This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/PNF/quant.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%------                                                                   ------%
%------                        QUANTIFIER  THEOREMS                       ------%
%------                                                                   ------%
%------                                 by                                ------%
%------                                                                   ------%
%------                            Clive Jervis                           ------%
%------                             (SD-Scicon)                           ------%
%------                                                                   ------%
%------                              Jan. 1990                            ------%
%------                                                                   ------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%

%
This file contains a theory named `quant' that proves all sorts of ad-hoc
theorems involving the universal and existential quantifiers. Its main purpose
was to devise template theorems that are used in the formation of conversions
defined in the prenex normal form file `prenex.ml'. The theory requires no
parents.

Mostly, the theorems are simply equations stating the equivalence between a
term formed from a propositional connective /\, \/, ==>, or ~, in which one
of its sub-terms has a quantifier, and a term in which the quantifier has been
moved outermost (this may involve a change of quantifier). The list of such
theorems proved below is:
    NOT_EXISTS_THM		|- !p. ~($? p) = $! (\x. ~p x)
    NOT_FORALL_THM		|- !p. ~($! p) = $? (\x. ~p x)
    L_DISJ_EXISTS_THM		|- !q p. ($? p) \/ q = $? (\x. p x \/ q)
    R_DISJ_EXISTS_THM		|- !q p. q \/ ($? p) = $? (q \/ \x. p x)
    L_DISJ_FORALL_THM		|- !q p. ($! p) \/ q = $! (\x. p x \/ q)
    R_DISJ_FORALL_THM		|- !q p. q \/ ($! p) = $! (q \/ \x. p x)
    L_CONJ_EXISTS_THM		|- !q p. ($? p) /\ q = $? (\x. p x /\ q)
    R_CONJ_EXISTS_THM		|- !q p. q /\ ($? p) = $? (q /\ \x. p x)
    L_CONJ_FORALL_THM		|- !q p. ($! p) /\ q = $! (\x. p x /\ q)
    R_CONJ_FORALL_THM		|- !q p. q /\ ($! p) = $! (q /\ \x. p x)
    L_IMP_EXISTS_THM		|- !q p. ($? p) ==> q = $! (\x. p x ==> q)
    R_IMP_EXISTS_THM		|- !q p. q ==> ($? p) = $? (\x. q ==> p x)
    L_IMP_FORALL_THM		|- !q p. ($! p) ==> q = $? (\x. p x ==> q)
    R_IMP_FORALL_THM		|- !q p. q ==> ($! p) = $! (\x. q ==> p x)

We prove the following two distributive theorems:
    EXISTS_DISTRIB		|- !p q. ($? p) \/ ($? q) = $? (\x. p x \/ q x)
    FORALL_DISTRIB		|- !p q. ($! p) /\ ($! q) = $! (\x. p x /\ q x)

Finally, these really boring theorems are also proved:
    CONJ_EQ		|- !p'q'p q. (p=p') ==> (q=q') ==> ( p /\ q = p'/\ q')
    DISJ_EQ		|- !p'q'p q. (p=p') ==> (q=q') ==> ( p \/ q = p'\/ q')
    IMP_EQ		|- !p'q'p q. (p=p') ==> (q=q') ==> ( p ==> q = p'==> q')


This code was developed in part with my previous employers, ICL Defence Systems,
and in part with my current employers, SD-Scicon.
%

%--------------------------------------------------------------------------------

Open the theory `quant'. It does not require any parents.
%

new_theory `quant`;;

%--------------------------------------------------------------------------------

CASES_TAC: term -> tactic

This tactic is used within the proofs given in this file, however it is also
defined in the file `prenex.ml', from which it can be loaded. Full documentation
is also given there.
%

let CASES_TAC t =
    ASM_CASES_TAC t THENL[ REWRITE_TAC[ASSUME t]; REWRITE_TAC[ASSUME(mk_neg t)] ];;

%--------------------------------------------------------------------------------

CONJ_EQ: thm

    |- !p'q'p q. (p=p') ==> (q=q') ==> ( p /\ q = p'/\ q')
%

let CONJ_EQ = save_thm( `CONJ_EQ`,
  let gl = [], "! p' q' p q:bool. (p = p') ==> (q = q') ==> ( p /\ q = p'/\ q')" in
  TAC_PROOF(gl, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] ) );;

