This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/int/int.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
%============================================================================%
% Theory of integers.                                                        %
%                                                                            %
% The integers are constructed as equivalence classes of pairs of integers   %
% using the quotient type procedure in "equiv.ml".                           %
%                                                                            %
% This theory was constructed for use in the HOL-ELLA system, using many of  %
% the principles, and some of the code, used in the reals library. It is my  %
% eventual intention to produce a more unified library of number systems.    %
%============================================================================%

can unlink `INT.th`;;

new_theory `INT`;;

loadt `useful`;;

loadt `equiv`;;

%----------------------------------------------------------------------------%
% Required lemmas about the natural numbers - mostly to drive CANCEL_TAC     %
%----------------------------------------------------------------------------%

let EQ_LADD = prove_thm(`EQ_LADD`,
  "!x y z. (x + y = x + z) = (y = z)",
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  MATCH_ACCEPT_TAC EQ_MONO_ADD_EQ);;

let EQ_ADDL = prove_thm(`EQ_ADDL`,
  "!x y. (x = x + y) = (y = 0)",
  REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV SYM_CONV) THEN
  MATCH_ACCEPT_TAC ADD_INV_0_EQ);;

let LT_LADD = prove_thm(`LT_LADD`,
  "!x y z. (x + y) < (x + z) = y < z",
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  MATCH_ACCEPT_TAC LESS_MONO_ADD_EQ);;

let LT_ADDL = prove_thm(`LT_ADDL`,
  "!x y. x < (x + y) = 0 < y",
  REPEAT GEN_TAC THEN
  MP_TAC(SPECL ["x:num"; "0"; "y:num"] LT_LADD) THEN
  REWRITE_TAC[ADD_CLAUSES]);;

let LT_ADDR = prove_thm(`LT_ADDR`,
  "!x y. ~((x + y) < x)",
  REPEAT GEN_TAC THEN
  DISCH_THEN(CHOOSE_THEN MP_TAC o MATCH_MP LESS_ADD_1) THEN
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
  REWRITE_TAC[GSYM ADD_ASSOC; ADD_INV_0_EQ] THEN
  REWRITE_TAC[GSYM ADD1; ADD_CLAUSES; NOT_SUC]);;

let LT_ADD2 = prove_thm(`LT_ADD2`,
  "!x1 x2 y1 y2. x1 < y1 /\ x2 < y2 ==> (x1 + x2) < (y1 + y2)",
  REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN(CHOOSE_TAC o MATCH_MP LESS_ADD_1)) THEN
  ASM_REWRITE_TAC[GSYM ADD1] THEN
  ONCE_REWRITE_TAC[AC(ADD_ASSOC,ADD_SYM)
    "(a + b) + (c + d) = (a + c) + (b + d)"] THEN
  REWRITE_TAC[LT_ADDL] THEN
  REWRITE_TAC[ADD_CLAUSES; LESS_0]);;

%----------------------------------------------------------------------------%
% CANCEL_CONV - Try to cancel, rearranging using AC laws as needed           %
%                                                                            %
% The first two arguments are the associative and commutative laws, as       %
% given to AC_CONV. The remaining list of theorems should be of the form:    %
%                                                                            %
% |- (a & b ~ a & c) = w (e.g. b ~ c)                                        %
% |-    (a & b ~ a)  = x (e.g. F)                                            %
% |-     (a ~ a & c) = y (e.g. T)                                            %
% |-         (a ~ a) = z (e.g. F)                                            %
%                                                                            %
% For some operator (written as infix &) and relation (~).                   %
%                                                                            %
% Theorems may be of the form |- ~ P or |- P, rather that equations; they    %
% will be transformed to |- P = F and |- P = T automatically if needed.      %
%                                                                            %
% Note that terms not cancelled will remain in their original order, but     %
% will be flattened to right-associated form.                                %
%----------------------------------------------------------------------------%

let CANCEL_CONV(assoc,sym,lcancelthms) tm =
  (let lcthms = map ((\th. (assert (is_eq o concl)) th ?
                    EQF_INTRO th ? EQT_INTRO th) o SPEC_ALL) lcancelthms in
   let [eqop; binop] = map
     (rator o rator o lhs o snd o strip_forall o concl) [hd lcthms; sym] in
   letrec strip_binop tm =
     if (rator(rator tm) = binop ? false) then
       (strip_binop (rand(rator tm))) @ (strip_binop(rand tm))
     else [tm] in
   let mk_binop = ((curry mk_comb) o (curry mk_comb binop)) in
   let list_mk_binop = end_itlist mk_binop in
   letrec rmel i l = if (l = []) then [] else
     let h.t = l in (i = h) => t | h.(rmel i t) in
   let (_,[l1;r1]) = (assert (curry$= eqop) # I) (strip_comb tm) in
   let [l; r] = map strip_binop [l1; r1] in
   let i = intersect l r in
   if i = [] then fail else
     let itm = list_mk_binop i in
     let [l'; r'] = map (end_itlist (C (curry $o)) (map rmel i)) [l; r] in
     let [l2; r2] = map (\ts. mk_binop itm (list_mk_binop ts) ? itm) [l';r'] in
     let [le; re] = map (EQT_ELIM o AC_CONV(assoc,sym) o mk_eq)[l1,l2;r1,r2] in
     let eqv = MK_COMB(AP_TERM eqop le,re) in
     CONV_RULE(RAND_CONV(end_itlist $ORELSEC (map REWR_CONV lcthms))) eqv)
  ? failwith `CANCEL_CONV`;;

%----------------------------------------------------------------------------%
% Tactic to do all the obvious simplifications via cancellation etc.         %
%----------------------------------------------------------------------------%

let CANCEL_TAC = (C $THEN (PURE_REWRITE_TAC
      (filter($not o can (find_term is_pair o concl)) basic_rewrites)) o
     CONV_TAC o ONCE_DEPTH_CONV o end_itlist $ORELSEC) (map CANCEL_CONV
 [(ADD_ASSOC,ADD_SYM,
   [EQ_LADD; EQ_ADDL; ADD_INV_0_EQ; EQ_SYM_EQ]);
  (ADD_ASSOC,ADD_SYM,
   [LT_LADD; LT_ADDL; LT_ADDR; LESS_REFL])]);;

%----------------------------------------------------------------------------%
% Define operations on representatives.                                      %
%----------------------------------------------------------------------------%

let tint_0 = new_definition(`tint_0`,
  "tint_0 = (1,1)");;

let tint_1 = new_definition(`tint_1`,
  "tint_1 = (1 + 1,1)");;

let tint_neg = new_definition(`tint_neg`,
  "tint_neg (x:num,y:num) = (y,x)");;

let tint_add = new_infix_definition(`tint_add`,
  "$tint_add (x1,y1) (x2,y2) = (x1 + x2, y1 + y2)");;

let tint_mul = new_infix_definition(`tint_mul`,
  "$tint_mul (x1,y1) (x2,y2) = ((x1 * x2) + (y1 * y2),
                                (x1 * y2) + (y1 * x2))");;

let tint_lt = new_infix_definition(`tint_lt`,
  "$tint_lt (x1,y1) (x2,y2) = (x1 + y2) < (x2 + y1)");;

%----------------------------------------------------------------------------%
% Define the equivalence relation and prove it *is* one                      %
%----------------------------------------------------------------------------%

let tint_eq = new_infix_definition(`tint_eq`,
  "$tint_eq (x1,y1) (x2,y2) = x1 + y2 = x2 + y1");;

let TINT_EQ_REFL = prove_thm(`TINT_EQ_REFL`,
  "!x. x tint_eq x",
  GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_eq] THEN REFL_TAC);;

let TINT_EQ_SYM = prove_thm(`TINT_EQ_SYM`,
  "!x y. x tint_eq y = y tint_eq x",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_eq] THEN
  CONV_TAC(RAND_CONV SYM_CONV) THEN REFL_TAC);;

let TINT_EQ_TRANS = prove_thm(`TINT_EQ_TRANS`,
  "!x y z. x tint_eq y /\ y tint_eq z ==> x tint_eq z",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_eq] THEN
  DISCH_THEN(MP_TAC o MK_COMB o (AP_TERM "$+" # I) o CONJ_PAIR) THEN
  CANCEL_TAC THEN DISCH_THEN SUBST1_TAC THEN CANCEL_TAC);;

let TINT_EQ_EQUIV = prove_thm(`TINT_EQ_EQUIV`,
  "!p q. p tint_eq q = ($tint_eq p = $tint_eq q)",
  REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
  CONV_TAC (ONCE_DEPTH_CONV (X_FUN_EQ_CONV "r:num#num")) THEN EQ_TAC THENL
     [DISCH_THEN(MP_TAC o SPEC "q:num#num") THEN REWRITE_TAC[TINT_EQ_REFL];
      DISCH_TAC THEN GEN_TAC THEN EQ_TAC THENL
       [RULE_ASSUM_TAC(ONCE_REWRITE_RULE[TINT_EQ_SYM]); ALL_TAC] THEN
      POP_ASSUM(\th. DISCH_THEN(MP_TAC o CONJ th)) THEN
      MATCH_ACCEPT_TAC TINT_EQ_TRANS]);;

let TINT_EQ_AP = prove_thm(`TINT_EQ_AP`,
  "!p q. (p = q) ==> p tint_eq q",
  REPEAT GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
  MATCH_ACCEPT_TAC TINT_EQ_REFL);;

