/usr/share/hol88-2.02.19940316/contrib/PNF/prenex.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 | %-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%------ ------%
%------ PRENEX NORMAL FORMS ------%
%------ ------%
%------ by ------%
%------ ------%
%------ Clive Jervis ------%
%------ (SD-Scicon) ------%
%------ ------%
%------ Jan. 1990 ------%
%------ ------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%
This file contains a conversion, rule, and tactic for automatically generating
prenex normal form terms equivalent to given ones. In addition, it has other
conversions related to manipulating universal and existential quantifiers. Some
of these are new versions of existing conversions that have been reimplemented
because of bugs discovered in the originals.
The prenex normal form is defined on terms constructed from the propositional
connectives /\, \/, ~, and ==>, and the universal and existential quantifiers.
Terms built using <=> and unique existence (?!), &c., would first have to be
rewritten into symbols from the previous list for prenex normal forms to apply.
By choice, the conversions &c. only work at the outermost level of logical
connectives, by which we mean that sub-terms are not put into normal form if
they form part of an argument to a function not included in the above list. For
example, suppose we have the term t built from the logical connectives mentioned
above. Then the terms t and ~t can each be put into prenex normal form by our
conversions, &c., whereas the term f(t) will not. However, it is simple enough
to use REDEPTH_CONV family of conversions to achieve this if required.
The code should be fairly efficient - each basic conversion being made by
instantiating a template theorem - and robust, with traps (`fatal' error
messages) to signal when a conversion has failed because I've got the code
wrong! The template theorems are defined in the theory `quant.th', which is
automatically called when this file is loaded.
We list the more important definitions found below:
SWAP_FORALL_CONV
A conversion for swapping the order of two universal quantifiers.
SWAP_EXISTS_CONV
A reimplementation of the conversion for swapping the order of two
existential quantifiers.
EXISTS_DISTRIB_CONV
A conversion exploiting the disributiveness of existential quantification
through disjunction.
FORALL_DISTRIB_CONV
A conversion exploiting the disributiveness of universal quantification
through conjunction.
NOT_EXISTS_CONV
A reimplementation of the conversion for pushing a negation through
an existential quantifier.
NOT_FORALL_CONV
A reimplementation of the conversion for pushing a negation through
a universal quantifier.
PRENEX_CONV
A conversion for converting a term into prenex normal form.
PRENEX_TAC
A tactic for converting a goal into prenex normal form.
PRENEX_RULE
A rule for converting a theorem into prenex normal form.
This code was developed in part with my previous employers, ICL Defence Systems,
and in part with my current employers, SD-Scicon.
%
%--------------------------------------------------------------------------------
Load up the template theorems from the theory `quant', which is made into a new
parent if it is not already one.
%
if draft_mode() & not( mem `quant` (parents `-`)) then
new_parent `quant`
else
load_theory `quant`;;
load_theorems `quant`;;
%--------------------------------------------------------------------------------
CASES_TAC: term -> tactic
Given a term t, the tactic CASES_TAC t splits the current goal into two
subgoals, one with t as an assumption and the other with ~t; it then rewrites
these subgoals with their new assumptions. This is useful when doing a case
analysis on the current goal in which one of the cases makes the goal true.
Hence, it effectively discharges this case to the assumption list.
A bit more delicate than ASM_CASES_TAC t THEN ASM_REWRITE_TAC[].
%
let CASES_TAC t =
ASM_CASES_TAC t THENL[ REWRITE_TAC[ASSUME t]; REWRITE_TAC[ASSUME(mk_neg t)] ];;
%--------------------------------------------------------------------------------
back: num -> void
The function back is a generalised form of backup, in that it backs up the goal
stack the number of steps given by a numerical argument. Thus, back 1 is the
equivalent of backup(), and back 0 has no effect. As with back, the number of
backups that can be done is limited.
%
letrec back n = if n=0 then () else (backup();back(n-1));;
%--------------------------------------------------------------------------------
SWAP_FORALL_CONV: conv
The conversion SWAP_FORALL_CONV is used to reverse the order of two universally
quantified variables.
SWAP_FORALL_CONV "!x y.t" ---->
|- !x y.t = !y x.t
%
let SWAP_FORALL_CONV: conv = \ q .
let x,t = (dest_forall q)?failwith `FORALL_SYM_CONV: term not universally quantified` in
let y,r = (dest_forall t)?failwith `FORALL_SYM_CONV: term not universally quantified twice` in
let p = "! ^y ^x . ^r" in
let t1 = (DISCH_ALL o GENL[y;x] o SPECL[x;y])(ASSUME q) in
let t2 = (DISCH_ALL o GENL[x;y] o SPECL[y;x])(ASSUME p) in
IMP_ANTISYM_RULE t1 t2;;
%-------------------------------------------------------------------------------
SWAP_EXISTS_CONV: conv
The conversion SWAP_EXISTS_CONV is used to reverse the order of two existentially
quantified variables. This is a reimplemented version of the provided
SWAP_EXISTS_CONV, which was found to fail if the supplied term had more than two
existential quantifiers.
