This file is indexed.

/usr/share/doc/geotranz/help/projectionDescriptions.htm is in geotranz-help 3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office"
   xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:st1="urn:schemas-microsoft-com:office:smarttags"
   xmlns="http://www.w3.org/TR/REC-html40">
   <head>
      <title>coordDescriptions</title>
      <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
      <meta name="ProgId" content="Word.Document">
      <meta name="Generator" content="Microsoft Word 11">
      <meta name="Originator" content="Microsoft Word 11">
      <link rel="File-List" href="projectionDescriptions_files/filelist.xml">
         <link rel="Edit-Time-Data" href="projectionDescriptions_files/editdata.mso"> <!--[if !mso]>
<STYLE>
v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</STYLE>
<![endif]-->
            <o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags" name="country-region" />
            <o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags" name="place" /> <!--[if gte mso 9]><xml>
 <o:DocumentProperties>
  <o:Author>Kevin Trott</o:Author>
  <o:LastAuthor>TROTTKE</o:LastAuthor>
  <o:Revision>24</o:Revision>
  <o:TotalTime>151</o:TotalTime>
  <o:Created>2001-06-03T17:21:00Z</o:Created>
  <o:LastSaved>2009-06-22T21:30:00Z</o:LastSaved>
  <o:Pages>1</o:Pages>
  <o:Words>4834</o:Words>
  <o:Characters>27559</o:Characters>
  <o:Company>Dell Computer Corporation</o:Company>
  <o:Lines>229</o:Lines>
  <o:Paragraphs>64</o:Paragraphs>
  <o:CharactersWithSpaces>32329</o:CharactersWithSpaces>
  <o:Version>11.9999</o:Version>
 </o:DocumentProperties>
</xml><![endif]-->  <!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:SpellingState>Clean</w:SpellingState>
  <w:GrammarState>Clean</w:GrammarState>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
 </w:WordDocument>
</xml><![endif]-->  <!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" LatentStyleCount="156">
 </w:LatentStyles>
</xml><![endif]-->  <!--[if !mso]>
<OBJECT id=ieooui classid=clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D></OBJECT>
<STYLE>
st1\:*{behavior:url(#ieooui) }
</STYLE>
<![endif]-->
            <style> <!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0in; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; color:black;}
	a:link, span.MsoHyperlink {color:blue; text-decoration:underline; text-underline:single;}
	a:visited, span.MsoHyperlinkFollowed {color:purple; text-decoration:underline; text-underline:single;}
	p {mso-margin-top-alt:auto; margin-right:0in; mso-margin-bottom-alt:auto; margin-left:0in; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; color:black;}
	span.SpellE {mso-style-name:""; mso-spl-e:yes;}
	span.GramE {mso-style-name:""; mso-gram-e:yes;}
	@page Section1 {size:8.5in 11.0in; margin:1.0in 1.25in 1.0in 1.25in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;}
	div.Section1 {page:Section1;}
	--></style>
            <!--[if gte mso 10]>
<style>
 /* Style Definitions */
 table.MsoNormalTable
	{mso-style-name:"Table Normal";
	mso-tstyle-rowband-size:0;
	mso-tstyle-colband-size:0;
	mso-style-noshow:yes;
	mso-style-parent:"";
	mso-padding-alt:0in 5.4pt 0in 5.4pt;
	mso-para-margin:0in;
	mso-para-margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:10.0pt;
	font-family:"Times New Roman";
	mso-ansi-language:#0400;
	mso-fareast-language:#0400;
	mso-bidi-language:#0400;}
</style>
<![endif]-->
            <meta name="Version" content="8.0.3410">
            <meta name="Date" content="10/11/96">
            <meta name="Template" content="C:\Program Files\Microsoft Office\Office\html.dot"><!--[if gte mso 9]><xml>
 <o:shapedefaults v:ext="edit" spidmax="5122"/>
</xml><![endif]-->  <!--[if gte mso 9]><xml>
 <o:shapelayout v:ext="edit">
  <o:idmap v:ext="edit" data="1"/>
 </o:shapelayout></xml><![endif]-->
   </head>
   <BODY lang="EN-US" style="tab-interval: .5in" vLink="purple" link="blue" bgColor="white">
      <h1 align="center" style='MARGIN:6pt 0in 0pt;TEXT-ALIGN:center'><span style='FONT-SIZE:16pt;COLOR:black'>UNCLASSIFIED<o:p></o:p></span></h1>
      <div class="Section1">
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="mercator"></a><strong>Description 
               of the Mercator
               <span class="GramE">Projection</span></strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Mercator projection is a 
            cylindrical, conformal projection. The equator lies on the line Y = 0. This 
            projection is not defined at the poles. Meridians and parallels provide the 
            framework for the Mercator projection. Meridians are projected as parallel 
            straight lines that satisfy the equation X = a constant. Evenly spaced 
            meridians on the ellipsoid project to evenly spaced straight lines on the 
            projection. Parallels are projected as parallel straight lines perpendicular to 
            meridians and satisfy the equation Y = a constant. Evenly spaced parallels on 
            the ellipsoid project to unevenly spaced parallels on the projection. The 
            spacing between projected parallels increases with distance from the equator. 
