This file is indexed.

/usr/share/gocode/src/github.com/AudriusButkevicius/kcp-go/kcp.go is in golang-github-audriusbutkevicius-kcp-go-dev 20160629+git20171025.8ae5f52-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
// Package kcp - A Fast and Reliable ARQ Protocol
package kcp

import (
	"encoding/binary"
	"sync/atomic"
)

const (
	IKCP_RTO_NDL     = 30  // no delay min rto
	IKCP_RTO_MIN     = 100 // normal min rto
	IKCP_RTO_DEF     = 200
	IKCP_RTO_MAX     = 60000
	IKCP_CMD_PUSH    = 81 // cmd: push data
	IKCP_CMD_ACK     = 82 // cmd: ack
	IKCP_CMD_WASK    = 83 // cmd: window probe (ask)
	IKCP_CMD_WINS    = 84 // cmd: window size (tell)
	IKCP_ASK_SEND    = 1  // need to send IKCP_CMD_WASK
	IKCP_ASK_TELL    = 2  // need to send IKCP_CMD_WINS
	IKCP_WND_SND     = 32
	IKCP_WND_RCV     = 32
	IKCP_MTU_DEF     = 1400
	IKCP_ACK_FAST    = 3
	IKCP_INTERVAL    = 100
	IKCP_OVERHEAD    = 24
	IKCP_DEADLINK    = 20
	IKCP_THRESH_INIT = 2
	IKCP_THRESH_MIN  = 2
	IKCP_PROBE_INIT  = 7000   // 7 secs to probe window size
	IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
)

// output_callback is a prototype which ought capture conn and call conn.Write
type output_callback func(buf []byte, size int)

/* encode 8 bits unsigned int */
func ikcp_encode8u(p []byte, c byte) []byte {
	p[0] = c
	return p[1:]
}

/* decode 8 bits unsigned int */
func ikcp_decode8u(p []byte, c *byte) []byte {
	*c = p[0]
	return p[1:]
}

/* encode 16 bits unsigned int (lsb) */
func ikcp_encode16u(p []byte, w uint16) []byte {
	binary.LittleEndian.PutUint16(p, w)
	return p[2:]
}

/* decode 16 bits unsigned int (lsb) */
func ikcp_decode16u(p []byte, w *uint16) []byte {
	*w = binary.LittleEndian.Uint16(p)
	return p[2:]
}

/* encode 32 bits unsigned int (lsb) */
func ikcp_encode32u(p []byte, l uint32) []byte {
	binary.LittleEndian.PutUint32(p, l)
	return p[4:]
}

/* decode 32 bits unsigned int (lsb) */
func ikcp_decode32u(p []byte, l *uint32) []byte {
	*l = binary.LittleEndian.Uint32(p)
	return p[4:]
}

func _imin_(a, b uint32) uint32 {
	if a <= b {
		return a
	}
	return b
}

func _imax_(a, b uint32) uint32 {
	if a >= b {
		return a
	}
	return b
}

func _ibound_(lower, middle, upper uint32) uint32 {
	return _imin_(_imax_(lower, middle), upper)
}

func _itimediff(later, earlier uint32) int32 {
	return (int32)(later - earlier)
}

// segment defines a KCP segment
type segment struct {
	conv     uint32
	cmd      uint8
	frg      uint8
	wnd      uint16
	ts       uint32
	sn       uint32
	una      uint32
	rto      uint32
	xmit     uint32
	resendts uint32
	fastack  uint32
	data     []byte
}

// encode a segment into buffer
func (seg *segment) encode(ptr []byte) []byte {
	ptr = ikcp_encode32u(ptr, seg.conv)
	ptr = ikcp_encode8u(ptr, seg.cmd)
	ptr = ikcp_encode8u(ptr, seg.frg)
	ptr = ikcp_encode16u(ptr, seg.wnd)
	ptr = ikcp_encode32u(ptr, seg.ts)
	ptr = ikcp_encode32u(ptr, seg.sn)
	ptr = ikcp_encode32u(ptr, seg.una)
	ptr = ikcp_encode32u(ptr, uint32(len(seg.data)))
	atomic.AddUint64(&DefaultSnmp.OutSegs, 1)
	return ptr
}

