/usr/share/doc/geotranz/help/projectionDescriptions.htm is in geotranz-help 3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 | <html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:st1="urn:schemas-microsoft-com:office:smarttags"
xmlns="http://www.w3.org/TR/REC-html40">
<head>
<title>coordDescriptions</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="ProgId" content="Word.Document">
<meta name="Generator" content="Microsoft Word 11">
<meta name="Originator" content="Microsoft Word 11">
<link rel="File-List" href="projectionDescriptions_files/filelist.xml">
<link rel="Edit-Time-Data" href="projectionDescriptions_files/editdata.mso"> <!--[if !mso]>
<STYLE>
v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</STYLE>
<![endif]-->
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags" name="country-region" />
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags" name="place" /> <!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:Author>Kevin Trott</o:Author>
<o:LastAuthor>TROTTKE</o:LastAuthor>
<o:Revision>24</o:Revision>
<o:TotalTime>151</o:TotalTime>
<o:Created>2001-06-03T17:21:00Z</o:Created>
<o:LastSaved>2009-06-22T21:30:00Z</o:LastSaved>
<o:Pages>1</o:Pages>
<o:Words>4834</o:Words>
<o:Characters>27559</o:Characters>
<o:Company>Dell Computer Corporation</o:Company>
<o:Lines>229</o:Lines>
<o:Paragraphs>64</o:Paragraphs>
<o:CharactersWithSpaces>32329</o:CharactersWithSpaces>
<o:Version>11.9999</o:Version>
</o:DocumentProperties>
</xml><![endif]--> <!--[if gte mso 9]><xml>
<w:WordDocument>
<w:SpellingState>Clean</w:SpellingState>
<w:GrammarState>Clean</w:GrammarState>
<w:ValidateAgainstSchemas/>
<w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
<w:IgnoreMixedContent>false</w:IgnoreMixedContent>
<w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
<w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
</w:WordDocument>
</xml><![endif]--> <!--[if gte mso 9]><xml>
<w:LatentStyles DefLockedState="false" LatentStyleCount="156">
</w:LatentStyles>
</xml><![endif]--> <!--[if !mso]>
<OBJECT id=ieooui classid=clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D></OBJECT>
<STYLE>
st1\:*{behavior:url(#ieooui) }
</STYLE>
<![endif]-->
<style> <!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0in; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; color:black;}
a:link, span.MsoHyperlink {color:blue; text-decoration:underline; text-underline:single;}
a:visited, span.MsoHyperlinkFollowed {color:purple; text-decoration:underline; text-underline:single;}
p {mso-margin-top-alt:auto; margin-right:0in; mso-margin-bottom-alt:auto; margin-left:0in; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; color:black;}
span.SpellE {mso-style-name:""; mso-spl-e:yes;}
span.GramE {mso-style-name:""; mso-gram-e:yes;}
@page Section1 {size:8.5in 11.0in; margin:1.0in 1.25in 1.0in 1.25in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;}
div.Section1 {page:Section1;}
--></style>
<!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-parent:"";
mso-padding-alt:0in 5.4pt 0in 5.4pt;
mso-para-margin:0in;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:"Times New Roman";
mso-ansi-language:#0400;
mso-fareast-language:#0400;
mso-bidi-language:#0400;}
</style>
<![endif]-->
<meta name="Version" content="8.0.3410">
<meta name="Date" content="10/11/96">
<meta name="Template" content="C:\Program Files\Microsoft Office\Office\html.dot"><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="5122"/>
</xml><![endif]--> <!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1"/>
</o:shapelayout></xml><![endif]-->
</head>
<BODY lang="EN-US" style="tab-interval: .5in" vLink="purple" link="blue" bgColor="white">
<h1 align="center" style='MARGIN:6pt 0in 0pt;TEXT-ALIGN:center'><span style='FONT-SIZE:16pt;COLOR:black'>UNCLASSIFIED<o:p></o:p></span></h1>
<div class="Section1">
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="mercator"></a><strong>Description
of the Mercator
<span class="GramE">Projection</span></strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Mercator projection is a
cylindrical, conformal projection. The equator lies on the line Y = 0. This
projection is not defined at the poles. Meridians and parallels provide the
framework for the Mercator projection. Meridians are projected as parallel
straight lines that satisfy the equation X = a constant. Evenly spaced
meridians on the ellipsoid project to evenly spaced straight lines on the
projection. Parallels are projected as parallel straight lines perpendicular to
meridians and satisfy the equation Y = a constant. Evenly spaced parallels on
the ellipsoid project to unevenly spaced parallels on the projection. The
spacing between projected parallels increases with distance from the equator.
