/>PowerMod</term>
         <listitem>
          <synopsis>PowerMod (a,b,m)</synopsis>
          <para>
	    Compute <userinput>a^b mod m</userinput>.  The
	    <varname>b</varname>'s power of <varname>a</varname> modulo
	    <varname>m</varname>.  It is not necessary to use this function
	    as it is automatically used in modulo mode.  Hence
	    <userinput>a^b mod m</userinput> is just as fast.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Prime"/>Prime</term>
         <listitem>
          <synopsis>Prime (n)</synopsis>
          <para>Aliases: <function>prime</function></para>
          <para>Return the <varname>n</varname>th prime (up to a limit).</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/PrimeNumber">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/PrimeNumber.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PrimeFactors"/>PrimeFactors</term>
         <listitem>
          <synopsis>PrimeFactors (n)</synopsis>
          <para>Return all prime factors of a number as a vector.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Prime_factor">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/PrimeFactor.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PseudoprimeTest"/>PseudoprimeTest</term>
         <listitem>
          <synopsis>PseudoprimeTest (n,b)</synopsis>
	  <para>Pseudoprime test, returns <constant>true</constant> if and only if
		<userinput>b^(n-1) == 1  mod n</userinput></para>
          <para>
	    See
	    <ulink url="http://planetmath.org/Pseudoprime">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/Pseudoprime.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RemoveFactor"/>RemoveFactor</term>
         <listitem>
          <synopsis>RemoveFactor (n,m)</synopsis>
          <para>Removes all instances of the factor <varname>m</varname> from the number <varname>n</varname>.  That is divides by the largest power of <varname>m</varname>, that divides <varname>n</varname>.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/Divisibility">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/Factor.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SilverPohligHellmanWithFactorization"/>SilverPohligHellmanWithFactorization</term>
         <listitem>
          <synopsis>SilverPohligHellmanWithFactorization (n,b,q,f)</synopsis>
          <para>Find discrete log of <varname>n</varname> base <varname>b</varname> in F<subscript>q</subscript>, the finite group of order <varname>q</varname>, where <varname>q</varname> is a prime using the Silver-Pohlig-Hellman algorithm, given <varname>f</varname> being the factorization of <varname>q</varname>-1.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SqrtModPrime"/>SqrtModPrime</term>
         <listitem>
          <synopsis>SqrtModPrime (n,p)</synopsis>
          <para>Find square root of <varname>n</varname> modulo <varname>p</varname> (where <varname>p</varname> is a prime).  Null is returned if not a quadratic residue.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/QuadraticResidue">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/QuadraticResidue.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-StrongPseudoprimeTest"/>StrongPseudoprimeTest</term>
         <listitem>
          <synopsis>StrongPseudoprimeTest (n,b)</synopsis>
          <para>Run the strong pseudoprime test base <varname>b</varname> on <varname>n</varname>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Strong_pseudoprime">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/StrongPseudoprime">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/StrongPseudoprime.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-gcd"/>gcd</term>
         <listitem>
          <synopsis>gcd (a,args...)</synopsis>
          <para>Aliases: <function>GCD</function></para>
          <para>
	    Greatest common divisor of integers.  You can enter as many
	    integers as you want in the argument list, or you can give
	    a vector or a matrix of integers.  If you give more than
	    one matrix of the same size then GCD is done element by
	    element.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Greatest_common_divisor">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/GreatestCommonDivisor">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/GreatestCommonDivisor.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-lcm"/>lcm</term>
         <listitem>
          <synopsis>lcm (a,args...)</synopsis>
          <para>Aliases: <function>LCM</function></para>
          <para>
	    Least common multiplier of integers.  You can enter as many
	    integers as you want in the argument list, or you can give a 
	    vector or a matrix of integers.  If you give more than one
	    matrix of the same size then LCM is done element by element.    
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Least_common_multiple">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/LeastCommonMultiple">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/LeastCommonMultiple.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-matrix">
      <title>Операции с матрицами</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-ApplyOverMatrix"/>ApplyOverMatrix</term>
         <listitem>
          <synopsis>ApplyOverMatrix (a,func)</synopsis>
          <para>Применяет функцию к каждому элементу матрицы и возвращает матрицу результатов.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ApplyOverMatrix2"/>ApplyOverMatrix2</term>
         <listitem>
          <synopsis>ApplyOverMatrix2 (a,b,func)</synopsis>
          <para>Применяет функцию к каждому элементу двух матриц (или 1 значению и 1 матрице) и возвращает матрицу результатов.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ColumnsOf"/>ColumnsOf</term>
         <listitem>
          <synopsis>ColumnsOf (M)</synopsis>
          <para>Возвращает столбцы матрицы в виде горизонтального вектора.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ComplementSubmatrix"/>ComplementSubmatrix</term>
         <listitem>
          <synopsis>ComplementSubmatrix (m,r,c)</synopsis>
          <para>Remove column(s) and row(s) from a matrix.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CompoundMatrix"/>CompoundMatrix</term>
         <listitem>
          <synopsis>CompoundMatrix (k,A)</synopsis>
          <para>Calculate the kth compound matrix of A.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CountZeroColumns"/>CountZeroColumns</term>
         <listitem>
          <synopsis>CountZeroColumns (M)</synopsis>
          <para>
	   Count the number of zero columns in a matrix.  For example,
	   once you column-reduce a matrix, you can use this to find
	   the nullity.  See <link linkend="gel-function-cref"><function>cref</function></link>
	   and <link linkend="gel-function-Nullity"><function>Nullity</function></link>.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DeleteColumn"/>DeleteColumn</term>
         <listitem>
          <synopsis>DeleteColumn (M,столбец)</synopsis>
          <para>Удаляет столбец матрицы.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DeleteRow"/>DeleteRow</term>
         <listitem>
          <synopsis>DeleteRow (M,строка)</synopsis>
          <para>Удаляет строку матрицы.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DiagonalOf"/>DiagonalOf</term>
         <listitem>
          <synopsis>DiagonalOf (M)</synopsis>
          <para>Gets the diagonal entries of a matrix as a column vector.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DotProduct"/>DotProduct</term>
         <listitem>
          <synopsis>DotProduct (u,v)</synopsis>
	  <para>Get the dot product of two vectors.  The vectors must be of the
		  same size.  No conjugates are taken so this is a bilinear form even if working over the complex numbers; This is the bilinear scalar product not the sesquilinear scalar product.  See <link linkend="gel-function-HermitianProduct">HermitianProduct</link> for the standard sesquilinear inner product.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Dot_product">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DotProduct">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ExpandMatrix"/>ExpandMatrix</term>
         <listitem>
          <synopsis>ExpandMatrix (M)</synopsis>
          <para>
	    Expands a matrix just like we do on unquoted matrix input.
	    That is we expand any internal matrices as blocks.  This is
	    a way to construct matrices out of smaller ones and this is
	    normally done automatically on input unless the matrix is quoted.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-HermitianProduct"/>HermitianProduct</term>
         <listitem>
          <synopsis>HermitianProduct (u,v)</synopsis>
          <para>Aliases: <function>InnerProduct</function></para>
          <para>Get the Hermitian product of two vectors.  The vectors must be of the same size.  This is a sesquilinear form using the identity matrix.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Sesquilinear_form">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/HermitianInnerProduct.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-I"/>I</term>
         <listitem>
          <synopsis>I (n)</synopsis>
          <para>Aliases: <function>eye</function></para>
	  <para>Return an identity matrix of a given size, that is <varname>n</varname> by <varname>n</varname>.  If <varname>n</varname> is zero, returns <constant>null</constant>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Identity_matrix">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/IdentityMatrix">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IndexComplement"/>IndexComplement</term>
         <listitem>
          <synopsis>IndexComplement (vec,msize)</synopsis>
          <para>Return the index complement of a vector of indexes.  Everything is one based.  For example for vector <userinput>[2,3]</userinput> and size
<userinput>5</userinput>, we return <userinput>[1,4,5]</userinput>.  If
<varname>msize</varname> is 0, we always return <constant>null</constant>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsDiagonal"/>IsDiagonal</term>
         <listitem>
          <synopsis>IsDiagonal (M)</synopsis>
          <para>Является ли матрица диагональной.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Diagonal_matrix">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DiagonalMatrix">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsIdentity"/>IsIdentity</term>
         <listitem>
          <synopsis>IsIdentity (x)</synopsis>
          <para>Check if a matrix is the identity matrix.  Automatically returns <constant>false</constant>
	    if the matrix is not square.  Also works on numbers, in which
	    case it is equivalent to <userinput>x==1</userinput>.  When <varname>x</varname> is
	    <constant>null</constant> (we could think of that as a 0 by 0 matrix),
	    no error is generated and <constant>false</constant> is returned.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsLowerTriangular"/>IsLowerTriangular</term>
         <listitem>
          <synopsis>IsLowerTriangular (M)</synopsis>
          <para>Является ли матрица нижнетреугольной, то есть все её элементы над диагональю равны нулю.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsMatrixInteger"/>IsMatrixInteger</term>
         <listitem>
          <synopsis>IsMatrixInteger (M)</synopsis>
          <para>Check if a matrix is a matrix of integers (non-complex).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsMatrixNonnegative"/>IsMatrixNonnegative</term>
         <listitem>
          <synopsis>IsMatrixNonnegative (M)</synopsis>
          <para>Check if a matrix is non-negative, that is if each element is non-negative.
	  Do not confuse positive matrices with positive semi-definite matrices.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Positive_matrix">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsMatrixPositive"/>IsMatrixPositive</term>
         <listitem>
          <synopsis>IsMatrixPositive (M)</synopsis>
	  <para>Check if a matrix is positive, that is if each element is
positive (and hence real).  In particular, no element is 0.  Do not confuse
positive matrices with positive definite matrices.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Positive_matrix">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsMatrixRational"/>IsMatrixRational</term>
         <listitem>
          <synopsis>IsMatrixRational (M)</synopsis>
          <para>Проверяет, является ли матрица матрицей из рациональных (не комплексных) чисел.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsMatrixReal"/>IsMatrixReal</term>
         <listitem>
          <synopsis>IsMatrixReal (M)</synopsis>
          <para>Проверяет, является ли матрица матрицей из действительных (не комплексных) чисел.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsMatrixSquare"/>IsMatrixSquare</term>
         <listitem>
          <synopsis>IsMatrixSquare (M)</synopsis>
          <para>Проверяет, является ли матрица квадратной, то есть её ширина равна высоте.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsUpperTriangular"/>IsUpperTriangular</term>
         <listitem>
          <synopsis>IsUpperTriangular (M)</synopsis>
          <para>Is a matrix upper triangular?  That is, a matrix is upper triangular if all the entries below the diagonal are zero.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsValueOnly"/>IsValueOnly</term>
         <listitem>
          <synopsis>IsValueOnly (M)</synopsis>
          <para>Проверяет, состоит ли матрица только из чисел. Многие встроенные функции делают эту проверку. Значения могут быть любыми числами, включая комплексные.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsVector"/>IsVector</term>
         <listitem>
          <synopsis>IsVector (v)</synopsis>
          <para>Является ли аргумент горизонтальным или вертикальным вектором. Genius не делает различий между матрицей и вектором: вектор — это просто матрица 1 на <varname>n</varname> или <varname>n</varname> на 1.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsZero"/>IsZero</term>
         <listitem>
          <synopsis>IsZero (x)</synopsis>
          <para>Проверяет, состоит ли матрица из одних нулей. Также работает с числами, в этом случае эквивалентна выражению <userinput>x==0</userinput>. Если переменная <varname>x</varname> равна <constant>null</constant> (можно представить это, как матрицу 0 на 0 элементов), ошибка не генерируется и возвращается <constant>true</constant>, так как условие является бессмысленным.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LowerTriangular"/>LowerTriangular</term>
         <listitem>
          <synopsis>LowerTriangular (M)</synopsis>
          <para>Возвращает копию матрицы <varname>M</varname>, в которой все элементы под диагональю заменены нулями.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MakeDiagonal"/>MakeDiagonal</term>
         <listitem>
          <synopsis>MakeDiagonal (v,arg...)</synopsis>
          <para>Псевдоним: <function>diag</function></para>
	  <para>Создаёт диагональную матрицу из вектора. Значения для диагонали также могут быть переданы в виде аргументов функции. Поэтому <userinput>MakeDiagonal([1,2,3])</userinput> — то же самое, что и <userinput>MakeDiagonal(1,2,3)</userinput>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Diagonal_matrix">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/DiagonalMatrix">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MakeVector"/>MakeVector</term>
         <listitem>
          <synopsis>MakeVector (A)</synopsis>
          <para>Make column vector out of matrix by putting columns above
		  each other.  Returns <constant>null</constant> when given <constant>null</constant>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MatrixProduct"/>MatrixProduct</term>
         <listitem>
          <synopsis>MatrixProduct (A)</synopsis>
          <para>Вычисляет произведение всех элементов матрицы или вектора. То есть, умножает друг на друга все элементы и возвращает число, являющееся их произведением.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MatrixSum"/>MatrixSum</term>
         <listitem>
          <synopsis>MatrixSum (A)</synopsis>
          <para>Вычисляет сумму всех элементов матрицы или вектора. То есть, складывает все элементы и возвращает число, являющееся их суммой.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MatrixSumSquares"/>MatrixSumSquares</term>
         <listitem>
          <synopsis>MatrixSumSquares (A)</synopsis>
          <para>Вычисляет сумму квадратов всех элементов матрицы или вектора.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NonzeroColumns"/>NonzeroColumns</term>
         <listitem>
          <synopsis>NonzeroColumns (M)</synopsis>
          <para>Returns a row vector of the indices of nonzero columns in the matrix <varname>M</varname>.</para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NonzeroElements"/>NonzeroElements</term>
         <listitem>
          <synopsis>NonzeroElements (v)</synopsis>
          <para>Returns a row vector of the indices of nonzero elements in the vector <varname>v</varname>.</para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-OuterProduct"/>OuterProduct</term>
         <listitem>
          <synopsis>OuterProduct (u,v)</synopsis>
          <para>Get the outer product of two vectors.  That is, suppose that
<varname>u</varname> and <varname>v</varname> are vertical vectors, then
the outer product is <userinput>v * u.'</userinput>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ReverseVector"/>ReverseVector</term>
         <listitem>
          <synopsis>ReverseVector (v)</synopsis>
	  <para>Reverse elements in a vector.  Return <constant>null</constant> if given <constant>null</constant></para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RowSum"/>RowSum</term>
         <listitem>
          <synopsis>RowSum (m)</synopsis>
          <para>Вычисляет суммы элементов в каждой строке матрицы и возвращает вертикальный вектор с результатом.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RowSumSquares"/>RowSumSquares</term>
         <listitem>
          <synopsis>RowSumSquares (m)</synopsis>
          <para>Вычисляет суммы квадратов элементов в каждой строке матрицы и возвращает вертикальный вектор с результатами.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RowsOf"/>RowsOf</term>
         <listitem>
          <synopsis>RowsOf (M)</synopsis>
	  <para>Gets the rows of a matrix as a vertical vector.  Each element
of the vector is a horizontal vector that is the corresponding row of
<varname>M</varname>.  This function is useful if you wish to loop over the
rows of a matrix.  For example, as <userinput>for r in RowsOf(M) do
something(r)</userinput>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SetMatrixSize"/>SetMatrixSize</term>
         <listitem>
          <synopsis>SetMatrixSize (M,строки,столбцы)</synopsis>
          <para>Make new matrix of given size from old one.  That is, a new
	  matrix will be returned to which the old one is copied.  Entries that
	  don't fit are clipped and extra space is filled with zeros.
	  If <varname>rows</varname> or <varname>columns</varname> are zero
	  then <constant>null</constant> is returned.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ShuffleVector"/>ShuffleVector</term>
         <listitem>
          <synopsis>ShuffleVector (v)</synopsis>
	  <para>Shuffle elements in a vector.  Return <constant>null</constant> if given <constant>null</constant>.</para>
	  <para>Version 1.0.13 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SortVector"/>SortVector</term>
         <listitem>
          <synopsis>SortVector (v)</synopsis>
          <para>Sort vector elements in an increasing order.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-StripZeroColumns"/>StripZeroColumns</term>
         <listitem>
          <synopsis>StripZeroColumns (M)</synopsis>
          <para>Удаляет все состоящие только из нулей столбцы матрицы <varname>M</varname>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-StripZeroRows"/>StripZeroRows</term>
         <listitem>
          <synopsis>StripZeroRows (M)</synopsis>
          <para>Удаляет все состоящие только из нулей строки матрицы <varname>M</varname>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Submatrix"/>Submatrix</term>
         <listitem>
          <synopsis>Submatrix (m,r,c)</synopsis>
          <para>Return column(s) and row(s) from a matrix.  This is
just equivalent to <userinput>m@(r,c)</userinput>.  <varname>r</varname>
and <varname>c</varname> should be vectors of rows and columns (or single numbers if only one row or column is needed).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SwapRows"/>SwapRows</term>
         <listitem>
          <synopsis>SwapRows (m,строка1,строка2)</synopsis>
          <para>Меняет местами две строки матрицы.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-UpperTriangular"/>UpperTriangular</term>
         <listitem>
          <synopsis>UpperTriangular (M)</synopsis>
          <para>Возвращает копию матрицы <varname>M</varname>, в которой все элементы под диагональю заменены нулями.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-columns"/>columns</term>
         <listitem>
          <synopsis>columns (M)</synopsis>
          <para>Возвращает число столбцов в матрице.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-elements"/>elements</term>
         <listitem>
          <synopsis>elements (M)</synopsis>
          <para>Возвращает общее число элементов в матрице. Это число столбцов, умноженное на число строк.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ones"/>ones</term>
         <listitem>
          <synopsis>ones (строки,столбцы...)</synopsis>
	  <para>Создаёт матрицу, состоящую только из единиц (или строчный вектор, если задан только один аргумент). Возвращает <constant>null</constant>, если задано число строк или столбцов, равное нулю.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-rows"/>rows</term>
         <listitem>
          <synopsis>rows (M)</synopsis>
          <para>Возвращает число строк в матрице.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-zeros"/>zeros</term>
         <listitem>
          <synopsis>zeros (строки,столбцы...)</synopsis>
	  <para>Создаёт матрицу, состоящую только из единиц (или строчный вектор, если задан только один аргумент). Возвращает <constant>null</constant>, если задано число строк или столбцов, равное нулю.</para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-linear-algebra">
      <title>Линейная алгебра</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-AuxiliaryUnitMatrix"/>AuxiliaryUnitMatrix</term>
         <listitem>
          <synopsis>AuxiliaryUnitMatrix (n)</synopsis>
          <para>Get the auxiliary unit matrix of size <varname>n</varname>.  This is a square matrix with that is all zero except the
superdiagonal being all ones.  It is the Jordan block matrix of one zero eigenvalue.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/JordanCanonicalFormTheorem">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/JordanBlock.html">Mathworld</ulink> for more information on Jordan Canonical Form.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BilinearForm"/>BilinearForm</term>
         <listitem>
          <synopsis>BilinearForm (v,A,w)</synopsis>
          <para>Evaluate (v,w) with respect to the bilinear form given by the matrix A.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BilinearFormFunction"/>BilinearFormFunction</term>
         <listitem>
          <synopsis>BilinearFormFunction (A)</synopsis>
          <para>Return a function that evaluates two vectors with respect to the bilinear form given by A.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CharacteristicPolynomial"/>CharacteristicPolynomial</term>
         <listitem>
          <synopsis>CharacteristicPolynomial (M)</synopsis>
          <para>Aliases: <function>CharPoly</function></para>
	  <para>Get the characteristic polynomial as a vector.  That is, return
the coefficients of the polynomial starting with the constant term.  This is
the polynomial defined by <userinput>det(M-xI)</userinput>.  The roots of this
polynomial are the eigenvalues of <varname>M</varname>.
See also <link linkend="gel-function-CharacteristicPolynomialFunction">CharacteristicPolynomialFunction</link>.
</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Characteristic_polynomial">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/CharacteristicEquation">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CharacteristicPolynomialFunction"/>CharacteristicPolynomialFunction</term>
         <listitem>
          <synopsis>CharacteristicPolynomialFunction (M)</synopsis>
	  <para>Get the characteristic polynomial as a function.  This is
the polynomial defined by <userinput>det(M-xI)</userinput>.  The roots of this
polynomial are the eigenvalues of <varname>M</varname>.
See also <link linkend="gel-function-CharacteristicPolynomial">CharacteristicPolynomial</link>.
</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Characteristic_polynomial">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/CharacteristicEquation">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ColumnSpace"/>ColumnSpace</term>
         <listitem>
          <synopsis>ColumnSpace (M)</synopsis>
	  <para>Get a basis matrix for the columnspace of a matrix.  That is,
return a matrix whose columns are the basis for the column space of
<varname>M</varname>.  That is the space spanned by the columns of
<varname>M</varname>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Row_and_column_spaces">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CommutationMatrix"/>CommutationMatrix</term>
         <listitem>
          <synopsis>CommutationMatrix (m, n)</synopsis>
	  <para>Return the commutation matrix <userinput>K(m,n)</userinput>, which is the unique <userinput>m*n</userinput> by
		  <userinput>m*n</userinput> matrix such that <userinput>K(m,n) * MakeVector(A) = MakeVector(A.')</userinput> for all <varname>m</varname> by <varname>n</varname>
		  matrices <varname>A</varname>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CompanionMatrix"/>CompanionMatrix</term>
         <listitem>
          <synopsis>CompanionMatrix (p)</synopsis>
          <para>Companion matrix of a polynomial (as vector).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ConjugateTranspose"/>ConjugateTranspose</term>
         <listitem>
          <synopsis>ConjugateTranspose (M)</synopsis>
          <para>Conjugate transpose of a matrix (adjoint).  This is the
	  same as the <userinput>'</userinput> operator.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Conjugate_transpose">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/ConjugateTranspose">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Convolution"/>Convolution</term>
         <listitem>
          <synopsis>Convolution (a,b)</synopsis>
          <para>Aliases: <function>convol</function></para>
          <para>Calculate convolution of two horizontal vectors.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ConvolutionVector"/>ConvolutionVector</term>
         <listitem>
          <synopsis>ConvolutionVector (a,b)</synopsis>
          <para>Calculate convolution of two horizontal vectors.  Return
result as a vector and not added together.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CrossProduct"/>CrossProduct</term>
         <listitem>
          <synopsis>CrossProduct (v,w)</synopsis>
	  <para>CrossProduct of two vectors in R<superscript>3</superscript> as
		  a column vector.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Cross_product">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DeterminantalDivisorsInteger"/>DeterminantalDivisorsInteger</term>
         <listitem>
          <synopsis>DeterminantalDivisorsInteger (M)</synopsis>
          <para>Get the determinantal divisors of an integer matrix.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DirectSum"/>DirectSum</term>
         <listitem>
          <synopsis>DirectSum (M,N...)</synopsis>
          <para>Direct sum of matrices.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Matrix_addition#directsum">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DirectSumMatrixVector"/>DirectSumMatrixVector</term>
         <listitem>
          <synopsis>DirectSumMatrixVector (v)</synopsis>
          <para>Direct sum of a vector of matrices.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Matrix_addition#directsum">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Eigenvalues"/>Eigenvalues</term>
         <listitem>
          <synopsis>Eigenvalues (M)</synopsis>
          <para>Aliases: <function>eig</function></para>
          <para>Get the eigenvalues of a square matrix.
	    Currently only works for matrices of size up to 4 by 4, or for
	    triangular matrices (for which the eigenvalues are on the
            diagonal).
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Eigenvalue">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/Eigenvalue">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/Eigenvalue.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Eigenvectors"/>Eigenvectors</term>
         <listitem>
          <synopsis>Eigenvectors (M)</synopsis>
          <synopsis>Eigenvectors (M, &amp;eigenvalues)</synopsis>
          <synopsis>Eigenvectors (M, &amp;eigenvalues, &amp;multiplicities)</synopsis>
	  <para>Get the eigenvectors of a square matrix.  Optionally get also
the eigenvalues and their algebraic multiplicities.
	    Currently only works for matrices of size up to 2 by 2.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Eigenvector">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/Eigenvector">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/Eigenvector.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-GramSchmidt"/>GramSchmidt</term>
         <listitem>
          <synopsis>GramSchmidt (v,B...)</synopsis>
	  <para>Apply the Gram-Schmidt process (to the columns) with respect to
inner product given by <varname>B</varname>.  If <varname>B</varname> is not
given then the standard Hermitian product is used.  <varname>B</varname> can
either be a sesquilinear function of two arguments or it can be a matrix giving
a sesquilinear form.  The vectors will be made orthonormal with respect to
<varname>B</varname>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/GramSchmidtOrthogonalization">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-HankelMatrix"/>HankelMatrix</term>
         <listitem>
          <synopsis>HankelMatrix (c,r)</synopsis>
	  <para>Hankel matrix, a matrix whose skew-diagonals are constant.  <varname>c</varname> is the first row and <varname>r</varname> is the
		  last column.  It is assumed that both arguments are vectors and the last element of <varname>c</varname> is the same
		  as the first element of <varname>r</varname>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hankel_matrix">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-HilbertMatrix"/>HilbertMatrix</term>
         <listitem>
          <synopsis>HilbertMatrix (n)</synopsis>
          <para>Hilbert matrix of order <varname>n</varname>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hilbert_matrix">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HilbertMatrix">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Image"/>Image</term>
         <listitem>
          <synopsis>Image (T)</synopsis>
          <para>Get the image (columnspace) of a linear transform.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Row_and_column_spaces">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-InfNorm"/>InfNorm</term>
         <listitem>
          <synopsis>InfNorm (v)</synopsis>
          <para>Get the Inf Norm of a vector, sometimes called the sup norm or the max norm.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-InvariantFactorsInteger"/>InvariantFactorsInteger</term>
         <listitem>
          <synopsis>InvariantFactorsInteger (M)</synopsis>
          <para>Get the invariant factors of a square integer matrix.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-InverseHilbertMatrix"/>InverseHilbertMatrix</term>
         <listitem>
          <synopsis>InverseHilbertMatrix (n)</synopsis>
          <para>Inverse Hilbert matrix of order <varname>n</varname>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hilbert_matrix">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HilbertMatrix">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsHermitian"/>IsHermitian</term>
         <listitem>
          <synopsis>IsHermitian (M)</synopsis>
          <para>Is a matrix Hermitian.  That is, is it equal to its conjugate transpose.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hermitian_matrix">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/HermitianMatrix">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsInSubspace"/>IsInSubspace</term>
         <listitem>
          <synopsis>IsInSubspace (v,W)</synopsis>
          <para>Test if a vector is in a subspace.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsInvertible"/>IsInvertible</term>
         <listitem>
          <synopsis>IsInvertible (n)</synopsis>
          <para>Is a matrix (or number) invertible (Integer matrix is invertible if and only if it is invertible over the integers).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsInvertibleField"/>IsInvertibleField</term>
         <listitem>
          <synopsis>IsInvertibleField (n)</synopsis>
          <para>Is a matrix (or number) invertible over a field.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsNormal"/>IsNormal</term>
         <listitem>
          <synopsis>IsNormal (M)</synopsis>
          <para>Is <varname>M</varname> a normal matrix.  That is,
	  does <userinput>M*M' == M'*M</userinput>.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/NormalMatrix">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/NormalMatrix.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPositiveDefinite"/>IsPositiveDefinite</term>
         <listitem>
          <synopsis>IsPositiveDefinite (M)</synopsis>
          <para>Is <varname>M</varname> a Hermitian positive definite matrix.  That is if
<userinput>HermitianProduct(M*v,v)</userinput> is always strictly positive for
any vector <varname>v</varname>.
<varname>M</varname> must be square and Hermitian to be positive definite.
The check that is performed is that every principal submatrix has a non-negative
determinant.
(See <link linkend="gel-function-HermitianProduct">HermitianProduct</link>)</para>
	  <para>
	    Note that some authors (for example Mathworld) do not require that
	    <varname>M</varname> be Hermitian, and then the condition is
	    on the real part of the inner product, but we do not take this
	    view.  If you wish to perform this check, just check the
	    Hermitian part of the matrix <varname>M</varname> as follows:
	    <userinput>IsPositiveDefinite(M+M')</userinput>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Positive-definite_matrix">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/PositiveDefinite">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPositiveSemidefinite"/>IsPositiveSemidefinite</term>
         <listitem>
          <synopsis>IsPositiveSemidefinite (M)</synopsis>
          <para>Is <varname>M</varname> a Hermitian positive semidefinite matrix.  That is if
<userinput>HermitianProduct(M*v,v)</userinput> is always non-negative for
any vector <varname>v</varname>.
<varname>M</varname> must be square and Hermitian to be positive semidefinite.
The check that is performed is that every principal submatrix has a non-negative
determinant.
(See <link linkend="gel-function-HermitianProduct">HermitianProduct</link>)</para>
	  <para>
	    Note that some authors do not require that
	    <varname>M</varname> be Hermitian, and then the condition is
	    on the real part of the inner product, but we do not take this
	    view.  If you wish to perform this check, just check the
	    Hermitian part of the matrix <varname>M</varname> as follows:
	    <userinput>IsPositiveSemidefinite(M+M')</userinput>.
	  </para>
          <para>
	    See
	    <ulink url="http://planetmath.org/PositiveSemidefinite">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsSkewHermitian"/>IsSkewHermitian</term>
         <listitem>
          <synopsis>IsSkewHermitian (M)</synopsis>
          <para>Is a matrix skew-Hermitian.  That is, is the conjugate transpose equal to negative of the matrix.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/SkewHermitianMatrix">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsUnitary"/>IsUnitary</term>
         <listitem>
          <synopsis>IsUnitary (M)</synopsis>
          <para>Is a matrix unitary?  That is, does
	  <userinput>M'*M</userinput> and <userinput>M*M'</userinput>
	  equal the identity.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/UnitaryTransformation">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/UnitaryMatrix.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-JordanBlock"/>JordanBlock</term>
         <listitem>
          <synopsis>JordanBlock (n,lambda)</synopsis>
          <para>Aliases: <function>J</function></para>
          <para>Get the Jordan block corresponding to the eigenvalue
	  <varname>lambda</varname> with multiplicity <varname>n</varname>.
	  </para>
          <para>
	    See
	    <ulink url="http://planetmath.org/JordanCanonicalFormTheorem">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/JordanBlock.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Kernel"/>Kernel</term>
         <listitem>
          <synopsis>Kernel (T)</synopsis>
          <para>Get the kernel (nullspace) of a linear transform.</para>
	  <para>
	  (See <link linkend="gel-function-NullSpace">NullSpace</link>)
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-KroneckerProduct"/>KroneckerProduct</term>
         <listitem>
          <synopsis>KroneckerProduct (M, N)</synopsis>
          <para>Aliases: <function>TensorProduct</function></para>
	  <para>
		  Compute the Kronecker product (tensor product in standard basis)
		  of two matrices.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Kronecker_product">Wikipedia</ulink>, 
	    <ulink url="http://planetmath.org/KroneckerProduct">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/KroneckerProduct.html">Mathworld</ulink> for more information.
          </para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><anchor id="gel-function-LUDecomposition"/>LUDecomposition</term>
         <listitem>
          <synopsis>LUDecomposition (A, L, U)</synopsis>
          <para>
		  Get the LU decomposition of <varname>A</varname>, that is
		  find a lower triangular matrix and upper triangular
		  matrix whose product is <varname>A</varname>.
	    Store the result in the <varname>L</varname> and
	    <varname>U</varname>, which should be references.  It returns <constant>true</constant>
	    if successful.
	    For example suppose that A is a square matrix, then after running:
	    <screen><prompt>genius&gt;</prompt> <userinput>LUDecomposition(A,&amp;L,&amp;U)</userinput>
</screen>
	    You will have the lower matrix stored in a variable called
	    <varname>L</varname> and the upper matrix in a variable called
	    <varname>U</varname>.
	  </para>
	  <para>
	    This is the LU decomposition of a matrix aka Crout and/or Cholesky
	    reduction.
	    (ISBN 0-201-11577-8 pp.99-103)
	    The upper triangular matrix features a diagonal
	    of values 1 (one).  This is not Doolittle's Method, which features
	    the 1's diagonal on the lower matrix. 
	  </para>
	  <para>
	    Not all matrices have LU decompositions, for example
	    <userinput>[0,1;1,0]</userinput> does not and this function returns
	    <constant>false</constant> in this case and sets <varname>L</varname>
	    and <varname>U</varname> to <constant>null</constant>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/LU_decomposition">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/LUDecomposition">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/LUDecomposition.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Minor"/>Minor</term>
         <listitem>
          <synopsis>Minor (M,i,j)</synopsis>
          <para>Get the <varname>i</varname>-<varname>j</varname> minor of a matrix.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/Minor">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NonPivotColumns"/>NonPivotColumns</term>
         <listitem>
          <synopsis>NonPivotColumns (M)</synopsis>
          <para>Return the columns that are not the pivot columns of a matrix.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Norm"/>Norm</term>
         <listitem>
          <synopsis>Norm (v,p...)</synopsis>
          <para>Aliases: <function>norm</function></para>
          <para>Get the p Norm (or 2 Norm if no p is supplied) of a vector.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NullSpace"/>NullSpace</term>
         <listitem>
          <synopsis>NullSpace (T)</synopsis>
          <para>Get the nullspace of a matrix.  That is the kernel of the
	  linear mapping that the matrix represents.  This is returned
	  as a matrix whose column space is the nullspace of
	  <varname>T</varname>.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/Nullspace">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Nullity"/>Nullity</term>
         <listitem>
          <synopsis>Nullity (M)</synopsis>
          <para>Aliases: <function>nullity</function></para>
          <para>Get the nullity of a matrix.  That is, return the dimension of
the nullspace; the dimension of the kernel of <varname>M</varname>.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/Nullity">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-OrthogonalComplement"/>OrthogonalComplement</term>
         <listitem>
          <synopsis>OrthogonalComplement (M)</synopsis>
          <para>Get the orthogonal complement of the columnspace.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PivotColumns"/>PivotColumns</term>
         <listitem>
          <synopsis>PivotColumns (M)</synopsis>
          <para>Return pivot columns of a matrix, that is columns that have a leading 1 in row reduced form.  Also returns the row where they occur.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Projection"/>Projection</term>
         <listitem>
          <synopsis>Projection (v,W,B...)</synopsis>
	  <para>Projection of vector <varname>v</varname> onto subspace
<varname>W</varname> with respect to inner product given by
<varname>B</varname>.  If <varname>B</varname> is not given then the standard
Hermitian product is used.  <varname>B</varname> can either be a sesquilinear
function of two arguments or it can be a matrix giving a sesquilinear form.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-QRDecomposition"/>QRDecomposition</term>
         <listitem>
          <synopsis>QRDecomposition (A, Q)</synopsis>
          <para>
	    Get the QR decomposition of a square matrix <varname>A</varname>,
	    returns the upper triangular matrix <varname>R</varname>
	    and sets <varname>Q</varname> to the orthogonal (unitary) matrix.
	    <varname>Q</varname> should be a reference or <constant>null</constant> if you don't
	    want any return.
	    For example:
	    <screen><prompt>genius&gt;</prompt> <userinput>R = QRDecomposition(A,&amp;Q)</userinput>
</screen>
	    You will have the upper triangular matrix stored in
	    a variable called
	    <varname>R</varname> and the orthogonal (unitary) matrix stored in
	    <varname>Q</varname>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/QRDecomposition">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/QRDecomposition.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RayleighQuotient"/>RayleighQuotient</term>
         <listitem>
          <synopsis>RayleighQuotient (A,x)</synopsis>
          <para>Return the Rayleigh quotient (also called the Rayleigh-Ritz quotient or ratio) of a matrix and a vector.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/RayleighQuotient">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RayleighQuotientIteration"/>RayleighQuotientIteration</term>
         <listitem>
          <synopsis>RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</synopsis>
          <para>Find eigenvalues of <varname>A</varname> using the Rayleigh
	        quotient iteration method.  <varname>x</varname> is a guess
		at a eigenvector and could be random.  It should have 
	        nonzero imaginary part if it will have any chance at finding