            See the figure below.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>A Mercator projection can be 
            specified either in terms of a standard parallel, where the cylindrical 
            projection surface intersects the ellipsoid and the point scale factor is 1.0, 
            or in terms of a point scale factor at the equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="449" height="461" id="_x0000_i1025" src="mercator.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and 
            Parallels in the Mercator
            <span class="GramE">Projection</span></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>In the Mercator projection, as 
            the latitude approaches the poles, the Y
            <span class="GramE">coordinate</span>
            approaches infinity. Area and length distortion increases with distance from 
            the equator. For example, the point scale factor is approximately 2 at 60° 
            latitude and 5.7 at 80° latitude.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="tranmerc"></a><strong>Description 
               of the Transverse Mercator
               <span class="GramE">Projection</span></strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Transverse Mercator 
            projection is a transverse cylindrical, conformal projection. The line Y = 0 is 
            the projection of the equator, and the line X = 0 is the projection of the 
            central meridian, as shown in the figure below.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Both the central meridian and 
            the equator are represented as straight lines. No other meridian or parallel is 
            projected onto a straight line. Since the point scale factor is one along the 
            central meridian, this projection is most useful near the central meridian. 
            Scale distortion increases away from this meridian.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="560" height="278" id="_x0000_i1026" src="transmerc.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and 
            Parallels in the Transverse Mercator
            <span class="GramE">Projection</span><br>
            (0 is the central meridian)</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><span class="GramE">The Transverse
Mercator equations for X and Y, and for latitude and longitude, are
approximations.</span>
            Within 4° of the central meridian, the equations for X, Y, latitude, and 
            longitude have an error of less than 1 centimeter.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="UTM"></a><strong>Description 
               of the Universal Transverse Mercator (UTM) Coordinates</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>UTM coordinates are based on a 
            family of projections based on the Transverse Mercator projection, in which the 
            ellipsoid is divided into 60 longitudinal zones of 6° each. The X value, called 
            the Easting, has a value of 500,000m at the central meridian of each zone. The 
            Y value, called the Northing, has a value of 0m at the equator for the northern 
            hemisphere, increasing toward the north pole, and a value of 10,000,000m at the 
            equator for the southern hemisphere, decreasing toward the south pole. The 
            point scale factor along the central meridian is 0.9996.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>For the UTM grid system, the 
            ellipsoid is divided into 60 longitudinal zones of 6° each. Zone number one 
            lies between 180° E and 186° E. The zone numbers increase consecutively in the 
            eastward direction.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="223" height="222" id="_x0000_i1027" src="utm.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and 
            Parallels (dashed) on a UTM Grid</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The area of coverage for UTM 
            coordinates is defined by zone limits, latitude limits, and overlap.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Zone limits:
         </p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'><span class="GramE">6° zones, extending
3° to each side of the central meridian.</span></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Zone overlap:</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>40 km on either side of 
            the zone limits.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Latitude limits:
         </p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>North: 84° N</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>South: 80°N</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Polar overlap:</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>30' toward the poles</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>North: 84° 30'N</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>South: 80° 30'S</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="polarst"></a><strong>Description 
               of the Polar Stereographic Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Polar Stereographic 
            projection is an
            <span class="SpellE">azimuthal</span>
            projection.<span style='mso-spacerun:yes'>&nbsp; </span>It is the limiting case 
            of the Lambert Conformal Conic projection when the standard parallels approach 
            one of the poles. In this conformal projection meridians are straight lines, 
            and parallels are concentric circles. The
            <st1:place w:st="on">Central Meridian</st1:place>
            parameter determines the orientation of the projection. A value of zero results 
            in projections as shown in the figure below. Increasing this value rotates the 
            north polar projection clockwise, and the south polar projection 
            counterclockwise.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>A Polar Stereographic projection 
            can be specified either in terms of a standard parallel, where the planar 
            projection surface intersects the ellipsoid and the point scale factor is 1.0, 