%----------------------------------------------------------------------------%
% Prove the properties of representatives                                    %
%----------------------------------------------------------------------------%

let TINT_10 = prove_thm(`TINT_10`,
  "~(tint_1 tint_eq tint_0)",
  REWRITE_TAC[tint_1; tint_0; tint_eq] THEN
  REWRITE_TAC[GSYM ADD_ASSOC; ADD_INV_0_EQ] THEN
  REWRITE_TAC[num_CONV "1"; NOT_SUC]);;

let TINT_ADD_SYM = prove_thm(`TINT_ADD_SYM`,
  "!x y. x tint_add y = y tint_add x",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_add] THEN
  GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] THEN
  REFL_TAC);;

let TINT_MUL_SYM = prove_thm(`TINT_MUL_SYM`,
  "!x y. x tint_mul y = y tint_mul x",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_mul] THEN
  GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [] [MULT_SYM] THEN
  REWRITE_TAC[PAIR_EQ] THEN MATCH_ACCEPT_TAC ADD_SYM);;

let TINT_ADD_ASSOC = prove_thm(`TINT_ADD_ASSOC`,
  "!x y z. x tint_add (y tint_add z) = (x tint_add y) tint_add z",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_add] THEN
  REWRITE_TAC[ADD_ASSOC]);;

let TINT_MUL_ASSOC = prove_thm(`TINT_MUL_ASSOC`,
  "!x y z. x tint_mul (y tint_mul z) = (x tint_mul y) tint_mul z",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_mul] THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; PAIR_EQ; GSYM MULT_ASSOC]
  THEN CONJ_TAC THEN CANCEL_TAC);;

let TINT_LDISTRIB = prove_thm(`TINT_LDISTRIB`,
  "!x y z. x tint_mul (y tint_add z) =
       (x tint_mul y) tint_add (x tint_mul z)",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_mul; tint_add] THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; PAIR_EQ] THEN
  CONJ_TAC THEN CANCEL_TAC);;

let TINT_ADD_LID = prove_thm(`TINT_ADD_LID`,
  "!x. (tint_0 tint_add x) tint_eq x",
  GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_0; tint_add; tint_eq] THEN
  CANCEL_TAC);;

let TINT_MUL_LID = prove_thm(`TINT_MUL_LID`,
  "!x. (tint_1 tint_mul x) tint_eq x",
  GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_1; tint_mul; tint_eq] THEN
  REWRITE_TAC[MULT_CLAUSES; LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
  CANCEL_TAC);;

let TINT_ADD_LINV = prove_thm(`TINT_ADD_LINV`,
  "!x. ((tint_neg x) tint_add x) tint_eq tint_0",
  GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_neg; tint_add; tint_eq; tint_0]
  THEN CANCEL_TAC);;

let TINT_LT_TOTAL = prove_thm(`TINT_LT_TOTAL`,
  "!x y. x tint_eq y \/ x tint_lt y \/ y tint_lt x",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt; tint_eq] THEN
  MP_TAC(SPECL ["FST(x:num#num) + SND(y:num#num)";
                "FST(y:num#num) + SND(x:num#num)"] LESS_CASES) THEN
  DISCH_THEN DISJ_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[LESS_OR_EQ]) THEN
  POP_ASSUM DISJ_CASES_TAC THEN ASM_REWRITE_TAC[]);;

let TINT_LT_REFL = prove_thm(`TINT_LT_REFL`,
  "!x. ~(x tint_lt x)",
  GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt] THEN
  MATCH_ACCEPT_TAC LESS_REFL);;

let TINT_LT_TRANS = prove_thm(`TINT_LT_TRANS`,
  "!x y z. x tint_lt y /\ y tint_lt z ==> x tint_lt z",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt] THEN
  DISCH_THEN(MP_TAC o MATCH_MP LT_ADD2) THEN CANCEL_TAC THEN
  DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [] [ADD_SYM] THEN
  POP_ASSUM ACCEPT_TAC);;

let TINT_LT_ADD = prove_thm(`TINT_LT_ADD`,
  "!x y z. (y tint_lt z) ==> (x tint_add y) tint_lt (x tint_add z)",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt; tint_add] THEN
  CANCEL_TAC);;

let TINT_LT_MUL = prove_thm(`TINT_LT_MUL`,
  "!x y. tint_0 tint_lt x /\ tint_0 tint_lt y ==>
            tint_0 tint_lt (x tint_mul y)",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_0; tint_lt; tint_mul] THEN
  CANCEL_TAC THEN DISCH_THEN(CONJUNCTS_THEN
   (CHOOSE_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1)) THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN CANCEL_TAC THEN
  REWRITE_TAC[num_CONV "1"; MULT_CLAUSES; ADD_CLAUSES; LESS_0]);;

%----------------------------------------------------------------------------%
% Prove that the operations on representatives are well-defined              %
%----------------------------------------------------------------------------%

let TINT_NEG_WELLDEF = prove_thm(`TINT_NEG_WELLDEF`,
  "!x1 x2. x1 tint_eq x2 ==> (tint_neg x1) tint_eq (tint_neg x2)",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_neg; tint_eq] THEN
  DISCH_THEN($THEN (ONCE_REWRITE_TAC[ADD_SYM]) o SUBST1_TAC) THEN
  REFL_TAC);;

let TINT_ADD_WELLDEFR = prove_thm(`TINT_ADD_WELLDEFR`,
  "!x1 x2 y. x1 tint_eq x2 ==> (x1 tint_add y) tint_eq (x2 tint_add y)",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_add; tint_eq] THEN
  CANCEL_TAC);;

let TINT_ADD_WELLDEF = prove_thm(`TINT_ADD_WELLDEF`,
  "!x1 x2 y1 y2. x1 tint_eq x2 /\ y1 tint_eq y2 ==>
     (x1 tint_add y1) tint_eq (x2 tint_add y2)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC TINT_EQ_TRANS THEN EXISTS_TAC "x1 tint_add y2" THEN
  CONJ_TAC THENL [ONCE_REWRITE_TAC[TINT_ADD_SYM]; ALL_TAC] THEN
  MATCH_MP_TAC TINT_ADD_WELLDEFR THEN ASM_REWRITE_TAC[]);;

let TINT_MUL_WELLDEFR = prove_thm(`TINT_MUL_WELLDEFR`,
  "!x1 x2 y. x1 tint_eq x2 ==> (x1 tint_mul y) tint_eq (x2 tint_mul y)",
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_mul; tint_eq] THEN
  ONCE_REWRITE_TAC[AC(ADD_ASSOC,ADD_SYM)
    "(a + b) + (c + d) =
     (a + d) + (b + c)"] THEN
  REWRITE_TAC[GSYM RIGHT_ADD_DISTRIB] THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN POP_ASSUM SUBST1_TAC THEN REFL_TAC);;

let TINT_MUL_WELLDEF = prove_thm(`TINT_MUL_WELLDEF`,
  "!x1 x2 y1 y2. x1 tint_eq x2 /\ y1 tint_eq y2 ==>
     (x1 tint_mul y1) tint_eq (x2 tint_mul y2)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC TINT_EQ_TRANS THEN EXISTS_TAC "x1 tint_mul y2" THEN
  CONJ_TAC THENL [ONCE_REWRITE_TAC[TINT_MUL_SYM]; ALL_TAC] THEN
  MATCH_MP_TAC TINT_MUL_WELLDEFR THEN ASM_REWRITE_TAC[]);;

let TINT_LT_WELLDEFR = prove_thm(`TINT_LT_WELLDEFR`,
  "!x1 x2 y. x1 tint_eq x2 ==> (x1 tint_lt y = x2 tint_lt y)",
  let mkc v tm = SYM(SPECL (v.snd(strip_comb tm)) LT_LADD) in
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt; tint_eq] THEN
  DISCH_TAC THEN CONV_TAC(RAND_CONV(mkc "SND (x1:num#num)")) THEN
  CONV_TAC(LAND_CONV(mkc "SND (x2:num#num)")) THEN
  ONCE_REWRITE_TAC[AC(ADD_ASSOC,ADD_SYM)
    "a + (b + c) = (b + a) + c"] THEN
  POP_ASSUM SUBST1_TAC THEN CANCEL_TAC);;

let TINT_LT_WELLDEFL = prove_thm(`TINT_LT_WELLDEFL`,
  "!x y1 y2. y1 tint_eq y2 ==> (x tint_lt y1 = x tint_lt y2)",
  let mkc v tm = SYM(SPECL (v.snd(strip_comb tm)) LT_LADD) in
  REPEAT GEN_PAIR_TAC THEN PURE_REWRITE_TAC[tint_lt; tint_eq] THEN
  DISCH_TAC THEN CONV_TAC(RAND_CONV(mkc "FST (y1:num#num)")) THEN
  CONV_TAC(LAND_CONV(mkc "FST (y2:num#num)")) THEN
  ONCE_REWRITE_TAC[AC(ADD_ASSOC,ADD_SYM)
    "a + (b + c) = (a + c) + b"] THEN
  POP_ASSUM SUBST1_TAC THEN CANCEL_TAC THEN AP_TERM_TAC THEN CANCEL_TAC);;

let TINT_LT_WELLDEF = prove_thm(`TINT_LT_WELLDEF`,
  "!x1 x2 y1 y2. x1 tint_eq x2 /\ y1 tint_eq y2 ==>
     (x1 tint_lt y1 = x2 tint_lt y2)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC "x1 tint_lt y2" THEN CONJ_TAC THENL
   [MATCH_MP_TAC TINT_LT_WELLDEFL; MATCH_MP_TAC TINT_LT_WELLDEFR] THEN
  ASM_REWRITE_TAC[]);;