%--------------------------------------------------------------------------------

DISJ_EQ: thm

    |- !p'q'p q. (p=p') ==> (q=q') ==> ( p \/ q = p'\/ q')
%

let DISJ_EQ = save_thm( `DISJ_EQ`,
  let gl = [], "! p' q' p q:bool. (p = p') ==> (q = q') ==> ( p \/ q = p'\/ q')" in
  TAC_PROOF(gl, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] ) );;

%--------------------------------------------------------------------------------

IMP_EQ: thm

   |- !p'q'p q. (p=p') ==> (q=q') ==> ( p ==> q = p'==> q')
%

let IMP_EQ = save_thm( `IMP_EQ`,
  let gl = [], "! p' q' p q:bool. (p = p') ==> (q = q') ==> ( p ==> q = p'==> q')" in
  TAC_PROOF(gl, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] ) );;

%--------------------------------------------------------------------------------

EXISTS_DISTRIB: thm

    |- !p q. ($? p) \/ ($? q) = $? (\x. p x \/ q x)

The theorem EXISTS_DISTRIB expresses the distributivity of existential
quantification through disjunction. When p and q are appropriately specialised,
we would get a theorem of the form:
    |- (?x. f x) \/ (?y. g y) = ?z. (f z \/ g z).
%

set_goal([], "!(p q:* -> bool). (($? p) \/ ($? q)) = $? (\x. p x \/ q x)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
let thm3 = EXT(GEN"x:*"(BETA_CONV"(\z.(q:*->bool) z) x"));;
let thm4 = SYM(AP_TERM "$?:(*->bool)->bool" thm3);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2; thm4 ] );;
expand( CASES_TAC "?y:*. p y" );;
expand( UNDISCH_TAC "?y:*. p y" THEN STRIP_TAC );;
expand( EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] );;
expand( CASES_TAC "?z:*. q z");;
expand( UNDISCH_TAC "?z:*. q z" THEN STRIP_TAC );;
expand( EXISTS_TAC "z:*" THEN ASM_REWRITE_TAC[] );;
expand( STRIP_TAC );;
expand( UNDISCH_TAC "~(?y:*. p y)" THEN REWRITE_TAC[] );;
expand( EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[] );;
expand( UNDISCH_TAC "~(?z:*. q z)" THEN REWRITE_TAC[] );;
expand( EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[] );;
let EXISTS_DISTRIB = save_top_thm `EXISTS_DISTRIB`;;

%--------------------------------------------------------------------------------

FORALL_DISTRIB: thm

    |- !p q. ($! p) /\ ($! q) = $! (\x. p x /\ q x)

The theorem FORALL_DISTRIB expresses the distributivity of universal
quantification through conjunction. When p and q are appropriately specialised,
we would get a theorem of the form:
    |- (!x. s[x]) /\ (!y. t[y]) = !z. (s[z] /\ t[z]).
%

set_goal([], "!(p q:* -> bool). (($! p) /\ ($! q)) = $! (\x. p x /\ q x)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
let thm3 = EXT(GEN"x:*"(BETA_CONV"(\z.(q:*->bool) z) x"));;
let thm4 = SYM(AP_TERM "$!:(*->bool)->bool" thm3);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2; thm4 ] );;
expand( CASES_TAC "!x:*. p x /\ q x" );;
expand( REPEAT STRIP_TAC );;
expand( UNDISCH_TAC "~!x:*. p x /\ q x" THEN ASM_REWRITE_TAC[] );;
let FORALL_DISTRIB = save_top_thm `FORALL_DISTRIB`;;

%--------------------------------------------------------------------------------

NOT_EXISTS_THM: thm

    |- !p. ~($? p) = $! (\x. ~p x)