	        complex eigenvalues.  The code will run at most
		<varname>maxiter</varname> iterations and return <constant>null</constant>
		if we cannot get within an error of <varname>epsilon</varname>.
		<varname>vecref</varname> should either be <constant>null</constant> or a reference
		to a variable where the eigenvector should be stored.
		</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/RayleighQuotient">Planetmath</ulink> for more information on Rayleigh quotient.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Rank"/>Rank</term>
         <listitem>
          <synopsis>Rank (M)</synopsis>
          <para>Синонимы: <function>rank</function></para>
          <para>Возвращает ранг матрицы.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/SylvestersLaw">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RosserMatrix"/>RosserMatrix</term>
         <listitem>
          <synopsis>RosserMatrix ()</synopsis>
          <para>Returns the Rosser matrix, which is a classic symmetric eigenvalue test problem.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Rotation2D"/>Rotation2D</term>
         <listitem>
          <synopsis>Rotation2D (angle)</synopsis>
          <para>Aliases: <function>RotationMatrix</function></para>
          <para>Return the matrix corresponding to rotation around origin in R<superscript>2</superscript>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Rotation3DX"/>Rotation3DX</term>
         <listitem>
          <synopsis>Rotation3DX (angle)</synopsis>
          <para>Return the matrix corresponding to rotation around origin in R<superscript>3</superscript> about the x-axis.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Rotation3DY"/>Rotation3DY</term>
         <listitem>
          <synopsis>Rotation3DY (angle)</synopsis>
          <para>Return the matrix corresponding to rotation around origin in R<superscript>3</superscript> about the y-axis.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Rotation3DZ"/>Rotation3DZ</term>
         <listitem>
          <synopsis>Rotation3DZ (angle)</synopsis>
          <para>Return the matrix corresponding to rotation around origin in R<superscript>3</superscript> about the z-axis.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RowSpace"/>RowSpace</term>
         <listitem>
          <synopsis>RowSpace (M)</synopsis>
          <para>Get a basis matrix for the rowspace of a matrix.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SesquilinearForm"/>SesquilinearForm</term>
         <listitem>
          <synopsis>SesquilinearForm (v,A,w)</synopsis>
          <para>Evaluate (v,w) with respect to the sesquilinear form given by the matrix A.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SesquilinearFormFunction"/>SesquilinearFormFunction</term>
         <listitem>
          <synopsis>SesquilinearFormFunction (A)</synopsis>
          <para>Return a function that evaluates two vectors with respect to the sesquilinear form given by A.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SmithNormalFormField"/>SmithNormalFormField</term>
         <listitem>
          <synopsis>SmithNormalFormField (A)</synopsis>
          <para>Returns the Smith normal form of a matrix over fields (will end up with 1's on the diagonal).</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Smith_normal_form">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SmithNormalFormInteger"/>SmithNormalFormInteger</term>
         <listitem>
          <synopsis>SmithNormalFormInteger (M)</synopsis>
          <para>Return the Smith normal form for square integer matrices over integers.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Smith_normal_form">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SolveLinearSystem"/>SolveLinearSystem</term>
         <listitem>
          <synopsis>SolveLinearSystem (M,V,args...)</synopsis>
	  <para>Solve linear system Mx=V, return solution V if there is a unique solution, <constant>null</constant> otherwise.  Extra two reference parameters can optionally be used to get the reduced M and V.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ToeplitzMatrix"/>ToeplitzMatrix</term>
         <listitem>
          <synopsis>ToeplitzMatrix (c, r...)</synopsis>
	  <para>Return the Toeplitz matrix constructed given the first column c
and (optionally) the first row r.  If only the column c is given then it is
conjugated and the nonconjugated version is used for the first row to give a
Hermitian matrix (if the first element is real of course).</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Toeplitz_matrix">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/ToeplitzMatrix">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Trace"/>Trace</term>
         <listitem>
          <synopsis>Trace (M)</synopsis>
          <para>Aliases: <function>trace</function></para>
          <para>Calculate the trace of a matrix.  That is the sum of the diagonal elements.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Trace_(linear_algebra)">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/Trace">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Transpose"/>Transpose</term>
         <listitem>
          <synopsis>Transpose (M)</synopsis>
          <para>Транспозиция матрицы. То же самое, что оператор <userinput>.'</userinput>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Transpose">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/Transpose">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VandermondeMatrix"/>VandermondeMatrix</term>
         <listitem>
          <synopsis>VandermondeMatrix (v)</synopsis>
          <para>Aliases: <function>vander</function></para>
          <para>Return the Vandermonde matrix.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Vandermonde_matrix">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorAngle"/>VectorAngle</term>
         <listitem>
          <synopsis>VectorAngle (v,w,B...)</synopsis>
          <para>The angle of two vectors with respect to inner product given by
<varname>B</varname>.  If <varname>B</varname> is not given then the standard
Hermitian product is used.  <varname>B</varname> can either be a sesquilinear
function of two arguments or it can be a matrix giving a sesquilinear form.
</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorSpaceDirectSum"/>VectorSpaceDirectSum</term>
         <listitem>
          <synopsis>VectorSpaceDirectSum (M,N)</synopsis>
          <para>The direct sum of the vector spaces M and N.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorSubspaceIntersection"/>VectorSubspaceIntersection</term>
         <listitem>
          <synopsis>VectorSubspaceIntersection (M,N)</synopsis>
          <para>Intersection of the subspaces given by M and N.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorSubspaceSum"/>VectorSubspaceSum</term>
         <listitem>
          <synopsis>VectorSubspaceSum (M,N)</synopsis>
          <para>The sum of the vector spaces M and N, that is {w | w=m+n, m in M, n in N}.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-adj"/>adj</term>
         <listitem>
          <synopsis>adj (m)</synopsis>
          <para>Aliases: <function>Adjugate</function></para>
          <para>Get the classical adjoint (adjugate) of a matrix.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-cref"/>cref</term>
         <listitem>
          <synopsis>cref (M)</synopsis>
          <para>Aliases: <function>CREF</function> <function>ColumnReducedEchelonForm</function></para>
          <para>Compute the Column Reduced Echelon Form.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-det"/>det</term>
         <listitem>
          <synopsis>det (M)</synopsis>
          <para>Aliases: <function>Determinant</function></para>
          <para>Get the determinant of a matrix.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Determinant">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/Determinant2">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ref"/>ref</term>
         <listitem>
          <synopsis>ref (M)</synopsis>
          <para>Aliases: <function>REF</function> <function>RowEchelonForm</function></para>
	  <para>Get the row echelon form of a matrix.  That is, apply gaussian
elimination but not backaddition to <varname>M</varname>.  The pivot rows are
divided to make all pivots 1.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Row_echelon_form">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/RowEchelonForm">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-rref"/>rref</term>
         <listitem>
          <synopsis>rref (M)</synopsis>
          <para>Aliases: <function>RREF</function> <function>ReducedRowEchelonForm</function></para>
          <para>Get the reduced row echelon form of a matrix.  That is, apply gaussian elimination together with backaddition to <varname>M</varname>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Reduced_row_echelon_form">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/ReducedRowEchelonForm">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-combinatorics">
      <title>Комбинаторика</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-Catalan"/>Catalan</term>
         <listitem>
          <synopsis>Catalan (n)</synopsis>
          <para>Возвращает <varname>n</varname>-ое число Каталана.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/CatalanNumbers">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Combinations"/>Combinations</term>
         <listitem>
          <synopsis>Combinations (k,n)</synopsis>
          <para>Get all combinations of k numbers from 1 to n as a vector of vectors.
	  (See also <link linkend="gel-function-NextCombination">NextCombination</link>)
</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Combination">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DoubleFactorial"/>DoubleFactorial</term>
         <listitem>
          <synopsis>DoubleFactorial (n)</synopsis>
          <para>Двойной факториал: <userinput>n(n-2)(n-4)...</userinput></para>
          <para>
	    See
	    <ulink url="http://planetmath.org/DoubleFactorial">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Factorial"/>Factorial</term>
         <listitem>
          <synopsis>Factorial (n)</synopsis>
          <para>Факториал: <userinput>n(n-1)(n-2)...</userinput></para>
          <para>
	    See
	    <ulink url="http://planetmath.org/Factorial">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FallingFactorial"/>FallingFactorial</term>
         <listitem>
          <synopsis>FallingFactorial (n,k)</synopsis>
          <para>Убывающий факториал: <userinput>(n)_k = n(n-1)...(n-(k-1))</userinput></para>
          <para>
	    See
	    <ulink url="http://planetmath.org/FallingFactorial">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Fibonacci"/>Fibonacci</term>
         <listitem>
          <synopsis>Fibonacci (x)</synopsis>
          <para>Синонимы: <function>fib</function></para>
          <para>Вычисляет <varname>n</varname>-ое число Фибоначчи. Это число, вычисляемое рекурсивно по формулам <userinput>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</userinput> и <userinput>Fibonacci(1) = Fibonacci(2) = 1</userinput>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fibonacci_number">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/FibonacciSequence">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FibonacciNumber.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FrobeniusNumber"/>FrobeniusNumber</term>
         <listitem>
          <synopsis>FrobeniusNumber (v,arg...)</synopsis>
          <para>
	    Calculate the Frobenius number.  That is calculate largest
	    number that cannot be given as a non-negative integer linear
	    combination of a given vector of non-negative integers.
	    The vector can be given as separate numbers or a single vector.
	    All the numbers given should have GCD of 1.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Coin_problem">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FrobeniusNumber.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-GaloisMatrix"/>GaloisMatrix</term>
         <listitem>
          <synopsis>GaloisMatrix (combining_rule)</synopsis>
          <para>Galois matrix given a linear combining rule (a_1*x_1+...+a_n*x_n=x_(n+1)).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-GreedyAlgorithm"/>GreedyAlgorithm</term>
         <listitem>
          <synopsis>GreedyAlgorithm (n,v)</synopsis>
          <para>
	    Find the vector <varname>c</varname> of non-negative integers
	    such that taking the dot product with <varname>v</varname> is
	    equal to n.  If not possible returns <constant>null</constant>.  <varname>v</varname>
	    should be given sorted in increasing order and should consist
	    of non-negative integers.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Greedy_algorithm">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/GreedyAlgorithm.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-HarmonicNumber"/>HarmonicNumber</term>
         <listitem>
          <synopsis>HarmonicNumber (n,r)</synopsis>
          <para>Aliases: <function>HarmonicH</function></para>
	  <para>Harmonic Number, the <varname>n</varname>th harmonic number of order <varname>r</varname>.
	        That is, it is the sum of <userinput>1/k^r</userinput> for <varname>k</varname>
		from 1 to n.  Equivalent to <userinput>sum k = 1 to n do 1/k^r</userinput>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Harmonic_number">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Hofstadter"/>Hofstadter</term>
         <listitem>
          <synopsis>Hofstadter (n)</synopsis>
          <para>Hofstadter's function q(n) defined by q(1)=1, q(2)=1, q(n)=q(n-q(n-1))+q(n-q(n-2)).</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Hofstadter_sequence">Wikipedia</ulink> for more information.
	    The sequence is <ulink url="https://oeis.org/A005185">A005185 in OEIS</ulink>.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinearRecursiveSequence"/>LinearRecursiveSequence</term>
         <listitem>
          <synopsis>LinearRecursiveSequence (seed_values,combining_rule,n)</synopsis>
          <para>Compute linear recursive sequence using Galois stepping.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Multinomial"/>Multinomial</term>
         <listitem>
          <synopsis>Multinomial (v,arg...)</synopsis>
          <para>Calculate multinomial coefficients.  Takes a vector of
	    <varname>k</varname>
	    non-negative integers and computes the multinomial coefficient.
	    This corresponds to the coefficient in the homogeneous polynomial
	    in <varname>k</varname> variables with the corresponding powers.
	  </para>
	  <para>
	    The formula for <userinput>Multinomial(a,b,c)</userinput>
	    can be written as:
<programlisting>(a+b+c)! / (a!b!c!)
</programlisting>
	    In other words, if we would have only two elements, then
<userinput>Multinomial(a,b)</userinput> is the same thing as
<userinput>Binomial(a+b,a)</userinput> or
<userinput>Binomial(a+b,b)</userinput>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Multinomial_theorem">Wikipedia</ulink>,
	    <ulink url="http://planetmath.org/MultinomialTheorem">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/MultinomialCoefficient.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NextCombination"/>NextCombination</term>
         <listitem>
          <synopsis>NextCombination (v,n)</synopsis>
	  <para>Get combination that would come after v in call to
combinations, first combination should be <userinput>[1:k]</userinput>.  This
function is useful if you have many combinations to go through and you don't
want to waste memory to store them all.
	  </para>
	  <para>
	    For example with Combinations you would normally write a loop like:
          <screen><userinput>for n in Combinations (4,6) do (
  SomeFunction (n)
);</userinput>
</screen>
	    But with NextCombination you would write something like:
          <screen><userinput>n:=[1:4];
do (
  SomeFunction (n)
) while not IsNull(n:=NextCombination(n,6));</userinput>
</screen>
	  See also <link linkend="gel-function-Combinations">Combinations</link>.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Combination">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Pascal"/>Pascal</term>
         <listitem>
          <synopsis>Pascal (i)</synopsis>
          <para>Get the Pascal's triangle as a matrix.  This will return
	  an <varname>i</varname>+1 by <varname>i</varname>+1 lower diagonal
	  matrix that is the Pascal's triangle after <varname>i</varname>
	  iterations.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/PascalsTriangle">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Permutations"/>Permutations</term>
         <listitem>
          <synopsis>Permutations (k,n)</synopsis>
          <para>Get all permutations of <varname>k</varname> numbers from 1 to <varname>n</varname> as a vector of vectors.</para>
          <para>
	    See
	    <ulink url="http://mathworld.wolfram.com/Permutation.html">Mathworld</ulink> or
	    <ulink url="https://en.wikipedia.org/wiki/Permutation">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RisingFactorial"/>RisingFactorial</term>
         <listitem>
          <synopsis>RisingFactorial (n,k)</synopsis>
          <para>Aliases: <function>Pochhammer</function></para>
          <para>(Pochhammer) Rising factorial: (n)_k = n(n+1)...(n+(k-1)).</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/RisingFactorial">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-StirlingNumberFirst"/>StirlingNumberFirst</term>
         <listitem>
          <synopsis>StirlingNumberFirst (n,m)</synopsis>
          <para>Aliases: <function>StirlingS1</function></para>
          <para>Stirling number of the first kind.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/StirlingNumbersOfTheFirstKind">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-StirlingNumberSecond"/>StirlingNumberSecond</term>
         <listitem>
          <synopsis>StirlingNumberSecond (n,m)</synopsis>
          <para>Aliases: <function>StirlingS2</function></para>
          <para>Stirling number of the second kind.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/StirlingNumbersSecondKind">Planetmath</ulink> or
	    <ulink url="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Subfactorial"/>Subfactorial</term>
         <listitem>
          <synopsis>Subfactorial (n)</synopsis>
          <para>Subfactorial: n! times sum_{k=0}^n (-1)^k/k!.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Triangular"/>Triangular</term>
         <listitem>
          <synopsis>Triangular (nth)</synopsis>
          <para>Calculate the <varname>n</varname>th triangular number.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/TriangularNumbers">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-nCr"/>nCr</term>
         <listitem>
          <synopsis>nCr (n,r)</synopsis>
          <para>Aliases: <function>Binomial</function></para>
          <para>Calculate combinations, that is, the binomial coefficient.
	        <varname>n</varname> can be any real number.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/Choose">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-nPr"/>nPr</term>
         <listitem>
          <synopsis>nPr (n,r)</synopsis>
          <para>Calculate the number of permutations of size
	   <varname>r</varname> of numbers from 1 to <varname>n</varname>.</para>
          <para>
	    See
	    <ulink url="http://mathworld.wolfram.com/Permutation.html">Mathworld</ulink> or
	    <ulink url="https://en.wikipedia.org/wiki/Permutation">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-calculus">
      <title>Calculus</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-CompositeSimpsonsRule"/>CompositeSimpsonsRule</term>
         <listitem>
          <synopsis>CompositeSimpsonsRule (f,a,b,n)</synopsis>
          <para>Integration of f by Composite Simpson's Rule on the interval [a,b] with n subintervals with error of max(f'''')*h^4*(b-a)/180, note that n should be even.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/SimpsonsRule">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-CompositeSimpsonsRuleTolerance"/>CompositeSimpsonsRuleTolerance</term>
         <listitem>
          <synopsis>CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)</synopsis>
          <para>Integration of f by Composite Simpson's Rule on the interval [a,b] with the number of steps calculated by the fourth derivative bound and the desired tolerance.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/SimpsonsRule">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Derivative"/>Derivative</term>
         <listitem>
          <synopsis>Derivative (f,x0)</synopsis>
          <para>Attempt to calculate derivative by trying first symbolically and then numerically.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-EvenPeriodicExtension"/>EvenPeriodicExtension</term>
         <listitem>
          <synopsis>EvenPeriodicExtension (f,L)</synopsis>
	  <para>Return a function that is the even periodic extension of
<function>f</function> with half period <varname>L</varname>.  That
is a function defined on the interval <userinput>[0,L]</userinput>
extended to be even on <userinput>[-L,L]</userinput> and then
extended to be periodic with period <userinput>2*L</userinput>.</para>
	  <para>
	    See also
	    <link linkend="gel-function-OddPeriodicExtension">OddPeriodicExtension</link>
	    and
	    <link linkend="gel-function-PeriodicExtension">PeriodicExtension</link>.
	  </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FourierSeriesFunction"/>FourierSeriesFunction</term>
         <listitem>
          <synopsis>FourierSeriesFunction (a,b,L)</synopsis>
	  <para>Return a function that is a Fourier series with the
coefficients given by the vectors <varname>a</varname> (sines) and
<varname>b</varname> (cosines).  Note that <userinput>a@(1)</userinput> is
the constant coefficient!  That is, <userinput>a@(n)</userinput> refers to
the term <userinput>cos(x*(n-1)*pi/L)</userinput>, while
<userinput>b@(n)</userinput> refers to the term
<userinput>sin(x*n*pi/L)</userinput>.  Either <varname>a</varname>
or <varname>b</varname> can be <constant>null</constant>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fourier_series">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FourierSeries.html">Mathworld</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-InfiniteProduct"/>InfiniteProduct</term>
         <listitem>
          <synopsis>InfiniteProduct (func,start,inc)</synopsis>
          <para>Try to calculate an infinite product for a single parameter function.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-InfiniteProduct2"/>InfiniteProduct2</term>
         <listitem>
          <synopsis>InfiniteProduct2 (func,arg,start,inc)</synopsis>
          <para>Try to calculate an infinite product for a double parameter function with func(arg,n).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-InfiniteSum"/>InfiniteSum</term>
         <listitem>
          <synopsis>InfiniteSum (func,start,inc)</synopsis>
          <para>Try to calculate an infinite sum for a single parameter function.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-InfiniteSum2"/>InfiniteSum2</term>
         <listitem>
          <synopsis>InfiniteSum2 (func,arg,start,inc)</synopsis>
          <para>Try to calculate an infinite sum for a double parameter function with func(arg,n).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsContinuous"/>IsContinuous</term>
         <listitem>
          <synopsis>IsContinuous (f,x0)</synopsis>
          <para>Try and see if a real-valued function is continuous at x0 by calculating the limit there.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsDifferentiable"/>IsDifferentiable</term>
         <listitem>
          <synopsis>IsDifferentiable (f,x0)</synopsis>
          <para>Test for differentiability by approximating the left and right limits and comparing.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LeftLimit"/>LeftLimit</term>
         <listitem>
          <synopsis>LeftLimit (f,x0)</synopsis>
          <para>Calculate the left limit of a real-valued function at x0.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Limit"/>Limit</term>
         <listitem>
          <synopsis>Limit (f,x0)</synopsis>
          <para>Calculate the limit of a real-valued function at x0.  Tries to calculate both left and right limits.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MidpointRule"/>MidpointRule</term>
         <listitem>
          <synopsis>MidpointRule (f,a,b,n)</synopsis>
          <para>Integration by midpoint rule.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalDerivative"/>NumericalDerivative</term>
         <listitem>
          <synopsis>NumericalDerivative (f,x0)</synopsis>
          <para>Aliases: <function>NDerivative</function></para>
          <para>Attempt to calculate numerical derivative.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalFourierSeriesCoefficients"/>NumericalFourierSeriesCoefficients</term>
         <listitem>
          <synopsis>NumericalFourierSeriesCoefficients (f,L,N)</synopsis>
	  <para>Return a vector of vectors <userinput>[a,b]</userinput>
where <varname>a</varname> are the cosine coefficients and
<varname>b</varname> are the sine coefficients of
the Fourier series of
<function>f</function> with half-period <varname>L</varname> (that is defined
on <userinput>[-L,L]</userinput> and extended periodically) with coefficients
up to <varname>N</varname>th harmonic computed numerically.  The coefficients are
computed by numerical integration using
<link linkend="gel-function-NumericalIntegral"><function>NumericalIntegral</function></link>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fourier_series">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FourierSeries.html">Mathworld</ulink> for more information.
          </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalFourierSeriesFunction"/>NumericalFourierSeriesFunction</term>
         <listitem>
          <synopsis>NumericalFourierSeriesFunction (f,L,N)</synopsis>
	  <para>Return a function that is the Fourier series of
<function>f</function> with half-period <varname>L</varname> (that is defined
on <userinput>[-L,L]</userinput> and extended periodically) with coefficients
up to <varname>N</varname>th harmonic computed numerically.  This is the
trigonometric real series composed of sines and cosines.  The coefficients are
computed by numerical integration using
<link linkend="gel-function-NumericalIntegral"><function>NumericalIntegral</function></link>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fourier_series">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FourierSeries.html">Mathworld</ulink> for more information.
          </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalFourierCosineSeriesCoefficients"/>NumericalFourierCosineSeriesCoefficients</term>
         <listitem>
          <synopsis>NumericalFourierCosineSeriesCoefficients (f,L,N)</synopsis>
	  <para>Return a vector of coefficients of 
the cosine Fourier series of
<function>f</function> with half-period <varname>L</varname>.  That is,
we take <function>f</function> defined on <userinput>[0,L]</userinput>
take the even periodic extension and compute the Fourier series, which
only has cosine terms.  The series is computed up to the 
<varname>N</varname>th harmonic.  The coefficients are
computed by numerical integration using
<link linkend="gel-function-NumericalIntegral"><function>NumericalIntegral</function></link>.
Note that <userinput>a@(1)</userinput> is
the constant coefficient!  That is, <userinput>a@(n)</userinput> refers to
the term <userinput>cos(x*(n-1)*pi/L)</userinput>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fourier_series">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FourierCosineSeries.html">Mathworld</ulink> for more information.
          </para>
	  <para>Version 1.0.7 onwards.</para>
	  </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalFourierCosineSeriesFunction"/>NumericalFourierCosineSeriesFunction</term>
         <listitem>
          <synopsis>NumericalFourierCosineSeriesFunction (f,L,N)</synopsis>
	  <para>Return a function that is the cosine Fourier series of
<function>f</function> with half-period <varname>L</varname>.  That is,
we take <function>f</function> defined on <userinput>[0,L]</userinput>
take the even periodic extension and compute the Fourier series, which
only has cosine terms.  The series is computed up to the 
<varname>N</varname>th harmonic.  The coefficients are
computed by numerical integration using
<link linkend="gel-function-NumericalIntegral"><function>NumericalIntegral</function></link>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fourier_series">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FourierCosineSeries.html">Mathworld</ulink> for more information.
          </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalFourierSineSeriesCoefficients"/>NumericalFourierSineSeriesCoefficients</term>
         <listitem>
          <synopsis>NumericalFourierSineSeriesCoefficients (f,L,N)</synopsis>
	  <para>Return a vector of coefficients of 
the sine Fourier series of
<function>f</function> with half-period <varname>L</varname>.  That is,
we take <function>f</function> defined on <userinput>[0,L]</userinput>
take the odd periodic extension and compute the Fourier series, which
only has sine terms.  The series is computed up to the 
<varname>N</varname>th harmonic.  The coefficients are
computed by numerical integration using
<link linkend="gel-function-NumericalIntegral"><function>NumericalIntegral</function></link>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fourier_series">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FourierSineSeries.html">Mathworld</ulink> for more information.
          </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalFourierSineSeriesFunction"/>NumericalFourierSineSeriesFunction</term>
         <listitem>
          <synopsis>NumericalFourierSineSeriesFunction (f,L,N)</synopsis>
	  <para>Return a function that is the sine Fourier series of
<function>f</function> with half-period <varname>L</varname>.  That is,
we take <function>f</function> defined on <userinput>[0,L]</userinput>
take the odd periodic extension and compute the Fourier series, which
only has sine terms.  The series is computed up to the 
<varname>N</varname>th harmonic.  The coefficients are
computed by numerical integration using
<link linkend="gel-function-NumericalIntegral"><function>NumericalIntegral</function></link>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Fourier_series">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/FourierSineSeries.html">Mathworld</ulink> for more information.
          </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalIntegral"/>NumericalIntegral</term>
         <listitem>
          <synopsis>NumericalIntegral (f,a,b)</synopsis>
          <para>Integration by rule set in NumericalIntegralFunction of f from a to b using NumericalIntegralSteps steps.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalLeftDerivative"/>NumericalLeftDerivative</term>
         <listitem>
          <synopsis>NumericalLeftDerivative (f,x0)</synopsis>
          <para>Attempt to calculate numerical left derivative.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalLimitAtInfinity"/>NumericalLimitAtInfinity</term>
         <listitem>
          <synopsis>NumericalLimitAtInfinity (_f,step_fun,tolerance,successive_for_success,N)</synopsis>
          <para>Attempt to calculate the limit of f(step_fun(i)) as i goes from 1 to N.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NumericalRightDerivative"/>NumericalRightDerivative</term>
         <listitem>
          <synopsis>NumericalRightDerivative (f,x0)</synopsis>
          <para>Attempt to calculate numerical right derivative.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-OddPeriodicExtension"/>OddPeriodicExtension</term>
         <listitem>
          <synopsis>OddPeriodicExtension (f,L)</synopsis>
	  <para>Return a function that is the odd periodic extension of
<function>f</function> with half period <varname>L</varname>.  That
is a function defined on the interval <userinput>[0,L]</userinput>
extended to be odd on <userinput>[-L,L]</userinput> and then
extended to be periodic with period <userinput>2*L</userinput>.</para>
	  <para>
	    See also
	    <link linkend="gel-function-EvenPeriodicExtension">EvenPeriodicExtension</link>
	    and
	    <link linkend="gel-function-PeriodicExtension">PeriodicExtension</link>.
	  </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-OneSidedFivePointFormula"/>OneSidedFivePointFormula</term>
         <listitem>
          <synopsis>OneSidedFivePointFormula (f,x0,h)</synopsis>
          <para>Compute one-sided derivative using five point formula.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-OneSidedThreePointFormula"/>OneSidedThreePointFormula</term>
         <listitem>
          <synopsis>OneSidedThreePointFormula (f,x0,h)</synopsis>
          <para>Compute one-sided derivative using three-point formula.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PeriodicExtension"/>PeriodicExtension</term>
         <listitem>
          <synopsis>PeriodicExtension (f,a,b)</synopsis>
	  <para>Return a function that is the periodic extension of
<function>f</function> defined on the interval <userinput>[a,b]</userinput>
and has period <userinput>b-a</userinput>.</para>
	  <para>
	    See also
	    <link linkend="gel-function-OddPeriodicExtension">OddPeriodicExtension</link>
	    and
	    <link linkend="gel-function-EvenPeriodicExtension">EvenPeriodicExtension</link>.
	  </para>
	  <para>Version 1.0.7 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RightLimit"/>RightLimit</term>
         <listitem>
          <synopsis>RightLimit (f,x0)</synopsis>
          <para>Calculate the right limit of a real-valued function at x0.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-TwoSidedFivePointFormula"/>TwoSidedFivePointFormula</term>
         <listitem>
          <synopsis>TwoSidedFivePointFormula (f,x0,h)</synopsis>
          <para>Compute two-sided derivative using five-point formula.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-TwoSidedThreePointFormula"/>TwoSidedThreePointFormula</term>
         <listitem>
          <synopsis>TwoSidedThreePointFormula (f,x0,h)</synopsis>
          <para>Compute two-sided derivative using three-point formula.</para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-functions">
      <title>Functions</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-Argument"/>Argument</term>
         <listitem>
          <synopsis>Argument (z)</synopsis>
          <para>Aliases: <function>Arg</function> <function>arg</function></para>
          <para>argument (angle) of complex number.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BesselJ0"/>BesselJ0</term>
         <listitem>
          <synopsis>BesselJ0 (x)</synopsis>
          <para>Bessel function of the first kind of order 0.  Only implemented for real numbers.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Bessel_functions">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BesselJ1"/>BesselJ1</term>
         <listitem>
          <synopsis>BesselJ1 (x)</synopsis>
          <para>Bessel function of the first kind of order 1.  Only implemented for real numbers.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Bessel_functions">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BesselJn"/>BesselJn</term>
         <listitem>
          <synopsis>BesselJn (n,x)</synopsis>
	  <para>Bessel function of the first kind of order <varname>n</varname>.  Only implemented for real numbers.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Bessel_functions">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BesselY0"/>BesselY0</term>
         <listitem>
          <synopsis>BesselY0 (x)</synopsis>
          <para>Bessel function of the second kind of order 0.  Only implemented for real numbers.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Bessel_functions">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BesselY1"/>BesselY1</term>
         <listitem>
          <synopsis>BesselY1 (x)</synopsis>
          <para>Bessel function of the second kind of order 1.  Only implemented for real numbers.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Bessel_functions">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-BesselYn"/>BesselYn</term>
         <listitem>
          <synopsis>BesselYn (n,x)</synopsis>
	  <para>Bessel function of the second kind of order <varname>n</varname>.  Only implemented for real numbers.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Bessel_functions">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DirichletKernel"/>DirichletKernel</term>
         <listitem>
          <synopsis>DirichletKernel (n,t)</synopsis>
	  <para>Dirichlet kernel of order <varname>n</varname>.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DiscreteDelta"/>DiscreteDelta</term>
         <listitem>
          <synopsis>DiscreteDelta (v)</synopsis>
          <para>Returns 1 if and only if all elements are zero.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-ErrorFunction"/>ErrorFunction</term>
         <listitem>
          <synopsis>ErrorFunction (x)</synopsis>
          <para>Aliases: <function>erf</function></para>
          <para>The error function, 2/sqrt(pi) * int_0^x e^(-t^2) dt.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Error_function">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/ErrorFunction">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FejerKernel"/>FejerKernel</term>
         <listitem>
          <synopsis>FejerKernel (n,t)</synopsis>
          <para>Fejer kernel of order <varname>n</varname> evaluated at
	        <varname>t</varname></para>
          <para>
	    See
	    <ulink url="http://planetmath.org/FejerKernel">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-GammaFunction"/>GammaFunction</term>
         <listitem>
          <synopsis>GammaFunction (x)</synopsis>
          <para>Aliases: <function>Gamma</function></para>
          <para>The Gamma function.  Currently only implemented for real values.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/GammaFunction">Planetmath</ulink> or
	    <ulink url="https://en.wikipedia.org/wiki/Gamma_function">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-KroneckerDelta"/>KroneckerDelta</term>
         <listitem>
          <synopsis>KroneckerDelta (v)</synopsis>
          <para>Returns 1 if and only if all elements are equal.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LambertW"/>LambertW</term>
         <listitem>
          <synopsis>LambertW (x)</synopsis>
	  <para>
		  The principal branch of Lambert W function computed for only
		  real values greater than or equal to <userinput>-1/e</userinput>.
		  That is, <function>LambertW</function> is the inverse of
		  the expression <userinput>x*e^x</userinput>.  Even for
		  real <varname>x</varname> this expression is not one to one and
		  therefore has two branches over <userinput>[-1/e,0)</userinput>.
		  See <link linkend="gel-function-LambertWm1"><function>LambertWm1</function></link> for the other real branch.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Lambert_W_function">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LambertWm1"/>LambertWm1</term>
         <listitem>
          <synopsis>LambertWm1 (x)</synopsis>
	  <para>
		  The minus-one branch of Lambert W function computed for only
		  real values greater than or equal to <userinput>-1/e</userinput>
		  and less than 0.
		  That is, <function>LambertWm1</function> is the second
		  branch of the inverse of <userinput>x*e^x</userinput>.
		  See <link linkend="gel-function-LambertW"><function>LambertW</function></link> for the principal branch.
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Lambert_W_function">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MinimizeFunction"/>MinimizeFunction</term>
         <listitem>
          <synopsis>MinimizeFunction (func,x,incr)</synopsis>
          <para>Find the first value where f(x)=0.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MoebiusDiskMapping"/>MoebiusDiskMapping</term>
         <listitem>
          <synopsis>MoebiusDiskMapping (a,z)</synopsis>
          <para>Moebius mapping of the disk to itself mapping a to 0.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/M%C3%B6bius_transformation">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MoebiusMapping"/>MoebiusMapping</term>
         <listitem>
          <synopsis>MoebiusMapping (z,z2,z3,z4)</synopsis>
          <para>Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity respectively.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/M%C3%B6bius_transformation">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MoebiusMappingInftyToInfty"/>MoebiusMappingInftyToInfty</term>
         <listitem>
          <synopsis>MoebiusMappingInftyToInfty (z,z2,z3)</synopsis>
          <para>Moebius mapping using the cross ratio taking infinity to infinity and z2,z3 to 1 and 0 respectively.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/M%C3%B6bius_transformation">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MoebiusMappingInftyToOne"/>MoebiusMappingInftyToOne</term>
         <listitem>
          <synopsis>MoebiusMappingInftyToOne (z,z3,z4)</synopsis>
          <para>Moebius mapping using the cross ratio taking infinity to 1 and z3,z4 to 0 and infinity respectively.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/M%C3%B6bius_transformation">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MoebiusMappingInftyToZero"/>MoebiusMappingInftyToZero</term>
         <listitem>
          <synopsis>MoebiusMappingInftyToZero (z,z2,z4)</synopsis>
          <para>Moebius mapping using the cross ratio taking infinity to 0 and z2,z4 to 1 and infinity respectively.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/M%C3%B6bius_transformation">Wikipedia</ulink> or
	    <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PoissonKernel"/>PoissonKernel</term>
         <listitem>
          <synopsis>PoissonKernel (r,sigma)</synopsis>
          <para>Poisson kernel on D(0,1) (not normalized to 1, that is integral of this is 2pi).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PoissonKernelRadius"/>PoissonKernelRadius</term>
         <listitem>
          <synopsis>PoissonKernelRadius (r,sigma)</synopsis>
          <para>Poisson kernel on D(0,R) (not normalized to 1).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RiemannZeta"/>RiemannZeta</term>
         <listitem>
          <synopsis>RiemannZeta (x)</synopsis>
          <para>Aliases: <function>zeta</function></para>
          <para>The Riemann zeta function.  Currently only implemented for real values.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/RiemannZetaFunction">Planetmath</ulink> or
	    <ulink url="https://en.wikipedia.org/wiki/Riemann_zeta_function">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-UnitStep"/>UnitStep</term>
         <listitem>
          <synopsis>UnitStep (x)</synopsis>
          <para>The unit step function is 0 for x&lt;0, 1 otherwise.  This is the integral of the Dirac Delta function.  Also called the Heaviside function.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Unit_step">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-cis"/>cis</term>
         <listitem>
          <synopsis>cis (x)</synopsis>
          <para>Функция <function>cis</function>, то же самое, что <userinput>cos(x)+1i*sin(x)</userinput></para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-deg2rad"/>deg2rad</term>
         <listitem>
          <synopsis>deg2rad (x)</synopsis>
          <para>Преобразует градусы в радианы.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-rad2deg"/>rad2deg</term>
         <listitem>
          <synopsis>rad2deg (x)</synopsis>
          <para>Преобразует радианы в градусы.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-sinc"/>sinc</term>
         <listitem>
          <synopsis>sinc (x)</synopsis>
	  <para>Calculates the unnormalized sinc function, that is
		  <userinput>sin(x)/x</userinput>.
		  If you want the normalized function call <userinput>sinc(pi*x)</userinput>.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Sinc">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-equation-solving">
      <title>Решение уравнений</title>
      <variablelist>

