/usr/share/hol88-2.02.19940316/contrib/int/int.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 | %============================================================================%
% Theory of integers. %
% %
% The integers are constructed as equivalence classes of pairs of integers %
% using the quotient type procedure in "equiv.ml". %
% %
% This theory was constructed for use in the HOL-ELLA system, using many of %
% the principles, and some of the code, used in the reals library. It is my %
% eventual intention to produce a more unified library of number systems. %
%============================================================================%
can unlink `INT.th`;;
new_theory `INT`;;
loadt `useful`;;
loadt `equiv`;;
%----------------------------------------------------------------------------%
% Required lemmas about the natural numbers - mostly to drive CANCEL_TAC %
%----------------------------------------------------------------------------%
let EQ_LADD = prove_thm(`EQ_LADD`,
"!x y z. (x + y = x + z) = (y = z)",
ONCE_REWRITE_TAC[ADD_SYM] THEN
MATCH_ACCEPT_TAC EQ_MONO_ADD_EQ);;
let EQ_ADDL = prove_thm(`EQ_ADDL`,
"!x y. (x = x + y) = (y = 0)",
REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV SYM_CONV) THEN
MATCH_ACCEPT_TAC ADD_INV_0_EQ);;
let LT_LADD = prove_thm(`LT_LADD`,
"!x y z. (x + y) < (x + z) = y < z",
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[ADD_SYM] THEN
MATCH_ACCEPT_TAC LESS_MONO_ADD_EQ);;
let LT_ADDL = prove_thm(`LT_ADDL`,
"!x y. x < (x + y) = 0 < y",
REPEAT GEN_TAC THEN
MP_TAC(SPECL ["x:num"; "0"; "y:num"] LT_LADD) THEN
REWRITE_TAC[ADD_CLAUSES]);;
let LT_ADDR = prove_thm(`LT_ADDR`,
"!x y. ~((x + y) < x)",
REPEAT GEN_TAC THEN
DISCH_THEN(CHOOSE_THEN MP_TAC o MATCH_MP LESS_ADD_1) THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
REWRITE_TAC[GSYM ADD_ASSOC; ADD_INV_0_EQ] THEN
REWRITE_TAC[GSYM ADD1; ADD_CLAUSES; NOT_SUC]);;
let LT_ADD2 = prove_thm(`LT_ADD2`,
"!x1 x2 y1 y2. x1 < y1 /\ x2 < y2 ==> (x1 + x2) < (y1 + y2)",
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN(CHOOSE_TAC o MATCH_MP LESS_ADD_1)) THEN
ASM_REWRITE_TAC[GSYM ADD1] THEN
ONCE_REWRITE_TAC[AC(ADD_ASSOC,ADD_SYM)
"(a + b) + (c + d) = (a + c) + (b + d)"] THEN
REWRITE_TAC[LT_ADDL] THEN
REWRITE_TAC[ADD_CLAUSES; LESS_0]);;
%----------------------------------------------------------------------------%
% CANCEL_CONV - Try to cancel, rearranging using AC laws as needed %
% %
% The first two arguments are the associative and commutative laws, as %
% given to AC_CONV. The remaining list of theorems should be of the form: %
% %
% |- (a & b ~ a & c) = w (e.g. b ~ c) %
% |- (a & b ~ a) = x (e.g. F) %
% |- (a ~ a & c) = y (e.g. T) %
% |- (a ~ a) = z (e.g. F) %
% %
% For some operator (written as infix &) and relation (~). %
% %
% Theorems may be of the form |- ~ P or |- P, rather that equations; they %
% will be transformed to |- P = F and |- P = T automatically if needed. %
% %
% Note that terms not cancelled will remain in their original order, but %
% will be flattened to right-associated form. %
%----------------------------------------------------------------------------%
let CANCEL_CONV(assoc,sym,lcancelthms) tm =
(let lcthms = map ((\th. (assert (is_eq o concl)) th ?
EQF_INTRO th ? EQT_INTRO th) o SPEC_ALL) lcancelthms in
let [eqop; binop] = map
(rator o rator o lhs o snd o strip_forall o concl) [hd lcthms; sym] in
letrec strip_binop tm =
if (rator(rator tm) = binop ? false) then
(strip_binop (rand(rator tm))) @ (strip_binop(rand tm))
else [tm] in
let mk_binop = ((curry mk_comb) o (curry mk_comb binop)) in
let list_mk_binop = end_itlist mk_binop in
letrec rmel i l = if (l = []) then [] else
let h.t = l in (i = h) => t | h.(rmel i t) in
let (_,[l1;r1]) = (assert (curry$= eqop) # I) (strip_comb tm) in
let [l; r] = map strip_binop [l1; r1] in
let i = intersect l r in
if i = [] then fail else
let itm = list_mk_binop i in
let [l'; r'] = map (end_itlist (C (curry $o)) (map rmel i)) [l; r] in
let [l2; r2] = map (\ts. mk_binop itm (list_mk_binop ts) ? itm) [l';r'] in
let [le; re] = map (EQT_ELIM o AC_CONV(assoc,sym) o mk_eq)[l1,l2;r1,r2] in
let eqv = MK_COMB(AP_TERM eqop le,re) in
CONV_RULE(RAND_CONV(end_itlist $ORELSEC (map REWR_CONV lcthms))) eqv)
? failwith `CANCEL_CONV`;;
%----------------------------------------------------------------------------%
% Tactic to do all the obvious simplifications via cancellation etc. %
%----------------------------------------------------------------------------%
let CANCEL_TAC = (C $THEN (PURE_REWRITE_TAC
(filter($not o can (find_term is_pair o concl)) basic_rewrites)) o
CONV_TAC o ONCE_DEPTH_CONV o end_itlist $ORELSEC) (map CANCEL_CONV
[(ADD_ASSOC,ADD_SYM,
[EQ_LADD; EQ_ADDL; ADD_INV_0_EQ; EQ_SYM_EQ]);
(ADD_ASSOC,ADD_SYM,
[LT_LADD; LT_ADDL; LT_ADDR; LESS_REFL])]);;
%----------------------------------------------------------------------------%
% Define operations on representatives. %
%----------------------------------------------------------------------------%
let tint_0 = new_definition(`tint_0`,
"tint_0 = (1,1)");;
let tint_1 = new_definition(`tint_1`,
"tint_1 = (1 + 1,1)");;
let tint_neg = new_definition(`tint_neg`,
"tint_neg (x:num,y:num) = (y,x)");;
let tint_add = new_infix_definition(`tint_add`,
"$tint_add (x1,y1) (x2,y2) = (x1 + x2, y1 + y2)");;
let tint_mul = new_infix_definition(`tint_mul`,
"$tint_mul (x1,y1) (x2,y2) = ((x1 * x2) + (y1 * y2),
(x1 * y2) + (y1 * x2))");;
let tint_lt = new_infix_definition(`tint_lt`,
"$tint_lt (x1,y1) (x2,y2) = (x1 + y2) < (x2 + y1)");;
%----------------------------------------------------------------------------%
% Define the equivalence relation and prove it *is* one %
%----------------------------------------------------------------------------%
let tint_eq = new_infix_definition(`tint_eq`,
"$tint_eq (x1,y1) (x2,y2) = x1 + y2 = x2 + y1");;
let TINT_EQ_REFL = prove_thm(`TINT_EQ_REFL`,
"!x. x tint_eq x",
GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_eq] THEN REFL_TAC);;
let TINT_EQ_SYM = prove_thm(`TINT_EQ_SYM`,
"!x y. x tint_eq y = y tint_eq x",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_eq] THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN REFL_TAC);;