%----------------------------------------------------------------------------%
% Now define the functions over the equivalence classes                      %
%----------------------------------------------------------------------------%

let [INT_10; INT_ADD_SYM; INT_MUL_SYM;
     INT_ADD_ASSOC; INT_MUL_ASSOC; INT_LDISTRIB;
     INT_ADD_LID; INT_MUL_LID; INT_ADD_LINV;
     INT_LT_TOTAL; INT_LT_REFL; INT_LT_TRANS;
     INT_LT_LADD_IMP; INT_LT_MUL] =
  define_equivalence_type `int` TINT_EQ_EQUIV
    [("tint_0",         `int_0`,        false);
     ("tint_1",         `int_1`,        false);
     ("tint_neg",       `int_neg`,      false);
     ("$tint_add",      `int_add`,      true);
     ("$tint_mul",      `int_mul`,      true);
     ("$tint_lt",       `int_lt`,       true)]
    [TINT_NEG_WELLDEF; TINT_LT_WELLDEF; TINT_ADD_WELLDEF; TINT_MUL_WELLDEF]
    ([TINT_10] @
     (map (GEN_ALL o MATCH_MP TINT_EQ_AP o SPEC_ALL)
       [TINT_ADD_SYM; TINT_MUL_SYM; TINT_ADD_ASSOC;
        TINT_MUL_ASSOC; TINT_LDISTRIB]) @
      [TINT_ADD_LID; TINT_MUL_LID; TINT_ADD_LINV;
       TINT_LT_TOTAL; TINT_LT_REFL; TINT_LT_TRANS;
       TINT_LT_ADD; TINT_LT_MUL]);;

let int_tybij = definition `-` `int_tybij`;;

%----------------------------------------------------------------------------%
% Define subtraction and the other orderings                                 %
%----------------------------------------------------------------------------%

let int_sub = new_infix_definition(`int_sub`,
  "$int_sub x y = x int_add (int_neg y)");;

let int_le = new_infix_definition(`int_le`,
  "$int_le x y = ~(y int_lt x)");;

let int_gt = new_infix_definition(`int_gt`,
  "$int_gt x y = y int_lt x");;

let int_ge = new_infix_definition(`int_ge`,
  "$int_ge x y = y int_le x");;

%----------------------------------------------------------------------------%
% Now define the inclusion homomorphism int_of_num:num->int.                 %
%----------------------------------------------------------------------------%

let int_of_num = new_prim_rec_definition(`int_of_num`,
  "(int_of_num 0 = int_0) /\
   (int_of_num (SUC n) = (int_of_num n) int_add int_1)");;

let INT_0 = prove_thm(`INT_0`,
  "int_0 = int_of_num 0",
  REWRITE_TAC[int_of_num]);;

let INT_1 = prove_thm(`INT_1`,
  "int_1 = int_of_num 1",
  REWRITE_TAC[num_CONV "1"; int_of_num; INT_ADD_LID]);;

%----------------------------------------------------------------------------%
% Set up a nice interface map. Use & for the inclusion homomorphism; adjust  %
% theorems retrospectively to use &n as "notation" for int constants.       %
%----------------------------------------------------------------------------%

new_special_symbol `--`;;

set_interface_map
[               `--`,`int_neg`;
 `num_add`,`+`;  `+`,`int_add`;
 `num_mul`,`*`;  `*`,`int_mul`;
 `num_sub`,`-`;  `-`,`int_sub`;
 `num_lt`,`<` ;  `<`,`int_lt`;
 `num_le`,`<=`; `<=`,`int_le`;
 `num_gt`,`>` ;  `>`,`int_gt`;
 `num_ge`,`>=`; `>=`,`int_ge`;
                 `&`,`int_of_num`];;

let reeducate (s,t) = save_thm(s,REWRITE_RULE[INT_0; INT_1] t);;

let thlist =
 [`INT_10`,INT_10;
  `INT_ADD_SYM`,INT_ADD_SYM;
  `INT_MUL_SYM`,INT_MUL_SYM;
  `INT_ADD_ASSOC`,INT_ADD_ASSOC;
  `INT_MUL_ASSOC`,INT_MUL_ASSOC;
  `INT_ADD_LID`,INT_ADD_LID;
  `INT_MUL_LID`,INT_MUL_LID;
  `INT_ADD_LINV`,INT_ADD_LINV;
  `INT_LDISTRIB`,INT_LDISTRIB;
  `INT_LT_TOTAL`,INT_LT_TOTAL;
  `INT_LT_REFL`,INT_LT_REFL;
  `INT_LT_TRANS`,INT_LT_TRANS;
  `INT_LT_LADD_IMP`,INT_LT_LADD_IMP;
  `INT_LT_MUL`,INT_LT_MUL] in

do (map reeducate thlist; map (load_theorem `-` o fst) thlist);;

%----------------------------------------------------------------------------%
% Prove lots of boring field theorems                                        %
%----------------------------------------------------------------------------%

let INT_ADD_RID = prove_thm(`INT_ADD_RID`,
  "!x. x + &0 = x",
  GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_ADD_LID);;

let INT_ADD_RINV = prove_thm(`INT_ADD_RINV`,
  "!x. x + (--x) = &0",
  GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_ADD_LINV);;

let INT_MUL_RID = prove_thm(`INT_MUL_RID`,
  "!x. x * &1 = x",
  GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
  MATCH_ACCEPT_TAC INT_MUL_LID);;

let INT_RDISTRIB = prove_thm(`INT_RDISTRIB`,
  "!x y z. (x + y) * z = (x * z) + (y * z)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
  MATCH_ACCEPT_TAC INT_LDISTRIB);;

let INT_EQ_LADD = prove_thm(`INT_EQ_LADD`,
  "!x y z. (x + y = x + z) = (y = z)",
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o AP_TERM "$+ (-- x)") THEN
    REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID];
    DISCH_THEN SUBST1_TAC THEN REFL_TAC]);;

let INT_EQ_RADD = prove_thm(`INT_EQ_RADD`,
  "!x y z. (x + z = y + z) = (x = y)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_EQ_LADD);;

let INT_ADD_LID_UNIQ = prove_thm(`INT_ADD_LID_UNIQ`,
  "!x y. (x + y = y) = (x = &0)",
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [] [GSYM INT_ADD_LID]
  THEN MATCH_ACCEPT_TAC INT_EQ_RADD);;

let INT_ADD_RID_UNIQ = prove_thm(`INT_ADD_RID_UNIQ`,
  "!x y. (x + y = x) = (y = &0)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_ADD_LID_UNIQ);;

let INT_LNEG_UNIQ = prove_thm(`INT_LNEG_UNIQ`,
  "!x y. (x + y = &0) = (x = --y)",
  REPEAT GEN_TAC THEN SUBST1_TAC (SYM(SPEC "y:int" INT_ADD_LINV)) THEN
  MATCH_ACCEPT_TAC INT_EQ_RADD);;

let INT_RNEG_UNIQ = prove_thm(`INT_RNEG_UNIQ`,
  "!x y. (x + y = &0) = (y = --x)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_LNEG_UNIQ);;

let INT_NEG_ADD = prove_thm(`INT_NEG_ADD`,
  "!x y. --(x + y) = (--x) + (--y)",
  REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
  REWRITE_TAC[GSYM INT_LNEG_UNIQ] THEN
  ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
    "(a + b) + (c + d) = (a + c) + (b + d)"] THEN
  REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID]);;

let INT_MUL_LZERO = prove_thm(`INT_MUL_LZERO`,
  "!x. &0 * x = &0",
  GEN_TAC THEN SUBST1_TAC(SYM(SPECL ["&0 * x"; "&0 * x"] INT_ADD_LID_UNIQ))
  THEN REWRITE_TAC[GSYM INT_RDISTRIB; INT_ADD_LID]);;

