/usr/share/hol88-2.02.19940316/contrib/WF/MYTACTICS.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | %--------------------------------------------------------------------------%
%
File : MYTACTICS
Author : Wishnu Prasetya
wishnu@cs.ruu.nl
Dept. of Comp Science, Utrecht University, the Netherlands
Date : Sept 92
Several useful tactics and rules:
RESTRICT_DEF_TAC: Unfold the definitions of RES_ABSTRACT,
RES_EXISTS, RES_FORALL
UNDISCHN_TAC n: UNDISCH n-th assumption
UNDISCH_ALL_TAC: UNDISCH all assumptions
INFER_ASMN_TAC n Rule: Apply inference rule Rule to the n-th
assumption, add the result to the asumptions
list
FILTER_INFER_ASM_TAC A R: As INFER_ASMN_TAC, but the assumption
selected is identified by A
SEQ_TAC Tac Thml: apply tactic Tac subsequently, where the i-th
application uses the i-th theorem from the
list Thml
ASM_STRIPN_TAC i: STRIP the i-th assumption and add the result
to the assumptions list
FILTER_ASM_STRIP_TAC: As ASM_STRIPN_TAC, but assumption selected is
identified by Asm
REWRITE_ASM_TAC m n: REWRITE n-th assumption using m-th assumption,
then add the result to asm list
FILTER_REWRITE_ASM A1 A2 As REWRITE_ASMN_TAC but assumptions selected
are identified by A1 and A2
SPECSTRIP_ASSUME_TAC thm: SPEC_ALL thm, then strip it and add the result
to the assumptions list
EXT_TAC: transform goal f = g to f x = g x then
do BETA reduction
SUBST2_ASM_TAC
REW_SPEC_ASM_TAC
ASM_TAC
ASM_ASM_TAC
RESTRICT_DEF_RULE: Rewrite using the definition of RES_FORALL,
RES_EXISTS, RES_ABSTRACT
RESTRICT_SHIFT: Rewrite !x::P. !y z... Q to !x y z... P ==> Q
IMP_LEFT_RULE: see below
%
%--------------------------------------------------------------------------%
let RES_lst =
[ definition `bool` `RES_FORALL` ;
definition `bool` `RES_EXISTS` ;
definition `bool` `RES_ABSTRACT` ] ;;
let RESTRICT_DEF_TAC = REWRITE_TAC RES_lst THEN BETA_TAC ;;
let RESTRICT_DEF_RULE thm = BETA_RULE (REWRITE_RULE RES_lst thm) ;;
letrec DISCH_TOP thm = DISCH (hd (hyp thm)) thm ;;
let RESTRICT_SHIFT thm =
GEN_ALL (DISCH_TOP
(SPEC_ALL (UNDISCH (SPEC_ALL (RESTRICT_DEF_RULE thm))))) ;;
let test_term trm1 trm2 =
((\trm. true) (find_term (\t. t=trm1) trm2)) ? false ;;
letrec get_match_term trm1 trml =
if null trml then failwith `get_match_term: no match found`
else (if test_term trm1 (hd trml) then (hd trml)
else get_match_term trm1 (tl trml)) ;;
letrec pick_el x l =
if (null l) then failwith `pick_el: element not in the list`
else (if (x = (hd l)) then x else pick_el x (tl l)) ;;
let UNDISCHN_TAC n (asml,g) = UNDISCH_TAC (el n asml) (asml,g) ;;
letrec UNDISCH_ALL_TAC (asml,g) =
if (asml = []) then ALL_TAC (asml,g)
else (UNDISCH_TAC (hd asml) THEN UNDISCH_ALL_TAC) (asml,g) ;;
let INFER_ASMN_TAC n inf_rule (asml,g) =
ASSUME_TAC (inf_rule (ASSUME (el n asml))) (asml,g) ;;
% apply inference rule inf_rule to n-th assumption, then add the result
to the asumptions list %
let FILTER_INFER_ASM_TAC trm inf_rule (asml,g) =
let ASM = ASSUME (pick_el trm asml) in
ASSUME_TAC (inf_rule ASM) (asml,g) ;;
let F_INFER_ASM_TAC trm inf_rule (asml,g) =
let ASM = ASSUME (get_match_term trm asml) in
ASSUME_TAC (inf_rule ASM) (asml,g) ;;
letrec SEQ_TAC tac thml = if (null thml) then ALL_TAC else
(tac (hd thml) THEN (SEQ_TAC tac (tl thml))) ;;
let ASM_STRIPN_TAC i (asml,g) =
STRIP_ASSUME_TAC (SPEC_ALL (ASSUME (el i asml))) (asml,g) ;;
% this strips the i-th assumption and then adds then to the
assumption list %
let FILTER_ASM_STRIP_TAC trm (asml,g) =
let ASM = SPEC_ALL (ASSUME (pick_el trm asml)) in
STRIP_ASSUME_TAC ASM (asml,g) ;;
let REWRITE_ASM_TAC m n (asml,g) =
ASSUME_TAC
(REWRITE_RULE [ASSUME (el m asml)] (ASSUME (el n asml))) (asml,g) ;;
let FILTER_REWRITE_ASM_TAC trm1 trm2 (asml,g) =
let ASM1 = ASSUME (pick_el trm1 asml) in
let ASM2 = ASSUME (pick_el trm2 asml) in
ASSUME_TAC (REWRITE_RULE [ASM1] ASM2) (asml,g) ;;
let SPECSTRIP_ASSUME_TAC thm = STRIP_ASSUME_TAC (SPEC_ALL thm) ;;
let EXT_TAC =
let EXT_SPEC_TAC (asml,g) =
(REWRITE_TAC [FUN_EQ_CONV g]
THEN BETA_TAC
THEN GEN_TAC) (asml,g) in
(REPEAT GEN_TAC) THEN EXT_SPEC_TAC ;;
let SUBST2_ASM_TAC = EVERY_ASSUM (\thm. SUBST1_TAC (SYM thm) ? ALL_TAC) ;;
let REW_SPEC_ASM_TAC trm = EVERY_ASSUM
(\thm. REWRITE_TAC [REWRITE_RULE [] (SPEC trm thm)] ? ALL_TAC) ;;
let ASM_TAC rule = EVERY_ASSUM (\thm. ASSUME_TAC (rule thm) ? ALL_TAC) ;;
letrec ASM_tac rule thm asml =
if (asml = []) then ALL_TAC
else (ASSUME_TAC (rule thm (hd asml)) ? ALL_TAC)
THEN ASM_tac rule thm (tl asml) ;;
letrec ASM_ASM_tac rule asml1 asml2 =
if (asml1 = []) then ALL_TAC
else (ASM_tac rule (hd asml1) asml2)
THEN (ASM_ASM_tac rule (tl asml1) asml2) ;;
let ASM_ASM_TAC rule = ASSUM_LIST (\asml. ASM_ASM_tac rule asml asml) ;;
let XRULE_ASSUM_TAC rule =
RULE_ASSUM_TAC (\thm. rule thm ? thm) ;;
letrec last l = last (tl l) ? hd l ? failwith `last on empty list` ;;
let IMP_LEFT_RULE trm thm =
let th1 = SPEC_ALL thm in
let th2 = UNDISCH th1 in
let th3 = CONJUNCT1 th2 in
let th4 = DISCH (last (hyp th3)) th3 in
GEN trm th4 ;;
% !x. P ==> Q /\ R
------------------ IMP_LEFT_RULE "x"
!x. P ==> Q
%
|