SWAP_EXISTS_CONV "?x y.t" ---->
|- ?x y.t = ?y x.t
%
let SWAP_EXISTS_CONV: conv = \ q .
let x,t = (dest_exists q)?failwith `EXISTS_SYM_CONV: term not existentially quantified` in
let y,r = (dest_exists t)?failwith `EXISTS_SYM_CONV: term not existentially quantified twice` in
let p = "? ^y ^x . ^r" in
let thm1 = (SELECT_RULE o SELECT_RULE)(ASSUME q) in
let t1 = mk_select(x,t) in
let t2 = subst[ t1, x ] t in
let t3 = mk_select(dest_exists t2) in
let t4 = subst[ t3, y ] r in
let thm2 = EXISTS( mk_exists(x,t4), t1 )thm1 in
let thm3 = DISCH_ALL( EXISTS( p, t3 )thm2 ) in
let thm4 = (SELECT_RULE o SELECT_RULE)(ASSUME p) in
let s1 = mk_select(y,mk_exists(x,r)) in
let s2 = subst[ s1, y ](mk_exists(x,r)) in
let s3 = mk_select(dest_exists s2) in
let s4 = subst[ s3, x ] r in
let thm5 = EXISTS( mk_exists(y,s4), s1 )thm4 in
let thm6 = DISCH_ALL( EXISTS( q, s3 )thm5 ) in
IMP_ANTISYM_RULE thm3 thm6;;
%-------------------------------------------------------------------------------
is_true_imp: term -> bool
The function is_true_imp is true if the argument term is an implication, and
false otherwise. This is to be distinguished from the system function true_imp
that is also true of a negation (in which ~t is treated as F ==> t).
%
let is_true_imp t = (is_imp t)& not(is_neg t);;
%-------------------------------------------------------------------------------
is_true_imp: term -> (term # term)
The function true_dest_imp destructs an implication into its two terms, and
fails if it is not an implication. This is to be distinguished from the system
function true_dest_imp that will also destruct a negation (in which ~t is
treated as F ==> t).
%
let true_dest_imp t =
if is_neg t then failwith `true_dest_imp: term is a negation`
else dest_imp t;;
%-------------------------------------------------------------------------------
EXISTS_DISTRIB_CONV: term -> conv
The function EXISTS_DISTRIB_CONV is used to pull out an existential quantified
variable from the disjunction of two existentially quantified terms. The first
argument to the function is the variable (as a term) that will be the bound
variable in the result. The second argument is the term to be converted.
EXISTS_DISTRIB_CONV "z" "(?x.p) \/ (?y.q)" ---->
|- (?x.p) \/ (?y.q) = ?z. p \/ q
If the conversion fails due to an incorrect implementation, the function returns
a `fatal' error message.
%
let EXISTS_DISTRIB_CONV: term -> conv = \ z t .
let id = `EXISTS_DISTRIB_CONV` in
if not(is_var z) then
failwith id^`: first term not a variable`
else if mem z(frees t) then
failwith id^`: variable is free in term`
else
let l,r = (dest_disj t)?failwith id^`: term not a disjunction` in
let x,p = (dest_exists l)?failwith id^`: left sub-term not existentially quantified` in
let y,q = (dest_exists r)?failwith id^`: right sub-term not existentially quantified` in
if not( type_of z = type_of x & type_of z = type_of y ) then
failwith id^`: quantified variables not all of same type`
else (
let xp = mk_abs(x,p) in
let yq = mk_abs(y,q) in
let thm1 = SPECL[xp; yq](INST_TYPE[type_of z,":*"]EXISTS_DISTRIB) in
let thml = BETA_CONV (mk_comb(xp,z)) in
let thmr = BETA_CONV (mk_comb(yq,z)) in
let p1,p2 = (dest_eq o concl)thml in
let q1,q2 = (dest_eq o concl)thmr in
let thm2 = SPECL[p2;q2;p1;q1]DISJ_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = EXISTS_EQ z thm3 in
TRANS thm1 thm4 ?
failwith id^`: fatal`);;
%-------------------------------------------------------------------------------
FORALL_DISTRIB_CONV: term -> conv
The function FORALL_DISTRIB_CONV is used to pull out an universally quantified
variable from the conjunction of two existentially quantified terms. The first
argument to the function is the variable (as a term) that will be the bound
variable in the result. The second argument is the term to be converted.
FORALL_DISTRIB_CONV "z" "(!x.p) /\ (!y.q)" ---->
|- (!x.p) /\ (!y.q) = !z. p /\ q
If the conversion fails due to an incorrect implementation, the function returns
a `fatal' error message.