let INT_MUL_RZERO = prove_thm(`INT_MUL_RZERO`,
  "!x. x * &0 = &0",
  GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
  MATCH_ACCEPT_TAC INT_MUL_LZERO);;

let INT_NEG_LMUL = prove_thm(`INT_NEG_LMUL`,
  "!x y. --(x * y) = (--x) * y",
  REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
  REWRITE_TAC[GSYM INT_LNEG_UNIQ; GSYM INT_RDISTRIB;
              INT_ADD_LINV; INT_MUL_LZERO]);;

let INT_NEG_RMUL = prove_thm(`INT_NEG_RMUL`,
  "!x y. --(x * y) = x * (--y)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
  MATCH_ACCEPT_TAC INT_NEG_LMUL);;

let INT_NEGNEG = prove_thm(`INT_NEGNEG`,
  "!x. --(--x) = x",
  GEN_TAC THEN CONV_TAC SYM_CONV THEN
  REWRITE_TAC[GSYM INT_LNEG_UNIQ; INT_ADD_RINV]);;

let INT_NEG_MUL2 = prove_thm(`INT_NEG_MUL2`,
  "!x y. (--x) * (--y) = x * y",
  REWRITE_TAC[GSYM INT_NEG_LMUL; GSYM INT_NEG_RMUL; INT_NEGNEG]);;

let INT_LT_LADD = prove_thm(`INT_LT_LADD`,
  "!x y z. (x + y) < (x + z) = y < z",
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o SPEC "--x" o MATCH_MP INT_LT_LADD_IMP) THEN
    REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID];
    MATCH_ACCEPT_TAC INT_LT_LADD_IMP]);;

let INT_LT_RADD = prove_thm(`INT_LT_RADD`,
  "!x y z. (x + z) < (y + z) = x < y",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_LT_LADD);;

let INT_NOT_LT = prove_thm(`INT_NOT_LT`,
  "!x y. ~(x < y) = y <= x",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_le]);;

let INT_LT_ANTISYM = prove_thm(`INT_LT_ANTISYM`,
  "!x y. ~(x < y /\ y < x)",
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INT_LT_TRANS) THEN
  REWRITE_TAC[INT_LT_REFL]);;

let INT_LT_GT = prove_thm(`INT_LT_GT`,
  "!x y. x < y ==> ~(y < x)",
  REPEAT GEN_TAC THEN
  DISCH_THEN(\th. DISCH_THEN(MP_TAC o CONJ th)) THEN
  REWRITE_TAC[INT_LT_ANTISYM]);;

let INT_NOT_LE = prove_thm(`INT_NOT_LE`,
  "!x y. ~(x <= y) = y < x",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_le]);;

let INT_LE_TOTAL = prove_thm(`INT_LE_TOTAL`,
  "!x y. x <= y \/ y <= x",
  REPEAT GEN_TAC THEN
  REWRITE_TAC[int_le; GSYM DE_MORGAN_THM; INT_LT_ANTISYM]);;

let INT_LET_TOTAL = prove_thm(`INT_LET_TOTAL`,
  "!x y. x <= y \/ y < x",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
  BOOL_CASES_TAC "y < x" THEN REWRITE_TAC[]);;

let INT_LTE_TOTAL = prove_thm(`INT_LTE_TOTAL`,
  "!x y. x < y \/ y <= x",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
  BOOL_CASES_TAC "x < y" THEN REWRITE_TAC[]);;

let INT_LE_REFL = prove_thm(`INT_LE_REFL`,
  "!x. x <= x",
  GEN_TAC THEN REWRITE_TAC[int_le; INT_LT_REFL]);;

let INT_LE_LT = prove_thm(`INT_LE_LT`,
  "!x y. x <= y = x < y \/ (x = y)",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN EQ_TAC THENL
   [REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
     (SPECL ["x:int"; "y:int"] INT_LT_TOTAL) THEN ASM_REWRITE_TAC[];
    DISCH_THEN(DISJ_CASES_THEN2
     ($THEN (MATCH_MP_TAC INT_LT_GT) o ACCEPT_TAC) SUBST1_TAC) THEN
    MATCH_ACCEPT_TAC INT_LT_REFL]);;

let INT_LT_LE = prove_thm(`INT_LT_LE`,
  "!x y. x < y = x <= y /\ ~(x = y)",
  let lemma = TAUT_CONV "~(a /\ ~a)" in
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT; RIGHT_AND_OVER_OR; lemma]
  THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  POP_ASSUM MP_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[INT_LT_REFL]);;

let INT_LT_IMP_LE = prove_thm(`INT_LT_IMP_LE`,
  "!x y. x < y ==> x <= y",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[INT_LE_LT]);;

let INT_LTE_TRANS = prove_thm(`INT_LTE_TRANS`,
  "!x y z. x < y /\ y <= z ==> x < z",
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT; LEFT_AND_OVER_OR] THEN
  DISCH_THEN(DISJ_CASES_THEN2 (ACCEPT_TAC o MATCH_MP INT_LT_TRANS)
    (CONJUNCTS_THEN2 MP_TAC SUBST1_TAC)) THEN REWRITE_TAC[]);;

let INT_LET_TRANS = prove_thm(`INT_LET_TRANS`,
  "!x y z. x <= y /\ y < z ==> x < z",
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT; RIGHT_AND_OVER_OR] THEN
  DISCH_THEN(DISJ_CASES_THEN2 (ACCEPT_TAC o MATCH_MP INT_LT_TRANS)
    (CONJUNCTS_THEN2 SUBST1_TAC ACCEPT_TAC)));;

let INT_LE_TRANS = prove_thm(`INT_LE_TRANS`,
  "!x y z. x <= y /\ y <= z ==> x <= z",
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [] [INT_LE_LT] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (DISJ_CASES_THEN2 ASSUME_TAC SUBST1_TAC))
  THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o C CONJ (ASSUME "y < z")) THEN
  DISCH_THEN(ACCEPT_TAC o MATCH_MP INT_LT_IMP_LE o MATCH_MP INT_LET_TRANS));;

let INT_LE_ANTISYM = prove_thm(`INT_LE_ANTISYM`,
  "!x y. x <= y /\ y <= x = (x = y)",
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [REWRITE_TAC[int_le] THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
      (SPECL ["x:int"; "y:int"] INT_LT_TOTAL) THEN
    ASM_REWRITE_TAC[];
    DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[INT_LE_REFL]]);;

let INT_LET_ANTISYM = prove_thm(`INT_LET_ANTISYM`,
  "!x y. ~(x < y /\ y <= x)",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
  BOOL_CASES_TAC "x < y" THEN REWRITE_TAC[]);;

let INT_LTE_ANTSYM = prove_thm(`INT_LTE_ANTSYM`,
  "!x y. ~(x <= y /\ y < x)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
  MATCH_ACCEPT_TAC INT_LET_ANTISYM);;

let INT_NEG_LT0 = prove_thm(`INT_NEG_LT0`,
  "!x. (--x) < &0 = &0 < x",
  GEN_TAC THEN SUBST1_TAC(SYM(SPECL ["--x"; "&0"; "x:int"] INT_LT_RADD)) THEN
  REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID]);;

let INT_NEG_GT0 = prove_thm(`INT_NEG_GT0`,
  "!x. &0 < (--x) = x < &0",
  GEN_TAC THEN REWRITE_TAC[GSYM INT_NEG_LT0; INT_NEGNEG]);;

let INT_NEG_LE0 = prove_thm(`INT_NEG_LE0`,
  "!x. (--x) <= &0 = &0 <= x",
  GEN_TAC THEN REWRITE_TAC[int_le] THEN
  REWRITE_TAC[INT_NEG_GT0]);;

let INT_NEG_GE0 = prove_thm(`INT_NEG_GE0`,
  "!x. &0 <= (--x) = x <= &0",
  GEN_TAC THEN REWRITE_TAC[int_le] THEN
  REWRITE_TAC[INT_NEG_LT0]);;

let INT_LT_NEGTOTAL = prove_thm(`INT_LT_NEGTOTAL`,
  "!x. (x = &0) \/ (&0 < x) \/ (&0 < --x)",
  GEN_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
   (SPECL ["x:int"; "&0"] INT_LT_TOTAL) THEN
  ASM_REWRITE_TAC[SYM(REWRITE_RULE[INT_NEGNEG] (SPEC "--x" INT_NEG_LT0))]);;

let INT_LE_NEGTOTAL = prove_thm(`INT_LE_NEGTOTAL`,
  "!x. &0 <= x \/ &0 <= --x",
  GEN_TAC THEN REWRITE_TAC[INT_LE_LT] THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC "x:int" INT_LT_NEGTOTAL) THEN
  ASM_REWRITE_TAC[]);;