let TINT_EQ_TRANS = prove_thm(`TINT_EQ_TRANS`,
"!x y z. x tint_eq y /\ y tint_eq z ==> x tint_eq z",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_eq] THEN
DISCH_THEN(MP_TAC o MK_COMB o (AP_TERM "$+" # I) o CONJ_PAIR) THEN
CANCEL_TAC THEN DISCH_THEN SUBST1_TAC THEN CANCEL_TAC);;
let TINT_EQ_EQUIV = prove_thm(`TINT_EQ_EQUIV`,
"!p q. p tint_eq q = ($tint_eq p = $tint_eq q)",
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
CONV_TAC (ONCE_DEPTH_CONV (X_FUN_EQ_CONV "r:num#num")) THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o SPEC "q:num#num") THEN REWRITE_TAC[TINT_EQ_REFL];
DISCH_TAC THEN GEN_TAC THEN EQ_TAC THENL
[RULE_ASSUM_TAC(ONCE_REWRITE_RULE[TINT_EQ_SYM]); ALL_TAC] THEN
POP_ASSUM(\th. DISCH_THEN(MP_TAC o CONJ th)) THEN
MATCH_ACCEPT_TAC TINT_EQ_TRANS]);;
let TINT_EQ_AP = prove_thm(`TINT_EQ_AP`,
"!p q. (p = q) ==> p tint_eq q",
REPEAT GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
MATCH_ACCEPT_TAC TINT_EQ_REFL);;
%----------------------------------------------------------------------------%
% Prove the properties of representatives %
%----------------------------------------------------------------------------%
let TINT_10 = prove_thm(`TINT_10`,
"~(tint_1 tint_eq tint_0)",
REWRITE_TAC[tint_1; tint_0; tint_eq] THEN
REWRITE_TAC[GSYM ADD_ASSOC; ADD_INV_0_EQ] THEN
REWRITE_TAC[num_CONV "1"; NOT_SUC]);;
let TINT_ADD_SYM = prove_thm(`TINT_ADD_SYM`,
"!x y. x tint_add y = y tint_add x",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_add] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] THEN
REFL_TAC);;
let TINT_MUL_SYM = prove_thm(`TINT_MUL_SYM`,
"!x y. x tint_mul y = y tint_mul x",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_mul] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [] [MULT_SYM] THEN
REWRITE_TAC[PAIR_EQ] THEN MATCH_ACCEPT_TAC ADD_SYM);;
let TINT_ADD_ASSOC = prove_thm(`TINT_ADD_ASSOC`,
"!x y z. x tint_add (y tint_add z) = (x tint_add y) tint_add z",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_add] THEN
REWRITE_TAC[ADD_ASSOC]);;
let TINT_MUL_ASSOC = prove_thm(`TINT_MUL_ASSOC`,
"!x y z. x tint_mul (y tint_mul z) = (x tint_mul y) tint_mul z",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_mul] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; PAIR_EQ; GSYM MULT_ASSOC]
THEN CONJ_TAC THEN CANCEL_TAC);;
let TINT_LDISTRIB = prove_thm(`TINT_LDISTRIB`,
"!x y z. x tint_mul (y tint_add z) =
(x tint_mul y) tint_add (x tint_mul z)",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_mul; tint_add] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; PAIR_EQ] THEN
CONJ_TAC THEN CANCEL_TAC);;
let TINT_ADD_LID = prove_thm(`TINT_ADD_LID`,
"!x. (tint_0 tint_add x) tint_eq x",
GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_0; tint_add; tint_eq] THEN
CANCEL_TAC);;
let TINT_MUL_LID = prove_thm(`TINT_MUL_LID`,
"!x. (tint_1 tint_mul x) tint_eq x",
GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_1; tint_mul; tint_eq] THEN
REWRITE_TAC[MULT_CLAUSES; LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
CANCEL_TAC);;
let TINT_ADD_LINV = prove_thm(`TINT_ADD_LINV`,
"!x. ((tint_neg x) tint_add x) tint_eq tint_0",
GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_neg; tint_add; tint_eq; tint_0]
THEN CANCEL_TAC);;
let TINT_LT_TOTAL = prove_thm(`TINT_LT_TOTAL`,
"!x y. x tint_eq y \/ x tint_lt y \/ y tint_lt x",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt; tint_eq] THEN
MP_TAC(SPECL ["FST(x:num#num) + SND(y:num#num)";
"FST(y:num#num) + SND(x:num#num)"] LESS_CASES) THEN
DISCH_THEN DISJ_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[LESS_OR_EQ]) THEN
POP_ASSUM DISJ_CASES_TAC THEN ASM_REWRITE_TAC[]);;
let TINT_LT_REFL = prove_thm(`TINT_LT_REFL`,
"!x. ~(x tint_lt x)",
GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt] THEN
MATCH_ACCEPT_TAC LESS_REFL);;
let TINT_LT_TRANS = prove_thm(`TINT_LT_TRANS`,
"!x y z. x tint_lt y /\ y tint_lt z ==> x tint_lt z",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt] THEN
DISCH_THEN(MP_TAC o MATCH_MP LT_ADD2) THEN CANCEL_TAC THEN
DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [] [ADD_SYM] THEN
POP_ASSUM ACCEPT_TAC);;
let TINT_LT_ADD = prove_thm(`TINT_LT_ADD`,
"!x y z. (y tint_lt z) ==> (x tint_add y) tint_lt (x tint_add z)",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt; tint_add] THEN
CANCEL_TAC);;
let TINT_LT_MUL = prove_thm(`TINT_LT_MUL`,
"!x y. tint_0 tint_lt x /\ tint_0 tint_lt y ==>
tint_0 tint_lt (x tint_mul y)",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_0; tint_lt; tint_mul] THEN
CANCEL_TAC THEN DISCH_THEN(CONJUNCTS_THEN
(CHOOSE_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1)) THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN CANCEL_TAC THEN
REWRITE_TAC[num_CONV "1"; MULT_CLAUSES; ADD_CLAUSES; LESS_0]);;
%----------------------------------------------------------------------------%
% Prove that the operations on representatives are well-defined %
%----------------------------------------------------------------------------%
let TINT_NEG_WELLDEF = prove_thm(`TINT_NEG_WELLDEF`,
"!x1 x2. x1 tint_eq x2 ==> (tint_neg x1) tint_eq (tint_neg x2)",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_neg; tint_eq] THEN
DISCH_THEN($THEN (ONCE_REWRITE_TAC[ADD_SYM]) o SUBST1_TAC) THEN
REFL_TAC);;
let TINT_ADD_WELLDEFR = prove_thm(`TINT_ADD_WELLDEFR`,
"!x1 x2 y. x1 tint_eq x2 ==> (x1 tint_add y) tint_eq (x2 tint_add y)",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_add; tint_eq] THEN
CANCEL_TAC);;
let TINT_ADD_WELLDEF = prove_thm(`TINT_ADD_WELLDEF`,
"!x1 x2 y1 y2. x1 tint_eq x2 /\ y1 tint_eq y2 ==>
(x1 tint_add y1) tint_eq (x2 tint_add y2)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC TINT_EQ_TRANS THEN EXISTS_TAC "x1 tint_add y2" THEN
CONJ_TAC THENL [ONCE_REWRITE_TAC[TINT_ADD_SYM]; ALL_TAC] THEN
MATCH_MP_TAC TINT_ADD_WELLDEFR THEN ASM_REWRITE_TAC[]);;
let TINT_MUL_WELLDEFR = prove_thm(`TINT_MUL_WELLDEFR`,
"!x1 x2 y. x1 tint_eq x2 ==> (x1 tint_mul y) tint_eq (x2 tint_mul y)",
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_mul; tint_eq] THEN
ONCE_REWRITE_TAC[AC(ADD_ASSOC,ADD_SYM)