// KCP defines a single KCP connection
type KCP struct {
	conv, mtu, mss, state                  uint32
	snd_una, snd_nxt, rcv_nxt              uint32
	ssthresh                               uint32
	rx_rttvar, rx_srtt                     int32
	rx_rto, rx_minrto                      uint32
	snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
	interval, ts_flush                     uint32
	nodelay, updated                       uint32
	ts_probe, probe_wait                   uint32
	dead_link, incr                        uint32

	fastresend     int32
	nocwnd, stream int32

	snd_queue []segment
	rcv_queue []segment
	snd_buf   []segment
	rcv_buf   []segment

	acklist []ackItem

	buffer []byte
	output output_callback
}

type ackItem struct {
	sn uint32
	ts uint32
}

// NewKCP create a new kcp control object, 'conv' must equal in two endpoint
// from the same connection.
func NewKCP(conv uint32, output output_callback) *KCP {
	kcp := new(KCP)
	kcp.conv = conv
	kcp.snd_wnd = IKCP_WND_SND
	kcp.rcv_wnd = IKCP_WND_RCV
	kcp.rmt_wnd = IKCP_WND_RCV
	kcp.mtu = IKCP_MTU_DEF
	kcp.mss = kcp.mtu - IKCP_OVERHEAD
	kcp.buffer = make([]byte, (kcp.mtu+IKCP_OVERHEAD)*3)
	kcp.rx_rto = IKCP_RTO_DEF
	kcp.rx_minrto = IKCP_RTO_MIN
	kcp.interval = IKCP_INTERVAL
	kcp.ts_flush = IKCP_INTERVAL
	kcp.ssthresh = IKCP_THRESH_INIT
	kcp.dead_link = IKCP_DEADLINK
	kcp.output = output
	return kcp
}

// newSegment creates a KCP segment
func (kcp *KCP) newSegment(size int) (seg segment) {
	seg.data = xmitBuf.Get().([]byte)[:size]
	return
}

// delSegment recycles a KCP segment
func (kcp *KCP) delSegment(seg segment) {
	xmitBuf.Put(seg.data)
}

// PeekSize checks the size of next message in the recv queue
func (kcp *KCP) PeekSize() (length int) {
	if len(kcp.rcv_queue) == 0 {
		return -1
	}

	seg := &kcp.rcv_queue[0]
	if seg.frg == 0 {
		return len(seg.data)
	}

	if len(kcp.rcv_queue) < int(seg.frg+1) {
		return -1
	}

	for k := range kcp.rcv_queue {
		seg := &kcp.rcv_queue[k]
		length += len(seg.data)
		if seg.frg == 0 {
			break
		}
	}
	return
}

// Recv is user/upper level recv: returns size, returns below zero for EAGAIN
func (kcp *KCP) Recv(buffer []byte) (n int) {
	if len(kcp.rcv_queue) == 0 {
		return -1
	}

	peeksize := kcp.PeekSize()
	if peeksize < 0 {
		return -2
	}

	if peeksize > len(buffer) {
		return -3
	}

	var fast_recover bool
	if len(kcp.rcv_queue) >= int(kcp.rcv_wnd) {
		fast_recover = true
	}

	// merge fragment
	count := 0
	for k := range kcp.rcv_queue {
		seg := &kcp.rcv_queue[k]
		copy(buffer, seg.data)
		buffer = buffer[len(seg.data):]
		n += len(seg.data)
		count++
		kcp.delSegment(*seg)
		if seg.frg == 0 {
			break
		}
	}
	if count > 0 {
		kcp.rcv_queue = kcp.remove_front(kcp.rcv_queue, count)
	}

	// move available data from rcv_buf -> rcv_queue
	count = 0
	for k := range kcp.rcv_buf {
		seg := &kcp.rcv_buf[k]
		if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
			kcp.rcv_nxt++
			count++
		} else {
			break
		}
	}

	if count > 0 {
		kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[:count]...)
		kcp.rcv_buf = kcp.remove_front(kcp.rcv_buf, count)
	}

	// fast recover
	if len(kcp.rcv_queue) < int(kcp.rcv_wnd) && fast_recover {
		// ready to send back IKCP_CMD_WINS in ikcp_flush
		// tell remote my window size
		kcp.probe |= IKCP_ASK_TELL
	}
	return
}

// Send is user/upper level send, returns below zero for error
func (kcp *KCP) Send(buffer []byte) int {
	var count int
	if len(buffer) == 0 {
		return -1
	}