            or in terms of a point scale factor at the pole.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="462" height="454" id="_x0000_i1028" src="polarst.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and 
            Parallels in the Polar Stereographic Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="UPS"></a><strong>Description 
               of the Universal Polar Stereographic (UPS) Coordinates</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Universal Polar Stereographic 
            (UPS) is the standard military grid used in
            <span class="GramE">polar regions</span>. UPS is a family of two projections 
            based on the Polar Stereographic projection, one for each of the poles. Both 
            the X
            <span class="GramE">value, called the
Easting, and the Y value, called the Northing, have</span>
            values of 2,000,000m at the poles. The point scale factor at each pole is 
            0.9994.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="299" height="264" id="_x0000_i1029" src="ups.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Meridians and 
            Parallels on a UPS
            <span class="GramE">Grid</span><br>
            (North zone)</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Zone limits:</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>North zone: 84°N to 90°N</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>South zone: 80°S to 90°S</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>UTM overlap: 30' overlap</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>North: 83° 30'N</p>
         <p style='MARGIN:6pt 0in 0pt 0.5in; TEXT-ALIGN:justify'>South: 79° 30'S</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="albers"></a><strong>Description 
               of Albers Equal Area Conic Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Albers Equal Area Conic 
            projection is a conical, equal area projection. As shown in the figure below, 
            the meridians are equally spaced, straight, converging lines. The angles 
            between the meridians are less than the true angles. Meridians intersect the 
            parallels at right angles. Parallels are unequally spaced arcs of concentric 
            circles. The parallels are closer together at the northernmost and southernmost 
            regions of the map. They are further apart in the latitudes between the 
            standard parallels. The poles are normally circular arcs that enclose the same 
            angle as that enclosed by the other parallels for a given range of longitude. 
            The Albers Equal Area Conic projection is symmetrical about any meridian.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="561" height="454" id="_x0000_i1030" src="albers.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Albers Equal Area 
            Conic
            <span class="GramE">Projection</span><br>
            (Origin Latitude = 45°N, Standard Parallels = 40°N &amp; 50°N)</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the two 
            standard parallels. It is also true even when there is only one standard 
            parallel. Standard parallels should be chosen to minimize scale variations. 
            Scale is true along any given parallel. The scale factor along the meridians is 
            the reciprocal of the scale factor along the parallels, to retain equal area.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Albers Equal Area Conic 
            projection is free of scale and shape distortion along either the one or two 
            standard parallels. Along any given parallel, distortion is constant.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The standard parallels can not 
            both be 0° or the opposite sign of each other, as this would cause the cone to 
            become a cylinder.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="azeq"></a><strong>Description 
               of
               <span class="SpellE">Azimuthal</span>
               Equidistant Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
            <span class="SpellE">Azimuthal</span>
            Equidistant projection is an
            <span class="SpellE">azimuthal</span>, equidistant, non-perspective projection. 
            As shown in the figure below, the meridians are straight lines on the polar 
            aspect and complex curves on the equatorial and oblique aspects. The central 
            meridian on the equatorial and oblique aspects is a straight line. Parallels on 
            the polar aspect are circles, equally spaced, centered at the pole, which is a 
            point. Parallels on the equatorial and oblique aspects are complex curves 
            equally spaced along the central meridian. The equator is a straight line on 
            the equatorial aspect. The projection is symmetrical about any meridian for the 
            polar aspect, the equator or central meridian for the equatorial aspect, and 
            the central meridian for the oblique aspect.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="473" height="462" id="_x0000_i1031" src="azeq.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><span class="SpellE">Azimuthal</span>
            Equidistant Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along any straight 
            line radiating from the center of the projection. A point opposite the center 
            is projected as a circle twice the radius of the mapped equator. Scale along 
            this circle is infinite.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The projection is free of 
            distortion at the center. Distortion is severe for a world map.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="bonne"></a><strong>Description 
               of Bonne Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Bonne projection is a
            <span class="SpellE">pseudoconical</span>, equal area projection. As shown in 
            the figure below, the central meridian is a straight line, while other 
            meridians are complex curves which connect equally spaced points along each 
            parallel of latitude and concave toward the central meridian. Parallels are 
            concentric circular arcs spaced at true distances along the central meridian. 