The theorem NOT_EXISTS_THM expresses the equivalence between `there does not
exist an x such that ...' and `for all x it is not the case that ...'. When p
is appropriately specialised, we would get a theorem of the form:
    |- (~?x. t[x]) = (!x. ~t[x]).
%

set_goal([], "!(p:* -> bool). ~($? p) = $! (\x. ~p x)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "!x:*. ~p x" );;
expand( UNDISCH_TAC "~(!x:*. ~p x)" );;
expand( CASES_TAC "?y:*. p y" THEN GEN_TAC );;
expand( CASES_TAC "(p:*->bool)x" );;
expand( UNDISCH_TAC "~(?y:*. p y)" THEN REWRITE_TAC[] );;
expand( EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[] );;
let NOT_EXISTS_THM = save_top_thm `NOT_EXISTS_THM`;;

%--------------------------------------------------------------------------------

NOT_FORALL_THM: thm

    |- !p. ~($! p) = $? (\x. ~p x)

The theorem NOT_EXISTS_THM expresses the equivalence between `it is not the
case that for all x ...' and `there is an x such that it is not the case
that ...'. When p is appropriately specialised, we would get a theorem of the
form:
    |- (~!x. t[x]) = (?x. ~t[x]).
%

set_goal([], "!(p:* -> bool). ~($! p) = $? (\x. ~p x)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "!y:*. p y" );;
expand( UNDISCH_TAC "~(!y:*. p y)" );;
expand( CASES_TAC "?x:*. ~p x" THEN GEN_TAC );;
expand( CASES_TAC "(p:*->bool)y" );;
expand( UNDISCH_TAC "~(?x:*. ~p x)" THEN REWRITE_TAC[] );;
expand( EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] );;
let NOT_FORALL_THM = save_top_thm `NOT_FORALL_THM`;;

%--------------------------------------------------------------------------------

L_DISJ_EXISTS_THM: thm

    |- !q p. ($? p) \/ q = $? (\x. p x \/ q)

The theorem L_DISJ_EXISTS_THM is used to move an existential quantifier out
from the left hand disjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
    |- (?x. s[x]) \/ t = ?x'. (s[x'] \/ t),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). ($? p) \/ q = $? (\x. p x \/ q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let L_DISJ_EXISTS_THM = save_top_thm `L_DISJ_EXISTS_THM`;;

%--------------------------------------------------------------------------------

R_DISJ_EXISTS_THM: thm

    |- !q p. q \/ ($? p) = $? (q \/ \x. p x)

The theorem R_DISJ_EXISTS_THM is used to move an existential quantifier out
from the right hand disjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
    |- t \/ (?x. s[x]) = ?x'. (t \/ s[x']),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). q \/ ($? p) = $? (\x. q \/ (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_DISJ_EXISTS_THM = save_top_thm `R_DISJ_EXISTS_THM`;;

%--------------------------------------------------------------------------------

L_DISJ_FORALL_THM: thm

    |- !q p. ($! p) \/ q = $! (\x. p x \/ q)

The theorem L_DISJ_FORALL_THM is used to move a universal quantifier out
from the left hand disjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
    |- (!x. s[x]) \/ t = !x'. (s[x'] \/ t),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). ($! p) \/ q = $! (\x. p x \/ q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let L_DISJ_FORALL_THM = save_top_thm `L_DISJ_FORALL_THM`;;

%--------------------------------------------------------------------------------

R_DISJ_FORALL_THM: thm

    |- !q p. q \/ ($! p) = $! (q \/ \x. p x)

The theorem R_DISJ_FORALL_THM is used to move a universal quantifier out
from the right hand disjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
    |- t \/ (!x. s[x]) = !x'. (t \/ s[x']),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). q \/ ($! p) = $! (\x. q \/ (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_DISJ_FORALL_THM = save_top_thm `R_DISJ_FORALL_THM`;;

%--------------------------------------------------------------------------------

L_CONJ_EXISTS_THM: thm

    |- !q p. ($? p) /\ q = $? (\x. p x /\ q)

The theorem L_CONJ_EXISTS_THM is used to move an existential quantifier out
from the left hand conjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
    |- (?x. s[x]) /\ t = ?x'. (s[x'] /\ t),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). ($? p) /\ q = $? (\x. p x /\ q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let L_CONJ_EXISTS_THM = save_top_thm `L_CONJ_EXISTS_THM`;;

%--------------------------------------------------------------------------------

