This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/PNF/prenex.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%------                                                                   ------%
%------                        PRENEX NORMAL FORMS                        ------%
%------                                                                   ------%
%------                                 by                                ------%
%------                                                                   ------%
%------                            Clive Jervis                           ------%
%------                             (SD-Scicon)                           ------%
%------                                                                   ------%
%------                              Jan. 1990                            ------%
%------                                                                   ------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%

%
This file contains a conversion, rule, and tactic for automatically generating
prenex normal form terms equivalent to given ones. In addition, it has other
conversions related to manipulating universal and existential quantifiers. Some
of these are new versions of existing conversions that have been reimplemented
because of bugs discovered in the originals.

The prenex normal form is defined on terms constructed from the propositional
connectives /\, \/, ~, and ==>, and the universal and existential quantifiers.
Terms built using <=> and unique existence (?!), &c., would first have to be
rewritten into symbols from the previous list for prenex normal forms to apply.

By choice, the conversions &c. only work at the outermost level of logical
connectives, by which we mean that sub-terms are not put into normal form if
they form part of an argument to a function not included in the above list. For
example, suppose we have the term t built from the logical connectives mentioned
above. Then the terms t and ~t can each be put into prenex normal form by our
conversions, &c., whereas the term f(t) will not. However, it is simple enough
to use REDEPTH_CONV family of conversions to achieve this if required.

The code should be fairly efficient - each basic conversion being made by
instantiating a template theorem - and robust, with traps (`fatal' error
messages) to signal when a conversion has failed because I've got the code
wrong! The template theorems are defined in the theory `quant.th', which is
automatically called when this file is loaded.

We list the more important definitions found below:

SWAP_FORALL_CONV
    A conversion for swapping the order of two universal quantifiers.

SWAP_EXISTS_CONV
    A reimplementation of the conversion for swapping the order of two
    existential quantifiers.

EXISTS_DISTRIB_CONV
    A conversion exploiting the disributiveness of existential quantification
    through disjunction.

FORALL_DISTRIB_CONV
    A conversion exploiting the disributiveness of universal quantification
    through conjunction.

NOT_EXISTS_CONV
    A reimplementation of the conversion for pushing a negation through
    an existential quantifier.
    
NOT_FORALL_CONV
    A reimplementation of the conversion for pushing a negation through
    a universal quantifier.

PRENEX_CONV
    A conversion for converting a term into prenex normal form.

PRENEX_TAC
    A tactic for converting a goal into prenex normal form.

PRENEX_RULE
    A rule for converting a theorem into prenex normal form.

This code was developed in part with my previous employers, ICL Defence Systems,
and in part with my current employers, SD-Scicon.
%

%--------------------------------------------------------------------------------

Load up the template theorems from the theory `quant', which is made into a new
parent if it is not already one. 
%

if draft_mode() & not( mem `quant` (parents `-`)) then
  new_parent `quant`
else
  load_theory `quant`;;

load_theorems `quant`;;

%--------------------------------------------------------------------------------

CASES_TAC: term -> tactic

Given a term t, the tactic CASES_TAC t splits the current goal into two
subgoals, one with t as an assumption and the other with ~t; it then rewrites
these subgoals with their new assumptions. This is useful when doing a case
analysis on the current goal in which one of the cases makes the goal true.
Hence, it effectively discharges this case to the assumption list.

A bit more delicate than ASM_CASES_TAC t THEN ASM_REWRITE_TAC[].
%

let CASES_TAC t =
    ASM_CASES_TAC t THENL[ REWRITE_TAC[ASSUME t]; REWRITE_TAC[ASSUME(mk_neg t)] ];;

%--------------------------------------------------------------------------------

back: num -> void

The function back is a generalised form of backup, in that it backs up the goal
stack the number of steps given by a numerical argument. Thus, back 1 is the
equivalent of backup(), and back 0 has no effect. As with back, the number of
backups that can be done is limited.
%

letrec back n = if n=0 then () else (backup();back(n-1));;

%--------------------------------------------------------------------------------

SWAP_FORALL_CONV: conv

The conversion SWAP_FORALL_CONV is used to reverse the order of two universally
quantified variables.

    SWAP_FORALL_CONV "!x y.t" ---->
    |- !x y.t = !y x.t
%

let SWAP_FORALL_CONV: conv = \ q .
  let x,t = (dest_forall q)?failwith `FORALL_SYM_CONV: term not universally quantified` in
  let y,r = (dest_forall t)?failwith `FORALL_SYM_CONV: term not universally quantified twice` in
  let p   = "! ^y ^x . ^r" in
    let t1 = (DISCH_ALL o GENL[y;x] o SPECL[x;y])(ASSUME q) in
    let t2 = (DISCH_ALL o GENL[x;y] o SPECL[y;x])(ASSUME p) in
  IMP_ANTISYM_RULE t1 t2;;

%-------------------------------------------------------------------------------

SWAP_EXISTS_CONV: conv

The conversion SWAP_EXISTS_CONV is used to reverse the order of two existentially
quantified variables. This is a reimplemented version of the provided
SWAP_EXISTS_CONV, which was found to fail if the supplied term had more than two 
existential quantifiers.