See the figure below.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>A Mercator projection can be
specified either in terms of a standard parallel, where the cylindrical
projection surface intersects the ellipsoid and the point scale factor is 1.0,
or in terms of a point scale factor at the equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="449" height="461" id="_x0000_i1025" src="mercator.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and
Parallels in the Mercator
<span class="GramE">Projection</span></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>In the Mercator projection, as
the latitude approaches the poles, the Y
<span class="GramE">coordinate</span>
approaches infinity. Area and length distortion increases with distance from
the equator. For example, the point scale factor is approximately 2 at 60°
latitude and 5.7 at 80° latitude.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="tranmerc"></a><strong>Description
of the Transverse Mercator
<span class="GramE">Projection</span></strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Transverse Mercator
projection is a transverse cylindrical, conformal projection. The line Y = 0 is
the projection of the equator, and the line X = 0 is the projection of the
central meridian, as shown in the figure below.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Both the central meridian and
the equator are represented as straight lines. No other meridian or parallel is
projected onto a straight line. Since the point scale factor is one along the
central meridian, this projection is most useful near the central meridian.
Scale distortion increases away from this meridian.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="560" height="278" id="_x0000_i1026" src="transmerc.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and
Parallels in the Transverse Mercator
<span class="GramE">Projection</span><br>
(0 is the central meridian)</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><span class="GramE">The Transverse
Mercator equations for X and Y, and for latitude and longitude, are
approximations.</span>
Within 4° of the central meridian, the equations for X, Y, latitude, and
longitude have an error of less than 1 centimeter.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="UTM"></a><strong>Description
of the Universal Transverse Mercator (UTM) Coordinates</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>UTM coordinates are based on a
family of projections based on the Transverse Mercator projection, in which the
ellipsoid is divided into 60 longitudinal zones of 6° each. The X value, called
the Easting, has a value of 500,000m at the central meridian of each zone. The
Y value, called the Northing, has a value of 0m at the equator for the northern
hemisphere, increasing toward the north pole, and a value of 10,000,000m at the
equator for the southern hemisphere, decreasing toward the south pole. The
point scale factor along the central meridian is 0.9996.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>For the UTM grid system, the
ellipsoid is divided into 60 longitudinal zones of 6° each. Zone number one
lies between 180° E and 186° E. The zone numbers increase consecutively in the
eastward direction.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="223" height="222" id="_x0000_i1027" src="utm.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and
Parallels (dashed) on a UTM Grid</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The area of coverage for UTM
coordinates is defined by zone limits, latitude limits, and overlap.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Zone limits:
</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'><span class="GramE">6° zones, extending
3° to each side of the central meridian.</span></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Zone overlap:</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>40 km on either side of
the zone limits.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Latitude limits:
</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>North: 84° N</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>South: 80°N</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Polar overlap:</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>30' toward the poles</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>North: 84° 30'N</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>South: 80° 30'S</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="polarst"></a><strong>Description
of the Polar Stereographic Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Polar Stereographic
projection is an
<span class="SpellE">azimuthal</span>
projection.<span style='mso-spacerun:yes'> </span>It is the limiting case
of the Lambert Conformal Conic projection when the standard parallels approach
one of the poles. In this conformal projection meridians are straight lines,
and parallels are concentric circles. The
<st1:place w:st="on">Central Meridian</st1:place>
parameter determines the orientation of the projection. A value of zero results
in projections as shown in the figure below. Increasing this value rotates the
north polar projection clockwise, and the south polar projection
counterclockwise.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>A Polar Stereographic projection
can be specified either in terms of a standard parallel, where the planar
projection surface intersects the ellipsoid and the point scale factor is 1.0,
or in terms of a point scale factor at the pole.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="462" height="454" id="_x0000_i1028" src="polarst.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and
Parallels in the Polar Stereographic Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="UPS"></a><strong>Description
of the Universal Polar Stereographic (UPS) Coordinates</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Universal Polar Stereographic
(UPS) is the standard military grid used in
<span class="GramE">polar regions</span>. UPS is a family of two projections
based on the Polar Stereographic projection, one for each of the poles. Both
the X
<span class="GramE">value, called the
Easting, and the Y value, called the Northing, have</span>
values of 2,000,000m at the poles. The point scale factor at each pole is
0.9994.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="299" height="264" id="_x0000_i1029" src="ups.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and
Parallels on a UPS
<span class="GramE">Grid</span><br>
(North zone)</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Zone limits:</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>North zone: 84°N to 90°N</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>South zone: 80°S to 90°S</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>UTM overlap: 30' overlap</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>North: 83° 30'N</p>
<p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>South: 79° 30'S</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="albers"></a><strong>Description
of Albers Equal Area Conic Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Albers Equal Area Conic
projection is a conical, equal area projection. As shown in the figure below,
the meridians are equally spaced, straight, converging lines. The angles
between the meridians are less than the true angles. Meridians intersect the
parallels at right angles. Parallels are unequally spaced arcs of concentric
circles. The parallels are closer together at the northernmost and southernmost
regions of the map. They are further apart in the latitudes between the
standard parallels. The poles are normally circular arcs that enclose the same
angle as that enclosed by the other parallels for a given range of longitude.