        <varlistentry>
         <term><anchor id="gel-function-CubicFormula"/>CubicFormula</term>
         <listitem>
          <synopsis>CubicFormula (p)</synopsis>
          <para>
	    Compute roots of a cubic (degree 3) polynomial using the
	    cubic formula.  The polynomial should be given as a
	    vector of coefficients.  That is
	    <userinput>4*x^3 + 2*x + 1</userinput> corresponds to the vector
            <userinput>[1,2,0,4]</userinput>.
	    Returns a column vector of the three solutions.  The first solution is always
	    the real one as a cubic always has one real solution.
	  </para>
          <para>
	    See
	    <ulink url="http://planetmath.org/CubicFormula">Planetmath</ulink>,
	    <ulink url="http://mathworld.wolfram.com/CubicFormula.html">Mathworld</ulink>, or
	    <ulink url="https://en.wikipedia.org/wiki/Cubic_equation">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-EulersMethod"/>EulersMethod</term>
         <listitem>
          <synopsis>EulersMethod (f,x0,y0,x1,n)</synopsis>
          <para>
	    Use classical Euler's method to numerically solve y'=f(x,y) for
	    initial <varname>x0</varname>, <varname>y0</varname> going to
	    <varname>x1</varname> with <varname>n</varname> increments,
	    returns <varname>y</varname> at <varname>x1</varname>.
	    Unless you explicitly want to use Euler's method, you should really
	    think about using
	    <link linkend="gel-function-RungeKutta">RungeKutta</link>
	    for solving ODE.
	  </para>
	  <para>
	    Systems can be solved by just having <varname>y</varname> be a
	    (column) vector everywhere.  That is, <varname>y0</varname> can
	    be a vector in which case <varname>f</varname> should take a number
	    <varname>x</varname> and a vector of the same size for the second
	    argument and should return a vector of the same size.
	  </para>
          <para>
	    See
	    <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html">Mathworld</ulink> or
	    <ulink url="https://en.wikipedia.org/wiki/Eulers_method">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-EulersMethodFull"/>EulersMethodFull</term>
         <listitem>
          <synopsis>EulersMethodFull (f,x0,y0,x1,n)</synopsis>
          <para>
	    Use classical Euler's method to numerically solve y'=f(x,y) for
	    initial <varname>x0</varname>, <varname>y0</varname> going to
	    <varname>x1</varname> with <varname>n</varname> increments,
	    returns an <userinput>n+1</userinput> by 2 matrix with the
	    <varname>x</varname> and <varname>y</varname> values.
	    Unless you explicitly want to use Euler's method, you should really
	    think about using
	    <link linkend="gel-function-RungeKuttaFull">RungeKuttaFull</link>
	    for solving ODE.
	    Suitable
	    for plugging into 
	    <link linkend="gel-function-LinePlotDrawLine">LinePlotDrawLine</link> or
	    <link linkend="gel-function-LinePlotDrawPoints">LinePlotDrawPoints</link>.
	  </para>
	  <para>
	    Example:
          <screen><prompt>genius&gt;</prompt> <userinput>LinePlotClear();</userinput>
<prompt>genius&gt;</prompt> <userinput>line = EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential growth");</userinput>
</screen>
	  </para>
	  <para>
	    Systems can be solved by just having <varname>y</varname> be a
	    (column) vector everywhere.  That is, <varname>y0</varname> can
	    be a vector in which case <varname>f</varname> should take a number
	    <varname>x</varname> and a vector of the same size for the second
	    argument and should return a vector of the same size.
	  </para>
	  <para>
		  The output for a system is still a n by 2 matrix with the second
		  entry being a vector.  If you wish to plot the line, make sure to use row vectors, and then flatten the matrix with
		  <link linkend="gel-function-ExpandMatrix">ExpandMatrix</link>,
		  and pick out the right columns.  Example:
          <screen><prompt>genius&gt;</prompt> <userinput>LinePlotClear();</userinput>
<prompt>genius&gt;</prompt> <userinput>lines = EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</userinput>
<prompt>genius&gt;</prompt> <userinput>lines = ExpandMatrix(lines);</userinput>
<prompt>genius&gt;</prompt> <userinput>firstline = lines@(,[1,2]);</userinput>
<prompt>genius&gt;</prompt> <userinput>secondline = lines@(,[1,3]);</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotWindow = [0,10,-2,2];</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine(firstline,"color","blue","legend","First");</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</userinput>
</screen>
	  </para>
          <para>
	    See
	    <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html">Mathworld</ulink> or
	    <ulink url="https://en.wikipedia.org/wiki/Eulers_method">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.10 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FindRootBisection"/>FindRootBisection</term>
         <listitem>
          <synopsis>FindRootBisection (f,a,b,TOL,N)</synopsis>
          <para>Find root of a function using the bisection method.
		  <varname>a</varname> and <varname>b</varname> are the initial guess interval,
		  <userinput>f(a)</userinput> and <userinput>f(b)</userinput> should have opposite signs.
	    <varname>TOL</varname> is the desired tolerance and
<varname>N</varname> is the limit on the number of iterations to run, 0 means no limit.  The function returns a vector <userinput>[success,value,iteration]</userinput>, where <varname>success</varname> is a boolean indicating success, <varname>value</varname> is the last value computed, and <varname>iteration</varname> is the number of iterations done.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FindRootFalsePosition"/>FindRootFalsePosition</term>
         <listitem>
          <synopsis>FindRootFalsePosition (f,a,b,TOL,N)</synopsis>
          <para>Find root of a function using the method of false position.
		  <varname>a</varname> and <varname>b</varname> are the initial guess interval,
		  <userinput>f(a)</userinput> and <userinput>f(b)</userinput> should have opposite signs.
	    <varname>TOL</varname> is the desired tolerance and
<varname>N</varname> is the limit on the number of iterations to run, 0 means no limit.  The function returns a vector <userinput>[success,value,iteration]</userinput>, where <varname>success</varname> is a boolean indicating success, <varname>value</varname> is the last value computed, and <varname>iteration</varname> is the number of iterations done.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FindRootMullersMethod"/>FindRootMullersMethod</term>
         <listitem>
          <synopsis>FindRootMullersMethod (f,x0,x1,x2,TOL,N)</synopsis>
          <para>Find root of a function using the Muller's method.
	    <varname>TOL</varname> is the desired tolerance and
<varname>N</varname> is the limit on the number of iterations to run, 0 means no limit.  The function returns a vector <userinput>[success,value,iteration]</userinput>, where <varname>success</varname> is a boolean indicating success, <varname>value</varname> is the last value computed, and <varname>iteration</varname> is the number of iterations done.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-FindRootSecant"/>FindRootSecant</term>
         <listitem>
          <synopsis>FindRootSecant (f,a,b,TOL,N)</synopsis>
          <para>Find root of a function using the secant method.
		  <varname>a</varname> and <varname>b</varname> are the initial guess interval,
		  <userinput>f(a)</userinput> and <userinput>f(b)</userinput> should have opposite signs.
	    <varname>TOL</varname> is the desired tolerance and
<varname>N</varname> is the limit on the number of iterations to run, 0 means no limit.  The function returns a vector <userinput>[success,value,iteration]</userinput>, where <varname>success</varname> is a boolean indicating success, <varname>value</varname> is the last value computed, and <varname>iteration</varname> is the number of iterations done.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-HalleysMethod"/>HalleysMethod</term>
         <listitem>
          <synopsis>HalleysMethod (f,df,ddf,guess,epsilon,maxn)</synopsis>
	  <para>Find zeros using Halley's method.  <varname>f</varname> is
		  the function, <varname>df</varname> is the derivative of
		  <varname>f</varname>, and <varname>ddf</varname> is the second derivative of
		  <varname>f</varname>.  <varname>guess</varname> is the initial
		  guess.  The function returns after two successive values are
		  within <varname>epsilon</varname> of each other, or after <varname>maxn</varname> tries, in which case the function returns <constant>null</constant> indicating failure.
	  </para>
	  <para>
	  See also <link linkend="gel-function-NewtonsMethod"><function>NewtonsMethod</function></link> and <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>.
  	  </para>
	  <para>
	    Example to find the square root of 10:
          <screen><prompt>genius&gt;</prompt> <userinput>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</userinput>
</screen>
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Halley%27s_method">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NewtonsMethod"/>NewtonsMethod</term>
         <listitem>
          <synopsis>NewtonsMethod (f,df,guess,epsilon,maxn)</synopsis>
	  <para>Find zeros using Newton's method.  <varname>f</varname> is
		  the function and <varname>df</varname> is the derivative of
		  <varname>f</varname>.  <varname>guess</varname> is the initial
		  guess.  The function returns after two successive values are
		  within <varname>epsilon</varname> of each other, or after <varname>maxn</varname> tries, in which case the function returns <constant>null</constant> indicating failure.
	  </para>
	  <para>
	  See also <link linkend="gel-function-NewtonsMethodPoly"><function>NewtonsMethodPoly</function></link> and <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>.
  	  </para>
	  <para>
	    Example to find the square root of 10:
          <screen><prompt>genius&gt;</prompt> <userinput>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</userinput>
</screen>
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Newtons_method">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PolynomialRoots"/>PolynomialRoots</term>
         <listitem>
          <synopsis>PolynomialRoots (p)</synopsis>
          <para>
	    Compute roots of a polynomial (degrees 1 through 4)
	    using one of the formulas for such polynomials.
	    The polynomial should be given as a
	    vector of coefficients.  That is
	    <userinput>4*x^3 + 2*x + 1</userinput> corresponds to the vector
            <userinput>[1,2,0,4]</userinput>.
	    Returns a column vector of the solutions.
	  </para>
	  <para>
	    The function calls
	    <link linkend="gel-function-QuadraticFormula">QuadraticFormula</link>,
	    <link linkend="gel-function-CubicFormula">CubicFormula</link>, and
	    <link linkend="gel-function-QuarticFormula">QuarticFormula</link>.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-QuadraticFormula"/>QuadraticFormula</term>
         <listitem>
          <synopsis>QuadraticFormula (p)</synopsis>
          <para>
	    Compute roots of a quadratic (degree 2) polynomial using the
	    quadratic formula.  The polynomial should be given as a
	    vector of coefficients.  That is
	    <userinput>3*x^2 + 2*x + 1</userinput> corresponds to the vector
            <userinput>[1,2,3]</userinput>.
	    Returns a column vector of the two solutions.
	  </para>
          <para>
	    See
	    <ulink url="http://planetmath.org/QuadraticFormula">Planetmath</ulink>, or
	    <ulink url="http://mathworld.wolfram.com/QuadraticFormula.html">Mathworld</ulink>, or
	    <ulink url="https://en.wikipedia.org/wiki/Quadratic_formula">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-QuarticFormula"/>QuarticFormula</term>
         <listitem>
          <synopsis>QuarticFormula (p)</synopsis>
          <para>
	    Compute roots of a quartic (degree 4) polynomial using the
	    quartic formula.  The polynomial should be given as a
	    vector of coefficients.  That is
	    <userinput>5*x^4 + 2*x + 1</userinput> corresponds to the vector
            <userinput>[1,2,0,0,5]</userinput>.
	    Returns a column vector of the four solutions.
	  </para>
          <para>
	    See
	    <ulink url="http://planetmath.org/QuarticFormula">Planetmath</ulink>,
	    <ulink url="http://mathworld.wolfram.com/QuarticEquation.html">Mathworld</ulink>, or
	    <ulink url="https://en.wikipedia.org/wiki/Quartic_equation">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RungeKutta"/>RungeKutta</term>
         <listitem>
          <synopsis>RungeKutta (f,x0,y0,x1,n)</synopsis>
          <para>
	    Use classical non-adaptive fourth order Runge-Kutta method to
	    numerically solve
	    y'=f(x,y) for initial <varname>x0</varname>, <varname>y0</varname>
	    going to <varname>x1</varname> with <varname>n</varname>
	    increments, returns <varname>y</varname> at <varname>x1</varname>.
	  </para>
	  <para>
	    Systems can be solved by just having <varname>y</varname> be a
	    (column) vector everywhere.  That is, <varname>y0</varname> can
	    be a vector in which case <varname>f</varname> should take a number
	    <varname>x</varname> and a vector of the same size for the second
	    argument and should return a vector of the same size.
	  </para>
          <para>
	    See
	    <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html">Mathworld</ulink> or
	    <ulink url="https://en.wikipedia.org/wiki/Runge-Kutta_methods">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RungeKuttaFull"/>RungeKuttaFull</term>
         <listitem>
          <synopsis>RungeKuttaFull (f,x0,y0,x1,n)</synopsis>
          <para>
	    Use classical non-adaptive fourth order Runge-Kutta method to
	    numerically solve
	    y'=f(x,y) for initial <varname>x0</varname>, <varname>y0</varname>
	    going to <varname>x1</varname> with <varname>n</varname>
	    increments,
	    returns an <userinput>n+1</userinput> by 2 matrix with the
	    <varname>x</varname> and <varname>y</varname> values.  Suitable
	    for plugging into 
	    <link linkend="gel-function-LinePlotDrawLine">LinePlotDrawLine</link> or
	    <link linkend="gel-function-LinePlotDrawPoints">LinePlotDrawPoints</link>.
	  </para>
	  <para>
	    Example:
          <screen><prompt>genius&gt;</prompt> <userinput>LinePlotClear();</userinput>
<prompt>genius&gt;</prompt> <userinput>line = RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential growth");</userinput>
</screen>
	  </para>
	  <para>
	    Systems can be solved by just having <varname>y</varname> be a
	    (column) vector everywhere.  That is, <varname>y0</varname> can
	    be a vector in which case <varname>f</varname> should take a number
	    <varname>x</varname> and a vector of the same size for the second
	    argument and should return a vector of the same size.
	  </para>
	  <para>
		  The output for a system is still a n by 2 matrix with the second
		  entry being a vector.  If you wish to plot the line, make sure to use row vectors, and then flatten the matrix with
		  <link linkend="gel-function-ExpandMatrix">ExpandMatrix</link>,
		  and pick out the right columns.  Example:
          <screen><prompt>genius&gt;</prompt> <userinput>LinePlotClear();</userinput>
<prompt>genius&gt;</prompt> <userinput>lines = RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</userinput>
<prompt>genius&gt;</prompt> <userinput>lines = ExpandMatrix(lines);</userinput>
<prompt>genius&gt;</prompt> <userinput>firstline = lines@(,[1,2]);</userinput>
<prompt>genius&gt;</prompt> <userinput>secondline = lines@(,[1,3]);</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotWindow = [0,10,-2,2];</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine(firstline,"color","blue","legend","First");</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</userinput>
</screen>
	  </para>
          <para>
	    See
	    <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html">Mathworld</ulink> or
	    <ulink url="https://en.wikipedia.org/wiki/Runge-Kutta_methods">Wikipedia</ulink> for more information.
	  </para>
	  <para>Version 1.0.10 onwards.</para>
         </listitem>
        </varlistentry>


