This file is indexed.

/usr/share/gocode/src/github.com/weaveworks/mesh/peer.go is in golang-github-weaveworks-mesh-dev 0+git20161024.3dd75b1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
package mesh

import (
	"crypto/rand"
	"encoding/binary"
	"fmt"
	"sort"
	"strconv"
)

// Peer is a local representation of a peer, including connections to other
// peers. By itself, it is a remote peer.
type Peer struct {
	Name PeerName
	peerSummary
	localRefCount uint64 // maintained by Peers
	connections   map[PeerName]Connection
}

type peerSummary struct {
	NameByte   []byte
	NickName   string
	UID        PeerUID
	Version    uint64
	ShortID    PeerShortID
	HasShortID bool
}

// PeerDescription collects information about peers that is useful to clients.
type PeerDescription struct {
	Name           PeerName
	NickName       string
	UID            PeerUID
	Self           bool
	NumConnections int
}

type connectionSet map[Connection]struct{}

func newPeerFromSummary(summary peerSummary) *Peer {
	return &Peer{
		Name:        PeerNameFromBin(summary.NameByte),
		peerSummary: summary,
		connections: make(map[PeerName]Connection),
	}
}

func newPeer(name PeerName, nickName string, uid PeerUID, version uint64, shortID PeerShortID) *Peer {
	return newPeerFromSummary(peerSummary{
		NameByte:   name.bytes(),
		NickName:   nickName,
		UID:        uid,
		Version:    version,
		ShortID:    shortID,
		HasShortID: true,
	})
}

func newPeerPlaceholder(name PeerName) *Peer {
	return newPeerFromSummary(peerSummary{NameByte: name.bytes()})
}

// String returns the peer name and nickname.
func (peer *Peer) String() string {
	return fmt.Sprint(peer.Name, "(", peer.NickName, ")")
}

// Routes calculates the routing table from this peer to all peers reachable
// from it, returning a "next hop" map of PeerNameX -> PeerNameY, which says
// "in order to send a message to X, the peer should send the message to its
// neighbour Y".
//
// Because currently we do not have weightings on the connections between
// peers, there is no need to use a minimum spanning tree algorithm. Instead
// we employ the simpler and cheaper breadth-first widening. The computation
// is deterministic, which ensures that when it is performed on the same data
// by different peers, they get the same result. This is important since
// otherwise we risk message loss or routing cycles.
//
// When the 'establishedAndSymmetric' flag is set, only connections that are
// marked as 'established' and are symmetric (i.e. where both sides indicate
// they have a connection to the other) are considered.
//
// When a non-nil stopAt peer is supplied, the widening stops when it reaches
// that peer. The boolean return indicates whether that has happened.
//
// NB: This function should generally be invoked while holding a read lock on
// Peers and LocalPeer.
func (peer *Peer) routes(stopAt *Peer, establishedAndSymmetric bool) (bool, map[PeerName]PeerName) {
	routes := make(unicastRoutes)
	routes[peer.Name] = UnknownPeerName
	nextWorklist := []*Peer{peer}
	for len(nextWorklist) > 0 {
		worklist := nextWorklist
		sort.Sort(listOfPeers(worklist))
		nextWorklist = []*Peer{}
		for _, curPeer := range worklist {
			if curPeer == stopAt {
				return true, routes
			}
			curPeer.forEachConnectedPeer(establishedAndSymmetric, routes,
				func(remotePeer *Peer) {
					nextWorklist = append(nextWorklist, remotePeer)
					remoteName := remotePeer.Name
					// We now know how to get to remoteName: the same
					// way we get to curPeer. Except, if curPeer is
					// the starting peer in which case we know we can
					// reach remoteName directly.
					if curPeer == peer {
						routes[remoteName] = remoteName
					} else {
						routes[remoteName] = routes[curPeer.Name]
					}
				})
		}
	}
	return false, routes
}

// Apply f to all peers reachable by peer. If establishedAndSymmetric is true,
// only peers with established bidirectional connections will be selected. The
// exclude maps is treated as a set of remote peers to blacklist.
func (peer *Peer) forEachConnectedPeer(establishedAndSymmetric bool, exclude map[PeerName]PeerName, f func(*Peer)) {
	for remoteName, conn := range peer.connections {
		if establishedAndSymmetric && !conn.isEstablished() {
			continue
		}
		if _, found := exclude[remoteName]; found {
			continue
		}
		remotePeer := conn.Remote()
		if remoteConn, found := remotePeer.connections[peer.Name]; !establishedAndSymmetric || (found && remoteConn.isEstablished()) {
			f(remotePeer)
		}
	}
}

// PeerUID uniquely identifies a peer in a mesh.
type PeerUID uint64

// ParsePeerUID parses a decimal peer UID from a string.
func parsePeerUID(s string) (PeerUID, error) {
	uid, err := strconv.ParseUint(s, 10, 64)
	return PeerUID(uid), err
}

func randomPeerUID() PeerUID {
	for {
		uid := randUint64()
		if uid != 0 { // uid 0 is reserved for peer placeholder
			return PeerUID(uid)
		}
	}
}

// PeerShortID exists for the sake of fast datapath. They are 12 bits,
// randomly assigned, but we detect and recover from collisions. This
// does limit us to 4096 peers, but that should be sufficient for a
// while.
type PeerShortID uint16

const peerShortIDBits = 12

func randomPeerShortID() PeerShortID {
	return PeerShortID(randUint16() & (1<<peerShortIDBits - 1))
}

func randBytes(n int) []byte {
	buf := make([]byte, n)
	if _, err := rand.Read(buf); err != nil {
		panic(err)
	}
	return buf
}

func randUint64() (r uint64) {
	return binary.LittleEndian.Uint64(randBytes(8))
}

func randUint16() (r uint16) {
	return binary.LittleEndian.Uint16(randBytes(2))
}

// ListOfPeers implements sort.Interface on a slice of Peers.
type listOfPeers []*Peer

// Len implements sort.Interface.
func (lop listOfPeers) Len() int {
	return len(lop)
}

// Swap implements sort.Interface.
func (lop listOfPeers) Swap(i, j int) {
	lop[i], lop[j] = lop[j], lop[i]
}

// Less implements sort.Interface.
func (lop listOfPeers) Less(i, j int) bool {
	return lop[i].Name < lop[j].Name
}