%
let FORALL_DISTRIB_CONV: term -> conv = \ z t .
let id = `FORALL_DISTRIB_CONV` in
if not(is_var z) then
failwith id^`: first term not a variable`
else if mem z(frees t) then
failwith id^`: variable is free in term`
else
let l,r = (dest_conj t)?failwith id^`: term not a conjunction` in
let x,p = (dest_forall l)?failwith id^`: left sub-term not universally quantified` in
let y,q = (dest_forall r)?failwith id^`: right sub-term not universally quantified` in
if not( type_of z = type_of x & type_of z = type_of y ) then
failwith id^`: quantified variables not all of same type`
else (
let xp = mk_abs(x,p) in
let yq = mk_abs(y,q) in
let thm1 = SPECL[xp; yq](INST_TYPE[type_of z,":*"]FORALL_DISTRIB) in
let thml = BETA_CONV (mk_comb(xp,z)) in
let thmr = BETA_CONV (mk_comb(yq,z)) in
let p1,p2 = (dest_eq o concl)thml in
let q1,q2 = (dest_eq o concl)thmr in
let thm2 = SPECL[p2;q2;p1;q1]CONJ_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = FORALL_EQ z thm3 in
TRANS thm1 thm4 ?
failwith id^`: fatal`);;
%-------------------------------------------------------------------------------
NOT_EXISTS_CONV: conv
The conversion NOT_EXISTS_CONV is used to push a negation through an existential
quantifier. This is a reimplemented version of the system's NOT_EXISTS_CONV,
which was found to fail when the bound variable did not appear free in the scope of the quantifier
NOT_EXISTS_CONV "~?x.p" ---->
|- ~?x.p = !x.~p
If the conversion fails due to an incorrect implementation, the function returns
a `fatal' error message.
%
let NOT_EXISTS_CONV: conv = \ q .
let id = `NOT_EXISTS_CONV` in
let t = (dest_neg q)?failwith id^`: term not negation` in
let x,p = (dest_exists t)?failwith id^`: sub-term not existentially quantified` in (
let xp = mk_abs(x,p) in
let thm1 = SPECL[xp](INST_TYPE[type_of x,":*"]NOT_EXISTS_THM) in
let thm2 = BETA_CONV (mk_comb(xp,x)) in
let thm3 = FORALL_EQ x(AP_TERM "$~" thm2) in
TRANS thm1 thm3) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
NOT_FORALL_CONV: conv
The conversion NOT_FORALL_CONV is used to push a negation through an existential
quantifier. This is a reimplemented version of the system's NOT_FORALL_CONV,
which was found to fail when the bound variable did not appear free in the scope
of the quantifier.
NOT_FORALL_CONV "~!x.p" ---->
|- ~!x.p = ?x.~p
If the conversion fails due to an incorrect implementation, the function returns
a `fatal' error message.
%
let NOT_FORALL_CONV: conv = \ q .
let id = `NOT_FORALL_CONV` in
let t = (dest_neg q)?failwith id^`: term not negation` in
let x,p = (dest_forall t)?failwith id^`: sub-term not universally quantified` in (
let xp = mk_abs(x,p) in
let thm1 = SPECL[xp](INST_TYPE[type_of x,":*"]NOT_FORALL_THM) in
let thm2 = BETA_CONV (mk_comb(xp,x)) in
let thm3 = EXISTS_EQ x(AP_TERM "$~" thm2) in
TRANS thm1 thm3) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
L_DISJ_EXISTS_CONV: conv
R_DISJ_EXISTS_CONV: conv
The conversions L_DISJ_EXISTS_CONV and R_DISJ_EXISTS_CONV are used to move an
existential quantifier from the left and right terms of a disjunction,
respectively, out to the whole term. The bound variable will be renamed if it
appears free in the other sub-term.
L_DISJ_EXISTS_CONV "(?x.p) \/ q" ---->
|- (?x.p) \/ q = ?x. p \/ q
R_DISJ_EXISTS_CONV "p \/ (?x.q)" ---->
|- p \/ (?x.q) = ?x. p \/ q
If the conversions fail due to incorrect implementation, the functions return
`fatal' error messages.
%
let L_DISJ_EXISTS_CONV: conv = \ q .
let id = `L_DISJ_EXISTS_CONV` in
let t,r = (dest_disj q)?failwith id^`: term not disjunction` in
let x,l = (dest_exists t)?failwith id^`: left term not existentially quantified` in (
let x' = variant(union(frees r)(subtract(frees l)[x]))x in
let xl = mk_abs(x,l) in
let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_DISJ_EXISTS_THM) in
let thml = BETA_CONV (mk_comb(xl,x')) in
let thmr = REFL r in
let l' = (rhs o concl)thml in
let thm2 = SPECL[l';r;mk_comb(xl,x');r]DISJ_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = EXISTS_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
let R_DISJ_EXISTS_CONV: conv = \ q .
let id = `R_DISJ_EXISTS_CONV` in
let l,t = (dest_disj q)?failwith id^`: term not disjunction` in
let x,r = (dest_exists t)?failwith id^`: right term not existentially quantified` in (
let x' = variant(union(frees l)(subtract(frees r)[x]))x in
let xr = mk_abs(x,r) in
let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_DISJ_EXISTS_THM) in
let thml = REFL l in
let thmr = BETA_CONV (mk_comb(xr,x')) in
let r' = (rhs o concl)thmr in
let thm2 = SPECL[l;r';l;mk_comb(xr,x')]DISJ_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = EXISTS_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
L_DISJ_FORALL_CONV: conv
R_DISJ_FORALL_CONV: conv
The conversions L_DISJ_FORALL_CONV and R_DISJ_FORALL_CONV are used to move a
universal quantifier from the left and right terms of a disjunction,
respectively, out to the whole term. The bound variable will be renamed if it
appears free in the other sub-term.
