/usr/share/hol88-2.02.19940316/contrib/hol-exec/cons.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | %------ FILE cons.ml ------%
% Bug fixed in an earlier version %
% sree@cs.ubc.ca %
letrec get_final_ret_type1 cons_type =
if ((can dest_type) cons_type) then
let t1 = dest_type cons_type in
if (null (snd t1)) then cons_type
else
if ((fst t1) = `fun`) then
get_final_ret_type1 (hd (rev (snd t1)))
else cons_type
else
failwith `not a type`;;
let get_final_ret_type cons_term =
get_final_ret_type1 (type_of cons_term);;
let get_type_axiom_from thy const_term =
if (is_const const_term) then
let typ = fst (dest_type (get_final_ret_type const_term)) in
(let thm_name = concat typ `_Axiom` in
(get_second thm_name (theorems thy)))
else
failwith `get_type_axiom_from: not a constant`;;
let mk_cons_tuple_str_list1 functor arg_list =
if (null arg_list) then
concat `CONS__`
(concat (const_var_to_string functor) `;; \L`)
else
concat `CONS__`
(concat (const_var_to_string functor)
(concat ` (`
(concat (inv_words `,` (map const_var_to_string arg_list))
`);; \L`)));;
let mk_cons_tuple_str_list thy const_term =
let t1 = concl (get_type_axiom_from thy const_term) in
(let list_list = get_args (skolemize t1) in
(let functor_list = functors_of_args list_list and
args_list = args_of_args list_list in
(map2 (uncurry mk_cons_tuple_str_list1) (functor_list,args_list))));;
let is_constructor_from thy const_term =
if ((can (get_type_axiom_from thy) ) const_term) then
let t1 = concl (get_type_axiom_from thy const_term) in
(let list_list = get_args (skolemize t1) in
(let functor_list = functors_of_args list_list in
(let const_name = fst (dest_const const_term) and
functor_name_list = map fst (map dest_const functor_list) in
mem const_name functor_name_list)))
else
false;;
letrec mk_quick_cons_def_from thy const_term =
let t1 = concl (get_type_axiom_from thy const_term) in
(let list_list = get_args (skolemize t1) in
(let functor_list = functors_of_args list_list in
(let const_name = fst (dest_const const_term) and
functor_name_list = map fst (map dest_const functor_list) in
(let el_index = index const_name functor_name_list in
(let args = el el_index (args_of_args list_list) in
(let cons_args_term_list = const_term.args in
(let str_list = map const_var_to_ml_string cons_args_term_list in
(let let_str =
concat `let `
(concat (inv_words ` ` str_list)
(concat ` = `
(mk_cons_tuple_str_list1 const_term args)
)) in
let_str))))))));;
let type_map = [(`num`,`int`)];;
% Does not capture type constructors like `fun` : retain for safety
letrec mk_type_list hol_type =
let type_pair = ((dest_type hol_type) ? ((dest_vartype hol_type),[])) in
(let type1_str = lookup_map type_map (fst type_pair) and
type2 = snd type_pair in
if (null type2) then [type1_str]
else
append (mk_type_list (hd type2)) [type1_str]);;
%
% Fix the above %
letrec mk_type_list hol_type_list =
if (null hol_type_list) then []
else
let head = hd hol_type_list in
let type_pair = ((dest_type head) ? ((dest_vartype head),[])) in
let first = fst type_pair and
secnd = snd type_pair in
if (first = `prod`) then
[inv_words `#` (mk_type_list secnd)]
else
if (first = `fun`) then
[inv_words `->` (mk_type_list secnd)]
else
let type1_str = lookup_map type_map first in
if (null secnd) then
type1_str.(mk_type_list (tl hol_type_list))
else
(`(`^(inv_words `,` (mk_type_list secnd))^`)`^type1_str).