	// append to previous segment in streaming mode (if possible)
	if kcp.stream != 0 {
		n := len(kcp.snd_queue)
		if n > 0 {
			seg := &kcp.snd_queue[n-1]
			if len(seg.data) < int(kcp.mss) {
				capacity := int(kcp.mss) - len(seg.data)
				extend := capacity
				if len(buffer) < capacity {
					extend = len(buffer)
				}

				// grow slice, the underlying cap is guaranteed to
				// be larger than kcp.mss
				oldlen := len(seg.data)
				seg.data = seg.data[:oldlen+extend]
				copy(seg.data[oldlen:], buffer)
				buffer = buffer[extend:]
			}
		}

		if len(buffer) == 0 {
			return 0
		}
	}

	if len(buffer) <= int(kcp.mss) {
		count = 1
	} else {
		count = (len(buffer) + int(kcp.mss) - 1) / int(kcp.mss)
	}

	if count > 255 {
		return -2
	}

	if count == 0 {
		count = 1
	}

	for i := 0; i < count; i++ {
		var size int
		if len(buffer) > int(kcp.mss) {
			size = int(kcp.mss)
		} else {
			size = len(buffer)
		}
		seg := kcp.newSegment(size)
		copy(seg.data, buffer[:size])
		if kcp.stream == 0 { // message mode
			seg.frg = uint8(count - i - 1)
		} else { // stream mode
			seg.frg = 0
		}
		kcp.snd_queue = append(kcp.snd_queue, seg)
		buffer = buffer[size:]
	}
	return 0
}

func (kcp *KCP) update_ack(rtt int32) {
	// https://tools.ietf.org/html/rfc6298
	var rto uint32
	if kcp.rx_srtt == 0 {
		kcp.rx_srtt = rtt
		kcp.rx_rttvar = rtt >> 1
	} else {
		delta := rtt - kcp.rx_srtt
		kcp.rx_srtt += delta >> 3
		if delta < 0 {
			delta = -delta
		}
		if rtt < kcp.rx_srtt-kcp.rx_rttvar {
			// if the new RTT sample is below the bottom of the range of
			// what an RTT measurement is expected to be.
			// give an 8x reduced weight versus its normal weighting
			kcp.rx_rttvar += (delta - kcp.rx_rttvar) >> 5
		} else {
			kcp.rx_rttvar += (delta - kcp.rx_rttvar) >> 2
		}
	}
	rto = uint32(kcp.rx_srtt) + _imax_(kcp.interval, uint32(kcp.rx_rttvar)<<2)
	kcp.rx_rto = _ibound_(kcp.rx_minrto, rto, IKCP_RTO_MAX)
}

func (kcp *KCP) shrink_buf() {
	if len(kcp.snd_buf) > 0 {
		seg := &kcp.snd_buf[0]
		kcp.snd_una = seg.sn
	} else {
		kcp.snd_una = kcp.snd_nxt
	}
}

func (kcp *KCP) parse_ack(sn uint32) {
	if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
		return
	}

	for k := range kcp.snd_buf {
		seg := &kcp.snd_buf[k]
		if sn == seg.sn {
			kcp.delSegment(*seg)
			copy(kcp.snd_buf[k:], kcp.snd_buf[k+1:])
			kcp.snd_buf[len(kcp.snd_buf)-1] = segment{}
			kcp.snd_buf = kcp.snd_buf[:len(kcp.snd_buf)-1]
			break
		}
		if _itimediff(sn, seg.sn) < 0 {
			break
		}
	}
}

func (kcp *KCP) parse_fastack(sn uint32) {
	if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
		return
	}

	for k := range kcp.snd_buf {
		seg := &kcp.snd_buf[k]
		if _itimediff(sn, seg.sn) < 0 {
			break
		} else if sn != seg.sn {
			seg.fastack++
		}
	}
}

func (kcp *KCP) parse_una(una uint32) {
	count := 0
	for k := range kcp.snd_buf {
		seg := &kcp.snd_buf[k]
		if _itimediff(una, seg.sn) > 0 {
			kcp.delSegment(*seg)
			count++
		} else {
			break
		}
	}
	if count > 0 {
		kcp.snd_buf = kcp.remove_front(kcp.snd_buf, count)
	}
}