L_DISJ_FORALL_CONV "(!x.p) \/ q" ---->
|- (!x.p) \/ q = !x. p \/ q
R_DISJ_FORALL_CONV "p \/ (!x.q)" ---->
|- p \/ (!x.q) = !x. p \/ q
If the conversions fail due to incorrect implementation, the functions return
`fatal' error messages.
%
let L_DISJ_FORALL_CONV: conv = \ q .
let id = `L_DISJ_FORALL_CONV` in
let t,r = (dest_disj q)?failwith id^`: term not disjunction` in
let x,l = (dest_forall t)?failwith id^`: left term not universally quantified` in (
let x' = variant(union(frees r)(subtract(frees l)[x]))x in
let xl = mk_abs(x,l) in
let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_DISJ_FORALL_THM) in
let thml = BETA_CONV (mk_comb(xl,x')) in
let thmr = REFL r in
let l' = (rhs o concl)thml in
let thm2 = SPECL[l';r;mk_comb(xl,x');r](INST_TYPE[type_of x,":*"]DISJ_EQ) in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = FORALL_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
let R_DISJ_FORALL_CONV: conv = \ q .
let id = `R_DISJ_FORALL_CONV` in (
let l,t = (dest_disj q)?failwith id^`: term not disjunction` in
let x,r = (dest_forall t)?failwith id^`: right term not universally quantified` in
let x' = variant(union(frees l)(subtract(frees r)[x]))x in
let xr = mk_abs(x,r) in
let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_DISJ_FORALL_THM) in
let thml = REFL l in
let thmr = BETA_CONV (mk_comb(xr,x')) in
let r' = (rhs o concl)thmr in
let thm2 = SPECL[l;r';l;mk_comb(xr,x');]DISJ_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = FORALL_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
L_CONJ_EXISTS_CONV: conv
R_CONJ_EXISTS_CONV: conv
The conversions L_CONJ_EXISTS_CONV and R_CONJ_EXISTS_CONV are used to move an
existential quantifier from the left and right terms of a conjunction,
respectively, out to the whole term. The bound variable will be renamed if it
appears free in the other sub-term.
L_CONJ_EXISTS_CONV "(?x.p) /\ q" ---->
|- (?x.p) /\ q = ?x. p /\ q
R_CONJ_EXISTS_CONV "p /\ (?x.q)" ---->
|- p /\ (?x.q) = ?x. p /\ q
If the conversions fail due to incorrect implementation, the functions return
`fatal' error messages.
%
let L_CONJ_EXISTS_CONV: conv = \ q .
let id = `L_DISJ_EXISTS_CONV` in
let t,r = (dest_conj q)?failwith id^`: term not conjunction` in
let x,l = (dest_exists t)?failwith id^`: left term not existentially quantified` in (
let x' = variant(union(frees r)(subtract(frees l)[x]))x in
let xl = mk_abs(x,l) in
let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_CONJ_EXISTS_THM) in
let thml = BETA_CONV (mk_comb(xl,x')) in
let thmr = REFL r in
let l' = (rhs o concl)thml in
let thm2 = SPECL[l';r;mk_comb(xl,x');r]CONJ_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = EXISTS_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
let R_CONJ_EXISTS_CONV: conv = \ q .
let id = `R_DISJ_EXISTS_CONV` in
let l,t = (dest_conj q)?failwith id^`: term not conjunction` in
let x,r = (dest_exists t)?failwith id^`: right term not existentially quantified` in (
let x' = variant(union(frees l)(subtract(frees r)[x]))x in
let xr = mk_abs(x,r) in
let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_CONJ_EXISTS_THM) in
let thml = REFL l in
let thmr = BETA_CONV (mk_comb(xr,x')) in
let r' = (rhs o concl)thmr in
let thm2 = SPECL[l;r';l;mk_comb(xr,x')](INST_TYPE[type_of x,":*"]CONJ_EQ) in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = EXISTS_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
L_CONJ_FORALL_CONV: conv
R_CONJ_FORALL_CONV: conv
The conversions L_CONJ_FORALL_CONV and R_CONJ_FORALL_CONV are used to move an
universal quantifier from the left and right terms of a disjunction,
respectively, out to the whole term. The bound variable will be renamed if it
appears free in the other sub-term.