            The curvature of the standard parallel is equal to that of its curvature on a 
            cone tangent at that latitude. The poles are points.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="494" height="460" id="_x0000_i1032" src="bonne.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Bonne
            <span class="GramE">Projection</span><br>
            (Origin Latitude = 45°N)</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central 
            meridian and each parallel.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>There is no distortion along the 
            central meridian and the standard parallel. As distance from the central 
            meridian and the standard parallel increases, shape distortion increases and 
            meridians do not intersect parallels at right angles.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Sinusoidal is a limiting form of 
            the Bonne projection with the standard parallel at the equator. The equations 
            must be rewritten, since the parallels of latitude are straight.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="BNG"></a><strong>Description 
               of British National Grid Coordinates</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The British National Grid 
            Reference System is an alphanumeric system, based on the Transverse Mercator 
            map projection, for identifying positions. A British National Grid coordinate 
            consists of an alphabetic 500,000 unit grid square identifier, an alphabetic 
            100,000 unit grid square identifier, and grid coordinates expressed to a given 
            precision.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="408" height="484" id="_x0000_i1033" src="bng.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>British National 
            Grid</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>British National Grid parameters 
            are fixed at an Origin Latitude of 49°N,
            <st1:place w:st="on">Central Meridian</st1:place>
            of 2°W, False Easting of 400,000 meters, False Northing of -100,000 meters and 
            a Scale Factor of .9996012717.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>British National Grid uses only 
            the Airy ellipsoid.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The coordinate SV 0000000000 is 
            located at an Easting of 0m and a Northing of 0m in Transverse Mercator 
            coordinates, which is the bottom, left most coordinate in the figure above.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="cassini"></a><strong>Description 
               of Cassini Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Cassini projection is a 
            cylindrical, equidistant projection. As shown in the figure below, the central 
            meridian, each meridian 90° from the central meridian, and the equator are 
            straight lines. Other meridians and parallels are complex curves, which are 
            concave toward the central meridian and the nearest pole. The poles are points 
            along the central meridian. Cassini is symmetrical about any straight meridian 
            or the equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="473" height="462" id="_x0000_i1034" src="cassini.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Cassini Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central 
            meridian and lines perpendicular to the central meridian. Scale increases with 
            distance from the central meridian, along a direction parallel to the central 
            meridian.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>There is no distortion along the 
            central meridian. If the longitude is greater than 4° from the central 
            meridian, distortion will result. Horizontal straight lines, near the upper and 
            lower limits, represent microscopic circles on the globe 90° from the central 
            meridian.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="cyleqa"></a><strong>Description 
               of Cylindrical Equal Area Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Cylindrical Equal Area 
            projection is a cylindrical, equal area projection. It is an orthographic 
            projection of a sphere onto a cylinder. As shown in the figure below, the 
            meridians are equally spaced, straight, parallel lines almost 1/3 the length of 
            the equator. The parallels are unequally spaced, straight parallel lines 
            perpendicular to the meridians. The parallels are spaced in proportion to the 
            sine of the latitude from the equator. The poles are straight lines as long as 
            the equator. The Cylindrical Equal Area projection is symmetrical about the 
            equator or any meridian.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="202" id="_x0000_i1035" src="cyleqa.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Cylindrical Equal 
            Area Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the equator. 
            In the direction of the parallels, scale increases with distance from the 
            equator and decreases in the direction of the meridians. Parallels of opposite 
            sign have the same scale.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Cylindrical Equal Area 
            projection does not have area distortion anywhere. There is severe shape 
            distortion at the poles.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="eckert4"></a><strong>Description 
               of Eckert IV Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Eckert IV projection is a
            <span class="SpellE">pseudocylindrical</span>, equal area projection. As shown 
            in the figure below, the central meridian is a straight line half as long as 
            the equator. The 180° east and west meridians are semicircles. All other 
            meridians are equally spaced elliptical arcs. The parallels are unequally 
            spaced, straight, parallel lines that are farthest apart at the equator. The 
            parallels are perpendicular to the central meridian. The poles are straight 
            lines half as long as the equator. Eckert IV is symmetrical about the central 
            meridian or the equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="292" id="_x0000_i1036" src="eckert4.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Eckert IV 
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along latitudes 
            40°30´ N. and S. For any given latitude and the latitude of opposite sign, 
            scale is constant.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Eckert IV is free of distortion 
            only at latitudes 40°30´ N. and S. at the central meridian. The Eckert IV 
            projection is used only in the spherical form.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="eckert6"></a><strong>Description 
               of Eckert VI Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Eckert VI projection is a
            <span class="SpellE">pseudocylindrical</span>, equal area projection. As shown 
            in the figure below, the central meridian is a straight line half as long as 
            the equator. The other meridians are equally spaced sinusoidal curves. The 
            parallels are unequally spaced, straight, parallel lines that are farthest 
            apart at the equator. The parallels are perpendicular to the central meridian. 
            The poles are straight lines half as long as the equator. Eckert VI is 
            symmetrical about the central meridian or the equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="293" id="_x0000_i1037" src="eckert6.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Eckert VI 
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along latitudes 
            49°16´ N. and S. For any given latitude and the latitude of opposite sign, 
            scale is constant.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Eckert VI is free of distortion 
            only at latitudes 49°16´ N. and S. at the central meridian. The Eckert VI 
            projection is used only in the spherical form.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="eqdcyl"></a><strong>Description 
               of Equidistant Cylindrical Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Equidistant Cylindrical 
            projection is a cylindrical equidistant projection. As shown in the figure 
            below, the meridians are equally spaced, straight, parallel lines more than 
            half as long as the equator. The parallels are equally spaced, straight, 
            parallel lines perpendicular to the meridians. Meridian spacing is four-fifths 
            of the parallel spacing. The poles are straight lines as long as the equator. 