    SWAP_EXISTS_CONV "?x y.t" ---->
    |- ?x y.t = ?y x.t
%

let SWAP_EXISTS_CONV: conv = \ q .
  let x,t = (dest_exists q)?failwith `EXISTS_SYM_CONV: term not existentially quantified` in
  let y,r = (dest_exists t)?failwith `EXISTS_SYM_CONV: term not existentially quantified twice` in
  let p   = "? ^y ^x . ^r" in
    let thm1 = (SELECT_RULE o SELECT_RULE)(ASSUME q) in
    let t1 = mk_select(x,t) in
    let t2 = subst[ t1, x ] t in
    let t3 = mk_select(dest_exists t2) in
    let t4 = subst[ t3, y ] r in
    let thm2 = EXISTS( mk_exists(x,t4), t1 )thm1 in
    let thm3 = DISCH_ALL( EXISTS( p, t3 )thm2 ) in
    let thm4 = (SELECT_RULE o SELECT_RULE)(ASSUME p) in
    let s1 = mk_select(y,mk_exists(x,r)) in
    let s2 = subst[ s1, y ](mk_exists(x,r)) in
    let s3 = mk_select(dest_exists s2) in
    let s4 = subst[ s3, x ] r in
    let thm5 = EXISTS( mk_exists(y,s4), s1 )thm4 in
    let thm6 = DISCH_ALL( EXISTS( q, s3 )thm5 ) in
  IMP_ANTISYM_RULE thm3 thm6;;

%-------------------------------------------------------------------------------

is_true_imp: term -> bool

The function is_true_imp is true if the argument term is an implication, and
false otherwise. This is to be distinguished from the system function true_imp
that is also true of a negation (in which ~t is treated as F ==> t).
%

let is_true_imp t = (is_imp t)& not(is_neg t);;

%-------------------------------------------------------------------------------

is_true_imp: term -> (term # term)

The function true_dest_imp destructs an implication into its two terms, and
fails if it is not an implication. This is to be distinguished from the system
function true_dest_imp that will also destruct a negation (in which ~t is
treated as F ==> t).

%
let true_dest_imp t =
  if is_neg t then failwith `true_dest_imp: term is a negation`
  else dest_imp t;;

%-------------------------------------------------------------------------------

EXISTS_DISTRIB_CONV: term -> conv

The function EXISTS_DISTRIB_CONV is used to pull out an existential quantified
variable from the disjunction of two existentially quantified terms. The first
argument to the function is the variable (as a term) that will be the bound
variable in the result. The second argument is the term to be converted.

    EXISTS_DISTRIB_CONV "z" "(?x.p) \/ (?y.q)" ---->
    |- (?x.p) \/ (?y.q) = ?z. p \/ q

If the conversion fails due to an incorrect implementation, the function returns
a `fatal' error message.
%

let EXISTS_DISTRIB_CONV: term -> conv = \ z t .
  let id = `EXISTS_DISTRIB_CONV` in
  if not(is_var z) then
    failwith id^`: first term not a variable`
  else if mem z(frees t) then
    failwith id^`: variable is free in term`
  else
  let l,r  = (dest_disj t)?failwith id^`: term not a disjunction` in
  let x,p  = (dest_exists l)?failwith id^`: left sub-term not existentially quantified` in
  let y,q  = (dest_exists r)?failwith id^`: right sub-term not existentially quantified` in
  if not( type_of z = type_of x & type_of z = type_of y ) then
    failwith id^`: quantified variables not all of same type`
  else (
    let  xp  = mk_abs(x,p) in
    let  yq  = mk_abs(y,q) in
    let thm1 = SPECL[xp; yq](INST_TYPE[type_of z,":*"]EXISTS_DISTRIB) in
    let thml = BETA_CONV (mk_comb(xp,z)) in
    let thmr = BETA_CONV (mk_comb(yq,z)) in
     let p1,p2 = (dest_eq o concl)thml in
     let q1,q2 = (dest_eq o concl)thmr in
     let thm2 = SPECL[p2;q2;p1;q1]DISJ_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = EXISTS_EQ z thm3 in
    TRANS thm1 thm4 ?
  failwith id^`: fatal`);;

%-------------------------------------------------------------------------------

FORALL_DISTRIB_CONV: term -> conv

The function FORALL_DISTRIB_CONV is used to pull out an universally quantified
variable from the conjunction of two existentially quantified terms. The first
argument to the function is the variable (as a term) that will be the bound
variable in the result. The second argument is the term to be converted.