let INT_LE_MUL = prove_thm(`INT_LE_MUL`,
  "!x y. &0 <= x /\ &0 <= y ==> &0 <= (x * y)",
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT] THEN
  MAP_EVERY ASM_CASES_TAC ["&0 = x"; "&0 = y"] THEN
  ASM_REWRITE_TAC[] THEN TRY(FIRST_ASSUM(SUBST1_TAC o SYM)) THEN
  REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO] THEN
  DISCH_TAC THEN DISJ1_TAC THEN MATCH_MP_TAC INT_LT_MUL THEN
  ASM_REWRITE_TAC[]);;

let INT_LE_SQUARE = prove_thm(`INT_LE_SQUARE`,
  "!x. &0 <= x * x",
  GEN_TAC THEN DISJ_CASES_TAC (SPEC "x:int" INT_LE_NEGTOTAL) THEN
  POP_ASSUM(MP_TAC o MATCH_MP INT_LE_MUL o W CONJ) THEN
  REWRITE_TAC[GSYM INT_NEG_RMUL; GSYM INT_NEG_LMUL; INT_NEGNEG]);;

let INT_LE_01 = prove_thm(`INT_LE_01`,
  "&0 <= &1",
  SUBST1_TAC(SYM(SPEC "&1" INT_MUL_LID)) THEN
  MATCH_ACCEPT_TAC INT_LE_SQUARE);;

let INT_LT_01 = prove_thm(`INT_LT_01`,
  "&0 < &1",
  REWRITE_TAC[INT_LT_LE; INT_LE_01] THEN
  CONV_TAC(RAND_CONV SYM_CONV) THEN
  REWRITE_TAC[INT_10]);;

let INT_LE_LADD = prove_thm(`INT_LE_LADD`,
  "!x y z. (x + y) <= (x + z) = y <= z",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
  AP_TERM_TAC THEN MATCH_ACCEPT_TAC INT_LT_LADD);;

let INT_LE_RADD = prove_thm(`INT_LE_RADD`,
  "!x y z. (x + z) <= (y + z) = x <= y",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_le] THEN
  AP_TERM_TAC THEN MATCH_ACCEPT_TAC INT_LT_RADD);;

let INT_LT_ADD2 = prove_thm(`INT_LT_ADD2`,
  "!w x y z. w < x /\ y < z ==> (w + y) < (x + z)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC INT_LT_TRANS THEN EXISTS_TAC "w + z" THEN
  ASM_REWRITE_TAC[INT_LT_LADD; INT_LT_RADD]);;

let INT_LE_ADD2 = prove_thm(`INT_LE_ADD2`,
  "!w x y z. w <= x /\ y <= z ==> (w + y) <= (x + z)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC "w + z" THEN
  ASM_REWRITE_TAC[INT_LE_LADD; INT_LE_RADD]);;

let INT_LE_ADD = prove_thm(`INT_LE_ADD`,
  "!x y. &0 <= x /\ &0 <= y ==> &0 <= (x + y)",
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INT_LE_ADD2) THEN
  REWRITE_TAC[INT_ADD_LID]);;

let INT_LT_ADD = prove_thm(`INT_LT_ADD`,
  "!x y. &0 < x /\ &0 < y ==> &0 < (x + y)",
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INT_LT_ADD2) THEN
  REWRITE_TAC[INT_ADD_LID]);;

let INT_LT_ADDNEG = prove_thm(`INT_LT_ADDNEG`,
  "!x y z. y < (x + (--z)) = (y + z) < x",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["y:int"; "x + (--z)"; "z:int"] INT_LT_RADD)) THEN
  REWRITE_TAC[GSYM INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_RID]);;

let INT_LT_ADDNEG2 = prove_thm(`INT_LT_ADDNEG2`,
  "!x y z. (x + (--y)) < z = x < (z + y)",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["x + (-- y)"; "z:int"; "y:int"] INT_LT_RADD)) THEN
  REWRITE_TAC[GSYM INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_RID]);;

let INT_LT_ADD1 = prove_thm(`INT_LT_ADD1`,
  "!x y. x <= y ==> x < (y + &1)",
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_LE_LT] THEN
  DISCH_THEN DISJ_CASES_TAC THENL
   [POP_ASSUM(MP_TAC o MATCH_MP INT_LT_ADD2 o C CONJ INT_LT_01) THEN
    REWRITE_TAC[INT_ADD_RID];
    POP_ASSUM SUBST1_TAC THEN
    GEN_REWRITE_TAC LAND_CONV [] [GSYM INT_ADD_RID] THEN
    REWRITE_TAC[INT_LT_LADD; INT_LT_01]]);;

let INT_SUB_ADD = prove_thm(`INT_SUB_ADD`,
  "!x y. (x - y) + y = x",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; GSYM INT_ADD_ASSOC;
    INT_ADD_LINV; INT_ADD_RID]);;

let INT_SUB_ADD2 = prove_thm(`INT_SUB_ADD2`,
  "!x y. y + (x - y) = x",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_SUB_ADD);;

let INT_SUB_REFL = prove_thm(`INT_SUB_REFL`,
  "!x. x - x = &0",
  GEN_TAC THEN REWRITE_TAC[int_sub; INT_ADD_RINV]);;

let INT_SUB_0 = prove_thm(`INT_SUB_0`,
  "!x y. (x - y = &0) = (x = y)",
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o C AP_THM "y:int" o AP_TERM "$+") THEN
    REWRITE_TAC[INT_SUB_ADD; INT_ADD_LID];
    DISCH_THEN SUBST1_TAC THEN MATCH_ACCEPT_TAC INT_SUB_REFL]);;

let INT_LE_DOUBLE = prove_thm(`INT_LE_DOUBLE`,
  "!x. &0 <= x + x = &0 <= x",
  GEN_TAC THEN EQ_TAC THENL
   [CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[INT_NOT_LE] THEN
    DISCH_THEN(MP_TAC o MATCH_MP INT_LT_ADD2 o W CONJ);
    DISCH_THEN(MP_TAC o MATCH_MP INT_LE_ADD2 o W CONJ)] THEN
  REWRITE_TAC[INT_ADD_LID]);;

let INT_LE_NEGL = prove_thm(`INT_LE_NEGL`,
  "!x. (--x <= x) = (&0 <= x)",
  GEN_TAC THEN SUBST1_TAC (SYM(SPECL ["x:int"; "--x"; "x:int"] INT_LE_LADD))
  THEN REWRITE_TAC[INT_ADD_RINV; INT_LE_DOUBLE]);;

let INT_LE_NEGR = prove_thm(`INT_LE_NEGR`,
  "!x. (x <= --x) = (x <= &0)",
  GEN_TAC THEN SUBST1_TAC(SYM(SPEC "x:int" INT_NEGNEG)) THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [] [INT_NEGNEG] THEN
  REWRITE_TAC[INT_LE_NEGL] THEN REWRITE_TAC[INT_NEG_GE0] THEN
  REWRITE_TAC[INT_NEGNEG]);;

let INT_NEG_EQ0 = prove_thm(`INT_NEG_EQ0`,
  "!x. (--x = &0) = (x = &0)",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o AP_TERM "$+ x");
    DISCH_THEN(MP_TAC o AP_TERM "$+ (--x)")] THEN
  REWRITE_TAC[INT_ADD_RINV; INT_ADD_LINV; INT_ADD_RID] THEN
  DISCH_THEN SUBST1_TAC THEN REFL_TAC);;

let INT_NEG_0 = prove_thm(`INT_NEG_0`,
  "--(&0) = &0",
  REWRITE_TAC[INT_NEG_EQ0]);;

let INT_NEG_SUB = prove_thm(`INT_NEG_SUB`,
  "!x y. --(x - y) = y - x",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEG_ADD; INT_NEGNEG] THEN
  MATCH_ACCEPT_TAC INT_ADD_SYM);;

let INT_SUB_LT = prove_thm(`INT_SUB_LT`,
  "!x y. &0 < x - y = y < x",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["&0"; "x - y"; "y:int"] INT_LT_RADD)) THEN
  REWRITE_TAC[INT_SUB_ADD; INT_ADD_LID]);;

let INT_SUB_LE = prove_thm(`INT_SUB_LE`,
  "!x y. &0 <= (x - y) = y <= x",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["&0"; "x - y"; "y:int"] INT_LE_RADD)) THEN
  REWRITE_TAC[INT_SUB_ADD; INT_ADD_LID]);;

let INT_ADD_SUB = prove_thm(`INT_ADD_SUB`,
  "!x y. (x + y) - x = y",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  REWRITE_TAC[int_sub; GSYM INT_ADD_ASSOC; INT_ADD_RINV; INT_ADD_RID]);;

let INT_SUB_LDISTRIB = prove_thm(`INT_SUB_LDISTRIB`,
  "!x y z. x * (y - z) = (x * y) - (x * z)",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_LDISTRIB; INT_NEG_RMUL]);;