The Albers Equal Area Conic projection is symmetrical about any meridian.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="561" height="454" id="_x0000_i1030" src="albers.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Albers Equal Area
Conic
<span class="GramE">Projection</span><br>
(Origin Latitude = 45°N, Standard Parallels = 40°N & 50°N)</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the two
standard parallels. It is also true even when there is only one standard
parallel. Standard parallels should be chosen to minimize scale variations.
Scale is true along any given parallel. The scale factor along the meridians is
the reciprocal of the scale factor along the parallels, to retain equal area.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Albers Equal Area Conic
projection is free of scale and shape distortion along either the one or two
standard parallels. Along any given parallel, distortion is constant.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The standard parallels can not
both be 0° or the opposite sign of each other, as this would cause the cone to
become a cylinder.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="azeq"></a><strong>Description
of
<span class="SpellE">Azimuthal</span>
Equidistant Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
<span class="SpellE">Azimuthal</span>
Equidistant projection is an
<span class="SpellE">azimuthal</span>, equidistant, non-perspective projection.
As shown in the figure below, the meridians are straight lines on the polar
aspect and complex curves on the equatorial and oblique aspects. The central
meridian on the equatorial and oblique aspects is a straight line. Parallels on
the polar aspect are circles, equally spaced, centered at the pole, which is a
point. Parallels on the equatorial and oblique aspects are complex curves
equally spaced along the central meridian. The equator is a straight line on
the equatorial aspect. The projection is symmetrical about any meridian for the
polar aspect, the equator or central meridian for the equatorial aspect, and
the central meridian for the oblique aspect.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="473" height="462" id="_x0000_i1031" src="azeq.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><span class="SpellE">Azimuthal</span>
Equidistant Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along any straight
line radiating from the center of the projection. A point opposite the center
is projected as a circle twice the radius of the mapped equator. Scale along
this circle is infinite.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The projection is free of
distortion at the center. Distortion is severe for a world map.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="bonne"></a><strong>Description
of Bonne Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Bonne projection is a
<span class="SpellE">pseudoconical</span>, equal area projection. As shown in
the figure below, the central meridian is a straight line, while other
meridians are complex curves which connect equally spaced points along each
parallel of latitude and concave toward the central meridian. Parallels are
concentric circular arcs spaced at true distances along the central meridian.