L_CONJ_FORALL_CONV "(!x.p) /\ q" ---->
|- (!x.p) /\ q = !x. p /\ q
R_CONJ_FORALL_CONV "p /\ (!x.q)" ---->
|- p /\ (!x.q) = !x. p /\ q
If the conversions fail due to incorrect implementation, the functions return
`fatal' error messages.
%
let L_CONJ_FORALL_CONV: conv = \ q .
let id = `L_DISJ_FORALL_CONV` in
let t,r = (dest_conj q)?failwith id^`: term not conjunction` in
let x,l = (dest_forall t)?failwith id^`: left term not universally quantified` in (
let x' = variant(union(frees r)(subtract(frees l)[x]))x in
let xl = mk_abs(x,l) in
let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_CONJ_FORALL_THM) in
let thml = BETA_CONV (mk_comb(xl,x')) in
let thmr = REFL r in
let l' = (rhs o concl)thml in
let thm2 = SPECL[l';r;mk_comb(xl,x');r]CONJ_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = FORALL_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
let R_CONJ_FORALL_CONV: conv = \ q .
let id = `R_DISJ_FORALL_CONV` in
let l,t = (dest_conj q)?failwith id^`: term not conjunction` in
let x,r = (dest_forall t)?failwith id^`: right term not universally quantified` in (
let x' = variant(union(frees l)(subtract(frees r)[x]))x in
let xr = mk_abs(x,r) in
let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_CONJ_FORALL_THM) in
let thml = REFL l in
let thmr = BETA_CONV (mk_comb(xr,x')) in
let r' = (rhs o concl)thmr in
let thm2 = SPECL[l;r';l;mk_comb(xr,x')]CONJ_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = FORALL_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
L_IMP_EXISTS_CONV: conv
The conversion L_IMP_EXISTS_CONV is used to move an existential quantifier on
the left hand side of an implication out into a universal quantifier whose
scope is the the whole implication. The bound variable will be renamed if it
appears free on the right hand side of the implication.
L_IMP_EXISTS_CONV "(?x.p) ==> q" ---->
|- !x. p ==> q
If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%
let L_IMP_EXISTS_CONV: conv = \ q .
let id = `L_IMP_EXISTS_CONV` in
let t,r = (true_dest_imp q)?failwith id^`: term not implication` in
let x,l = (dest_exists t)?failwith id^`: left term not existentially quantified` in (
let x' = variant(union(frees r)(subtract(frees l)[x]))x in
let xl = mk_abs(x,l) in
let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_IMP_EXISTS_THM) in
let thml = BETA_CONV (mk_comb(xl,x')) in
let thmr = REFL r in
let l' = (rhs o concl)thml in
let thm2 = SPECL[l';r;mk_comb(xl,x');r]IMP_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = FORALL_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
R_IMP_EXISTS_CONV: conv
The conversion R_IMP_EXISTS_CONV is used to move an existential quantifier on
the right hand side of an implication out to cover the whole term. The bound
variable will be renamed if it appears free on the left hand side of the
implication.
R_IMP_EXISTS_CONV "p ==> (?x.q)" ---->
|- ?x. p ==> q
If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%
let R_IMP_EXISTS_CONV: conv = \ q .
let id = `R_IMP_EXISTS_CONV` in
let l,t = (true_dest_imp q)?failwith id^`: term not implication` in
let x,r = (dest_exists t)?failwith id^`: right term not existentially quantified` in (
let x' = variant(union(frees l)(subtract(frees r)[x]))x in
let xr = mk_abs(x,r) in
let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_IMP_EXISTS_THM) in
let thml = REFL l in
let thmr = BETA_CONV (mk_comb(xr,x')) in
let r' = (rhs o concl)thmr in
let thm2 = SPECL[l;r';l;mk_comb(xr,x')]IMP_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = EXISTS_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
L_IMP_FORALL_CONV: conv
The conversion L_IMP_FORALL_CONV is used to move a universal quantifier on the
left hand side of an implication out to an existential quantifier whose scope
is the whole term. The bound variable will be renamed if it appears free on the
right hand side of the implication.
L_IMP_FORALL_CONV "(!x.p) ==> q" ---->
|- ?x. p ==> q
If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%
let L_IMP_FORALL_CONV: conv = \ q .
let id = `L_IMP_FORALL_CONV` in
let t,r = (true_dest_imp q)?failwith id^`: term not implication` in
let x,l = (dest_forall t)?failwith id^`: left term not universally quantified` in (
let x' = variant(union(frees r)(subtract(frees l)[x]))x in
let xl = mk_abs(x,l) in
let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_IMP_FORALL_THM) in
let thml = BETA_CONV (mk_comb(xl,x')) in
let thmr = REFL r in
let l' = (rhs o concl)thml in
let thm2 = SPECL[l';r;mk_comb(xl,x');r]IMP_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = EXISTS_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
R_IMP_FORALL_CONV: conv
The conversion R_IMP_FORALL_CONV is used to move an universal quantifier on the
right hand side of an implication out to cover the whole term. The bound
variable will be renamed if it appears free on the left hand side of the
implication.