    FORALL_DISTRIB_CONV "z" "(!x.p) /\ (!y.q)" ---->
    |- (!x.p) /\ (!y.q) = !z. p /\ q

If the conversion fails due to an incorrect implementation, the function returns
a `fatal' error message.
%

let FORALL_DISTRIB_CONV: term -> conv = \ z t .
  let id = `FORALL_DISTRIB_CONV` in
  if not(is_var z) then
    failwith id^`: first term not a variable`
  else if mem z(frees t) then
    failwith id^`: variable is free in term`
  else
  let l,r  = (dest_conj t)?failwith id^`: term not a conjunction` in
  let x,p  = (dest_forall l)?failwith id^`: left sub-term not universally quantified` in
  let y,q  = (dest_forall r)?failwith id^`: right sub-term not universally quantified` in
  if not( type_of z = type_of x & type_of z = type_of y ) then
    failwith id^`: quantified variables not all of same type`
  else (
    let  xp  = mk_abs(x,p) in
    let  yq  = mk_abs(y,q) in
    let thm1 = SPECL[xp; yq](INST_TYPE[type_of z,":*"]FORALL_DISTRIB) in
    let thml = BETA_CONV (mk_comb(xp,z)) in
    let thmr = BETA_CONV (mk_comb(yq,z)) in
     let p1,p2 = (dest_eq o concl)thml in
     let q1,q2 = (dest_eq o concl)thmr in
     let thm2 = SPECL[p2;q2;p1;q1]CONJ_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = FORALL_EQ z thm3 in
    TRANS thm1 thm4 ?
  failwith id^`: fatal`);;

%-------------------------------------------------------------------------------

NOT_EXISTS_CONV: conv

The conversion NOT_EXISTS_CONV is used to push a negation through an existential
quantifier. This is a reimplemented version of the system's NOT_EXISTS_CONV,
which was found to fail when the bound variable did not appear free in the scope of the quantifier

    NOT_EXISTS_CONV "~?x.p" ---->
    |- ~?x.p = !x.~p

If the conversion fails due to an incorrect implementation, the function returns
a `fatal' error message.
%

let NOT_EXISTS_CONV: conv = \ q .
  let id = `NOT_EXISTS_CONV` in
  let t  = (dest_neg q)?failwith id^`: term not negation` in
  let x,p  = (dest_exists t)?failwith id^`: sub-term not existentially quantified` in (
    let  xp  = mk_abs(x,p) in
    let thm1 = SPECL[xp](INST_TYPE[type_of x,":*"]NOT_EXISTS_THM) in
    let thm2 = BETA_CONV (mk_comb(xp,x)) in
    let thm3 = FORALL_EQ x(AP_TERM "$~" thm2) in
    TRANS thm1 thm3) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

NOT_FORALL_CONV: conv

The conversion NOT_FORALL_CONV is used to push a negation through an existential
quantifier. This is a reimplemented version of the system's NOT_FORALL_CONV,
which was found to fail when the bound variable did not appear free in the scope
of the quantifier.

    NOT_FORALL_CONV "~!x.p" ---->
    |- ~!x.p = ?x.~p

If the conversion fails due to an incorrect implementation, the function returns 
a `fatal' error message.
%

let NOT_FORALL_CONV: conv = \ q .
  let id = `NOT_FORALL_CONV` in
  let t  = (dest_neg q)?failwith id^`: term not negation` in
  let x,p  = (dest_forall t)?failwith id^`: sub-term not universally quantified` in (
    let  xp  = mk_abs(x,p) in
    let thm1 = SPECL[xp](INST_TYPE[type_of x,":*"]NOT_FORALL_THM) in
    let thm2 = BETA_CONV (mk_comb(xp,x)) in
    let thm3 = EXISTS_EQ x(AP_TERM "$~" thm2) in
    TRANS thm1 thm3) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

L_DISJ_EXISTS_CONV: conv
R_DISJ_EXISTS_CONV: conv

The conversions L_DISJ_EXISTS_CONV and R_DISJ_EXISTS_CONV are used to move an
existential quantifier from the left and right terms of a disjunction,
respectively, out to the whole term. The bound variable will be renamed if it
appears free in the other sub-term.

    L_DISJ_EXISTS_CONV "(?x.p) \/ q" ---->
    |- (?x.p) \/ q = ?x. p \/ q

    R_DISJ_EXISTS_CONV "p \/ (?x.q)" ---->
    |- p \/ (?x.q) = ?x. p \/ q

If the conversions fail due to incorrect implementation, the functions return
`fatal' error messages.
%

let L_DISJ_EXISTS_CONV: conv = \ q .
  let id = `L_DISJ_EXISTS_CONV` in
  let t,r  = (dest_disj q)?failwith id^`: term not disjunction` in
  let x,l  = (dest_exists t)?failwith id^`: left term not existentially quantified` in (
    let  x'  = variant(union(frees r)(subtract(frees l)[x]))x in
    let  xl  = mk_abs(x,l) in
    let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_DISJ_EXISTS_THM) in
    let thml = BETA_CONV (mk_comb(xl,x')) in
    let thmr = REFL r in
    let  l'  = (rhs o concl)thml in
    let thm2 = SPECL[l';r;mk_comb(xl,x');r]DISJ_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = EXISTS_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

let R_DISJ_EXISTS_CONV: conv = \ q .
  let id = `R_DISJ_EXISTS_CONV` in
  let l,t  = (dest_disj q)?failwith id^`: term not disjunction` in
  let x,r  = (dest_exists t)?failwith id^`: right term not existentially quantified` in (
    let  x'  = variant(union(frees l)(subtract(frees r)[x]))x in
    let  xr  = mk_abs(x,r) in
    let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_DISJ_EXISTS_THM) in
    let thml = REFL l in
    let thmr = BETA_CONV (mk_comb(xr,x')) in
    let  r'  = (rhs o concl)thmr in
    let thm2 = SPECL[l;r';l;mk_comb(xr,x')]DISJ_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = EXISTS_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

L_DISJ_FORALL_CONV: conv
R_DISJ_FORALL_CONV: conv

The conversions L_DISJ_FORALL_CONV and R_DISJ_FORALL_CONV are used to move a
universal quantifier from the left and right terms of a disjunction,
respectively, out to the whole term. The bound variable will be renamed if it
appears free in the other sub-term.