      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-statistics">
      <title>Статистика</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-Average"/>Average</term>
         <listitem>
          <synopsis>Average (m)</synopsis>
          <para>Псевдонимы: <function>average</function><function>Mean</function><function>mean</function></para>
          <para>Calculate average (the arithmetic mean) of an entire matrix.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Mean">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/ArithmeticMean.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-GaussDistribution"/>GaussDistribution</term>
         <listitem>
          <synopsis>GaussDistribution (x,sigma)</synopsis>
	  <para>Integral of the GaussFunction from 0 to <varname>x</varname> (area under the normal curve).</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Normal_distribution">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/NormalDistribution.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-GaussFunction"/>GaussFunction</term>
         <listitem>
          <synopsis>GaussFunction (x,sigma)</synopsis>
          <para>The normalized Gauss distribution function (the normal curve).</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Normal_distribution">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/NormalDistribution.html">Mathworld</ulink> for more information.
	  </para>

         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Median"/>Median</term>
         <listitem>
          <synopsis>Median (m)</synopsis>
          <para>Aliases: <function>median</function></para>
          <para>Calculate median of an entire matrix.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Median">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/StatisticalMedian.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PopulationStandardDeviation"/>PopulationStandardDeviation</term>
         <listitem>
          <synopsis>PopulationStandardDeviation (m)</synopsis>
          <para>Aliases: <function>stdevp</function></para>
          <para>Calculate the population standard deviation of a whole matrix.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RowAverage"/>RowAverage</term>
         <listitem>
          <synopsis>RowAverage (m)</synopsis>
          <para>Aliases: <function>RowMean</function></para>
	  <para>Calculate average of each row in a matrix.  That is, compute the
	  arithmetic mean.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Mean">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/ArithmeticMean.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RowMedian"/>RowMedian</term>
         <listitem>
          <synopsis>RowMedian (m)</synopsis>
          <para>Calculate median of each row in a matrix and return a column
	  vector of the medians.</para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Median">Wikipedia</ulink> or
	    <ulink url="http://mathworld.wolfram.com/StatisticalMedian.html">Mathworld</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RowPopulationStandardDeviation"/>RowPopulationStandardDeviation</term>
         <listitem>
          <synopsis>RowPopulationStandardDeviation (m)</synopsis>
          <para>Aliases: <function>rowstdevp</function></para>
          <para>Calculate the population standard deviations of rows of a matrix and return a vertical vector.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-RowStandardDeviation"/>RowStandardDeviation</term>
         <listitem>
          <synopsis>RowStandardDeviation (m)</synopsis>
          <para>Aliases: <function>rowstdev</function></para>
          <para>Calculate the standard deviations of rows of a matrix and return a vertical vector.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
	 <term><anchor id="gel-function-StandardDeviation"/>StandardDeviation</term>
         <listitem>
          <synopsis>StandardDeviation (m)</synopsis>
          <para>Aliases: <function>stdev</function></para>
          <para>Calculate the standard deviation of a whole matrix.</para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-polynomials">
      <title>Многочлены</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-AddPoly"/>AddPoly</term>
         <listitem>
          <synopsis>AddPoly (p1,p2)</synopsis>
          <para>Складывает два многочлена (в виде векторов).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-DividePoly"/>DividePoly</term>
         <listitem>
          <synopsis>DividePoly (p,q,&amp;r)</synopsis>
          <para>Divide two polynomials (as vectors) using long division.
	   Returns the quotient
	   of the two polynomials.  The optional argument <varname>r</varname>
	   is used to return the remainder.  The remainder will have lower
	   degree than <varname>q</varname>.</para>
          <para>
	    See
	    <ulink url="http://planetmath.org/PolynomialLongDivision">Planetmath</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsPoly"/>IsPoly</term>
         <listitem>
          <synopsis>IsPoly (p)</synopsis>
          <para>Проверяет, можно ли использовать вектор в качестве многочлена.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MultiplyPoly"/>MultiplyPoly</term>
         <listitem>
          <synopsis>MultiplyPoly (p1,p2)</synopsis>
          <para>Умножает два многочлена (в виде векторов).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-NewtonsMethodPoly"/>NewtonsMethodPoly</term>
         <listitem>
          <synopsis>NewtonsMethodPoly (poly,guess,epsilon,maxn)</synopsis>
	  <para>Find a root of a polynomial using Newton's method.  <varname>poly</varname> is
		  the polynomial as a vector and <varname>guess</varname> is the initial
		  guess.  The function returns after two successive values are
		  within <varname>epsilon</varname> of each other, or after <varname>maxn</varname> tries, in which case the function returns <constant>null</constant> indicating failure.
	  </para>
	  <para>
	  See also <link linkend="gel-function-NewtonsMethod"><function>NewtonsMethod</function></link>.
  	  </para>
	  <para>
	    Example to find the square root of 10:
          <screen><prompt>genius&gt;</prompt> <userinput>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</userinput>
</screen>
	  </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Newtons_method">Wikipedia</ulink> for more information.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Poly2ndDerivative"/>Poly2ndDerivative</term>
         <listitem>
          <synopsis>Poly2ndDerivative (p)</synopsis>
          <para>Находит вторую производную многочлена (как вектора).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PolyDerivative"/>PolyDerivative</term>
         <listitem>
          <synopsis>PolyDerivative (p)</synopsis>
          <para>Находит производную многочлена (как вектора).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PolyToFunction"/>PolyToFunction</term>
         <listitem>
          <synopsis>PolyToFunction (p)</synopsis>
          <para>Make function out of a polynomial (as vector).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PolyToString"/>PolyToString</term>
         <listitem>
          <synopsis>PolyToString (p,var...)</synopsis>
          <para>Make string out of a polynomial (as vector).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SubtractPoly"/>SubtractPoly</term>
         <listitem>
          <synopsis>SubtractPoly (p1,p2)</synopsis>
          <para>Subtract two polynomials (as vectors).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-TrimPoly"/>TrimPoly</term>
         <listitem>
          <synopsis>TrimPoly (p)</synopsis>
          <para>Trim zeros from a polynomial (as vector).</para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-set-theory">
      <title>Теория множеств</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-Intersection"/>Intersection</term>
         <listitem>
          <synopsis>Intersection (X,Y)</synopsis>
          <para>Возвращает пересечение множеств X и Y (X и Y — векторы, изображающие множества).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsIn"/>IsIn</term>
         <listitem>
          <synopsis>IsIn (x,X)</synopsis>
	  <para>Возвращает <constant>true</constant>, если элемент x присуствует в множестве X (где X — вектор, изображающий множество).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-IsSubset"/>IsSubset</term>
         <listitem>
          <synopsis>IsSubset (X, Y)</synopsis>
	  <para>Возвращает <constant>true</constant>, если X является подмножеством Y (X и Y — векторы, изображающие множество).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MakeSet"/>MakeSet</term>
         <listitem>
          <synopsis>MakeSet (X)</synopsis>
          <para>Returns a vector where every element of X appears only once.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SetMinus"/>SetMinus</term>
         <listitem>
          <synopsis>SetMinus (X,Y)</synopsis>
          <para>Returns a set theoretic difference X-Y (X and Y are vectors pretending to be sets).</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-Union"/>Union</term>
         <listitem>
          <synopsis>Union (X,Y)</synopsis>
          <para>Возвращает объединение множеств X и Y (X и Y — векторы, изображающие множества).</para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-commutative-algebra">
      <title>Commutative Algebra</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-MacaulayBound"/>MacaulayBound</term>
         <listitem>
          <synopsis>MacaulayBound (c,d)</synopsis>
          <para>For a Hilbert function that is c for degree d, given the Macaulay bound for the Hilbert function of degree d+1 (The c^&lt;d&gt; operator from Green's proof).</para>
	  <para>Version 1.0.15 onwards.</para>
         </listitem>
        </varlistentry>
	