R_IMP_FORALL_CONV "p ==> (!x.q)" ---->
|- !x. p ==> "
If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%
let R_IMP_FORALL_CONV: conv = \ q .
let id = `R_IMP_FORALL_CONV` in (
let l,t = (true_dest_imp q)?failwith id^`: term not implication` in
let x,r = (dest_forall t)?failwith id^`: right term not universally quantified` in
let x' = variant(union(frees l)(subtract(frees r)[x]))x in
let xr = mk_abs(x,r) in
let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_IMP_FORALL_THM) in
let thml = REFL l in
let thmr = BETA_CONV (mk_comb(xr,x')) in
let r' = (rhs o concl)thmr in
let thm2 = SPECL[l;r';l;mk_comb(xr,x')]IMP_EQ in
let thm3 = MP(MP thm2 thml)thmr in
let thm4 = FORALL_EQ x' thm3 in
TRANS thm1 thm4 ) ?
failwith id^`: fatal`;;
%-------------------------------------------------------------------------------
NOT_PRENEX_CONV: conv
The conversion NOT_PRENEX_CONV is used to pull a series of quantifiers through
a negation (or equally push a negation through a series of quantifiers). If the
argument term is not a negation then the conversion fails, and if the sub-term
of the negation is not quantified then ALL_CONV is applied, otherwise
NOT_EXISTS_CONV or NOT_FORALL_CONV are recursively applied as appropriate.
NOT_PRENEX_CONV "~ Q1 x1. Q2 x2. ... Qn xn. p" ---->
|- ~ Q1 x1. Q2 x2. ... Qn xn. p = Q1' x1. Q2' x2. ... Qn' xn. ~ p
Where Qi' is a universal quantifier if Qi is an existential quantifier, and
Qi' is an existential quantifier if Qi is universal quantifier, for each i=1...n.
Its use is in converting a negated prenex normal form formula back into prenex
normal form.
%
letrec NOT_PRENEX_CONV: conv = \ q .
let id = `NOT_PRENEX_CONV` in
if is_neg q then
let p = dest_neg q in
if is_exists p then
let thm1 = NOT_EXISTS_CONV q in
let x,t = (dest_forall o rhs o concl)thm1 in
let thm2 = NOT_PRENEX_CONV t in
let thm3 = FORALL_EQ x thm2 in
TRANS thm1 thm3
else if is_forall p then
let thm1 = NOT_FORALL_CONV q in
let x,t = (dest_exists o rhs o concl)thm1 in
let thm2 = NOT_PRENEX_CONV t in
let thm3 = EXISTS_EQ x thm2 in
TRANS thm1 thm3
else ALL_CONV q
else failwith id^`:term not a negation`;;
%-------------------------------------------------------------------------------
CONJ_PRENEX_CONV: conv
The conversion CONJ_PRENEX_CONV is used to pull all quantifiers appearing on
either side of a conjunction back to cover the whole term. If the argument term
is not a conjunction then the conversion fails, and if the sub-terms of the
conjunction are not quantified then ALL_CONV is applied, otherwise
L_CONJ_EXISTS_CONV, L_CONJ_FORALL_CONV, R_CONJ_EXISTS_CONV, and
R_CONJ_FORALL_CONV, are recursively applied in that order as appropriate.
CONJ_PRENEX_CONV "(Q1 x1. ... Qn xn. p) /\ (R1 y1. ... Rm ym. q)" ---->
|- (Q1 x1. ... Qn xn. p) /\ (R1 y1. ... Rm ym. q)
=
Q1' x1. ... Qn' xn. R1'y1. ... Rm' ym. p /\ q
Bound variables will be renamed when their new scope clashes with other free
variables.
Its use is in converting two conjuncted prenex normal form terms into prenex
normal form.
%
letrec CONJ_PRENEX_CONV: conv = \ q .