            The Equidistant Cylindrical projection is symmetrical about any meridian or the 
            equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="290" id="_x0000_i1038" src="eqdcyl.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Equidistant 
            Cylindrical Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along two standard 
            parallels equidistant from the equator and along all meridians. Scale is small 
            along the equator but increases along the parallels with distance from the 
            equator. For any given parallel, scale is constant and equal to the scale at 
            the parallel of opposite sign.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Infinitesimally small circles on 
            the globe are circles on the map at the chosen standard parallels of 30° N. and 
            S. Area and local shape are distorted everywhere else. The Equidistant 
            Cylindrical projection is used only in the spherical form.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><strong>Description of <a name="gnomonic">
               </a>Gnomonic Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Gnomonic projection is an
            <span class="SpellE">azimuthal</span>, perspective projection. It is neither 
            conformal nor equal area. As shown in the figure below, he equator and all 
            meridians are straight lines. For the polar aspect, meridians are equally 
            spaced and intersect at the pole. Meridians are unequally spaced for the 
            oblique and equatorial aspects. Except for the equator and the poles, all 
            parallels are circles, parabolas or hyperbolas. The pole is a point on the 
            polar aspect. On the equatorial aspect, poles cannot be shown.
         </p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="415" id="_x0000_i1039" src="gnomonic.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Gnomonic 
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true only where the 
            central line crosses the central meridian. It rapidly increases with distance 
            from the center of the projection.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The projection is free of 
            distortion only at the center. It rapidly increases with distance from the 
            center of the projection.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Gnomonic projection is used 
            only in the spherical form.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="lambert"></a><strong>Description 
               of Lambert Conformal Conic Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Lambert Conformal Conic 
            projection is a conformal projection in which the projected parallels are 
            unequally spaced arcs of concentric circles centered at the pole, as shown in 
            the figure below. Spacing of parallels increases away from the origin latitude. 
            The projected meridians are equally spaced radii of concentric circles that 
            meet at the pole.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>A Lambert Conformal Conic 
            projection can be specified using either one or two standard parallels. In the 
            case where there is one standard parallel, the point scale factor along that 
            parallel is also specified. In the case where there are two standard parallels, 
            the point scale factor is one along both of those standard parallels, and is 
            less than one in the area between them. The point scale factor increases as a 
            point moves outward from the standard parallel(s). The two standard parallels 
            are generally placed at one-sixth and five-sixths of the range of latitudes to 
            be included. When the two standard parallels are both set to the same latitude 
            value, the result is a Lambert Conformal Conic projection with one standard 
            parallel at the specified latitude.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>If there are two standard 
            parallels that are symmetrical about the equator, the Mercator projection 
            results. If there is only one standard parallel and it is at a pole, the Polar 
            Stereographic projection results.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The standard parallels cannot 
            both be 0° or the opposite sign of each other, as this would cause the cone to 
            become a cylinder.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The pole closest to a standard 
            parallel is a point while the other pole is at infinity. Lambert is symmetrical 
            about any meridian.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><!--[if gte vml 1]><v:shapetype id=_x0000_t75 coordsize = 
"21600,21600" o:preferrelative = "t" o:spt = "75" filled = "f" stroked = "f" 
path = " m@4@5 l@4@11@9@11@9@5 xe"><v:stroke joinstyle = 
"miter"></v:stroke><v:formulas><v:f eqn = 
"if lineDrawn pixelLineWidth 0 "></v:f><v:f eqn = "sum @0 1 0 "></v:f><v:f eqn = 
"sum 0 0 @1 "></v:f><v:f eqn = "prod @2 1 2 "></v:f><v:f eqn = 
"prod @3 21600 pixelWidth "></v:f><v:f eqn = 
"prod @3 21600 pixelHeight "></v:f><v:f eqn = "sum @0 0 1 "></v:f><v:f eqn = 
"prod @6 1 2 "></v:f><v:f eqn = "prod @7 21600 pixelWidth "></v:f><v:f eqn = 
"sum @8 21600 0 "></v:f><v:f eqn = "prod @7 21600 pixelHeight "></v:f><v:f eqn = 
"sum @10 21600 0 "></v:f></v:formulas><v:path o:extrusionok = "f" 
gradientshapeok = "t" o:connecttype = "rect"></v:path><o:lock aspectratio="t" 
v:ext="edit"></o:lock></v:shapetype><v:shape id=_x0000_i1040 
style="WIDTH: 412.5pt; HEIGHT: 344.25pt" type = "#_x0000_t75" coordsize = 
"21600,21600"><v:imagedata o:title="lambert" src = 
"projectionDescriptions_files/image001.gif"></v:imagedata></v:shape><![endif]--> 
            <![if !vml]><img width="550" height="459" src="projectionDescriptions_files/image001.gif" v:shapes="_x0000_i1040"><![endif]></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Lambert Conformal 
            Conic Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The scale is constant along any 
            given parallel and is the same in all directions at a given point.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Lambert is free of distortion 
            only along the standard parallel(s). Distortion is constant along any given 
            parallel and conformal everywhere but at the poles.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><strong>Description of Miller 
               Cylindrical Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Miller Cylindrical 
            projection is a cylindrical projection that is neither conformal nor equal 
            area. As shown in the figure below, the meridians are equally spaced, straight, 