        <varlistentry>
         <term><anchor id="gel-function-MacaulayLowerOperator"/>MacaulayLowerOperator</term>
         <listitem>
          <synopsis>MacaulayLowerOperator (c,d)</synopsis>
          <para>The c_&lt;d&gt; operator from Green's proof of Macaulay's Theorem.</para>
	  <para>Version 1.0.15 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-MacaulayRep"/>MacaulayRep</term>
         <listitem>
          <synopsis>MacaulayRep (c,d)</synopsis>
          <para>Return the dth Macaulay representation of a positive integer c.</para>
	  <para>Version 1.0.15 onwards.</para>
         </listitem>
        </varlistentry>
      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-miscellaneous">
      <title>Прочие</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-ASCIIToString"/>ASCIIToString</term>
         <listitem>
          <synopsis>ASCIIToString (vec)</synopsis>
          <para>Convert a vector of ASCII values to a string.
		  See also
		  <link linkend="gel-function-StringToASCII"><function>StringToASCII</function></link>.
          </para>
          <para>
	    Example:
          <screen><prompt>genius&gt;</prompt> <userinput>ASCIIToString([97,98,99])</userinput>
= "abc"
</screen>
          </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/ASCII">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-AlphabetToString"/>AlphabetToString</term>
         <listitem>
          <synopsis>AlphabetToString (vec,alphabet)</synopsis>
	  <para>Convert a vector of 0-based alphabet values (positions in the alphabet string) to a string.  A <constant>null</constant> vector results in an empty string.
		  See also
		  <link linkend="gel-function-StringToAlphabet"><function>StringToAlphabet</function></link>.
          </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>AlphabetToString([1,2,3,0,0],"abcd")</userinput>
= "bcdaa"
<prompt>genius&gt;</prompt> <userinput>AlphabetToString(null,"abcd")</userinput>
= ""
</screen>
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-StringToASCII"/>StringToASCII</term>
         <listitem>
          <synopsis>StringToASCII (str)</synopsis>
	  <para>Convert a string to a (row) vector of ASCII values.
		  See also
		  <link linkend="gel-function-ASCIIToString"><function>ASCIIToString</function></link>.
          </para>
          <para>
	    Example:
          <screen><prompt>genius&gt;</prompt> <userinput>StringToASCII("abc")</userinput>
= [97, 98, 99]
</screen>
          </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/ASCII">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-StringToAlphabet"/>StringToAlphabet</term>
         <listitem>
          <synopsis>StringToAlphabet (str,alphabet)</synopsis>
	  <para>Convert a string to a (row) vector of 0-based alphabet values
		  (positions in the alphabet string), -1's for unknown letters.
		  An empty string results in a <constant>null</constant>.
		  See also
		  <link linkend="gel-function-AlphabetToString"><function>AlphabetToString</function></link>.
          </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>StringToAlphabet("cca","abcd")</userinput>
= [2, 2, 0]
<prompt>genius&gt;</prompt> <userinput>StringToAlphabet("ccag","abcd")</userinput>
= [2, 2, 0, -1]
</screen>
          </para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-symbolic">
      <title>Symbolic Operations</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-SymbolicDerivative"/>SymbolicDerivative</term>
         <listitem>
          <synopsis>SymbolicDerivative (f)</synopsis>
          <para>Attempt to symbolically differentiate the function f, where f is a function of one variable.</para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>SymbolicDerivative(sin)</userinput>
= (`(x)=cos(x))
<prompt>genius&gt;</prompt> <userinput>SymbolicDerivative(`(x)=7*x^2)</userinput>
= (`(x)=(7*(2*x)))
</screen>
          </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SymbolicDerivativeTry"/>SymbolicDerivativeTry</term>
         <listitem>
          <synopsis>SymbolicDerivativeTry (f)</synopsis>
	  <para>Attempt to symbolically differentiate the function f, where f is a function of one variable, returns <constant>null</constant> if unsuccessful but is silent.
	  (See <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>)
          </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SymbolicNthDerivative"/>SymbolicNthDerivative</term>
         <listitem>
          <synopsis>SymbolicNthDerivative (f,n)</synopsis>
          <para>Attempt to symbolically differentiate a function n times.
	  (See <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>)
          </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SymbolicNthDerivativeTry"/>SymbolicNthDerivativeTry</term>
         <listitem>
          <synopsis>SymbolicNthDerivativeTry (f,n)</synopsis>
	  <para>Attempt to symbolically differentiate a function n times quietly and return <constant>null</constant> on failure
	  (See <link linkend="gel-function-SymbolicNthDerivative"><function>SymbolicNthDerivative</function></link>)
          </para>
          <para>
	    See
	    <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SymbolicTaylorApproximationFunction"/>SymbolicTaylorApproximationFunction</term>
         <listitem>
          <synopsis>SymbolicTaylorApproximationFunction (f,x0,n)</synopsis>
	  <para>Attempt to construct the Taylor approximation function around x0 to the nth degree.
	  (See <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>)
          </para>
         </listitem>
        </varlistentry>
      </variablelist>
    </sect1>