"(a + b) + (c + d) =
(a + d) + (b + c)"] THEN
REWRITE_TAC[GSYM RIGHT_ADD_DISTRIB] THEN DISCH_TAC THEN
ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN
ONCE_REWRITE_TAC[ADD_SYM] THEN POP_ASSUM SUBST1_TAC THEN REFL_TAC);;
let TINT_MUL_WELLDEF = prove_thm(`TINT_MUL_WELLDEF`,
"!x1 x2 y1 y2. x1 tint_eq x2 /\ y1 tint_eq y2 ==>
(x1 tint_mul y1) tint_eq (x2 tint_mul y2)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC TINT_EQ_TRANS THEN EXISTS_TAC "x1 tint_mul y2" THEN
CONJ_TAC THENL [ONCE_REWRITE_TAC[TINT_MUL_SYM]; ALL_TAC] THEN
MATCH_MP_TAC TINT_MUL_WELLDEFR THEN ASM_REWRITE_TAC[]);;
let TINT_LT_WELLDEFR = prove_thm(`TINT_LT_WELLDEFR`,
"!x1 x2 y. x1 tint_eq x2 ==> (x1 tint_lt y = x2 tint_lt y)",
let mkc v tm = SYM(SPECL (v.snd(strip_comb tm)) LT_LADD) in
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt; tint_eq] THEN
DISCH_TAC THEN CONV_TAC(RAND_CONV(mkc "SND (x1:num#num)")) THEN
CONV_TAC(LAND_CONV(mkc "SND (x2:num#num)")) THEN
ONCE_REWRITE_TAC[AC(ADD_ASSOC,ADD_SYM)
"a + (b + c) = (b + a) + c"] THEN
POP_ASSUM SUBST1_TAC THEN CANCEL_TAC);;
let TINT_LT_WELLDEFL = prove_thm(`TINT_LT_WELLDEFL`,
"!x y1 y2. y1 tint_eq y2 ==> (x tint_lt y1 = x tint_lt y2)",
let mkc v tm = SYM(SPECL (v.snd(strip_comb tm)) LT_LADD) in
REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt; tint_eq] THEN
DISCH_TAC THEN CONV_TAC(RAND_CONV(mkc "FST (y1:num#num)")) THEN
CONV_TAC(LAND_CONV(mkc "FST (y2:num#num)")) THEN
ONCE_REWRITE_TAC[AC(ADD_ASSOC,ADD_SYM)
"a + (b + c) = (a + c) + b"] THEN
POP_ASSUM SUBST1_TAC THEN CANCEL_TAC THEN AP_TERM_TAC THEN CANCEL_TAC);;
let TINT_LT_WELLDEF = prove_thm(`TINT_LT_WELLDEF`,
"!x1 x2 y1 y2. x1 tint_eq x2 /\ y1 tint_eq y2 ==>
(x1 tint_lt y1 = x2 tint_lt y2)",
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC "x1 tint_lt y2" THEN CONJ_TAC THENL
[MATCH_MP_TAC TINT_LT_WELLDEFL; MATCH_MP_TAC TINT_LT_WELLDEFR] THEN
ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Now define the functions over the equivalence classes %
%----------------------------------------------------------------------------%
let [INT_10; INT_ADD_SYM; INT_MUL_SYM;
INT_ADD_ASSOC; INT_MUL_ASSOC; INT_LDISTRIB;
INT_ADD_LID; INT_MUL_LID; INT_ADD_LINV;
INT_LT_TOTAL; INT_LT_REFL; INT_LT_TRANS;
INT_LT_LADD_IMP; INT_LT_MUL] =
define_equivalence_type `int` TINT_EQ_EQUIV
[("tint_0", `int_0`, false);
("tint_1", `int_1`, false);
("tint_neg", `int_neg`, false);
("$tint_add", `int_add`, true);
("$tint_mul", `int_mul`, true);
("$tint_lt", `int_lt`, true)]
[TINT_NEG_WELLDEF; TINT_LT_WELLDEF; TINT_ADD_WELLDEF; TINT_MUL_WELLDEF]
([TINT_10] @
(map (GEN_ALL o MATCH_MP TINT_EQ_AP o SPEC_ALL)
[TINT_ADD_SYM; TINT_MUL_SYM; TINT_ADD_ASSOC;
TINT_MUL_ASSOC; TINT_LDISTRIB]) @
[TINT_ADD_LID; TINT_MUL_LID; TINT_ADD_LINV;
TINT_LT_TOTAL; TINT_LT_REFL; TINT_LT_TRANS;
TINT_LT_ADD; TINT_LT_MUL]);;
let int_tybij = definition `-` `int_tybij`;;
%----------------------------------------------------------------------------%
% Define subtraction and the other orderings %
%----------------------------------------------------------------------------%
let int_sub = new_infix_definition(`int_sub`,
"$int_sub x y = x int_add (int_neg y)");;
let int_le = new_infix_definition(`int_le`,
"$int_le x y = ~(y int_lt x)");;
let int_gt = new_infix_definition(`int_gt`,
"$int_gt x y = y int_lt x");;
let int_ge = new_infix_definition(`int_ge`,
"$int_ge x y = y int_le x");;
%----------------------------------------------------------------------------%
% Now define the inclusion homomorphism int_of_num:num->int. %
%----------------------------------------------------------------------------%
let int_of_num = new_prim_rec_definition(`int_of_num`,
"(int_of_num 0 = int_0) /\
(int_of_num (SUC n) = (int_of_num n) int_add int_1)");;
let INT_0 = prove_thm(`INT_0`,
"int_0 = int_of_num 0",
REWRITE_TAC[int_of_num]);;
let INT_1 = prove_thm(`INT_1`,
"int_1 = int_of_num 1",
REWRITE_TAC[num_CONV "1"; int_of_num; INT_ADD_LID]);;
%----------------------------------------------------------------------------%
% Set up a nice interface map. Use & for the inclusion homomorphism; adjust %
% theorems retrospectively to use &n as "notation" for int constants. %
%----------------------------------------------------------------------------%
new_special_symbol `--`;;
set_interface_map
[ `--`,`int_neg`;
`num_add`,`+`; `+`,`int_add`;
`num_mul`,`*`; `*`,`int_mul`;
`num_sub`,`-`; `-`,`int_sub`;
`num_lt`,`<` ; `<`,`int_lt`;
`num_le`,`<=`; `<=`,`int_le`;
`num_gt`,`>` ; `>`,`int_gt`;
`num_ge`,`>=`; `>=`,`int_ge`;
`&`,`int_of_num`];;
let reeducate (s,t) = save_thm(s,REWRITE_RULE[INT_0; INT_1] t);;
let thlist =
[`INT_10`,INT_10;
`INT_ADD_SYM`,INT_ADD_SYM;
`INT_MUL_SYM`,INT_MUL_SYM;
`INT_ADD_ASSOC`,INT_ADD_ASSOC;
`INT_MUL_ASSOC`,INT_MUL_ASSOC;
`INT_ADD_LID`,INT_ADD_LID;
`INT_MUL_LID`,INT_MUL_LID;
`INT_ADD_LINV`,INT_ADD_LINV;
`INT_LDISTRIB`,INT_LDISTRIB;
`INT_LT_TOTAL`,INT_LT_TOTAL;
`INT_LT_REFL`,INT_LT_REFL;
`INT_LT_TRANS`,INT_LT_TRANS;
`INT_LT_LADD_IMP`,INT_LT_LADD_IMP;
`INT_LT_MUL`,INT_LT_MUL] in
do (map reeducate thlist; map (load_theorem `-` o fst) thlist);;
%----------------------------------------------------------------------------%
% Prove lots of boring field theorems %
%----------------------------------------------------------------------------%
let INT_ADD_RID = prove_thm(`INT_ADD_RID`,
"!x. x + &0 = x",
GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_ADD_LID);;
let INT_ADD_RINV = prove_thm(`INT_ADD_RINV`,
"!x. x + (--x) = &0",
GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_ADD_LINV);;
let INT_MUL_RID = prove_thm(`INT_MUL_RID`,
"!x. x * &1 = x",
GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
MATCH_ACCEPT_TAC INT_MUL_LID);;
let INT_RDISTRIB = prove_thm(`INT_RDISTRIB`,
"!x y z. (x + y) * z = (x * z) + (y * z)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
MATCH_ACCEPT_TAC INT_LDISTRIB);;
let INT_EQ_LADD = prove_thm(`INT_EQ_LADD`,
"!x y z. (x + y = x + z) = (y = z)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o AP_TERM "$+ (-- x)") THEN
REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID];
DISCH_THEN SUBST1_TAC THEN REFL_TAC]);;
let INT_EQ_RADD = prove_thm(`INT_EQ_RADD`,
