This file is indexed.

/usr/lib/python3/dist-packages/glogic/CircuitManager.py is in glogic 2.6-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# -*- coding: utf-8; indent-tabs-mode: t; tab-width: 4 -*-

import copy, os, gettext, pickle
from gi.repository import Gtk, Gdk, GObject
from glogic import const, Preference
from glogic.Utils import *
from glogic.Components import *
from gettext import gettext as _
from glogic.ComponentConverter import components_to_string, string_to_components

class CircuitManager(GObject.GObject):

	__gsignals__ = {
		'currenttime-changed': (GObject.SIGNAL_RUN_FIRST, None, (float,)),
		'title-changed': (GObject.SIGNAL_RUN_FIRST, None, (str,)),
		'message-changed': (GObject.SIGNAL_RUN_FIRST, None, (str,)),
		'item-unselected': (GObject.SIGNAL_RUN_FIRST, None, ()),
		'alert': (GObject.SIGNAL_RUN_FIRST, None, (str,))
	}

	def __init__(self):
		GObject.GObject.__init__(self)
		self.components = []
		self.selected_components = []
		self.net_connections = []
		self.net_levels = []
		self.net_no_dot = []
		self.components_history = [[]]
		self.action_count = 0
		self.save_point = 0
		self.current_time = 0.0
		self.need_save = False
		self.simple_change = True
		self.filepath = ""
		self.probe_levels_history = []
		self.component_state_history = []

	def save_file(self, filepath):
		try:
			fp = open(filepath, mode="w", encoding="utf-8")
		except TypeError:
			import codecs
			fp = codecs.open(filepath, mode="w", encoding="utf-8")
		except IOError:
			return True
		fp.write(components_to_string(self.components))
		fp.close()
		self.filepath = filepath
		self.need_save = False
		self.simple_change = True
		self.save_point = self.action_count
		self.emit("title-changed", "%s - %s" % (os.path.basename(filepath), const.app_name))
		return False

	def open_file(self, filepath):
		try:
			fp = open(filepath, mode="r", encoding="utf-8")
		except TypeError:
			import codecs
			fp = codecs.open(filepath, mode="r", encoding="utf-8")
		except IOError:
			return True
		tmp = string_to_components(fp.read())
		if isinstance(tmp, str):
			self.emit("alert", tmp)
			fp.close()
			return True
		else:
			self.reset_circuit()
			self.components = tmp
			self.components_history = [copy.deepcopy(self.components)]
			self.filepath = filepath
			self.emit("title-changed", "%s - %s" % (os.path.basename(filepath), const.app_name))
			fp.close()
		return False

	def analyze_connections(self):
		# Analyze connections
		self.net_connections = []
		self.net_no_dot = []
		not_added = self.components[:]
		net_not_empty = True
		while True:
			connection = []
			changed_flag = True
			net_not_empty = False
			while changed_flag:
				changed_flag = False
				remlist = []
				for c in not_added:
					if c[0] == const.component_net:
						net_not_empty = True
						if len(connection) == 0:
							connection.append((c[1], c[2]))
							connection.append((c[3], c[4]))
							remlist.append(c)
						else:
							if (c[1], c[2]) in connection:
								if not (c[3], c[4]) in connection:
									connection.append((c[3], c[4]))
									changed_flag = True
								remlist.append(c)
							elif (c[3], c[4]) in connection:
								if not (c[1], c[2]) in connection:
									connection.append((c[1], c[2]))
									changed_flag = True
								remlist.append(c)
				for c in remlist:
					not_added.remove(c)

			if not net_not_empty:
				break

			for con_p in connection:
				cnt = 0
				for c in self.components:
					if c[0] == const.component_net:
						if con_p[0] == c[1] and con_p[1] == c[2]:
							cnt += 1
						elif con_p[0] == c[3] and con_p[1] == c[4]:
							cnt += 1
					else:
						for p in c[1].rot_input_pins + c[1].rot_output_pins:
							if con_p[0] == c[1].pos_x + p[0] and con_p[1] == c[1].pos_y + p[1]:
								cnt += 1
				if cnt <= 2:
					self.net_no_dot.append(con_p)