// ack append
func (kcp *KCP) ack_push(sn, ts uint32) {
	kcp.acklist = append(kcp.acklist, ackItem{sn, ts})
}

func (kcp *KCP) parse_data(newseg segment) {
	sn := newseg.sn
	if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||
		_itimediff(sn, kcp.rcv_nxt) < 0 {
		kcp.delSegment(newseg)
		return
	}

	n := len(kcp.rcv_buf) - 1
	insert_idx := 0
	repeat := false
	for i := n; i >= 0; i-- {
		seg := &kcp.rcv_buf[i]
		if seg.sn == sn {
			repeat = true
			atomic.AddUint64(&DefaultSnmp.RepeatSegs, 1)
			break
		}
		if _itimediff(sn, seg.sn) > 0 {
			insert_idx = i + 1
			break
		}
	}

	if !repeat {
		if insert_idx == n+1 {
			kcp.rcv_buf = append(kcp.rcv_buf, newseg)
		} else {
			kcp.rcv_buf = append(kcp.rcv_buf, segment{})
			copy(kcp.rcv_buf[insert_idx+1:], kcp.rcv_buf[insert_idx:])
			kcp.rcv_buf[insert_idx] = newseg
		}
	} else {
		kcp.delSegment(newseg)
	}

	// move available data from rcv_buf -> rcv_queue
	count := 0
	for k := range kcp.rcv_buf {
		seg := &kcp.rcv_buf[k]
		if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
			kcp.rcv_nxt++
			count++
		} else {
			break
		}
	}
	if count > 0 {
		kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[:count]...)
		kcp.rcv_buf = kcp.remove_front(kcp.rcv_buf, count)
	}
}

// Input when you received a low level packet (eg. UDP packet), call it
// regular indicates a regular packet has received(not from FEC)
func (kcp *KCP) Input(data []byte, regular, ackNoDelay bool) int {
	una := kcp.snd_una
	if len(data) < IKCP_OVERHEAD {
		return -1
	}

	var maxack uint32
	var lastackts uint32
	var flag int
	var inSegs uint64

	for {
		var ts, sn, length, una, conv uint32
		var wnd uint16
		var cmd, frg uint8

		if len(data) < int(IKCP_OVERHEAD) {
			break
		}

		data = ikcp_decode32u(data, &conv)
		if conv != kcp.conv {
			return -1
		}

		data = ikcp_decode8u(data, &cmd)
		data = ikcp_decode8u(data, &frg)
		data = ikcp_decode16u(data, &wnd)
		data = ikcp_decode32u(data, &ts)
		data = ikcp_decode32u(data, &sn)
		data = ikcp_decode32u(data, &una)
		data = ikcp_decode32u(data, &length)
		if len(data) < int(length) {
			return -2
		}

		if cmd != IKCP_CMD_PUSH && cmd != IKCP_CMD_ACK &&
			cmd != IKCP_CMD_WASK && cmd != IKCP_CMD_WINS {
			return -3
		}

		// only trust window updates from regular packets. i.e: latest update
		if regular {
			kcp.rmt_wnd = uint32(wnd)
		}
		kcp.parse_una(una)
		kcp.shrink_buf()

		if cmd == IKCP_CMD_ACK {
			kcp.parse_ack(sn)
			kcp.shrink_buf()
			if flag == 0 {
				flag = 1
				maxack = sn
			} else if _itimediff(sn, maxack) > 0 {
				maxack = sn
			}
			lastackts = ts
		} else if cmd == IKCP_CMD_PUSH {
			if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) < 0 {
				kcp.ack_push(sn, ts)
				if _itimediff(sn, kcp.rcv_nxt) >= 0 {
					seg := kcp.newSegment(int(length))
					seg.conv = conv
					seg.cmd = cmd
					seg.frg = frg
					seg.wnd = wnd
					seg.ts = ts
					seg.sn = sn
					seg.una = una
					copy(seg.data, data[:length])
					kcp.parse_data(seg)
				} else {
					atomic.AddUint64(&DefaultSnmp.RepeatSegs, 1)
				}
			} else {
				atomic.AddUint64(&DefaultSnmp.RepeatSegs, 1)
			}
		} else if cmd == IKCP_CMD_WASK {
			// ready to send back IKCP_CMD_WINS in Ikcp_flush
			// tell remote my window size
			kcp.probe |= IKCP_ASK_TELL
		} else if cmd == IKCP_CMD_WINS {
			// do nothing
		} else {
			return -3
		}

		inSegs++
		data = data[length:]
	}
	atomic.AddUint64(&DefaultSnmp.InSegs, inSegs)

	if flag != 0 && regular {
		kcp.parse_fastack(maxack)
		current := currentMs()
		if _itimediff(current, lastackts) >= 0 {
			kcp.update_ack(_itimediff(current, lastackts))
		}
	}