"!x y z. (x + z = y + z) = (x = y)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_EQ_LADD);;
let INT_ADD_LID_UNIQ = prove_thm(`INT_ADD_LID_UNIQ`,
"!x y. (x + y = y) = (x = &0)",
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [] [GSYM INT_ADD_LID]
THEN MATCH_ACCEPT_TAC INT_EQ_RADD);;
let INT_ADD_RID_UNIQ = prove_thm(`INT_ADD_RID_UNIQ`,
"!x y. (x + y = x) = (y = &0)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_ADD_LID_UNIQ);;
let INT_LNEG_UNIQ = prove_thm(`INT_LNEG_UNIQ`,
"!x y. (x + y = &0) = (x = --y)",
REPEAT GEN_TAC THEN SUBST1_TAC (SYM(SPEC "y:int" INT_ADD_LINV)) THEN
MATCH_ACCEPT_TAC INT_EQ_RADD);;
let INT_RNEG_UNIQ = prove_thm(`INT_RNEG_UNIQ`,
"!x y. (x + y = &0) = (y = --x)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_LNEG_UNIQ);;
let INT_NEG_ADD = prove_thm(`INT_NEG_ADD`,
"!x y. --(x + y) = (--x) + (--y)",
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[GSYM INT_LNEG_UNIQ] THEN
ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
"(a + b) + (c + d) = (a + c) + (b + d)"] THEN
REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID]);;
let INT_MUL_LZERO = prove_thm(`INT_MUL_LZERO`,
"!x. &0 * x = &0",
GEN_TAC THEN SUBST1_TAC(SYM(SPECL ["&0 * x"; "&0 * x"] INT_ADD_LID_UNIQ))
THEN REWRITE_TAC[GSYM INT_RDISTRIB; INT_ADD_LID]);;
let INT_MUL_RZERO = prove_thm(`INT_MUL_RZERO`,
"!x. x * &0 = &0",
GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
MATCH_ACCEPT_TAC INT_MUL_LZERO);;
let INT_NEG_LMUL = prove_thm(`INT_NEG_LMUL`,
"!x y. --(x * y) = (--x) * y",
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[GSYM INT_LNEG_UNIQ; GSYM INT_RDISTRIB;
INT_ADD_LINV; INT_MUL_LZERO]);;
let INT_NEG_RMUL = prove_thm(`INT_NEG_RMUL`,
"!x y. --(x * y) = x * (--y)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
MATCH_ACCEPT_TAC INT_NEG_LMUL);;
let INT_NEGNEG = prove_thm(`INT_NEGNEG`,
"!x. --(--x) = x",
GEN_TAC THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[GSYM INT_LNEG_UNIQ; INT_ADD_RINV]);;
let INT_NEG_MUL2 = prove_thm(`INT_NEG_MUL2`,
"!x y. (--x) * (--y) = x * y",
REWRITE_TAC[GSYM INT_NEG_LMUL; GSYM INT_NEG_RMUL; INT_NEGNEG]);;
let INT_LT_LADD = prove_thm(`INT_LT_LADD`,
"!x y z. (x + y) < (x + z) = y < z",
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o SPEC "--x" o MATCH_MP INT_LT_LADD_IMP) THEN
REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID];
MATCH_ACCEPT_TAC INT_LT_LADD_IMP]);;
let INT_LT_RADD = prove_thm(`INT_LT_RADD`,
"!x y z. (x + z) < (y + z) = x < y",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_LT_LADD);;
let INT_NOT_LT = prove_thm(`INT_NOT_LT`,
"!x y. ~(x < y) = y <= x",
REPEAT GEN_TAC THEN REWRITE_TAC[int_le]);;
let INT_LT_ANTISYM = prove_thm(`INT_LT_ANTISYM`,
"!x y. ~(x < y /\ y < x)",
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INT_LT_TRANS) THEN
REWRITE_TAC[INT_LT_REFL]);;
let INT_LT_GT = prove_thm(`INT_LT_GT`,
"!x y. x < y ==> ~(y < x)",
REPEAT GEN_TAC THEN
DISCH_THEN(\th. DISCH_THEN(MP_TAC o CONJ th)) THEN
REWRITE_TAC[INT_LT_ANTISYM]);;
let INT_NOT_LE = prove_thm(`INT_NOT_LE`,
"!x y. ~(x <= y) = y < x",
REPEAT GEN_TAC THEN REWRITE_TAC[int_le]);;
let INT_LE_TOTAL = prove_thm(`INT_LE_TOTAL`,
"!x y. x <= y \/ y <= x",
REPEAT GEN_TAC THEN
REWRITE_TAC[int_le; GSYM DE_MORGAN_THM; INT_LT_ANTISYM]);;
let INT_LET_TOTAL = prove_thm(`INT_LET_TOTAL`,
"!x y. x <= y \/ y < x",
REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
BOOL_CASES_TAC "y < x" THEN REWRITE_TAC[]);;
let INT_LTE_TOTAL = prove_thm(`INT_LTE_TOTAL`,
"!x y. x < y \/ y <= x",
REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
BOOL_CASES_TAC "x < y" THEN REWRITE_TAC[]);;
let INT_LE_REFL = prove_thm(`INT_LE_REFL`,
"!x. x <= x",
GEN_TAC THEN REWRITE_TAC[int_le; INT_LT_REFL]);;
let INT_LE_LT = prove_thm(`INT_LE_LT`,
"!x y. x <= y = x < y \/ (x = y)",
REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN EQ_TAC THENL
[REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(SPECL ["x:int"; "y:int"] INT_LT_TOTAL) THEN ASM_REWRITE_TAC[];
DISCH_THEN(DISJ_CASES_THEN2
($THEN (MATCH_MP_TAC INT_LT_GT) o ACCEPT_TAC) SUBST1_TAC) THEN
MATCH_ACCEPT_TAC INT_LT_REFL]);;
let INT_LT_LE = prove_thm(`INT_LT_LE`,
"!x y. x < y = x <= y /\ ~(x = y)",
let lemma = TAUT_CONV "~(a /\ ~a)" in
REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT; RIGHT_AND_OVER_OR; lemma]
THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM MP_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[INT_LT_REFL]);;
let INT_LT_IMP_LE = prove_thm(`INT_LT_IMP_LE`,
"!x y. x < y ==> x <= y",
REPEAT GEN_TAC THEN DISCH_TAC THEN
ASM_REWRITE_TAC[INT_LE_LT]);;
let INT_LTE_TRANS = prove_thm(`INT_LTE_TRANS`,
"!x y z. x < y /\ y <= z ==> x < z",
REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT; LEFT_AND_OVER_OR] THEN
DISCH_THEN(DISJ_CASES_THEN2 (ACCEPT_TAC o MATCH_MP INT_LT_TRANS)
(CONJUNCTS_THEN2 MP_TAC SUBST1_TAC)) THEN REWRITE_TAC[]);;
let INT_LET_TRANS = prove_thm(`INT_LET_TRANS`,
"!x y z. x <= y /\ y < z ==> x < z",
REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT; RIGHT_AND_OVER_OR] THEN
DISCH_THEN(DISJ_CASES_THEN2 (ACCEPT_TAC o MATCH_MP INT_LT_TRANS)
(CONJUNCTS_THEN2 SUBST1_TAC ACCEPT_TAC)));;
let INT_LE_TRANS = prove_thm(`INT_LE_TRANS`,
"!x y z. x <= y /\ y <= z ==> x <= z",
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [] [INT_LE_LT] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (DISJ_CASES_THEN2 ASSUME_TAC SUBST1_TAC))
THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o C CONJ (ASSUME "y < z")) THEN
DISCH_THEN(ACCEPT_TAC o MATCH_MP INT_LT_IMP_LE o MATCH_MP INT_LET_TRANS));;
let INT_LE_ANTISYM = prove_thm(`INT_LE_ANTISYM`,
"!x y. x <= y /\ y <= x = (x = y)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[int_le] THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(SPECL ["x:int"; "y:int"] INT_LT_TOTAL) THEN
ASM_REWRITE_TAC[];
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[INT_LE_REFL]]);;
let INT_LET_ANTISYM = prove_thm(`INT_LET_ANTISYM`,
"!x y. ~(x < y /\ y <= x)",
REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
BOOL_CASES_TAC "x < y" THEN REWRITE_TAC[]);;
let INT_LTE_ANTSYM = prove_thm(`INT_LTE_ANTSYM`,
"!x y. ~(x <= y /\ y < x)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