let INT_SUB_RDISTRIB = prove_thm(`INT_SUB_RDISTRIB`,
  "!x y z. (x - y) * z = (x * z) - (y * z)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
  MATCH_ACCEPT_TAC INT_SUB_LDISTRIB);;

let INT_NEG_EQ = prove_thm(`INT_NEG_EQ`,
  "!x y. (--x = y) = (x = --y)",
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM); DISCH_THEN SUBST1_TAC] THEN
  REWRITE_TAC[INT_NEGNEG]);;

let INT_NEG_MINUS1 = prove_thm(`INT_NEG_MINUS1`,
  "!x. --x = (--(&1)) * x",
  GEN_TAC THEN REWRITE_TAC[GSYM INT_NEG_LMUL] THEN
  REWRITE_TAC[INT_MUL_LID]);;

let INT_LT_IMP_NE = prove_thm(`INT_LT_IMP_NE`,
  "!x y. x < y ==> ~(x = y)",
  REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
  REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
  REWRITE_TAC[INT_LT_REFL]);;

let INT_LE_ADDR = prove_thm(`INT_LE_ADDR`,
  "!x y. x <= x + y = &0 <= y",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["x:int"; "&0"; "y:int"] INT_LE_LADD)) THEN
  REWRITE_TAC[INT_ADD_RID]);;

let INT_LE_ADDL = prove_thm(`INT_LE_ADDL`,
  "!x y. y <= x + y = &0 <= x",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_LE_ADDR);;

let INT_LT_ADDR = prove_thm(`INT_LT_ADDR`,
  "!x y. x < x + y = &0 < y",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["x:int"; "&0"; "y:int"] INT_LT_LADD)) THEN
  REWRITE_TAC[INT_ADD_RID]);;

let INT_LT_ADDL = prove_thm(`INT_LT_ADDL`,
  "!x y. y < x + y = &0 < x",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_LT_ADDR);;

let INT_ENTIRE = prove_thm(`INT_ENTIRE`,
  "!x y. (x * y = &0) = (x = &0) \/ (y = &0)",
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[DE_MORGAN_THM] THEN
    STRIP_TAC THEN
    REPEAT_TCL DISJ_CASES_THEN MP_TAC (SPEC "x:int" INT_LT_NEGTOTAL) THEN
    ASM_REWRITE_TAC[] THEN
    REPEAT_TCL DISJ_CASES_THEN MP_TAC (SPEC "y:int" INT_LT_NEGTOTAL) THEN
    ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[TAUT_CONV "a ==> b ==> c = b /\ a ==> c"] THEN
    DISCH_THEN(MP_TAC o MATCH_MP INT_LT_MUL) THEN
    REWRITE_TAC[GSYM INT_NEG_LMUL; GSYM INT_NEG_RMUL] THEN
    CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
    DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[INT_NEG_0; INT_LT_REFL];
    DISCH_THEN(DISJ_CASES_THEN SUBST1_TAC) THEN
    REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO]]);;

let INT_EQ_LMUL = prove_thm(`INT_EQ_LMUL`,
  "!x y z. (x * y = x * z) = (x = &0) \/ (y = z)",
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [] [GSYM INT_SUB_0] THEN
  REWRITE_TAC[GSYM INT_SUB_LDISTRIB] THEN
  REWRITE_TAC[INT_ENTIRE; INT_SUB_0]);;

let INT_EQ_RMUL = prove_thm(`INT_EQ_RMUL`,
  "!x y z. (x * z = y * z) = (z = &0) \/ (x = y)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN
  MATCH_ACCEPT_TAC INT_EQ_LMUL);;

%----------------------------------------------------------------------------%
% Prove homomorphisms for the inclusion map                                  %
%----------------------------------------------------------------------------%

let INT = prove_thm(`INT`,
  "!n. &(SUC n) = &n + &1",
  GEN_TAC THEN REWRITE_TAC[int_of_num] THEN
  REWRITE_TAC[INT_1]);;

let INT_POS = prove_thm(`INT_POS`,
  "!n. &0 <= &n",
  INDUCT_TAC THEN REWRITE_TAC[INT_LE_REFL] THEN
  MATCH_MP_TAC INT_LE_TRANS THEN
  EXISTS_TAC "&n" THEN ASM_REWRITE_TAC[INT] THEN
  REWRITE_TAC[INT_LE_ADDR; INT_LE_01]);;

let INT_LE = prove_thm(`INT_LE`,
  "!m n. &m <= &n = m num_le n",
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC
   [INT; INT_LE_RADD; ZERO_LESS_EQ; LESS_EQ_MONO; INT_LE_REFL] THEN
  REWRITE_TAC[GSYM NOT_LESS; LESS_0] THENL
   [MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC "&n" THEN
    ASM_REWRITE_TAC[ZERO_LESS_EQ; INT_LE_ADDR; INT_LE_01];
    DISCH_THEN(MP_TAC o C CONJ (SPEC "m:num" INT_POS)) THEN
    DISCH_THEN(MP_TAC o MATCH_MP INT_LE_TRANS) THEN
    REWRITE_TAC[INT_NOT_LE; INT_LT_ADDR; INT_LT_01]]);;

let INT_LT = prove_thm(`INT_LT`,
  "!m n. &m < &n = m num_lt n",
  REPEAT GEN_TAC THEN MATCH_ACCEPT_TAC ((REWRITE_RULE[] o AP_TERM "$~" o
    REWRITE_RULE[GSYM NOT_LESS; GSYM INT_NOT_LT]) (SPEC_ALL INT_LE)));;

let INT_INJ = prove_thm(`INT_INJ`,
  "!m n. (&m = &n) = (m = n)",
  let th = PROVE("(m = n) = m num_le n /\ n num_le m",
                 EQ_TAC THENL
                  [DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[LESS_EQ_REFL];
                   MATCH_ACCEPT_TAC LESS_EQUAL_ANTISYM]) in
  REPEAT GEN_TAC THEN REWRITE_TAC[th; GSYM INT_LE_ANTISYM; INT_LE]);;

let INT_ADD = prove_thm(`INT_ADD`,
  "!m n. &m + &n = &(m num_add n)",
  INDUCT_TAC THEN REWRITE_TAC[INT; ADD; INT_ADD_LID] THEN
  RULE_ASSUM_TAC GSYM THEN GEN_TAC THEN ASM_REWRITE_TAC[] THEN
  CONV_TAC(AC_CONV(INT_ADD_ASSOC,INT_ADD_SYM)));;

let INT_MUL = prove_thm(`INT_MUL`,
  "!m n. &m * &n = &(m num_mul n)",
  INDUCT_TAC THEN REWRITE_TAC[INT_MUL_LZERO; MULT_CLAUSES; INT;
    GSYM INT_ADD; INT_RDISTRIB] THEN
  FIRST_ASSUM(\th. REWRITE_TAC[GSYM th]) THEN
  REWRITE_TAC[INT_MUL_LID]);;

%----------------------------------------------------------------------------%
% Now more theorems                                                          %
%----------------------------------------------------------------------------%

let INT_LT_NZ = prove_thm(`INT_LT_NZ`,
  "!n. ~(&n = &0) = (&0 < &n)",
  GEN_TAC THEN REWRITE_TAC[INT_LT_LE] THEN
  CONV_TAC(RAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
  ASM_CASES_TAC "&n = &0" THEN ASM_REWRITE_TAC[INT_LE_REFL; INT_POS]);;

let INT_NZ_IMP_LT = prove_thm(`INT_NZ_IMP_LT`,
  "!n. ~(n = 0) ==> &0 < &n",
  GEN_TAC THEN REWRITE_TAC[GSYM INT_INJ; INT_LT_NZ]);;

let INT_DOUBLE = prove_thm(`INT_DOUBLE`,
  "!x. x + x = &2 * x",
  GEN_TAC THEN REWRITE_TAC[num_CONV "2"; INT] THEN
  REWRITE_TAC[INT_RDISTRIB; INT_MUL_LID]);;

let INT_SUB_SUB = prove_thm(`INT_SUB_SUB`,
  "!x y. (x - y) - x = --y",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_sub] THEN
  ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
    "(a + b) + c = (c + a) + b"] THEN
  REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID]);;

let INT_LT_ADD_SUB = prove_thm(`INT_LT_ADD_SUB`,
  "!x y z. (x + y) < z = x < (z - y)",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["x:int"; "z - y"; "y:int"] INT_LT_RADD)) THEN
  REWRITE_TAC[INT_SUB_ADD]);;

let INT_LT_SUB_RADD = prove_thm(`INT_LT_SUB_RADD`,
  "!x y z. (x - y) < z = x < z + y",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["x - y"; "z:int"; "y:int"] INT_LT_RADD)) THEN
  REWRITE_TAC[INT_SUB_ADD]);;