            parallel lines 73% as long as the equator. The parallels are unequally spaced, 
            straight lines perpendicular to the meridians. Parallel spacing increases with 
            distance from the equator. The poles are straight lines the same length as the 
            equator. The Miller Cylindrical projection is symmetrical about any meridian or 
            the equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="426" id="_x0000_i1041" src="miller.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Miller Cylindrical 
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>In all directions along the 
            equator, scale is true. At any other given latitude, scale is constant in any 
            given direction. Latitudes of opposite sign have the same scale. Scale changes 
            with latitude and direction.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The projection is free of 
            distortion at the equator. Shape, area and scale distortion increase slightly 
            away from the equator. At the poles, distortion becomes severe.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Miller Cylindrical 
            projection is used only in the spherical form.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="mollweide"></a><strong>Description 
               of
               <span class="SpellE">Mollweide</span>
               Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
            <span class="SpellE">Mollweide</span>
            projection is a
            <span class="SpellE">pseudocylindrical</span>, equal area projection. As shown 
            in the figure below, the central meridian is a straight line half as long as 
            the equator. The 90° east and west meridians are circular arcs. All other 
            meridians are equally spaced, elliptical arcs. The parallels are unequally 
            spaced, straight, parallel lines perpendicular to the central meridian. The 
            parallels are farthest apart near the equator. The poles are points. The
            <span class="SpellE">Mollweide</span>
            projection is symmetrical about the central meridian or the equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="562" height="293" id="_x0000_i1042" src="mollweide.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><span class="SpellE">Mollweide</span>
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along latitudes 
            40°44´ N. and S. Scale is the same for latitudes of the opposite sign and is 
            constant along any given latitude.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Distortion is severe near the 
            outer meridians at high latitudes. The projection is free of distortion only at 
            latitudes 40°44´ N. and S. on the central meridian.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
            <span class="SpellE">Mollweide</span>
            projection is used only in the spherical form.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="nzmg"></a><strong>Description 
               of
               <st1:country-region w:st="on">
                  <st1:place w:st="on">New Zealand</st1:place>
               </st1:country-region>
               Map Grid Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The New Zealand Map Grid 
            projection is conformal, but otherwise is unlike any other mapping projection. 
            The projection gives a small range of scale variation over New Zealand, which 
            lies between 166° and 180° East longitude and 34° and 48° South latitude. 
            Meridians and parallels are lines. The central meridian, which is not straight, 
            is oriented so that its tangent at the origin is the north-south axis of 
            coordinates.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="472" height="366" id="_x0000_i1043" src="nzmg.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>New Zealand Map 
            Grid Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>New Zealand Map Grid parameters 
            are fixed at an Origin Latitude of 41°S, Central Meridian of 173°E, False 
            Easting of 2,510,000 meters and a False Northing of 6,023,150 meters.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>It uses only the International 
            ellipsoid and the Geodetic Datum 1949 datum.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Easting values are always less 
            than 5,000,000 meters and Northing values are always greater than 5,000,000 
            meters. Easting values for the land area of New Zealand range from 2,000,000 to 
            3,000,000 meters and Northing values range from 5,300,000 to 6,800,000 meters.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="neys"></a><strong>Description 
               of Ney's (Modified Lambert Conformal Conic) Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Ney's (Modified Lambert 
            Conformal Conic) projection is a conformal projection in which the projected 
            parallels are expanded slightly to form complete concentric circles centered at 
            the pole. The projected meridians are radii of concentric circles that meet at 
            the pole. Ney's is a limiting form of the Lambert Conformal Conic. There are 
            two parallels, called standard parallels, along which the point scale factor is 
            one. The first standard parallel is at either ±71 or ±74 degrees. The second 
            standard parallel is at ±89 59 58.0 degrees, in the same hemisphere as the 
            first standard parallel.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="565" height="485" id="_x0000_i1044" src="neys71.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Ney's (Modified 
            Lambert Conformal Conic)
            <span class="GramE">Projection</span><br>
            (Origin Latitude = 80°N, Standard Parallels = 71°N &amp; 89 59 58.0°N)</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Ney's (Modified Lambert 
            Conformal Conic) is used near the poles. Scale distortion is small 25° to 30° 
            from the pole. Distortion rapidly increases beyond this.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="omerc"></a><strong>Description 
               of Oblique Mercator
               <span class="GramE">Projection</span></strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Oblique Mercator projection 
            is an oblique, cylindrical, conformal projection. As shown in the figure below, 
            there are two meridians which are straight lines 180° apart. Other meridians 
            and parallels are complex curves. The poles are points that do not lie on the 
            central line. The projection is symmetrical about any straight meridian.