MATCH_ACCEPT_TAC INT_LET_ANTISYM);;
let INT_NEG_LT0 = prove_thm(`INT_NEG_LT0`,
"!x. (--x) < &0 = &0 < x",
GEN_TAC THEN SUBST1_TAC(SYM(SPECL ["--x"; "&0"; "x:int"] INT_LT_RADD)) THEN
REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID]);;
let INT_NEG_GT0 = prove_thm(`INT_NEG_GT0`,
"!x. &0 < (--x) = x < &0",
GEN_TAC THEN REWRITE_TAC[GSYM INT_NEG_LT0; INT_NEGNEG]);;
let INT_NEG_LE0 = prove_thm(`INT_NEG_LE0`,
"!x. (--x) <= &0 = &0 <= x",
GEN_TAC THEN REWRITE_TAC[int_le] THEN
REWRITE_TAC[INT_NEG_GT0]);;
let INT_NEG_GE0 = prove_thm(`INT_NEG_GE0`,
"!x. &0 <= (--x) = x <= &0",
GEN_TAC THEN REWRITE_TAC[int_le] THEN
REWRITE_TAC[INT_NEG_LT0]);;
let INT_LT_NEGTOTAL = prove_thm(`INT_LT_NEGTOTAL`,
"!x. (x = &0) \/ (&0 < x) \/ (&0 < --x)",
GEN_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(SPECL ["x:int"; "&0"] INT_LT_TOTAL) THEN
ASM_REWRITE_TAC[SYM(REWRITE_RULE[INT_NEGNEG] (SPEC "--x" INT_NEG_LT0))]);;
let INT_LE_NEGTOTAL = prove_thm(`INT_LE_NEGTOTAL`,
"!x. &0 <= x \/ &0 <= --x",
GEN_TAC THEN REWRITE_TAC[INT_LE_LT] THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC "x:int" INT_LT_NEGTOTAL) THEN
ASM_REWRITE_TAC[]);;
let INT_LE_MUL = prove_thm(`INT_LE_MUL`,
"!x y. &0 <= x /\ &0 <= y ==> &0 <= (x * y)",
REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT] THEN
MAP_EVERY ASM_CASES_TAC ["&0 = x"; "&0 = y"] THEN
ASM_REWRITE_TAC[] THEN TRY(FIRST_ASSUM(SUBST1_TAC o SYM)) THEN
REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO] THEN
DISCH_TAC THEN DISJ1_TAC THEN MATCH_MP_TAC INT_LT_MUL THEN
ASM_REWRITE_TAC[]);;
let INT_LE_SQUARE = prove_thm(`INT_LE_SQUARE`,
"!x. &0 <= x * x",
GEN_TAC THEN DISJ_CASES_TAC (SPEC "x:int" INT_LE_NEGTOTAL) THEN
POP_ASSUM(MP_TAC o MATCH_MP INT_LE_MUL o W CONJ) THEN
REWRITE_TAC[GSYM INT_NEG_RMUL; GSYM INT_NEG_LMUL; INT_NEGNEG]);;
let INT_LE_01 = prove_thm(`INT_LE_01`,
"&0 <= &1",
SUBST1_TAC(SYM(SPEC "&1" INT_MUL_LID)) THEN
MATCH_ACCEPT_TAC INT_LE_SQUARE);;
let INT_LT_01 = prove_thm(`INT_LT_01`,
"&0 < &1",
REWRITE_TAC[INT_LT_LE; INT_LE_01] THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN
REWRITE_TAC[INT_10]);;
let INT_LE_LADD = prove_thm(`INT_LE_LADD`,
"!x y z. (x + y) <= (x + z) = y <= z",
REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
AP_TERM_TAC THEN MATCH_ACCEPT_TAC INT_LT_LADD);;
let INT_LE_RADD = prove_thm(`INT_LE_RADD`,
"!x y z. (x + z) <= (y + z) = x <= y",
REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
AP_TERM_TAC THEN MATCH_ACCEPT_TAC INT_LT_RADD);;
let INT_LT_ADD2 = prove_thm(`INT_LT_ADD2`,
"!w x y z. w < x /\ y < z ==> (w + y) < (x + z)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC INT_LT_TRANS THEN EXISTS_TAC "w + z" THEN
ASM_REWRITE_TAC[INT_LT_LADD; INT_LT_RADD]);;
let INT_LE_ADD2 = prove_thm(`INT_LE_ADD2`,
"!w x y z. w <= x /\ y <= z ==> (w + y) <= (x + z)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC "w + z" THEN
ASM_REWRITE_TAC[INT_LE_LADD; INT_LE_RADD]);;
let INT_LE_ADD = prove_thm(`INT_LE_ADD`,
"!x y. &0 <= x /\ &0 <= y ==> &0 <= (x + y)",
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INT_LE_ADD2) THEN
REWRITE_TAC[INT_ADD_LID]);;
let INT_LT_ADD = prove_thm(`INT_LT_ADD`,
"!x y. &0 < x /\ &0 < y ==> &0 < (x + y)",
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INT_LT_ADD2) THEN
REWRITE_TAC[INT_ADD_LID]);;
let INT_LT_ADDNEG = prove_thm(`INT_LT_ADDNEG`,
"!x y z. y < (x + (--z)) = (y + z) < x",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["y:int"; "x + (--z)"; "z:int"] INT_LT_RADD)) THEN
REWRITE_TAC[GSYM INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_RID]);;
let INT_LT_ADDNEG2 = prove_thm(`INT_LT_ADDNEG2`,
"!x y z. (x + (--y)) < z = x < (z + y)",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["x + (-- y)"; "z:int"; "y:int"] INT_LT_RADD)) THEN
REWRITE_TAC[GSYM INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_RID]);;
let INT_LT_ADD1 = prove_thm(`INT_LT_ADD1`,
"!x y. x <= y ==> x < (y + &1)",
REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT] THEN
DISCH_THEN DISJ_CASES_TAC THENL
[POP_ASSUM(MP_TAC o MATCH_MP INT_LT_ADD2 o C CONJ INT_LT_01) THEN
REWRITE_TAC[INT_ADD_RID];
POP_ASSUM SUBST1_TAC THEN
GEN_REWRITE_TAC LAND_CONV [] [GSYM INT_ADD_RID] THEN
REWRITE_TAC[INT_LT_LADD; INT_LT_01]]);;
let INT_SUB_ADD = prove_thm(`INT_SUB_ADD`,
"!x y. (x - y) + y = x",
REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; GSYM INT_ADD_ASSOC;
INT_ADD_LINV; INT_ADD_RID]);;
let INT_SUB_ADD2 = prove_thm(`INT_SUB_ADD2`,
"!x y. y + (x - y) = x",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_SUB_ADD);;
let INT_SUB_REFL = prove_thm(`INT_SUB_REFL`,
"!x. x - x = &0",
GEN_TAC THEN REWRITE_TAC[int_sub; INT_ADD_RINV]);;
let INT_SUB_0 = prove_thm(`INT_SUB_0`,
"!x y. (x - y = &0) = (x = y)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o C AP_THM "y:int" o AP_TERM "$+") THEN
REWRITE_TAC[INT_SUB_ADD; INT_ADD_LID];
DISCH_THEN SUBST1_TAC THEN MATCH_ACCEPT_TAC INT_SUB_REFL]);;
let INT_LE_DOUBLE = prove_thm(`INT_LE_DOUBLE`,
"!x. &0 <= x + x = &0 <= x",
GEN_TAC THEN EQ_TAC THENL
[CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[INT_NOT_LE] THEN
DISCH_THEN(MP_TAC o MATCH_MP INT_LT_ADD2 o W CONJ);
DISCH_THEN(MP_TAC o MATCH_MP INT_LE_ADD2 o W CONJ)] THEN
REWRITE_TAC[INT_ADD_LID]);;
let INT_LE_NEGL = prove_thm(`INT_LE_NEGL`,
"!x. (--x <= x) = (&0 <= x)",
GEN_TAC THEN SUBST1_TAC (SYM(SPECL ["x:int"; "--x"; "x:int"] INT_LE_LADD))
THEN REWRITE_TAC[INT_ADD_RINV; INT_LE_DOUBLE]);;
let INT_LE_NEGR = prove_thm(`INT_LE_NEGR`,
"!x. (x <= --x) = (x <= &0)",
GEN_TAC THEN SUBST1_TAC(SYM(SPEC "x:int" INT_NEGNEG)) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [] [INT_NEGNEG] THEN
REWRITE_TAC[INT_LE_NEGL] THEN REWRITE_TAC[INT_NEG_GE0] THEN
REWRITE_TAC[INT_NEGNEG]);;
let INT_NEG_EQ0 = prove_thm(`INT_NEG_EQ0`,
"!x. (--x = &0) = (x = &0)",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o AP_TERM "$+ x");
DISCH_THEN(MP_TAC o AP_TERM "$+ (--x)")] THEN
REWRITE_TAC[INT_ADD_RINV; INT_ADD_LINV; INT_ADD_RID] THEN
DISCH_THEN SUBST1_TAC THEN REFL_TAC);;
let INT_NEG_0 = prove_thm(`INT_NEG_0`,
"--(&0) = &0",
REWRITE_TAC[INT_NEG_EQ0]);;
let INT_NEG_SUB = prove_thm(`INT_NEG_SUB`,