    L_DISJ_FORALL_CONV "(!x.p) \/ q" ---->
    |- (!x.p) \/ q = !x. p \/ q

    R_DISJ_FORALL_CONV "p \/ (!x.q)" ---->
    |- p \/ (!x.q) = !x. p \/ q

If the conversions fail due to incorrect implementation, the functions return
`fatal' error messages.
%

let L_DISJ_FORALL_CONV: conv = \ q .
  let id = `L_DISJ_FORALL_CONV` in
  let t,r  = (dest_disj q)?failwith id^`: term not disjunction` in
  let x,l  = (dest_forall t)?failwith id^`: left term not universally quantified` in (
    let  x'  = variant(union(frees r)(subtract(frees l)[x]))x in
    let  xl  = mk_abs(x,l) in
    let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_DISJ_FORALL_THM) in
    let thml = BETA_CONV (mk_comb(xl,x')) in
    let thmr = REFL r in
    let  l'  = (rhs o concl)thml in
    let thm2 = SPECL[l';r;mk_comb(xl,x');r](INST_TYPE[type_of x,":*"]DISJ_EQ) in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = FORALL_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

let R_DISJ_FORALL_CONV: conv = \ q .
  let id = `R_DISJ_FORALL_CONV` in (
    let l,t  = (dest_disj q)?failwith id^`: term not disjunction` in
    let x,r  = (dest_forall t)?failwith id^`: right term not universally quantified` in
    let  x'  = variant(union(frees l)(subtract(frees r)[x]))x in
    let  xr  = mk_abs(x,r) in
    let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_DISJ_FORALL_THM) in
    let thml = REFL l in
    let thmr = BETA_CONV (mk_comb(xr,x')) in
    let  r'  = (rhs o concl)thmr in
    let thm2 = SPECL[l;r';l;mk_comb(xr,x');]DISJ_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = FORALL_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

L_CONJ_EXISTS_CONV: conv
R_CONJ_EXISTS_CONV: conv

The conversions L_CONJ_EXISTS_CONV and R_CONJ_EXISTS_CONV are used to move an
existential quantifier from the left and right terms of a conjunction,
respectively, out to the whole term. The bound variable will be renamed if it
appears free in the other sub-term.

    L_CONJ_EXISTS_CONV "(?x.p) /\ q" ---->
    |- (?x.p) /\ q = ?x. p /\ q

    R_CONJ_EXISTS_CONV "p /\ (?x.q)" ---->
    |- p /\ (?x.q) = ?x. p /\ q

If the conversions fail due to incorrect implementation, the functions return
`fatal' error messages.
%

let L_CONJ_EXISTS_CONV: conv = \ q .
  let id = `L_DISJ_EXISTS_CONV` in
  let t,r  = (dest_conj q)?failwith id^`: term not conjunction` in
  let x,l  = (dest_exists t)?failwith id^`: left term not existentially quantified` in (
    let  x'  = variant(union(frees r)(subtract(frees l)[x]))x in
    let  xl  = mk_abs(x,l) in
    let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_CONJ_EXISTS_THM) in
    let thml = BETA_CONV (mk_comb(xl,x')) in
    let thmr = REFL r in
    let  l'  = (rhs o concl)thml in
    let thm2 = SPECL[l';r;mk_comb(xl,x');r]CONJ_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = EXISTS_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

let R_CONJ_EXISTS_CONV: conv = \ q .
  let id = `R_DISJ_EXISTS_CONV` in
  let l,t  = (dest_conj q)?failwith id^`: term not conjunction` in
  let x,r  = (dest_exists t)?failwith id^`: right term not existentially quantified` in (
    let  x'  = variant(union(frees l)(subtract(frees r)[x]))x in
    let  xr  = mk_abs(x,r) in
    let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_CONJ_EXISTS_THM) in
    let thml = REFL l in
    let thmr = BETA_CONV (mk_comb(xr,x')) in
    let  r'  = (rhs o concl)thmr in
    let thm2 = SPECL[l;r';l;mk_comb(xr,x')](INST_TYPE[type_of x,":*"]CONJ_EQ) in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = EXISTS_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

L_CONJ_FORALL_CONV: conv
R_CONJ_FORALL_CONV: conv

The conversions L_CONJ_FORALL_CONV and R_CONJ_FORALL_CONV are used to move an
universal quantifier from the left and right terms of a disjunction,
respectively, out to the whole term. The bound variable will be renamed if it
appears free in the other sub-term.