    <sect1 id="genius-gel-function-list-plotting">
      <title>Построение графиков</title>
      <variablelist>
        <varlistentry>
         <term><anchor id="gel-function-ExportPlot"/>ExportPlot</term>
         <listitem>
          <synopsis>ExportPlot (file,type)</synopsis>
          <synopsis>ExportPlot (file)</synopsis>
          <para>
		  Export the contents of the plotting window to a file.
		  The type is a string that specifies the file type to
		  use, "png", "eps", or "ps".  If the type is not
		  specified, then it is taken to be the extension, in
		  which case the extension must be ".png", ".eps", or ".ps".
	  </para>
	  <para>
		  Note that files are overwritten without asking.
	  </para>
	  <para>
		  On successful export, true is returned.  Otherwise
		  error is printed and exception is raised.
	  </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>ExportPlot("file.png")</userinput>
<prompt>genius&gt;</prompt> <userinput>ExportPlot("/directory/file","eps")</userinput>
</screen>
          </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlot"/>LinePlot</term>
         <listitem>
          <synopsis>LinePlot (func1,func2,func3,...)</synopsis>
          <synopsis>LinePlot (func1,func2,func3,x1,x2)</synopsis>
          <synopsis>LinePlot (func1,func2,func3,x1,x2,y1,y2)</synopsis>
          <synopsis>LinePlot (func1,func2,func3,[x1,x2])</synopsis>
          <synopsis>LinePlot (func1,func2,func3,[x1,x2,y1,y2])</synopsis>
          <para>
	    Plot a function (or several functions) with a line.
	    First (up to 10) arguments are functions, then optionally
            you can specify the limits of the plotting window as
	    <varname>x1</varname>, <varname>x2</varname>,
	    <varname>y1</varname>, <varname>y2</varname>.  If limits are not
	    specified, then the currently set limits apply
	    (See <link linkend="gel-function-LinePlotWindow"><function>LinePlotWindow</function></link>)
	    If the y limits are not specified, then the functions are computed and then the maxima and minima
	    are used.
          </para>
          <para>
	    The parameter
	    <link linkend="gel-function-LinePlotDrawLegends"><function>LinePlotDrawLegends</function></link>
	    controls the drawing of the legend.
	  </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>LinePlot(sin,cos)</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlot(`(x)=x^2,-1,1,0,1)</userinput>
</screen>
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotClear"/>LinePlotClear</term>
         <listitem>
          <synopsis>LinePlotClear ()</synopsis>
          <para>
            Show the line plot window and clear out functions and any other
            lines that were drawn.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotCParametric"/>LinePlotCParametric</term>
         <listitem>
          <synopsis>LinePlotCParametric (func,...)</synopsis>
          <synopsis>LinePlotCParametric (func,t1,t2,tinc)</synopsis>
          <synopsis>LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2)</synopsis>
          <para>
	    Plot a parametric complex valued function with a line.  First comes
the function that returns <computeroutput>x+iy</computeroutput>,
then optionally the <varname>t</varname> limits as <userinput>t1,t2,tinc</userinput>, then
optionally the limits as <userinput>x1,x2,y1,y2</userinput>.
          </para>
	  <para>
	    If limits are not
	    specified, then the currently set limits apply
	    (See <link linkend="gel-function-LinePlotWindow"><function>LinePlotWindow</function></link>).
	    If instead the string "fit" is given for the x and y limits, then the limits are the maximum extent of
	    the graph
          </para>
          <para>
	    The parameter
	    <link linkend="gel-function-LinePlotDrawLegends"><function>LinePlotDrawLegends</function></link>
	    controls the drawing of the legend.
	  </para>
         </listitem>
        </varlistentry>