The curvature of the standard parallel is equal to that of its curvature on a
cone tangent at that latitude. The poles are points.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="494" height="460" id="_x0000_i1032" src="bonne.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Bonne
<span class="GramE">Projection</span><br>
(Origin Latitude = 45°N)</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central
meridian and each parallel.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>There is no distortion along the
central meridian and the standard parallel. As distance from the central
meridian and the standard parallel increases, shape distortion increases and
meridians do not intersect parallels at right angles.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Sinusoidal is a limiting form of
the Bonne projection with the standard parallel at the equator. The equations
must be rewritten, since the parallels of latitude are straight.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="BNG"></a><strong>Description
of British National Grid Coordinates</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The British National Grid
Reference System is an alphanumeric system, based on the Transverse Mercator
map projection, for identifying positions. A British National Grid coordinate
consists of an alphabetic 500,000 unit grid square identifier, an alphabetic
100,000 unit grid square identifier, and grid coordinates expressed to a given
precision.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="408" height="484" id="_x0000_i1033" src="bng.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>British National
Grid</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>British National Grid parameters
are fixed at an Origin Latitude of 49°N,
<st1:place w:st="on">Central Meridian</st1:place>
of 2°W, False Easting of 400,000 meters, False Northing of -100,000 meters and
a Scale Factor of .9996012717.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>British National Grid uses only
the Airy ellipsoid.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The coordinate SV 0000000000 is
located at an Easting of 0m and a Northing of 0m in Transverse Mercator
coordinates, which is the bottom, left most coordinate in the figure above.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="cassini"></a><strong>Description
of Cassini Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Cassini projection is a
cylindrical, equidistant projection. As shown in the figure below, the central
meridian, each meridian 90° from the central meridian, and the equator are
straight lines. Other meridians and parallels are complex curves, which are
concave toward the central meridian and the nearest pole. The poles are points
along the central meridian. Cassini is symmetrical about any straight meridian
or the equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="473" height="462" id="_x0000_i1034" src="cassini.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Cassini Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central
meridian and lines perpendicular to the central meridian. Scale increases with
distance from the central meridian, along a direction parallel to the central
meridian.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>There is no distortion along the
central meridian. If the longitude is greater than 4° from the central
meridian, distortion will result. Horizontal straight lines, near the upper and
lower limits, represent microscopic circles on the globe 90° from the central
meridian.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="cyleqa"></a><strong>Description
of Cylindrical Equal Area Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Cylindrical Equal Area
projection is a cylindrical, equal area projection. It is an orthographic
projection of a sphere onto a cylinder. As shown in the figure below, the
meridians are equally spaced, straight, parallel lines almost 1/3 the length of
the equator. The parallels are unequally spaced, straight parallel lines
perpendicular to the meridians. The parallels are spaced in proportion to the
sine of the latitude from the equator. The poles are straight lines as long as
the equator. The Cylindrical Equal Area projection is symmetrical about the
equator or any meridian.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="202" id="_x0000_i1035" src="cyleqa.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Cylindrical Equal
Area Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the equator.
In the direction of the parallels, scale increases with distance from the
equator and decreases in the direction of the meridians. Parallels of opposite
sign have the same scale.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Cylindrical Equal Area
projection does not have area distortion anywhere. There is severe shape
distortion at the poles.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="eckert4"></a><strong>Description
of Eckert IV Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Eckert IV projection is a
<span class="SpellE">pseudocylindrical</span>, equal area projection. As shown
in the figure below, the central meridian is a straight line half as long as
the equator. The 180° east and west meridians are semicircles. All other
meridians are equally spaced elliptical arcs. The parallels are unequally
spaced, straight, parallel lines that are farthest apart at the equator. The
parallels are perpendicular to the central meridian. The poles are straight
lines half as long as the equator. Eckert IV is symmetrical about the central
meridian or the equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="292" id="_x0000_i1036" src="eckert4.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Eckert IV
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along latitudes
40°30´ N. and S. For any given latitude and the latitude of opposite sign,
scale is constant.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Eckert IV is free of distortion
only at latitudes 40°30´ N. and S. at the central meridian. The Eckert IV
projection is used only in the spherical form.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="eckert6"></a><strong>Description
of Eckert VI Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Eckert VI projection is a
<span class="SpellE">pseudocylindrical</span>, equal area projection. As shown
in the figure below, the central meridian is a straight line half as long as
the equator. The other meridians are equally spaced sinusoidal curves. The
parallels are unequally spaced, straight, parallel lines that are farthest
apart at the equator. The parallels are perpendicular to the central meridian.
The poles are straight lines half as long as the equator. Eckert VI is
symmetrical about the central meridian or the equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="293" id="_x0000_i1037" src="eckert6.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Eckert VI
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along latitudes
49°16´ N. and S. For any given latitude and the latitude of opposite sign,
scale is constant.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Eckert VI is free of distortion
only at latitudes 49°16´ N. and S. at the central meridian. The Eckert VI
projection is used only in the spherical form.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="eqdcyl"></a><strong>Description
of Equidistant Cylindrical Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Equidistant Cylindrical
projection is a cylindrical equidistant projection. As shown in the figure
below, the meridians are equally spaced, straight, parallel lines more than
half as long as the equator. The parallels are equally spaced, straight,
parallel lines perpendicular to the meridians. Meridian spacing is four-fifths
of the parallel spacing. The poles are straight lines as long as the equator.