    L_CONJ_FORALL_CONV "(!x.p) /\ q" ---->
    |- (!x.p) /\ q = !x. p /\ q

    R_CONJ_FORALL_CONV "p /\ (!x.q)" ---->
    |- p /\ (!x.q) = !x. p /\ q

If the conversions fail due to incorrect implementation, the functions return
`fatal' error messages.
%

let L_CONJ_FORALL_CONV: conv = \ q .
  let id = `L_DISJ_FORALL_CONV` in
  let t,r  = (dest_conj q)?failwith id^`: term not conjunction` in
  let x,l  = (dest_forall t)?failwith id^`: left term not universally quantified` in (
    let  x'  = variant(union(frees r)(subtract(frees l)[x]))x in
    let  xl  = mk_abs(x,l) in
    let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_CONJ_FORALL_THM) in
    let thml = BETA_CONV (mk_comb(xl,x')) in
    let thmr = REFL r in
    let  l'  = (rhs o concl)thml in
    let thm2 = SPECL[l';r;mk_comb(xl,x');r]CONJ_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = FORALL_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

let R_CONJ_FORALL_CONV: conv = \ q .
  let id = `R_DISJ_FORALL_CONV` in
  let l,t  = (dest_conj q)?failwith id^`: term not conjunction` in
  let x,r  = (dest_forall t)?failwith id^`: right term not universally quantified` in (
    let  x'  = variant(union(frees l)(subtract(frees r)[x]))x in
    let  xr  = mk_abs(x,r) in
    let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_CONJ_FORALL_THM) in
    let thml = REFL l in
    let thmr = BETA_CONV (mk_comb(xr,x')) in
    let  r'  = (rhs o concl)thmr in
    let thm2 = SPECL[l;r';l;mk_comb(xr,x')]CONJ_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = FORALL_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

L_IMP_EXISTS_CONV: conv

The conversion L_IMP_EXISTS_CONV is used to move an existential quantifier on
the left hand side of an implication out into a universal quantifier whose
scope is the the whole implication. The bound variable will be renamed if it
appears free on the right hand side of the implication.

    L_IMP_EXISTS_CONV "(?x.p) ==> q" ---->
    |- !x. p ==> q

If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%

let L_IMP_EXISTS_CONV: conv = \ q .
  let id = `L_IMP_EXISTS_CONV` in
  let t,r  = (true_dest_imp q)?failwith id^`: term not implication` in
  let x,l  = (dest_exists t)?failwith id^`: left term not existentially quantified` in (
    let  x'  = variant(union(frees r)(subtract(frees l)[x]))x in
    let  xl  = mk_abs(x,l) in
    let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_IMP_EXISTS_THM) in
    let thml = BETA_CONV (mk_comb(xl,x')) in
    let thmr = REFL r in
    let  l'  = (rhs o concl)thml in
    let thm2 = SPECL[l';r;mk_comb(xl,x');r]IMP_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = FORALL_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

R_IMP_EXISTS_CONV: conv

The conversion R_IMP_EXISTS_CONV is used to move an existential quantifier on
the right hand side of an implication out to cover the whole term. The bound
variable will be renamed if it appears free on the left hand side of the
implication.

   R_IMP_EXISTS_CONV "p ==> (?x.q)" ---->
    |- ?x. p ==> q

If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%

let R_IMP_EXISTS_CONV: conv = \ q .
  let id = `R_IMP_EXISTS_CONV` in
  let l,t  = (true_dest_imp q)?failwith id^`: term not implication` in
  let x,r  = (dest_exists t)?failwith id^`: right term not existentially quantified` in (
    let  x'  = variant(union(frees l)(subtract(frees r)[x]))x in
    let  xr  = mk_abs(x,r) in
    let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_IMP_EXISTS_THM) in
    let thml = REFL l in
    let thmr = BETA_CONV (mk_comb(xr,x')) in
    let  r'  = (rhs o concl)thmr in
    let thm2 = SPECL[l;r';l;mk_comb(xr,x')]IMP_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = EXISTS_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

L_IMP_FORALL_CONV: conv

The conversion L_IMP_FORALL_CONV is used to move a universal quantifier on the
left hand side of an implication out to an existential quantifier whose scope
is the whole term. The bound variable will be renamed if it appears free on the
right hand side of the implication.

    L_IMP_FORALL_CONV "(!x.p) ==> q" ---->
    |- ?x. p ==> q

If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%

let L_IMP_FORALL_CONV: conv = \ q .
  let id = `L_IMP_FORALL_CONV` in
  let t,r  = (true_dest_imp q)?failwith id^`: term not implication` in
  let x,l  = (dest_forall t)?failwith id^`: left term not universally quantified` in (
    let  x'  = variant(union(frees r)(subtract(frees l)[x]))x in
    let  xl  = mk_abs(x,l) in
    let thm1 = SPECL[r;xl](INST_TYPE[type_of x,":*"]L_IMP_FORALL_THM) in
    let thml = BETA_CONV (mk_comb(xl,x')) in
    let thmr = REFL r in
    let  l'  = (rhs o concl)thml in
    let thm2 = SPECL[l';r;mk_comb(xl,x');r]IMP_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = EXISTS_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

R_IMP_FORALL_CONV: conv

The conversion R_IMP_FORALL_CONV is used to move an universal quantifier on the
right hand side of an implication out to cover the whole term. The bound
variable will be renamed if it appears free on the left hand side of the
implication.