"!x y. --(x - y) = y - x",
REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEG_ADD; INT_NEGNEG] THEN
MATCH_ACCEPT_TAC INT_ADD_SYM);;
let INT_SUB_LT = prove_thm(`INT_SUB_LT`,
"!x y. &0 < x - y = y < x",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["&0"; "x - y"; "y:int"] INT_LT_RADD)) THEN
REWRITE_TAC[INT_SUB_ADD; INT_ADD_LID]);;
let INT_SUB_LE = prove_thm(`INT_SUB_LE`,
"!x y. &0 <= (x - y) = y <= x",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["&0"; "x - y"; "y:int"] INT_LE_RADD)) THEN
REWRITE_TAC[INT_SUB_ADD; INT_ADD_LID]);;
let INT_ADD_SUB = prove_thm(`INT_ADD_SUB`,
"!x y. (x + y) - x = y",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
REWRITE_TAC[int_sub; GSYM INT_ADD_ASSOC; INT_ADD_RINV; INT_ADD_RID]);;
let INT_SUB_LDISTRIB = prove_thm(`INT_SUB_LDISTRIB`,
"!x y z. x * (y - z) = (x * y) - (x * z)",
REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_LDISTRIB; INT_NEG_RMUL]);;
let INT_SUB_RDISTRIB = prove_thm(`INT_SUB_RDISTRIB`,
"!x y z. (x - y) * z = (x * z) - (y * z)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
MATCH_ACCEPT_TAC INT_SUB_LDISTRIB);;
let INT_NEG_EQ = prove_thm(`INT_NEG_EQ`,
"!x y. (--x = y) = (x = --y)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM); DISCH_THEN SUBST1_TAC] THEN
REWRITE_TAC[INT_NEGNEG]);;
let INT_NEG_MINUS1 = prove_thm(`INT_NEG_MINUS1`,
"!x. --x = (--(&1)) * x",
GEN_TAC THEN REWRITE_TAC[GSYM INT_NEG_LMUL] THEN
REWRITE_TAC[INT_MUL_LID]);;
let INT_LT_IMP_NE = prove_thm(`INT_LT_IMP_NE`,
"!x y. x < y ==> ~(x = y)",
REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[INT_LT_REFL]);;
let INT_LE_ADDR = prove_thm(`INT_LE_ADDR`,
"!x y. x <= x + y = &0 <= y",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["x:int"; "&0"; "y:int"] INT_LE_LADD)) THEN
REWRITE_TAC[INT_ADD_RID]);;
let INT_LE_ADDL = prove_thm(`INT_LE_ADDL`,
"!x y. y <= x + y = &0 <= x",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_LE_ADDR);;
let INT_LT_ADDR = prove_thm(`INT_LT_ADDR`,
"!x y. x < x + y = &0 < y",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["x:int"; "&0"; "y:int"] INT_LT_LADD)) THEN
REWRITE_TAC[INT_ADD_RID]);;
let INT_LT_ADDL = prove_thm(`INT_LT_ADDL`,
"!x y. y < x + y = &0 < x",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_LT_ADDR);;
let INT_ENTIRE = prove_thm(`INT_ENTIRE`,
"!x y. (x * y = &0) = (x = &0) \/ (y = &0)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[DE_MORGAN_THM] THEN
STRIP_TAC THEN
REPEAT_TCL DISJ_CASES_THEN MP_TAC (SPEC "x:int" INT_LT_NEGTOTAL) THEN
ASM_REWRITE_TAC[] THEN
REPEAT_TCL DISJ_CASES_THEN MP_TAC (SPEC "y:int" INT_LT_NEGTOTAL) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[TAUT_CONV "a ==> b ==> c = b /\ a ==> c"] THEN
DISCH_THEN(MP_TAC o MATCH_MP INT_LT_MUL) THEN
REWRITE_TAC[GSYM INT_NEG_LMUL; GSYM INT_NEG_RMUL] THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[INT_NEG_0; INT_LT_REFL];
DISCH_THEN(DISJ_CASES_THEN SUBST1_TAC) THEN
REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO]]);;
let INT_EQ_LMUL = prove_thm(`INT_EQ_LMUL`,
"!x y z. (x * y = x * z) = (x = &0) \/ (y = z)",
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [] [GSYM INT_SUB_0] THEN
REWRITE_TAC[GSYM INT_SUB_LDISTRIB] THEN
REWRITE_TAC[INT_ENTIRE; INT_SUB_0]);;
let INT_EQ_RMUL = prove_thm(`INT_EQ_RMUL`,
"!x y z. (x * z = y * z) = (z = &0) \/ (x = y)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
MATCH_ACCEPT_TAC INT_EQ_LMUL);;
%----------------------------------------------------------------------------%
% Prove homomorphisms for the inclusion map %
%----------------------------------------------------------------------------%
let INT = prove_thm(`INT`,
"!n. &(SUC n) = &n + &1",
GEN_TAC THEN REWRITE_TAC[int_of_num] THEN
REWRITE_TAC[INT_1]);;
let INT_POS = prove_thm(`INT_POS`,
"!n. &0 <= &n",
INDUCT_TAC THEN REWRITE_TAC[INT_LE_REFL] THEN
MATCH_MP_TAC INT_LE_TRANS THEN
EXISTS_TAC "&n" THEN ASM_REWRITE_TAC[INT] THEN
REWRITE_TAC[INT_LE_ADDR; INT_LE_01]);;
let INT_LE = prove_thm(`INT_LE`,
"!m n. &m <= &n = m num_le n",
REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC
[INT; INT_LE_RADD; ZERO_LESS_EQ; LESS_EQ_MONO; INT_LE_REFL] THEN
REWRITE_TAC[GSYM NOT_LESS; LESS_0] THENL
[MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC "&n" THEN
ASM_REWRITE_TAC[ZERO_LESS_EQ; INT_LE_ADDR; INT_LE_01];
DISCH_THEN(MP_TAC o C CONJ (SPEC "m:num" INT_POS)) THEN
DISCH_THEN(MP_TAC o MATCH_MP INT_LE_TRANS) THEN
REWRITE_TAC[INT_NOT_LE; INT_LT_ADDR; INT_LT_01]]);;
let INT_LT = prove_thm(`INT_LT`,
"!m n. &m < &n = m num_lt n",
REPEAT GEN_TAC THEN MATCH_ACCEPT_TAC ((REWRITE_RULE[] o AP_TERM "$~" o
REWRITE_RULE[GSYM NOT_LESS; GSYM INT_NOT_LT]) (SPEC_ALL INT_LE)));;
let INT_INJ = prove_thm(`INT_INJ`,
"!m n. (&m = &n) = (m = n)",
let th = PROVE("(m = n) = m num_le n /\ n num_le m",
EQ_TAC THENL
[DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[LESS_EQ_REFL];
MATCH_ACCEPT_TAC LESS_EQUAL_ANTISYM]) in
REPEAT GEN_TAC THEN REWRITE_TAC[th; GSYM INT_LE_ANTISYM; INT_LE]);;
let INT_ADD = prove_thm(`INT_ADD`,
"!m n. &m + &n = &(m num_add n)",
INDUCT_TAC THEN REWRITE_TAC[INT; ADD; INT_ADD_LID] THEN
RULE_ASSUM_TAC GSYM THEN GEN_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(AC_CONV(INT_ADD_ASSOC,INT_ADD_SYM)));;
let INT_MUL = prove_thm(`INT_MUL`,
"!m n. &m * &n = &(m num_mul n)",
INDUCT_TAC THEN REWRITE_TAC[INT_MUL_LZERO; MULT_CLAUSES; INT;
GSYM INT_ADD; INT_RDISTRIB] THEN
FIRST_ASSUM(\th. REWRITE_TAC[GSYM th]) THEN
REWRITE_TAC[INT_MUL_LID]);;
%----------------------------------------------------------------------------%
% Now more theorems %
%----------------------------------------------------------------------------%
let INT_LT_NZ = prove_thm(`INT_LT_NZ`,
"!n. ~(&n = &0) = (&0 < &n)",
GEN_TAC THEN REWRITE_TAC[INT_LT_LE] THEN
CONV_TAC(RAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
ASM_CASES_TAC "&n = &0" THEN ASM_REWRITE_TAC[INT_LE_REFL; INT_POS]);;
let INT_NZ_IMP_LT = prove_thm(`INT_NZ_IMP_LT`,
"!n. ~(n = 0) ==> &0 < &n",
GEN_TAC THEN REWRITE_TAC[GSYM INT_INJ; INT_LT_NZ]);;
let INT_DOUBLE = prove_thm(`INT_DOUBLE`,
"!x. x + x = &2 * x",
GEN_TAC THEN REWRITE_TAC[num_CONV "2"; INT] THEN
REWRITE_TAC[INT_RDISTRIB; INT_MUL_LID]);;