The Equidistant Cylindrical projection is symmetrical about any meridian or the
equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="290" id="_x0000_i1038" src="eqdcyl.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Equidistant
Cylindrical Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along two standard
parallels equidistant from the equator and along all meridians. Scale is small
along the equator but increases along the parallels with distance from the
equator. For any given parallel, scale is constant and equal to the scale at
the parallel of opposite sign.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Infinitesimally small circles on
the globe are circles on the map at the chosen standard parallels of 30° N. and
S. Area and local shape are distorted everywhere else. The Equidistant
Cylindrical projection is used only in the spherical form.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><strong>Description of <a name="gnomonic">
</a>Gnomonic Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Gnomonic projection is an
<span class="SpellE">azimuthal</span>, perspective projection. It is neither
conformal nor equal area. As shown in the figure below, he equator and all
meridians are straight lines. For the polar aspect, meridians are equally
spaced and intersect at the pole. Meridians are unequally spaced for the
oblique and equatorial aspects. Except for the equator and the poles, all
parallels are circles, parabolas or hyperbolas. The pole is a point on the
polar aspect. On the equatorial aspect, poles cannot be shown.
</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="415" id="_x0000_i1039" src="gnomonic.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Gnomonic
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true only where the
central line crosses the central meridian. It rapidly increases with distance
from the center of the projection.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The projection is free of
distortion only at the center. It rapidly increases with distance from the
center of the projection.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Gnomonic projection is used
only in the spherical form.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="lambert"></a><strong>Description
of Lambert Conformal Conic Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Lambert Conformal Conic
projection is a conformal projection in which the projected parallels are
unequally spaced arcs of concentric circles centered at the pole, as shown in
the figure below. Spacing of parallels increases away from the origin latitude.
The projected meridians are equally spaced radii of concentric circles that
meet at the pole.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>A Lambert Conformal Conic
projection can be specified using either one or two standard parallels. In the
case where there is one standard parallel, the point scale factor along that
parallel is also specified. In the case where there are two standard parallels,
the point scale factor is one along both of those standard parallels, and is
less than one in the area between them. The point scale factor increases as a
point moves outward from the standard parallel(s). The two standard parallels
are generally placed at one-sixth and five-sixths of the range of latitudes to
be included. When the two standard parallels are both set to the same latitude
value, the result is a Lambert Conformal Conic projection with one standard
parallel at the specified latitude.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>If there are two standard
parallels that are symmetrical about the equator, the Mercator projection
results. If there is only one standard parallel and it is at a pole, the Polar
Stereographic projection results.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The standard parallels cannot
both be 0° or the opposite sign of each other, as this would cause the cone to
become a cylinder.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The pole closest to a standard
parallel is a point while the other pole is at infinity. Lambert is symmetrical
about any meridian.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><!--[if gte vml 1]><v:shapetype id=_x0000_t75 coordsize =
"21600,21600" o:preferrelative = "t" o:spt = "75" filled = "f" stroked = "f"
path = " m@4@5 l@4@11@9@11@9@5 xe"><v:stroke joinstyle =
"miter"></v:stroke><v:formulas><v:f eqn =
"if lineDrawn pixelLineWidth 0 "></v:f><v:f eqn = "sum @0 1 0 "></v:f><v:f eqn =
"sum 0 0 @1 "></v:f><v:f eqn = "prod @2 1 2 "></v:f><v:f eqn =
"prod @3 21600 pixelWidth "></v:f><v:f eqn =
"prod @3 21600 pixelHeight "></v:f><v:f eqn = "sum @0 0 1 "></v:f><v:f eqn =
"prod @6 1 2 "></v:f><v:f eqn = "prod @7 21600 pixelWidth "></v:f><v:f eqn =
"sum @8 21600 0 "></v:f><v:f eqn = "prod @7 21600 pixelHeight "></v:f><v:f eqn =
"sum @10 21600 0 "></v:f></v:formulas><v:path o:extrusionok = "f"
gradientshapeok = "t" o:connecttype = "rect"></v:path><o:lock aspectratio="t"
v:ext="edit"></o:lock></v:shapetype><v:shape id=_x0000_i1040
style="WIDTH: 412.5pt; HEIGHT: 344.25pt" type = "#_x0000_t75" coordsize =
"21600,21600"><v:imagedata o:title="lambert" src =
"projectionDescriptions_files/image001.gif"></v:imagedata></v:shape><![endif]-->
<![if !vml]><img width="550" height="459" src="projectionDescriptions_files/image001.gif" v:shapes="_x0000_i1040"><![endif]></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Lambert Conformal
Conic Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The scale is constant along any
given parallel and is the same in all directions at a given point.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Lambert is free of distortion
only along the standard parallel(s). Distortion is constant along any given
parallel and conformal everywhere but at the poles.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><strong>Description of Miller
Cylindrical Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Miller Cylindrical
projection is a cylindrical projection that is neither conformal nor equal