let id = `CONJ_PRENEX_CONV` in
if is_conj q then
let l,r = dest_conj q in
if is_exists l then
let thm1 = L_CONJ_EXISTS_CONV q in
let x,t = (dest_exists o rhs o concl)thm1 in
let thm2 = CONJ_PRENEX_CONV t in
let thm3 = EXISTS_EQ x thm2 in
TRANS thm1 thm3
else if is_forall l then
let thm1 = L_CONJ_FORALL_CONV q in
let x,t = (dest_forall o rhs o concl)thm1 in
let thm2 = CONJ_PRENEX_CONV t in
let thm3 = FORALL_EQ x thm2 in
TRANS thm1 thm3
else if is_exists r then
let thm1 = R_CONJ_EXISTS_CONV q in
let x,t = (dest_exists o rhs o concl)thm1 in
let thm2 = CONJ_PRENEX_CONV t in
let thm3 = EXISTS_EQ x thm2 in
TRANS thm1 thm3
else if is_forall r then
let thm1 = R_CONJ_FORALL_CONV q in
let x,t = (dest_forall o rhs o concl)thm1 in
let thm2 = CONJ_PRENEX_CONV t in
let thm3 = FORALL_EQ x thm2 in
TRANS thm1 thm3
else ALL_CONV q
else failwith id^`:term not a conjunction`;;
%-------------------------------------------------------------------------------
DISJ_PRENEX_CONV: conv
The conversion DISJ_PRENEX_CONV is used to pull all quantifiers appearing on
either side of a disjunction back to cover the whole term. If the argument term
is not a disjunction then the conversion fails, and if the sub-terms of the
disjunction are not quantified then ALL_CONV is applied, otherwise
L_DISJ_EXISTS_CONV, L_DISJ_FORALL_CONV, R_DISJ_EXISTS_CONV, and
R_DISJ_FORALL_CONV, are recursively applied in that order as appropriate.
DISJ_PRENEX_CONV "(Q1 x1. ... Qn xn. p) \/ (R1 y1. ... Rm ym. q)" ---->
|- (Q1 x1. ... Qn xn. p) \/ (R1 y1. ... Rm ym. q)
=
Q1 x1. ... Qn xn. R1 y1. ... Rm ym. p \/ q
Bound variables will be renamed when their new scope clashes with other free
variables.
Its use is in converting two disjuncted prenex normal form formulae into prenex
normal form.
%
letrec DISJ_PRENEX_CONV: conv = \ q .
let id = `DISJ_PRENEX_CONV` in
if is_disj q then
let l,r = dest_disj q in
if is_exists l then
let thm1 = L_DISJ_EXISTS_CONV q in
let x,t = (dest_exists o rhs o concl)thm1 in
let thm2 = DISJ_PRENEX_CONV t in
let thm3 = EXISTS_EQ x thm2 in
TRANS thm1 thm3
else if is_forall l then
let thm1 = L_DISJ_FORALL_CONV q in
let x,t = (dest_forall o rhs o concl)thm1 in
let thm2 = DISJ_PRENEX_CONV t in
let thm3 = FORALL_EQ x thm2 in
TRANS thm1 thm3
else if is_exists r then
let thm1 = R_DISJ_EXISTS_CONV q in
let x,t = (dest_exists o rhs o concl)thm1 in
let thm2 = DISJ_PRENEX_CONV t in
let thm3 = EXISTS_EQ x thm2 in
TRANS thm1 thm3
else if is_forall r then
let thm1 = R_DISJ_FORALL_CONV q in
let x,t = (dest_forall o rhs o concl)thm1 in
let thm2 = DISJ_PRENEX_CONV t in
let thm3 = FORALL_EQ x thm2 in
TRANS thm1 thm3
else ALL_CONV q
else failwith id^`:term not a disjunction`;;
%-------------------------------------------------------------------------------
IMP_PRENEX_CONV: conv
The conversion IMP_PRENEX_CONV is used to pull all quantifiers appearing on
either side of an implication back to cover the whole term. If the argument
term is not an implication then the conversion fails, and if the sub-terms
of the implication are not quantified then ALL_CONV is applied, otherwise
L_IMP_EXISTS_CONV, L_IMP_FORALL_CONV, R_IMP_EXISTS_CONV, and
R_IMP_FORALL_CONV, are recursively applied in that order as appropriate.
DISJ_PRENEX_CONV "(Q1 x1. ... Qn xn. p) ==> (R1 y1. ... Rm ym. q)" ---->
|- (Q1 x1. ... Qn xn. p) ==> (R1 y1. ... Rm ym. q)
=
Q1' x1. ... Qn' xn. R1 y1. ... Rm ym. p ==> q
Where Qi' is a universal quantifier if Qi is an existential quantifier, and
Qi' is an existential quantifier if Qi is universal quantifier, for each
i=1...n.
Bound variables will be renamed when their new scope clashes with other free
variables.
Its use is in converting two prenex normal form formulae joined by an
implication back into prenex normal form.
%
letrec IMP_PRENEX_CONV: conv = \ q .
let id = `IMP_PRENEX_CONV` in
if is_true_imp q then
let l,r = dest_imp q in
if is_exists l then
let thm1 = L_IMP_EXISTS_CONV q in
let x,t = (dest_forall o rhs o concl)thm1 in
let thm2 = IMP_PRENEX_CONV t in
let thm3 = FORALL_EQ x thm2 in
TRANS thm1 thm3
else if is_forall l then
let thm1 = L_IMP_FORALL_CONV q in
let x,t = (dest_exists o rhs o concl)thm1 in
let thm2 = IMP_PRENEX_CONV t in
let thm3 = EXISTS_EQ x thm2 in
TRANS thm1 thm3
else if is_exists r then
let thm1 = R_IMP_EXISTS_CONV q in
let x,t = (dest_exists o rhs o concl)thm1 in
let thm2 = IMP_PRENEX_CONV t in
let thm3 = EXISTS_EQ x thm2 in
TRANS thm1 thm3
else if is_forall r then
let thm1 = R_IMP_FORALL_CONV q in
let x,t = (dest_forall o rhs o concl)thm1 in
let thm2 = IMP_PRENEX_CONV t in
let thm3 = FORALL_EQ x thm2 in
TRANS thm1 thm3
else ALL_CONV q
else failwith id^`:term not an implication`;;
%-------------------------------------------------------------------------------
PRENEX_CONV: conv
The conversion PRENEX_CONV is used to convert a term into prenex normal form.