let INT_SUB_SUB = prove_thm(`INT_SUB_SUB`,
"!x y. (x - y) - x = --y",
REPEAT GEN_TAC THEN REWRITE_TAC[int_sub] THEN
ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
"(a + b) + c = (c + a) + b"] THEN
REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID]);;
let INT_LT_ADD_SUB = prove_thm(`INT_LT_ADD_SUB`,
"!x y z. (x + y) < z = x < (z - y)",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["x:int"; "z - y"; "y:int"] INT_LT_RADD)) THEN
REWRITE_TAC[INT_SUB_ADD]);;
let INT_LT_SUB_RADD = prove_thm(`INT_LT_SUB_RADD`,
"!x y z. (x - y) < z = x < z + y",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["x - y"; "z:int"; "y:int"] INT_LT_RADD)) THEN
REWRITE_TAC[INT_SUB_ADD]);;
let INT_LT_SUB_LADD = prove_thm(`INT_LT_SUB_LADD`,
"!x y z. x < (y - z) = (x + z) < y",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL ["x + z"; "y:int"; "--z"] INT_LT_RADD)) THEN
REWRITE_TAC[int_sub; GSYM INT_ADD_ASSOC; INT_ADD_RINV; INT_ADD_RID]);;
let INT_LE_SUB_LADD = prove_thm(`INT_LE_SUB_LADD`,
"!x y z. x <= (y - z) = (x + z) <= y",
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM INT_NOT_LT; INT_LT_SUB_RADD]);;
let INT_LE_SUB_RADD = prove_thm(`INT_LE_SUB_RADD`,
"!x y z. (x - y) <= z = x <= z + y",
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM INT_NOT_LT; INT_LT_SUB_LADD]);;
let INT_LT_NEG = prove_thm(`INT_LT_NEG`,
"!x y. --x < --y = y < x",
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL["--x"; "--y"; "x + y"] INT_LT_RADD)) THEN
REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN
ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_RINV; INT_ADD_LID]);;
let INT_LE_NEG = prove_thm(`INT_LE_NEG`,
"!x y. --x <= --y = y <= x",
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM INT_NOT_LT] THEN
REWRITE_TAC[INT_LT_NEG]);;
let INT_ADD2_SUB2 = prove_thm(`INT_ADD2_SUB2`,
"!a b c d. (a + b) - (c + d) = (a - c) + (b - d)",
REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEG_ADD] THEN
CONV_TAC(AC_CONV(INT_ADD_ASSOC,INT_ADD_SYM)));;
let INT_SUB_LZERO = prove_thm(`INT_SUB_LZERO`,
"!x. &0 - x = --x",
GEN_TAC THEN REWRITE_TAC[int_sub; INT_ADD_LID]);;
let INT_SUB_RZERO = prove_thm(`INT_SUB_RZERO`,
"!x. x - &0 = x",
GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEG_0; INT_ADD_RID]);;
let INT_LET_ADD2 = prove_thm(`INT_LET_ADD2`,
"!w x y z. w <= x /\ y < z ==> (w + y) < (x + z)",
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN
MATCH_MP_TAC INT_LTE_TRANS THEN
EXISTS_TAC "w + z" THEN
ASM_REWRITE_TAC[INT_LE_RADD; INT_LT_LADD]);;
let INT_LTE_ADD2 = prove_thm(`INT_LTE_ADD2`,
"!w x y z. w < x /\ y <= z ==> (w + y) < (x + z)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
MATCH_ACCEPT_TAC INT_LET_ADD2);;
let INT_LET_ADD = prove_thm(`INT_LET_ADD`,
"!x y. &0 <= x /\ &0 < y ==> &0 < (x + y)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBST1_TAC(SYM(SPEC "&0" INT_ADD_LID)) THEN
MATCH_MP_TAC INT_LET_ADD2 THEN
ASM_REWRITE_TAC[]);;
let INT_LTE_ADD = prove_thm(`INT_LTE_ADD`,
"!x y. &0 < x /\ &0 <= y ==> &0 < (x + y)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBST1_TAC(SYM(SPEC "&0" INT_ADD_LID)) THEN
MATCH_MP_TAC INT_LTE_ADD2 THEN
ASM_REWRITE_TAC[]);;
let INT_LT_MUL2 = prove_thm(`INT_LT_MUL2`,
"!x1 x2 y1 y2. &0 <= x1 /\ &0 <= y1 /\ x1 < x2 /\ y1 < y2 ==>
(x1 * y1) < (x2 * y2)",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM INT_SUB_LT] THEN
REWRITE_TAC[INT_SUB_RZERO] THEN
SUBGOAL_THEN "!a b c d.
(a * b) - (c * d) = ((a * b) - (a * d)) + ((a * d) - (c * d))"
MP_TAC THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[int_sub] THEN
ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
"(a + b) + (c + d) = (b + c) + (a + d)"] THEN
REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID];
DISCH_THEN(\th. ONCE_REWRITE_TAC[th]) THEN
REWRITE_TAC[GSYM INT_SUB_LDISTRIB; GSYM INT_SUB_RDISTRIB] THEN
DISCH_THEN STRIP_ASSUME_TAC THEN
MATCH_MP_TAC INT_LTE_ADD THEN CONJ_TAC THENL
[MATCH_MP_TAC INT_LT_MUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC INT_LET_TRANS THEN EXISTS_TAC "x1:int" THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM INT_SUB_LT] THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC INT_LE_MUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC INT_LT_IMP_LE THEN ASM_REWRITE_TAC[]]]);;
let INT_SUB_LNEG = prove_thm(`INT_SUB_LNEG`,
"!x y. (--x) - y = --(x + y)",
REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEG_ADD]);;
let INT_SUB_RNEG = prove_thm(`INT_SUB_RNEG`,
"!x y. x - (--y) = x + y",
REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEGNEG]);;
let INT_SUB_NEG2 = prove_thm(`INT_SUB_NEG2`,
"!x y. (--x) - (--y) = y - x",
REPEAT GEN_TAC THEN REWRITE_TAC[INT_SUB_LNEG] THEN
REWRITE_TAC[int_sub; INT_NEG_ADD; INT_NEGNEG] THEN
MATCH_ACCEPT_TAC INT_ADD_SYM);;
let INT_SUB_TRIANGLE = prove_thm(`INT_SUB_TRIANGLE`,
"!a b c. (a - b) + (b - c) = a - c",
REPEAT GEN_TAC THEN REWRITE_TAC[int_sub] THEN
ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
"(a + b) + (c + d) = (b + c) + (a + d)"] THEN
REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID]);;
let INT_EQ_SUB_LADD = prove_thm(`INT_EQ_SUB_LADD`,
"!x y z. (x = y - z) = (x + z = y)",
REPEAT GEN_TAC THEN (SUBST1_TAC o SYM o C SPECL INT_EQ_RADD)
["x:int"; "y - z"; "z:int"] THEN REWRITE_TAC[INT_SUB_ADD]);;
let INT_EQ_SUB_RADD = prove_thm(`INT_EQ_SUB_RADD`,
"!x y z. (x - y = z) = (x = z + y)",
REPEAT GEN_TAC THEN CONV_TAC(SUB_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
MATCH_ACCEPT_TAC INT_EQ_SUB_LADD);;
let INT_SUB_SUB2 = prove_thm(`INT_SUB_SUB2`,
"!x y. x - (x - y) = y",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM INT_NEGNEG] THEN
AP_TERM_TAC THEN REWRITE_TAC[INT_NEG_SUB; INT_SUB_SUB]);;
let INT_ADD_SUB2 = prove_thm(`INT_ADD_SUB2`,
"!x y. x - (x + y) = --y",
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM INT_NEG_SUB] THEN
AP_TERM_TAC THEN REWRITE_TAC[INT_ADD_SUB]);;
let INT_EQ_LMUL2 = prove_thm(`INT_EQ_LMUL2`,
"!x y z. ~(x = &0) ==> ((y = z) = (x * y = x * z))",
REPEAT GEN_TAC THEN DISCH_TAC THEN
MP_TAC(SPECL ["x:int"; "y:int"; "z:int"] INT_EQ_LMUL) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN REFL_TAC);;
let INT_EQ_IMP_LE = prove_thm(`INT_EQ_IMP_LE`,