area. As shown in the figure below, the meridians are equally spaced, straight,
parallel lines 73% as long as the equator. The parallels are unequally spaced,
straight lines perpendicular to the meridians. Parallel spacing increases with
distance from the equator. The poles are straight lines the same length as the
equator. The Miller Cylindrical projection is symmetrical about any meridian or
the equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="426" id="_x0000_i1041" src="miller.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Miller Cylindrical
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>In all directions along the
equator, scale is true. At any other given latitude, scale is constant in any
given direction. Latitudes of opposite sign have the same scale. Scale changes
with latitude and direction.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The projection is free of
distortion at the equator. Shape, area and scale distortion increase slightly
away from the equator. At the poles, distortion becomes severe.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Miller Cylindrical
projection is used only in the spherical form.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="mollweide"></a><strong>Description
of
<span class="SpellE">Mollweide</span>
Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
<span class="SpellE">Mollweide</span>
projection is a
<span class="SpellE">pseudocylindrical</span>, equal area projection. As shown
in the figure below, the central meridian is a straight line half as long as
the equator. The 90° east and west meridians are circular arcs. All other
meridians are equally spaced, elliptical arcs. The parallels are unequally
spaced, straight, parallel lines perpendicular to the central meridian. The
parallels are farthest apart near the equator. The poles are points. The
<span class="SpellE">Mollweide</span>
projection is symmetrical about the central meridian or the equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="293" id="_x0000_i1042" src="mollweide.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><span class="SpellE">Mollweide</span>
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along latitudes
40°44´ N. and S. Scale is the same for latitudes of the opposite sign and is
constant along any given latitude.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Distortion is severe near the
outer meridians at high latitudes. The projection is free of distortion only at
latitudes 40°44´ N. and S. on the central meridian.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
<span class="SpellE">Mollweide</span>
projection is used only in the spherical form.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="nzmg"></a><strong>Description
of
<st1:country-region w:st="on">
<st1:place w:st="on">New Zealand</st1:place>
</st1:country-region>
Map Grid Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The New Zealand Map Grid
projection is conformal, but otherwise is unlike any other mapping projection.
The projection gives a small range of scale variation over New Zealand, which
lies between 166° and 180° East longitude and 34° and 48° South latitude.
Meridians and parallels are lines. The central meridian, which is not straight,
is oriented so that its tangent at the origin is the north-south axis of
coordinates.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="472" height="366" id="_x0000_i1043" src="nzmg.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>New Zealand Map
Grid Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>New Zealand Map Grid parameters
are fixed at an Origin Latitude of 41°S, Central Meridian of 173°E, False
Easting of 2,510,000 meters and a False Northing of 6,023,150 meters.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>It uses only the International
ellipsoid and the Geodetic Datum 1949 datum.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Easting values are always less
than 5,000,000 meters and Northing values are always greater than 5,000,000
meters. Easting values for the land area of New Zealand range from 2,000,000 to
3,000,000 meters and Northing values range from 5,300,000 to 6,800,000 meters.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="neys"></a><strong>Description
of Ney's (Modified Lambert Conformal Conic) Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Ney's (Modified Lambert
Conformal Conic) projection is a conformal projection in which the projected
parallels are expanded slightly to form complete concentric circles centered at
the pole. The projected meridians are radii of concentric circles that meet at
the pole. Ney's is a limiting form of the Lambert Conformal Conic. There are
two parallels, called standard parallels, along which the point scale factor is
one. The first standard parallel is at either ±71 or ±74 degrees. The second
standard parallel is at ±89 59 58.0 degrees, in the same hemisphere as the
first standard parallel.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="565" height="485" id="_x0000_i1044" src="neys71.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Ney's (Modified
Lambert Conformal Conic)
<span class="GramE">Projection</span><br>
(Origin Latitude = 80°N, Standard Parallels = 71°N & 89 59 58.0°N)</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Ney's (Modified Lambert
Conformal Conic) is used near the poles. Scale distortion is small 25° to 30°
from the pole. Distortion rapidly increases beyond this.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="omerc"></a><strong>Description
of Oblique Mercator
<span class="GramE">Projection</span></strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Oblique Mercator projection
is an oblique, cylindrical, conformal projection. As shown in the figure below,
there are two meridians which are straight lines 180° apart. Other meridians
and parallels are complex curves. The poles are points that do not lie on the
central line. The projection is symmetrical about any straight meridian.