(mk_type_list (tl hol_type_list));;
let hol_to_ml_type hol_type =
inv_words ` ` (mk_type_list [hol_type]);;
let mk_constructor_defs_strs functor arg_type_list =
if (null arg_type_list) then
concat `CONS__`
(const_var_to_string functor)
else
concat `CONS__`
(concat (const_var_to_string functor)
(concat ` of `
(inv_words ` # ` (map hol_to_ml_type arg_type_list))));;
let mk_cons_type_defs1 thy const_term =
let t1 = concl (get_type_axiom_from thy const_term) in
(let list_list = get_args (skolemize t1) in
(let functor_list = functors_of_args list_list in
(let const_name = fst (dest_const const_term) and
functor_name_list = map fst (map dest_const functor_list) in
(let el_index = index const_name functor_name_list in
(let args = el el_index (args_of_args list_list) in
(let arg_type_list = map type_of args in
mk_constructor_defs_strs const_term arg_type_list))))));;
let mk_cons_type_defs_str thy cons_list_pair =
% create a unique name for the rectype%
let rectype_name = hol_to_ml_type (fst cons_list_pair) and
cons_list = snd cons_list_pair in
(concat `rectype `
(concat rectype_name
(concat ` = `
% We could also sort the cons_list according to type minimality,
though its not required by ML - but we will just use reverse %
(concat (inv_words `| ` (map (mk_cons_type_defs1 thy) (rev cons_list)))
`;;\L\L`))));;
let map_map f l = map (map f) l;;
letrec mapl l1 l2 =
if (null l1) then []
else
((hd l1) (hd l2)). (mapl (tl l1) (tl l2));;
let mk_pair_list l1 l2 =
mapl (map pair l1) l2;;
letrec mk_groups_of_same_type cons_list_pair =
if (null cons_list_pair) then []
else
let type_eq term1 term2 =
(snd term1) =
(snd term2) in
(let type1_list_pair = (sublist (type_eq (hd cons_list_pair))
cons_list_pair) in
(let cons_list_pair1 = subtract cons_list_pair type1_list_pair in
(let type1_list = map fst type1_list_pair and
type1 = (snd (hd type1_list_pair)) in
((type1,type1_list).(mk_groups_of_same_type cons_list_pair1)))));;
let mk_cons_type_defs thy cons_list =
(let type_list = map get_final_ret_type cons_list in
% We should actually sort the type groups according to containment,
but we will for the moment assume a reverse order creation: %
(let cons_list_list = rev
(mk_groups_of_same_type
(mk_pair_list cons_list type_list)) in
map (mk_cons_type_defs_str thy) cons_list_list));;
% The following is too complicated and unnecessary
letrec mk_groups_of_same_type cons_list =
if (null cons_list) then []
else
let type_eq term1 term2 =
type_of term1 = type_of term2 in
(let type1_list = sublist (type_eq (hd cons_list)) cons_list in
(let cons_list1 = subtract cons_list type1_list in
(type1_list.(mk_groups_of_same_type cons_list1))));;
let map_map f l = map (map f) l;;
letrec mapl l1 l2 =
if (null l1) then []
else
((hd l1) (hd l2)). (mapl (tl l1) (tl l2));;
let mk_cons_type_defs1 cons_list =
(let list_list = map get_args (map skolemize cons_list) in
(let functor_list_list = map functors_of_args list_list in
(let const_name_list = map fst (map dest_const cons_list) and
functor_name_list_list = map_map fst
(map_map dest_const functor_list_list) in
(let el_index_list = mapl (map index const_name_list)
functor_name_list_list in
(let args_list_list = map_map type_of
(mapl (map el el_index_list)
(map args_of_args list_list)) in
mk_cons_defs cons_list args_list_list)))));;
let mk_cons_type_defs thy cons_list =
let t1_list = map concl (map (get_type_axiom_from thy) cons_list) in
(let cons_list_list = mk_groups_of_same_type cons_list in
(let def_str_list = map mk_cons_type_defs1 cons_list_list in
def_str_list));;
%
|