			self.net_connections.append(connection)

		for c in self.components:
			if c[0] != const.component_net:
				for p in c[1].rot_input_pins + c[1].rot_output_pins:
					found = False
					for net in self.net_connections:
						if (c[1].pos_x + p[0], c[1].pos_y + p[1]) in net:
							found = True
							break
					if not found:
						self.net_connections.append([(c[1].pos_x + p[0], c[1].pos_y + p[1])])

	def split_nets(self, x, y):
		# Split nets on the specified point
		spl_list = []
		for c in self.components:
			if c[0] == const.component_net:
				if (y - c[2]) * (c[3] - c[1]) == (x - c[1]) * (c[4] - c[2]):
					if (c[1] <= x <= c[3] and c[2] <= y <= c[4]) or (c[3] <= x <= c[1] and c[4] <= y <= c[2]):
						spl_list.append(c)

		for c in spl_list:
			self.components.remove(c)
			net_selected = False
			if c in self.selected_components:
				self.selected_components.remove(c)
				net_selected = True
			if x != c[1] or y != c[2]:
				if not [const.component_net, c[1], c[2], x, y] in self.components and not [const.component_net, x, y, c[1], c[2]] in self.components:
					component_data = [const.component_net, c[1], c[2], x, y]
					self.components.append(component_data)
					if net_selected:
						self.selected_components.append(component_data)
			if x != c[3] or y != c[4]:
				if not [const.component_net, c[3], c[4], x, y] in self.components and not [const.component_net, x, y, c[3], c[4]] in self.components:
					component_data = [const.component_net, x, y, c[3], c[4]]
					self.components.append(component_data)
					if net_selected:
						self.selected_components.append(component_data)

	def connect_nets(self, x, y, lock_selected = False):
		nets = []
		for c in self.components:
			if c[0] == const.component_net:
				if c[1] == x and c[2] == y or c[3] == x and c[4] == y:
					if not (lock_selected and c in self.selected_components):
						nets.append(c)
			else:
				# Cannot connect if there are terminals of components
				for p in c[1].rot_input_pins + c[1].rot_output_pins:
					if c[1].pos_x + p[0] == x and c[1].pos_y + p[1] == y:
						return