</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="525" height="656" id="_x0000_i1045" src="omerc.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Oblique Mercator
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>On the spherical aspect, scale
is true along the central line, a great circle at an oblique angle, or along
two straight lines parallel to the central line. Scale is constant along any
straight line parallel to the central line. It becomes infinite 90° from the
central line. Scale on the ellipsoidal aspect is similar, but varies slightly.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Distortion is the same as that
of the Mercator projection, at a given distance.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Mercator is a limiting form of
Oblique Mercator with the equator as the central line. The Transverse Mercator
projection is a limiting form of Oblique Mercator with a meridian as the
central line.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="orthogr"></a><strong>Description
of Orthographic Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Orthographic projection is
an
<span class="SpellE">azimuthal</span>, perspective projection that is neither
conformal nor equal area. Only one hemisphere can be shown at a time, as shown
in the figure below.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The central meridian in the
equatorial aspect is a straight line. The 90° meridians form a circle
representing the limit of the equatorial aspect. Other meridians are unequally
spaced, ellipses of eccentricities ranging from 0 (the bounding circle) to 1.0
(the central meridian). Meridian spacing decreases away from the central
meridian. Parallels are unequally spaced, straight, parallel lines
perpendicular to the central meridian. Parallel spacing decreases away from the
equator. Parallels intersect the outer meridian at equal intervals. The
projection is symmetrical about the central meridian or equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="465" height="459" id="_x0000_i1046" src="ortho.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Orthographic
Projection (Equatorial Aspect)</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>For the polar aspect, meridians
are equally spaced straight lines radiating from the pole at their true angles.
Parallels are unequally spaced circles centered at the pole. The pole is a
point. Parallel spacing decreases away from the pole. The projection is
symmetrical about any meridian.
</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="465" height="459" id="_x0000_i1047" src="orthoNorthPolar.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Orthographic
Projection (North Polar Aspect)</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The central meridian in the
oblique aspect is also a straight line. Other meridians are ellipses of varying
eccentricities. Meridian spacing decreases away from the central meridian.
Parallels are complete or partial ellipses with the same eccentricity, whose
minor axes lie along the central meridian. Parallel spacing decreases from the
center of the projection.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="465" height="459" id="_x0000_i1048" src="orthoOblique.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Orthographic
Projection (Oblique Aspect)</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true at the center of
the projection and along all circles drawn about the center. The scale is true
only in the direction of the circumference and it decreases
<span class="SpellE">radially</span>
with distance from the center.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The center of the projection is
free of distortion. Distortion quickly increases with distance from the center.