R_CONJ_EXISTS_THM: thm

    |- !q p. q /\ ($? p) = $? (q /\ \x. p x)

The theorem R_CONJ_EXISTS_THM is used to move an existential quantifier out
from the right hand conjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
    |- t /\ (?x. s[x]) = ?x'. (t /\ s[x']),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). q /\ ($? p) = $? (\x. q /\ (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_CONJ_EXISTS_THM = save_top_thm `R_CONJ_EXISTS_THM`;;

%--------------------------------------------------------------------------------

L_CONJ_FORALL_THM: thm

    |- !q p. ($! p) /\ q = $! (\x. p x /\ q)

The theorem L_CONJ_FORALL_THM is used to move a universal quantifier out
from the left hand conjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
    |- (!x. s[x]) /\ t = !x'. (s[x'] /\ t),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). ($! p) /\ q = $! (\x. p x /\ q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let L_CONJ_FORALL_THM = save_top_thm `L_CONJ_FORALL_THM`;;

%--------------------------------------------------------------------------------

R_CONJ_FORALL_THM: thm

    |- !q p. q /\ ($! p) = $! (q /\ \x. p x)

The theorem R_CONJ_FORALL_THM is used to move a universal quantifier out
from the right hand conjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
    |- t /\ (!x. s[x]) = !x'. (t /\ s[x']),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). q /\ ($! p) = $! (\x. q /\ (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_CONJ_FORALL_THM = save_top_thm `R_CONJ_FORALL_THM`;;

%--------------------------------------------------------------------------------

L_IMP_EXISTS_THM: thm

    |- !q p. ($? p) ==> q = $! (\x. p x ==> q)

The theorem L_IMP_EXISTS_THM is used to move an existential quantifier out from
the left hand side of an implication. When p and q are appropriately specialised,
we would get a theorem of the form:
    |- (?x. s[x]) ==> t = !x'. (s[x'] ==> t),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). ($? p) ==> q = $! (\x. (p x) ==> q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" THEN REWRITE_TAC[ NOT_EXISTS_CONV "~(?y:*. p y)" ] );;
let L_IMP_EXISTS_THM = save_top_thm `L_IMP_EXISTS_THM`;;

%--------------------------------------------------------------------------------

R_IMP_EXISTS_THM: thm

    |- !q p. q ==> ($? p) = $? (\x. q ==> p x)

The theorem R_IMP_EXISTS_THM is used to move an existential quantifier out
from the right hand side of an implication. When p and q are appropriately
specialised, we would get a theorem of the form:
    |- t ==> (?x. s[x]) = ?x'. (t ==> s[x']),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). q ==> ($? p) = $? (\x. q ==> (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_IMP_EXISTS_THM = save_top_thm `R_IMP_EXISTS_THM`;;

%--------------------------------------------------------------------------------

L_IMP_FORALL_THM: thm

    |- !q p. ($! p) ==> q = $? (\x. p x ==> q)

The theorem L_IMP_FORALL_THM is used to move a universal quantifier out from
the left hand side of an implication. When p and q are appropriately specialised,
we would get a theorem of the form:
    |- (!x. s[x]) ==> t = ?x'. (s[x'] ==> t),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). ($! p) ==> q = $? (\x. (p x) ==> q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" THEN REWRITE_TAC[ NOT_FORALL_CONV "~(!y:*. p y)" ] );;
let L_IMP_FORALL_THM = save_top_thm `L_IMP_FORALL_THM`;;

%--------------------------------------------------------------------------------

R_IMP_FORALL_THM: thm

    |- !q p. q ==> ($! p) = $! (\x. q ==> p x)

The theorem R_IMP_FORALL_THM is used to move a universal quantifier out
from the right hand side of an implication. When p and q are appropriately
specialised, we would get a theorem of the form:
    |- t ==> (!x. s[x]) = !x'. (t ==> s[x']),
the bound variable being renamed to x' if it is free in s.
%

set_goal([], "!(q:bool)(p:* -> bool). q ==> ($! p) = $! (\x. q ==> (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_IMP_FORALL_THM = save_top_thm `R_IMP_FORALL_THM`;;

%--------------------------------------------------------------------------------
%