/usr/share/hol88-2.02.19940316/contrib/integer/compat11.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | % ===================================================================== %
% FILE : compat11.ml %
% DESCRIPTION : Compatability file for HOL version 11 resolution tools. %
% Restores: IMP_RES_TAC, IMP_RES_THEN, RES_TAC, RES_THEN %
% to the meanings they had in version 1.11. %
% WARNING : the version 12 resolution tools are now the standard. %
% DATE : 15 January 1991 %
% COMPILER : T Melham %
% ===================================================================== %
% ===================================================================== %
% Put a theorem %
% %
% |- !x. t1 ==> !y. t2 ==> ... ==> tm ==> t %
% %
% into canonical form for resolution by splitting conjunctions apart %
% (like IMP_CANON but without the stripping out of quantifiers and only %
% outermost negations being converted to implications). %
% %
% ~t ---> t ==> F (at outermost level) %
% t1 /\ t2 ---> t1, t2 %
% (t1/\t2)==>t ---> t1==> (t2==>t) %
% (t1\/t2)==>t ---> t1==>t, t2==>t %
% %
% Modification provided by David Shepherd of Inmos to make resolution %
% work with equalities as well as implications. HOL88.1.08, 23 Jun 1989 %
% %
% The old code is given below: %
% %
% letrec RES_CANON_FUN th = %
% let w = concl th in %
% if is_conj w %
% then RES_CANON_FUN(CONJUNCT1 th)@RES_CANON_FUN(CONJUNCT2 th) %
% else if is_imp w & not(is_neg w) then %
% let ante,conc = dest_imp w in %
% if is_conj ante then %
% let a,b = dest_conj ante in %
% RES_CANON_FUN %
% (DISCH a (DISCH b (MP th (CONJ (ASSUME a) (ASSUME b))))) %
% else if is_disj ante then %
% let a,b = dest_disj ante in %
% RES_CANON_FUN (DISCH a (MP th (DISJ1 (ASSUME a) b))) @ %
% RES_CANON_FUN (DISCH b (MP th (DISJ2 a (ASSUME b)))) %
% else %
% map (DISCH ante) (RES_CANON_FUN (UNDISCH th)) %
% else [th];; %
% ===================================================================== %
letrec RES_CANON_FUN th =
let w = concl th in
if is_conj w
then RES_CANON_FUN(CONJUNCT1 th)@RES_CANON_FUN(CONJUNCT2 th)
else if is_imp w & not(is_neg w) then
let ante,conc = dest_imp w in
if is_conj ante then
let a,b = dest_conj ante in
RES_CANON_FUN
(DISCH a (DISCH b (MP th (CONJ (ASSUME a) (ASSUME b)))))
else if is_disj ante then
let a,b = dest_disj ante in
RES_CANON_FUN (DISCH a (MP th (DISJ1 (ASSUME a) b))) @
RES_CANON_FUN (DISCH b (MP th (DISJ2 a (ASSUME b))))
else
map (DISCH ante) (RES_CANON_FUN (UNDISCH th))
else if is_eq w then
let l,r = dest_eq w in
if (type_of l = ":bool") then
let (th1,th2) = EQ_IMP_RULE th in
th . ((RES_CANON_FUN th1) @ (RES_CANON_FUN th2))
% need to keep th as an equality is need to resolve against sometimes ! %
% [DES] 19jun89 %
else [th]
else [th];;
let RES_CANON th =
let vars,w = strip_forall(concl th)
in
let th1 = if is_neg w then NOT_ELIM(SPEC_ALL th) else th
in
map(GENL vars)(RES_CANON_FUN(SPEC_ALL th1)) ? failwith `RES_CANON`;;
% GSPEC --> SPEC_ALL %
let HOL_PART_MATCH partfn th =
let pth = SPEC_ALL (GEN_ALL th) in
let pat = partfn(concl pth) in
let matchfn = match pat in
\tm. INST_TY_TERM (matchfn tm) pth;;
let HOL_MATCH_MP impth =
let match = HOL_PART_MATCH (fst o dest_imp) impth
? failwith `HOL_MATCH_MP`
in
\th. MP (match (concl th)) th;;
% CHOOSE_THEN removed %
let HOL_STRIP_THM_THEN =
FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN];;
let HOL_STRIP_ASSUME_TAC =
(REPEAT_TCL HOL_STRIP_THM_THEN) CHECK_ASSUME_TAC;;
% ===================================================================== %
% Repeatedly resolve an implication %
% ===================================================================== %
letrec HOL_RESOLVE_THEN antel ttac impth : tactic =
let answers = mapfilter (HOL_MATCH_MP impth) antel in
EVERY (mapfilter ttac answers)
THEN
(EVERY (mapfilter (HOL_RESOLVE_THEN antel ttac) answers));;
let IMP_RES_THEN ttac impth =
ASSUM_LIST
(\asl. EVERY (mapfilter (HOL_RESOLVE_THEN asl ttac) (RES_CANON impth)));;
let RES_THEN ttac =
ASSUM_LIST (EVERY o (mapfilter (IMP_RES_THEN ttac)));;
let IMP_RES_TAC = IMP_RES_THEN HOL_STRIP_ASSUME_TAC
and RES_TAC = RES_THEN HOL_STRIP_ASSUME_TAC;;
|