         </p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="525" height="656" id="_x0000_i1045" src="omerc.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Oblique Mercator 
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>On the spherical aspect, scale 
            is true along the central line, a great circle at an oblique angle, or along 
            two straight lines parallel to the central line. Scale is constant along any 
            straight line parallel to the central line. It becomes infinite 90° from the 
            central line. Scale on the ellipsoidal aspect is similar, but varies slightly.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Distortion is the same as that 
            of the Mercator projection, at a given distance.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Mercator is a limiting form of 
            Oblique Mercator with the equator as the central line. The Transverse Mercator 
            projection is a limiting form of Oblique Mercator with a meridian as the 
            central line.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="orthogr"></a><strong>Description 
               of Orthographic Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Orthographic projection is 
            an
            <span class="SpellE">azimuthal</span>, perspective projection that is neither 
            conformal nor equal area. Only one hemisphere can be shown at a time, as shown 
            in the figure below.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The central meridian in the 
            equatorial aspect is a straight line. The 90° meridians form a circle 
            representing the limit of the equatorial aspect. Other meridians are unequally 
            spaced, ellipses of eccentricities ranging from 0 (the bounding circle) to 1.0 
            (the central meridian). Meridian spacing decreases away from the central 
            meridian. Parallels are unequally spaced, straight, parallel lines 
            perpendicular to the central meridian. Parallel spacing decreases away from the 
            equator. Parallels intersect the outer meridian at equal intervals. The 
            projection is symmetrical about the central meridian or equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="465" height="459" id="_x0000_i1046" src="ortho.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Orthographic 
            Projection (Equatorial Aspect)</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>For the polar aspect, meridians 
            are equally spaced straight lines radiating from the pole at their true angles. 
            Parallels are unequally spaced circles centered at the pole. The pole is a 
            point. Parallel spacing decreases away from the pole. The projection is 
            symmetrical about any meridian.
         </p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="465" height="459" id="_x0000_i1047" src="orthoNorthPolar.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Orthographic 
            Projection (North Polar Aspect)</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The central meridian in the 
            oblique aspect is also a straight line. Other meridians are ellipses of varying 
            eccentricities. Meridian spacing decreases away from the central meridian. 
            Parallels are complete or partial ellipses with the same eccentricity, whose 
            minor axes lie along the central meridian. Parallel spacing decreases from the 
            center of the projection.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="465" height="459" id="_x0000_i1048" src="orthoOblique.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Orthographic 
            Projection (Oblique Aspect)</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true at the center of 
            the projection and along all circles drawn about the center. The scale is true 
            only in the direction of the circumference and it decreases
            <span class="SpellE">radially</span>
            with distance from the center.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The center of the projection is 
            free of distortion. Distortion quickly increases with distance from the center. 