        <varlistentry>
         <term><anchor id="gel-function-LinePlotDrawLine"/>LinePlotDrawLine</term>
         <listitem>
          <synopsis>LinePlotDrawLine (x1,y1,x2,y2,...)</synopsis>
          <synopsis>LinePlotDrawLine (v,...)</synopsis>
          <para>
	    Draw a line from <varname>x1</varname>,<varname>y1</varname> to
	    <varname>x2</varname>,<varname>y2</varname>.
	    <varname>x1</varname>,<varname>y1</varname>,
	    <varname>x2</varname>,<varname>y2</varname> can be replaced by an
	    <varname>n</varname> by 2 matrix for a longer polyline.
	    Alternatively the vector <varname>v</varname> may be a column vector of complex numbers,
	    that is an <varname>n</varname> by 1 matrix and each complex number is then
	    considered a point in the plane.
          </para>
          <para>
	    Extra parameters can be added to specify line color, thickness,
	    arrows, the plotting window, or legend.
	    You can do this by adding an argument string <userinput>"color"</userinput>, 
	    <userinput>"thickness"</userinput>,
	    <userinput>"window"</userinput>, 
	    <userinput>"arrow"</userinput>, or <userinput>"legend"</userinput>, and after it specify
	    the color, the thickness, the window
	    as 4-vector, type of arrow, or the legend.  (Arrow and window are from version 1.0.6 onwards.)
    	  </para>
	  <para>
	    If the line is to be treated as a filled polygon, filled with the given color, you
	    can specify the argument <userinput>"filled"</userinput>.  Since version 1.0.22 onwards.
	  </para>
    	  <para>
	    The color should be either a string indicating the common English word for the color
	    that GTK will recognize such as 
            <userinput>"red"</userinput>, <userinput>"blue"</userinput>, <userinput>"yellow"</userinput>, etc...
	    Alternatively the color can be specified in RGB format as
	    <userinput>"#rgb"</userinput>, <userinput>"#rrggbb"</userinput>, or
	    <userinput>"#rrrrggggbbbb"</userinput>, where the r, g, or b are hex digits of the red, green, and blue
	    components of the color.  Finally, since version 1.0.18, the color
	    can also be specified as a real vector specifying the red green and
	    blue components where the components are between 0 and 1, e.g. <userinput>[1.0,0.5,0.1]</userinput>.
    	  </para>
    	  <para>
	    The window should be given as usual as <userinput>[x1,x2,y1,y2]</userinput>, or
	    alternatively can be given as a string
	    <userinput>"fit"</userinput> in which case,
	    the x range will be set precisely and the y range will be set with
	    five percent borders around the line.
    	  </para>
    	  <para>
	    Arrow specification should be
	    <userinput>"origin"</userinput>,
	    <userinput>"end"</userinput>,
	    <userinput>"both"</userinput>, or
	    <userinput>"none"</userinput>.
    	  </para>
    	  <para>
	    Finally, legend should be a string that can be used as the legend in the
	    graph.  That is, if legends are being printed.
          </para>
	  <para>
	  Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine([0,0;1,-1;-1,-1])</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine([0,0;1,1],"arrow","end")</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,0.001,10,100),"color","blue","legend","The Solution")</userinput>
<prompt>genius&gt;</prompt> <userinput>for r=0.0 to 1.0 by 0.1 do LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</userinput>
</screen>
          </para>
	  <para>
		  Unlike many other functions that do not care if they take a
		  column or a row vector, if specifying points as a vector of
		  complex values, due to possible ambiguities, it must always
		  be given as a column vector.
	  </para>
	  <para>
		  Specifying <varname>v</varname> as a column vector of complex numbers is
		  implemented from version 1.0.22 and onwards.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotDrawPoints"/>LinePlotDrawPoints</term>
         <listitem>
          <synopsis>LinePlotDrawPoints (x,y,...)</synopsis>
          <synopsis>LinePlotDrawPoints (v,...)</synopsis>
          <para>
		  Draw a point at <varname>x</varname>,<varname>y</varname>.
		  The input can be an <varname>n</varname> by 2 matrix
		  for <varname>n</varname> different points.  This function has essentially the same
		  input as <link linkend="gel-function-LinePlotDrawLine">LinePlotDrawLine</link>.
		  Alternatively the vector <varname>v</varname> may be a column vector of complex numbers,
		  that is an <varname>n</varname> by 1 matrix and each complex number is then
		  considered a point in the plane.
          </para>
          <para>
	    Extra parameters can be added to specify color, thickness,
	    the plotting window, or legend.
	    You can do this by adding an argument string <userinput>"color"</userinput>, 
	    <userinput>"thickness"</userinput>,
	    <userinput>"window"</userinput>, 
	    or <userinput>"legend"</userinput>, and after it specify
	    the color, the thickness, the window
	    as 4-vector, or the legend.
    	  </para>
    	  <para>
	    The color should be either a string indicating the common English word for the color
	    that GTK will recognize such as 
            <userinput>"red"</userinput>, <userinput>"blue"</userinput>, <userinput>"yellow"</userinput>, etc...
	    Alternatively the color can be specified in RGB format as
	    <userinput>"#rgb"</userinput>, <userinput>"#rrggbb"</userinput>, or
	    <userinput>"#rrrrggggbbbb"</userinput>, where the r, g, or b are hex digits of the red, green, and blue
	    components of the color.  Finally the color can also be specified as a real vector specifying the red green
	    and blue components where the components are between 0 and 1.
    	  </para>
    	  <para>
	    The window should be given as usual as <userinput>[x1,x2,y1,y2]</userinput>, or
	    alternatively can be given as a string
	    <userinput>"fit"</userinput> in which case,
	    the x range will be set precisely and the y range will be set with
	    five percent borders around the line.
    	  </para>
    	  <para>
	    Finally, legend should be a string that can be used as the legend in the
	    graph.  That is, if legends are being printed.
          </para>
	  <para>
	  Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawPoints([0,0;1,-1;-1,-1])</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,0.001,10,100),"color","blue","legend","The Solution")</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</userinput>
<prompt>genius&gt;</prompt> <userinput>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","The 7th roots of unity")</userinput>
</screen>
          </para>
	  <para>
		  Unlike many other functions that do not care if they take a
		  column or a row vector, if specifying points as a vector of
		  complex values, due to possible ambiguities, it must always
		  be given as a column vector.  Therefore, notice in the
		  last example the transpose of the vector <userinput>0:6</userinput>
		  to make it into a column vector.
	  </para>
	  <para>
		  Available from version 1.0.18 onwards.  Specifying
		  <varname>v</varname> as a column vector of complex numbers is
		  implemented from version 1.0.22 and onwards.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotMouseLocation"/>LinePlotMouseLocation</term>
         <listitem>
          <synopsis>LinePlotMouseLocation ()</synopsis>
          <para>
	    Returns a row vector of a point on the line plot corresponding to
	    the current mouse location.  If the line plot is not visible,
	    then prints an error and returns <constant>null</constant>.
	    In this case you should run
	    <link linkend="gel-function-LinePlot"><function>LinePlot</function></link> or
	    <link linkend="gel-function-LinePlotClear"><function>LinePlotClear</function></link>
	    to put the graphing window into the line plot mode.
	    See also
	    <link linkend="gel-function-LinePlotWaitForClick"><function>LinePlotWaitForClick</function></link>.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotParametric"/>LinePlotParametric</term>
         <listitem>
          <synopsis>LinePlotParametric (xfunc,yfunc,...)</synopsis>
          <synopsis>LinePlotParametric (xfunc,yfunc,t1,t2,tinc)</synopsis>
          <synopsis>LinePlotParametric (xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)</synopsis>
          <synopsis>LinePlotParametric (xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])</synopsis>
          <synopsis>LinePlotParametric (xfunc,yfunc,t1,t2,tinc,"fit")</synopsis>
          <para>
	    Plot a parametric function with a line.  First come the functions
for <varname>x</varname> and <varname>y</varname> then optionally the <varname>t</varname> limits as <userinput>t1,t2,tinc</userinput>, then optionally the
limits as <userinput>x1,x2,y1,y2</userinput>.
          </para>
	  <para>
	    If x and y limits are not
	    specified, then the currently set limits apply
	    (See <link linkend="gel-function-LinePlotWindow"><function>LinePlotWindow</function></link>).
	    If instead the string "fit" is given for the x and y limits, then the limits are the maximum extent of
	    the graph
          </para>
          <para>
	    The parameter
	    <link linkend="gel-function-LinePlotDrawLegends"><function>LinePlotDrawLegends</function></link>
	    controls the drawing of the legend.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-LinePlotWaitForClick"/>LinePlotWaitForClick</term>
         <listitem>
          <synopsis>LinePlotWaitForClick ()</synopsis>
          <para>
	    If in line plot mode, waits for a click on the line plot window
	    and returns the location of the click as a row vector.
	    If the window is closed
	    the function returns immediately with <constant>null</constant>.
	    If the window is not in line plot mode, it is put in it and shown
	    if not shown.
	    See also
	    <link linkend="gel-function-LinePlotMouseLocation"><function>LinePlotMouseLocation</function></link>.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PlotCanvasFreeze"/>PlotCanvasFreeze</term>
         <listitem>
          <synopsis>PlotCanvasFreeze ()</synopsis>
          <para>
		  Freeze drawing of the canvas plot temporarily.  Useful if you need to draw a bunch of elements
		  and want to delay drawing everything to avoid flicker in an animation.  After everything
		  has been drawn you should call <link linkend="gel-function-PlotCanvasThaw"><function>PlotCanvasThaw</function></link>.
          </para>
          <para>
		  The canvas is always thawed after end of any execution, so it will never remain frozen.  The moment
		  a new command line is shown for example the plot canvas is thawed automatically.  Also note that
		  calls to freeze and thaw may be safely nested.
          </para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PlotCanvasThaw"/>PlotCanvasThaw</term>
         <listitem>
          <synopsis>PlotCanvasThaw ()</synopsis>
          <para>
		  Thaw the plot canvas frozen by
		  <link linkend="gel-function-PlotCanvasFreeze"><function>PlotCanvasFreeze</function></link>
		  and redraw the canvas immediately.  The canvas is also always thawed after end of execution
		  of any program.
          </para>
	  <para>Version 1.0.18 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-PlotWindowPresent"/>PlotWindowPresent</term>
         <listitem>
          <synopsis>PlotWindowPresent ()</synopsis>
          <para>
		  Show and raise the plot window, creating it if necessary.
		  Normally the window is created when one of the plotting
		  functions is called, but it is not always raised if it
		  happens to be below other windows.  So this function is
		  good to call in scripts where the plot window might have 
		  been created before, and by now is hidden behind the
		  console or other windows.
          </para>
	  <para>Version 1.0.19 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SlopefieldClearSolutions"/>SlopefieldClearSolutions</term>
         <listitem>
          <synopsis>SlopefieldClearSolutions ()</synopsis>
          <para>
	    Clears the solutions drawn by the
	    <link linkend="gel-function-SlopefieldDrawSolution"><function>SlopefieldDrawSolution</function></link>
	    function.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SlopefieldDrawSolution"/>SlopefieldDrawSolution</term>
         <listitem>
          <synopsis>SlopefieldDrawSolution (x, y, dx)</synopsis>
          <para>
	    When a slope field plot is active, draw a solution with
	    the specified initial condition.  The standard
	    Runge-Kutta method is used with increment <varname>dx</varname>.
	    Solutions stay on the graph until a different plot is shown or until
	    you call 
	    <link linkend="gel-function-SlopefieldClearSolutions"><function>SlopefieldClearSolutions</function></link>.
	    You can also use the graphical interface to draw solutions and specify
	    initial conditions with the mouse.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SlopefieldPlot"/>SlopefieldPlot</term>
         <listitem>
          <synopsis>SlopefieldPlot (func)</synopsis>
          <synopsis>SlopefieldPlot (func,x1,x2,y1,y2)</synopsis>
          <para>
	    Plot a slope field.  The function <varname>func</varname>
	    should take two real numbers <varname>x</varname>
	    and <varname>y</varname>, or a single complex
	    number.
            Optionally you can specify the limits of the plotting window as
	    <varname>x1</varname>, <varname>x2</varname>,
	    <varname>y1</varname>, <varname>y2</varname>.  If limits are not
	    specified, then the currently set limits apply
	    (See <link linkend="gel-function-LinePlotWindow"><function>LinePlotWindow</function></link>).
          </para>
          <para>
	    The parameter
	    <link linkend="gel-function-LinePlotDrawLegends"><function>LinePlotDrawLegends</function></link>
	    controls the drawing of the legend.
	  </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</userinput>
</screen>
          </para>
         </listitem>
        </varlistentry>

	<varlistentry>
	 <term><anchor id="gel-function-SurfacePlot"/>SurfacePlot</term>
         <listitem>
          <synopsis>SurfacePlot (func)</synopsis>
          <synopsis>SurfacePlot (func,x1,x2,y1,y2,z1,z2)</synopsis>
          <synopsis>SurfacePlot (func,x1,x2,y1,y2)</synopsis>
          <synopsis>SurfacePlot (func,[x1,x2,y1,y2,z1,z2])</synopsis>
          <synopsis>SurfacePlot (func,[x1,x2,y1,y2])</synopsis>
          <para>
	    Plot a surface function that takes either two arguments or a complex number.  First comes the function then optionally limits as <varname>x1</varname>, <varname>x2</varname>,
	    <varname>y1</varname>, <varname>y2</varname>,
	    <varname>z1</varname>, <varname>z2</varname>.  If limits are not
	    specified, then the currently set limits apply
	    (See <link linkend="gel-function-SurfacePlotWindow"><function>SurfacePlotWindow</function></link>).
	    Genius can only plot a single surface function at this time.
          </para>
          <para>
	    If the z limits are not specified then the maxima and minima of the function are used.
	  </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</userinput>
</screen>
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SurfacePlotClear"/>SurfacePlotClear</term>
         <listitem>
          <synopsis>SurfacePlotClear ()</synopsis>
          <para>
            Show the surface plot window and clear out functions and any other
            lines that were drawn.
          </para>
          <para>
	    Available in version 1.0.19 and onwards.
          </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SurfacePlotData"/>SurfacePlotData</term>
         <listitem>
          <synopsis>SurfacePlotData (data)</synopsis>
          <synopsis>SurfacePlotData (data,label)</synopsis>
          <synopsis>SurfacePlotData (data,x1,x2,y1,y2,z1,z2)</synopsis>
          <synopsis>SurfacePlotData (data,label,x1,x2,y1,y2,z1,z2)</synopsis>
          <synopsis>SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])</synopsis>
          <synopsis>SurfacePlotData (data,label,[x1,x2,y1,y2,z1,z2])</synopsis>
          <para>
		  Plot a surface from data.  The data is an n by 3 matrix whose
		  rows are the x, y and z coordinates.  The data can also be
		  simply a vector whose length is a multiple of 3 and so
		  contains the triples of x, y, z.  The data should contain at
		  least 3 points.
	  </para>
          <para>
		  Optionally we can give the label and also optionally the
		  limits.  If limits are not given, they are computed from
		  the data, <link linkend="gel-function-SurfacePlotWindow"><function>SurfacePlotWindow</function></link>
		  is not used, if you want to use it, pass it in explicitly.
		  If label is not given then empty label is used.
	  </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlotData(data,"My data")</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlotData(data,-1,1,-1,1,0,10)</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlotData(data,SurfacePlotWindow)</userinput>
</screen>
          </para>
	  <para>
		  Here's an example of how to plot in polar coordinates,
		  in particular how to plot the function
		  <userinput>-r^2 * theta</userinput>:
          <screen><prompt>genius&gt;</prompt> <userinput>d:=null; for r=0 to 1 by 0.1 do for theta=0 to 2*pi by pi/5 do d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlotData(d)</userinput>
</screen>
          </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SurfacePlotDataGrid"/>SurfacePlotDataGrid</term>
         <listitem>
          <synopsis>SurfacePlotDataGrid (data,[x1,x2,y1,y2])</synopsis>
          <synopsis>SurfacePlotDataGrid (data,[x1,x2,y1,y2,z1,z2])</synopsis>
          <synopsis>SurfacePlotDataGrid (data,[x1,x2,y1,y2],label)</synopsis>
          <synopsis>SurfacePlotDataGrid (data,[x1,x2,y1,y2,z1,z2],label)</synopsis>
          <para>
		  Plot a surface from regular rectangular data.
		  The data is given in a n by m matrix where the rows are the
		  x coordinate and the columns are the y coordinate.
		  The x coordinate is divided into equal n-1 subintervals
		  and y coordinate is divided into equal m-1 subintervals.
		  The limits <varname>x1</varname> and <varname>x2</varname>
		  give the interval on the x-axis that we use, and 
		  the limits <varname>y1</varname> and <varname>y2</varname>
		  give the interval on the y-axis that we use.
		  If the limits <varname>z1</varname> and <varname>z2</varname>
		  are not given they are computed from the data (to be
		  the extreme values from the data).
	  </para>
          <para>
		  Optionally we can give the label, if label is not given then
		  empty label is used.
	  </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlotDataGrid(data,[-1,1,-1,1],"My data")</userinput>
<prompt>genius&gt;</prompt> <userinput>d:=null; for i=1 to 20 do for j=1 to 10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlotDataGrid(d,[-1,1,0,1],"half a saddle")</userinput>
</screen>
          </para>
	  <para>Version 1.0.16 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SurfacePlotDrawLine"/>SurfacePlotDrawLine</term>
         <listitem>
          <synopsis>SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</synopsis>
          <synopsis>SurfacePlotDrawLine (v,...)</synopsis>
          <para>
	    Draw a line from <varname>x1</varname>,<varname>y1</varname>,<varname>z1</varname> to
	    <varname>x2</varname>,<varname>y2</varname>,<varname>z2</varname>.
	    <varname>x1</varname>,<varname>y1</varname>,<varname>z1</varname>,
	    <varname>x2</varname>,<varname>y2</varname>,<varname>z2</varname> can be replaced by an
	    <varname>n</varname> by 3 matrix for a longer polyline.
          </para>
          <para>
	    Extra parameters can be added to specify line color, thickness,
	    the plotting window, or legend.
	    You can do this by adding an argument string <userinput>"color"</userinput>, 
	    <userinput>"thickness"</userinput>,
	    <userinput>"window"</userinput>,
	    or <userinput>"legend"</userinput>, and after it specify
	    the color, the thickness, the window
	    as 6-vector, or the legend.
    	  </para>
    	  <para>
	    The color should be either a string indicating the common English word for the color
	    that GTK will recognize such as 
            <userinput>"red"</userinput>, <userinput>"blue"</userinput>, <userinput>"yellow"</userinput>, etc...
	    Alternatively the color can be specified in RGB format as
	    <userinput>"#rgb"</userinput>, <userinput>"#rrggbb"</userinput>, or
	    <userinput>"#rrrrggggbbbb"</userinput>, where the r, g, or b are hex digits of the red, green, and blue
	    components of the color.  Finally, since version 1.0.18, the color
	    can also be specified as a real vector specifying the red green and
	    blue components where the components are between 0 and 1, e.g. <userinput>[1.0,0.5,0.1]</userinput>.
    	  </para>
    	  <para>
	    The window should be given as usual as <userinput>[x1,x2,y1,y2,z1,z2]</userinput>, or
	    alternatively can be given as a string
	    <userinput>"fit"</userinput> in which case,
	    the x range will be set precisely and the y range will be set with
	    five percent borders around the line.
    	  </para>
    	  <para>
	    Finally, legend should be a string that can be used as the legend in the
	    graph.  That is, if legends are being printed.
          </para>
	  <para>
	  Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</userinput>
</screen>
          </para>
	  <para>
		  Available from version 1.0.19 onwards.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-SurfacePlotDrawPoints"/>SurfacePlotDrawPoints</term>
         <listitem>
          <synopsis>SurfacePlotDrawPoints (x,y,z,...)</synopsis>
          <synopsis>SurfacePlotDrawPoints (v,...)</synopsis>
          <para>
		  Draw a point at <varname>x</varname>,<varname>y</varname>,<varname>z</varname>.
		  The input can be an <varname>n</varname> by 3 matrix
		  for <varname>n</varname> different points.  This function has essentially the same
		  input as <link linkend="gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</link>.
          </para>
          <para>
	    Extra parameters can be added to specify line color, thickness,
	    the plotting window, or legend.
	    You can do this by adding an argument string <userinput>"color"</userinput>, 
	    <userinput>"thickness"</userinput>,
	    <userinput>"window"</userinput>, 
	    or <userinput>"legend"</userinput>, and after it specify
	    the color, the thickness, the window
	    as 6-vector, or the legend.
    	  </para>
    	  <para>
	    The color should be either a string indicating the common English word for the color
	    that GTK will recognize such as 
            <userinput>"red"</userinput>, <userinput>"blue"</userinput>, <userinput>"yellow"</userinput>, etc...
	    Alternatively the color can be specified in RGB format as
	    <userinput>"#rgb"</userinput>, <userinput>"#rrggbb"</userinput>, or
	    <userinput>"#rrrrggggbbbb"</userinput>, where the r, g, or b are hex digits of the red, green, and blue
	    components of the color.  Finally the color can also be specified as a real vector specifying the red green
	    and blue components where the components are between 0 and 1.
    	  </para>
    	  <para>
	    The window should be given as usual as <userinput>[x1,x2,y1,y2,z1,z2]</userinput>, or
	    alternatively can be given as a string
	    <userinput>"fit"</userinput> in which case,
	    the x range will be set precisely and the y range will be set with
	    five percent borders around the line.
    	  </para>
    	  <para>
	    Finally, legend should be a string that can be used as the legend in the
	    graph.  That is, if legends are being printed.
          </para>
	  <para>
	  Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</userinput>
<prompt>genius&gt;</prompt> <userinput>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</userinput>
</screen>
          </para>
	  <para>
		  Available from version 1.0.19 onwards.
	  </para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorfieldClearSolutions"/>VectorfieldClearSolutions</term>
         <listitem>
          <synopsis>VectorfieldClearSolutions ()</synopsis>
          <para>
	    Clears the solutions drawn by the
	    <link linkend="gel-function-VectorfieldDrawSolution"><function>VectorfieldDrawSolution</function></link>
	    function.
          </para>
	  <para>Version 1.0.6 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorfieldDrawSolution"/>VectorfieldDrawSolution</term>
         <listitem>
          <synopsis>VectorfieldDrawSolution (x, y, dt, tlen)</synopsis>
          <para>
	    When a vector field plot is active, draw a solution with
	    the specified initial condition.  The standard
	    Runge-Kutta method is used with increment <varname>dt</varname>
	    for an interval of length <varname>tlen</varname>.
	    Solutions stay on the graph until a different plot is shown or until
	    you call 
	    <link linkend="gel-function-VectorfieldClearSolutions"><function>VectorfieldClearSolutions</function></link>.
	    You can also use the graphical interface to draw solutions and specify
	    initial conditions with the mouse.
          </para>
	  <para>Version 1.0.6 onwards.</para>
         </listitem>
        </varlistentry>