let INT_LT_SUB_LADD = prove_thm(`INT_LT_SUB_LADD`,
  "!x y z. x < (y - z) = (x + z) < y",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL ["x + z"; "y:int"; "--z"] INT_LT_RADD)) THEN
  REWRITE_TAC[int_sub; GSYM INT_ADD_ASSOC; INT_ADD_RINV; INT_ADD_RID]);;

let INT_LE_SUB_LADD = prove_thm(`INT_LE_SUB_LADD`,
  "!x y z. x <= (y - z) = (x + z) <= y",
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM INT_NOT_LT; INT_LT_SUB_RADD]);;

let INT_LE_SUB_RADD = prove_thm(`INT_LE_SUB_RADD`,
  "!x y z. (x - y) <= z = x <= z + y",
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM INT_NOT_LT; INT_LT_SUB_LADD]);;

let INT_LT_NEG = prove_thm(`INT_LT_NEG`,
  "!x y. --x < --y = y < x",
  REPEAT GEN_TAC THEN
  SUBST1_TAC(SYM(SPECL["--x"; "--y"; "x + y"] INT_LT_RADD)) THEN
  REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN
  ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_RINV; INT_ADD_LID]);;

let INT_LE_NEG = prove_thm(`INT_LE_NEG`,
  "!x y. --x <= --y = y <= x",
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM INT_NOT_LT] THEN
  REWRITE_TAC[INT_LT_NEG]);;

let INT_ADD2_SUB2 = prove_thm(`INT_ADD2_SUB2`,
  "!a b c d. (a + b) - (c + d) = (a - c) + (b - d)",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEG_ADD] THEN
  CONV_TAC(AC_CONV(INT_ADD_ASSOC,INT_ADD_SYM)));;

let INT_SUB_LZERO = prove_thm(`INT_SUB_LZERO`,
  "!x. &0 - x = --x",
  GEN_TAC THEN REWRITE_TAC[int_sub; INT_ADD_LID]);;

let INT_SUB_RZERO = prove_thm(`INT_SUB_RZERO`,
  "!x. x - &0 = x",
  GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEG_0; INT_ADD_RID]);;

let INT_LET_ADD2 = prove_thm(`INT_LET_ADD2`,
  "!w x y z. w <= x /\ y < z ==> (w + y) < (x + z)",
  REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN
  MATCH_MP_TAC INT_LTE_TRANS THEN
  EXISTS_TAC "w + z" THEN
  ASM_REWRITE_TAC[INT_LE_RADD; INT_LT_LADD]);;

let INT_LTE_ADD2 = prove_thm(`INT_LTE_ADD2`,
  "!w x y z. w < x /\ y <= z ==> (w + y) < (x + z)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
  ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
  MATCH_ACCEPT_TAC INT_LET_ADD2);;

let INT_LET_ADD = prove_thm(`INT_LET_ADD`,
  "!x y. &0 <= x /\ &0 < y ==> &0 < (x + y)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBST1_TAC(SYM(SPEC "&0" INT_ADD_LID)) THEN
  MATCH_MP_TAC INT_LET_ADD2 THEN
  ASM_REWRITE_TAC[]);;

let INT_LTE_ADD = prove_thm(`INT_LTE_ADD`,
  "!x y. &0 < x /\ &0 <= y ==> &0 < (x + y)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBST1_TAC(SYM(SPEC "&0" INT_ADD_LID)) THEN
  MATCH_MP_TAC INT_LTE_ADD2 THEN
  ASM_REWRITE_TAC[]);;

let INT_LT_MUL2 = prove_thm(`INT_LT_MUL2`,
  "!x1 x2 y1 y2. &0 <= x1 /\ &0 <= y1 /\ x1 < x2 /\ y1 < y2 ==>
        (x1 * y1) < (x2 * y2)",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM INT_SUB_LT] THEN
  REWRITE_TAC[INT_SUB_RZERO] THEN
  SUBGOAL_THEN "!a b c d.
    (a * b) - (c * d) = ((a * b) - (a * d)) + ((a * d) - (c * d))"
  MP_TAC THENL
   [REPEAT GEN_TAC THEN REWRITE_TAC[int_sub] THEN
    ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
      "(a + b) + (c + d) = (b + c) + (a + d)"] THEN
    REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID];
    DISCH_THEN(\th. ONCE_REWRITE_TAC[th]) THEN
    REWRITE_TAC[GSYM INT_SUB_LDISTRIB; GSYM INT_SUB_RDISTRIB] THEN
    DISCH_THEN STRIP_ASSUME_TAC THEN
    MATCH_MP_TAC INT_LTE_ADD THEN CONJ_TAC THENL
     [MATCH_MP_TAC INT_LT_MUL THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC INT_LET_TRANS THEN EXISTS_TAC "x1:int" THEN
      ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM INT_SUB_LT] THEN
      ASM_REWRITE_TAC[];
      MATCH_MP_TAC INT_LE_MUL THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC INT_LT_IMP_LE THEN ASM_REWRITE_TAC[]]]);;

let INT_SUB_LNEG = prove_thm(`INT_SUB_LNEG`,
  "!x y. (--x) - y = --(x + y)",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEG_ADD]);;

let INT_SUB_RNEG = prove_thm(`INT_SUB_RNEG`,
  "!x y. x - (--y) = x + y",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_sub; INT_NEGNEG]);;

let INT_SUB_NEG2 = prove_thm(`INT_SUB_NEG2`,
  "!x y. (--x) - (--y) = y - x",
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_SUB_LNEG] THEN
  REWRITE_TAC[int_sub; INT_NEG_ADD; INT_NEGNEG] THEN
  MATCH_ACCEPT_TAC INT_ADD_SYM);;

let INT_SUB_TRIANGLE = prove_thm(`INT_SUB_TRIANGLE`,
  "!a b c. (a - b) + (b - c) = a - c",
  REPEAT GEN_TAC THEN REWRITE_TAC[int_sub] THEN
  ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
    "(a + b) + (c + d) = (b + c) + (a + d)"] THEN
  REWRITE_TAC[INT_ADD_LINV; INT_ADD_LID]);;

let INT_EQ_SUB_LADD = prove_thm(`INT_EQ_SUB_LADD`,
  "!x y z. (x = y - z) = (x + z = y)",
  REPEAT GEN_TAC THEN (SUBST1_TAC o SYM o C SPECL INT_EQ_RADD)
   ["x:int"; "y - z"; "z:int"] THEN REWRITE_TAC[INT_SUB_ADD]);;

let INT_EQ_SUB_RADD = prove_thm(`INT_EQ_SUB_RADD`,
  "!x y z. (x - y = z) = (x = z + y)",
  REPEAT GEN_TAC THEN CONV_TAC(SUB_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
  MATCH_ACCEPT_TAC INT_EQ_SUB_LADD);;

let INT_SUB_SUB2 = prove_thm(`INT_SUB_SUB2`,
  "!x y. x - (x - y) = y",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM INT_NEGNEG] THEN
  AP_TERM_TAC THEN REWRITE_TAC[INT_NEG_SUB; INT_SUB_SUB]);;

let INT_ADD_SUB2 = prove_thm(`INT_ADD_SUB2`,
  "!x y. x - (x + y) = --y",
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM INT_NEG_SUB] THEN
  AP_TERM_TAC THEN REWRITE_TAC[INT_ADD_SUB]);;

let INT_EQ_LMUL2 = prove_thm(`INT_EQ_LMUL2`,
  "!x y z. ~(x = &0) ==> ((y = z) = (x * y = x * z))",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  MP_TAC(SPECL ["x:int"; "y:int"; "z:int"] INT_EQ_LMUL) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN REFL_TAC);;

let INT_EQ_IMP_LE = prove_thm(`INT_EQ_IMP_LE`,
  "!x y. (x = y) ==> x <= y",
  REPEAT GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
  MATCH_ACCEPT_TAC INT_LE_REFL);;

let INT_POS_NZ = prove_thm(`INT_POS_NZ`,
  "!x. &0 < x ==> ~(x = &0)",
  GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP INT_LT_IMP_NE) THEN
  CONV_TAC(RAND_CONV SYM_CONV) THEN POP_ASSUM ACCEPT_TAC);;

let INT_EQ_RMUL_IMP = prove_thm(`INT_EQ_RMUL_IMP`,
  "!x y z. ~(z = &0) /\ (x * z = y * z) ==> (x = y)",
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ASM_REWRITE_TAC[INT_EQ_RMUL]);;

let INT_EQ_LMUL_IMP = prove_thm(`INT_EQ_LMUL_IMP`,
  "!x y z. ~(x = &0) /\ (x * y = x * z) ==> (y = z)",
  ONCE_REWRITE_TAC[INT_MUL_SYM] THEN MATCH_ACCEPT_TAC INT_EQ_RMUL_IMP);;