		if len(nets) == 2:
			if (nets[0][1] - nets[0][3]) * (nets[1][2] - nets[1][4]) == (nets[1][1] - nets[1][3]) * (nets[0][2] - nets[0][4]):
				if nets[0][1] == x and nets[0][2] == y:
					if nets[1][1] == x and nets[1][2] == y:
						if (nets[0][1] - nets[0][3]) * (nets[1][1] - nets[1][3]) <= 0 and (nets[0][2] - nets[0][4]) * (nets[1][2] - nets[1][4]) <= 0:
							component_data = [const.component_net, nets[0][3], nets[0][4], nets[1][3], nets[1][4]]
							self.components.append(component_data)
							self.components.remove(nets[0])
							self.components.remove(nets[1])
							net_selected = False
							if nets[0] in self.selected_components:
								self.selected_components.remove(nets[0])
								net_selected = True
							if nets[1] in self.selected_components:
								self.selected_components.remove(nets[1])
								net_selected = True
							if net_selected:
								self.selected_components.append(component_data)
					else:
						if (nets[0][1] - nets[0][3]) * (nets[1][1] - nets[1][3]) >= 0 and (nets[0][2] - nets[0][4]) * (nets[1][2] - nets[1][4]) >= 0:
							component_data = [const.component_net, nets[0][3], nets[0][4], nets[1][1], nets[1][2]]
							self.components.append(component_data)
							self.components.remove(nets[0])
							self.components.remove(nets[1])
							net_selected = False
							if nets[0] in self.selected_components:
								self.selected_components.remove(nets[0])
								net_selected = True
							if nets[1] in self.selected_components:
								self.selected_components.remove(nets[1])
								net_selected = True
							if net_selected:
								self.selected_components.append(component_data)
				else:
					if nets[1][1] == x and nets[1][2] == y:
						if (nets[0][1] - nets[0][3]) * (nets[1][1] - nets[1][3]) >= 0 and (nets[0][2] - nets[0][4]) * (nets[1][2] - nets[1][4]) >= 0:
							component_data = [const.component_net, nets[0][1], nets[0][2], nets[1][3], nets[1][4]]
							self.components.append(component_data)
							self.components.remove(nets[0])
							self.components.remove(nets[1])
							net_selected = False
							if nets[0] in self.selected_components:
								self.selected_components.remove(nets[0])
								net_selected = True
							if nets[1] in self.selected_components:
								self.selected_components.remove(nets[1])
								net_selected = True
							if net_selected:
								self.selected_components.append(component_data)
					else:
						if (nets[0][1] - nets[0][3]) * (nets[1][1] - nets[1][3]) <= 0 and (nets[0][2] - nets[0][4]) * (nets[1][2] - nets[1][4]) <= 0:
							component_data = [const.component_net, nets[0][1], nets[0][2], nets[1][1], nets[1][2]]
							self.components.append(component_data)
							self.components.remove(nets[0])
							self.components.remove(nets[1])
							net_selected = False
							if nets[0] in self.selected_components:
								self.selected_components.remove(nets[0])
								net_selected = True
							if nets[1] in self.selected_components:
								self.selected_components.remove(nets[1])
								net_selected = True
							if net_selected:
								self.selected_components.append(component_data)

	def set_netlevels(self):
		self.net_levels = [-1]*len(self.net_connections)
		for c in self.components:
			if c[0] != const.component_net:
				for i,p in enumerate(c[1].rot_output_pins):
					for j,net in enumerate(self.net_connections):
						if (c[1].pos_x + p[0], c[1].pos_y + p[1]) in net:
							if self.net_levels[j] != -1 and self.net_levels[j] != c[1].output_level[i]:
								self.emit("message-changed", _("Output port is short circuit!"))
								return True
							self.net_levels[j] = c[1].output_level[i]
		return False

	def initialize_logic(self):
		self.probe_levels_history = []
		self.component_state_history = []
		self.current_time = 0.0
		for c in self.components:
			if c[0] != const.component_net:
				c[1].initialize()

	def revert_state(self):
		if self.component_state_history:
			t = 0
			for i, comp_state in reversed(list(enumerate(self.component_state_history))):
				if comp_state[0] <= self.current_time:
					t = i
					break
			i = 2
			for c in self.components:
				if c[0] != const.component_net:
					c[1].input_level = self.component_state_history[t][i][0]
					c[1].output_level = self.component_state_history[t][i][1]
					c[1].output_stack = self.component_state_history[t][i][2]
					c[1].store = self.component_state_history[t][i][3]
					i += 1
			self.net_levels = self.component_state_history[t][1]

		self.emit("currenttime-changed", self.current_time)

	def analyze_logic(self):
		counter = 0
		stop_time = Preference.max_calc_duration
		max_iters = Preference.max_calc_iters

		if self.component_state_history:
			t = 0
			for i, comp_state in reversed(list(enumerate(self.component_state_history))):
				if comp_state[0] <= self.current_time:
					t = i
					break
			self.current_time = self.component_state_history[t][0]
			self.component_state_history = self.component_state_history[:t]
			self.probe_levels_history = self.probe_levels_history[:t]

		while self.current_time < stop_time:
			net_levels_history = []