            At the outer regions, distortion is severe.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Orthographic projection is 
            used only in the spherical form.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="polyconic"></a><strong>Description 
               of
               <span class="SpellE">Polyconic</span>
               Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
            <span class="SpellE">Polyconic</span>
            projection is neither conformal nor equal area. As shown in the figure below, 
            the central meridian is a straight line, while all other meridians are complex 
            curves equally spaced along the equator and each parallel. The equator is a 
            straight line, while all other parallels are
            <span class="SpellE">nonconcentric</span>, circular arcs spaced at true 
            intervals along the central meridian. Each parallel has a curvature developed 
            from a cone tangent at that latitude. The poles are points. The
            <span class="SpellE">Polyconic</span>
            projection is symmetrical about the central meridian and the equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="560" height="444" id="_x0000_i1049" src="polyconic.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><span class="SpellE">Polyconic</span>
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central 
            meridian and each parallel. No parallel is standard in that it has correct 
            angles, except at the central meridian, because the meridians are lengthened by 
            different amounts to cross each parallel at the correct position along the 
            parallel.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The
            <span class="SpellE">Polyconic</span>
            projection is free of distortion only along the central meridian. If the range 
            extends east or west a great distance, a large amount of distortion will 
            result.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="sinusoidal"></a><strong>Description 
               of Sinusoidal Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Sinusoidal projection is a
            <span class="SpellE">pseudocylindrical</span>, equal area projection. The 
            central meridian is a straight line half as long as the equator. All other 
            meridians are equally spaced sinusoidal curves that intersect at the poles. The 
            parallels are equally spaced, straight, parallel lines perpendicular to the 
            meridians. The poles are shown as points. The Sinusoidal projection is 
            symmetrical about the central meridian or the equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="560" height="293" id="_x0000_i1050" src="sinusoidal.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Sinusoidal 
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central 
            meridian and every parallel.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Sinusoidal projection is 
            free of distortion along the central meridian and equator. At high latitudes 
            near the outer meridians, especially in the polar regions, distortion is 
            extreme. An interrupted form of the projection involving several central 
            meridians helps reduce distortion.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="stereogr"></a><strong>Description 
               of Stereographic Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Stereographic projection is 
            an
            <span class="SpellE">azimuthal</span>, conformal, true perspective (for the 
            sphere) projection in which meridians are straight lines on the polar aspect 
            and arcs of circles on the oblique and equatorial aspects. For all aspects, the 
            central meridian is a straight line. Parallels are concentric circles, except 
            for the equator on the equatorial aspect. It is a straight line. On the oblique 
            aspect, the parallel opposite in sign to the origin latitude is also a straight 
            line. For the polar aspect, the opposite pole cannot be shown.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="565" height="485" id="_x0000_i1051" src="stereogr.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Stereographic 
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true at the 
            intersection of the origin latitude and central meridian. Scale is constant 
            along any circle whose center is at the center of the projection. Scale 
            increases away from the projection center.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The projection is free of 
            distortion at the center.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="trcyleqa"></a><strong>Description 
               of the Transverse Cylindrical Equal Area Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Transverse Cylindrical Equal 
            Area projection is a transverse aspect of the normal Cylindrical Equal Area 
            projection. It is a perspective projection onto a cylinder tangent or secant at 
            an oblique angle, or centered on a meridian. In the transverse aspect, the 
            central meridian, each meridian 90° from the central meridian and the equator 
            are straight lines. All other meridians and parallels are complex curves. The 
            poles are straight lines.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="325" height="457" id="_x0000_i1052" src="tcyleqa.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Transverse 
            Cylindrical Equal Area Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the central 
            meridian, or along two approximately (for the ellipsoid) straight lines 
            equidistant from and parallel to the central meridian.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>There is not any distortion of 
            area. There is no scale and shape distortion at the standard parallel, but 
            there is severe scale and shape distortion 90° from the central meridian.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><a name="grinten"></a><strong>Description 
               of Van
               <span class="SpellE">der</span>
               <span class="SpellE">Grinten</span>
               Projection</strong></p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Van
            <span class="SpellE">Der</span>
            <span class="SpellE">Grinten</span>
            projection is neither equal area nor conformal and it is not
            <span class="SpellE">pseudocylindrical</span>. It shows the entire globe 
            enclosed in a circle. The central meridian is a straight line and the other 
            meridians are arcs of circles equally spaced along the equator. The equator is 
            a straight line and the other parallels are arcs of circles. Parallel spacing 
            increases with latitude. The 75<sup>th</sup> parallels are shown to be halfway 
            between the equator and the poles. The poles are shown as points. The Van
            <span class="SpellE">Der</span>
            <span class="SpellE">Grinten</span>
            projection is symmetrical along the central meridian or equator.</p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'><img width="475" height="460" id="_x0000_i1053" src="grinten.gif"></p>
         <p align="center" style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:center'>Van
            <span class="SpellE">der</span>
            <span class="SpellE">Grinten</span>
            Projection</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>Scale is true along the equator. 
            It quickly increases with distance from the equator.
         </p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>There is a large amount of area 
            distortion near the poles.</p>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'>The Van
            <span class="SpellE">Der</span>
            <span class="SpellE">Grinten</span>
            projection is used only in the spherical form.</p>
         <h1 align="center" style='MARGIN:6pt 0in 0pt;TEXT-ALIGN:center'><span style='FONT-SIZE:16pt;COLOR:black'>UNCLASSIFIED<o:p></o:p></span></h1>
         <p style='MARGIN:6pt 0in 0pt; TEXT-ALIGN:justify'><o:p>&nbsp;</o:p></p>
      </div>
   </BODY>
</html>