	if _itimediff(kcp.snd_una, una) > 0 {
		if kcp.cwnd < kcp.rmt_wnd {
			mss := kcp.mss
			if kcp.cwnd < kcp.ssthresh {
				kcp.cwnd++
				kcp.incr += mss
			} else {
				if kcp.incr < mss {
					kcp.incr = mss
				}
				kcp.incr += (mss*mss)/kcp.incr + (mss / 16)
				if (kcp.cwnd+1)*mss <= kcp.incr {
					kcp.cwnd++
				}
			}
			if kcp.cwnd > kcp.rmt_wnd {
				kcp.cwnd = kcp.rmt_wnd
				kcp.incr = kcp.rmt_wnd * mss
			}
		}
	}

	if ackNoDelay && len(kcp.acklist) > 0 { // ack immediately
		kcp.flush(true)
	} else if kcp.rmt_wnd == 0 && len(kcp.acklist) > 0 { // window zero
		kcp.flush(true)
	}
	return 0
}

func (kcp *KCP) wnd_unused() uint16 {
	if len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
		return uint16(int(kcp.rcv_wnd) - len(kcp.rcv_queue))
	}
	return 0
}

// flush pending data
func (kcp *KCP) flush(ackOnly bool) {
	var seg segment
	seg.conv = kcp.conv
	seg.cmd = IKCP_CMD_ACK
	seg.wnd = kcp.wnd_unused()
	seg.una = kcp.rcv_nxt

	buffer := kcp.buffer
	// flush acknowledges
	ptr := buffer
	for i, ack := range kcp.acklist {
		size := len(buffer) - len(ptr)
		if size+IKCP_OVERHEAD > int(kcp.mtu) {
			kcp.output(buffer, size)
			ptr = buffer
		}
		// filter jitters caused by bufferbloat
		if ack.sn >= kcp.rcv_nxt || len(kcp.acklist)-1 == i {
			seg.sn, seg.ts = ack.sn, ack.ts
			ptr = seg.encode(ptr)
		}
	}
	kcp.acklist = kcp.acklist[0:0]

	if ackOnly { // flash remain ack segments
		size := len(buffer) - len(ptr)
		if size > 0 {
			kcp.output(buffer, size)
		}
		return
	}

	// probe window size (if remote window size equals zero)
	if kcp.rmt_wnd == 0 {
		current := currentMs()
		if kcp.probe_wait == 0 {
			kcp.probe_wait = IKCP_PROBE_INIT
			kcp.ts_probe = current + kcp.probe_wait
		} else {
			if _itimediff(current, kcp.ts_probe) >= 0 {
				if kcp.probe_wait < IKCP_PROBE_INIT {
					kcp.probe_wait = IKCP_PROBE_INIT
				}
				kcp.probe_wait += kcp.probe_wait / 2
				if kcp.probe_wait > IKCP_PROBE_LIMIT {
					kcp.probe_wait = IKCP_PROBE_LIMIT
				}
				kcp.ts_probe = current + kcp.probe_wait
				kcp.probe |= IKCP_ASK_SEND
			}
		}
	} else {
		kcp.ts_probe = 0
		kcp.probe_wait = 0
	}

	// flush window probing commands
	if (kcp.probe & IKCP_ASK_SEND) != 0 {
		seg.cmd = IKCP_CMD_WASK
		size := len(buffer) - len(ptr)
		if size+IKCP_OVERHEAD > int(kcp.mtu) {
			kcp.output(buffer, size)
			ptr = buffer
		}
		ptr = seg.encode(ptr)
	}

	// flush window probing commands
	if (kcp.probe & IKCP_ASK_TELL) != 0 {
		seg.cmd = IKCP_CMD_WINS
		size := len(buffer) - len(ptr)
		if size+IKCP_OVERHEAD > int(kcp.mtu) {
			kcp.output(buffer, size)
			ptr = buffer
		}
		ptr = seg.encode(ptr)
	}

	kcp.probe = 0

	// calculate window size
	cwnd := _imin_(kcp.snd_wnd, kcp.rmt_wnd)
	if kcp.nocwnd == 0 {
		cwnd = _imin_(kcp.cwnd, cwnd)
	}