			while True:
				if self.set_netlevels():
					return True

				for c in self.components:
					if c[0] != const.component_net:
						input_datas = []
						for p in c[1].rot_input_pins:
							for j, net in enumerate(self.net_connections):
								if (c[1].pos_x + p[0], c[1].pos_y + p[1]) in net:
									if self.net_levels[j] == -1:
										self.emit("message-changed", _("Input port is open circuit!"))
										return True
									input_datas.append(self.net_levels[j])

						c[1].calculate(input_datas, self.current_time)
						c[1].input_level = input_datas[:]

						for i, p in enumerate(c[1].rot_output_pins):
							if c[1].output_stack[i]:
								if c[1].output_stack[i][0][0] == self.current_time:
									c[1].output_level[i] = c[1].output_stack[i].pop(0)[1]
								elif c[1].output_level[i] == c[1].output_stack[i][0][1]:
									c[1].output_stack[i].pop(0)

				if self.net_levels in net_levels_history[:-1]:
					if self.net_levels == net_levels_history[len(net_levels_history) - 1]:
						self.emit("message-changed", "")
						break
					else:
						self.emit("message-changed", _("This circuit oscillates on infinite frequency!"))
						return True

				net_levels_history.append(self.net_levels)

				if counter >= max_iters:
					self.emit("message-changed", _("This logic is complexity! (iters > %d)") % max_iters)
					return True

				counter += 1

			probe_levels = [self.current_time]
			for c in self.components:
				if c[0] == const.component_probe:
					probe_levels.append(c[1].input_level[0])
			self.probe_levels_history.append(probe_levels)

			comp_state = [self.current_time, self.net_levels[:]]
			for c in self.components:
				if c[0] != const.component_net:
					comp_state.append((c[1].input_level[:], c[1].output_level[:], copy.deepcopy(c[1].output_stack), copy.deepcopy(c[1].store)))
			self.component_state_history.append(comp_state)

			tmptime = self.current_time
			timelist = []
			for c in self.components:
				if c[0] != const.component_net:
					for s in c[1].output_stack:
						if s and s[0][0] != self.current_time:
							timelist.append(s[0][0])
			if timelist:
				self.current_time = min(timelist)
			if tmptime == self.current_time:
				break

			for c in self.components:
				if c[0] != const.component_net:
					for i, s in enumerate(c[1].output_stack):
						if s and s[0][0] == self.current_time:
							c[1].output_level[i] = s.pop(0)[1]

		self.emit("currenttime-changed", self.current_time)
		return False

	def remove_selected_component(self):
		for c in self.selected_components:
			self.components.remove(c)

		for c in self.selected_components:
			if c[0] == const.component_net:
				self.connect_nets(c[1], c[2])
				self.connect_nets(c[3], c[4])
			else:
				for p in c[1].rot_input_pins + c[1].rot_output_pins:
					self.connect_nets(c[1].pos_x + p[0], c[1].pos_y + p[1])

		self.selected_components = []
		self.emit("item-unselected")

	def reset_circuit(self):
		self.selected_components = []
		self.emit("item-unselected")
		self.components = []
		self.components_history = [[]]
		self.action_count = 0
		self.save_point = 0
		self.need_save = False
		self.simple_change = True
		self.filepath = ""

	def push_history(self):
		self.action_count += 1
		if self.action_count < len(self.components_history):
			self.components_history = self.components_history[0:self.action_count]
			if self.action_count <= self.save_point:
				self.simple_change = False
		self.components_history.append(copy.deepcopy(self.components))
		self.need_save = True
		self.emit("title-changed", "%s [%s] - %s" % (os.path.basename(self.filepath) if self.filepath != "" else const.text_notitle, const.text_modified, const.app_name))

	def undo(self):
		self.action_count -= 1
		if self.action_count >= 0:
			self.components = copy.deepcopy(self.components_history[self.action_count])

		if self.save_point == self.action_count and self.simple_change:
			self.need_save = False
			self.emit("title-changed", "%s - %s" % (os.path.basename(self.filepath) if self.filepath != "" else const.text_notitle, const.app_name))
		else:
			self.need_save = True
			self.emit("title-changed", "%s [%s] - %s" % ((os.path.basename(self.filepath) if self.filepath != "" else const.text_notitle), const.text_modified, const.app_name))