let INT_DIFFSQ = prove_thm(`INT_DIFFSQ`,
  "!x y. (x + y) * (x - y) = (x * x) - (y * y)",
  REPEAT GEN_TAC THEN
  REWRITE_TAC[INT_LDISTRIB; INT_RDISTRIB; int_sub; GSYM INT_ADD_ASSOC] THEN
  ONCE_REWRITE_TAC[AC(INT_ADD_ASSOC,INT_ADD_SYM)
    "a + b + c + d = (b + c) + (a + d)"] THEN
  REWRITE_TAC[INT_ADD_LID_UNIQ; GSYM INT_NEG_RMUL] THEN
  REWRITE_TAC[INT_LNEG_UNIQ] THEN AP_TERM_TAC THEN
  MATCH_ACCEPT_TAC INT_MUL_SYM);;

let INT_POSSQ = prove_thm(`INT_POASQ`,
  "!x. &0 < (x * x) = ~(x = &0)",
  GEN_TAC THEN REWRITE_TAC[GSYM INT_NOT_LE] THEN AP_TERM_TAC THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o C CONJ (SPEC "x:int" INT_LE_SQUARE)) THEN
    REWRITE_TAC[INT_LE_ANTISYM; INT_ENTIRE];
    DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[INT_MUL_LZERO; INT_LE_REFL]]);;

let INT_SUMSQ = prove_thm(`INT_SUMSQ`,
  "!x y. ((x * x) + (y * y) = &0) = (x = &0) /\ (y = &0)",
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[DE_MORGAN_THM] THEN
    DISCH_THEN DISJ_CASES_TAC THEN MATCH_MP_TAC INT_POS_NZ THENL
     [MATCH_MP_TAC INT_LTE_ADD; MATCH_MP_TAC INT_LET_ADD] THEN
    ASM_REWRITE_TAC[INT_POSSQ; INT_LE_SQUARE];
    DISCH_TAC THEN ASM_REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID]]);;

let INT_EQ_NEG = prove_thm(`INT_EQ_NEG`,
  "!x y. (--x = --y) = (x = y)",
  REPEAT GEN_TAC THEN
  REWRITE_TAC[GSYM INT_LE_ANTISYM; INT_LE_NEG] THEN
  MATCH_ACCEPT_TAC CONJ_SYM);;

%----------------------------------------------------------------------------%
% Some nasty hacking round to show that the positive integers are a copy     %
% of the natural numbers.                                                    %
%----------------------------------------------------------------------------%

let INT_DECOMPOSE = prove_thm(`INT_DECOMPOSE`,
  "!i. ?m n. i = mk_int($tint_eq(m,n))",
  GEN_TAC THEN
  MP_TAC(SPEC "dest_int i" (CONJUNCT2 int_tybij)) THEN
  REWRITE_TAC[CONJUNCT1 int_tybij] THEN BETA_TAC THEN
  DISCH_THEN(X_CHOOSE_THEN "x:num#num" MP_TAC) THEN
  DISCH_THEN(MP_TAC o AP_TERM "mk_int") THEN
  REWRITE_TAC[CONJUNCT1 int_tybij] THEN
  DISCH_THEN SUBST1_TAC THEN
  MAP_EVERY EXISTS_TAC ["FST(x:num#num)"; "SND(x:num#num)"] THEN
  REWRITE_TAC[]);;

let DEST_MK_EQCLASS = prove_thm(`DEST_MK_EQCLASS`,
  "!v. dest_int (mk_int ($tint_eq v)) = $tint_eq v",
  GEN_TAC THEN REWRITE_TAC[GSYM int_tybij] THEN
  BETA_TAC THEN EXISTS_TAC "v:num#num" THEN REFL_TAC);;

let REP_EQCLASS = prove_thm(`REP_EQCLASS`,
  "!v. $@($tint_eq v) tint_eq v",
  GEN_TAC THEN ONCE_REWRITE_TAC[TINT_EQ_SYM] THEN
  MATCH_MP_TAC SELECT_AX THEN
  EXISTS_TAC "v:num#num" THEN
  MATCH_ACCEPT_TAC TINT_EQ_REFL);;

map (load_definition `-`) [`int_0`; `int_1`; `int_add`; `int_lt`];;

let NUM_LEMMA = prove_thm(`NUM_LEMMA`,
  "!i. &0 <= i ==> ?n. i = mk_int($tint_eq (n,0))",
  GEN_TAC THEN
  X_CHOOSE_THEN "m:num" (X_CHOOSE_THEN "n:num" SUBST1_TAC)
    (SPEC "i:int" INT_DECOMPOSE) THEN
  REWRITE_TAC[GSYM INT_0; int_lt; int_0; int_le; tint_lt] THEN
  REWRITE_TAC[DEST_MK_EQCLASS] THEN
  DISCH_TAC THEN EXISTS_TAC "m num_sub n" THEN AP_TERM_TAC THEN
  REWRITE_TAC[GSYM TINT_EQ_EQUIV; tint_eq] THEN
  REWRITE_TAC[ADD_CLAUSES] THEN CONV_TAC SYM_CONV THEN
  MATCH_MP_TAC SUB_ADD THEN POP_ASSUM MP_TAC THEN
  CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[GSYM NOT_LESS] THEN
  DISCH_TAC THEN
  SUBGOAL_THEN "$@($tint_eq(m,n)) tint_eq (m,n) /\
                $@($tint_eq tint_0) tint_eq (1,1)"
    (\th. REWRITE_TAC[MATCH_MP TINT_LT_WELLDEF th])
  THENL [REWRITE_TAC[REP_EQCLASS; tint_0]; ALL_TAC] THEN
  REWRITE_TAC[tint_lt] THEN
  GEN_REWRITE_TAC RAND_CONV [] [ADD_SYM] THEN
  ASM_REWRITE_TAC[LESS_MONO_ADD_EQ]);;

let NUM_DECOMPOSE = prove_thm(`NUM_DECOMPOSE`,
  "!n. &n = mk_int($tint_eq (n,0))",
  INDUCT_TAC THEN REWRITE_TAC[int_of_num; int_0; tint_0] THENL
   [AP_TERM_TAC THEN REWRITE_TAC[GSYM TINT_EQ_EQUIV; tint_eq; ADD_CLAUSES];
    ASM_REWRITE_TAC[int_1; int_add; tint_1] THEN
    AP_TERM_TAC THEN REWRITE_TAC[GSYM TINT_EQ_EQUIV; DEST_MK_EQCLASS] THEN
    REWRITE_TAC[TINT_EQ_EQUIV] THEN
    SUBGOAL_THEN "$@($tint_eq(n,0)) tint_eq (n,0) /\
                  $@($tint_eq(1 num_add 1,1)) tint_eq (1 num_add 1,1)"
      (\th. REWRITE_TAC[REWRITE_RULE[TINT_EQ_EQUIV]
              (MATCH_MP TINT_ADD_WELLDEF th)])
    THENL [REWRITE_TAC[REP_EQCLASS; tint_0]; ALL_TAC] THEN
    REWRITE_TAC[tint_add; GSYM TINT_EQ_EQUIV; tint_eq] THEN
    REWRITE_TAC[num_CONV "1"; ADD_CLAUSES]]);;

let NUM_POSINT = prove_thm(`NUM_POSINT`,
  "!i. &0 <= i ==> ?!n. i = &n",
  GEN_TAC THEN DISCH_TAC THEN
  CONV_TAC EXISTS_UNIQUE_CONV THEN
  CONJ_TAC THENL
   [ALL_TAC;
    REPEAT GEN_TAC THEN
    GEN_REWRITE_TAC RAND_CONV [] [GSYM INT_INJ] THEN
    DISCH_THEN(CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
    REFL_TAC] THEN
  POP_ASSUM(\th. X_CHOOSE_THEN "n:num" SUBST1_TAC (MATCH_MP NUM_LEMMA th)) THEN
  EXISTS_TAC "n:num" THEN REWRITE_TAC[NUM_DECOMPOSE]);;

%----------------------------------------------------------------------------%
% Theorems about mapping both ways between :num and :int                     %
%----------------------------------------------------------------------------%

let Num = new_definition(`Num`,
  "Num i = @n. i = &n");;

let NUM_OF_INT = prove_thm(`NUM_OF_INT`,
  "!n. Num(&n) = n",
  GEN_TAC THEN REWRITE_TAC[Num; INT_INJ] THEN
  CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
  REWRITE_TAC[SELECT_REFL]);;

let INT_OF_NUM = prove_thm(`INT_OF_NUM`,
  "!i. (&(Num i) = i) = &0 <= i",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_ACCEPT_TAC INT_POS;
    DISCH_THEN(ASSUME_TAC o EXISTENCE o MATCH_MP NUM_POSINT) THEN
    REWRITE_TAC[Num] THEN CONV_TAC SYM_CONV THEN
    MP_TAC(ISPEC "\n. i = &n" SELECT_AX) THEN
    BETA_TAC THEN DISCH_THEN MATCH_MP_TAC THEN
    POP_ASSUM ACCEPT_TAC]);;

close_theory();;