/usr/share/hol88-2.02.19940316/contrib/PNF/quant.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | %-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%------ ------%
%------ QUANTIFIER THEOREMS ------%
%------ ------%
%------ by ------%
%------ ------%
%------ Clive Jervis ------%
%------ (SD-Scicon) ------%
%------ ------%
%------ Jan. 1990 ------%
%------ ------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%-------------------------------------------------------------------------------%
%
This file contains a theory named `quant' that proves all sorts of ad-hoc
theorems involving the universal and existential quantifiers. Its main purpose
was to devise template theorems that are used in the formation of conversions
defined in the prenex normal form file `prenex.ml'. The theory requires no
parents.
Mostly, the theorems are simply equations stating the equivalence between a
term formed from a propositional connective /\, \/, ==>, or ~, in which one
of its sub-terms has a quantifier, and a term in which the quantifier has been
moved outermost (this may involve a change of quantifier). The list of such
theorems proved below is:
NOT_EXISTS_THM |- !p. ~($? p) = $! (\x. ~p x)
NOT_FORALL_THM |- !p. ~($! p) = $? (\x. ~p x)
L_DISJ_EXISTS_THM |- !q p. ($? p) \/ q = $? (\x. p x \/ q)
R_DISJ_EXISTS_THM |- !q p. q \/ ($? p) = $? (q \/ \x. p x)
L_DISJ_FORALL_THM |- !q p. ($! p) \/ q = $! (\x. p x \/ q)
R_DISJ_FORALL_THM |- !q p. q \/ ($! p) = $! (q \/ \x. p x)
L_CONJ_EXISTS_THM |- !q p. ($? p) /\ q = $? (\x. p x /\ q)
R_CONJ_EXISTS_THM |- !q p. q /\ ($? p) = $? (q /\ \x. p x)
L_CONJ_FORALL_THM |- !q p. ($! p) /\ q = $! (\x. p x /\ q)
R_CONJ_FORALL_THM |- !q p. q /\ ($! p) = $! (q /\ \x. p x)
L_IMP_EXISTS_THM |- !q p. ($? p) ==> q = $! (\x. p x ==> q)
R_IMP_EXISTS_THM |- !q p. q ==> ($? p) = $? (\x. q ==> p x)
L_IMP_FORALL_THM |- !q p. ($! p) ==> q = $? (\x. p x ==> q)
R_IMP_FORALL_THM |- !q p. q ==> ($! p) = $! (\x. q ==> p x)
We prove the following two distributive theorems:
EXISTS_DISTRIB |- !p q. ($? p) \/ ($? q) = $? (\x. p x \/ q x)
FORALL_DISTRIB |- !p q. ($! p) /\ ($! q) = $! (\x. p x /\ q x)
Finally, these really boring theorems are also proved:
CONJ_EQ |- !p'q'p q. (p=p') ==> (q=q') ==> ( p /\ q = p'/\ q')
DISJ_EQ |- !p'q'p q. (p=p') ==> (q=q') ==> ( p \/ q = p'\/ q')
IMP_EQ |- !p'q'p q. (p=p') ==> (q=q') ==> ( p ==> q = p'==> q')
This code was developed in part with my previous employers, ICL Defence Systems,
and in part with my current employers, SD-Scicon.
%
%--------------------------------------------------------------------------------
Open the theory `quant'. It does not require any parents.
%
new_theory `quant`;;
%--------------------------------------------------------------------------------
CASES_TAC: term -> tactic
This tactic is used within the proofs given in this file, however it is also
defined in the file `prenex.ml', from which it can be loaded. Full documentation
is also given there.