		self.selected_components = []
		self.emit("item-unselected")

	def redo(self):
		self.action_count += 1
		if self.action_count < len(self.components_history):
			self.components = copy.deepcopy(self.components_history[self.action_count])

		if self.save_point == self.action_count and self.simple_change:
			self.need_save = False
			self.emit("title-changed", "%s - %s" % (os.path.basename(self.filepath) if self.filepath != "" else const.text_notitle, const.app_name))
		else:
			self.need_save = True
			self.emit("title-changed", "%s [%s] - %s" % ((os.path.basename(self.filepath) if self.filepath != "" else const.text_notitle), const.text_modified, const.app_name))

		self.selected_components = []
		self.emit("item-unselected")

	def rotate_left_selected_components(self):
		if not self.selected_components:
			return
		rect = get_components_rect(self.selected_components)
		if rect[2] - rect[0] > 1080:
			return
		center_x = (rect[0] + rect[2]) / 2
		center_y = (rect[1] + rect[3]) / 2
		center_x = int(center_x / 10) * 10
		center_y = int(center_y / 10) * 10
		for c in self.selected_components:
			if c[0] == const.component_net:
				(c[1], c[2]) = rotate_left_90(c[1], c[2], center_x, center_y)
				(c[3], c[4]) = rotate_left_90(c[3], c[4], center_x, center_y)
			else:
				(c[1].pos_x, c[1].pos_y) = rotate_left_90(c[1].pos_x, c[1].pos_y, center_x, center_y)
				c[1].matrix = multiply_matrix((0, 1, -1, 0), c[1].matrix)
				c[1].set_rot_props()
		fit_components(self.selected_components, 1920, 1080)

	def rotate_right_selected_components(self):
		if not self.selected_components:
			return
		rect = get_components_rect(self.selected_components)
		if rect[2] - rect[0] > 1080:
			return
		center_x = (rect[0] + rect[2]) / 2
		center_y = (rect[1] + rect[3]) / 2
		center_x = int(center_x / 10) * 10
		center_y = int(center_y / 10) * 10
		for c in self.selected_components:
			if c[0] == const.component_net:
				(c[1], c[2]) = rotate_right_90(c[1], c[2], center_x, center_y)
				(c[3], c[4]) = rotate_right_90(c[3], c[4], center_x, center_y)
			else:
				(c[1].pos_x, c[1].pos_y) = rotate_right_90(c[1].pos_x, c[1].pos_y, center_x, center_y)
				c[1].matrix = multiply_matrix((0, -1, 1, 0), c[1].matrix)
				c[1].set_rot_props()
		fit_components(self.selected_components, 1920, 1080)

	def flip_hori_selected_components(self):
		if not self.selected_components:
			return
		rect = get_components_rect(self.selected_components)
		center_x = (rect[0] + rect[2]) / 2
		for c in self.selected_components:
			if c[0] == const.component_net:
				c[1] = -c[1] + center_x * 2
				c[3] = -c[3] + center_x * 2
			else:
				c[1].pos_x = -c[1].pos_x + center_x * 2
				c[1].matrix = multiply_matrix((-1, 0, 0, 1), c[1].matrix)
				c[1].set_rot_props()

	def flip_vert_selected_components(self):
		if not self.selected_components:
			return
		rect = get_components_rect(self.selected_components)
		center_y = (rect[1] + rect[3]) / 2
		for c in self.selected_components:
			if c[0] == const.component_net:
				c[2] = -c[2] + center_y * 2
				c[4] = -c[4] + center_y * 2
			else:
				c[1].pos_y = -c[1].pos_y + center_y * 2
				c[1].matrix = multiply_matrix((1, 0, 0, -1), c[1].matrix)
				c[1].set_rot_props()