        <varlistentry>
         <term><anchor id="gel-function-VectorfieldPlot"/>VectorfieldPlot</term>
         <listitem>
          <synopsis>VectorfieldPlot (funcx, funcy)</synopsis>
          <synopsis>VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)</synopsis>
          <para>
	    Plot a two dimensional vector field.  The function
	    <varname>funcx</varname>
	    should be the dx/dt of the vectorfield and the function
	    <varname>funcy</varname> should be the dy/dt of the vectorfield.
	    The functions
	    should take two real numbers <varname>x</varname>
	    and <varname>y</varname>, or a single complex
	    number.  When the parameter
	    <link linkend="gel-function-VectorfieldNormalized"><function>VectorfieldNormalized</function></link>
	    is <constant>true</constant>, then the magnitude of the vectors is normalized.  That is, only
	    the direction and not the magnitude is shown.
	  </para>
	  <para>
            Optionally you can specify the limits of the plotting window as
	    <varname>x1</varname>, <varname>x2</varname>,
	    <varname>y1</varname>, <varname>y2</varname>.  If limits are not
	    specified, then the currently set limits apply
	    (See <link linkend="gel-function-LinePlotWindow"><function>LinePlotWindow</function></link>).
          </para>
          <para>
	    The parameter
	    <link linkend="gel-function-LinePlotDrawLegends"><function>LinePlotDrawLegends</function></link>
	    controls the drawing of the legend.
	  </para>
          <para>
	    Examples:
          <screen><prompt>genius&gt;</prompt> <userinput>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</userinput>
</screen>
          </para>
         </listitem>
        </varlistentry>

      </variablelist>
    </sect1>

  </chapter>

  <!-- ============= GEL examples ============================= -->
  <chapter id="genius-gel-example-programs">
    <title>Примеры программ на GEL</title>

    <para>
Here is a function that calculates factorials:
<programlisting><![CDATA[function f(x) = if x <= 1 then 1 else (f(x-1)*x)
]]></programlisting>
    </para>
    <para>
With indentation it becomes:
<programlisting><![CDATA[function f(x) = (
  if x <= 1 then
    1
  else
    (f(x-1)*x)
)
]]></programlisting>
    </para>
    <para>
This is a direct port of the factorial function from the <application>bc</application> manpage. The syntax seems similar to <application>bc</application>, but different in that in GEL, the last expression is the one that is returned. Using the <literal>return</literal> function instead, it would be:
<programlisting><![CDATA[function f(x) = (
  if (x <= 1) then return (1);
  return (f(x-1) * x)
)
]]></programlisting>
    </para>

    <para>
By far the easiest way to define a factorial function would be using
the product loop as follows.  This is not only the shortest and fastest,
but also probably the most readable version.
<programlisting>function f(x) = prod k=1 to x do k
</programlisting>
    </para>

    <para>
Here is a larger example, this basically redefines the internal
<link linkend="gel-function-ref"><function>ref</function></link> function to calculate the row echelon form of a
matrix.  The function <function>ref</function> is built in and much faster,
but this example demonstrates some of the more complex features of GEL.
<programlisting><![CDATA[# Calculate the row-echelon form of a matrix
function MyOwnREF(m) = (
  if not IsMatrix(m) or not IsValueOnly(m) then
    (error("MyOwnREF: argument not a value only matrix");bailout);
  s := min(rows(m), columns(m));
  i := 1;
  d := 1;
  while d <= s and i <= columns(m) do (

    # This just makes the anchor element non-zero if at
    # all possible
    if m@(d,i) == 0 then (
      j := d+1;
      while j <= rows(m) do (
        if m@(j,i) == 0 then
          (j=j+1;continue);
        a := m@(j,);
        m@(j,) := m@(d,);
        m@(d,) := a;
        j := j+1;
        break
      )
    );
    if m@(d,i) == 0 then
      (i:=i+1;continue);
    
    # Here comes the actual zeroing of all but the anchor
    # element rows
    j := d+1;
    while j <= rows(m)) do (
      if m@(j,i) != 0 then (
        m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
      );
      j := j+1
    );
    m@(d,) := m@(d,) * (1/m@(d,i));
    d := d+1;
    i := i+1
  );
  m
)
]]></programlisting>
    </para>

  </chapter>

  <!-- ============= Customization ============================ -->
  <chapter id="genius-prefs"> 
    <title>Настройки</title> 

    <para>
      To configure <application>Genius Mathematics Tool</application>, choose
      <menuchoice><guimenu>Settings</guimenu>
      <guimenuitem>Preferences</guimenuitem></menuchoice>.
      There are several basic parameters provided by the calculator in addition
      to the ones provided by the standard library.  These control how the
      calculator behaves.
    </para>

    <note>
      <title>Changing Settings with GEL</title>
      <para>
	Many of the settings in Genius are simply global variables, and can
	be evaluated and assigned to in the same way as normal variables. See
	<xref linkend="genius-gel-variables"/> about evaluating and assigning
	to variables, and <xref linkend="genius-gel-function-parameters"/> for
	a list of settings that can be modified in this way.
      </para>
      <para>
As an example, you can set the maximum number of digits in a result to 12 by typing:
<programlisting>MaxDigits = 12
</programlisting>
      </para>
    </note>

    <sect1 id="genius-prefs-output"> 
      <title>Output</title> 
      <variablelist> 
	<varlistentry>
	  <term> 
	    <guilabel>Maximum digits to output</guilabel>
      </term> 
	  <listitem>
		  <para>The maximum digits in a result (<link linkend="gel-function-MaxDigits"><function>MaxDigits</function></link>)</para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term> 
	    <guilabel>Results as floats</guilabel>
      </term> 
	  <listitem>
		  <para>If the results should be always printed as floats (<link linkend="gel-function-ResultsAsFloats"><function>ResultsAsFloats</function></link>)</para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term> 
	    <guilabel>Floats in scientific notation</guilabel>
      </term> 
	  <listitem>
		  <para>If floats should be in scientific notation (<link linkend="gel-function-ScientificNotation"><function>ScientificNotation</function></link>)</para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term> 
	    <guilabel>Always print full expressions</guilabel>
      </term> 
	  <listitem>
		  <para>Should we print out full expressions for non-numeric return values (longer than a line) (<link linkend="gel-function-FullExpressions"><function>FullExpressions</function></link>)</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
	    <guilabel>Use mixed fractions</guilabel>
      </term> 
	  <listitem>
		  <para>If fractions should be printed as mixed fractions such as "1 1/3" rather than "4/3". (<link linkend="gel-function-MixedFractions"><function>MixedFractions</function></link>)</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
	    <guilabel>Display 0.0 when floating point number is less than 10^-x (0=never chop)</guilabel>
      </term> 
	  <listitem>
	  <para>How to chop output.  But only when other numbers nearby are large.
	   See the documentation of the parameter
          <link linkend="gel-function-OutputChopExponent"><function>OutputChopExponent</function></link>. </para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
            <guilabel>Only chop numbers when another number is greater than 10^-x</guilabel>
      </term> 
	  <listitem>
		  <para>When to chop output.  This is set by the parameter <link linkend="gel-function-OutputChopWhenExponent"><function>OutputChopWhenExponent</function></link>.
	   See the documentation of the parameter
          <link linkend="gel-function-OutputChopExponent"><function>OutputChopExponent</function></link>. </para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
	    <guilabel>Remember output settings across sessions</guilabel>
      </term> 
	  <listitem>
        <para>Should the output settings in the <guilabel>Number/Expression output options</guilabel> frame
	      be remembered for next session.  Does not apply to the <guilabel>Error/Info output options</guilabel> frame.</para>
	      <para>
		 If unchecked,
	   either the default or any previously saved settings are used each time Genius starts
	   up.  Note that
	   settings are saved at the end of the session, so if you wish to change the defaults
	   check this box, restart <application>Genius Mathematics Tool</application> and then uncheck it again.
	      </para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
	    <guilabel>Display errors in a dialog</guilabel>
      </term> 
	  <listitem>
        <para>If set the errors will be displayed in a separate dialog, if
	unset the errors will be printed on the console.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
	    <guilabel>Display information messages in a dialog</guilabel>
      </term> 
	  <listitem>
	<para>If set the information messages will be displayed in a separate
	dialog, if unset the information messages will be printed on the
	console.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
	    <guilabel>Maximum errors to display</guilabel>
      </term> 
	  <listitem>
        <para>
	  The maximum number of errors to return on one evaluation
	  (<link linkend="gel-function-MaxErrors"><function>MaxErrors</function></link>).  If you set this to 0 then
	  all errors are always returned.  Usually if some loop causes
	  many errors, then it is unlikely that you will be able to make
	  sense out of more than a few of these, so seeing a long list
	  of errors is usually not helpful.
	  </para>
	  </listitem>
	</varlistentry>
      </variablelist> 

      <para>
	In addition to these preferences, there are some preferences that can
	only be changed by setting them in the workspace console.  For others
	that may affect the output see <xref linkend="genius-gel-function-parameters"/>.
      </para>

      <variablelist> 
	<varlistentry>
	  <term> 
	    <function>IntegerOutputBase</function>
      </term> 
	  <listitem>
        <para>The base that will be used to output integers</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
	    <function>OutputStyle</function>
      </term> 
	  <listitem>
	<para>A string, can be <literal>"normal"</literal>,
<literal>"latex"</literal>, <literal>"mathml"</literal> or
<literal>"troff"</literal> and it will affect how matrices (and perhaps other
stuff) is printed, useful for pasting into documents.  Normal style is the
default human readable printing style of <application>Genius Mathematics Tool</application>.  The other styles are for
typesetting in LaTeX, MathML (XML), or in Troff.</para>
	  </listitem>
	</varlistentry>
      </variablelist> 
   </sect1> 

    <sect1 id="genius-prefs-precision"> 
      <title>Precision</title> 
      <variablelist> 
	<varlistentry>
	  <term> 
	    <guilabel>Floating point precision</guilabel>
      </term> 
	  <listitem>
        <para>
	  The floating point precision in bits
	  (<link linkend="gel-function-FloatPrecision"><function>FloatPrecision</function></link>).
	  Note that changing this only affects newly computed quantities.
	  Old values stored in variables are obviously still in the old
	  precision and if you want to have them more precise you will have
	  to recompute them.  Exceptions to this are the system constants
	  such as <link linkend="gel-function-pi"><function>pi</function></link> or
	  <link linkend="gel-function-e"><function>e</function></link>.
	  </para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term> 
	    <guilabel>Remember precision setting across sessions</guilabel>
      </term> 
	  <listitem>
        <para>
	   Should the precision setting be remembered for the next session.  If unchecked,
	   either the default or any previously saved setting is used each time Genius starts
	   up.  Note that
	   settings are saved at the end of the session, so if you wish to change the default
	   check this box, restart genius and then uncheck it again.
	  </para>
	  </listitem>
	</varlistentry>
      </variablelist> 
    </sect1> 

    <sect1 id="genius-prefs-terminal"> 
      <title>Терминал</title> 

      <para>Терминалом называется консоль в рабочей области.</para>

      <variablelist> 
	<varlistentry>
	  <term> 
	    <guilabel>Scrollback lines</guilabel>
      </term> 
	  <listitem>
        <para>Lines of scrollback in the terminal.</para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term> 
	    <guilabel>Шрифт</guilabel>
      </term> 
	  <listitem>
        <para>Шрифт, используемый в терминале</para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term> 
	    <guilabel>Чёрный на белом</guilabel>
      </term> 
	  <listitem>
        <para>Использовать в терминале чёрный текст на белом фоне.</para>
	  </listitem>
	</varlistentry>
	<varlistentry>
	  <term> 
	    <guilabel>Мигающий курсор</guilabel>
      </term> 
	  <listitem>
        <para>Должен ли курсор терминала мигать, если фокус ввода находится в терминале. Иногда это раздражает, кроме того это создаёт лишний трафик при удалённом доступе к Genius.</para>
	  </listitem>
	</varlistentry>
      </variablelist> 
    </sect1> 

    <sect1 id="genius-prefs-memory"> 
      <title>Память</title> 
      <variablelist> 
	<varlistentry>
	  <term> 
	    <guilabel>Maximum number of nodes to allocate</guilabel>
      </term> 
	  <listitem>
        <para>
	   Internally all data is put onto small nodes in memory.  This gives
	   a limit on the maximum number of nodes to allocate for
	   computations.  This limit avoids the problem of running out of memory
	   if you do something by mistake that uses too much memory, such
	   as a recursion without end.  This could slow your computer and make
	   it hard to even interrupt the program.
	  </para>
        <para>
	   Once the limit is reached, <application>Genius Mathematics Tool</application> asks if you wish to interrupt
	   the computation or if you wish to continue.  If you continue, no
	   limit is applied and it will be possible to run your computer
	   out of memory.  The limit will be applied again next time you
	   execute a program or an expression on the Console regardless of how
	   you answered the question.
        </para>
        <para>
	   Setting the limit to zero means there is no limit to the amount of
	   memory that genius uses.
        </para>
	  </listitem>
	</varlistentry>

      </variablelist> 
    </sect1> 

  </chapter>

<!-- ============= About ====================================== -->
  <chapter id="genius-about"> 
    <title>О <application>математическом инструменте Genius</application></title> 

    <para><application>Математический инструмент Genius</application> создан Jiří (George) Lebl (<email>jirka@5z.com</email>). История <application>математического инструмента Genius</application> началась в конце 1997 г. Это был первый калькулятор для GNOME, но с тех пор он вырос в нечто большее, чем простой настольный калькулятор. Чтобы узнать больше о <application>математическом инструменте Genius</application>, посетите <ulink url="http://www.jirka.org/genius.html" type="http">веб-страницу Genius</ulink>.</para>
    <para>
      To report a bug or make a suggestion regarding this application or
      this manual, send email to me (the author) or post to the mailing
      list (see the web page).
    </para>

    <para> This program is distributed under the terms of the GNU
      General Public license as published by the Free Software
      Foundation; either version 3 of the License, or (at your option)
      any later version. A copy of this license can be found at this
      <ulink url="http://www.gnu.org/copyleft/gpl.html" type="http">link</ulink>, or in the file
      COPYING included with the source code of this program. </para>

    <para>Jiří Lebl was during various parts of the development
      partially supported for the work by NSF grants DMS 0900885, 
      DMS 1362337,
      the University of Illinois at Urbana-Champaign,
      the University of California at San Diego, 
      the University of Wisconsin-Madison, and
      Oklahoma State University.  The software has
      been used for both teaching and research.</para>

  </chapter>

</book>