    R_IMP_FORALL_CONV "p ==> (!x.q)" ---->
    |- !x. p ==> "

If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%

let R_IMP_FORALL_CONV: conv = \ q .
  let id = `R_IMP_FORALL_CONV` in (
    let l,t  = (true_dest_imp q)?failwith id^`: term not implication` in
    let x,r  = (dest_forall t)?failwith id^`: right term not universally quantified` in
    let  x'  = variant(union(frees l)(subtract(frees r)[x]))x in
    let  xr  = mk_abs(x,r) in
    let thm1 = SPECL[l;xr](INST_TYPE[type_of x,":*"]R_IMP_FORALL_THM) in
    let thml = REFL l in
    let thmr = BETA_CONV (mk_comb(xr,x')) in
    let  r'  = (rhs o concl)thmr in
    let thm2 = SPECL[l;r';l;mk_comb(xr,x')]IMP_EQ in
    let thm3 = MP(MP thm2 thml)thmr in
    let thm4 = FORALL_EQ x' thm3 in
    TRANS thm1 thm4 ) ?
  failwith id^`: fatal`;;

%-------------------------------------------------------------------------------

NOT_PRENEX_CONV: conv

The conversion NOT_PRENEX_CONV is used to pull a series of quantifiers through
a negation (or equally push a negation through a series of quantifiers). If the
argument term is not a negation then the conversion fails, and if the sub-term
of the negation is not quantified then ALL_CONV is applied, otherwise
NOT_EXISTS_CONV or NOT_FORALL_CONV are recursively applied as appropriate.

    NOT_PRENEX_CONV "~ Q1 x1. Q2 x2. ... Qn xn. p" ---->
    |- ~ Q1 x1. Q2 x2. ... Qn xn. p = Q1' x1. Q2' x2. ... Qn' xn. ~ p

Where  Qi' is a universal quantifier if Qi is an existential quantifier, and
Qi' is an existential quantifier if Qi is universal quantifier, for each i=1...n.

Its use is in converting a negated prenex normal form formula back into prenex
normal form.
%

letrec NOT_PRENEX_CONV: conv = \ q .
  let id = `NOT_PRENEX_CONV` in
  if is_neg q then
    let p = dest_neg q in
    if is_exists p then
      let thm1 = NOT_EXISTS_CONV q in
      let x,t  = (dest_forall o rhs o concl)thm1 in
      let thm2 = NOT_PRENEX_CONV t in
      let thm3 = FORALL_EQ x thm2 in
      TRANS thm1 thm3
    else if is_forall p then
      let thm1 = NOT_FORALL_CONV q in
      let x,t  = (dest_exists o rhs o concl)thm1 in
      let thm2 = NOT_PRENEX_CONV t in
      let thm3 = EXISTS_EQ x thm2 in
      TRANS thm1 thm3
    else ALL_CONV q
  else failwith id^`:term not a negation`;;

%-------------------------------------------------------------------------------

CONJ_PRENEX_CONV: conv

The conversion CONJ_PRENEX_CONV is used to pull all quantifiers appearing on
either side of a conjunction back to cover the whole term. If the argument term
is not a conjunction then the conversion fails, and if the sub-terms of the
conjunction are not quantified then ALL_CONV is applied, otherwise
L_CONJ_EXISTS_CONV, L_CONJ_FORALL_CONV, R_CONJ_EXISTS_CONV, and
R_CONJ_FORALL_CONV, are recursively applied in that order as appropriate.

    CONJ_PRENEX_CONV "(Q1 x1. ... Qn xn. p) /\ (R1 y1. ... Rm ym. q)" ---->
    |- (Q1 x1. ... Qn xn. p) /\ (R1 y1. ... Rm ym. q)
       =
       Q1' x1. ... Qn' xn. R1'y1.  ... Rm' ym. p /\ q

Bound variables will be renamed when their new scope clashes with other free
variables.

Its use is in converting two conjuncted prenex normal form terms into prenex
normal form.
%

letrec CONJ_PRENEX_CONV: conv = \ q .
  let id = `CONJ_PRENEX_CONV` in
  if is_conj q then
    let l,r = dest_conj q in
    if is_exists l then
      let thm1 = L_CONJ_EXISTS_CONV q in
      let x,t  = (dest_exists o rhs o concl)thm1 in
      let thm2 = CONJ_PRENEX_CONV t in
      let thm3 = EXISTS_EQ x thm2 in
      TRANS thm1 thm3
    else if is_forall l then
      let thm1 = L_CONJ_FORALL_CONV q in
      let x,t  = (dest_forall o rhs o concl)thm1 in
      let thm2 = CONJ_PRENEX_CONV t in
      let thm3 = FORALL_EQ x thm2 in
      TRANS thm1 thm3
    else if is_exists r then
      let thm1 = R_CONJ_EXISTS_CONV q in
      let x,t  = (dest_exists o rhs o concl)thm1 in
      let thm2 = CONJ_PRENEX_CONV t in
      let thm3 = EXISTS_EQ x thm2 in
      TRANS thm1 thm3
    else if is_forall r then
      let thm1 = R_CONJ_FORALL_CONV q in
      let x,t  = (dest_forall o rhs o concl)thm1 in
      let thm2 = CONJ_PRENEX_CONV t in
      let thm3 = FORALL_EQ x thm2 in
      TRANS thm1 thm3
    else ALL_CONV q
  else failwith id^`:term not a conjunction`;;