If the argument term is not of type ":bool" then the conversion fails.
The conversion recursively descends the term, and each time it encounters a
propositional connective applies the appropriate conversion from NOT_PRENEX_CONV,
CONJ_PRENEX_CONV, DISJ_PRENEX_CONV, and IMP_PRENEX_CONV, once its sub-terms have
been put into prenex normal form.
PRENEX_CONV "p" ---->
|- p = Q1 x1. ... Qn xn. q
Where each Qi for i=1...n, is a universal or existential quantifier and q is
constructed only from propositional connectives at the outermost level.
Bound variables will be renamed when their new scope clashes with other free
variables.
One bug in this implementation is that sometimes bound variables in the argument
term (in "p", above) will be renamed with primes for no good reason. This
happens in the instantiation of the theorems upon which the primitive
conversions of PRENEX_CONV are based.
If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%
letrec PRENEX_CONV: conv = \ q .
let id = `PRENEX_CONV` in
if not(type_of q = ":bool") then
failwith id^`: type of term not boolean`
else ( if is_exists q then
let x,t = dest_exists q in
let thm1 = PRENEX_CONV t in
EXISTS_EQ x thm1
else if is_forall q then
let x,t = dest_forall q in
let thm1 = PRENEX_CONV t in
FORALL_EQ x thm1
else if is_neg q then
let p = dest_neg q in
let thm1 = PRENEX_CONV p in
let thm2 = AP_TERM "$~" thm1 in
let t = (rhs o concl)thm2 in
let thm3 = NOT_PRENEX_CONV t in
TRANS thm2 thm3
else if is_conj q then
let l,r = dest_conj q in
let thml = PRENEX_CONV l in
let thmr = PRENEX_CONV r in
let l' = (rhs o concl)thml in
let r' = (rhs o concl)thmr in
let thm1 = MP(MP(SPECL[l';r';l;r]CONJ_EQ)thml)thmr in
let t = (rhs o concl)thm1 in
let thm2 = CONJ_PRENEX_CONV t in
TRANS thm1 thm2
else if is_disj q then
let l,r = dest_disj q in
let thml = PRENEX_CONV l in
let thmr = PRENEX_CONV r in
let l' = (rhs o concl)thml in
let r' = (rhs o concl)thmr in
let thm1 = MP(MP(SPECL[l';r';l;r]DISJ_EQ)thml)thmr in
let t = (rhs o concl)thm1 in
let thm2 = DISJ_PRENEX_CONV t in
TRANS thm1 thm2
else if is_imp q then
let l,r = dest_imp q in
let thml = PRENEX_CONV l in
let thmr = PRENEX_CONV r in
let l' = (rhs o concl)thml in
let r' = (rhs o concl)thmr in
let thm1 = MP(MP(SPECL[l';r';l;r]IMP_EQ)thml)thmr in
let t = (rhs o concl)thm1 in
let thm2 = IMP_PRENEX_CONV t in
TRANS thm1 thm2
else ALL_CONV q
? failwith id^`: fatal` );;
%-------------------------------------------------------------------------------
PRENEX_TAC: tactic
The tactic PRENEX_TAC is used to rewrite a goal into prenex normal form. If the
current goal is already in prenex normal form, there should be no change.
However, due to a bug some of the bound variables may become primed. The tactic
is based on the conversion PRENEX_CONV.
p
=====================
Q1 x1. ... Qn xn. q
Where each Qi for i=1...n, is a universal or existential quantifier and q is
constructed only from propositional connectives at the outermost level.
Bound variables will be renamed when their new scope clashes with other free
variables.
%
let PRENEX_TAC = CONV_TAC PRENEX_CONV;;
%-------------------------------------------------------------------------------
PRENEX_RULE: thm -> thm
The rule PRENEX_TAC is used to rewrite a theorem into prenex normal form.
However, due to a bug some of the bound variables may become primed. The rule
is based on the conversion PRENEX_CONV.
p
---------------------
Q1 x1. ... Qn xn. q
Where each Qi for i=1...n, is a universal or existential quantifier and q is
constructed only from propositional connectives at the outermost level.
Bound variables will be renamed when their new scope clashes with other free
variables.
%
let PRENEX_RULE = CONV_RULE PRENEX_CONV;;
%-------------------------------------------------------------------------------
%
|