	// sliding window, controlled by snd_nxt && sna_una+cwnd
	newSegsCount := 0
	for k := range kcp.snd_queue {
		if _itimediff(kcp.snd_nxt, kcp.snd_una+cwnd) >= 0 {
			break
		}
		newseg := kcp.snd_queue[k]
		newseg.conv = kcp.conv
		newseg.cmd = IKCP_CMD_PUSH
		newseg.sn = kcp.snd_nxt
		kcp.snd_buf = append(kcp.snd_buf, newseg)
		kcp.snd_nxt++
		newSegsCount++
		kcp.snd_queue[k].data = nil
	}
	if newSegsCount > 0 {
		kcp.snd_queue = kcp.remove_front(kcp.snd_queue, newSegsCount)
	}

	// calculate resent
	resent := uint32(kcp.fastresend)
	if kcp.fastresend <= 0 {
		resent = 0xffffffff
	}

	// check for retransmissions
	current := currentMs()
	var change, lost, lostSegs, fastRetransSegs, earlyRetransSegs uint64
	for k := range kcp.snd_buf {
		segment := &kcp.snd_buf[k]
		needsend := false
		if segment.xmit == 0 { // initial transmit
			needsend = true
			segment.rto = kcp.rx_rto
			segment.resendts = current + segment.rto
		} else if _itimediff(current, segment.resendts) >= 0 { // RTO
			needsend = true
			if kcp.nodelay == 0 {
				segment.rto += kcp.rx_rto
			} else {
				segment.rto += kcp.rx_rto / 2
			}
			segment.resendts = current + segment.rto
			lost++
			lostSegs++
		} else if segment.fastack >= resent { // fast retransmit
			needsend = true
			segment.fastack = 0
			segment.rto = kcp.rx_rto
			segment.resendts = current + segment.rto
			change++
			fastRetransSegs++
		} else if segment.fastack > 0 && newSegsCount == 0 { // early retransmit
			needsend = true
			segment.fastack = 0
			segment.rto = kcp.rx_rto
			segment.resendts = current + segment.rto
			change++
			earlyRetransSegs++
		}

		if needsend {
			segment.xmit++
			segment.ts = current
			segment.wnd = seg.wnd
			segment.una = seg.una

			size := len(buffer) - len(ptr)
			need := IKCP_OVERHEAD + len(segment.data)

			if size+need > int(kcp.mtu) {
				kcp.output(buffer, size)
				current = currentMs() // time update for a blocking call
				ptr = buffer
			}

			ptr = segment.encode(ptr)
			copy(ptr, segment.data)
			ptr = ptr[len(segment.data):]

			if segment.xmit >= kcp.dead_link {
				kcp.state = 0xFFFFFFFF
			}
		}
	}

	// flash remain segments
	size := len(buffer) - len(ptr)
	if size > 0 {
		kcp.output(buffer, size)
	}

	// counter updates
	sum := lostSegs
	if lostSegs > 0 {
		atomic.AddUint64(&DefaultSnmp.LostSegs, lostSegs)
	}
	if fastRetransSegs > 0 {
		atomic.AddUint64(&DefaultSnmp.FastRetransSegs, fastRetransSegs)
		sum += fastRetransSegs
	}
	if earlyRetransSegs > 0 {
		atomic.AddUint64(&DefaultSnmp.EarlyRetransSegs, earlyRetransSegs)
		sum += earlyRetransSegs
	}
	if sum > 0 {
		atomic.AddUint64(&DefaultSnmp.RetransSegs, sum)
	}

	// update ssthresh
	// rate halving, https://tools.ietf.org/html/rfc6937
	if change > 0 {
		inflight := kcp.snd_nxt - kcp.snd_una
		kcp.ssthresh = inflight / 2
		if kcp.ssthresh < IKCP_THRESH_MIN {
			kcp.ssthresh = IKCP_THRESH_MIN
		}
		kcp.cwnd = kcp.ssthresh + resent
		kcp.incr = kcp.cwnd * kcp.mss
	}