At the outer regions, distortion is severe.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Orthographic projection is
used only in the spherical form.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="polyconic"></a><strong>Description
of
<span class="SpellE">Polyconic</span>
Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
<span class="SpellE">Polyconic</span>
projection is neither conformal nor equal area. As shown in the figure below,
the central meridian is a straight line, while all other meridians are complex
curves equally spaced along the equator and each parallel. The equator is a
straight line, while all other parallels are
<span class="SpellE">nonconcentric</span>, circular arcs spaced at true
intervals along the central meridian. Each parallel has a curvature developed
from a cone tangent at that latitude. The poles are points. The
<span class="SpellE">Polyconic</span>
projection is symmetrical about the central meridian and the equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="560" height="444" id="_x0000_i1049" src="polyconic.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><span class="SpellE">Polyconic</span>
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central
meridian and each parallel. No parallel is standard in that it has correct
angles, except at the central meridian, because the meridians are lengthened by
different amounts to cross each parallel at the correct position along the
parallel.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
<span class="SpellE">Polyconic</span>
projection is free of distortion only along the central meridian. If the range
extends east or west a great distance, a large amount of distortion will
result.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="sinusoidal"></a><strong>Description
of Sinusoidal Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Sinusoidal projection is a
<span class="SpellE">pseudocylindrical</span>, equal area projection. The
central meridian is a straight line half as long as the equator. All other
meridians are equally spaced sinusoidal curves that intersect at the poles. The
parallels are equally spaced, straight, parallel lines perpendicular to the
meridians. The poles are shown as points. The Sinusoidal projection is
symmetrical about the central meridian or the equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="560" height="293" id="_x0000_i1050" src="sinusoidal.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Sinusoidal
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central
meridian and every parallel.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Sinusoidal projection is
free of distortion along the central meridian and equator. At high latitudes
near the outer meridians, especially in the polar regions, distortion is
extreme. An interrupted form of the projection involving several central
meridians helps reduce distortion.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="stereogr"></a><strong>Description
of Stereographic Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Stereographic projection is
an
<span class="SpellE">azimuthal</span>, conformal, true perspective (for the
sphere) projection in which meridians are straight lines on the polar aspect
and arcs of circles on the oblique and equatorial aspects. For all aspects, the
central meridian is a straight line. Parallels are concentric circles, except
for the equator on the equatorial aspect. It is a straight line. On the oblique
aspect, the parallel opposite in sign to the origin latitude is also a straight
line. For the polar aspect, the opposite pole cannot be shown.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="565" height="485" id="_x0000_i1051" src="stereogr.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Stereographic
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true at the
intersection of the origin latitude and central meridian. Scale is constant
along any circle whose center is at the center of the projection. Scale
increases away from the projection center.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The projection is free of
distortion at the center.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="trcyleqa"></a><strong>Description
of the Transverse Cylindrical Equal Area Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Transverse Cylindrical Equal
Area projection is a transverse aspect of the normal Cylindrical Equal Area
projection. It is a perspective projection onto a cylinder tangent or secant at
an oblique angle, or centered on a meridian. In the transverse aspect, the
central meridian, each meridian 90° from the central meridian and the equator
are straight lines. All other meridians and parallels are complex curves. The
poles are straight lines.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="325" height="457" id="_x0000_i1052" src="tcyleqa.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Transverse
Cylindrical Equal Area Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central
meridian, or along two approximately (for the ellipsoid) straight lines
equidistant from and parallel to the central meridian.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>There is not any distortion of
area. There is no scale and shape distortion at the standard parallel, but
there is severe scale and shape distortion 90° from the central meridian.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="grinten"></a><strong>Description
of Van
<span class="SpellE">der</span>
<span class="SpellE">Grinten</span>
Projection</strong></p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Van
<span class="SpellE">Der</span>
<span class="SpellE">Grinten</span>
projection is neither equal area nor conformal and it is not
<span class="SpellE">pseudocylindrical</span>. It shows the entire globe
enclosed in a circle. The central meridian is a straight line and the other
meridians are arcs of circles equally spaced along the equator. The equator is
a straight line and the other parallels are arcs of circles. Parallel spacing
increases with latitude. The 75<sup>th</sup> parallels are shown to be halfway
between the equator and the poles. The poles are shown as points. The Van
<span class="SpellE">Der</span>
<span class="SpellE">Grinten</span>
projection is symmetrical along the central meridian or equator.</p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="475" height="460" id="_x0000_i1053" src="grinten.gif"></p>
<p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Van
<span class="SpellE">der</span>
<span class="SpellE">Grinten</span>
Projection</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the equator.
It quickly increases with distance from the equator.
</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>There is a large amount of area
distortion near the poles.</p>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Van
<span class="SpellE">Der</span>
<span class="SpellE">Grinten</span>
projection is used only in the spherical form.</p>
<h1 align="center" style='MARGIN:6pt 0in 0pt;TEXT-ALIGN:center'><span style='FONT-SIZE:16pt;COLOR:black'>UNCLASSIFIED<o:p></o:p></span></h1>
<p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><o:p> </o:p></p>
</div>
</BODY>
</html>
|