%
let CASES_TAC t =
ASM_CASES_TAC t THENL[ REWRITE_TAC[ASSUME t]; REWRITE_TAC[ASSUME(mk_neg t)] ];;
%--------------------------------------------------------------------------------
CONJ_EQ: thm
|- !p'q'p q. (p=p') ==> (q=q') ==> ( p /\ q = p'/\ q')
%
let CONJ_EQ = save_thm( `CONJ_EQ`,
let gl = [], "! p' q' p q:bool. (p = p') ==> (q = q') ==> ( p /\ q = p'/\ q')" in
TAC_PROOF(gl, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] ) );;
%--------------------------------------------------------------------------------
DISJ_EQ: thm
|- !p'q'p q. (p=p') ==> (q=q') ==> ( p \/ q = p'\/ q')
%
let DISJ_EQ = save_thm( `DISJ_EQ`,
let gl = [], "! p' q' p q:bool. (p = p') ==> (q = q') ==> ( p \/ q = p'\/ q')" in
TAC_PROOF(gl, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] ) );;
%--------------------------------------------------------------------------------
IMP_EQ: thm
|- !p'q'p q. (p=p') ==> (q=q') ==> ( p ==> q = p'==> q')
%
let IMP_EQ = save_thm( `IMP_EQ`,
let gl = [], "! p' q' p q:bool. (p = p') ==> (q = q') ==> ( p ==> q = p'==> q')" in
TAC_PROOF(gl, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] ) );;
%--------------------------------------------------------------------------------
EXISTS_DISTRIB: thm
|- !p q. ($? p) \/ ($? q) = $? (\x. p x \/ q x)
The theorem EXISTS_DISTRIB expresses the distributivity of existential
quantification through disjunction. When p and q are appropriately specialised,
we would get a theorem of the form:
|- (?x. f x) \/ (?y. g y) = ?z. (f z \/ g z).
%
set_goal([], "!(p q:* -> bool). (($? p) \/ ($? q)) = $? (\x. p x \/ q x)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
let thm3 = EXT(GEN"x:*"(BETA_CONV"(\z.(q:*->bool) z) x"));;
let thm4 = SYM(AP_TERM "$?:(*->bool)->bool" thm3);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2; thm4 ] );;
expand( CASES_TAC "?y:*. p y" );;
expand( UNDISCH_TAC "?y:*. p y" THEN STRIP_TAC );;
expand( EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] );;
expand( CASES_TAC "?z:*. q z");;
expand( UNDISCH_TAC "?z:*. q z" THEN STRIP_TAC );;
expand( EXISTS_TAC "z:*" THEN ASM_REWRITE_TAC[] );;
expand( STRIP_TAC );;
expand( UNDISCH_TAC "~(?y:*. p y)" THEN REWRITE_TAC[] );;
expand( EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[] );;
expand( UNDISCH_TAC "~(?z:*. q z)" THEN REWRITE_TAC[] );;
expand( EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[] );;
let EXISTS_DISTRIB = save_top_thm `EXISTS_DISTRIB`;;
%--------------------------------------------------------------------------------
FORALL_DISTRIB: thm
|- !p q. ($! p) /\ ($! q) = $! (\x. p x /\ q x)
The theorem FORALL_DISTRIB expresses the distributivity of universal
quantification through conjunction. When p and q are appropriately specialised,
we would get a theorem of the form:
|- (!x. s[x]) /\ (!y. t[y]) = !z. (s[z] /\ t[z]).
%
set_goal([], "!(p q:* -> bool). (($! p) /\ ($! q)) = $! (\x. p x /\ q x)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
let thm3 = EXT(GEN"x:*"(BETA_CONV"(\z.(q:*->bool) z) x"));;
let thm4 = SYM(AP_TERM "$!:(*->bool)->bool" thm3);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2; thm4 ] );;
expand( CASES_TAC "!x:*. p x /\ q x" );;
expand( REPEAT STRIP_TAC );;
expand( UNDISCH_TAC "~!x:*. p x /\ q x" THEN ASM_REWRITE_TAC[] );;
let FORALL_DISTRIB = save_top_thm `FORALL_DISTRIB`;;
%--------------------------------------------------------------------------------
NOT_EXISTS_THM: thm
|- !p. ~($? p) = $! (\x. ~p x)
The theorem NOT_EXISTS_THM expresses the equivalence between `there does not
exist an x such that ...' and `for all x it is not the case that ...'. When p
is appropriately specialised, we would get a theorem of the form:
|- (~?x. t[x]) = (!x. ~t[x]).