	// congestion control, https://tools.ietf.org/html/rfc5681
	if lost > 0 {
		kcp.ssthresh = cwnd / 2
		if kcp.ssthresh < IKCP_THRESH_MIN {
			kcp.ssthresh = IKCP_THRESH_MIN
		}
		kcp.cwnd = 1
		kcp.incr = kcp.mss
	}

	if kcp.cwnd < 1 {
		kcp.cwnd = 1
		kcp.incr = kcp.mss
	}
}

// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
// ikcp_check when to call it again (without ikcp_input/_send calling).
// 'current' - current timestamp in millisec.
func (kcp *KCP) Update() {
	var slap int32

	current := currentMs()
	if kcp.updated == 0 {
		kcp.updated = 1
		kcp.ts_flush = current
	}

	slap = _itimediff(current, kcp.ts_flush)

	if slap >= 10000 || slap < -10000 {
		kcp.ts_flush = current
		slap = 0
	}

	if slap >= 0 {
		kcp.ts_flush += kcp.interval
		if _itimediff(current, kcp.ts_flush) >= 0 {
			kcp.ts_flush = current + kcp.interval
		}
		kcp.flush(false)
	}
}

// Check determines when should you invoke ikcp_update:
// returns when you should invoke ikcp_update in millisec, if there
// is no ikcp_input/_send calling. you can call ikcp_update in that
// time, instead of call update repeatly.
// Important to reduce unnacessary ikcp_update invoking. use it to
// schedule ikcp_update (eg. implementing an epoll-like mechanism,
// or optimize ikcp_update when handling massive kcp connections)
func (kcp *KCP) Check() uint32 {
	current := currentMs()
	ts_flush := kcp.ts_flush
	tm_flush := int32(0x7fffffff)
	tm_packet := int32(0x7fffffff)
	minimal := uint32(0)
	if kcp.updated == 0 {
		return current
	}

	if _itimediff(current, ts_flush) >= 10000 ||
		_itimediff(current, ts_flush) < -10000 {
		ts_flush = current
	}

	if _itimediff(current, ts_flush) >= 0 {
		return current
	}

	tm_flush = _itimediff(ts_flush, current)

	for k := range kcp.snd_buf {
		seg := &kcp.snd_buf[k]
		diff := _itimediff(seg.resendts, current)
		if diff <= 0 {
			return current
		}
		if diff < tm_packet {
			tm_packet = diff
		}
	}

	minimal = uint32(tm_packet)
	if tm_packet >= tm_flush {
		minimal = uint32(tm_flush)
	}
	if minimal >= kcp.interval {
		minimal = kcp.interval
	}

	return current + minimal
}

// SetMtu changes MTU size, default is 1400
func (kcp *KCP) SetMtu(mtu int) int {
	if mtu < 50 || mtu < IKCP_OVERHEAD {
		return -1
	}
	buffer := make([]byte, (mtu+IKCP_OVERHEAD)*3)
	if buffer == nil {
		return -2
	}
	kcp.mtu = uint32(mtu)
	kcp.mss = kcp.mtu - IKCP_OVERHEAD
	kcp.buffer = buffer
	return 0
}

// NoDelay options
// fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)
// nodelay: 0:disable(default), 1:enable
// interval: internal update timer interval in millisec, default is 100ms
// resend: 0:disable fast resend(default), 1:enable fast resend
// nc: 0:normal congestion control(default), 1:disable congestion control
func (kcp *KCP) NoDelay(nodelay, interval, resend, nc int) int {
	if nodelay >= 0 {
		kcp.nodelay = uint32(nodelay)
		if nodelay != 0 {
			kcp.rx_minrto = IKCP_RTO_NDL
		} else {
			kcp.rx_minrto = IKCP_RTO_MIN
		}
	}
	if interval >= 0 {
		if interval > 5000 {
			interval = 5000
		} else if interval < 10 {
			interval = 10
		}
		kcp.interval = uint32(interval)
	}
	if resend >= 0 {
		kcp.fastresend = int32(resend)
	}
	if nc >= 0 {
		kcp.nocwnd = int32(nc)
	}
	return 0
}

// WndSize sets maximum window size: sndwnd=32, rcvwnd=32 by default
func (kcp *KCP) WndSize(sndwnd, rcvwnd int) int {
	if sndwnd > 0 {
		kcp.snd_wnd = uint32(sndwnd)
	}
	if rcvwnd > 0 {
		kcp.rcv_wnd = uint32(rcvwnd)
	}
	return 0
}

// WaitSnd gets how many packet is waiting to be sent
func (kcp *KCP) WaitSnd() int {
	return len(kcp.snd_buf) + len(kcp.snd_queue)
}

// remove front n elements from queue
func (kcp *KCP) remove_front(q []segment, n int) []segment {
	newn := copy(q, q[n:])
	for i := newn; i < len(q); i++ {
		q[i] = segment{} // manual set nil for GC
	}
	return q[:newn]
}