"!x y. (x = y) ==> x <= y",
REPEAT GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
MATCH_ACCEPT_TAC INT_LE_REFL);;
let INT_POS_NZ = prove_thm(`INT_POS_NZ`,
"!x. &0 < x ==> ~(x = &0)",
GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP INT_LT_IMP_NE) THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN POP_ASSUM ACCEPT_TAC);;
let INT_EQ_RMUL_IMP = prove_thm(`INT_EQ_RMUL_IMP`,
"!x y z. ~(z = &0) /\ (x * z = y * z) ==> (x = y)",
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[INT_EQ_RMUL]);;
let INT_EQ_LMUL_IMP = prove_thm(`INT_EQ_LMUL_IMP`,
"!x y z. ~(x = &0) /\ (x * y = x * z) ==> (y = z)",
ONCE_REWRITE_TAC[INT_MUL_SYM] THEN MATCH_ACCEPT_TAC INT_EQ_RMUL_IMP);;
let INT_DIFFSQ = prove_thm(`INT_DIFFSQ`,
"!x y. (x + y) * (x - y) = (x * x) - (y * y)",
REPEAT GEN_TAC THEN
REWRITE_TAC[INT_LDISTRIB; INT_RDISTRIB; int_sub; GSYM INT_ADD_ASSOC] THEN
ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
"a + b + c + d = (b + c) + (a + d)"] THEN
REWRITE_TAC[INT_ADD_LID_UNIQ; GSYM INT_NEG_RMUL] THEN
REWRITE_TAC[INT_LNEG_UNIQ] THEN AP_TERM_TAC THEN
MATCH_ACCEPT_TAC INT_MUL_SYM);;
let INT_POSSQ = prove_thm(`INT_POASQ`,
"!x. &0 < (x * x) = ~(x = &0)",
GEN_TAC THEN REWRITE_TAC[GSYM INT_NOT_LE] THEN AP_TERM_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o C CONJ (SPEC "x:int" INT_LE_SQUARE)) THEN
REWRITE_TAC[INT_LE_ANTISYM; INT_ENTIRE];
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[INT_MUL_LZERO; INT_LE_REFL]]);;
let INT_SUMSQ = prove_thm(`INT_SUMSQ`,
"!x y. ((x * x) + (y * y) = &0) = (x = &0) /\ (y = &0)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[DE_MORGAN_THM] THEN
DISCH_THEN DISJ_CASES_TAC THEN MATCH_MP_TAC INT_POS_NZ THENL
[MATCH_MP_TAC INT_LTE_ADD; MATCH_MP_TAC INT_LET_ADD] THEN
ASM_REWRITE_TAC[INT_POSSQ; INT_LE_SQUARE];
DISCH_TAC THEN ASM_REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID]]);;
let INT_EQ_NEG = prove_thm(`INT_EQ_NEG`,
"!x y. (--x = --y) = (x = y)",
REPEAT GEN_TAC THEN
REWRITE_TAC[GSYM INT_LE_ANTISYM; INT_LE_NEG] THEN
MATCH_ACCEPT_TAC CONJ_SYM);;
%----------------------------------------------------------------------------%
% Some nasty hacking round to show that the positive integers are a copy %
% of the natural numbers. %
%----------------------------------------------------------------------------%
let INT_DECOMPOSE = prove_thm(`INT_DECOMPOSE`,
"!i. ?m n. i = mk_int($tint_eq(m,n))",
GEN_TAC THEN
MP_TAC(SPEC "dest_int i" (CONJUNCT2 int_tybij)) THEN
REWRITE_TAC[CONJUNCT1 int_tybij] THEN BETA_TAC THEN
DISCH_THEN(X_CHOOSE_THEN "x:num#num" MP_TAC) THEN
DISCH_THEN(MP_TAC o AP_TERM "mk_int") THEN
REWRITE_TAC[CONJUNCT1 int_tybij] THEN
DISCH_THEN SUBST1_TAC THEN
MAP_EVERY EXISTS_TAC ["FST(x:num#num)"; "SND(x:num#num)"] THEN
REWRITE_TAC[]);;
let DEST_MK_EQCLASS = prove_thm(`DEST_MK_EQCLASS`,
"!v. dest_int (mk_int ($tint_eq v)) = $tint_eq v",
GEN_TAC THEN REWRITE_TAC[GSYM int_tybij] THEN
BETA_TAC THEN EXISTS_TAC "v:num#num" THEN REFL_TAC);;
let REP_EQCLASS = prove_thm(`REP_EQCLASS`,
"!v. $@($tint_eq v) tint_eq v",
GEN_TAC THEN ONCE_REWRITE_TAC[TINT_EQ_SYM] THEN
MATCH_MP_TAC SELECT_AX THEN
EXISTS_TAC "v:num#num" THEN
MATCH_ACCEPT_TAC TINT_EQ_REFL);;
map (load_definition `-`) [`int_0`; `int_1`; `int_add`; `int_lt`];;
let NUM_LEMMA = prove_thm(`NUM_LEMMA`,
"!i. &0 <= i ==> ?n. i = mk_int($tint_eq (n,0))",
GEN_TAC THEN
X_CHOOSE_THEN "m:num" (X_CHOOSE_THEN "n:num" SUBST1_TAC)
(SPEC "i:int" INT_DECOMPOSE) THEN
REWRITE_TAC[GSYM INT_0; int_lt; int_0; int_le; tint_lt] THEN
REWRITE_TAC[DEST_MK_EQCLASS] THEN
DISCH_TAC THEN EXISTS_TAC "m num_sub n" THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM TINT_EQ_EQUIV; tint_eq] THEN
REWRITE_TAC[ADD_CLAUSES] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC SUB_ADD THEN POP_ASSUM MP_TAC THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[GSYM NOT_LESS] THEN
DISCH_TAC THEN
SUBGOAL_THEN "$@($tint_eq(m,n)) tint_eq (m,n) /\
$@($tint_eq tint_0) tint_eq (1,1)"
(\th. REWRITE_TAC[MATCH_MP TINT_LT_WELLDEF th])
THENL [REWRITE_TAC[REP_EQCLASS; tint_0]; ALL_TAC] THEN
REWRITE_TAC[tint_lt] THEN
GEN_REWRITE_TAC RAND_CONV [] [ADD_SYM] THEN
ASM_REWRITE_TAC[LESS_MONO_ADD_EQ]);;
let NUM_DECOMPOSE = prove_thm(`NUM_DECOMPOSE`,
"!n. &n = mk_int($tint_eq (n,0))",
INDUCT_TAC THEN REWRITE_TAC[int_of_num; int_0; tint_0] THENL
[AP_TERM_TAC THEN REWRITE_TAC[GSYM TINT_EQ_EQUIV; tint_eq; ADD_CLAUSES];
ASM_REWRITE_TAC[int_1; int_add; tint_1] THEN
AP_TERM_TAC THEN REWRITE_TAC[GSYM TINT_EQ_EQUIV; DEST_MK_EQCLASS] THEN
REWRITE_TAC[TINT_EQ_EQUIV] THEN
SUBGOAL_THEN "$@($tint_eq(n,0)) tint_eq (n,0) /\
$@($tint_eq(1 num_add 1,1)) tint_eq (1 num_add 1,1)"
(\th. REWRITE_TAC[REWRITE_RULE[TINT_EQ_EQUIV]
(MATCH_MP TINT_ADD_WELLDEF th)])
THENL [REWRITE_TAC[REP_EQCLASS; tint_0]; ALL_TAC] THEN
REWRITE_TAC[tint_add; GSYM TINT_EQ_EQUIV; tint_eq] THEN
REWRITE_TAC[num_CONV "1"; ADD_CLAUSES]]);;
let NUM_POSINT = prove_thm(`NUM_POSINT`,
"!i. &0 <= i ==> ?!n. i = &n",
GEN_TAC THEN DISCH_TAC THEN
CONV_TAC EXISTS_UNIQUE_CONV THEN
CONJ_TAC THENL
[ALL_TAC;
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC RAND_CONV [] [GSYM INT_INJ] THEN
DISCH_THEN(CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
REFL_TAC] THEN
POP_ASSUM(\th. X_CHOOSE_THEN "n:num" SUBST1_TAC (MATCH_MP NUM_LEMMA th)) THEN
EXISTS_TAC "n:num" THEN REWRITE_TAC[NUM_DECOMPOSE]);;
%----------------------------------------------------------------------------%
% Theorems about mapping both ways between :num and :int %
%----------------------------------------------------------------------------%
let Num = new_definition(`Num`,
"Num i = @n. i = &n");;
let NUM_OF_INT = prove_thm(`NUM_OF_INT`,
"!n. Num(&n) = n",
GEN_TAC THEN REWRITE_TAC[Num; INT_INJ] THEN
CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
REWRITE_TAC[SELECT_REFL]);;
let INT_OF_NUM = prove_thm(`INT_OF_NUM`,
"!i. (&(Num i) = i) = &0 <= i",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_ACCEPT_TAC INT_POS;
DISCH_THEN(ASSUME_TAC o EXISTENCE o MATCH_MP NUM_POSINT) THEN
REWRITE_TAC[Num] THEN CONV_TAC SYM_CONV THEN
MP_TAC(ISPEC "\n. i = &n" SELECT_AX) THEN
BETA_TAC THEN DISCH_THEN MATCH_MP_TAC THEN
POP_ASSUM ACCEPT_TAC]);;
close_theory();;
|