%
set_goal([], "!(p:* -> bool). ~($? p) = $! (\x. ~p x)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "!x:*. ~p x" );;
expand( UNDISCH_TAC "~(!x:*. ~p x)" );;
expand( CASES_TAC "?y:*. p y" THEN GEN_TAC );;
expand( CASES_TAC "(p:*->bool)x" );;
expand( UNDISCH_TAC "~(?y:*. p y)" THEN REWRITE_TAC[] );;
expand( EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[] );;
let NOT_EXISTS_THM = save_top_thm `NOT_EXISTS_THM`;;
%--------------------------------------------------------------------------------
NOT_FORALL_THM: thm
|- !p. ~($! p) = $? (\x. ~p x)
The theorem NOT_EXISTS_THM expresses the equivalence between `it is not the
case that for all x ...' and `there is an x such that it is not the case
that ...'. When p is appropriately specialised, we would get a theorem of the
form:
|- (~!x. t[x]) = (?x. ~t[x]).
%
set_goal([], "!(p:* -> bool). ~($! p) = $? (\x. ~p x)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "!y:*. p y" );;
expand( UNDISCH_TAC "~(!y:*. p y)" );;
expand( CASES_TAC "?x:*. ~p x" THEN GEN_TAC );;
expand( CASES_TAC "(p:*->bool)y" );;
expand( UNDISCH_TAC "~(?x:*. ~p x)" THEN REWRITE_TAC[] );;
expand( EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] );;
let NOT_FORALL_THM = save_top_thm `NOT_FORALL_THM`;;
%--------------------------------------------------------------------------------
L_DISJ_EXISTS_THM: thm
|- !q p. ($? p) \/ q = $? (\x. p x \/ q)
The theorem L_DISJ_EXISTS_THM is used to move an existential quantifier out
from the left hand disjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
|- (?x. s[x]) \/ t = ?x'. (s[x'] \/ t),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). ($? p) \/ q = $? (\x. p x \/ q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let L_DISJ_EXISTS_THM = save_top_thm `L_DISJ_EXISTS_THM`;;
%--------------------------------------------------------------------------------
R_DISJ_EXISTS_THM: thm
|- !q p. q \/ ($? p) = $? (q \/ \x. p x)
The theorem R_DISJ_EXISTS_THM is used to move an existential quantifier out
from the right hand disjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
|- t \/ (?x. s[x]) = ?x'. (t \/ s[x']),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). q \/ ($? p) = $? (\x. q \/ (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_DISJ_EXISTS_THM = save_top_thm `R_DISJ_EXISTS_THM`;;
%--------------------------------------------------------------------------------
L_DISJ_FORALL_THM: thm
|- !q p. ($! p) \/ q = $! (\x. p x \/ q)
The theorem L_DISJ_FORALL_THM is used to move a universal quantifier out
from the left hand disjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
|- (!x. s[x]) \/ t = !x'. (s[x'] \/ t),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). ($! p) \/ q = $! (\x. p x \/ q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let L_DISJ_FORALL_THM = save_top_thm `L_DISJ_FORALL_THM`;;
%--------------------------------------------------------------------------------
R_DISJ_FORALL_THM: thm
|- !q p. q \/ ($! p) = $! (q \/ \x. p x)
The theorem R_DISJ_FORALL_THM is used to move a universal quantifier out
from the right hand disjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
|- t \/ (!x. s[x]) = !x'. (t \/ s[x']),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). q \/ ($! p) = $! (\x. q \/ (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_DISJ_FORALL_THM = save_top_thm `R_DISJ_FORALL_THM`;;
%--------------------------------------------------------------------------------
L_CONJ_EXISTS_THM: thm
|- !q p. ($? p) /\ q = $? (\x. p x /\ q)
The theorem L_CONJ_EXISTS_THM is used to move an existential quantifier out
from the left hand conjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
|- (?x. s[x]) /\ t = ?x'. (s[x'] /\ t),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). ($? p) /\ q = $? (\x. p x /\ q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let L_CONJ_EXISTS_THM = save_top_thm `L_CONJ_EXISTS_THM`;;
%--------------------------------------------------------------------------------
R_CONJ_EXISTS_THM: thm
|- !q p. q /\ ($? p) = $? (q /\ \x. p x)
The theorem R_CONJ_EXISTS_THM is used to move an existential quantifier out