%-------------------------------------------------------------------------------

DISJ_PRENEX_CONV: conv

The conversion DISJ_PRENEX_CONV is used to pull all quantifiers appearing on
either side of a disjunction back to cover the whole term. If the argument term
is not a disjunction then the conversion fails, and if the sub-terms of the
disjunction are not quantified then ALL_CONV is applied, otherwise
L_DISJ_EXISTS_CONV, L_DISJ_FORALL_CONV, R_DISJ_EXISTS_CONV, and
R_DISJ_FORALL_CONV, are recursively applied in that order as appropriate.

    DISJ_PRENEX_CONV "(Q1 x1. ... Qn xn. p) \/ (R1 y1. ... Rm ym. q)" ---->
    |- (Q1 x1. ... Qn xn. p) \/ (R1 y1. ... Rm ym. q)
       =
       Q1 x1. ... Qn xn. R1 y1.  ... Rm ym. p \/ q

Bound variables will be renamed when their new scope clashes with other free
variables.

Its use is in converting two disjuncted prenex normal form formulae into prenex
normal form.
%

letrec DISJ_PRENEX_CONV: conv = \ q .
  let id = `DISJ_PRENEX_CONV` in
  if is_disj q then
    let l,r = dest_disj q in
    if is_exists l then
      let thm1 = L_DISJ_EXISTS_CONV q in
      let x,t  = (dest_exists o rhs o concl)thm1 in
      let thm2 = DISJ_PRENEX_CONV t in
      let thm3 = EXISTS_EQ x thm2 in
      TRANS thm1 thm3
    else if is_forall l then
      let thm1 = L_DISJ_FORALL_CONV q in
      let x,t  = (dest_forall o rhs o concl)thm1 in
      let thm2 = DISJ_PRENEX_CONV t in
      let thm3 = FORALL_EQ x thm2 in
      TRANS thm1 thm3
    else if is_exists r then
      let thm1 = R_DISJ_EXISTS_CONV q in
      let x,t  = (dest_exists o rhs o concl)thm1 in
      let thm2 = DISJ_PRENEX_CONV t in
      let thm3 = EXISTS_EQ x thm2 in
      TRANS thm1 thm3
    else if is_forall r then
      let thm1 = R_DISJ_FORALL_CONV q in
      let x,t  = (dest_forall o rhs o concl)thm1 in
      let thm2 = DISJ_PRENEX_CONV t in
      let thm3 = FORALL_EQ x thm2 in
      TRANS thm1 thm3
    else ALL_CONV q
  else failwith id^`:term not a disjunction`;;

%-------------------------------------------------------------------------------

IMP_PRENEX_CONV: conv

The conversion IMP_PRENEX_CONV is used to pull all quantifiers appearing on
either side of an implication back to cover the whole term. If the argument
term is not an implication then the conversion fails, and if the sub-terms
of the implication are not quantified then ALL_CONV is applied, otherwise
L_IMP_EXISTS_CONV, L_IMP_FORALL_CONV, R_IMP_EXISTS_CONV, and
R_IMP_FORALL_CONV, are recursively applied in that order as appropriate.

    DISJ_PRENEX_CONV "(Q1 x1. ... Qn xn. p) ==> (R1 y1. ... Rm ym. q)" ---->
    |- (Q1 x1. ... Qn xn. p) ==> (R1 y1. ... Rm ym. q)
       =
       Q1' x1. ... Qn' xn. R1 y1.  ... Rm ym. p ==> q

Where  Qi' is a universal quantifier if Qi is an existential quantifier, and
Qi' is an existential quantifier if Qi is universal quantifier, for each
i=1...n.

Bound variables will be renamed when their new scope clashes with other free
variables.

Its use is in converting two prenex normal form formulae joined by an
implication back into prenex normal form.
%

letrec IMP_PRENEX_CONV: conv = \ q .
  let id = `IMP_PRENEX_CONV` in
  if is_true_imp q then
    let l,r = dest_imp q in
    if is_exists l then
      let thm1 = L_IMP_EXISTS_CONV q in
      let x,t  = (dest_forall o rhs o concl)thm1 in
      let thm2 = IMP_PRENEX_CONV t in
      let thm3 = FORALL_EQ x thm2 in
      TRANS thm1 thm3
    else if is_forall l then
      let thm1 = L_IMP_FORALL_CONV q in
      let x,t  = (dest_exists o rhs o concl)thm1 in
      let thm2 = IMP_PRENEX_CONV t in
      let thm3 = EXISTS_EQ x thm2 in
      TRANS thm1 thm3
    else if is_exists r then
      let thm1 = R_IMP_EXISTS_CONV q in
      let x,t  = (dest_exists o rhs o concl)thm1 in
      let thm2 = IMP_PRENEX_CONV t in
      let thm3 = EXISTS_EQ x thm2 in
      TRANS thm1 thm3
    else if is_forall r then
      let thm1 = R_IMP_FORALL_CONV q in
      let x,t  = (dest_forall o rhs o concl)thm1 in
      let thm2 = IMP_PRENEX_CONV t in
      let thm3 = FORALL_EQ x thm2 in
      TRANS thm1 thm3
    else ALL_CONV q
  else failwith id^`:term not an implication`;;

%-------------------------------------------------------------------------------

PRENEX_CONV: conv

The conversion PRENEX_CONV is used to convert a term into prenex normal form.
If the argument term is not of type ":bool" then the conversion fails.