from the right hand conjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
|- t /\ (?x. s[x]) = ?x'. (t /\ s[x']),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). q /\ ($? p) = $? (\x. q /\ (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_CONJ_EXISTS_THM = save_top_thm `R_CONJ_EXISTS_THM`;;
%--------------------------------------------------------------------------------
L_CONJ_FORALL_THM: thm
|- !q p. ($! p) /\ q = $! (\x. p x /\ q)
The theorem L_CONJ_FORALL_THM is used to move a universal quantifier out
from the left hand conjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
|- (!x. s[x]) /\ t = !x'. (s[x'] /\ t),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). ($! p) /\ q = $! (\x. p x /\ q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let L_CONJ_FORALL_THM = save_top_thm `L_CONJ_FORALL_THM`;;
%--------------------------------------------------------------------------------
R_CONJ_FORALL_THM: thm
|- !q p. q /\ ($! p) = $! (q /\ \x. p x)
The theorem R_CONJ_FORALL_THM is used to move a universal quantifier out
from the right hand conjunct. When p and q are appropriately specialised, we
would get a theorem of the form:
|- t /\ (!x. s[x]) = !x'. (t /\ s[x']),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). q /\ ($! p) = $! (\x. q /\ (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_CONJ_FORALL_THM = save_top_thm `R_CONJ_FORALL_THM`;;
%--------------------------------------------------------------------------------
L_IMP_EXISTS_THM: thm
|- !q p. ($? p) ==> q = $! (\x. p x ==> q)
The theorem L_IMP_EXISTS_THM is used to move an existential quantifier out from
the left hand side of an implication. When p and q are appropriately specialised,
we would get a theorem of the form:
|- (?x. s[x]) ==> t = !x'. (s[x'] ==> t),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). ($? p) ==> q = $! (\x. (p x) ==> q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" THEN REWRITE_TAC[ NOT_EXISTS_CONV "~(?y:*. p y)" ] );;
let L_IMP_EXISTS_THM = save_top_thm `L_IMP_EXISTS_THM`;;
%--------------------------------------------------------------------------------
R_IMP_EXISTS_THM: thm
|- !q p. q ==> ($? p) = $? (\x. q ==> p x)
The theorem R_IMP_EXISTS_THM is used to move an existential quantifier out
from the right hand side of an implication. When p and q are appropriately
specialised, we would get a theorem of the form:
|- t ==> (?x. s[x]) = ?x'. (t ==> s[x']),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). q ==> ($? p) = $? (\x. q ==> (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$?:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_IMP_EXISTS_THM = save_top_thm `R_IMP_EXISTS_THM`;;
%--------------------------------------------------------------------------------
L_IMP_FORALL_THM: thm
|- !q p. ($! p) ==> q = $? (\x. p x ==> q)
The theorem L_IMP_FORALL_THM is used to move a universal quantifier out from
the left hand side of an implication. When p and q are appropriately specialised,
we would get a theorem of the form:
|- (!x. s[x]) ==> t = ?x'. (s[x'] ==> t),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). ($! p) ==> q = $? (\x. (p x) ==> q)" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" THEN REWRITE_TAC[ NOT_FORALL_CONV "~(!y:*. p y)" ] );;
let L_IMP_FORALL_THM = save_top_thm `L_IMP_FORALL_THM`;;
%--------------------------------------------------------------------------------
R_IMP_FORALL_THM: thm
|- !q p. q ==> ($! p) = $! (\x. q ==> p x)
The theorem R_IMP_FORALL_THM is used to move a universal quantifier out
from the right hand side of an implication. When p and q are appropriately
specialised, we would get a theorem of the form:
|- t ==> (!x. s[x]) = !x'. (t ==> s[x']),
the bound variable being renamed to x' if it is free in s.
%
set_goal([], "!(q:bool)(p:* -> bool). q ==> ($! p) = $! (\x. q ==> (p x))" );;
let thm1 = EXT(GEN"x:*"(BETA_CONV"(\y.(p:*->bool) y) x"));;
let thm2 = SYM(AP_TERM "$!:(*->bool)->bool" thm1);;
expand( REPEAT GEN_TAC THEN SUBST_TAC[ thm2 ] );;
expand( CASES_TAC "q:bool" );;
let R_IMP_FORALL_THM = save_top_thm `R_IMP_FORALL_THM`;;
%--------------------------------------------------------------------------------
%
|