The conversion recursively descends the term, and each time it encounters a
propositional connective applies the appropriate conversion from NOT_PRENEX_CONV,
CONJ_PRENEX_CONV, DISJ_PRENEX_CONV, and IMP_PRENEX_CONV, once its sub-terms have
been put into prenex normal form.


    PRENEX_CONV "p" ---->
    |- p = Q1 x1. ... Qn xn. q

Where each Qi for i=1...n, is a universal or existential quantifier and q is
constructed only from propositional connectives at the outermost level.

Bound variables will be renamed when their new scope clashes with other free
variables.

One bug in this implementation is that sometimes bound variables in the argument
term (in "p", above) will be renamed with primes for no good reason. This
happens in the instantiation of the theorems upon which the primitive
conversions of PRENEX_CONV are based.

If the conversion fails due to an incorrect implementation, then a `fatal'
error message is given.
%

letrec PRENEX_CONV: conv = \ q .
  let id = `PRENEX_CONV` in
  if not(type_of q = ":bool") then
    failwith id^`: type of term not boolean`
  else ( if is_exists q then
    let x,t  = dest_exists q in
    let thm1 = PRENEX_CONV t in
    EXISTS_EQ x thm1
  else if is_forall q then
    let x,t  = dest_forall q in
    let thm1 = PRENEX_CONV t in
    FORALL_EQ x thm1
  else if is_neg q then
    let    p = dest_neg q in
    let thm1 = PRENEX_CONV p in
    let thm2 = AP_TERM "$~" thm1 in
    let    t = (rhs o concl)thm2 in
    let thm3 = NOT_PRENEX_CONV t in
    TRANS thm2 thm3
  else if is_conj q then
    let  l,r = dest_conj q in
    let thml = PRENEX_CONV l in
    let thmr = PRENEX_CONV r in
    let   l' = (rhs o concl)thml in
    let   r' = (rhs o concl)thmr in
    let thm1 = MP(MP(SPECL[l';r';l;r]CONJ_EQ)thml)thmr in
    let    t = (rhs o concl)thm1 in
    let thm2 = CONJ_PRENEX_CONV t in
    TRANS thm1 thm2
  else if is_disj q then
    let  l,r = dest_disj q in
    let thml = PRENEX_CONV l in
    let thmr = PRENEX_CONV r in
    let   l' = (rhs o concl)thml in
    let   r' = (rhs o concl)thmr in
    let thm1 = MP(MP(SPECL[l';r';l;r]DISJ_EQ)thml)thmr in
    let    t = (rhs o concl)thm1 in
    let thm2 = DISJ_PRENEX_CONV t in
    TRANS thm1 thm2
  else if is_imp q then
    let  l,r = dest_imp q in
    let thml = PRENEX_CONV l in
    let thmr = PRENEX_CONV r in
    let   l' = (rhs o concl)thml in
    let   r' = (rhs o concl)thmr in
    let thm1 = MP(MP(SPECL[l';r';l;r]IMP_EQ)thml)thmr in
    let    t = (rhs o concl)thm1 in
    let thm2 = IMP_PRENEX_CONV t in
    TRANS thm1 thm2
  else ALL_CONV q
  ? failwith id^`: fatal` );;

%-------------------------------------------------------------------------------

PRENEX_TAC: tactic

The tactic PRENEX_TAC is used to rewrite a goal into prenex normal form. If the
current goal is already in prenex normal form, there should be no change.
However, due to a bug some of the bound variables may become primed. The tactic
is based on the conversion PRENEX_CONV.

              p
    =====================
     Q1 x1. ... Qn xn. q

Where each Qi for i=1...n, is a universal or existential quantifier and q is
constructed only from propositional connectives at the outermost level.

Bound variables will be renamed when their new scope clashes with other free
variables.
%

let PRENEX_TAC = CONV_TAC PRENEX_CONV;;


%-------------------------------------------------------------------------------

PRENEX_RULE: thm -> thm

The rule PRENEX_TAC is used to rewrite a theorem into prenex normal form.
However, due to a bug some of the bound variables may become primed. The rule
is based on the conversion PRENEX_CONV.

             p
    ---------------------
     Q1 x1. ... Qn xn. q

Where each Qi for i=1...n, is a universal or existential quantifier and q is
constructed only from propositional connectives at the outermost level.

Bound variables will be renamed when their new scope clashes with other free
variables.
%

let PRENEX_RULE = CONV_RULE PRENEX_CONV;;


%-------------------------------------------------------------------------------
%